Chapter III

Limit Cases of the Palais-Smale Condition

Condition (P.-S.) may seem rather restrictive. Actually, as Hildebrandt [4; p.
324) records, for quite a while many mathematicians felt convinced that in-
spite of its success in dealing with one-dimensional variational problems like
geodesics (see Birkhoff’s Theorem 1.4.4 for example, or Palais’ [3] work on
closed geodesics), the Palais-Smale <ondition could never play a role in the
solution of “interesting” variational problems in higher dimensions.
Recent advances in the Calculus of Variations have changed this view

and it has become apparent that the methods of Palais and Smale apply to
many problems of physical and/or geomet

'ric interest and - in particular —
that the Palais-Smale condition will in general hold true for such problems in a

broad range of energies. Moreover, the failure of (P.-S.) at certain levels reflects
highly Interesting phenomena related to internal symmetries of the systems
under study, which geometrically can be described as “separation of spheres”, or
mathematically as “singularities”, respectively as “change in topology”. Again
speaking in physical terms, we might observe “phase transitions” or “particle
creation” at the energy levels where (P.-S.) fails.

Such phenomena seem to have first been observed by Sacks-Uhlenbeck [1]
and - independently - by Wente [5] in the context of harmonic maps of surfaces.
respectively in the context of surfaces of prescribed constant mean curvature.
(See Sections 4 and 5 below.) In these cases the term “separation of spheres” has
a clear geometric meaning. More recently, Sedlacek (1] has uncovered similar
results also for Yang-Mills connections. If interpreted appropriately, very early
indications of such phenomena already may be found in the work of Douglas
(2], Morse-Tompkins (2] and Shiffman [2] on minimal surfaces of higher genus
and/or connectivity. In this case, a “change in topology” in fact sometimes
may be observed even physically as one tries to realize a multiply connectes

or higher genus minimal surface in a soap film experiment. See Jost-Struwe il
for a modern approach to these results.
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rompact internal symmetries seem to depend on the extent to which the sym-
metry is broken or perturbed. As in the case of non-compact minimization
yroblems studied in Section 1.4, sometimes the perturbation from symmetry
:an be measured by comparing with a suitable (family of) limiting problem(s)
where the symmetry is acting. Existence results — for example in the line of
Theorem II1.6.1 - therefore will strongly depend on energy estimates for critical
values.
We start with a simple example.

1. Pohozaev’s Non-Existence Result

Let 2 be a domain in R", n > 2. Consider the limit case p = 2% = 2_“2 in

Theorem 1.2.1. Given A € R we would like to solve the problem .

1.1) —Au = \u + uful? 72 in 2,
1.2) u>0 in 2,
1.3) u=0 on 412 .

Note that in order to be consistent with the literature, in this section we reverse

-he sign of A as compared with Section 1.2.1 or Section I11.5.8.) As in Theorem
{.2.1 we can approach this problem by a direct method and attempt to obtain
s€0n-trivial solutions of (1.1), (1.3) as relative minima of the functional

1
Iv(u) = 3/ (IVu)? = Nul?) dz |
“Jn
»n the unit sphere in L (2),
M= {ueHy*(02); |[ul- =1} .
Zquivalently, we may seek to minimize the Sobolev quotient
2~ Mul?) d
(fn lul?” dz)

Note that for A =0, as in Section 1.4.4,

Sxlu; 12)

. fa |Vu|? dz
S(n) = mf;'z So(u; 2) = f - 572
% T AR

is related to the (best) Lipschitz constant for the Sobolev embedding HOI’Z(Q) —
L¥(N).

Recall that for any u € Hé’z(Q) c DY2(R™) the ratio So(u; IR") is invari-
ant under scaling u — ug(z) = u(z/R); that is, we have ’

(1.4) So(u; R™) = So(ug; R™), forall R> 0.

Hence, in particular, we have (see Remark 1.4.5):
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1.1 Lemma. S(£2) = S is independent of 2.

Moreover, this implies (see Remark 1.4.7):

1.2 Theorem. S is never attained on a domain {2 C R™, 2 #R"

Hence, for A = 0, the proof of Theorem 1.2.1 necessarily fails in the limit
case p = 2. More generally, we have the following uniqueness result, due to
Pohozaev [1]:

1.3 Theorem. Suppose {2 # R" is a smooth (possibly unbounded) domain 1n
R"™ n > 3, which s strictly star-shaped with respect to the orgin in R™, anc
let A < 0. Then any solution u € Hé"‘(Q) of the boundary value problem (1.1).

(1.8) vanishes identically.
The proof is based on the following “Pohozaev identity”:

1.4 Lemma. Let ¢:IR — IR be continuous with primitive G(u) = fou g(v) dv
and let w € C2(R)NCH(12) be a solution of the equation

(1.5) —Au = g(u) an 2
(1.6) u=_0 on 892

in a domain 2 CC IR™. Then there holds

2
z-vdo=20,

”_2/\vu12dm—n/c(u)dz+3/ Ou
2 Jp ) 2 Jen

Ov

where v denotes the exterior unit normal.
Proof of Theorem 1.5. Let g(u) = du+ u|ul? 2% with primitive
A 1 -
G(u) = 51142 + 5‘,1”]2 :

By Theorem 1.2.2 and Lemma B.3 of the appendix, any solution of (1.1), (1.3.
is smooth on {2. Hence from Pohozaev’s identity we infer that
du

/Q|vu|2dx—2*/nc(u)dm+n_l_g/m -
B TR IRRE Py ge

L2 / ou” do =0
n_2 ana XUV do = .

