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7.1 Introduction

As a simple example of maximum principle, let’s consider a C* function u(z)
of one independent variable x. It is well-known in calculus that at a local
maxiinum point r, of u, we must have

u” () < 0.

Based on this observation, then we have the following siinplest version of
maximum principle:

Assume that v’(x) > 0 in an open interval (a, b). then u can not have
any interior mazimum in the interval.

One can also see this geometrically. Since under the condition u”(x) > 0,
the graph is concave up, it can not have any local maximum.

More generally, for a C? function u(z) of n-independent variables z =
(1, -, 1), at a local maximuu 22, we have

D?u(a°) := (Uz,z,;(2°)) <0,

tliat is. the symmetric matrix is non-positive definite at point z°. Correspond-
ingly, the simplest version maximum principle reads:



176 7 Maximum Principles

If
(a;;(z)) 20 and Zaij(:x)umﬂj(m) >0 (1.1)
ij
in an cpen bounded domain §2, then w can not achieve its mazimum in the
wnterior of the domain.
An interesting special case is when (a;;()) is an identity matrix, in which
condition (7.1) becomes
Au>0.

Unlike its one-dimensional counterpart, condition (7.1) no longer implies
that the graph of u(z) is concave up. A simple counter example is
2 1 o
u(zy, T2) = 7 — 5%
One can easily see from the graph of this function that (0, 0) is a saddle point.
In this case, the validity of the maximum principle comes from the simple
algebraic fact:
For any two n x n matrices A and B, if A> 0 and B <0, then AB <0.
In this chapter, we will introduce various maximum principles, and most
of thern will be used in the method of moving planes in the next chapter.
Besides this, there are numerous other applications. We will list some below.
i) Providing Estimates
Consider the boundary value problem

—~Au= f(z),z € B1(0) C R" (7.2)
u(z) =0, z € 9B1(0). )
If a < f(z) < bin B;(0), then we can compare the solution u with the
two functions
a
2n
which satisfy the equation with f(z) replaced by a and b, respectively, and
which vanish on the boundary as u does. Now, applying the maximum prin-
ciple for 2 operator (see Theorem 7.1.1 in the following), we obtain

(1-12) and o-(1 ol

a

oy |z?) < u(z) < —Q—bn(l — z]?).

i1) Proving Uniqueness of Solutions

In the above example, if f(z) = 0, then we can choose a = b = 0, and
this iraplies that u = 0. In other words, the solution of the boundary value
problem (7.2) is unique.

iii) Establishing the Ezistence of Solutions

(a) For a linear equation such as (7.2) in any bounded open domain 2, let

u(x) = sup ()
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where the sup is taken among all the functions that satisfy the corresponding
differential inequality

N < f(x), e 2
p(z) =0, z € 012,

Then u is a solution of (7.2).
(b) Now consider the nonlinear problem

{—Au = f(u) e

u(z) =0,z € 1. (7.3)

Assume that f(-) is a smooth function with f/(-) > 0. Suppose that there
exist two functions u(z) < @(z), such that

—Au < fu) < f(7) < -O0.

These two functions are called sub (or lower) and super (or upper) solutions
respectively.

To seek a solution of problem (7.3), we use successive approximatious. Let

~Auy = f(u) and  — Auipr = flug).
Then by maximum principle, we have
w<uyp Sug <o <y < S
Let u be the limit of the sequence {u;}:
u(z) = limu;(z),

then u is a solution of the problem (7.3).
Ir Scction 7.2 , we introduce and prove the weak maximum principles.

Theorem 7.1.1 (Weak Mazimum Principle for —=A.)

i) If
~Au(x) >0, x<l2,
then
min « > min u.
2 219
1) If
—Au(r) <0, 7€ 12,
then

max v < max u.
o) 2
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‘T'his result can be extended to general uniformly elliptic operators. Let

0 9?
—, Dyj=z—.
6‘:51" J 8@8@,-

La” Dl]—i—Zb ) D; + e(z).

Here we always assume that a;(z), b;(z), and c(z) are bounded continuous
functions in 2. We say that L is uniformly elliptic if

D; =

Define

aij(@)&:&5 > 5|¢|* for any z € 2, any € € R™ and for some § > 0.

Theorem 7.1.2 (Weak Mozimum Principle for L) Let L be the uniformly
elliptic operator defined above. Assume that c(z) =
i) If Lu > 0 in 2, then

min v > min .
7] a5

) If Lu <0 in (2, then

maxu < max.
I9) a0

"These Weak Maximum Principles infer that the minima or maxima of u
attain at some points on the boundary 8f2. However, they do not exclude
the possibility that the minima or maxima may also occur in the interior of

£2. Actually this can not happen unless « is constant, as we will see in the
following,.

Theorem 7.1.3 (Strong Mazimum Principle for L with c(z) = 0) Assume
that 12 is an open, bounded, and connected domain in R™ with smooth bound-
ary 052, Let u be a function in C*(2) 0 C(2). Assume that c(z) = 0 in
0.
i) If
Lu(z) >0, z € {2,
then u attains its minimum value only on 952 unless u s constant.
it) If
Lu(z) <0, z€f,

then u attains its mazrimum value only on 082 unless u is constant.

This maximum principle (as well as the weak one) can also be applied to
the case when c(z) > 0 with slight modifications.
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Theorem 7.1.4 (Strong Mazimum Principle for L with c(z) > 0) Assume
that (2 is an open, bounded, and connected domain in R™ with smooth bound-
ary 92. Let u be a function in C2(02) N C(§2). Assume that c(z) = 0
0.
i) If
Lu(z) >0, z€f2
then w can not attain its non-positive minimum in the interior of £2 unless u
1$ constant.
) If
Lu(z) <0, z€{2,
then u can not attain its non-negative maximum o the interwor of 2 unless
u 18 constant.

We will prove these Theorems in Section 7.3 by using the Hopf Lemma.

Notice that in the previous Theorems, we all require that e(z) > 0.
Roughly speaking, maximum principles hold for ‘positive’ operators. —Ais
‘positive’, and obviously so does —~A + ¢(z) if e(z) > 0. However, as we will
see in the next chapter, in practical problems it occurs frequently that the
condition ¢(z) > 0 can not be met. Do we really need c(z) 2 07 The answer
is ‘no’. Actually, if ¢(z) is not ‘too negative’, then the operator A+ c(x)’
can still remain ‘positive’ to ensure the maximum principle. These will be
studied in Section 7.4, where we prove the ‘Maximum Principles Based on
Comparisons’.

Let ¢ be a positive function on 2 satisfying

—Ag+ A(z)¢ > 0. (7.4)

Let u be a function such that

A
-3
A

=

~Au+c(x)u>0xe€ 2
u >0 on 0f2.
Theorem 7.1.5 (Mazimum Principle Based on Comparison)
Assume that £2 15 a bounded domain. If

c(z) > Max) Vo € £2,

then u > 0 in (2.

Also in Scction 7.4, as consequences of Theorem 7.1.5, we derive the ‘Nar-
row Region Principle’ and the ‘Decay at Infinity Principle’. These principles
can be applied very conveniently in the ‘Method of Moving Planes’ to estab-
lish the symmetry of solutions for semi-lincar clliptic equations, as we will see
in lazer sectious.

In Section 7.5, we establish a maximum principle for integral inequalities.
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7.2 Weak Maximum Principles

In this section, we prove the weak maximum principles.

Theorem 7.2.1 (Weak Mazimum Principle for —/\.)

i 1f
-Au(r) 20, z &2, (7.6)
then
minu > minu. (7.7)
0 a2
w) If
—-Au(r) <0, xef, (7.8)
then
max u < max u. (7.9)
9] a1

Proof. Herc we only present the proof of part i). The entirely similar proof
also works for part ii).

To better illustrate the idea, we will deal with one dimensional case and
higher dimensional case separately.

