10 pts each unless otherwise stated.

1. Consider the following convection-diffusion problem

$$
\begin{gathered}
-\Delta u+\sum_{j=1}^{n} b_{j} \partial_{j} u+c u=f \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{gathered}
$$

Assume that $f \in L^{2}(\Omega), b_{j} \in C^{1}(\bar{\Omega}), c \in L^{\infty}$. Show that if $c-\frac{1}{2} \sum_{j=1}^{n} \partial_{j}\left(b_{j}\right) \geq 0$ then the above problem has a unique weak solution.
2. (20pts) Let Ω be a bounded domain in R^{2}. Consider the following minimization problem

$$
c=\inf _{u \in H_{0}^{1}(\Omega)}\left(\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{4} \int_{\Omega} u^{4}+\int_{\Omega} f(x) u\right)
$$

Show that c can be attained and its minimizer is a weak solution

$$
\Delta u=u^{3}+f(x), \text { in } \Omega ; u=0 \text { on } \partial \Omega
$$

Show that the weak solution is also unique.
3. Let $u \in H^{1}\left(R^{n}\right)$ have compact support and be a weak solution of the semilinear PDE

$$
\Delta u=u^{3}-f \text { in } R^{n}
$$

where $f \in L^{2}$. Prove that $\left\|D^{2} u\right\|_{L^{2}\left(R^{n}\right)} \leq C\|f\|_{L^{2}\left(R^{n}\right)}$.
Hint: mimic the proof of H^{2}-estimates but without the cut-off function.
4. Assume that $u \in H^{1}(\Omega)$ is a bounded weak solution of

$$
-\sum_{i, j=1}^{n} \partial_{j}\left(a^{i j} \partial_{i} u\right)=0 \text { in } \Omega
$$

Show that \mathbf{u}^{4} is a weak sub-solution.
5. (20pts) Let u be a weak sub-solution of

$$
-\sum_{i, j} \partial_{x_{j}}\left(a^{i j} \partial_{x_{i}} u\right)+c(x) u=f
$$

where $\theta \leq\left(a^{i j}\right) \leq C_{2}<+\infty$. Suppose that $c(x) \in L^{\frac{n}{2}}\left(B_{1}\right), f \in L^{q}\left(B_{1}\right)$ where $q>\frac{n}{2}$. Show that there exists a generic constant $\epsilon_{0}>0$ such that if $\int_{B_{1}}|c|^{\frac{n}{2}} d x \leq \epsilon_{0}$, then

$$
\sup _{B_{1 / 2}} u^{+} \leq C\left(\left\|u^{+}\right\|_{L^{2}\left(B_{1}\right)}+\|f\|_{L^{q}\left(B_{1}\right)}\right)
$$

Hint: following the Moser's iteration procedure.
6. Show that $u=\log |x|$ is in $H^{1}\left(B_{1}\right)$, where $B_{1}=B_{1}(0) \subset R^{3}$ and that it is a weak solution of

$$
-\Delta u+c(x) u=0
$$

for some $c(x) \in L^{\frac{3}{2}}\left(B_{1}\right)$ but u is not bounded.
7. Let $u \in H_{0}^{1}(\Omega)$ be a weak solution of

$$
-\Delta u=|u|^{q-1} u \text { in } \Omega ; u=0 \text { on } \partial \Omega
$$

where $q<\frac{n+2}{n-2}$. Without using Moser's iteration Lemma, use the $W^{2, p}-$ theory only to show that $u \in L^{\infty}$.
8. Let u be a smooth solution of $L u=-\sum_{i, j} a^{i j} u_{x_{i} x_{j}}=0$ in U and $a^{i j}$ are C^{1} and uniformly elliptic. Set $v:=$ $|D u|^{2}+\lambda u^{2}$. Show that

$$
L v \leq 0 \text { in } U, \text { if } \lambda \text { is large enough }
$$

Deduce, by Maximum Principle that

$$
\|D u\|_{L^{\infty}(U)} \leq C\|D u\|_{L^{\infty}(\partial \Omega)}+C\|u\|_{L^{\infty}(\partial \Omega)}
$$

9. Let u be a smooth function satisfying

$$
-\Delta u+u=f(x),|u| \leq 1, \quad \text { in } R^{n}
$$

where

$$
|f(x)| \leq C e^{-|x|}
$$

Deduce from maximum principle that u actually decays

$$
|u(x)| \leq C e^{-\frac{1}{2}|x|}
$$

