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By dominated convergence, Jetting k — o0, it follows that

- /R,H UP(a') p(z') de’ = - /Rn_; UP(z') e(z') /01 w(s) ds da’
/RM /R U(z') Apla’) 1 (s)) dsda’.

i

But the RHS is equal to

. . !
/RH-IUW)AI"’)(I/)(Z‘UI/O P(s) d5+/Rn-1U(w/W(x/)dz/ /0 5"(s) ds
:/ Ulz") Agp(z')dr'.
Rnfl

in the distribution sense, hence in the classical

It follows that U solves (8.1) in RrR™1
indedness of U and of Remark 47.4). The

sense (this is a consequence of the bot
result is then a consequence of Theorem 8.1(1). U

9. Positive radial solutions of Au+u? =0inR"

In this section we study positive radial classical solutions of the equation

—Au = u¥, z e R". 9.1

ve classical solutions if 1 < p < ps due

Since this problem does not possess positi
P> Ps. Consequently, n = 3.

to Theorem 8.1, we restrict ourselves to the case
Positive radial classical solutions of (9.1) can be written in the formu(z) = U(r),
where = 2| and U € C?([0,00)) Is & positive classical solution of

n

—1
U’y —=U'+UP =0, r € (0, 00), U'(0)y =0. (9.2
,
itial values U(0) = a > 0, U'(0) = 0, the
on for r small enough. In fact, this equation
— _pn=1P and. by integration we obtain

It is casily seen that prescribing in
equation in (9.2) has a unique soluti
can be written in the form (it
the equivalent integral equation

Ulr) = a — /O ‘/;G)Hl(]"(t)dtds,

which can be solved by the Banach fixed point theoren.
Let U, (r) = ¢,r~2/ (=1 be the singular solution defined in (3.9) and set

+00 ifn <10, ©3)
piL = —442ym=1  ip 9.3
1+ 4-————————&_2)(7:10) if n > 10.

The main result of this section is the following theorem.
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Theorem 9.1. Letp > ps. Given o > 0, problem (9.2) possesses a unique positive
solution Uy € C?([0, 00)) satisfying Ua(0) = . This solution is decreasing and we
hove

Ua(r) = al (aP=1/2p), (9.4)
If p > ps, then TZ/W“UUQ(T) —Cp asT — o0, If p = pg, then

Ui(r) = <_n_<” -2) ><“—2)/2‘

n{n — 2) 4 72 9:5)

Let oy > ap > 0. If p > pyyL, then Ui(r) > Uy (1) > Uay(r) for all v > 0.
If ps < p < py, then Ua, and Uy, intersect infinitely many tvmes and U,,, U,
intersect infinitely many times as well. Ifp=ps, then Uy, , U,, intersect once and
Uy, Us intersect twice.

Proof. Using the transformation
w(s) = 7‘2/(7"1)U(r), s = logr, (9.6)
problem (9.2) becomes

W + fuw +wP — ~w =0, seR, (9.7)

where

1 , 2
Ji=—=((n=2p—(n+2)) >0 vi=dT = ———=({(n—2)p—n)>0,
Prmomq(=2p=(n+2) 20,  ~v:=c oo p—n)

and we are looking for solutions w satisfying w(s),w'(s) — 0 as s — —o0. Set

1 1
E(w) = E(w,w) = E}UJ’\Q - %'11/2 + mpr.

Then £ is a Lyapunov functional for (9.7); more precisely,
d , 2
ES(QU(S)): ~B(w'(s))"< 0. (9.8)

Denoting o := w and y := v/, problem (9.7) can be written in the form
g Y b

() =(_, %, )= Fay ©.0)

Y =By ~zF + yx

where z > 0 and (z,y) — (0,0) as s — —o0. Problem (9.9) possesses two equilibria,
(0.0} and (¢, 0) lying in the half-space {(z,y) : = > 0}. Denote

Ay = VF(0.0) = ((3 _]3) Ag 1= VF(e,,0) = (*W(;})“ 1) _1,3)
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Figure 5: The flow generated by (9.9) for ps <p <psz.

First consider the case p > ps. Then 8 > 0 and the matrix A; has two real

eigenvalues vy o = —%(ﬁ £ /32 +4'7) with v1 < 0 < vo = 2/(p — 1). The
corresponding eigenvectors (@, ys) satisfy y; = vaq, ¢ = 1,2. The eigenvalues
Do = ~%(ﬁ + /3% — d~(p— 1)) of Ay are real iff 52 > 4v(p — 1), that is iff
D2 PJL

Assume pg < p < pyr. In this case, the eigenvalues i, 7 are complex and their
real parts are negative so that the critical point (c,,0) is a stable spiral. The flow
for the planar system (9.9) is illustrated in Figure 5.

