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shall see some examples and some more delicate ways of handling the possible
loss of compactness. See Section 4; see also Chapter III.

In applications, the conditions of the following special case of Theorera 1.1
can often be checked more easily.

1.2 Theorem. Suppose V is a reflexive Banach space with norm || - ||, and let
M CV be a weakly closed subset of V. Suppose E: M — IR U +00 is coercive
and (sequentially) weakly lower semi-continuous on M with respect to V., that
18, suppose the following conditions are fullfilled:
(1°) BE(u) — oo as ||Jul| = oo, v e M.
(2°) For any w € M, any sequence (Un,) in M such that u,, — u weakly in V
there holds:

E(u) < liminf E(un,) .

m—0o0

Then E is bounded from below on M and attains its infimum in M.

‘The concept of minimizing sequences offers a direct and (apparently) construc-
tive proof.

Proof. Let ag = infa; E and let (un,) be a minimizing sequence in M, that is,
satisfying E(um) — ao. By coerciveness, (un) is bounded in V. Since V is
reflexive, by the Eberlein-Smulian theorem (see Dunford-Schwartz [1; p. 430])
we may assume that u, — u weakly for some v € V. But M is weakly closed,
therefore u € M, and by weak lower semi-continuity

E(u) <liminf E(uy) = ay . 0
m-—00
Examples. An important example of a sequentially weakly lower semi-

continous functional is the norm in a Banach space V. Closed and convex
subsets of Banach spaces are important cxamples of weakly closed sets. If V is
the dual of a separable normed vector space, Theorem 1.2 and its proof remain
valid if we replace weak by weak*-convergence.

We present some simple applications.

Degenerate Elliptic Equations.

1.3 Theorem. Let 2 be a bounded domain in IR™, p € (2, 00] with conjugate
exponent q satisfying % +% =1, and let f € H=19($2), the dual of Hém((Z),

be given. Then there exists a weak solution u € Hol’p(Q) of the boundary value
problem

(1.2) =V ([VulP72Vu) = f in §2
(1.3) u=0 on Of2

in the sense that u satisfies the equation
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1. Lower Semi-Continuity

W

/ (VulVuP=2Vy - fo)de =0 , Vi € C5°(42) .
Jn

-7 Remark that the left part of (1.4) is the directional derivative of the
--Iunctional

Elu) = l/ |VulP do — fude
PJn ”

= the Banach space V = Hg@(rz) in direction ¢; that is, problem (1.2), (1.3)
# 21 variational form.

Note that HyP(£2) is reflexive. Moreover, I is coercive. In fact, we have

1 1
B0 2 e = s Yl =~ (a2 = el
>l - .

Tinally, B is (sequentially) weakly lower semi-continuous: It suffices to show
“nat for Uy, — u weakly in H&’p(()) we have

/qumdm - /qud:c.

since f € H“l‘q(ﬂ) » however, this follows from the very definition of weak

wnvergence. Hence Theorem 1.2 is applicable and there exists a minimizer
2 Hy?() of E, solving (1.4). d

Remark that for p > 2 the p-Laplacian is strongly monotone in the sense that

/Q(IVMIP‘QVu — [VoP™2 V) - (Vu — Vo) dz > cfju — v]]g&,p .

[n particular, the solution v to (1.4) is unique.

If f is more regular, say f € C™2((2), we would expect the solution v of

1.4) to be more regular as well. This is true if p = 2, see Appendix B, but

in the degenerate case D > 2, where the uniform ellipticity of the p-Lapla__ce

operator is lost at zeros of IVul, the best that one can hope forisu ¢ cre(0),
see Uhlenbeck (1], Tolksdorf [2; p.128], Di Benedetto [1].

In Theorem 1.3 we have applied Theorem 1.2 to a functional on a reflexive
space. An example in a non-reflexive setting is given next.
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Constraints

~.zee the sphere of radius 1 around p lies in the convex hull of finitely many
0TS (py 1, - - 1 GnN, Dy continuity of F'in u and convexity in p the right
~=zd side of this inequality remains uniformly bounded in a neighborhood of
.. Hence F(-,A-) is locally Lipschitz continous in p, locally uniformly in