2
z-vdo

v

However, testing the equation (1.1) with u, we infer that

&



§2. Non-existence and Rellich-Pohozaev identity

In the previous section, we see that if f(u) = uP

’

1l < p < n*, then (I.4) possesses a solution. It is natural
to ask, "what happens if p 2 n*?" Unfortunately, we do not
have a complete answer up to now. We only know, for
instance, that for f(u) = up, p > 1,
(A) (I.4) has no solution for p 2 n* if Q is star-
shaped,
(B) (I.4) has a radial solution for every p > 1 if Q
is an annulus,
(C) (I.4) has a solution if p =n*, n =3 and O is
not contractiable to a point.
(A) is an easy consequence of the following well-known

Rellich-Pohozaev identity.

LEMMA. Let @ be a bounded smooth domain in [Rn and

u be a classical solution of the equation Au + f(x,u)

i
i

0.

Then
(I.15) J [nF(x,u) - n£2 uf(x,u) + x*Fx(x,u)]dx
Q
2 ,
) -2 T,
= J [(xevu)GY - (x-v)l"—‘;J— + (x°v)F(x,u) + 5= u 5-1d
a0
where
u
F(x,u) = J f(x,t)dt,
0




Fx is the gradient of F

with respect to x, ds 1is the

volume element of 80 and v is the unit outer normal to

aqn.

Proof. Let

2
Vix) = (xevu(x))vu(x) - _]_v_u_]__ __—_2_

x xF_(x,u(x)) + n2 u(x)vu(x).

We compute, using the equation,

div V = nF(x,u(x)) - E%zu(x)f(x,u(x)) + xoF_(x,u(x)).

Our assertion then follows from the Divergence Theorem.

Note that no boundary condition is imposed in the above

lemma. Applying this lemma to solutions of (1.4), we obtain

5
2

(1.16) X [nF(u) - n;Z uf(u)ldx = = § (x-v)\vu\zds
Q a0

since v = vu/|vu] on 80. Now if Q is star-shaped, then

x*v > 0 and % 0 on 8Q. Moreover, if £(0) 2 0O, then

|vul > 0 on 8Q by Hopf's boundary point lemma. Thus the

right-hand side of (I.16) is strictly positive. If, in

addition, £(u) = uP, then left-hand side of (I.16) becomes

n _ _n-2 p+1
JQ( p+l 2 yu

which is non-positive if P > n*, thus (A) follows.

REMARKS. (i) A different way to derive (I.16) is to

- 35 -
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/ (19uf? — Nul? = [ul*') dz =0,
n

Qm/nluﬁ dm+/m

Moreover, since {2 is strictly star-shaped with respect to 0 € R"*, we have

r-v >0 forall z €02 Thus %1;‘ — 0 on 812, and hence u = 0 by the principle

of unique continuation. 0

whence

z-vdo=0.

14

Proof of Lemma 1.4. Multiply (1.5) by « - Vu and compute

0= (Au+ g(u))(z - Vu) =
|[Vu?

= div(Vu(z - Vu)) - \Vul? —z-V < ) +2-VG(u)

n—2
2

Vul? 3
|Vl (Vul® = nG(u; .

=div <Vu(:v Vu) -z + arG(u)) +
Upon integrating this identity over (2 and taking account of the fact that by
(1.6) we have
%,
:E-Vu::z:-w—% on 082,

ov

the lemma follows. a

1.5 Interpretation. Theorem 1.3 goes beyond Theorem 1.2, as the former ap-
plies to any solution, whereas the latter is limited to minima of So(+; £2). How-
ever, Theorem 1.2 applies to any domain.

The connection between the scale invariance of S = S, and Theorem 1.3 is
given by the fact that the function - Vu = 'd%i ug used in the proof of Lemma
1.4 is the generator of the family of scaled maps {ur ; 0 < R < oo}, We
interpret Theorem 1.3 as reflecting the non-compactness of the multiplicative
group R+ = {R; 0<R< co} acting on S via scaling. Note that this group
action is manifest for Sx(-; £2) only if A = 0 and N =TR". In case of a bounded
domain {2 not all scalings © — Ur will map Hé'Q(Q) into itself. For instance,
if 2 is an annular region {2 = {z;a <]zl < b}, in fact, Hé’z(()) does not
admit any of these scalings as symmetries. (In Section 3 we will see that in this
case (1.1)-(1.3) does have nontrivial solutions.) However, if 2 is star-shaped
with respect to the origin, all scalings u — UR, R < 1 will be symmmetries of
Hy?(2), and compactness is lost as R — 0. The effect is shown in Theorem
1.3.
Remark that it is also possible to characterize solutions u € Hy#(0) of
equation (1.1) as critical points of a functional £ on HS’Q(Q) given by

(1) Ea) = 5 [ (19w =) dom e [l e
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By continuity of the embedding Hé’z((}) — L¥(02) — L*(12), the functional
E, is Fréchet differentiable on Hol‘z(ﬁ). Moreover, for A < Aj, the first Dirichlet
eigenvalue of the operator —A, E) satisfies the conditions (1°)~(3°) of the
mountain pass lemma Theorem II.6.1; compare the proof of Theorem 1.2.1. In
view of Theorem I1.6.1, the absence of a critical point u > 0 of Ej for any A < 0
proves that £y for such A cannot satisfy the Palais-Smale condition (P.-S.) on
a star-shaped domain. Again the non-compact action R — ug(z) == u(Rz) can
be held responsible.