We are interested in the trajectory 7 emanating from the origin to the right
half-space, since it represents the graph of any positive solution of (9.7) in the w-w'
plane. This trajectory cannot hit the axis z = 0 again since the energy functional
£ is nonnegative on this axis, £(0,0) = 0, § > 0 and (9.8) is true. Moreover,
the corresponding solutions w exists for all s € R and w,w’ reriain bounded
for all s € R due to (9.8). Consequently, 7 has to converge to the critical point

(¢p,0) which corresponds to the singular solution w.(s) = r¥E LU (r) = ¢
Thus, if U, is the unique local solution of (9.2) such that Ul(0) = a > 0. then
its transform wq(s) = p2/ (=11, (r) exists globally and satisfics wa(s) — ¢, as
s — oo. Conscquently, U, exists globally and p2/ =00 () — ¢p as r — oo It
is casily verified that the function Ual(r) := alU; (P~ 1/27) is a solution of (9.2)
satisfying UQ(O) = «, hence U, = U, by uniqueness. The graphs of w, and w;
in the w-w' plane are identical, so that there exists s, € R such that Ua(e®) =
wels) = wi(s — sq) for all s € R. Hence, given oy > ag > 0, U, () = U, (1)
for some 7 > 0 iff wi(s — $a,) = wi(s — Sa,) for some s € R. This happens for
infinitely many s since 7 spirals around the point (c;, 0). Similarly, wa,(s) = ¢
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for infinitely many s, hence U,, and U, intersect infinitely many times,

Next consider the case p > pJr. On the halfline y = ~§(:z: —Cp)y T < ¢y, wWe
have for suitable 24 € (2, Cp):
p—1 p—1
Yy’ T, 2o(aP~t — ch™ 1)
=B (P ) = —8 4
v ﬂ Y (’E ’Y) [)) ﬁ(I — Cp)

2 o 2, 8
-3+ Ba:(p— Dzh 2 < g+ 5= Dy < —=%.

2

Figure 6: The flow generated by (9.9) for p > pyp.

Consequently, the trajectory 7 ends up at (cp,0) again but the z-coordinate
is Increasing along 7 (sce Figure 6). Hence, the solutions U of (9.2) are ordered
according to their values at r — 0, U >U,, > U, if a1 > g,

Finally consider the case P = ps. Then § = 0 and the energy functional & is
constant along any solution. Since E(cp, 0) < 0 and £(0,y) > 0 for y # 0, the
trajectory 7 is a homoclinic orbit (see Figure 7).

Let wq, s have the same meaning as above. Given oy # ag, there exists a
unique s € R such that wi(s — Sa,) = wi(s — s4,). Hence, the corresponding
solutions Ui,y Us, of (9.2) intersect exactly once. Similarly, given o > 0, we have
we(8) = ¢, for two values of 8, 80 that U, and U, intersect twice. One can easily
check that the function Ui defined by (9.5) is a solution of (9.2) satisfying the
nitial condition U, (0) = 1. 0O

Remarks 9.2. (i) The exponent pyr, appeared for the first time in [293] where

the authors studied mainly problems with the nonlinearities flu) = M1+ au)?
and f(u) = Xe¥. \,a > 0.
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Figure 7: The flow generated by (9.9) for p = ps.

(ii) The intersection properties of the solutious U in Theorem 9.1 play an im-
portant role in the study of stability and asymptotic behavior of solutions of the
corresponding parabolic problem, see Sections 22, 23. U

Remark 9.3. Let p = pg and a > 0. For all o > My(a) with My(a; > 0 large
enough, if V' is a positive classical solution of

—1 ,
Ve Ty L yP =0, O<r<a,
'8

such that V(a) = Uu(a) and lim,_o V(r) = oo, then V has to intersect Uq in
(0,a).

In fact, denoting wa(s) = r2/®~NU,(r), s = logr, the rescaled function from
the last proof, it suffices to chose My(a) such that

Whe(a)(loga) <0 (9.10)

(hence w/,(loga) < 0 for all & > Mg(a)). Indeed the trajectory of W(s) =
p2/ =DV (r) s € (—o0,loga), has to be a subsct of a periodic orbit lying in-
side the trajectory 7 (sec Figure 7). Due to (9.10) there exists so € (—oc.loga)
such that we(s¢) = W{so), hence Uy(e™) = V{e*).

