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5. Banach and Hilbert Spaces

nach spaces, namely the Contraction Mapping Principle and the

5.1. The Contraction Mapping Principle

A mapping 7 fromano

ping if there exists a number 6 <1 such that

rmed linear space ¥ into itself is called a contraction-map-

(3.1 | Tx— Tyl <8 x—yl forallx,ye ¥

Theorem 5.1. A contraction mapping T
that is there exists a unique solution x € #

Proof. (Method of successive appr
(x,} =B by x,=T"xo, n=1,2,...

n

1%, — Xl < Z “xj_'xj—xn

Consequently {x,}

element x € @. Clearly T'isalsoac

j=m+1
n

na Banach space B has a unique fixed point,
of the equation Tx=x.

oximations.) Let x, € % and define a sequence
Then if n=m, we have

by the triangle inequality

)3 1737 = T %ol

jEm+t
n

< Z ej—lnx‘_xon b)’ (51)

=

j=m+ 1

is a Cauchy sequence and, sin

Tx = lim Tx,= im X, =X

so that x is a fixed point of T. T

(5.h). O

. In the statement of Theorem 5.

closed subset.

5.2. The Method of Continuity

Let¥,and ¥, be normed linéar spaces. A linear map

if the quantity

(5.2) WTl=

xe¥ . x*

1 Txlly,

SUP iy,

<M'_> 0 asm— .

he uniqueness of x follows immediately from

1, the space & can obviously be replaced by any

ce & is complete, converges to an
ontinuous mapping and hence we have

ping T: ¥, — ¥, 18 bounded

55 Tpe Frotdad
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is finite. It is easy to show that a linear mapping T is bounded if and only if it is
continuous. The invertibility of a bounded linear mapping may sometimes be
deduced from the invertibility of a similar mapping through the following theorem,
which is known in applications as the method of continuity.

Theorem 5.2. Let @ be a Banach space, ¥ u normed linear space and let L, L,
be bounded linear operators from 8 into ¥". For each’t € [0, 1], set

L,=(i =Ly +1L,
and suppose that there is a constant C such that
(5.3 xllg<ClLxly
for t€ [0, 1]. Then L, maps & onto v if and oﬁly if L, mﬁps Bonto V.
Proof. Suppose that L, is onto for some s € [0, 1]. By (5.3), L, is one-to-one and
hence the inverse mapping L ': ¥ — 4% exists. For 1€ [0, 1] and y€eV, the

equation Lx =y is equivalent.to the equation

L(x)=y+(Li—L)x
=y+(t—s)Lgx—(t—s)Lx

which in turn, is equivalent to the equation
x=L7'y+(t—s)L] (Lo—L)x

The mapping T, from 4 into itself given by Tx= LS ly+(t=s)L; "(Ly—Ly)x 18
clearly a contraction mapping if

Is— ) <8=[C(I LI+ 1L, ID]7"

and hence the mapping L, is onto for all ¢ € [0, 1]. satisfying |s ~ 7| < 4. By dividing
the interval [0, 1] into subintervals of length less than 8, we see that the mapping
L, is onto for all ¢ € [0, 1] provided it is onto.for any fixed ¢ € [0, 1], in particular
fort=0ort=1. 0

5.3. The Fredholm Alterpative

Let ¥, and ¥, be normed linear spaces. A mapping 7: ¥, — v, is called compuct
{or completely. continuous) if T maps bounded sets in ¥7,.into relatively compact sets
m 7", or equivalently 7 maps bounded sequences in ¥, into sequences in ¥7, which
oontain convergent subsequences. It follows that a compact linear mapping is also
soatinuous but the, converse is not true in general unless ¥, is-finite dimensional.-
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The Fredholm alternative (or Riesz-Schauder theory) concerns compact linear
operators from a space ¥” into itself and is an extension of the theory of linear
mappings in finite dimensional spaces.

Theorem 8.3, Let T hea act linear mapping of a normed linear space ¥ into
itself. Then either (i) the ﬁomogeneous equation

x—Tx=0
has a nontrivial solution x € ¥ or (ii) for each y € ¥ the equation
x—=Tx=y

has a umquely detesmined solution x € ¥ Furthermore, in case (i), the operator
(I-T)" ! whose existence is asserted there is also bounded.

)

The proof of Theorem 5.3 depends upon the following simple result of Riesz.

Lemma 5.4. Le: ¥ be a normed linear space and@a proper closed subspace of

V. Then for any 6<1, there exists an element x4 € ¥V satisfying 1%, =1 and
dist (x,, #)= 4.

Proof. Letxe¥ —.4. Since . is closed, we have

dist (x, #)= inf |x—yll=d>0.

yeM

Consequently there exists an element y, € .4 such that

d
!lx-—yall$5»
50 that, defining
X—Yg
Xg=——"T,
T Ix =yl

we have || x,| =1 and for any y e 4,
[ x4 — vl =Hx—-y9—-|| Ve — x|l ¥l
’ "l ye=x]
> d 50
I ye—x

The lemma is thus proved. 0

i
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{2 S. Banach and Hilbert Spaces

The element y is called the orthogonul projection of x on .#. Theorem 5.6 also
shows that any closed proper subspace of # is orthogonal to some element of #.

5.7. The Riesz Representation Theorem

The Riesz representation theorem provides an extremely useful characterization
of the bounded linear functionals on a Hilbert space as inner products.