2. The Brezis-Nirenberg Result

In contrast to Theorem 1.3, for A > 0 problem (1.1)-(1.3) may admit non-trivial
solutions. However, a subtle dependence on the dimension n is observed.

The first result in this direction is due to Brezis and Nirenberg [2]; their
approach is related to ideas of Trudinger {1] and Aubin [2].

2.1 Theorem. Suppose §2 is a domain in R", n > 3, and let N\ > 0 denote
the first eigenvalue of the operator —A with homogeneous Dirichlet boundary
conditions.

(1°) If n > 4, then for any A €]0, M| there ezists a (positive) solution of (1.1)-
(1.8).

(22) If n = 3, there ezists A, € [0, \1[ such that for any X €]A.. A-[ problem
(1.1)-(1.8) admits a solution.

() Ifn =3 and 2 = B1(0) C R®, then \. = 541 and for A < Q;L there is no
solution to (1.1)-(1.8). .

As we have seen in Section 1, there are (at least) two different approaches to this
theorem. The first, which is the one primarly chosen by Brezis and Nirenberg
(2], involves the quotient
Vaul — Mul?) dz
Safus ) = Lal[TEL= )
([ lul? dz)

A second proof can be given along the lines of Theorem I1.6.1, applied to the
“free” functional E,

E,\(u):%/;?(]Vuiz—)\fu 2) d:c—g—lt/nlu

2 dz

defined earlier. Recall that Ex € C*(Hy'*(£2)). As we shall see, whils it is not
true that F) satisfies the Palais-Smale condition “globally”, some corapactness
will hold in an energy range determined by the best Sobolev constzant S; see
Lemma 2.3 below. A similar compactness property holds for the functional S.
We will first pursue the approach involving Sj.
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Constrained Minimization

Z: ‘ Denote
sy = ot Siwd)
4 we HY ({0}
all A > 0 (in fact, for all A € R), and Sx(£2)in general

Note that Sx(£2) < S for
4.2 now there holds:

is not attained. Qimilar to Theorem 1.

9.2 Lemma. If {2 is @ bounded domain n R, n>3, and if

S\ < S,
12(0), u > 0, such that 5,(02) = Sxl(us ).

r Sy in HO 2 normalize

we may assume that um 2 0-

then there eTists U € H,

ng sequence (um) fo

Proof. Consider a minimizi
by |uml, if necessarys

fumllpee = 1 Replacing tm
Since by Holder’s inequality

Sy(um; $2) = / (\Vum\2 - /\\um\z) dz > /Q\Vum\2 dz —¢,

o
we also may assume that Um — U weakly in Hé’z(Q) and strongly in L2(02) as

m — 0.
To procee

have
/ (fml® = —ul”) 42 =
2

::/ / ﬂ—Du\ " dtdz
i

/ (1 + (£ = D) fum =167 1) T dz dt
n

0
1 -
9’/ /tu\tu\z'“zudm dt::/ \u'\,f2 dz as m — 0 .
0 Jo . ' 0

d, observe that like (I.4.4) by Vitali’s convergence theorem we

il

Also note that
(2.2) / \Vum\2 dz = / |V (um = u)|? dz + / \Vu\2 de +o(1),
N n o)

m — co. Hence we obtain:

54(02) = Salums ) +o(l) = /Q\V(um —u)Pdz+ /Q(\Vu\2 — Mul?) dz -+ o(1)

Sijum — ullze + S\ (@l + o)
+ Sy (@fuller +olb)
+ S5\ (2) + o(1)

where o(1) — 0 as

Y

> Sum — ullpe

> (S = Sa(@)lwm uf| -
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Since S > 5,(2) by assumption, this implies that U,
u € M, and by weak lower semi-contin
that

— u in 1’;2'(0); that is
uity of the norm in H(}":(Q) it follows

Sx(u; 2) < lim Sa(um; 2) = Sy(2)
m—0o0
as desired.
Computing the first variation of Sx(u; £2)

we see that a positive multiple of u satisfies (1.1), (1.3). Since u > 0, # 0.

from the strong maximum principle (Theorem B.4 of the appendix) we infe:
that u > 0 in 2. The proof is complete.

; as in the proof of Theorem [.2.:

The Unconstrained Case: Local Compactness

Postponing the complete proof of Theorem
indicate the second approach, based on a careful study of the compactness
properties of the free functional E\. Note that in the case of Theorem 2.:
both approaches are completely equivalent — and the final step in the proof o:
Theorem 2.1 actually is identical in both cases. However, for more general non-
linearities with critical growth it is nct always possible to reduce a boundary
value problem like (I1.6.1),(I1.6.2) to a constrained minimization problem anc
we will have to use the free functional instead. Moreover, this second approact
will bring out the peculiarities of the limiting case more clearly. Cur presenta-
tion follows Cerami-Fortunato-Struwe [1]. An indication of Lemma 2.3 below
1s also given by Brezis-Nirenberg [2; p.463].

