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4. The Concentration—Compactness Principle

As we have seen in our analysis of the Plateau problem, Section 2.
rious complication for the direct methods to be applicable arises in
of non-compact group actions.

Ifina terminology borrowed from physics which we will try to make more
precise later, the action is a “manifest” symmetry - as in the case of the con-
formal group of the disc acting on Dirichlet’s integral for minimal surfaces -
we may be able to eliminate the action by a suitable normalization. This was
the purpose for introducing the three-point-condition on admissible functions
for the Plateau problem in the proof of Theorem 2.8. However. if the action
Is “hidden” such a normalization is not possible and thers is no hope that
all minimizing sequences converge to a minimizer. Even worse, the variational
problem may not have a solution. For such problems, P.-L. Lions developed his
concentration-compactness principle. On the basis of this principle, for many
constrained minimization problems it is possible to state necessary and suffi-
cient conditions for the convergence of all minimizing sequences satisfying the
given constraint. These conditions involve a delicate comparison of the given

functional in variation and a (family of) functionals “at infinity” (on which the
group action is manifest)

T, a very se-
the presence

Rather than dwell on abstract notions we prefer to give an example - a variant
of problem (2.1), (2.3)

. = which will bring out the main ideas immediately.

4.1 Example. Let a: R™ — R be a continuous function ¢ > 0 and suppose tha*

UT) = a0 >0 (|z| — ool .
We look for positive solutions « of the equation
(4.1) —Au+a(z)u = uluP~? in R™ |
decaying at ihﬁnity, that is
(4.2) u(z) — 0 as |z — oo .

Here p > 2 may be an arbitrary number, if n = 1

y2.1fn > 3 we suppose that
D < nQ—_”Z This guarantees that the imbedding

HY(2) — LP(0)

is compact for any 2 cc R™.
Note that (4.1) is the Euler-Lagrange equation of the functional

Elu) = é/ﬂ;n (Vul]? + a(z)ul®) dz

on IM2(IR™), restricted to the unit sphere
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M = {ue H"(R") ; / lujP de = 1}

iz LP(IR™). Moreover, if a(z) = 0o, E is invariant under translations
w o Uy, (7) = u(z = o) -
In general, for any u € H}2(IR"), after a substitution of variables

E(uz,) = % /IR" UVUIQ +al- + IO)\UP) dz — %/IR" (lvulz + aoolu]2) de

as iz,| — 0o, whence it may seem appropriate to call

E*®(u) = %/ ) ({Vu|2 + aoo|u[2) dz )

:z2 functional at infinity associated with E. The following result is due to Lions

[eise)

*2: Theorem 1.2].

4.2 Theorem. Suppose

14.3) [:=inf E <inf E® =117,

M M
-3en there ezists, a positive solution u € HYL2(R™) of equation ({.1).
sfsreover. condition (4.3) is necessary and sufficient for the relative compac-
-:ss of all minimizing sequences for B in M.

S~of. Clearly, (4.3) is necessary for the convergence of all minimizing sequences
— /. Indeed, suppose I= < I and let (um) be a minimizing sequence for £%.
Then also (fim), given by @m = um(- + Zm), is a minimizing sequence for E*>,
- any sequence (&) in R™. Choosing |zm| large enough such that

|E(iim) ~ B®(@m)| S
—oreover, (fm) IS a minimizing sequence for E. In addition. we can achieve
U — 0 locally in L? ,
==ence (i) cannot be relatively compact.

Note that this argument also proves that the weak inequality I < I®

siways holds true, regardless of the particular choice of the function a.
\We now show that condition (4.3) is also sufficient. The existence of a

-asitive solution to (4.1) then follows as in the proof of Theorem 2.1.
Let (um) be a minimizing sequence for E in M such that

Elup) — 1.

We may assume that u, — u weakly in LP(IR™) . By continuity, a is uniformly

?
—ositive on IR™. Hence we also have



36 Chapter I. The Direct Methods in the Calculus of Variations

lumll3: < ¢ Blum) < C < o0,

and in addition we may assume that u,, — u weakly in H**(IR™) and pointwise
almost everywhere. Denote um, = Um + u. Observe that by Vitali’s theorem

1
/luml"dw—/tum—ul”d:fcz—// iium—ﬁu;z’dvdz
o dd

(4.4) = p//: Ut = 9 |um — JulP~? d9 dz

1
—-»p// u(u—ﬂu)}u—ﬁu"’”dﬂdzz/Iu]pda:,
0

where [ ...dz denotes integration over IR"™; that is

/ |u|pdr+/ lumlPde — 1.
n IR,“

Similarly
E(Um) = E(’Um + u) =
= % / {(IVul® + 2VuVuy, + [Vvg,|?)
(4:5) TR

+ a(z) (Jul® + 2uvy, + [vm]?) } dz

n

= E(u) + E(vm) + / (VuVv, +a(z)uvy,) dz

and the last term converges to zero by weak convergence v, =ty —u — ( in
HY(R™).

Moreover, letting
R, ={zeR"; la(z) —ax| > ¢} CCR",

since v,, — 0 locally in L?, the integral

[ (ale) ~ o)lomfds <

56/ |vm12+sup|a<z>|/ (o * dz
R» R® .

<ece+o0(1).