. Theorem 5.7. For every bounded linear functional F on a Hilbert space X . there
is a uniquely determined element fe # such that F(x)=(x, f) for all x € ¢ and
IEI=1/1.

Proof. Let A"=/x|F(x)=0} be the null space of F. If #"= 5. the result is proved
by taking /=0. Otherwise, since 4" is a closed subspace of #, there exists by
Theorem 5.6 an element z#0, € & such that (x, z)=0 for all xe 4 Hence
F(2)#0 and moreover for any x € &

FOO N - E09 5y

'so that the element x —;9—) z e & . This'means that

F(x) _
(F9. oo

that is, that

F s
(x, 2)—vF(:) Izl

and hence F(x)=(f, x) where f=zF(z)/}iz||*. The uniqueness of f is easily proved
and is left to the reader. To show that ||[F| = f||, we have first, by the Schwarz

inequality, ,
|(x. /) 1A '
IFlj= sup ——< sup — =1
=T S T Y
and secondly,
L1 =(L N =FUO<SIFL IS,
so that | f | < | Fll, and hence | Fl|=| f}. O
Theorem 5.7 shows that the dual space-of a Hilbert space may be identified with g o
the space itself and consequently that Hilbert space “.are reflexive. ‘ ’ &
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nach and Hilbert Spaces

% The Fredholm Alternative in Hilbert Spaces

M The Lax-Milgram Theorem

‘ik Riesz representation theorem suffices for the treatment-of linear elliptic equa-
seons that are variational, that is, they are the Euler-Lagrange equations of certain
smdtaple integrals. For general divergence structure equations we will require a
slght extension of Theorem 5.7 due to Lax and Milgram. A bilinear form Bon a
BEert space # is called bounded if there exists a constant K such that

#8.10)

IB(x, »)| <Klx|l }y] forallx,ye#

mad coercive if there exists a number v> 0 such that

ER1)) B(x, x)2v|ix|? forall xe .

A parucular example of a bounded, coercive bxlmear form is the inner product
aself.

Theorem 5 8. Let B be a bounded, coercive bilinear form on a Hilbert space # .

"Then for every bounded linear functional Fe #*, there exists a unique element
Fe S such that

B(x,f/)=F(x) forallxe #.

Proof. 'By virtue of Theorem 5.7, there exists a linear mapping T: - FH
“gdefined by B(x, f)=(x, Tf) for all x € . Furthermore |7/ ||<K]| f| by (5.10)

so that T is bounded. By. (51l)we obtain vl|f|| <B(f. /)=(/. Tf)<nf|| NTrI,
so that

ITAI<KI S| forallfe .

IZFARS

This estimate implies that T is.one-to-one, has closed range (see Problem 5.3) and
that 7~ ! is bounded. Suppose that Tisnot onto »# . Then there existsanelement z#0
satisfying (z, 7f) =0 for all fe »#. Choosing f=z, we obtain (z, Tz)=B(z, 2)=0
implying z=0 by (5.11). Consequently 7-!is a bounded linear mapping on .
‘We then have F(x)=(x, g)=B(x, T' 1g) for all x € 3 and some unique g €
and the result is proved with f=T"~ 9. O

5.9. The Fredholm Alternative in Hilbert Spaces

Theorems 5.3 and 5.5 are of course applicable to compact operators in Hilbert
spaces. Let us derive now for Hilbert spaces our earlier remarks concerning adjoints
in Banach spaces. In light of Theorem 5.7, we define the adjoint slightly differently
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Mmwe wniquely determined solutions x ¢ 3 for every y € 3, and the inverse mappings

-7y LA =T% ! arebounded. If A € A, the null spaces of the mappings Al — T,
W~ T* have positive finite dimension and the equations (5.13) are solvable if and
aix & v is orthogonal to the null space of AI — T* in the first case and Al — T in

- %10. Weak Compactness

et 7 be a normed linear space. A sequence {x,,} converges weakly Yo an element
®e ¥ f f(x,) > f(x) for all fin the dual space ¥ *. By the Riesz representation
~eorem. Theorem 5.7, a sequence {x,} in a Hilbert space # will converge weakly
® xe ¥ if (x,, y) = (x, y) for all y e #. The following result is-useful in the
. Eiibert space approach to differential equations.

Wheorem 5.12. A bounded sequence in a Hilbert space contains a weak ly convergent

smdbsequence. '

#ecf. Let us assume initially that S is separable and suppose that the sequence
i, <X satisfies |x,| <M. Let {y,} be a-dense subset of #. By the Cantor
dagonal process we obtain a subsequence {x, } of our original sequence satisfying
2y Yu) > &, € Rask — co. Themappingf: { y,,} — Rdefined by f( y,)=0a, may
mesasequently be extended to a bounded linear functional f on J# and hence by the
Raesz representation theorem, there exists an element x € satisfying (x, ., y) —
£ 3=(x, y) as k — oo, for all y e #. Hence the subsequence {x, } converges
. weakly to x.
' Toextend the result to an arbitrary Hilbert space #, we let 5 be the closure of
&e hinear hull of the sequence {x,}. Then by our previous argument there exists a
mibsequence {x, < # and an element x € #, satisfying (Xp,» ¥) = (x, y) for all
#= X, But by Theorem 5.6, we have for arbitrary ye &, y=y,+y,, where
Tp€ Ko ¥, € Hy. Hence (x,,, M =(X,. Yo) = (x, yo)=(x, y) for all ye # so
#&at {x, | converges weakly to x, as required. 0

The first part of the proof of Theorem 5.12 extends automatically to reflexive
Banach spaces with separable dual spaces (see Problem 5.4). The result is true
Bowever for arbitrary reflexive Banach spaces (see [YO]).