Note also that there exist infinitely many periodic orbits of (9.7) “or p = ps,
corresponding to positive singular solutions of u” + p=ly/ cw? =0 fors > 0. O

Remark 9.4. Let p > pyr. Since the trajectory T approaches the limit point
(¢p,0) below the dotted line with slope —8/2 and vy < —/3/2 < 1 <0, it has to
converge along the eigenvector (1,71) corresponding to the eigenvalue v, hence

y(s)

— 13 as 8§ — o0.
z(8) —¢p

el men b Sor A S sl o i i i
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Returning to the original variables and denoting V(r) := U(r) — U, (r) we obtain

lim
% V)

=& —m, (9.11)

where m 1= 2/(p — 1). Assuming that V(r) = cr™® 4 h.o.t. for some ¢ # 0 and
a > n, (9.11) guarantees ¢ < 0 and o =m+ A_, where

A= =y =

(8- VB ~4(p—1))

(n—2~2m—\/(n—2~2m)2—8(n-2—m)).

PO — b0 —

This expansion is indeed true: In fact, a more precise asymptotic expansion of V.
was established in [260] and (334]. O

10. A priori bounds via the method of
Hardy-Sobolev inequalities

A priori estimates of solutions can be used for the proof of existence and multi-
plicity results. Unlike the variational methods in sections 6 and 7, this approach
does not require any variational structure of the problem and cnables one to prove
the existence of continuons branches of solutions.

Due to Theorem 7.8(ii) one cannot hope for a priori estimates of all solutions.
The bifurcation diagrams in Figure 2 suggest that there is some hope for such
estimates if we restrict ourselves to positive solutions and to the subcritical case. 3

In the present and the following three sections we introduce four different meth-
ods which are often used in the proofs of a priori bounds for positive solutions of
superlinear clliptic problems. We will study mainly the scalar problem
~Au= f(z,u, Vu), T € Q, (10.1)
u =0, z € 09, '

where 2 is beunded and J is a sufficiently smooth function with superlinear growth
in the u-variable. Some of the possible generalizations and modifications will be
mentioned as remarks, others can be found in the subsequent chapters,

This section is devoted to the method of [99], which is based on a Hardy-
type inequality and enables one to treat rather gencral nonlinearitics /. On the

%In fact, in the subcritical case one can 8¢t a priori estimates of all solutions with bounded
Morse indices (without the positivity assumption), see [49], [539], [32].

T




N t/2
for t > 0, which implies that o ¥ g(t) 1is increasing and

Ajt/2
e g(t) 2 g(0) >0

for all1 t > 0 which, in turn, implies that

—klt

2

g(t) > e g(0) = ® as t > ©

a8 contradiction. Therefore u must be unstable.

It is generally believed that the diffusion process is a
"smoothing" ang "stabilizing" process. Thus in a closed
system it seems Treasonable to expect that the only stable
steady states are constants (i.e. spatially homogeneous). 1t
turns out that this is indeed the case for single equations
(II.1) or (II.2) provided that the domain 0 s nice, e.q.
ctonvex. (For systems of equations with different diffusion
coefficients, this is generally not true and we shall discuss
this in 82.) This result was proved fairly recently by
Casten and Holland [CH] in 1978, and by Matano [Ma] in 1979
independently. Matano also showed that this result also
holds for other domains such as annuli {x € R"| a < =] <
b}, and gave a counterexample showing that for certain
non-convex domains, nontrivial stable steady states of (I1.1)

or (II.2) do exist. We shall prove the result of [CH] and




[Ma] and we shall follow Matano's proof. The role of

convexity is contained in the following

Lemma. Let Q be a bounded smooth convex domain in
R™. Suppose that v € Cs(ﬁ) with gz =0 on dQ. Then
d 2
3, 1Dv|© < 0 on a0

Proof. Let p be a "defining" function of Q, i.e. p

e

is smooth in a neighborhood of { with the following

properties

{ p <0 din Q, p =0 on 82, p > 0 outside §, and

vVp never vanishes on 0.

[A good example would be a smooth extension (beyond () of

e e N AR S L e T

the first eigenfunction of A with zero Dirichlet boundary

condition.] Note that v = T%%T— is the unit outer normal

and by our hypothesis on v,

i v _ vp
4 gv  ~  [vp]

vvi = 0,

aQ

which implies that vp:vv = 0 on 80 and thus there exists

g € ct(f) such that

(I1.7) vVpevv = gp

on 1. Differentiating (II.7) with respect to Xy yields

Vpi~vv + Vp°Vvi = gip + gpi.




Multiplying by vy and summing over i

, we obtain
V.} P,.V., + Vp"—l-— V(V2) = V.VP,.*VV + Vpe(v,Vv )
i ij7j 2 i i 71 i i
J

T P94Vt ogpyvy

1 2
E pijvivj == vov(|Dv|) = pvgevv + gvp vy
i,

= PVg vV + ggp

by (II.7). Since p =0 on 3902, we conclude that on JdQ

1o, 2y o _
5~ v V(IDVI ) = z pijvivj’

i, 3

3o (12v1%) = wew(lov]?) = 2o (|py|2),

we have, on 48Q, that

Since

(II.8) 63 (IDVIZ) = = —T;%T— z pij Vivj'

Now since Q 1is convex, at each point P € 90, the matrix

(p..) 1is POsitive semi-definite on the hyperplane tangent to

1]
90 at P. For those v € c3(ﬁ) with SZ = 0 on 8Q, we
have vvev = 0 on 8, i.e. vv is perpendicular to v

(the normal to d0) and vv must lie on the tangent space

of 480. Thus

E pijvivj 2 0
i,]
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on  Jd0  and our proof is complete.