2.1 for a moment, we now alsc

2.3 Lemma. Let 12 be a bounded domain in R™

v N2 3. Then for any A € R.
any sequence (um) in Hy'2(02) such that

1
Exlum) = 5 < =82 DE\(u,) — 0

H

as m — oo, 18 relatively compact.

Proof. To show boundedness of (um), compute

o(1)(1 + /;um”H;,z)%sn > 2B (tm) ~ (s DEx (1))

Um

“(1-3) [t 2o f i en) "

where ¢ > 0 and 0(1) — 0 as m — oo. Hence

Hum“ivév? = 2E\(um) + )\/n lum|? dz + 23* /Q [um|® dz
< C-’rO(l)”umHHé,z ,

and it follows that (u,,) is bounded.
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Hence we may assuImne that um — U weakly in Hé‘2((2), and therefore
* by the Rellich-Kondrakov theorem; se€

Also strongly in LP(£2) for all p < 2
Theorem A.5 of the appendix.

In particular, for any ¢ € C°(£2) we obtain that

(g, DEx(um)) = / (Vum Ve — ANimp — um\umlz._zap) dz

2
— / (VuVe - Auw — u\u\z'“%o) dz = (Lp,DE,\(u)) =0,
0

as m — oo. Hence, u € Hé'Q(Q) weakly solves (1.1). Moreover, choosing ¢ = 4,

we have
0= (u DEw) = | (Tul? =l —hT)
and hence

] 1 .
Ey(u) = (%-;}—) /Q\u\? dm:;/ﬂ\u\z gz >0

To proceed, note that by (2.1) and (2.2) we have

/ \Vum'\"’ dz = / |V (o — u)|? do + f \Vu\z dz +o(1) ,

n n ‘Q

/ uml? de :/ (i — W) 2 +/ il dz +o1)
7] N o}

.nd similarly, again using (2.1),

/ (umlumlg-—z —auju ) (um u) dz
n

] o el 0
n

/ﬂ(\um\f — ) dz+o(1) = /Q |t —

y—0(m— o). Hence
Ey(um) = Ex(w) + Eo(tm —u) + o(1),
o(1) = {um ~ u, DEy(um)) = (um =% DEx(um) — DEx(w)

= / (\V(um - u)\2 — |um — u\z-) dz +oll) .
94

ul? dz +o(1)

il

where o(1

ar, from the last equation

! /n (T (um — w0 dz +0(1)

EO(um - 7—") = ‘T—l-

In particul

while
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EO(um - U) = E,\(Um) - EA(U) + 0(1)
< Ex(um)+o(l)<e< 1S"/2 for m > myg .
n
Therefore
Hupm — u[|§{1,: <c< S form > myg .
0

But then Sobolev’s inequality

Hum - UH;;.Z (1 - 5_2./2||um - u| i;{.f) S

—w)? = lup —ul?)dz=o0
S/ﬂ(!v(um )2 = fum — uf?") de = o(1)

shows that u,, — u strongly in HO‘Z(.Q), as desired. C

Lemma 2.3 motivates to introduce the following variant of (P.-S.), which seems
to appear first in Brezis-Coron-Nirenberg [1].

2.4 Definition. Let V be a Banach space, E € C}(V), be € R. E satisfies
condition (P.-S.)a, if any sequence (um) in V such that E(um,) — B while
DE(um) — 0 as m — oo ts relatively compact. (Such sequences in the sequel
for brevity will be referred to as (P.-S.)s-sequences.)

Now recall that F, for A < A; satisfies conditions (1°)-(3°) of Theorem 11.6.1.

By Lemma 2.3, therefore, the proof of the first two parts of Theorem 2.1
will be complete if we can show that for A > 0 (respectively A > J.) there
holds

1 9
(2.3) 8 = inf sup By(u) < =S/,
peP uEp n

where, for a suitable function u; satisfying E(u;) <0, we let
P={peC’[0,1]; Hy*(2)) ; p(0)=0, p(1) = w1},

as in Theorem 6.1.

Of course, (2.3) and the condition Sy(f2) < S of Lemma 2.2 are related.
Givenu € Hé'z((z), llu|lp2» = 1, we may let p(t) = tu, uy = t; u for sufficiently
large ¢; to obtain

t? 2 1 nyo
B< sup Ex(tu)= sup | =Sa(u;2)— 255/\ (u; £2) .

0<t<oo 0<t<oo 2*

Likewise, for p € P there exists v € p such that u % 0 and

(u, DEy(u)) = /;Z(IVUF — Mul? - 1u|2) dz=0.
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Tndeed, since A < Ar, for v = p(t) with t close to 0 we have (u, DEA(w)) > 0,
while for u = p(1) = w1 we have

(ul,DEA(Uq» < QE,\(U]_) <0,

and by the intermediate value theorem there exists u, as claimed. But for such

u we easily compute

Sy(u; ) = (/Q (Tuf? — Mul® dm>1—2/2.