P 2 RY x R, Therefore, if u,, — u ,p,; — p we have

:: ’-lmvpm>_F(u1p)‘ S IF(um,pm)_F(umap)1+|F(um»p)_F(u!p)|
<c

Pm —p|+0(1) = 0 as m — oo,

wiere o(1) — 0 as m — o0, as desired.
+* Inthescalar case (N=1), if F is C? for example, the existence of a minimizer
- ior E implies that the Legendre condition

n
Z FPaPﬁ (CL’,’[L, P) '5045,8 2 07 for all g [ IRn

a,f=1

~oids at all points (z,u = u(z),p = Vu(z)), see for instance Giaquinta [1; p.11
This condition in turn implies the convexity of F in p.
The situation is quite different in the vector-valued case N > 1. In this
wxse. in general only the Legendre-Hadamard condition

N
> > F, o (0 D)Eabarn’ 20, forall ¢ €R™, e RY
ij=1a,/=1

+ill hold at a minimizer, which is much weaker then convexity. (Giaquinta [1;
=.12}).
In fact, in Section 3 below we shall see how, under certain additional

~=ructure conditions on F', the convexity assumption in Theorem 1.6 can be
weakened in the vector-valued case.

2. Constraints

Applying the direct methods often involves a delicate interplay between the
‘unctional E, the space of admissible functions M, and the topology on M. In
-his section we will see how, by means of imposing constraints on admissible
functions and/or by a suitable modification of the variational problem, the
direct methods can be successfully employed also in situations where their use
seems highly unlikely at first.

Note that we will not consider constraints that are dictated by the prob-
tems themselves, such as physical restrictions on the response of a mechanical
svstem. Constraints of this type in general lead to variational inequalities, and
we refer to Kinderlehrer-Stampacchia [1] for a comprehensive introduction to
this field. Instead, we will show how certain variational problems can be solved
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by adding virtual - that is, purely technical — constraints to the conditions
defining the admissible set, thus singling out distinguished solutions.

Semi-Linear Elliptic Boundary Value Problems

We start by deriving the existence of positive solutions to non-coercive, semi-
linear elliptic boundary value problems by a constrained minimization method.
Such problems are motivated by studies of flame propagation (see for example
Gel'fand [1; (15.5), p.357)) or arise in the context of the Yamabe problem (see
Chapter 111.4).

Let 2 be a smooth, bounded domain in R", and let p > 9. If n > 3 we also

assume that p satisfies the condition p < 2¢ = 2% For A e R consider the

problem

(2.1) — A+ cu = uluff in §2,
(2.2) u>0 in 2,
(2.3) u=0 on 012 .

Alsolet 0 <A <Az S Az <o denote the eigenvalues of the operator —A on
Hé’Z(IZ). Then we have the following result:

2.1 Theorem. For any ) > —A1 there erists o positive solution U € c*n
C0(2) to problem (2.1)-(2.3).

Proof. Observe that Equation (2.1) is the Fuler-Lagrange equation of the
functional

~u—l ul? ul? 9:—l ul?
By = 3 [ (9uP + Al d L[

on H(§2(9> which is neither bounded from above nor from below on this space.
However, using the homogeneity of (2.1) a solution of problem (2.1)~(2.3) can
also be obtained by solving a constrained minimization problem for the func-
tional

BE(u) = % /Q(\Vu\g + Aul?) de

on the Hilbert space HI* (), restricted to the set
M = {ue Hy*(92); / P de =1} .
n

We verify that £ : M — R satisfies the hypotheses of Theorem 1.2. By
the Rellich-Kondrakov theorem the injection Hé’z((z) < LP(£2) is completely
continuous for p < 2%, if n = 3, respectively for any p < o0, if n = 1,2; see

Theorem A.5 of the appendix. Hence M is weakly closed in Hé‘z(()).
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2. Constraints

Recall the Rayleigh-Ritz characterization

S Vul? d
24 A1 = inf Mﬁ

weH ) f() IU’Q af—;
w#O

? ~hie smallest Dirichlet eigenvalue. This gives the estimate

2 E(u) > %min{l, (1+ /’%)}Hu”éé,a ‘

Tzm this, coerciveness of F for A > ~A; is immediate.

Weak lower semi-continuity of F follows from weak lower semi-continuity
Z rhe norm in HS’Q(Q) and the Rellich-Kondrakov theorem. By Theorem
- 2 therefore E attains its infimum at a point u in M. Remark that since
£ wi = B(fu]) we may assume that u > 0.

To derive the variational equation for £ first note that £ is continuously
frechet-differentiable in H)'?(2) with

(v, DE(u)) = /Q(Vu\—/‘v + Auv) dz .