We are now ready for the main result.

Theorem. If ¢ ls convex, then the only stable

solutions of (II1.1) are constants.

Our approach ig to show that if u is a non-constant
solution of (II.1), then Al (given by (II.5)) must be
negative. ye shall achieve this by choosing appropriate tesgt
functions in (I1.3). However, it ig natural +to question a
priori whether this approach would work. For, it seemsg that
if f' <o on R, then #(e) is always pPOsitive for a1}l P
Z 0 in Hl(Q). It turns out that if f' < 0 on R, then
(II.1) has no non-constant solutions, 7qg brove this, we 1let

u be a Solution of (I1.1). Integrating the equation vields

f f(u(x))dax = 0 and thus there exists a unique a gsuch that
0

fla) = 0 (since f ig monotonically decreasing). Without

loss of generality, we may assume that o = 0, i.e. £(0) =

0. (For, we may set v = y - a, then Av + %(v) = 0 arg
%;’— =0 on 90, where %(v) = f(v+a). Thus %(0) - fla) =

0.) Assume y z 0, then ({x € Q| u(x) > 0} # ® andg {x €

Qlu(x) < 0} » d. Let u(P) = max u. Then u(P) > 0 and ye
Q

have two cases:
(1) P e Q. Since f(u(P)) < 0 (f < 0 on R+) we have
Au(P) > 0. on the other hand, u assumes its maximum at P,

SO0 Au(P) ( 0, a contradiction.

- 90 -~
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it

at

W

(ii) P € 90. Choose a ball B € Q@ which is tangent to

9% at P with u > @ on B. Then f(u(x)) < 0 on B, ang

Au(x) > 0 on B with wu(p) = max u. by Hopf's boundary
B

point lemma,

gg > 0 at P, which contradicts the boundary

condition —gf— =0 on 30.

Coming back to our proof of the theorem, we choose @ =
4. . Then differentiating the equation in (II.1) gives Aui +

:E‘(u)ui = 0, and

-
Z %(ui)

i

2 , 2
2 JQ[lDuil - £ (wu?)

i
z fQ[,Dui]2 * ujlu, ]
i

2 2 i
Z {fQKIDuiI - Ipu, |77+ J;Qui T

1 f 3 , 2
-5 Dul
2 30 dv

<0

by our lemma above. 1If one of the %(ui), i = 1,2,¢++,n is

negative, then, we are done since ui € Hl(Q). Therefore we
only have to deal with the case that ﬂ(ui) =0, i =
1,2,+++ ,n , and Xl = 0. We shall derive a contradiction.

First of all, we note that under this assumption each u, is

an eigenfunction of Al. Since Al is simple we see that

for each i, there exists C; such that u; = CiPq where

¢ > 0 1is the normalized eigenfunction corresponding to Al

(i.e. e 5 =1 ). Thus Du = & ?1 where ¢ =
L™(Q)

(cl,'°‘,cn). This implies that u is constant when




restricted to the hyperplane which is perpendicular to P

(by Mean-Value Theorem); i.e. u is a function of one

variable only.
If we rotate the coordinate system so that the new

coordinate system, denoted by x', has its xi—axis pointing

in the direction of 8, then u 1is a function of xi only.

Since everything involved here are invariant under rotation,

from now on, we shall be working with the new coordinate

system x'. To keep the notations simple, we shall still
P denote this new coordinate by x, the domain by Q. So we
5% have u(x) = u(xl) where x = (xl,"',xn) and Du(x) =
ié (cw](x), 0,**+,0) where c¢ = |8]. From the picture,
; 0
3, -
: | o X
A K -

we see that on (a,b), u" + £(u) = 0 since Au = u;q = u",
and
' g
~u'(a) = gg (A) = 0 and u'(b) = S%-(B) = 0.
That is,
{ u" + f(u) = 0 in (a,b)
u'(a) = u'(b) = 0.