(n Ex@)?" < (nswr Ex(“)>2/n .

1l

- uep
That is, -
1 seems 1 /2
(2.4) 8 = inf sup Ex(u) = =5y (2),
pEP u€p n
Sjatisfff and (2.3) and the condition Sy < S arein fact equivalent.
3 while

Proof of Theorem 2.1(1°). 1t suffices to show that Sy < S. Consider the family

e Seque.

(25) U (1" = ‘—::_'vﬂ>0’
2115, (€2 + 2P
rem .- s :
.} thems of functions u; € DM(R"). Note that wi(u) = €7 Ul (2), and u} satisfles

the equation
(2.6) Cpu=uw? R

as is easily verified by a direct computation. We claim that So (.u’_:;]R“) = 5
that is, the best Sobolev constant is achieved by the family ui, £> 0. Indeed,
let u € DV2(IR™) satisfy So (u;R™) =S (The existence of such a function u can
be deduced for instance from Theorem 1.4.9.) Using Schwaxz-sy-mmetrization
we may assume that u is radially symmetric; that is, u(z) = u(|z]). Mcreover,
u solves (2.6). Choose € > 0 such that u;(0) = u(0). Then u and u} both are
solutions of the ordinary differential equation of second order in 7 = |z,

ar
sharing the initial data w(0) = uz(0), 8,u(0) = 8-ui(0) = 0. It is not hard to
prove that this initial value problem admits a unique solution, and thus v = UL,
which implies that So(us; R™Y) = So(u; R™) = S.
In particular,

7,,l—-n a (Tn—l ’a__> u = u‘ul2‘_2 fOI' r > 0 y
ar

s e = ludllze = g2, foralle >0
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We may suppose that 0e . Letne C(2) bea fixed cut-off function, 1 = 1
in a neighborhood B,(0) of 0. Let u, = nu, and compute

/ Vue|* dz = / \Tul|Pn? dz + O(e” %)
2 n
= / (Tul? de + O(e"7%) = 572 1 0"
mﬂ
N n

ul? dz = ur)? dz + O n-2

[t [ttt =0

(2.7) >/ n(n=2e" 7 4
B.(0)

[252]7’-"2

n(n - 2)ed) T _a
+ M =22 )~ do+ 0"
-/B,(O)\BE(O) PRk (")

P
=cy €+ o™ 2 / P37 dr + 0(e™7%)
€

ce? +0(en7?), ifn>4
cszl'lns\—i-O(ez), fn=4
c5+0(52>, ifn=23

with positive constants ¢,c1,¢2 > 0. Thus, ifn > 5

(s712 — exe? + 0" 7))
Salue) € = (S5n/2 + O(em)*/*

—S—ea 0T <S5
if ¢ > 0 is sufficiently small. Similarly, if n =4, we have
Sa(ue) €5 - cxel|lnel + O(Ez) <5

for ¢ > 0 sufficiently small.

Remark on Theorem 2.1.(2),(¥). Hn =23 estimate (2.7) shows that the
“gain” due tO the presence of A and the “loss” due to truncation of u; may
be of the same order in g; hence Sy can only be expected to he smaller than
S for “large” A. To see that A« < A1, choose the first eigenfunction u = ¥1 of
(—-A) as comparison function. The non-existence result for 2 = B1(0), A = 23

follows from a weighted estimate similar to Lemma 1.4; see Brezis-Nirenberg
[2; Lemma 1.4]. We omit the details. 0

Theorem 2.1 should be viewed together with the global bifurcation result of
Rabinowitz [1; p. 195 f]. Intuitively, Theorem 2.1 indicates that the branch of
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We claim that
1

1
(1.37) I w2 + 3"t dr =2 j us(rg —r*y") dr +3lu' (D (1)
0 [¢]

for every smooth function ¢ such that ¢(0) = 0.” Indeed, we first multiply (1.35)
by r’yu’ and obtain

1
[ Pdry ~ oy dr =3P )
(]
(1.38) ; .
=1 J u6(2n// +r2d/') dr—3A I wQry +r2c11’) dr.
4] 0
Next we multiply (1.35) by (3r*¢' ~r¢)u and obtain
1 1
f Iu'i’(%rzw'—rw)dr—%j Wrty" dr
0 0
(1.39) . .
=I uG(%rzg{/'-rw)dr+Aj w2Griy' —np) dr.
0 0
Combining (1.38) and (1.39) we obtain (1.37). We already know that there is

no solution of (1.23) for A =0; thus we may assume that 0<A <}nx? In (1.37)
we choose ¢ (r) =sin ((4A)'/?r) so that (1) =0,

AU +39" =0,
and
g —r®' =rsin (44)"*r) = r*(41)" cos ((44)*r)>0 on (0,1]

(since sin § — @ cos 8 >0 for all 8 € (0, ]) and we obtain a contradiction.
Proof of Theorem 1.2 concluded: IfA >3A, we know that $, < (see Lemma
1.3). We may proceed exactly as in the proof of Theorem 1.1 (Lemma 1.2) and

conclude that the infimum in (1.24) is achieved. Thus we obtain some u € H{
withuz0o0n Q, |lulle=1 and

—Au—Au =Su’.
If, in addition, A <A,, then S, >0 and after stretching, we obtain a solution of
(1.23).