M reover, letting

G(u) = / [u|Pdx -1,
It}

= HOI‘Q(Q) — IR also is continuously Fréchet-differentiable with

(v, DG(u)) :p/n ululP2udz .

i particular, at any point w € M

(4, DG (u)) = p /Q P dz = p £ 0

24 by the implicit function theorem the set M — G71(0) is a C'-submanifold
< HEM2(0),

Now, by the Lagrange multiplier rule, there exists a parameter u € IR such

(v, (DE(u) ~ uDG(w))) = /

2
=0, forallve HY} ().

(VuVv + Auv — uglg[”“?‘v) dx

lzserting v = y into this equation yields that

2B(u) = /Q(IVLAQ + Mul?) dz = M/Q lulP do = 4 .
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Since u € M cannot vanish identically, from (2.5) we infer that # > 0. Scaling

with a suitable power of #, we obtain a weak solution u = w’+'2 cu € HS’Z(Q)
of (2.1), (2.3) in the sense that

(2.6) / (VuVv + Auw — ululP™?y) dz =0, for all v € H}?(02) .
2

Moreover, (2.2) holds in the weak sense > 0, u # 0. To finish the proof we use
the regularity result Lemma B.3 of the appendix and the observations following

it to obtain that u ¢ C%(9). Finally, by the strong maximum principle u > 0
in §2 ; see Theorem B 4,

0

Observe that, at least for the kind of nonlinear problems considered here, by

Lemma B.3 of the appendix the regularity theory is taken care of and in the fol-
lowing we may concentrate on proving existence of (weak)
additional structure conditions may imply further useful
solutions. An example is symimetry.

solutions. However,
properties of suitable

2.2 Symmetry. By a result of Gidas-Ni-Nirenberg [1; Theorem 2.1, p. 216, and
Theorem 1, p.209], if 2 is symmetric with respect to a hyperplane, say z; = 0,

any positive solution u of (2.1), (2.3) is even in x1, that is, u(zy,2’) = u(—zy,z')

forall z = (2,,2') € 02, and 037“1 < Oat any point z = (z,,2') € 2 with xzy > 0.

In particular, if £2 is a ball, aﬁy positive solution w is radially symmetric. The
proof of this result uses a variant of the Alexandrov-Hopf reflection principle
and the maximum principle. This method lends itself to numerous applications
in many different contexts; in Chapter 1114 below we shall see that it is even

l'in the setting of a parabolic

possible to derive a-priori bounds from this method
equation on the sphere.

Perron’s Method in q Variational Guise

In the previous example the constraint built into the definition of M had the
effect of making the restricted functional £ = E|M coercive. Moreover, this
constraint only changed the Euler-Lagrange equations by a factor which could
be scaled away using the homogeneity of the right hand side of (2.1)

In the next application we will
straints can be imposed without ch
minimizer.

see that sometimes also inequality con-
anging the Euler-Lagrange equations at a

2.3 Weak sub- and super-solutions.
inIR" andlet g: 2 xR — IR be
be given. Consider the equation

Suppose {2 is a smooth, bounded domain
a Carathéodory function. Let ug e Hy?(0)

(2.7) —Au = g(-,u) in 2,
(2.8) U= ug on 012 .
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2. Constraints 17

2o dennition u € HY?(0) is a (weak) sub-solution to (2.7-8) if u < ug on 912

/ Vthgpdm~/g(-,u)cpd.r§O forall p € C§(2), ¢ > 0.
o Jo

-

*zclarlvou e HY2(0) is a (weak) super-solution to (2.7-8) if in the above the
=~=rse inequalities hold.

24 Theorem. Suppose u € HY?(12) is a sub-solution while @ € HY2(£2) is a
= o-solution to problem (2.7-8) and assume that with constants ¢,z € R there
iy =20 < ¢ < u <U<E < oo, almost everywhere in 2. Then there exists
© weak solution uw € HY2(82) of (2.7-8), satisfying the condition u < u < T
wmast everywhere in (2.

—f With no loss of generality we may assume ug = 0. Let G(z,u) =
. r.v)dv denote a primitive of g. Note that (2.7-8) formally are the Eular-
~xIrange equations of the functional

E(u):%/QIVu}Qd:E—/Q G(x,u)dx .

oaever, our assumptions do not allow the conclusion that E is finite or even
-entiable on V 1= H}'?(02) - the smallest space where we have any charce
-¢ ~=rifving coerciveness. Instead we restrict £ to

M = {u € HOl’Q(Q) s u < u <7 almost everywhere} .

Tose u U € L™ by assumption, also M C L™ and G(m,u(m)) < ¢ for all
x £ M and almost every z € £2.