Recall that U, = Cieq, this implies that in particular u,




satisfies the homogeneous Neumann boundary condition

du,
i
dv

on 6Q, which in turn implies that at point A,

aul .
dv -
which is equivalent to u,,(a) = 0, i.e. wu"(a) = 0. Now we
have
{ u" + £(u) = 0 in (a,b),
u'(a) = u"(a) = 0.
Thus at x, = a, f(u(a)) = 0 and u = u(a) is a golution of

1

this problem. By the uniqueness of solutions of ordinary
differential equations, u = u(a) is the only solution.
Therefore u is also a constant in the xl—direction which
implies that u is identically a constant, this contradicts
our assumption on wu. Thus Al < 0.

Remarks. (i) A similar question may be asked for
solutions of Dirichlet problems. We know of rather little
progress in this direction except Maginu's paper [Ng] for
l-dimensional case. In [LN1] this gquestion was considered

and the following statement was conjectured:

Conjecture. A stable solution of the problem




On a conjecture of De Giorgi and somc related problems 483

It is well known that (A) holds in bounded domains of R”, while (B) holds
whenever ¢ is bounded away from 0 (i.e., ¢ > § > 0 on R").

In [B-C-N], Berestycki, Caffarelli and Nirenberg verify that conjectures (A)
and (B) hold in dimensions n = 1.2 and inquire about their validity in higher
dimension. In the next section, we give counterexamples that show the following:

Theorem 1.3: Conjectures (A) and (B) are false for n > 7.

We do not know the answer to the above conjectures in the intermediate
dimensions # = 3,...,6, though we suspect that counterexamples are also in
order.

2. The counterexamples

In [B-C-N], conjecture (A) is deduced from (B) which is then proved in dimen-
sions ] and 2. In this section, we include a direct proof for a version of (A) that
s also valid in dimension 3 so that it can be applied in the proof of De Giorgi’s
problem. Some aspects of the proof are also relevant for the understanding of the
countercxamples that will follow. The idea of using Ekeland’s theorem to prove
(A) seems to originate with H. Berestycki.

In the sequel, we shall let L = —A — V be a Schrodinger operator on R”
with a smooth and bounded potential V. Associate to L, its energy functional

S IVO =V [9?)dx
Jpo 1012dx

We start with the following observation

AOE

; where ¢ € Cg~ or H'(R").

Lemma 2.1: /fu € C? is a bounded solution of Lu =0, then \{(L) < 0.

Proof: Let £ be any smooth function from R* to R such that ¢(/) = 1 for 0 <
1< 1 )y =0 for 2 <t and |£/(1)] < 2. For any R > 0, define on R” the
functions £, (x) = K(IXTJ).

Since Au + Vi = 0, multiply by fgu and integrate by parts to get that:

Jo (V)P = V[(&,u)P)dx
Jro [(€e10)[2dx
fRu |u'2|v£R|2dX . % fyz,(\yk ]u[zdx
Joo 1Py = [y (uldx

dx, we need to show that the infimum of

%/('SR ll)

Setting K(R) = [, |u

(2 — . .
a(R) = L(“ng;\,—“’f)(’ql 1$ zero, since then

| 2

A7) < liminf 2 (ug,) = 0.
R—+oc

But if inf(R) > 6 > 0, then K(2R) > SR?K(R) and a straightforward iteration
would then yield that for each integer m, K(2"*)) > C6”~'R*™ =1 From this
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follows that K(R) > LR2& R hence contradicting the fact that K(R) < CR"
and the proposition is proved.

Remark 2.2: The above proposition may be extended as follows: If u € (2
satisfies Lu = 0 and [u(x)e~"l| < C|x|" for some positive constants 4, C,m,
then A (V) < 4. This upper estimate for M (V) is actually optimal.

The following proposition is part of the folklore of the linear elliptic theory,

Proposition 2.3: Let L = —A ~ V be a Schrédinger operator on R* with a
smooth and bounded potential V. Then M\(V) < 0 if and only if the equation
Lu =0 has no positive solutions.

Proof: Suppose first that A((¥) = 0 and let (r, AF) be the first eigenpair for the
problem

i

(L = X)er
Pr

0 on By
0 on 0By .

]

where By is the ball of radius R. The eigenfunctions can be chosen in such a
way that ¢r > 0 on B and normalized so that wr(0)=1.

Note that AR | A = 0 as R — oo, Harnack’s inequality yields that for any
compact subset K, %’:’f—%’: < C(K) with the fatter constant being independent
of yp. Standard elliptic estimates also yield that the family (pg)z have also
uniformly bounded derivatives on compact sets. It follows that for a subsequence
(Ry)x going to infinity, (¢ )k converges in Clﬁc(R”) to some ¢ € C? and that
© >0 on R" while satisfying Ly = 0.

For the reverse implication, assume that Ly = 0 for some @ >0in C2 If
A1(¥) < 0, there exists then a bounded domain {2 such that M) =M, 0 <
0. Moreover, there exists wn > 0 such that

L = M(2Dwe
P

0on 2
0 on 012.