1.3. Additional properties, miscellaneous remarks and open problems.

(1). REGULARITY OF SOLUTIONS. The solution u of (1.1) given by
Theorem 1.1 (respectively Theorem 1.2) lies in H (). In fact, u belongs to

% Note that Pohozaev’s identity corresponds to the case where ¢(r)=r.
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A Global Compactness Result

Remark that by Theorem 1.2, for A = 0 no non-trivial solution u & Hé'z(.Q) ;1
of (1.1) can satisfy Sy(u; ) < S. Hence the local compactness of Lemma 2.3 -
will not suffice to produce such solutions and we must study the compactness 4
properties of E\, respectively Sy, at higher energy levels as well. The next re-
sult can be viewed as an extension of P.-L. Lions’ concentration-compactness
method for minimization problems (see Section 1.4) to problems of minimax
type. The idea of analyzing the behavior of a (P.-S.)-sequence near points of
concentration by “blowing up” the singularities seems to appear first in papers
by Sacks and Uhlenbeck (1] and Wente (5] where variants of the local compact-
ness condition Lemma 2.3 are obtained (see Sacks-Uhlenbeck (1; Lemma 4.2]).
In the next result, due to Struwe (8], we systematically employ the blow-up
technique to characterize all energy values 3 of a variational problem where
(P.-S.)p may fail in terms of “critical points at infinity”.

3.1 Theorem. Suppose 0 is a bounded domain in R, n >3, and for A e IR let
(um) bea (P.-S.)-sequence for Ey in HI? () C DY2(IR™). Then there exist an

index k € Ng, sequences (R, (zd), 1< < k, of radit R, — © (m — co) ]

and points T4, € 2, a solution ul € Hé'é_(!?) c DI?(R") to (1.1), (1.3) and
non-trivial solutions W oe DY(IRM), 1 £ j < k, to the “limiting problem”
associated with (1.1) and (1.3),

(3.1) _Aw =7 in R™ .

such that a subsequence (uy) satisfies

0.

k
wp —ud — E ul,

j=1

| -
| pra(me)

Here ul, denotes the rescaled function

Wl (z) = (REL)*T ! (Rip(e - ), 1<j<k meN.
Moreover,

k
Ex(um) — Ea(u®) + ZEQ(uj) .
j=1

3.2 Remark. In particular, if QNisabal 2= Br(0),um € Hé,’fad(ﬁ), from the
uniqueness of the family (u})e>o0 of radial solutions to (3.1) — see the proof of
Theorem 2.1.(1°) — 1t follows that each w? is of the form (2.5) with Eo(u?) =
-';—LS"“ = . Hence in this case (P.-S.)g holds for E, for all levels § which
cannot be decomposed

8=0o+ k8",
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where k > 1 and 8y = Ea(u?) is the energy of some radial solution of (1.1),
(1.3). Similarly, if {2 is an arbitrary bounded domain and um 2 0 for all m,
then also w’ > 0 for all 7, and by a result of Gidas-Ni-Nirenberg [1; p. 210 f]
and Obata [1] again each function v/ will be radially symmetric about some
point z7. Therefore also in this case each u is of the form w/ = ul(- — /) for
some ¢ > 0, and (P.-S.)g holds for all 3 which are not of the form

B =P+ kB,

where k > 1 and By = Ex(uo) is the energy of some non-negative solution u
of (1.1), (1.3).

For some time it was believed that the family (2.5) gives all non-trivial
solutions of (3.1). Surprisingly, Ding [1] was able to establish that (3.1) also
admits infinitely many solutions of changing sign which are_distinct modulo
scaling. : .
In general, decomposing a solution v of (3.1) into positive and negative
parts v = v, + v_, where v+ = x max{=£wv, 0}, upon testing (3.1) with vx from
Sobolev’s inequality we infer that

0

0= / (=Av - v|v|? ) da
= [ (9P~ el ) do 2 (1= 5Pl IB ) sl
Hence v+ =0 or
1 2 1 an/2
= — 12 2 — ne = 3"
Eo(vs) = ~livslbus 2 2572 =57,
and therefore any solution v of (3.1) that changes sign satisfies

Eo(v) = Eg(vy) + Eglv-) > 2587 .

In fact, Eo(v) > 28™; otherwise S would be achieved at v, and v, whick would
contradict Theorem 1.2. Thus, in Theorem 3.1 we can assert that Eg(u’) €
{B*} U287, o0l.

In particular, if (1.1), (1.3) does not admit any solution but the trivial
solution u = 0, the local Palais-Smale condition (P.-S.)g will hold for all 8 <
283*, except for 8 = 3".

Proof of Theorem 3.1. First recall that as in the proof of Lemma 2.3 any (P.-
S.)-sequence for Ej is bounded. Hence we may assume that v, — u® weakly
in Hy?(2), and u® solves (1.1), (1.3). Moreover, if we let v, = u,, — u® we
have v,, — 0 strongly in L*(§2), and by (2.1), (2.2) also that

/;?‘vm|2' dz = /Q lum|? dz — /Q |u%1%" de + o(1) ,
/n Vol dz = /;? |Vup|? dz — /g |Vu®|? dz + o(1) ,
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where o(1) = 0 (m — o). Hence, in particular, W€ obtain that
Ex(um) = By (u®) + Eolum) + o(1) -

Also note that

DEx(um) = DEAu®) + DEo(vm) + o(l) = DEo(vm) + o(1) ,

where o(1) — 01 H-Y(N) (m— o). Using the following lernma, We catt now
proceed by induction: .