- “Ehe material in this chapter is standard and can be found in texts on functional
- mmalysis such as [DS], [EW] and [YO].
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@W‘\JO‘M Msis,

ollect without proof 2 few basic results about gobolev spaces: A
s Gilbarg-Trudinger [, or Adams {1}

Here, we €
to this topic i

general reference

y multi-index @ =

n in RY. For u e L9 and an
L0y, define the distibutional derivative

Sobolev Spaces
Let §2 be 2 domai

(o1, @n) € e, with lof = 2051
Dou = .5%37 e —8@%.;'7“ by letting )
(AL) < ¢, DPu>= / (—1)\"\uDalp dz,

Q

[P(£2), if there i a function ga € LP(§2)

for all ¥ € c(92). We say D%u €

satisfying
< P, Da’lb S>=< ¥, da >= f Yo dz,
2 ;
for all @ € cse(82). In this case we identify D7 with ga € Lr($2).
1< p <o define the space

,k <k},

Given this, for k € No,
whke(2) = {ue [P(2), Du € Lr(s2) for Al alal S
with norm
e = 3 1070 T <p<o
jal gk

with norm

respectively,
ax \\Dau\\ 1o

oo = 11
Hullw s ek
ative (A1) 18 contin

k2 (0).

uous with respect t

Note that the distributional deriv
convergence in L}, (82)

Many properties O y over tO W

< p< oo, WD)
p < 00 MoreoveT,

f LP(§2) carT

A.1 Theorem. For any k € ™Ng, 1
wke(£2) 18 reflexive if and only if 1 <
space with scalar product

(V) wre = S / p=u D%v dT
2
[{e?

inducing the norm above.
able. In fact, we have the fo

kD (£2) also is SCPAL
{1, Theorem 3.16]

Torl € p <o
and Serrin; s€€ Adams

due to Meyers

Bunadh 564

o weak

s a Banach space:
WHh2(() s ¢ Hilbert

Hlowing result
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A.2 Theorem. For any k € Ng,1 < p < o0, the subspace WEP N C®(2) is
dense in WEP(02).

The completion of WP 1 C®(£2) in W*?() is denoted by H*P(£2). By
Theorem A.2, WEP(2) = H*?(£2). In particular, if p = 2 it is customary to
use the latter notation.

Finally, Wéc’p(Q) is the closure of C$°(£2) in WHP(£2); in particular.
HY2(02) is the closure of C3°(£2) in H*?(92), with dual H™*(2). DFP(2
is the closure of C§°({?2) in the norm

Hu“pka = Z ||Dau“11),1> .

lal=k

Hélder Spaces
A function u: 2 ¢ R™ — IR is Hélder continuous with exponent 3 > 0 if

B — 5 ju(z) — u(y)|
h™ = rj;}eo lz —ylP =

For m € INg, 0 < § <1, denote
C™A(0) = {u € C™(22); D*u is Holder continuous
with exponent 3 for all a:|of =m} .

If (2 is relatively compact, C™#(§2) becomes a Banach space in the norm

e =y [D%ullp= + Y (D).

lal<m laj=m

([l

The space C™?(£2) on an open domain 2 C IR" carries a Fréchet space topol-
ogy, induced by the C™P-norms on compact sets exhausting §2. Finally, we

may set C™0(£2) := C™(£2). Observe that for 0 < 4 < 1 smooth functions are
not dense in C™#(£2).

Imbedding Theorems

Let (X, } - 1lx), (Y,] - ly) be Banach spaces. X is (continuously) embedded
into Y (denoted X < Y) if there exists an injective linear map : X — Y and
a constant C' such that

li(z)lly < Cllzl/x, forall 2 € X.

In this case we will often simply identify X with the subspace i{(X) C Y.
X is compactly embedded into Y if ¢ maps bounded subsets of X into
relatively compact subsets of Y.

For the spaces that we are primarily interested in we have the following results.
First, from Holder’s inequality we obtain:

A.3 Theorem.
oo, we have L:

For Holder spa -~
pactness resw.” =

A.4 Theorem.
m € INp, 0< .

Finally, for = -

A.5 Theorem:
with Lipschmi =
(1°) If ki -
18 cCOmpaci. =«
() 1f0 =~

k—m-—=

Compacii-= &

quence o "I Tt
Theorer. %1 = #
Densit. - a8
By The i e
any dezi o EE

the bonmiwm

A.6 Thewoez.

2

N1 < ¢ el
More o-uevedts
Adais . T e
Trace 7. .l
For - o maen 52
"W -

| S

ernl

= Beork o |
Tt LT ﬂ'



Hk:.p |()) B}A

12 customary o

in particular.
0L DYRO

2 :”1} .

o the norm

2T Space ToPCi-

Fipallv, we

LD

Appendix A 239

A.3 Theorem. For 2 ¢ IR™ with Lebesgue measure L) <o0,1<p<g<
00, we have LI(£2) — LP(2). This ceases to be true if L™(£2) = oco.

For Holder spaces, by the theorem of Arzéla-Ascoli we have the following com-
pactness result; see Adams [1; Theorems 1.30. 1.31).