First, let £2 be the interval (a,b). Then condition (7.6) becomes u”(z) <
0. This implies that the graph of u(z) on (a,b) is concave downward, and
therefore one can roughly see that the values of u(zx) in (a,b) are large or
equal to the minimum value of u at the end points (See Figure 2).

e

a

oy
ol

Figure 2

To prove the above observation rigorously, we first carry it out under the
stronger assumption that
—u"(z) > 0. (7.10)

Let m = mingp u. Suppose in contrary to (7.7), there is a minimum z° € (a,b)
of u, such that u(2°) < m. Then by the second order Taylor expansion of u
around 2°, we must have —u.”’(2°) < 0. This contradicts with the assumption
(7.10).

Now for u only satisfying the weaker condition (7.6), we consider a per-
turbation of u:

ue(z) = u(z) — ex?.

Obviously, for each ¢ > 0, uc(x) satisfies the stronger condition (7.10), and
hence
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min u, > min u,.
n a$2

Now letting e—0, we arrive at (7.7).
To prove the theorem in dimensions higher than one, we need the following

Lemma 7.2.1 (Mean Value Inequality) Let x° be a point in §2. Let By(2°) C
2 be ihe ball of radius v center at z°, and 0B, (x°) be its boundary.
i) If —Ou(x) > (=) 0 for x e By, (x°) with some ro > 0. then for any
ro >1 >0,
1

u(x®) > (=) —=——0 95|

11,(11“,)(15. (7.11)
It follows that, if ° is a minimum of uin Q, then
—Au(z?) < 0. (7.12)
i) If —Au(z) < 0 for 2 € B, (z°) with some v, > 0, then for any ro >
r > 0.
) < 1
" 108, (%) Jon,

It follows that, if ° is ¢ mazimum of u in {2, then

u(x)dS. (7.13)

~Au(z®) > 0. (7.14)

We postpone the proof of the Lemma for a moment. This Lemma tell
us that, if —Au(x) > 0, then the value of u at the center of the small ball
B,(z°) is larger than its average value on the boundary 9B, (z°). Roughly
speaking, the graph of u is locally somewhat concave downward. NOW based
on this Lemma, to prove the theorem, we first consider u.(z) = u(zx) — elx]?.
Obviously,

~Nue = ~Du+ 2en > 0. (7.15)
Henee we must have
min u, > minu, (7.16)
0 an

Otherwise, if there exists a minimum z° of u in {2, then by Lemnma 7.2.1, we
have —Aw, (2°) < 0. This contradicts with (7.15). Now in (7.16), letting e—0.
we arrive at the desired conclusion (7.7).

This completes the proof of the Theorem.

The Proof of Lemma 7.2.1. By the Divergence Theorem,

‘ ‘ o,
/ Au(w)dw:/ O 45 = - l/ (e 4 rw)dS,,  (T.17)
S B.(z0) JoB, (zv) OV gn 1 Or

where dS,, is the area element of the n — 1 dimensional unit sphere snol =

{wilwl =1}
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If Au <0, then by (7.17),

0

— u(z® + rw)dS,} < 0. (7.18)
or Ssn-1

Integrating both sides of (7.18) from 0 to 7 yields
/ u(z® + rw)dS,, — u(z°)|S*7| <0,
Sn—l
where |S™1| is the area of S?~1. It follows that

1
u(z®) > -

_— u(x)dS.
7.n—1|S’n-—1| 9B (z") )

This verifies (7.11).
To see (7.12), we suppose in contrary that —Au(z®) > 0. Then by the
continuity of Awu, there exists a § > 0, such that
—Au(z) >0, Yo e Bs(z°).

Consequently, (7.11) holds for any 0 < r < §. This contradicts with the
assumption that z° is a minimum of w.
This completes the proof of the Lemma.

From the proof of Theorem 7.2.1, one can see that if we replace —A op-
erator by —A + ¢(x) with c(z) > 0, then the conclusion of Theorem 7.2.1 is
still true (with slight mod1ﬁca‘t10ns). Furthermore, we can replace the Laplace
operator —A with gencral uniformly elliptic operators. Let

a o2
D= —=—, Dy=——.
: al‘i v 8’1?1823]
Define

ZQU DU+Zb VD, + ¢(z). (7.19)
Here we always assume that ai;(x), bi(z), and ¢{z) arc bounded continuous
functions in £2. We say that L is uniformly elliptic if
a;; ()€ > 6|¢)* forany x € 2, any £ € R™ and for some § > 0.

Theorem 7.2.2 (Weak Mazimum Principle for L with c¢(z) = 0). Let L be
the uniformly elliptic operator defined above. Assume that c(z) = 0.
i) If Lu > 0 in £2, then

minu > minu. (7.20)
fo) 812
1) If Lu < 0 in {2, then

maxu < maxu.
I} a8
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For ¢(x) > 0, the principle still applies with slight modifications.

Theorem 7.2.3 (Weak Mazzmum Principle for L with c(x) > 0). Let L be
the uniformly elliptic operator defined above. Assume that c(x) > 0. Let

u” (x) = min{u(z),0} and u'(z) = max{u(z),0}.
i) If Lu > 0 in £2, then

minu > minu~
ko) an

1) If Lu < 0 in 2, then

maxu < maxu’ .
2 0

Interested readers may find its proof in many standard books, say in [Ev],
page 327.

7.3 The Hopf Lemma and Strong Maximum Principles

In the previous section, we prove a weak form of maximum principle. In the
case Lu > 0, it concludes that the minimum of v attains at some point on the
boundary 0£2. However it does not exclude the possibility that the minimum
may also altain at some point in the interior of 2. In this section, we will show
that this can not actually happen, that is, the minimum value of u can only
be achieved on the boundary unless u is constaut. This is called the “Strong
Maximum Principle”. We will prove it by using the following

Lemma 7.3.1 (Hopf Lemma). Assume that {2 1s an open. bounded, and
connected domain in R™ with smooth boundary 952. Let w be a function in
CH)NC(2). Let

L=-— Za” D,7+Z), VD; + ¢fz)

be uniformly elliptic in 2 with c(x) = 0. Assume that
Lu> 0 £ (7.21)

Suppose there is a ball B contained in 2 with a point x° € 92 N IB and
suppose

u(z) > u(z?), Ve € B. (7.22)
Then for any outward directional derivative at x°,
pa Q
dulz?) (7.23)

ov
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In the case c(z) > 0, if we require additionally that u(z°) < 0, then the
same conclusion of the Hopf Lemma holds.

Proof. Without loss of generality, we may assume that B is centered at
the origin with radius r. Define

w(r) = emar’ _ g—alel®,

Consider v(x) = u(z) + ew(x) on the set D = Bz (z°) N B (See Figure 3).

Figure 3

We will choose @ and € appropriately so that we can apply the Weak
Maximum Principle to v(x) and arrive at

v(z) > v(z°®) Yz e D. (7.24)
We postpone the proof of (7.24) for a moment. Now from (7.24), we have

a
2 (2°) <0, (7.25)
v
Noticing that
Jw
v
We arrive at the desired inequality

(z°) >0

ou

Now to complete the proof of the Lemma, what left to verify is (7.24). We
will carry this out in two steps. First we show that

Lv > 0. (7.26)
Hence we can apply the Weak Maximum Principle to conclude that

minv > min. (7.27)
D oD
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Then we show that the minimum of v on the boundary 0D is actually
attained at z°:

v(z) > v(z®) Vo € dD. (7.28)

Obvicusly, (7.27) and (7.28) imply (7.24).
Ta see (7.26), we directly caleulate

Lw=c¢ '”"‘"“2{4012 z ay(x)ziz; — 2 Z[a“ (z) = bi(x)ay] — clz)} + c(ac)e“”~2
ij=1 i=1

> e‘“‘“z(4oz2 Z agy () xz; — 2a Z[a“(x) — by(x)z;] — e(2)} (7.29)
=1

t,j=1
By the ellipticity assumption, we have

Z as;(z)ziz; > S|z > 6(%)2 >0 in D. (7.30)

1.j=1

IHence we can choose « sufficiently large, such that Lw > 0. This, together
with the assumption Lu > 0 implies Lv > 0, and (7.27) follows from the Weak
Maximum Principle.
To verify (7.28), we consider two parts of the boundary 0D separately.
(i) Ou gD N B, since u(z) > u(z?), there exists a ¢, > 0, such that
w(x) > u{a®) + co. Take € sinall enough such that ejw| < § on 9D N B. Hence

v(x) > w(xz®) = v(x°) Ve € 0DNB.

