MATH 516-101 Homework Four 2019-2020
Due Date: by 6pm, November 8, 2019
1.(10pts) Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Show that $\left|u\left(x_{1}, \ldots, x_{n}\right)\right| \leq \frac{1}{2} \int_{-\infty}^{\infty}\left|\partial_{1} u\left(x_{1}, \ldots, x_{n}\right)\right| d x_{1}$.
2. (20pts) (Gagliardo-Nirenberg interpolation inequality) Let $n \geq 2,1<p<n$ and $1 \leq q<r<\frac{n p}{n-p}$. For some $\theta \in(0,1)$ and some constant $C>0$ we have

$$
\|u\|_{L^{r}\left(R^{n}\right)} \leq C\|u\|_{L^{q}\left(R^{n}\right)}^{1-\theta}\|\nabla u\|_{L^{p}\left(R^{n}\right)}^{\theta}, \forall u \in C_{c}^{\infty}\left(R^{n}\right)
$$

(i) Use scaling to find the θ.
(ii) Prove the inequality.

Hint: Do an interpretation of L^{r} in terms of L^{q} and $L^{\frac{n p}{n-p}}$ and then apply Sobolev.
3. (10pts) Fix $\alpha>0,1<p<+\infty$ and let $U=B_{1}(0)$. Show that there exists a constant C, depending on n, p and α such that

$$
\int_{U} u^{p} d x \leq C \int_{U}|\nabla u|^{p}
$$

provided

$$
u \in W^{1, p}(U),|\{x \in U \mid u(x)=0\}| \geq \alpha
$$

4. (10pts) (a) Show that $W^{1,2}\left(R^{N}\right) \subset L^{2}\left(R^{N}\right)$ is not compact. (b). Let $n>4$. Show that the embedding $W^{2,2}(U) \rightarrow$ $L^{\frac{2 n}{n-4}}(U)$ is not compact; (b) Describe the embedding of $W^{3, p}(U)$ in different dimensions. State if the embedding is continuous or compact.
5. (20pts) (a) Let $u \in W_{r}^{1,2}=H_{r}^{1}=\left\{u \in W^{1,2}\left(R^{n}\right) \mid u=u(r)\right\}$. Show that $|u(r)| \leq C\|u\|_{W^{1,2}} r^{-\frac{n-1}{2}}$. (b) Show that for $n \geq 2$, the embedding $W_{r}^{1,2} \subset L^{p}$ is compact when $2<p<\frac{2 n}{n-2}$. (c) Let $u=\mathcal{D}_{r}^{1,2}=\left\{\int|\nabla u|^{2}<+\infty ; u=u(r)\right\}$. Show that $D_{r}^{1,2} \subset L^{\frac{2 n}{n-2}}$ and $|u(r)| \leq C\|\nabla u\|_{L^{2}} r^{-\frac{n-2}{2}}$. However show that $D_{r}^{1,2} \subset L^{\frac{2 n}{n-2}}$ is not compact.
6. (10pts) Let $U=(-1,1)$. Show that the dual space of $H^{1}(U)$ is isomorphic to $H^{-1}(U)+E^{*}$ where E^{*} is the two dimensional subspace of $H^{1}(U)$ spanned by the orthogonal vectors $\left\{e^{x}, e^{-x}\right\}$.
7. (10pts) (a). Assume that U is connected. A function $u \in W^{1,2}(U)$ is a weak solution of the Neumann problem

$$
\begin{equation*}
-\Delta u=f \text { in } U ; \frac{\partial u}{\partial \nu}=0 \text { on } \partial U \tag{3}
\end{equation*}
$$

if

$$
\int_{U} D u \cdot D v=\int_{U} f v, \quad \forall v \in W^{1,2}
$$

Suppose that $f \in L^{2}$. Show that (3) has a weak solution if and only if

$$
\int_{U} f=0
$$

(b). Discuss how to define a weak solution of the Poisson equation with Robin boundary conditions

$$
\begin{equation*}
-\Delta u=f \text { in } U ; u+\frac{\partial u}{\partial \nu}=0 \text { on } \partial U \tag{4}
\end{equation*}
$$

8. (10pts) (a) Discuss the definition of weak solutions $u \in H_{0}^{2}(\Omega)$ to

$$
\begin{aligned}
& (*) \quad \Delta^{2} u=f \text { in } \Omega \\
& u=\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{aligned}
$$

(b) Given $f \in L^{2}(\Omega)$ prove that there exists a unique weak solution to $\left(^{*}\right)$.