A.4 Theorem. Suppose §2 is a relatively compact domain in R™, and let

meNg, 0<a< <1 Then C™B () s C™(§2) compactly.
Finally, for Sobolev spaces we have (see Adams [1; Theorem 5.4}):

A.5 Theorem (Sobolev embedding theorem). Let N c R™ be a bounded domazn
with Lipschitz boundary, k € IN, 1 < p < 00. Then the following holds:

(1°) If kp < n, we have Whr(2) — L1(Q2) for1 < g < ;’_1—}%; the embedding
is compact, if ¢ < ;&%;

() If0<m< k-3 <m+1, we have WRP(2) «— C™%({2), for 0 < a <
k—m— %; the embedding is compact, if & <k —m — %.

Compactness of the ecmbedding WhP(02) — LI(2) for ¢ < 72k s a conse-
quence of the Rellich-Kondrakov theorem; see Adams [1; Theorem 6.2].

Theorem A.5 is valid for Wéc’p(Q)—spaces on arbitrary bounded domains (2.

Density Theorem

By Theorem A.2, Sobolev functions can be approximated by functions enjoying
any degree of smoothness in the interior of 2. Some regularity condition on
the boundary 82 is necessary if smoothness up to the boundary is required:

A.6 Theorem. Let 2 C R"™ be a bounded domain of class C*, and let k €
IN, 1 < p < oo. Then C®({2) 1s dense in WkP($2).

More generally, it suffices that 2 has the segment property; see for instance
Adams [1; Theorem 3.18].

Trace and Extension Theorems

For a domain §2 with C*-boundary 82 = I, k € N, 1 < p < 00, denose by
Wk'%‘p(F) the space of “traces” u|r of functions v € WkP(§2). We think of
Wk—%‘p(l”) as the set of equivalence classes {{u} + WEP(0Q);u € WhP(02)},
endowed with the trace norm

ulri e g gy = E (Il gyin = v € Wo (D))

By this definition, Wk'%’p(f‘) is a Banach space. Moreover, in case k =1, p =
2 the trace operator u — ulpp is a linear isometry of the (closed) orthegonal
complement, of Hy?(£2) in H"*(£2) onto H?%2(I"). By the open mapping the-
orem this provides a bounded “extension operator” H32(I) — HY(£). In
general, we have:
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A.T Theorem. For any  with C*-boundar
a continuous lineqr extensio

(ext(u))'F: u, for allu € W‘“*%J’(F),

See Adams [1; Theorem 7.53 and 7.55).

Covering 82 = | by coordinate patches

and defining Sobolev spaces
W’W(F) as before via such charts (see Adams |

L; 7.51}), an equivalent norm
for WP(I"), where k < S<k+1,s=k+o,is given by
1/p
| D%u(z) — Dou(y)[ ,
lullyys,, = lull s +IZ|:1C /[/F T S gTrey dTdy ;
o=

see Adams [1; Theorem 7.48].
From this, the following may be deduced:

A.8 Theorem. Suppose 2 is a bounded domain with C’k~b0undary Nk ¢

N, 1 <p <o, Then whe(ry <, W S2(1) < W =L2(I) and both embed.
dings are compact.

In particular, we have

(A.2) HY2(02) — 12(60)

compactly, for any bounded domain of class O!.

Poincaré Inequality

For a bounded domain 2 of diameter d and v HS’Z(Q)

(A.3) /Q[uizdx < dZ/Q [Vul? dz .

This follows immediately from Holder’s inequal
(It suffices to consider £ C [0,d] x R™!
generally, we state:

there holds

ity and the mean valye theorem.
=5, ue ) ¢ C8°(S).) More

A.9 Theorem. fyr any bounded domain () of class C! there exists o constant
¢ =c(£2) such that for any y c HY2(02) we have

/ lul? de < c/ IVul? dm+c/ [ul? do .
7 Ie; a9

Proof. The argument is modelled

on Necas [1; p. 18 £,
tion that for a sequence {

Suppose by contradic-
Um) in HY2(02) there holds

(A~4) “um”%%g) =m (”vum“i%m + ”Um”%%an)) .

k4
4
B

yI ke IN, 1 <p < oo there exists
N
n operator ext: DV’””FJ)(F) ~ WhEP(02Y such that

AR

By homo;

But then
Moreover.
by (A.2) «

But
L¥00). )
But lul]; -

In the sam
A.10 Theao

R in R".
= Hl.p‘.,

where T =
Proof. =

it suffic= -
have

Comnr: .
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By homogeneity, we may normalize
umlZ2e) =1

But then (un,) is bounded in H2(£2), and we may assume that um — u weakly.
Moreover, by Theorem A.5.(1°), it follows that u, — u strongly in L?(£2) and
by (A.2) also Uy, lan — ulan in L2(892).

But (A.4) also implies that Vu, — 0 in L*(92), and umlon — 0 in
L?(82). Hence, u € H}*(£2); moreover, Vu = 0. By (A.3) therefore, u = 0.
But ||uljz2(n) = Mmoo |umllr2e) = 1 Contradiction. |

In the same spirit the following variant of Poincaré’s inequality may be derived.
A.10 Theorem. Let Ag = Byr(0)\ Br(0) C IR™ denote the annulus of size

R in R". There exists a constant ¢ = ¢(n,p) such that for any R > 0, any
u e HYP(AR) there holds

/ lu —TuplP dz <c R”/ |Vul? dz |
Ap AR

where T, denotes the mean of u over the annulus Ag.