(i) On DN IB, w(z) = 0. and by the assumption u(x) > u(z?), we have
clx) > v(z?).

This completes the proof of the Lemma.

Now we are ready to prove

Theorem 7.3.1 (Strong Mazimuwm Principle for L with o(x) = 0.) Assume
that §2 is an open, bounded. and connected domain in R™ with smooth bound-
ary d92. Let u be a function in C*(02) N C(£2). Assume that c(z) = 0 in
£,
i) If
Lu(z) >0, zc€fl
then u attains its mingmum only on 982 unless u s constant.
i) If
Lu(z) <0, zcf2,

then u attains its maximum only on 02 unless u s constant.
Proof. We prove part i) here. The proof of part i) is similar. Let m be

the minimum value of u in 2. Set 7 = {x € £ | u{z) = m}. It is relatively
closed in £2. We show that either X is empty or X = 2.
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We argue by contradiction. Suppose X is a nonempty proper subset of
2. Then we can find an open ball B ¢ 2\ £ with a point on its boundary
belonging to . Actually, we can first find a point p € 2\ X such that
d(p, ) < d(p, 82), then increase the radius of a small ball center at p until
it hits X (before hitting 812). Let 2° be the point at B N X. Obviously we
have in B
Lu >0 and u(z) > u(z®).

Now we can apply the Hopf Lemma to conclude that the normal outward
derivative

ou
v
On the other hand, z° is an interior minimum of u in 2, and we must have

Du(z°) = 0. This contradicts with (7.31) and hence completes the proof of
the Theorem.

(z°) < 0. (7.31)

In the case when c(z) > 0, the strong principle still applies with slight
modifications.

Theorem 7.8.2 (Strong Mazimum Principle for L with c(z) > 0.) Assume
that £2 is an open, bounded, and connected domain in R™ with smooth bound-
ary 942. Let u be a function in C*(2) N C(2). Assume that e(x) > 0 4n
0.
iy If
Lu(z) >0, z e,
then u can not attain its non-positive minimum in the interior of £2 unless u
1S constant.
w) If
Lu(z) <0, ze€,
then u can not attain its non-negative mazimum in the interior of §2 unless
u 18 constant.

Remark 7.3.1 In order that the mazimum principle to hold, we assume that
the domain £2 be bounded. This is essential, since it guarantees the eristence
of mazimum and minimum of u in 2. A simple counter ezample is when 2
is the helf space {z € R™ [ z,, > 0}, and u(zx,y) = z,,. Obuviously, Au = 0, but
u does not obey the mazimum principle:

maxu < maxu.
Ie) an

Equally important is the non-negativeness of the coefficient c(z). For exam-
ple, set 2 ={(z,y) e R*| -Z <z < 7 —5 <y <%} Thenu = coszcosy
satisfies

—Lu—2u=0, in
u = 0, on 052,
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But, obuviously, there are some points in {2 at which u < 0.

However, if we #mpose some sign restriction on u, say u > 0, then both
conditions can be relazed. A simple version of such result will be present in
the next theorem.

Also, as one will see in the next section, c(x) is actually allowed to be
negative, but not ‘too negative’.

Theorem 7.3.3 (Mazimum Principle and Hopf Lemma for not necessarily
bounded domain and not necessarily non-negative c¢(x). )

Let €2 be a domain in R™ with smooth boundary. Assume thatw € C*(£2)0
C(£2) and satisfies

{ —Au+ Y bi(2) D+ e(x)u > 0, u(z) 20,z € £2

u(z) =0 x € 012 (7.32)

with tounded functions by(x) and c¢(x). Then
i) if u vanishes at some point in {2, then u =0 n 2; and

ou
ii) if u £0 in 2, then on 012, the exterior normal derivative 3 < 0.

To prove the Theorem, we need the following Lemma concerning eigenval-
ues.

Lemma 7.3.2 Let A\ be the first positive eigenvalue of

{ —A¢ = Mp(z) v € B1(0)

6(x) = 0 € 9B1(0) (7.33)

with the corresponding eigenfunction ¢(x) > 0. Then for any p > 1. the first

. A .
positive eigenvalue of the problem on B,(0) is —; More precisely, if we let
p

w(x) = c‘)(%), then
Al 3
_ )y = —b
Ay 02 U(z) z € By(0) (7.34)
Ylz) =0 z € 0B,(0)

The proof is straight forward, and will be left for the readers.
The Proof of Theorem 7.3.3.
i) Supposc that u = 0 at some point in {2, but u £0on 2. Let

2y ={z e 2|u(x) >0}

Then by the regularity assumption on u, {2 is an open set with C? boundary.
Obviously,
u(z) =0, Vel

Let 2° be a point on 842, but not on d{2. Then for p > 0 sufficiently small,
one can choose a ball B,/,(Z) C 2, with z° as its boundary point. Let ¢ be
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the positive eigenfunction of the eigenvalue problem (7.34) on B,(z°) corre-
A

sponding to the eigenvalue —%. Obviously, B,(z°) completely covers B, /,(Z).
2

Let v == % Then from (7.32), it is easy to deduce that

n

. \Zl —AY = Dy
< —=Av—2gv- _1//_ + Zbi(x)Div + ( " + ; ” + C(L)> v

=1

o
A

i

n
= —v+ > by(z)Div + éa)v,

i=1
Let ¢ be the positive eigenfunction of the cigenvalue problem (7.33) on By,
then .

M1 D¢
) = — + - — +c(x).
) p* o p ; ¢

This allows us to choose p sufficiently small so that é&x) > 0. Now we can
apply Hopf Lemma to conclude that, the outward normal derivative at the
boundary point z° of B, /2(Z),

dv, ,
E(m ) <0, (7.35)
because (z°)
- o] ulzr
v(@) > 0¥z € Byya(®) and v(e”) = 2o =

On the other hand, since z° is also a minimum of v in the interior of 2,
we must have

vu(z?) =0.
This contradicts with (7.35) and hence proves part i} of the Theorem.
il) The proof goes almost the same as in part i) except we consider the

point x° on 9f2 and the ball B,/,(Z) is in 2 with 2° € 8B,,,(Z). Then for
the ournward normal derivative of u, we have

o o o o
T (29) = S (@) + ola) S 0) = 2o (a°)

Here we have used a well-known fact that the eigenfunction ¢ on B,(z°) is ra-
dially symmetric about the center z°, and hence 79 (z°) = 0. This completes
the proof of the Theorem.

7.4 Maximum Principles Based on Comparisons

In the previous section, we show that if (=A+¢(z))u > 0, then the maximum
principle, i.e. (7.20), applies. There, we required c¢{z) > 0. We can think —-A
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as a ‘positive’ operator, and the maximum principle holds for any ‘positive’
operators. For ¢(z) > 0, —~A-+¢(z) is also ‘positive’. Do we really need ¢(z) > 0

here? To answer the question, let us consider the Dirichlet eigenvalue problem

of —A:
{—A(ﬂ)—/\(b(m) =0z € (7.36)

olx) =0 r € Of2.

We notice that the ecigenfunction ¢ corresponding to the first positive cigen-
value X\ is either positive or negative in §2. That is, the solutions of (7.36)
with A = A; obey Maximum Principle, that is, the maxima or minima of ¢
are attained only on the boundary 912. This suggests that, to ensure the Max-
imuwm Principle, ¢(x) need not be nonnegative, it is allowed to be as negative
as —Ay. More precisely, we can establish the following more general maximum
principle based on comparison.

Theorem 7._4.1 Assume that 2 is a bounded domain. Let ¢ be a positive
function on {2 satisfying
—N¢+ A(x)o > 0. (7.37)

Assume that u is a solution of

—-Au+e(r)u>0xe 2 ‘
{u >0 on 092. (7.38)
If
clz) > A(z), Yz e f2, (7.39)

then v > 0 in {2.