Setting w = ff, one can immediately verify that

V(¢2Vzu)+902)\](ﬂ’)w = Qon{?
0 on 812.

It

w

Since w > 0 on §2, this contradicts the fact that V(? V) + 0?2 (2) satisfies the
maximum principle on 2.

Theorem 2.4: LetL=—-A—V bea Schrédinger operator on R" with a smooth
and bounded potential V. Suppose that u is a bounded and sign-changing solution
Jor Lu = (.

(1) If the dimension n is either 1 or 2, then a7 <.
(2) Ifn=3and if lu(x)| < Ce=I! for x = (x1,x3,x3) € R3 where C and o are
positive constants, then \(V) < 0.
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Remarks 8. (i) The constant C(N, p) is independent of both the given solution under consideration and of the do-
main 2. We also note that we do not assume any boundary condition (actually, we do not require the existence of u
on the boundary of £2).

(ii) Let §2 be any proper domain containing the origin of RY. For any N > 11 and every p 2 p.(N), the radial
functions
ug(x) =a?Tv(alx|), a>0,

(v is defined in Theorem 5) are stable solutions of Eq. (1) in £2. On the other hand, a direct computation yields: uy (0) =
2

a? 1 — +00 as @ — +00. This proves that universal estimate (11) cannot be true when N > 11 and p > p.(N),
hence the upper bound on p in (10) is sharp.

(111) In [15] N. D1nce1 proved a universal estimate similar to (11) for positive solutions of Eq. (1) in the subcritical
case | < p < x 5, N 2 3 (without any stability assumption).

Theorem 13 can also be used to study the behaviour of stable solutions near an isolated singularity. More precisely
we have:
Corollary 14. Assume R > 0. Let 2 = B(0,2R) \ {0} and let u € C%(82) be a stable solution of (1) with

l<p<+4oo ifN <10
L<p<p(N) ifN2>11

Then there exists a positive constant C(N, p), depending only on p and N, such that
2
Vx € B(O,R) [u(0)]<CW, p)IXI_F, (13)
Vx e B(0,R) |Vu(x)|<CWN, p)lxl™" (14)

Remark 9. B. Gidas and J. Spruck [24], M.-F. Bidaut-Véron and L. Véron [6] proved the behaviour (13), near an
isolated singularity, for positive solutions of Eq. (1) in the subcritical case | < p < %f% N = 3 (without any stability

assumption).

2. Proofs of Propositions 4 and 6
This section is devoted to the proof of Propositions 4 and 6. These results are crucial for the present work.

Proof of Proposition 4. We split the proof into four steps:
Step 1. For any ¢ € CE(Q) we have:

- 1)2 1
J IVt = 2R g+ B0 [t a) @n
2 2 2

Multiply Eq. (1) by |u]” ~'u¢? and integrate by parts to find

/VIVulziul""‘wz+/VuV(<p2)luIV“u=/|ul”+y¢>2.

2 2 2

4 ¥zl N2 o Y ! 2
<—V§‘>2/'V('”' Tl +/V<y+l Vi)
2 £
Y foEL N2 2 /|”ly+] / Pty
D —— V' 2 - |M|
(V;I)QZI (i) P~ [ 2

2

therefore
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Identity (2.1) then follows by multiplying the latter identity by the factor (Hl) /.
Step 2. For any ¢ € C(2) we have:

2
(p ___(y+ ) >/| |PHY o2 </|u|y+l|v P+ (y4+);1 —%>/|‘4IV+IA( %). 22)
a 2

The furction ¢ = |u|L5“u<p belongs to CC1 (£2), and thus it can be used as a test function in the quadratic form Q,,.
Hence, the stability assumption on u gives:

p/|u1/’+y<p-’- g/|V(|u|‘y_5_lu)|2<p2+/([ulyi_lu)ZIV(plz—%—/2V<|1,t|17j'Lt)V<p[zllL5_lzt<p
2 2 2 2

=/|v(|u|%“—'u)12¢2+/|u|7+11v(p|2—/%m‘/“A(w). (2.3)
2 2

2
Using (2.1) in the latter, we obtain:

(y +1)? Lo
p [t < L [pperg V2L J 7+ a(y |u|y“|vm2 Sl ag?),
2 2

which immediately gives identity (2.2).

Step 3. For any y € [1,2p + 2/p(p=1) — 1) and any integer m max{”+y 2} there exisis a constant
C(p,m,y), depending only on p, m and y, such that

/luV’“w""‘" < C<p,m,y>/(|w|2+ W llap) 2.4)
2 2
/W(Wﬂ)izwz"l <C(p,m,y>/(|w|2+ WHAW)%. (2.5)
2 2

for all test functions € C2(82) satisfying |¥| < 1 in 2. Moreover, the constant C(p,m,y) can be explicitly
computed.