Proof. Scaling with R, we may assume that R =1, Agp = Ay =: A. Moreover,
it suffices to consider @ = 0. If for a sequence (u,) in HYP(A) with Um = 0 we

have
1= / lum|P dz > m/ [Vum|P dz |
A A

by Theorem A.5 we conclude that u, — u = const. = 7 = 0 in LP(A).
Contradiction. a
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In this appendix we recall some fundamental estimates for elliptic equations.
A basic reference is Gilbarg-Trudinger [1].

On a domain 2 C IR™ we consider second order elliptic differential opera-
tors of the form

B.1 Lu=—ay—2 b2y
( . ) U = —ay; 82?]'(933]' U zami U+ cu, ;
or in divergence form ”
B o ”
(BQ) Luz——a—m; <a”8—:13]u) +cu,

with bounded coefficients aij = aji, by, and c¢ satisfying the ellipticity condition
aij&i&5 > Méf?

with a uniform constant \ > 0, for all £ € IR™. By convention, repeated indeces

are summed from 1 to n. The standard example is the operator L = —A. If
ai; € C', then any operator of type (B.2) also falls into category (B.1) with
bj = —%aij.

Schauder Estimates

Let us first consider the (classical) C%-setting; see Gilbarg-Trudinger [1; The-
orems 6.2, 6.6,

B.1 Theorem. Let L be an elliptic operator of type (B_,J), with coefficients of
class C%, and let w € C?(2). Suppose Ly = f€CR). Then u c Ce(0),
and for any 2 CC 2 we have

(B.3) lullcraqay < C ()l ooy + [fllgeay) -

If in addition §2 is of class C2te, and if u € C°({2)
Uo € C*2(2) on 80, then u ¢ C*% () and

(B.4) lullgziay < C (lull ooy + |1 £1

coincides with a function

coy + 1uolloz.a (2))

with constants C possibly depending on L, 2, n,«, and - in the first case - on
.

L?-Theory

For solutions in Sobolev spaces the Calderén-Zygmund inequality is the coun-
terpart of the Schauder estimates for classical solutions; see Gilbarg-Trudinger
[1; Theorems 9.11, 9.13]

h N

—
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B.2 Theorem. Let L be elliptic of type (B.1) with continuous coefficients ai;.
Suppose u € Hfof(()) satisfies Lu = f in £ with f € LP(§2), 1 <p < o0 Then
for any ' CC §2 we have

(B.5) e @ < C (lulle + I flize)

If in addition 2 is of Class Y and if there exists o function Uo € H*P($2)
such that u — 1, € HYP(£2), then

(B.6) Il 2wy < C (ulizr) + W flleie) + ol 20 ()

The constants C may depend on L,02,n,p, and — N the first case — on .

Weak Solutions

Let L be elliptic of divergence type (B.2), f € H~'(£2). Afunctionu € Hé‘Z(Q)
weakly solves the equation Lu = fif

/ a,;j——a—-u—é—)—(p +cup | do — / fodz =0, forall v € Cx(02).
Ie) 61131 6a:j 0

The integral

L = —Q—u—g— +cu > dax
(u, ) = N\, amjw @) d

continuously extends to a symmetric bilinear form £ on H*(92), the Dirichlet
form associated with the operator L.

A Regularity Result

As an application we consider the equation
(B.7) ~Au = g(,u) in £,

on a domain 2 ¢ R", with a Caratheodory function g: 0 x R — IR; that is,
assuming g(z,u) is measurable in ¢ € §2 and continuous in v € IR. Moreover,
we will assume that g satisfies the growth condition

(B.8) | lg(z,u)) < c(l+ JulP)

where p < 2£2, if n > 3. By (B.8) and Theorem A.5, for any 1 € HY2(§2) the
composed function g(-u()) € H~1(£2): see also Theorem C.2. The following

estimate is essentially due to Brezis-Kato i1}, based on Moser’s [1] iteration
technique.
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B.3 Lemma. Let 2 be a domain inR" and let g : 2 xR — R be a
Carathéodory function such that for almost every z € 2 there holds

(1°) 9z, u)l < afz)(1 + |u])

with a function o € LZ)/CQ(Q). Also let w € HR2(02) be a weak solution of
equation (B.7). Then u ¢ LE (£2) for any ¢ < oo. Ifue Hy*(0), and
a € LV, thenu e L(82) for any g < .

Proof.  Choose 7 € C3°(2) and for s > 0, L > 0 let © = g =

wmin{|ul®, L2}n? e Hy*(2), with supp ¢ CC 2. Testing (B.7) with ¢,
we obtain

/u(2 qu|2min{[u|23,L2}n2 dz + %/

o 2, ng_
V(i) luf* =0 de
{s€2 ; u(@)*<L)

< —2/9 Vuu min{|u|2$,L2}Vm7 dx
+ /Q a1+ 2/ul?) min{|u[**, L?}n? do
< %/ﬂ quIQmin{{ulzs,Lz}nQ dz
—Fc/{2 ul* min{ju|®, £2}|Vn)? dz
+ 3/Q |al iulzmin{{ulgs,fﬂ}nz dx+/niaf772 dr .