Proof. We argue by contradiction. Suppose that u(zr) < 0 somewhere in
u(z
2. Lev v(z) = ZD% Then since ¢(x) > 0, we must have v(z) < 0 somewhere
z
in 2. Let 2° € 2 be a minimum of v(z). By a direct calculation, it is easy to
verify that

7o

N
-Nv =290 - e + —(=Au+ %“)~ (7.40)

!
6

? is a minimum, we have

On one hand, since x
—~Av(z?) <0 and gu(z?) = 0. (7.41)

While on the other hand, by (7.37), (7.38), and (7.39), and taking into
account that u(z®) < 0, we have, at point z°,

—-Au+ %iu(l‘o) > —Au+ Ax%)u(z®)
> —Au + e(z)u(z?) > 0.

This is an obvious contradiction with (7.40) and (7.41), and thus completes
the proof of the Theorem.
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Remark 7.4.1 From the proof, one can see that conditions (7.87) and (7.39)
are required only at the points where v attains its minimum, or at points where
u 18 negative.

The Theorem is also valid on an unbounded domains if v is “nonnegative”
at infinity:

Theorem 7.4.2 If 2 is an unbounded domuan, besides condition (7.38), we
assume further that
liminf u(z) > 0. (7.42)

lzf— o0

Then v > 0 in £2.

Proof. Still consider the same v(z) as in the proof of Theorem 7.4.1. Now
condition (7.42) guarantees that the minima of v(z) do not “leak” away to
infinity. Then the rest of the arguments are exactly the same as in the proof
of Theorem 7.4.1.

For convenience in applications, we provide two typical situations where
there exist such functions ¢ and c¢(z) satisfying condition (7.37) and (7.39),
so that the Maximum Principle Based on Comparison applies:

i) Narrow regions, and

it) e(a) decays fast enough at co.

1) Narrow Regions. When
N={z]0<zm <}

is a narrow region with width [ as shown:

We can choose ¢(z) = sin(%+¢). Then it is easy

-1
0 to see that —Ag = (1)%¢, where A(z) = -
N I1V can be very negative when [ is sufficiently small.

Corollary 7.4.1 (Narrow Region Principle.) If u satisfies (7.38) with bounded
function ¢(z). Then when the width | of the region £2 is sufficiently small, c(x)

-1
satisfies (7.39), i.e. c(z) > Az) = R Hence we can directly apply Theorem
7.4.1 to conclude that v > 0 in 2, provided liminf|;— u(z) > 0.

1) Decay at Infinity. In dimension n > 3, one can choose some positive

number g < n — 2, and let ¢(z) = [71[—, Then it is easy to verify that
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an=-2-q

q
N

In the case ¢(z) decays fast enough near infinity, we can adapt the proof of
Theorem 7.4.1 to derive

Corollary 7.4.2 (Decay at Infinity ) Assume there exist R > 0, such that

R |l VRV IS (7.43)
|z|?
Suppose
Lou(x)
lim =

Let £2 be a region containing in B£(0) = R\ Br(0). If u satisfies (7.38) on
02, then

ulx) >0 forallxz € 02,

Remark 7.4.2 From Remark 7./.1, one can see that actually condition
(7.43) is only required at points where u is negative.

Remark 7.4.3 Although Theoremn 7.4.1 as well as its Corollaries are stated
in lincar forms, they can be casily applied to a nonlinear equation, for example.

Du— P tu=0 ze R (7.44)

1
Assume that the solution u decays near infinity at the rate of —— with
i
s(p—1) > 2. Lel c(z) = —|u(x){?~". Then for R sufficiently large, and for
the region 2 as stated in Corollary 7.4.2, c(z) satisfies (7.43) in (2. If further
assume that

ulan 20,

then we can derive from Corollary 7.4.2 that u > 0 in the entire region (2.

7.5 A Maximum Principle for Integral Equations

In this section, we introduce a maximum principle for integral cquations.
Let 2 be a region in R™, may or may not be bounded. Assume

K(z,y) 20, V(z,y) € 2 x 12

Define the integral operator T by

uww:Amemw



7.5 A Maximum Principle for Integral Equations 193
or more generally, the integral inequality
f<Tf in (2. (7.50)

Further assume that

I Ty < Cletllr ol fllze ) (7.51)

for some p,7 > 1.

If we have some right integrability condition on ¢(y), then we can derived,
fromu Theorem 7.5.1, a maximum principle that will be applied to “Narrow
Regions” and “Near Infinity’. More precisely, we have

Corollary 7.5.1 Assume that c(y) > 0 and e(y) € L™ (R"). Let f € LP(R")
be a nonnegative function satisfying (7.50) and (7.51). Then there exist posi-
tive numbers R, and €, depending on ¢(y) only, such that

f (20 B, (0)) < €, then fH =0 wm (2.

where (D) 1s the measure of the set D.

Proof. Since () € L™(R™), by Lebesgue integral theory, when the measure
of the intersection of {2 with By, (0) is sufficiently small, we can make the
integral [, |e(y)|”dy as small as we wish, and thus to obtain

Cllety)llL-a < L.
Now it follows from Theorem 7.5.1 that

ff(z)=0.Vz el
This completes the proof of the Corollary.

Remark 7.5.1 One can sce that the condition ji(£2 N Br (0)) < ¢, in the
Corollary 1s satisfied in the following two situations.

i) Narrow Regious: The width of 2 ws very small.

ii) Near Infinity: Say, 2 = B§(0), the complement of the ball Br(0), with
suffictently large R.

As an immediate application of this “Mazimum Principle”, we study an
integral cquation in the next section. We will use the method of moving planes
to obtain the radial symmetry and monotonicity of the positive solutions.
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Methods of Moving Planes and of Moving
Spheres

8.1  Outline of the Method of Moving Planes
8.2 Applications of Maximum Principles Based on Comparison

8.2.1 Symmetry of Solutions on a Unit Ball
8.2.2  Symmetry of Solutions of —Au = «? in R™.
8.2.3 Symmetry of Solutions of —Au = e* in R?

8.3 Method of Moving Planes in a Local Way
8.3.1 The Background
8.3.2 The A Priori Estimates

8.4 Method of Moving Spheres

8.4.1 The Background
8.4.2  Necessary Conditions

8.5 Method of Moving Planes in an Integral Form and
Synuetry of Solutions for Integral Equations

The Method of Moving Planes (MMP) was invented by the Soviet math-
ematician Alexanderoff in the early 1950s. Decades later, it was further de-
veloped by Serrin [Se|. Gidas. Ni, and Nirenberg [GNN], Caffarelli, Gidas,
and Spruck [CGS], Li [Li], Chen aud Li [CL] [CL1]. Chang and Yang [CY],
and many others. This method has been applied to free boundary problems,
semi-linear partial differential equations, and other problems. Particularly for
semi-linear partial differential cquations, there have scen wany significant con-
tributions. We refer to the paper of Frenkel [F] for more descriptions on the
method.

The Method of Moving Planes and its variant—the Method of Moving
Spheres-have become powerful tools in establishing symmetries and mono-
tonicity for solutions of partial differential equations. They can also be used
to obrtain a priori estimates, to derive useful inequalities, and to prove non-
existence of solutions.
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From the previous chapter, we have seen the beauty and power of maxi-
mum principles. The MMP greatly enhances the power of maximum principles.
Roughly speaking, the MMP is a continuous way of repeated applications of
maximum principles. During this process, the maximum principle has been
used infinitely many times; and the advantage is that each time we only need
to use the maximum principle in a very narrow region. From the previous
chapter, one can see that, in such a narrow region, even if the coefficients of
the equation are not ‘good,” the maximum principle can still be applied. In the
authors’ research practice, we also introduced a form of maximum principle
at infinity to the MMP and therefore simplified many proofs and extended
the results in more natural ways. We recommend the readers study this part
carefully, so that they will be able to apply it to their own rescarch.

It is well-known that by using a Green’s function, one can change a dif-
ferential equation into an integral equation, and under certain conditions,
they arc cquivalent. To investigate the symmetry and monotonicity of inte-
gral equations, the authors, together with Ou, created an integral form of
MMP. Instead of using local properties (say differentiability) of a differen-
tial equation, they employed the global properties of the solutions of integral
equations.