Now we can verify the hypotheses of Theorem 1.2: Clearly, V = HOI’Q(,Q)
= r=exive. Moreover, M is closed and convex, hence weakly closed. Since M o]
= exzentially bounded, our functional E(u) > %HU’H?I}'?(Q)
- Finally, to see that E is weakly lower semi-contin{ious on M, it suffices to
i»ww that

— ¢ is coercive on
i

/QG(m,um)dxﬁ/DG(m,u)dm

“m — u weakly in Hé’z(()), where wu,,,u € M. But - passing to a stb-
yence, if necessary - we may assume that w,, — u pointwise almost ev-
sr~where; moreover, [G(x,um(n;))\ < ¢ uniformly. Hence we may appeal to
_shesgue’s theorem on dominated convergence.

From Theorem 1.2 we infer the existence of a relative minimizer u € M.
o see that u weakly solves (2.7), for ¢ € C§(2) and € > 0 let v, =
mi{Tomax{y, u +ep}} = u+ep — ¢° + e € M with u‘\.g_‘{ ,\

{

&

- = max{O,u+enp—ﬂ} >0,
@e = —min{0,u+cp—u} >0.
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Note that @, ¢° € Ho* N L®(1).
E is differentiable in direction ve — u . Since u minimizes E in M we have

0 S <(U€ *U),DE(U)) =€<QO,DE(U)> - <¢E>DE(U’)> + <(,05,DE(U)> )

so that |
(0. DE@) > < [(¢F, DE(w) — {oe, DEW)]
Now, since % is a supersolution to (2.7), we have
(¢°, DE(u)) = (¢°, DE(@)) + (¢°, DE(u) - DE(W))
> (¢°, DE(u) - DE(T))
= | {Vuw-0)V(utep-T0)-
$2¢
— (g(z,u) — glz, W) (u +ep — )} do

2c [ Vu-mve du—e [ late,w) ~ o] lolda
where 2¢ = {z € 2 ; u(z) +ep(x) 2 u(z) > u(z)}. Note that L™(£2°) — 0 as
¢ — 0. Hence by absolute continuity of the Lebesgue integral we obtain that
(0%, DE(u)) = ofe)
where o(e)/e — 0 as ¢ — 0. Similarly, we conclude that
{¢e, DE(u)) < ofe)

whence

(¢, DE(u)) 2 0
for all v € C$°(2). Reversing the sign of ¢ and since Cg2(£2) is dense in
HS’Q(Q) we finally see that DE(u) = 0, as claimed. 0

2.5 A special case. Let (2 be a smooth bounded domain in R™,n > 3, and let
(2.9) g(x,u) = k(z)u — ujulp 2
where p = 7—?_%, and where k is a continuous function such that

1<k(z) LK <0

uniformly in 2. Suppose up € C1(12) satisfies ug = 1 on a92.
Then u = 1 is a sub-solution while T = ¢ for large ¢ > 1 is a super-solution to

equation (2.7-8). Consequently, (2.7-8) admits a solution u > 1.

2.6 Remark. The sub-super-solution method can also be applied to equations
on manifolds. In the context of the Yamabe problem it has been used by
Loewner-Nirenberg [1] and Kazdan-Warner [1]; see Chapter 111.4. The non-
linear term in this case is precisely (2.9).

g asuskrm BT
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n n
Lu = z aij 6x 6x E ’
N i=1

where aij(x) = a,.(x) is smooth and there exists a constant
L > 0 such that aij(x)§i§J 2 ulflz for all1 § € Rn, and

X € Q2. Set the boundary operator to be

Bu = u

on T and

on F2 where b(x) > 0 on F2, v is the unit outer normal
to T a2 =T uUr r and Fz are disjoint and are both
closed (one of them may be empty). Note that this includes
Dirichlet, Neumann (b = 0) and regular oblique derivative
boundary cénditions.

Consider the problem

Lu + f(x,u) = 0 in Q,
(1.37)

Bu = ¢ on 4Q,

where f 1is, say, C1 in u, (locally) Holder continuous in

(x,u) € Q x R. We say that ¢ is a super-solution (or an

upper-solution) of (I1.37) if

Ly + £(x,¢) < O in Q,
(1.38)

By 2 g on 40;

and ¥ is a sub-solution (or a lower-solution) of (I.37) if

- 64 -
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monotonicity; i.e. if u { v in Q, then Tu < Tv in Q.