Suppose u € L*72(2). Then we may conclude that with constants depending

on the L**2norm of v , restricted to supp(n), there holds

J

2
dr <

V(u min{lufs,L}n)

Sete / ol Jul* min{jul®, L2}7® da
0

<ec+ CK/ ul? min{|ul**, L*}n? dg
7

+ c/ la] juj? min{luiz",Lz}n'z dz
(e ; a(a)|2K)
2/n
<c(l+K)+ c~/ la|™? dz .
{zen ; |a(z)> K}

n—2
n—2
: </ umin{|u|®, L}n dz)
n

Sc(l+ K)+e(K)- /Q'V(umin{]uﬁ L}n)

2
dx |

w3 o TSN

where

E(J

Fix K sucl
above) we 1

/{méﬁ

remains un

that is, u €
Now it

the conclus
we LI(L2):

To apply L
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with

By Lenu:.
condirtic ..
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where

2/n
)= | a2 dx) L0 (K- o).
{z0 3 la(2)|2K}

Fix K such that e(K) = 1 and observe that for this choice of K (and s as

above) we now may conclude that
\V([u\s+1n)\2 dx < c/ W(umin{\u\s,L}an de
Q

<e(l+K)
remains uniformly bounded in L. Hence we may let L — oo to derive that

iy € HY*(Q) = L (1) 5

/{zen S u(@)ls<L)

(2s+2)n
that is, u € L 27" (£2). - .
Now iterate, letting sg = 0, 8; +1 = (si—1 + 1)1, ifi =1, to obtain
the conclusion of the lemma. If v € Hé’z (©2), we may let n = 1 to obtain that
we LI(0) for all ¢ < co. 0

To apply Lemma B.3, note that, if u € H;‘(;i(ﬂ) weakly solves (B.7) with a
Carathéodory function g with polynomial growth
glz,u) £ C(L+ P,
and if p < ;12_12 for n > 2, then u weakly solves the equation
—Au = a(z)(1 + u))
with
oy = LEBE)
L+ lufz)] 7
By Lemma B.3, therefore, u € LY, (£2), for any ¢ < co. In view of our growth
condition for g this implies that Au = —g(u) € L (£2) for any ¢ < oo.

loc
Thus, by the Caldéron-Zygmund inequality, Theorem B.2, u € leo’g(.Q), for
any g < oo, whence also u € C?A?(Q) by the Sobolev embedding theorem,
Theorem A.5, for any o < 1. Moreover, if u € HS’Q(Q), and if 002 € C?,
by the same token it follows that u € H*9 N Hy3(02) — Ch2(82). Now we
may proceed using Schauder theory. In particular, if g is Holder continuous,
then u € C%(£2) and is a non-constant, classical C*-solution of equation (B.7).
Finally, if ¢ and 8£2 are smooth, higher regularity (up to the boundary) can be
obtained by iterating the Schauder estimates.

(£2) .

Mazimum Principle

A basic tool for proving existence of solutions to elliptic boundary value prob-
lems in Hélder spaces is the maximum principle.

We state this in a form due to Walter [1; Theorem 2], allowing for more
general coefficients ¢ in the operator L than in classical versions.
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B.4 Theorem. Suppose L is elliptic of type (B.1) on a domain 2 and suppose
uwe C*HR)NCYUAQ) satisfies

Lu>01in £2,and v >0 on 812.
Moreover, suppose there exists h € C?(£2) N C°(2) such that
Lh>0in £2,and h >0 on 1.

Then either w > 0 in 2, or u = Bh for some § < 0.

In particular, let L be given by (B.2) with coefficients a;; € CV*(82),c €
C*({£2). Then L is self—a_djoint and possesses a complete set of eigenfunctions
(p;) in H3*(2)n C?(£2) with eigenvalues A\; < Ay < A3 < .... Moreover, 01

has constant sign, say, ¢; > 0 in £2. Suppose that the first Dirichlet eigenvalue

> (0.
u#0 (U, ’U,)LZ

Then in Theorem B.4 we may choose h = 1, and the theorem implies that
any solution u € C?(2) N CY(2) of Lu > 0 in 2, and such that v > 0 on 2
either is positive throughout §2 or vanishes identically.

The strong maximum principle is based on the Hopf boundary maximum
principle; see Walter [1; p. 294]:

B.5 Theorem. Let L be elliptic of type (B.1) on the ball B = Br(0) ¢ R™,
with ¢ 2 0. Suppose u € C*(B) N CY(B) satisfies Lu > 0 in B, u > 0 on
0B, and w > v > 0 in B,(0) for some p < R,y > 0. Then there exists
&=6(L,v,p,R) >0 such that

u(z) > 6(R - |z) in B .
In particular, if u(zo) = 0 for some g € 9B, then the interior normal deriva-
tive of u at the point Ty is strictly positive.
Weak Mazimum Principle

For weak solutions of elliptic equations we have the following analogue of The-
orem B.4.

B.6 Theorem. Suppose L is elliptic of type (B.2) and suppose the Dirichlet
form of L is positive definite on Hé’Q(Q) in the sense that

L{u,u) >0 forall ue HY2(2), u#0.
Then, if u € H"?(02) weakly satisfies Lu > O in the sense that

L(u,p) =20 for all non-negative ¢ € HY?(52)

b

W

O =

[ ]

B e
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and u > 0 on 82, it follows that u 2 0 in £2.