In this chapter, we will apply the Method of Moving Planes and their
variant-the Method of Moving Spheres— to study semi-linear elliptic equa-
tions and integral equations. We will establish symmetry, monotonicity, a
priori estimates, and non-existence of the solutions. During the process of
Moving Planes, the Maximum Principles introduced in the previous chapter
are applied in innovative ways.

In Section 8.2, we will cstablish radial symmetry and monctonicity for the
solutions of the following three semi-linear elliptic problems

=L = f(u) xz € B1(0)
{u =0 on 0B8,(0);

T4 2
—Au=ur-2(z) v € R" n>3;

and
~Au=e¥'®) g e R2

During the moving of planes, the Maximum Principles Base on Comparison
will play a major role. In particular, the Narrow Region Principle and the
Decay at Infinity Principle will be used repeatedly in dealing with the three
examples.

In Section 8.3, we will apply the Method of Moving Planes in a ‘local way’
to obtain a priori estimates on the solutions of the prescribing scalar curvature
equation on a compact Riemannian manifold M

_4n-1)

5 Au+ Ry(z)u = R(l)u%%, in M.
’,’L —_
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We alow the function R(z) to change signs. In this situation, the traditional
blowinz-up analysis fails near the set where R(z) = 0. We will use the Method
of Moving Planes in an innovative way to obtain a priori estimates. Since the
Methiod of Moving Planes can not be applied to the solution u directly, we
introduce an auxiliary function to circumvent this difficulty.

In Section 8.4, we use the Method of Moving Spheres to prove a non-
existence of solutions for the preseribing Gaussian and scalar curvature equa-
tions

—Au+2 = R(z)e",

and )
nin — 2 n-—2 i
AA - — R -2
U+ 7 =1 (z)u

on S? and on S™ (n > 3), respectively. We prove that if the function R(x)
is rotationally symmetric and monotone in the region where it is positive,
then both equatious admit no solution. This provides a stronger necessary
condition than the well known Kazdan-Warner condition, and it also becomes
a sufficient condition for the existence of solutions in most cases.

In Scction 8.5, as an application of the maximum principle for integral
equations introduced in Section 7.5, we study the integral equation in R™

rvax
¢

' 1
u(x) = /R Wu o (y)dy,
for any real number «a between 0 and n. It arises as an Euler-Lagrange equation
for a functional in the context of the Hardy-Littlewood-Sobolev inequalities.
Due to the different nature of the integral equation, the traditional Method of
Moving Planes does not work. Hence we exploit its global property and develop
a new idea—the Integral Form of the Method of Moving Planes to obtain the
symmetry and monotonicity of the solutions. The Maximum Principle for
Integral Equations established in Chapter 7 is combined with the estimates
of various integral norms to carry on the moving of planes.

8.1 Qutline of the Method of Moving Planes

To outline how the Method of Moving Planes works, we take the Euclidian
space R™ for an example. Let u be a positive solution of a certain partial
differential cquation. If we want to prove that it is synunetric and monotone
in a given direction, we may assign that direction as z; axis. For any real
number A, let

T\ ={x = (1,209, .an) € R |0y = AL

This is a plane nerpendicular to z,-axis and the plane that we will move with.
Let X'y denote the region to the left of the plane, i.e.
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ZA:{:EERH|$1</\}.

Let

:B)‘ = (2)\ —Z1,T2, )In),

the reflection of the point # = (1, -+, z,) about the plane Ty (See Figure 1).

€T e .3:)\
2

1\
Figure 1

We compare the values of the solution u at point z and z*, and we want
to show that u is symmetric about some plane Ty,. To this end, let

wi(z) = u(z?) - u(z).
In order to show that, there cxists some \,, such that
wy, () =0, Vo e D),

we generally go through the following two steps.
Step 1. We first show that for A sufficiently negative, we have

U»‘,\(.’E) >0, Vzxe X, (8.1)

Then we are able to start off from this neighborhood of z; = - o0, and move
the plane Ty along the z; direction to the right as long as the inequality (8.1)
holds.

Step 2. We continuously move the plane this way up to its limiting position.
More precisely, we define

Ao =sup{A | wy(z) 2 0,vz € Ty }.

We prove that v is symmetric about the plane T}, that is wy, (z) = 0 for all
x € X,,. This is usually carried out by a contradiction argument. We show
that if w,(z) # 0, then there would exist A > ), such that (8.1) holds, and
this contradicts with the definition of A,.

From the above illustration, one can see that the key to the Method of
Moving Planes is to establish inequality (8.1), and for partial differential equa-
tions, maximum principles are powerful tools for this task. While for integral
equations, we use a different idea. We estimate a certain norm of wy on the
set

Iy ={z e Ty |wi(z) <0}
where the inequality (8.1) is violated. We show that this norm must be zero,
and hence 27 is empty.
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8.2 Applications of the Maximum Principles Based on
Comparisons

In this section, we study some semi-linear elliptic equations. We will apply
the method of moving planes to establish the symmetry of the solutions. The
essence of the method of moving planes is the application of various maximum
principles. In the proof of each theorem, the readers will see vividly how the
Maximum Principles Based on Comparisons are applied to narrow regions and
to solutions with decay at infinity.

8.2.1 Symmetry of Solutions in a Unit Ball
We first begin with an clegaut result of Gidas, Ni, and Nirenberg [GNN1]:
Theorem 8.2.1 Assume that f(-) is a Lipschitz continuous function such
that

|f(p) = f(@)] < Colp — 4l (8.2)

for some constant C,. Then every positive solution u of

{ ~Au = f(u)x € B(0)

u=20 on 0B1(0). (8.3)

is radially symmetric and monotone decreasing about the origin.

Proof.

As shown on Figure 4 below, let Ty = {z | 1 = A} be the plane perpen-
dicular to the z; axis. Let 375 be the part of B;(0) which is on the left of the
plane Ty. For each = € X, let z* be the reflection of the point x about the
plane Ty, wore precisely, a? = (2X — w29, 2.

1
Figure 4

We compare the values of the solution u on £y with those on its reflection.
Let

un () = w(a?), and  wy(r) = ur(w) = ulx).
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Then it is easy to see that u, satisfies the same equation as u does. Applying
the Mean Value Theorem to f(u), one can verify that w, satisfies

Lwy + Cz, Nwy(z) =0, z€ Dy,

where

and by condition (8.2),
IC(z, )| < Co. (8.4)

Step 1: Start Moving the Plane.

We start from the near left end of the region. Obviously, for A sufficiently
close to —1, 2y is a narrow (in 2 direction) region, and on 8%, wyx(z) > 0.
( On Ty, wy(z) = 0; while on the curve part of 02, wy(z) > 0 since u > 0
in B1{0).)

Now we can apply the “Narrow Region Principle” ( Corollary 7.4.1) to
conclude that, for A close to —1,

wy(z) >0, VrelX. (8.5)

This provides a starting point for us to move the plane T,

Step 2: Move the Plane to Its Right Limit.

We now increase the value of A continuously, that is, we move the plane
T) to the right as long as the inequality (8.5) holds. We show that, by moving
this way, the plane will not stop before hitting the origin. More precisely, let

A= sup{A | wx(z) >0, Vz 2h 3

we first claim that _
A > 0. (8.6)

Otherwise, we will show that the plane can be further moved to the right
by a small distance, and this would contradicts with the definition of A. In
fact, if & < 0, then the image of the curved swface part of 0X5 under the
reflection about 77 lies inside B, (0), where u(x) > 0 by assumption. It follows
that, on this part of 955, ws () > 0. By the Strong Maximum Principle, we
deduce that

wy(z) >0
in the interior of 25.

Let d, be the maximum width of narrow regions that we can apply the
“Narrow Region Principle”. Choose a small positive number ¢, such that § <
%, —A. We consider the function w3 4.5(z) on the narrow region (See Figure

):

(W3]

- d,
05:2;+5ﬂ{$[:r1>/\——2—}.
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It satisfies

Aws s + C(I,;\+(5)U):\+5 =0x € {2 (8.7)
wiys(z) >0 x € 08. :
|
X5 da & o
'\_/

TZ\—%? T5is

Figure 5

The equation is obvious. To see the boundary condition, we first notice
that it is satisfied on the two curved parts and one flat part where z; = A+ 4§
of the boundary 9125 due to the definition of wy, 5. To see that it is also true
on the rest of the boundary where z; = A — %, we use continuity argument.
Notice that on this part, wy is positive and bounded away from 0. More
precisely and more generally, there exists a constant ¢, > 0, such that

ws(r) 2 ¢, VX € E/—\w%,_,.
Since w) is continuous in A. for § sufficiently small, we still have

wy.5(z) 20, Vz € 2;\4«_{22-

Hence in particular, the boundary condition in (8.7) holds for such small 4.
Now we can apply the “Narrow Region Principle” to conclude that

wyys(x) 20, Voe fs.