3.3 Lemma. Suppose (vym) 18 @ (P.-S.)-sequence for E = Eo in Hé'z((?) such
that vm — O weakly. Then there exrists @ sequence (Trm) of points Tm e f2,a
sequence (Rm) of radii Rm = 0o (m — o0}, @ non-trivial solution W0 to the
limiting problem (8.1) and a (P.-S.)-sequence (wim) for E; in Hé’g(Q) such
that for @ subsequence (vm) there holds

W = Um ~ R“;; v° (Rm(- - zm)) +0(1),

where o(1) — 0 DM2(R") as ™ 77 0. In particular, Wm ™7 0 weakly.
FurthermoTe,
Eolwm) = Eo(vm) — Eo(v®) +o(l) -

MoreoveT,
R, dist(Tm, an) — 2 -

Firally, if Eo(vm) — g < B the sequemnce (vm) 8 relatively compact and hence
v — 0 Eo(vm) — 3=0.-

Proof of Theorem 3.1 {complgted). Apply Lemma 3.9 to the sequences vl =

0 — 0 =14 = “1 _ it g
um—u,v{n—um——u -Zizlum‘vin uly ,]>1,where

n=—=2

uln(e) = (R T u (Rmle - ) -
By induction

. _:v—l »
By(ul.) = Bxlum) =~ B2 S Eo(w)

i=1
< Exlum) — U~ ng -

Since the latter will be negative for large J, DY Lemma 3.3 the ;nduction will
terminate after sOme index k > 0. Moreover, for this index we have

k
vfn+1=um—u°~ E u, —0
i=1

strongly in pL2(R™), and
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k
Ex(um) = Bx(u®) = > Ep(u?) = 0,

Jj=

as desired. 0

Proof of Lemma 3.8. If Eq(vm) — B < 8%, by Lemma 2.3 the sequence (vr,)
is strongly relatively compact and hence v,, — 0, § = 0. Therefore, we may
assume that Eg(v,,) — 8 2 8" = %S"'/z. Moreover, since DEg(v,,) — 0 we

also have

A

1 1 1
_/ \Vum|? dz = Eo(vm) = == (Vm, DEo(vm)) — 8 > =§7/?
n N 2

T

and hence that

m—00

(3.2) liminf/ [Vum|? dz =ng > S™V2 .
n

Denote

Qm(r) = Sup/ !V’Um|2 dz
z€2 JB.(z)

the concentration function of v, introduced in Section 1.4.3. Choose z,, € 2

and scale o |
UmHﬁm(I):RT?—Um(I/Rm+$m)

such that

’ ) 2 _ 1 )
Qm(l) = sup / \Vin|” dz = / Viml|? dz = — gni?

criER en YB3 B1(0) 2L ;

where L is a number such that By(0) is covered by L balls of radius 1. Clearly,

by (3.2) we have R,, > Ry > 0, uniformly in m.
Considering 2, = {z € R" ; o/R., + &, € 2}, we may regard oy, €
Hy?(92m) € DM2(R™).
Moreover,
[5mlDre = lloml|ps — nf < oo

: and we may assume that 9, — v° weakly in D**(IR"™). We claim that 3,, — v°
strongly in H%2(2'), for any £2' CC IR". It suffices to consider 2' = By(zo)
for any z¢ € R"™. (For brevity B.(zg) =: B,.) Indeed, by Fubini’s theorem and

since )
/ </ |V |? do> dr < / [Von)? de < B+ o(1)
1 8B, v Ba

where o(1) — 0 (m — o), there is a radius p € [1,2] such that

i
:
3

/ Vim]? do < 203 4
9B, )




e (vm)
Je may
-+ 0 we

18]

Slearly.

y

~ 3 r s ' L . fom R [ e |
) \ . [\ }’ K -Zf' \'\'f\:"; \ A \\ o /,\ R c) lad? \;;4,\.
L &) _/‘p\ ._.i
{
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for infinitely many m € IN. (Relabelling, we may assume that this estimate
holds for all m € IN.) By compactness of the embedding H?(8B,) —
HY/22(8B,), we deduce that 2 subsequence T, — 9° strongly in HY/%2(9B,);
see Theorem A.8 of the appendix. Moreover, since also the trace operator
HY(By) — L2(8B,) is compact, we conclude that 7% = v°. Now let

_JUm v in B,
Pm = D in B3\ B,
where W,, denotes the solution to the Dirichlet problem Ay, = 0 in B \
B,, WUm = U — 20 on 8B, Wm = 0 on 0B3. By continuity of the solution

operator to the Dirichlet problem on the annulus B3 \ B, in the HY/?%%.norm
(see for instance Lions-Magenes (1; Theorem 8.2]), we have

Dol 12(Bs\Bs) = cl|om = V0 mrr2aen,) 0.