Proof. Choose ¢ = u.. = max {~u,0} € H? (). Then

0< L(u,u-) = —L(u-,u-) <0

with equality if and only if u- = 0; that is u > 0. 0

Theorem B.6 can be used to strengthen the boundary maximum principle The-
orem B.5:

B.7 Theorem. Let L satisfy the hypotheses of Theorem B.6 in {2 = Bg(0) =
B C R™ with coefficients a;; € C'. Suppose u &€ C*(B) n C'(B) satisfies
Lu>04n B, u>0ondB and u > v > 0 in B,(0) for some p < R,y > 0.
Then there exists 6 = 6(L,7, p, R) > 0 such that u{z) 2 §(R —z]) in B.

Proof. We adapt the proof of Walter [1; p. 294]. For large C > 0 the function
v = exp(C(R? — |z|?)) — 1 satisfies Lv < 0'in B \ B,(0). Moreover, for small
£ > 0 the function w = ev satisfies w < u for |z < p and |z| = E. Hence,
Theorem B.6 — applied to u —w on B\ B,(0) — shows that u > w in B\ B,(0).
u]

Application

As an application, consider the operator L = —A —§, where 6 < Ap, the
first Dirichlet eigenvalue of —A on 2. Let u € HS‘Q(Q) or u € C*(2)NC°(N)
weakly satisfy Lu < C, in {2,u < 0 on 042, and choose v(z) = C(C—lz—zol?)
with zg € 2 and O sufficiently large to achieve that v > 0 on 2 and Lv > (.
Then w = v — u satisfies

Lw>0in £, w>0on 9072,
and hence w is non-negative throughout 2. Thus

u<v in 2.

More generally, results like Theorem B.4 or B.5 can be used to obtain L*°- or
even Lipschitz a priori bounds of solution to elliptic boundary value problems
by comparing with suitably constructed “barriers”.




CHAPTER 4

Weak Solutions, Part 11

4.1. Guide

This chapter covers the well-known theory of De Giorgi-Nash-Moser. We
present both the approach of De Giorgi and of Moser so students can make com-
parisons and can see that the ideas involved are essentially the same. The classical -
paper [12] 1s certainly very nice material for further reading. One may also wish to
compare the results in [12] and [7].

4.2. Local Boundedness

In the following three sections we will discuss the De Giorgi-Nash-Moser the-
ory for linear elliptic equations. In this section we will prove the local boundedness
of solutions. In the next section we will prove Holder continuity. Then in Section
4.4 we will discuss the Harnack inequality. For all results in these three sections
there is no regularity assumption of coefficients.

The main theorem of this section is the following boundedness result.

THEOREM 4.1. Suppose a;; € L™(B;) and ¢ € LY(By) for some q > n/2
satisfy the following assumptions

a;; (x)&:€ > MEP foranyx € By, £ e R" and aij|po + |lclle < A
for some positive constants ) and A. Suppose that u € H'(B)) is a subsolution in

the following sense

() /a,-le-uDpr + cup < / fe forany e € HOI(_Bl) and ¢ > 0in B .

B) B,
If f € L1(B)), then ut € L{°.(By). Moreover, there holds for any 6 € (0, 1) and
any p > ()

S t<Cl ——
s = {a—ew

where C = C(n, A, A, p, q) is a positive constant.

Nlut\lLrsp + “f“Lq(B])}

In the following we use two approaches to prove this theorem, the one by De
Giorgi and the other by Moser.

PROOF. We first prove for 8 = 1/2 and p = 2.

METHOD 1. Approach by De Giorgi.
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Consider v = (u — k)™ for k > O and ¢ € CL(B)). Set ¢ = v¢? as the test
function. Note v = u — k, Dv = Du a.e. in {u > k}and v = 0, Dv = 0 a.e.
in {u < k}. Hence if we substitute such defined ¢ in (x), we integrate in the set
{u > k}.

By Hoélder inequality we have

/aijDiungo:/aijDiuDjU§2+2a,-jD,~uDj§v§

zA/lel2§2—2A/!DvIID§lv§

A " 2A2/ 5 5
> — Dv|"¢% — — Dcl7ve,
> 2/| P2 - == [ ipe]

Hence we obtain

/lelzs“zf C{/UZIDCIZ+/ICIUZ§2+/<2/Icl§2+/|f|v§2}

from which the estimate

/|D<vc>|2s C{/v2|D§l2+/lclvz§2+k2/|c|§2+/!f|v§2}

follows.
Recall the Sobolev inequality for v¢ € H/ (B))

2
*

/(vg)z* < c<n>/ Do)
B B,

where 2* = 2n/(n — 2) forn > 2 and 2* > 2 is arbitrary if n = 2. Holder
inequality implies that with § > 0 small and ¢ < 1

/lflv§2 < (/Iflq>q (/|u;|2*>2* {vg # 0}' 72

<c| fllre (/ |D(v¢_’,')]2> H{ve # O}[%+%*“ql

< 8/ DO + e, I IR, e # 0} *375

Note 1 + % — % > 1 — ql if ¢ > n/2. Therefore we have the following estimate:

f’DWC)!z = C{/U2|D§|2+/|c|v2{2+k2/|0|§2+}72]{b§ #0}11_5}

where F = |lf“l,‘/(31)-
We claim that there holds

(4.1) / 1D < c{ / VDL + (K2 + FH{ve £ 0}|1‘%}
e s (834038 TS Sl
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It is obvious if ¢ = 0. In fact, in this special case there is no restriction on the
set {v¢ # 0}. In general, Holder inequality implies that

/fclv2<§2 = (/ lcl‘f)q (f(@)”)z* {vg #0773
< c<n>f|D<v;>r2 (/ |c|‘1>q {vg #0)|+ 7,

f|c|;2 < (/ lcl")q [{vg #0}' 77 .

and

Therefore we have

/ID(UC)IZS

C{/vle§|2+/lD(v§)|2|{v§ £ O}r 0 + (K2 + F2)|{uz #onl‘i}.