Setting w = Tv - Tu, we have

{ (L-A)w = f(x,u) + Au - f(x,v) - Av in Q,

Bw = 0 on 4dQ.
If we write

f(x,u) - f(x,v)
u - v

[ + AlJ(u=-v) if u # v,
f(x,u)+Au-£f(x,v)-Av =.

0 if u = v,

then we see that by the choice of A, the following holds

(L -AMwoO in Q,
(I.41) {

Bw 2 O on 40,

since u-v ¢ 0 in Q. Now suppose that min w < 0. Let
Q

w(P) = min w, then w(P) < 0, P € Q@ and we have two cases:
Q

(i) P € Q. Then

2
W

n
0> (L-A)w(P) = z aij(P)_E%T§§T"(P) + 0 - AW(P)
. i’ 7j

i,j=1

a contradiction.

(ii) P € 90. Clearly P ¢ Fl since on Fl we have
0¢Bu=w. So PET,, and —3%(p) + b(P)w(P) 2 O, there-
fore g: (P) > 0. On the other hand, since (L-A)(-w) 2 G,

min(-w) = (-w)(P) > O and -A < O, the Hopf boundary point
0
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_[£(x,u,) + Au,] is also uniformly bounded in cl/®. Now

Schauder estimates assure us that {Tuk} is uniformly

2

Since the embedding Cz'a -— C is com-

bounded in Cz’a.

pact and Uy converges to u pointwise already, we conclude

that Uy converges to u in Cz(ﬁ). Now, letting k go to

o in the following

{ (L-Mu,, = -[E(xu) + Augl,
Buk+l = g,
we have
(L-A)T = -[£(x,u) + Aul,
{ Bu = g
i.e. U=Td and u is a solution of (I.37). Similarly, v

(v <u¢<e.

igs also a solution and V¥

REMARKS. (i) The above argument also proves that all
possible solutions u with v ¢ u ¢ ¢ must also satisfy

v <u ¢ u.

(ii) The solutions v, 3 are generally "stable" (U, v
may coincide).

(iii) This theorem has had lots of applications, see,
e.g. [KW].

(iv) We now take up the existence gquestion for the

problem (13) in the Introduction, i.e. the problem

S I N A
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is also unique. (See the last theorem in this section.)

(v) Let us now try to apply this method to the Lane-
Emden equation (I.1) (or (2)). Suppose that, somehow, we
have succeeded in doing this. Then, we would have a solution
u of (I.1) and a super-solution ¢ > u in 0 of (I.1).

du

Since u =0 on 80 and T < 0 on 82, we have

o
v

J (¢ gg -u gﬁ )ds = j (eAu - uhyp)
a0 Q

N

J (upP - ouP) = J pu(eP™l - P71y
9, Q

This implies that ¢ = u in 0; i.e. ¢ was already a
solution of (I.1l). Or, equivalently, this says that, in
order to find a pair of super- and sub-solutions with the
correct order, one must first find a solution. This indi-
cates that this barrier method does not seem to be useful in
treating "super-linear" Dirichlet problems.

The following result gives the existence of multiple

solutions which seems due to H. Amann [Am].

THEOREM. Suppose that vy 2 Vs 2 Vi 2 Vg4 where Vi Vg
are strict super-solutions to (I.37) and Vo, V, are strict

sub-solutions to (I1.34). Then there exist three solutions to

(I.37).

Heuristically, it is easy to "prove" this theorem. From

our previous theorem, there exist two solutions u, u cf
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(I.43) £(t) is decreasing in t > 0 and 1lim £(t) > AL,
t -
ti0
then (I.4) has at most one positive solution.
Proof. Suppose that (I.4) has two solutions u and v.

Observe that by (I.43) we can choose e > 0 so small that

€9y is a sub-solution of (I.4), and, €9 q < u and evq < v

(since gg and gz never vanish on 80 Dby the Hopf
boundary point lemma), where ¢4 > 0 is the first eigen-
function of A on Q with $q = 0 on 480. Now we start
our monotone iteration at evq and go up. Eventually we
reach a solution w. Since wu, v are also supersolutioﬁs to
(I1.4), we have u 2 w and V > w. Since u # v, we may
assume that u > w in Q. Applying Green's identity, we

have

0 = J (ubdw - wAu) = J [wf(u) - uf(w)]
Q Q

- J wop—f) o £ 4o,
u w
0
: a contradiction.
. f(t) , . .
REMARKS. (i) If T is decreasing in R+ and

1im £(8) ¢ A, then £(t) < A;t in R,. Then
ti0 ¢ 1

st R AT e
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