And thercfore,
wiys(x) 20, Voe Xy,
This contradicts with the definition of X and thus establishes (8.6).
(8.6) implies that

w(~2y,7") < u(zy, '), Vo, >0, (8.8)
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where 2z’ = (23, -+, 7).
We then start from A close to 1 and move the plane T, toward the left.
Similarly, we obtain

uw(-z1,2") > u(zy,z’) Vo1 >0, (8.9)

Combining two opposite inequalities (8.8) and (8.9), we see that u(z) is
symmetric about the plane 7j. Since we can place z; axis in any direction,
we conclude that u(z) must be radially symmetric about the origin. Also the
monotonicity easily follows from the argument. This completes the proof.

8.2.2 Symmetry of Solutions of —Awu = uP in R"

In an elegant paper of Gidas, Ni, and Nirenberg [2], an interesting results is
the symmetry of the positive solutions of the semi-linear elliptic equation:

Au+uP =0, z€ R",n>3. (8.10)
They proved
Theorem 8.2.2 For p = 22 [l the positive solutions of (8.10) with rea-

n—27
sonable behavior at infinity, namely

1

U = O(W

),

are radially symmetric and monotone decreasing about some point, and hence
assume the form

—2)N2*F
u(z) = (/\[:(n' 2)A |]2)”_2 for A >0 and for some z° € R™.
+ [T — xo|<) 2

This uniqueness result, as was pointed out by R. Schoen, is in fact equiv-
alent to the geometric result due to Obata [O]: A Riemannian metric on S™
which is conformal to the standard one and having the same constant scalar
curvature is the pull back of the standard one under a conformal map of
S™ to itself. Recently, Caffarelli, Gidas and Spruck [CGS] removed the de-
cay assumption u = O(]2|*"") and proved the same result. In the case that
1<p< %f—%, Gidas and Spruck [GS] showed that the only non-negative solu-
tion of (8.10) is identically zero. Then, in the authors paper [CL1], a simpler
and more elementary proof was given for almost the same result:

Theorem 8.2.3 i) Forp = 22 every positive C? solution of (8.10) must
p Y (

n-—-27
be radially symmetric and monotone decreasing about some point, and

hence assumes the form

[2(n = 2)2%)*7
(A2 4 |z — z02)"

u(z) =

for some A >0 and z° € R™.



3.2 Applications of the Maximum Principles Based on Comparisons 203

if) Forp < z—fg, the only nonnegative solution of (8.10) is identically zero.

The proof of Theorem 8.2.2 is actually included in the more general proof
of the first part of Theorem 8.2.3. However, to better illustrate the idea, we
will first present the proof of Theorem 8.2.2 (mostly in our own idea). And
the readers will sce vividly, how the “Decay at Infinity” principle is applicd
here.

Proof of Theorem 8.2.2.
Define

EA:{CL‘:(LCh-".In)ERnil'l </\}7 T\ = 03y

and let 22 be the reflection point of x about the plane T, i.c.

.’L'A - (2)\—.’51,1'2,"‘,1);”).

(See the previous Figure 1.)
Let

wy(x) = u(m)‘), and  wy(x) = uy(x) — ulx).

The proof consists of three steps. In the first step, we start from the very
left end of our region R™, that is near z; = —oco. We will show that, for A
sufficiently negative,

wy(x) >0, Yuee Xy, (8.11)

Here, the "Decay at Infinity” is applicd.

Then in the second step, we will move our plane Ty in the the ) direction
toward the right as long as inequality (8.11) holds. The plane will stop at
some limiting position, say at A = A,. We will show that

wy, () =0, Ve € Xy,

This ‘mplies that the solution u is symmetric and monotone decreasing about
the plane Ty, . Since z1-axis can be chosen in any direction, we conclude that
u must be radially symmetric and monotone about some point.

Finally, in the third step, using the uniqueness theory in Ordinary Difter-
ential Equations, we will show that the solutions can ouly assuine the given
form.

Step 1. Prepare to Move the Plane from Near —oo.

To verify (8.11) for A sufficiently negative, we apply the maximum principle
to wy(x). Write 7 = ng By the definition of uy, it is casy to sce that, ux
satisfies the same equation as u does. Then by the Mean Value Theorem, it is
easy to verify that

—Awy = uf () —uT(x) = TP ) walx). (8.12)

wherz v, () is some number between uy(x) and u(z). Recalling the “Mazi-
mum Principle Based on Comparison” (Theorem 7.4.1), we see here c(z) =



204 8 Methods of Moving Planes and of Moving Spheres

—wa\_l(x). By the “Decay at Infinity” argument (Corollary 7.4.2), it suffice
to check the decay rate of w;_l(m), and more precisely, only at the points &
where w) is negative (see Remark 7.4.2 ). Apparently at these points,

uy (%) < u(),
and hence
0 <ux(z) < ¥a(Z) < ul@).

By the decay assumption of the solution

we derive immediately that

Ni) =0 <(I%‘)—47> =0 <ﬁ> .

1 .
Here the power of — is greater than two, which is what (actually more
T

than) we desire for. Therefore, we can apply the “Mazimum Principle Based
on Comparison” to conclude that for A sufficiently negative ( |Z| sufficiently
large ), we must have (8.11). This completes the preparation for the moving
of planes.

Step 2. Move the Plane to the Limiting Posttion to Derive Symmetry.
Now we can move the plane T toward right, i.e., increase the value of A,
as long as the inequality (8.11) holds. Define

Ao =sup{A| wr(z) >0, Vz € I, }.

Obviously, A, < +0c0, due to the asymptotic behavior of u near z; = +00. We
claim that
wy,(2) =0, Vo e Xy,. (8.13)

Otherwise, by the “Strong Mazimum Principle® on unbounded domains ( sce
Theorem 7.3.3 ), we have

wy, (x) > 0 in the interior of Ty . (8.14)

We show that the plane T, can still be moved a small distance to the right.
More precisely, there exists a §, > 0 such that, for all 0 < § < §,, we have

wa,+5(z) 20, Vo€ 246 (8.15)

This would contradict with the definition of A,, and hence (8.13) must hold.
Recall that in the last section, we use the “Narrow Region Principle ” to
derive (8.15). Unfortunately, it can not be applied in this situation, because
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the "narrow region” here is unbounded, and we are not able to guarantee that
wy, is bounded away from 0 on the left boundary of the “narrow region”.
To overcome this difficulty, we introduce a new function

wy ()
o)’

wy(2) =

where

1
o(x) = B with 0 <g<n-—2

Then it is a straight forward calculation to verify that

JAN 1
— Ay = 2710 - %QD + <~Au',\ -+ -—ﬁw)\) — (8.16)

¢ b
We have

Lemma 8.2.1 There exists a R, > 0 ( independent of A), such that iof z° is
a minimum point of Wy and wy(z°) < 0, then [z°] < R,.