Hence pm = $m T o(1) € Hé’2(f~2m) + DY2(IR"), where ¢om € Hé’Q(.(:Zm) and
o(1) — 0in DY2(IR™) as m — oo. Thus

<<Pm» DEO(’{)m;IRn» = <¢ma DE()(ﬁm§ -(-Zm» + 0(1) —0.

On the other hand, using convergence arguraents familiar by now and Sobolev’s
inequality, we obtain

o(1) = (pm, DEo(Tmi R} =
- / (T Tom — il Pom) d2

(3.3) = /:Bp(tv({)m )2 = (B = 00 dz o(1)

- / n(lvwmIQ —lpml’ ) dz +o(1)

> Jpmibragm (17 52 P lomlBrmn)

where o(1) — 0 as m — & But now we note that

/ ) lV(pm\Q dr = /B |V (Tm — )% dz +o(1) S /B \V6m12 dz + o(1)

. 1
L _ T eon/2

/,/
Ve °

from which via (3.3) we deduce that ¢m — 012 DYL2(IR™); that is, By — U
locally in HY?, as desired.
In particular,

5 1
1\7?}0\‘ do = —S™* >0,
/Bx(o) 2L

R |
" ~
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and v? Z 0. Since the original sequence vm — 0 weakly, thus it also follows
that R,, — oo as m — oo. Now we distinguish two cases: ‘

(19 Ry dist(zm,082) < ¢ < o0, uniformly, in which case (after rotation of
coordinates) we may assume that the sequence £, exhausts the half-space

Qm:IR,Z_:{mz(Il,...,In);ZE1>O},

or
(2°) Rpn dist(zm,82) — oo, in which case 2 — oo = R™. i

Since in each case for any ¢ € C5°(f20) we have that ¢ € C§(f2y) for
large m, there holds

(0, DEo(v%; 200)) = lim {p, DEo(¥m;i m)) =0,

m-—+0oQ

for all such ¢, and W oe Hé'z((}oo) is a weak solution of (3.1) on {le. But
if 2o = R",, by Theorem 1.3 then v® must vanish identically. Thus (1°) is

impossible, and we are left with (2°).
To conclude the proof, let ¢ € C§°(IR™) satisfy 0 < ¢ < 1, ¢ = 11in B1(0),
» = 0 outside B3(0), and let ;

wi(7) = v () — R 00 (Bl = Tm)) - @(Bm(z = 2m)) € Ho™(42)

where the sequence (Rm) is chosen such that Rpm := Rm(Rm)™ ! — oo while
Ry, dist(zn,0§2) — o0 as m — o0; that is,

2—n

Wm(z) = Rm® Wm(z/BRm +Tm) = Tm(z) — vo(m)@(z/]-{m) )

Set @m(z) = ¢(z/Rm). Note that

<C |Vo°|? dz + CI:{;;z/ [v°1% dz .
R"\Bjy,, (0) By, (0\Bg,,(0)

But Vo® € L2(IR™). Therefore the first term tends to 0 as m — oo, while by
Hélder's inequality also the second term

2/2"

R;ﬁ/ W02 de < C </ w0 dz) -0
By, (O\Bg_ (0) B.i,. (ONBg  (0)

as m — 0o. Thus we have Wm = Um — v° + o(1), where o(1) — 0 in D}*(R™).
Hence, as in the proof of Lemma 2.3, also
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Eo(wm) = Eo(tim) = Eo(0m) = Eg(v%) +o(1) ,
|\ D Ey(wm; )l = | D Eo(Wm; Q)|
< (| DEo(Bm; 2mll + | D Eg(v%; R™)|| 4 o(1)
= || DEo(vm; Q)| + 0(1) =0 (m — ) .

This concludes the proof.

Positive Solutions on Annular-Shaped Regions

With the aid of Theorem 3.2 we can now show the existence of solutions to
(1.1),(1.3) on perturbed annular domains for A = 0.
The following result is due to Coron 2]

3.4 Theorem. Suppose {2 1s a bounded domain in R™ satisfying the following
condition: There exist constants 0 < Ry < Ry < oo such that

(1°) QD{Z‘EIR";R1<]$|<R3},
(2°) T 2{zeR"; |zf <R}

Then, if Ro/ Ry 1s sufficiently large. problem (1.1), (1.3) for X\ = 0 admits a

positive solution to u & Hé‘z(Q).

Again remark that the solution v must have an energy above the compactness
threshold given by Lemma 2.3.

The idea of the proof is to argue by contradiction and to use a minimax
method for S = So(-;2) based on a set A of non-negative functions which is
homeomorphic to a sphere 57 around 0 in §2. Note that A is contractible in the
positive cone in Hé’z(Q). Moreover, if (1.1), (1.3) does not admit a positive
solution, then under certain conditions such a contraction of Ain Hé‘Q(Q) will
induce a contraction of X in 1, and the desired contradiction will result.

Proof. We may assume E; = (4R)"' <1< 4R = R,. Consider the unit sphere
g={ceR"; |z[=1}-

Foroc X zeR™ 0<t<1let

n—2

1-1 } 2 EDl’z(IR‘n>'

uy(z) = [(1 T+ |z - to]?

Note that S is attained on any such function u{, and uf “concentrates” at o
as t — 1. Moreover, letting t — 0 we have

PN
1+ |z