Here and in the following, o(1) denotes error terms such that o(l) — 0 as
m — oo. Hence this integral can be made arbitrarily small if we first choose
¢ > 0 and then let m > my(e) be sufficiently large. That is, we have

E(um) = E(u) + E%(vm) + o(1) .
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By homogeneity, if we denote A = Jg» lul? 4z,

E(u) = \/PE </\_1/pu) S 2P A0,

(o = (1= NPPE= (1= Hom) 2 (- NP1 4+ o(1), i A< 1

Hepce we obtain the estimate for X € [0,1]

I = E(um) +o(1) = Blu) + E®(vyn) + (1)
2/PT 4+ (1 = A)P/PI® +o(1)
> ()\2/" £ (1= AP T o))

[}

(\Y

Since p > 2 this implies that A € {0,1}. But if )\ = 0, we obtain that

I>I® +o(1)>1

‘37 large m; a contradiction.
Therefore A = 1; that is, Um — v 10

TOTEOVEr,

I, and u € M. By convexity of B,

E(u) < timinf E(um) =1,

m—0o0
-4 u minimizes E in M. Hence also E(um) — E(u). Finally, by (4.5)

pAreus

fum = el < eBlum =)

c(B(um) — E(u)) +o(1) = 0,

I

=4 u,, — u strongly in H12(R"). The proof is complete.

a systematic approach to such pro-

S.zgarding |um|? dz as a measure on R",
: (P.L. Lions [1; P- 115 £.1).

wlems is possible via the following lemma

£3 Concentration-Compactness Lemma I . Supposé im is o sequence of pTO-
szpility measures O R™: g 2 0, Jn @8m = 1. There is o subsequence (i)
s=ch that one of the following three conditions holds:

c R™ such that for any & >0

=) (Compactness) There erists a sequence Tm
-tere is a radius R > 0 with the property that

/ dppm 2 1-¢
BR(Im)
e all m.

21 (Vanishing) For all R > 0 there holds

lim (sup / dum>=0.
m—oo \zeR" J Br(z)
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(%) (Dichotomy) There ezists a number A, 0 < A <1, such that for any e >0
there is a number R > 0 and a sequence (z,,) with the following property: Given
R' > R there are non-negative measures ul., pui, such that

0< pby+ 4, < tim s
supp(pl,) C Br(zm), supp(ul) C R™\ Br(zm) ,

|
limsup(t/\—/ dul, +‘(1—/\)—/ d,u,;')n> <z
m—+o< n n

Proof. The proof is based on the notion of concentration function

- o= swp | [ du
zelR" B.(z)

of a non-negative measure, introduced by P. Lévy [1].

Let Q,, be the concentration functions associated with p,. Note that (Q,.)
is a sequence of non-decreasing, non-negative bounded functions on [0, cof with
limp—oe@m(R) = 1. Hence, (Q) is locally bounded in BV on {0,00[ and
there exists a subsequence {i.,) and a bounded, non-negative, non-decreasing
function @ such that

Qm(R)— Q(R)  (m — ),
for almost every R > 0. Let
A= lim Q(R).

- R—oo

Clearly 0 < A < 1. If A = 0, we have “vanishing”, case (2°). Suppose A = L.
Then for some Ry > 0 we have Q(Ro) > 5. For any m € IN let z,, satisfy

(eI

L
=

Om(B)S [ dum =

Bﬁo(zm)

Now for 0 < € < 2 fix R such that Q(R) >1—¢ > % and let y,, satisfy

Then for large m we have

/ d/,am+/ dﬂm>1:/ diim -
Br{ym) BRO(Zm) Jishg

It follows that for such m

Br(ym) N Bro(zm) # 0 .

That is, Br(ym) C B2r+r,(zm) and hence
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1-e< / dptm
Bar+RolZm)

y, we can achieve that (1°) holds

fr lazgz M. Choosing R even larger, if necessar

Froa T
sa < N< 1, given € > 0 choose R and a sequence (zm) ~ depending on &

i B -such that
/ dppm > A= €
BH(Im)

£
ssary, we can also fi —

> mo(€)- Enlarging mo(€), if nece 2d a sequence Rm

Qm(R) < Qm(Rm) <A+eE,
the restriction of pm tO Br(zm)-
). Obviously

— > mo(¢). Now let P = m—BR(Tm),

F}

S=Harly, define pi, = Hm™ R"\ BRm (zm)

0 < phy + Him S Hm

also have

_given R' > R, for large m We

(p3) C R\ Br, (@m) C R\ Br(zm) -

<wop(phy) € Br(@m), SUPP

aly, form 2 mo(eg) we can achieve

=nich concludes the proof.
3 may be applied t0 pm = |um|P d,
explicit in (4.4). In view of the com-
d domains {2 for all
d to as the locally

orem 4.2 Lemma 4.
this case is made
ing HY? () = LP({2) on bounde
ple 4.1 is referre

12 the context of The
~ < IN. Dichotomy in
sactness of the embedd
- < 225 the situation dealt with in Exam
compact case.

If a problem is conformally invariant,
tations of " acting via

ariant under the

in particular inv

~on-compact group of dila

uw — ugr(z) = w(z/R), B> 0,

-0t even local compactness cail hold.