We postpone the proof of the Lemma for a moment. Now suppose that (8.15) is
violated for any ¢ > 0. Then there exists a sequence of numbers {4,} tending
to 0 und for cach i, the corresponding negative minimum x* of wy, 45,. By
Lemma 8.2.1, we have

x| < R, . Vi=1,2,--

Then, there is a subsequence of {z*} (still denoted by {x'}) which converges
to some point 2° € R™. Consequently,

iy, (2°) = lim 7wy, 46, (') =0 (8.17)

and

@y, (£°) = ll_nfgo @y, 48, (') <O

However, we already know @y, > 0, therefore, we must have wy, (2°) = 0. It
follows that

vy, (x%) = v, (2°)o(z°) + @y, (2) Ve =0+ 0=0. (8.18)

Oun the other hand, by (8.14), since wy, (z°) = 0, 2° must be on the
boundary of Xy, . Then by the Hopf Lemma (see Theorem 7.3.3), we have,
the outward normal derivative

aLU)\
—=2(z%) < 0.
ov (%)

This contradicts with (8.18). Now, to verify (8.15), what left is to prove the
Lemuma.
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Proof of Lemma 8.2.1. Assume that z° is a negative minimum of w,.
Then

—Awy (2°) <0 and g0, (z?) = 0. (8.19)

On the other hand, as we argued in Step 1, by the asymptotic behavior of
v at infinity, if jz°| is sufficiently large,

co(x®) = ;Tq//—l(l.c?) > _Q(n -2—gq) _ Ag(z?)

|z°] ¢(xz°) -

It follows from (8.12) that
<—Aw,\ + éfuu) (z°) > 0.

This, together with (8.19) contradicts with (8.16), and hence completes the
proof of the Lemma.

Step 3. In the previous two steps, we show that the positive solutions
of (8.10) must be radially symmetric and monotone decreasing about some
point in E™. Since the equation is invariant under translation, without loss of
generality, we may assume that the solutions are symmetric about the origin.
Then they satisfies the following ordinary differential equation
() ~ 2 (r) = o7
uw'(0) =0

n(n — 2)A2 5

L—(_)]T is a solution, and
(/\2 + 7"2) =z

by the uniqueness of the ODE problem, this is the only solution. Therefore,

we conclude that every positive solution of (8.10) must assume the form

for some A > 0. One can verify that u(r) =

n—2

[n{n — 2)A%] "3

(A2 + o~ 2o)?)" T

u(a) =

for A > 0 and some 2° € R™, This completes the proof of the Theorem.

Proof of Theorem 8.2.3.

i) The general idea in proving this part of the Theorem is almost the
same as that for Theorem 8.2.2. The main difference is that we have no decay
assumption on the solution u at infinity, hence the method of moving planes
can not be applied directly to u. So we first make a Kelvin transform to define

a new function .
T
= R
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Then obviously, v(z) has the desired decay rate 5 at infinity, but has a

1
T
possib.e singularity at the origin. It is easy to verify that v satisfies the same
equation as u does, except at the origin:

Av+v"(z)=0 z € R\ {0},n>3. (8.20)

We will apply the method of moving planes to the function v, and show
that v is radially symmetric and monotone decreasing about some point. If
the center point is the origin, then by the definition of v, u is also symetric
and monotone decreasing about the origin. If the center point of v is not the
origin, then v has no singularity at the origin, and hence u has the desired
decay at infinity. Then the same argument in the proof of Theorem 8.2.2 would
imply that u is symmetric and monotone decreasing about some point.

Define

ua(z) = v(z?), walz) = valz) —v(z).

Because v(z) may be singular at the origin, correspondingly wy may be sin-
gular at the point xy = (2X,0,---,0). Hence instead of on Xy, we consider w),
on f?,\ = 23\ {za}. And in our proof, we treat the singular point carefully.
Each time we show that the points of interest are away from the singularities,
so that we can carry on the method of moving planes to the end to show the
existence of a A, such that wy, (z) = 0 for z € £, and v is strictly increasing
i the 7 direction in Xy .

As in the proof of Theorem 8.2.2, we see that v, satisfies the same equation
as v does, and

—Nwy = T’(Z)K_I(JL')’U))\(LL').

where 1y (z) is some number between vy (z) and v(z).
Step 1. We show that, for A sufficiently negative, we have
wa(x) >0, Vz € 2. (8.21)
By the asymptotic behavior

1
v(z) ~ m;:‘ga

we derive immediately that, at a negative minimum point. x° of wy,

—_

1
-1
Yy (2°) ~ (W

)T—l

1 : .
the power of m is greater than two, and we have the desired decay rate for
T
c(z) = —79] " !(x), as mentioned in Corollary 7.4.2. Hence we can apply the
“Decay at Infinity’ to wx(z). The difference here is that, wy has a singularity
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at x,, hence we need to show that, the minimum of wy is away from z,.
Actually, we will show that,

If infg wy(x) <0, then the infimum is achieved in £ \ By(z,) (8.22)
To see this, we first note that for x € B1(0),

2) 2 min v(z) =€ >0
v(x) _8%111(1})) (z) = €q

due to the fact that v(z) > 0 and Av < 0.

Then let A be so negative, that v(z) < g for ¢ € Bi(zy). This is possible
because v(z) — 0 as |z| — oo.

For such A, obviously wx(z) > 0 on Bi(xx) \ {z»}. This implies (8.22).
Now similar to the Step I in the proof of Theorem 8.2.2, we can deduce that
wy(x) > 0 for A sufficiently negative.

Steg 2. Again, define
Ao = sup{) | wy(z) >0, Vo € £)}.
We will show that
If A\, <0, thenwy, (z)=0, Vz e £,

w :
Define @y = —2 the same way as in the proof of Theorem 8.2.2. Suppose

that @y, (z) £0, then by Mazimum Principle we have

Wy, (z) >0, forze X),.

The rest of the proof is similar to the step 2 in the proof of Theorem 8.2.2

except that now we need to take care of the singularities. Again let A, \| A,

be a sequence such that @, (z) < 0 for some z € £,. We need to show that

for each k, inf)j/\ Wy, (x) can be achicved at some point 2% € %, and that
k

the sequence {z*} is bounded away from the singularities z,, of wy, . This
can be seen from the following facts

a) There exists € > 0 and § > 0 such that
Wy, (x) > e for z € Bs(zy,) \ {zx, }.
b)  limao), infeep, (e, ©a(z) > infiep, (o,,) T, (T) = €

Fact (a) can be shown by noting that @y, (z) > 0 on £y, and Awy, <0,
while fact (b) is obvious.

Now through a similar argument as in the proof of Theorem 8.2.2 one can
easily arrive at a contradiction. Therefore @, (z) = 0.
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If A, = 0, then we can carry out the above procedure in the opposite di-
rection, namely, we move the plane in the negative x; direction from positive
infinity toward the origin. If our planes T stop somewhere before the origin,
we derive the symmetry and monotonicity in 7y direction by the above ar-
gument. If they stop at the origin again, we also obtain the symmetry and
monotonicity in z; direction by combining the two inequalities obtained in
the two opposite directions. Since the i direction can be chosen arbitrarily,
we conclude that the solution u mnust be radially symmetric about some point.

n+2
n—2

it) To show the non-existence of solutions in the case p <
that after the Kelvin transform, v satisfies

, we notice

1
Av+ WUP(I) =0, ze€ R"\ {0}

Due to the singularity of the coeflicient of v¥ at the origin, one can easily
sce that v can only be symmetric about the origin if it is not identically
zero. Hence u must also be symmetric about the origin. Now given any two
points ' and z* in R, since equation (8.10) is invariant under translations
and rotations, we may assume that the origin is at the mid point of the line
segment zlz2. Then from the above argument, we must have u(z') = u(z?).
It follows that u is constaut. Finally, from the cquation (8.10), we conclude
that u = 0. This completes the proof of the Theorem.

8.2.3 Symmetry of Solutions for —Au = e* in R?

When considering prescribing Gaussian curvature on two dimensional com-
pact manifolds, if the sequence of approxiuate solutions “blows up”, then by
rescaling and taking limit, one would arrive at the following equation in the
entire space R?%:

{Au+exp11:0, x ¢ R? (8.23)

[ exp u(z)de < +oo '
The classification of the solutions for this limiting cquation would provide es-
sential information on the original problems ou manifolds, also it is interesting
in its own right.
It is known that
3272

(4 + A\2|z — z°]2)2

drzeiz) =1In
for any A > 0 and any point x° € R? is a family of explicit solutions.
We will use the method of moving planes to prove:

Theorem 8.2.4 Euery solution of (8.23) is radially symmetric with respect
to some point in R? and hence assumes the form of ¢y o(x).

To this end, we first need to obtain some decay rate of the solutions near
infinity.
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Some Global and Asymptotic Behavior of the Solutions

The following Theorem gives the asymptotic behavior of the solutions near
infinity, which is essential to the application of the method of moving planes.