This implies (4.1) if |[{v¢ # 0] is small.
To continue we obtain by Sobolev inequality

/(v;)"‘ < (/(vcf*)z* (v # 0}~ % < c<n>/|D<v;>12|{vc £ 0}

Therefore we have

f<v¢>2 < C{ / V2| DS I{ug # O} + (k + F)?|{vg # on“%-%}

if |{v¢ # 0}] is small. Hence there exists an £ > O such that

/(v;>2 < C{ f VD P{vg # 0} + (k + F)?|{ve # 0}1”8}

if {v¢ # 0}] is small. Choose the cut-off function in the following way. For any
fixed0 <r < R < 1 choose ¢ € Coo(Br)suchthat { = 1in B, and0 < ¢ < 1|
and |D¢| < 2(R — r)"'in B,. Set

Ak, r) ={x € B,;u > k}.
We conclude that forany 0 <r < R <landk > 0

(4.2) / (u—k)?* <

Alk,r)

1
C{————IAk, R)|* / (u —k)* + (k + F)?| Ak, R)IHE}
(R —r)?
A(k,R)
if |A(k, R)| is small. Note

1
Al R < ¢ f <
Ak.R)

1
x [NV
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Hence (4.2) holds if k > kg = Cllu™|| ;2 for some large C depending only on A and

A.
Next we would show that there exists some k = C(ky 4+ F) such that

[ k=

Ak, 1/2)

To continue we take any 7 > k > kg and any 0 < r < 1. It is obvious that

Ak, r) D A(h, r). Hence we have

/(u—h)zs /<u~k>2

Alh,r) Alk,r)
and .
_ . . - R
A(h,r)| =B, N{u —k >h -k} < k)2 / (u —k)-.

Ak, r)
Therefore by (4.2) we have forany 7 > k > kgpand 1/2 <r < R < 1

/(u—h)zgc{@—__—-)E /(u~m-+w+F)Mw1mhAhRﬂ

A(h,r) A(h,R)
I+e
] m+FY} /
<C —k
= hR—rﬂ+(h—@2 k) (=7
(k. R)
or
43 5 1 h+ F e
(4.3) I u ~ 1) 2y < C R + & (h—k)5||(u_ ) HL {(Br)
Now we carry out the iteration. Set ¢ (k, r) = ||(u — k)+||L2(B,)- Fort == 1/2 and
some k > 0 to be determined. Define for £ =0, 1, 2, . [’@_\
ke =ko+ k(1 — 57) (< ko + k) -
re=t+ 5 —1).
Obviously we have
ke — ke = £, reet —re=5:(1—1).

Therefore we have for £ =0, 1,2, ...

20 (ko + F 4+ k)| 2¢¢
pCke,re) < C =+ 0 —[Qﬂ(ke 1 Feop)]HHe
1 —1 k
C ko + F +k
L klte

Next we prove inductively for any £ =0, 1, .

248 ok, reoD]E

A

ko,
(4.4) ke, re) < <P_(_ol_(2 for some y > 1
Y
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if k is sufficiently large. Obviously it is true for £ = 0. Suppose it is true for £ — 1.
We write

ok e _ [0ko,r0) |7 @lko, r0)* @ (ko, 7o)

pke—1,re—1)] 7° < D — yte=(re) yt

Then we obtain

Cy'te ko+ F+k o 280 gk, 7o)

N : 1 Lo lko, ro)]” - ——— -
-7 kite v e 4

Choose y first such that y¢ = 2!+¢ Note » > 1 . Next, we need

Cy'*te (oo, r0)\* ko+F+k<1
1—-1 k k -

@(ke,1rp) <

Therefore we choose
k= Cylko + F + @(ko, 1)}
for C, large. Let £ — +o0 in (4.4). We conclude

plko+k, 1) =0.

Hence we have

supu’ < (Ci + Diko + F + ¢(ko, 1)} .
By

Recall ky = Cl|u+|iLz(Bl) and @ (kg, rg) < “L‘+“L2(Bl)- This finishes the proof.
Next we give the second proof of Theorem 4.1.

METHOD 2. Approach by Moser.

First we explain the idea. By choosing the test function appropriately, we will
estimate the L?' norm of « in a smaller ball by the L?? norm of u for pP1 > pyina
larger ball, that is,

lullovs,y < CllullLeacs,,
for py > py and r; < r,. This is a reversed Holder inequality. As a sacrifice C
behaves like ,2—171 By iteration and careful choice of {r;} and {p;}, we will obtain
the result.

Forsome k > Oand m > 0, set iz = u+ + k and

_ u fu<m
Uy = .
k+m 1ifu>m.
Then we have Dii,, = Oin {u < 0} and {u > m} and @,, < ii. Set the test function
¢ = n*(@bi — kF*') € H} (B))
for some B > 0 and some nonnegative function n € Cé( B). Direct calculation
yields
Dy = Bn*il ™' Dii,ii + n?*ab Dii + 2nDn(@af i — kP

= nil (BDiiy, + Dit) + 2nDn(al i — kP71y .