From (2.2), we obtain that

Vo € C2($2) a/ lulf‘”wzs/Iu!V*‘lV<o|2+ﬂ/|u|V“<pA<p, (2.6)
2 2

2 — . .
where we have set o = p — ﬁ%l) and B = %—yx. Notice that « > 0 and B < 0, since p > 1 and

yell,2p+2/p(p =1 —1).
For any yr € CE(Q), with || < 11in £2, we set ¢ = . The function ¢ belongs to Cf,(.Q), since . =2 and m is
an integer, hence it can be used in (2.6). A direct computation gives:

a/|u[[’+71//2"’ g/|L¢|V‘+1¢2"1—2[;n2|vw|2+5m(m— DIVY + Bmy Ay, 2.7)
2 2
hence
/lul’”ylvflz’” <c1/|u|V+‘|w|2"‘“2[|w|2+wfm/fu, 28)
2 k94

with € = 2itbnin=l) o _pm -
An application of Holder’s inequality yields:

p—1

/lul"*ylwm<cl</[l4ly+‘|w|2"‘ -2 ) (/ lvw|2+|v/A¢f|]‘5‘fl'>””. 2.9)
2

2 2
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. . . . v — m
At this point we notice that m > max{%, 2} implies (2m — 2)(%) 2 2m and thus |1//|(2’” D) < ||
in £2, since || < 1 everywhere in £2.
Therefore, we obtain:

p—1

4y
/[u|h+y|1/j|2m < C1</|ulll+y|w|2m>ﬂ+y (/[va|2+|1//A1//|]H>I y. (2.10)
2 I?; 2

The latter immediately implies:

pty NE=4d
[ < e [avur+wnav) . @)
2 ko)
oty
which proves inequality (2.4) with C(p,m, y) = cr.
To prove (2.5) we combine (2.1) and (2.6). This leads to
-1 D1 ‘
Yoe @) [ 19T )< (V—J“—)[—/w“lw%é/|u|y+1wAw}
4y o o
2 2 2
1
+ ()’ -+ )[/ |”ly+lIV§0|2 +/ lll|y+l(PA(PJ
2y
Q Q
=A/1u|”‘|w|2+ B/Iul”'wﬁxw. (2.12)
2 2
where A = ———(}:JL)Z + ——(y;;l) >0and B = ﬂ———zzl)z + ————(y;;]) eR.
Now, we insert the test function ¢ = "™ in the latter inequality to find,
/’V(Wl%lu)‘zlffzm < / | Ly 22 [ AmP | VY 2 + Bm(n — DIV + By Ay]., (2.13)
02 2
and hence
—1
]|V(1u|Lru);2w2'" <cz/|uly+‘|x//|2'"—2[|vw + Iy avl], (2.14)
2 2
with C; = max{|Am?> + Bm(m — 1)|,|Bm|} > 0. Using Holder’s inequality in (2.14) yields:
iy p=l
=1 LY \ pty L2Hy N\ pty
/lvum%uﬂzwz"' < Q(/[W“W""z] ) (f[mm% v AYI] )
2 2 2
Liy Jusil
Pty Xy \ rv
<C2(/Iu|”+)’11//|2"’) (/[IVWIZ-FWA]//I]”*') :
2 Q
Finally, inserting (2.11) into the latter we obtain:
m
p=l (2.15)

-1 Ll
/lV(|u|}'2—u)|2w2'" < CC) /(|w12+|quvf|)
2 2

which gives the desired inequality (2.5).

Step 4. End of proof. The desired conclusion follows immediately by adding inequality (2.4) to inequal-
ity (2.5). O

Proof of Proposition 6. Since £2 is smooth, u € C2(£2), and u vanishes on 32 we can proceed as in the proof of
Proposition 4. Only some minor modifications are needed. Step | goes without any change if we remark that, for any
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@ € CE(RN\ K), the function luu]”ug? belongs to C1(52 \ K), has bounded support contained in §2 \K and vanishes

on d£2. In the same way, Step 2 can be carried over since, for any ¢ € CZ(RN \ K), the function |u| "‘uq) belongs
to C1(£2\ K), has bounded support contained in £2 \ X and vanishes on 2. In particular, it belongs to H ) (£2) and
hence it can be used as test function in the quadratic form Q. The rest of the proof is unchanged and for th1s reason
we omit the details. 3

3. Stable solutions

In this section we prove all the results concerning the classification of stable solutions, i.e., Theorems 1, 7 and
Proposition 8. Let us start with:

Proof of Theorem 1. For every R > 0, we consider the function ¥g(x) = <p(|*|), where ¢ € C2(]R) 0«1
evervwhere on R, and

A1 s
=10 i >2.