Theorem 8.2.5 If u(x) is a solution of (8.23), then as x| — 400,

11:% - —%fm expu(z)de < —4
untformly.
This Theorem is a direct consequence of the following two Lemmas.
Lemma 8.2.2 (W. Ding) If u is a solution of
~Au=e¢* zeR?

and

Sr2 expu(z)dz < +o0,
then

J g2 expu(z)dz > 8.

Proof. For —oco <t < oo, let 2y = {z | u(z) > t}, one can obtain

expu(z)dr = — Au = Ivulds
2,
2, 892

d / ds
— 200, = il
dtl | a0, |Vl

By the Schwartz inequality and the isoperimetric inequality,
d
= | wuz jon > anle,
an, Ivul Jag,

—(%UA]) o, expulz)dz > 47[2,]

Hence

and so

d
4 expu(z)de)® = 2expt - (—|£2|) - exp u(z)dz < 8|2 let.
dt 75 dt LN

Integrating from —oo to oo gives
—(/ expu(z)dz)? < —87r/ exp u(z)dz
R? R?
which implies fm exp u{z)dz > 8r as desired.

Lemma 8.2.2 enables us to obtain the asymptotic behavior of the solutions
at infinity.
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Lemma 8.2.3 . If u(x) is a solution of (8.23), then as |z| — +o0,

1
] - ,,%fm exp u(x)dr uniformly.

Proof.

By aresult of Brezis and Merle [BM], we sce that the condition fﬁ'f‘ exp u(x)dr <
oo implies that the solution u is bounded from above.

Let

w(z) = :;;fRz(ln [z =yl = In(ly[ + 1)) expu(y)dy.
Then it is easy to see that
Aw(z) = expu(z), =€ R*
and we will show

w(x)

1
In |z| - 57;[1?,2 exp u(x)dz uniformly as {z| — +oo. (8.24)

To see this, we need only to verify that

[._/ ln|z~y|—ln(|y1+1)—ln|ac\e
T R2 ln’II

v dy—0

as |r|-—so0. Write I = It + Iy + I3, where Iy, I and I3 are the integrals on the
three regions
Dy={yllz—yi <1}
Dy={y|lz -y >1 and |y < K}

and
Dy={yl|lr—yl>1 and |yl > K}

respectively. We may assume that |z > 3.
a) To estimate I|, we simply notice that

L <C Wy —

In|z — ylc“Wdy
Jjw—yl<1 Izl Jizoyi<1

Then by the boundedness of ¢ and fm e*Wdy, we see that I;—0 as
] —co.
b) For each fixed K, in region Dy, we have, as |z|—o0,

Infz ~ yl - ln(ly| + 1)~ Infe] _
In |z|

0

hence I, —0.
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¢)To see I3—0, we use the fact that for |z —y| > 1

Injz —y| —In(ly] + 1) — In|z|
In|z|

l |<C
Then let K'—oo. This verifies (8.24).
Consider the function v(z) = u(z) + w(z). Then Av = 0 and

v(z) < C+Crin(|z| +1)

for some constant C and C). Therefore v must be a constant. This completes
the proof of our Lemma.
Combining Lemma 8.2.2 and Lemma 8.2.3, we obtain our Theorem 8.2.5.

The Method of Moving Planes and Symmetry

In this subsection, we apply the method of moving planes to establish the
symmetry of the solutions. For a given solution, we move the family of lines
which are orthogonal to a given direction from negative infinity to a critical
position and then show that the solution is symmetric in that direction about
the critical position. We also show that the solution is strictly increasing before
the critical position. Since the direction can be chosen arbitrarily, we conclude
that the solution must be radially symmetric about some point. Finally by
the uriqueness of the solution of the following O.D.E. problem

u'(r) + 2u/(r) = f(u)
uw'(0)=0
u(0) =1

we see that the solutions of (8.23) must assume the form ¢, ;o (z).
Assume that u(z) is a solution of (8.23). Without loss of generality, we
show the monotonicity and symmetry of the solution in the | direction.
For A € R', let
2y = {(.’Cl,Ig) '\ T < )\}

and
Ty = 02y = {(x1,22) | 21 = A}.
Let
o = (2) - 1, 73)

be the reflection point of z = (x1,z2) about the line 7). (See the previous
Figure 1.)
Define
wy(z) = u(z?) — u(z).

A straight forward calculation shows

Awy(z) + (exp ¥a(z))wr(z) =0 (8.25)
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where ¥y (x) is some number between u(x) and uy(z).

Step 1. As in the previous examples, we show that, for A sufficiently neg-
ative, we have

wy(x) >0, Voe X,

By the “Decay at Infinity” argument, the key is to check the decay rate of
c(z) = —e¥(®) af points ¢ where w) (z) is negative. At such point

w(z®) < w(z®), and hence 1 (2°) < u(z®).

By virtue of Theorem 8.2.5, we have

Yalz”) _ 26

e = O(|:1:0|4) (8.26)

Notice that we are in dimension two, while the key function ¢ = # given

in Corollary 7.4.2 requires 0 < ¢ < n — 2, hence it doces not work here. As a
modification, we choose

o(z) = ln(jz] — 1).

Then it is casy to verify that

89 = _
o T ez = D2 (el = 1)

It follows from this and (8.26) that
o A
eV =) 4 7¢(£°) < 0 for sufficiently large |2°|. (8.27)
D

This is what we desire for.
Then similar to the argument in Subsection 5.2, we introduce the function

Talz) = 2
o(z)
It satisfics A
DNy + QV@)\% + <€w’\(z) + %) wy = 0. (8.28)

Moreover, by the asymptotic behavior of the solution u near infinity (see
Lemia 8.2.3), we have, for cach fixed A,

u(z?) — u(x)

- —0 - . 8.29
a0 s lelo (829)

wy(x) =

Now, if wy(z) < 0 somewhere, then by (8.29), there exists a point z°,

which is a negative minimum of @, (z). At this point, one can easily derive a
contradiction from (8.27) and (8.28). This completes Step 1.
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Step 2 . Define
Ao =sup{A | wy(x) 20, Vo € Ty}
We show that
If Ao <0, thenwy, (z) =0, Vz e X),.

The argument is cntirely similar to that in the Step 2 of the proof of
Theorern 8.2.2 except that we use ¢(x) = In(—z; + 2). This completes the
proof of the Theorem.

8.3 Method of Moving Planes in a Local Way
8.3.1 The Background

Let M be a Riemannian manifold of dimension n > 3 with metric go. Given
a function R(z) on M, one interesting problem in differential geometry is to
find a metric g that is point-wise conformal to the original metric g, and has
scalar curvature R(x). This is equivalent to finding a positive solution of the
semi-linear elliptic equation
—él(nn—_;—)Aou + Ry(z)u = R(:c)u:_t% , TEM, (8.30)

where 2\, is the Beltrami-Laplace operator of (M, g,) and R,(z) is the scalar
curvature of g,.

In recent years, there have seen a lot of progress in understanding equation
(8.30). When (M, g,) is the standard sphere S™, the equation becomes

n{n — 2) n— 2 n2
—~A = 2y >0, ST 8.31
u+ iU 4(n_l)R(ar:)u u T € (8.31)

It is the so-called critical case where the lack of compactness occurs. In this
case, the well-known Kazdan-Warner condition gives rise to many examples of
R in which there is no solution. In the last few years, a tremendous amount of
effort hes been put to find the existence of the solutions and many interesting
results have been obtained ( see [Ba] [BC] [Bi] [BE] [CL1] [CL3] [CL4] [CL#§]
[CY1] [CY2] [ES] [KW1] [Li2] [Li3] [SZ] [Linl] and the references therein).

One main ingredient in the proof of existence is to obtain a priori estimates
on the solutions. For equation (8.31) on S™, to establish a priori estimates,
a useful technique employed by most authors was a ‘blowing-up’ analysis.
However, it does not work near the points where R(z) = 0. Due to this
limitation, people had to assume that R was positive and bounded away from
0. This technical assumption became somewhat standard and has been used
by many authors for quite a few years. For example, see articles by Bahri