Let us fix p > 1. We first observe that for any y € [1,2p + 2/p(p — 1) — 1) and any integer m > mlx{"ﬂ 2},

r
Proposition 4 yields, !
-1 Vavd
/ (‘v(!uly_z_u”z + ’u’p+y) < Cp,m,y [(IVWRIZ + !WR”AWRI) -
B(0,R) RN
1+
<Cp,y.m, N,@RVHED vRr 5o, (3.1

where B(0, R) denotes the open ball centered at the origin and with radius R, and C(p,y,m, N, p) is a positive
constant independent of R.

Next we claim that, under the assumptions on the exponent p assumed in Theorem 1, we can always choose
vy €1,2p+2/p(p— 1) — 1) such that
N— 2<p+y><o. (3.2)

-1

To this end, we set yp(p) = 2p +2/p(p — 1) ~ | and we consider separately the case N < 10 and the case
N2>11,

First case: N < 10 and p > 1. In this case we have:
pHrym(p)>3p—-14+2(p-1D>5(p -1
and therefore
N—:z<w3) <N-10<0, (3.3)
p—1
The latter inequality and the continuity of the function t — N — 2( ) immediately imply the existence of y

(1,2p +2/p(p=1) — 1) satisfying (3.2).
Second case: N 2 11 and 1 < p < p.(N). In this case we consider the real-valued function (1, +0c0) 3¢ —
f@) .= 2('+M) Since f is a strictly decreasing function satisfying lim,_, |+ f(¢) = +c0 and limy yoc f(1) = 10,

there exists a unique pg > 1 such that N = 2(&%&). We claim that pg = p.(N). Indecd,

N:2<17+)/M(p)\|

o1 & (N=D(p-D)—=dp=4a/p(p—1),

which implies that pg satisfies:

(N =2)(N = 10)) p + (=2(N = 2)* +8N) po + (N - 2)2 =0, (3.4)
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and
(N=2)(po—1)—4po>4(po—1). 3.5
The roots of Eq. (3.4) are

(N =22 —4N +8/N —1

= = " N 3
i N D =10) Pc(N) (3.6)
_(N=2)?—4N-8/N -1 ,
P2= N DN =10) < pe(N), (3.7

‘ 2
while (3.5) easily implies pg > A/;/_—]% = ((lilv:z()))((zilv:lzo)) = (&:22))(7\/4_1\/]*0')8 > p2. This proves that pg = p(N), as claimed.

Since we have just proven that f(p.(N)) = N and f is a strictly decreasing function, it follows that

P+VM(P)>
p—1

Vi<p<pAN) N< f(p) =2( (3.8)
Now we can conclude as in the first case, i.e, the continuity of t — N — 2(11)’_12) immediately implies the existence
of y €[1,2p+2/p(p — 1) — 1) satisfying (3.2).
We have proven that, under the assumptions of Theorem 1, there always exists a real vell,2p+2/p(p—1—-1)
satisfying (3.2). Therefore, by letting R — 400 in (3.1), we deduce:
" -1
/ (9 (ul T &) [* + 1Py =0,
RN
which yields u = 0. This result concludes the first part of the proof of Theorem 1.
To prove the second claim of Theorem | we invoke Theorem § (see case (b)). O

Proof of Theorem 7. Fix an integer m > 1’nax{[];—f}li, 2} and notice that, as in the proof of the first part of Theorem 1

we have (here, instead of Proposition 4 with test functions g, we use Proposition 6 with YRy, (X) == ga(""_—kx()l) and

K=0):
\ r=1 \ )2 (p+y)/ip=1)
/ (7 (=) > + 14177) < Cpom.y / (V¥R + W 1A VR )
QQB(X”‘_};_) 2NB(xg.2R)

T 3.9)
R
where B(0, 1) denotes the open ball centered at the origin and with radius ¢, and C(p.y.m.N)is a positive constant

independent of R. The desired conclusion then follows by letting R — 400 in (3.9) and using the assumption (4). O

Ly(2NB(xy, 2R
§C(p,y,m,N,(p)[ N( (xo ))]

Proof of Proposition 8. A direct computation proves that any of the cases considered in the statement of Proposition 8
implies the volume growth condition (4). 3

4. Non-negative solutions
Here we prove Theorems 11 and 12,

Proof of Theorem 11. We claim that u is a stable solution of (6). Indeed, by the strong minimum principle either
u =0, and then u is stable, or u > 0 in §2. In the latter case, since £2 is a coercive epigraph, a result of M.J. Esteban
and P-L. Lions (cf. Proposition II.1 on page 8 of [18]) implies that ;;JT[;, > 0in §2. Therefore ()‘)T’/‘\ is a positive solution
of the linearized equation:

—As—pu”_ls:() in 2, 4.1)



