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Remarks 8. (i) The constant C(N, p) is independent of both the given solution under consideration and of the do-
main §2. We also note that we do not assume any boundary condition (actually, we do not require the existence of u
on the boundary of £2).

(ii) Let £2 be any proper domain containing the origin of RY. For any N > 11 and every p > p.(N), the radial
functions

Ug(x) = (x% v(a|x|), o >0,

(vis defined in Theorem 5) are stable solutions of Eq. (1) in £2. On the other hand, a direct computation yields: uy (0) =
2

a? 1 — 400 as @ — +00. This proves that universal estimate (11) cannot be true when N > 11 and P 2 pc(N),
hence the upper bound on p in (10) is sharp.

(iii) In [15] N. Dancer proved a universal estimate similar to (11) for positive solutions of Eq. (1) in the subcritical
case | < p < 5= N+2 » N 2 3 (without any stability assumption).

Theorem 13 can also be used to study the behaviour of stable solutions near an isolated singularity. More precisely
we have:

Corollary 14. Assume R > 0. Let 2 = B(0,2R) \ {0} and let u € C%(82) be a stable solution of (1) with

l<p<+o0 ifN <10
Il <p<p(N) ifNZ=11.

Then there exists a positive constant C(N, p), depending only on p and N, such that
Vx € B(O,R) |u(x)| < C(N, p)lx|” 7T (13)
Vx e B(O,R) |Vu(x)| <CN, p)lx|™ (14)
Remark 9. B. Gidas and J. Spruck [24]. M.-F. Bidaut-Véron and L. Véron [6] proved the behaviour (13), near an
isolated singularity, for positive solutions of Eq. (1) in the subcritical case 1 < p < N+2 , N = 3 (without any stability
assumption).
2. Proofs of Propositions 4 and 6

This section is devoted to the proof of Propositions 4 and 6. These results are crucial for the present work.

Proof of Proposition 4. We split the proof into four steps:
Step 1. Forany ¢ € Ccz(.Q) we have:

1)? 1
/!V |u|—ru ° 02 m/|u|”+”<p2+ﬁ—/|u|7+lA(<p2). 2.1)
4y 4y
2 2

Multiply Eq. (1) by |u]” ~'u¢? and integrate by parts to find

fy]VuIzlLlly"lwz+/VuV(<p2)|u|V"'u:/|14|1’+V(p2,

$2 2 2

y s s W\
i 190l [9(55 o)
£
4

= |u|7 +1
B (r_ﬂ)zf|v([“|y2_“)|2‘ﬂz“/mA(WZF/'”WV‘pZ'

27 9 2 2

therefore
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Identity (2.1) then follows by multiplying the latter identity by the factor ( )2/y
Step 2. Forany ¢ € CZ(Q) we have:

2
(r- 2 )/luv’%z</W“iw12+ (V—“——>/|MIV+1A 2.2

The function v = luly_ru(p belongs to C (£2), and thus it can be used as a test function in the quadratic form Q.
Hence, the stability assumption on u gives:

/|u|"+ygo </|v I T ) 2 +f(lulyTu) Vol + /2v(|u|”r’u)w|uﬁ‘“‘w
2

§2
/lv a1 1) Py +/ruv+11w|2 [ 5. @3)
2
Using (2.1) in the latter, we obtain:
2 1
p [ gt s L [yrrgz v 2 /a "+ a /Iuly“lvwlz [ Jriage),
2 4 2 2

which immediately gives identity (2.2).

Step 3. For any y € [1,2p + 2p(p—1) = 1) and any integer m > max{%ﬂ} there exists a constant
C(p,m,y), depending only on p, m and ¥, such that

/Iu!””wz’" <Clpom, V)/(Wl“r Ay 2.4)
22 2

/W(fuﬁ‘—lu)wz"’ <c<p,m,y>/(|vw|2+lwlmw)ﬁ 2.5)
2

ied

for all test functions C?(.Q) satisfying || < 1 in 2. Moreover, the constant C(p,m,y) can be explicitly
computed.
From (2.2), we obtain that

Vo e C2(12) a/ [P R < / Vel + B / W+ pag, 2.6)
2 2 2

2 - . .
where we have set o = p — 3%1)— and B = 14—}/1 Notice that @ > 0 and B8 < 0, since p > 1 and

vell,.2p+2/p(p—1)—=1).
For any y € CZ(Q) with || <1in £2, we set ¢ = ", The function ¢ belongs to CZ(Q) since m > 2 and m is
an integer, hence it can be used in (2.6). A direct computation gives:

a/luV’*wZ'" </|u1y+1w2'"—2[m2|vw|2+ﬂm<m— DIVY|® + Bmy Ay, 2.7)
2 2
hence
[ <cu [P ivy P+ iy av], 2.8)
2 2

with €} = 22Bmm=)  _ pm -
a a '
An‘application of Holder’s inequality yields:
find )

/lu|f’+wa12'”<cl (/[lul”“wm -2 ) (/ |V¢|2+|wAwl]H)””. (2.9)

2 2 2
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At this point we notice that m > max{—’:“—}l’, 2} implies 2m — 2)( ) 2m and thus |x//](2’" -2t < |y
in §2, since || < 1 everywhere in 2.
Therefore, we obtain:

Lty =1
/|u|"+ylw|2m <cl(/|u|"”|w|2"'>"+y (/[lth%wwl]%)"”- 2.10)
) 2 Q
The latter immediately implies:
.
fluv’”lw"'<ch‘%f(|\7w|2+|w1|Aw|)%*. @.11)
2 2
ot

which proves inequality (2.4) with C(p.m.y)=C/"".
To prove (2.5) we combine (2.1) and (2.6). This leads to

= 2T
V‘PGCZ(.Q) /’V(Iuly—zl”)’zqﬁg (V_‘i‘l_ _/|“ly+]|v(ﬂ[2+ﬁ/[u|y+](pA(p
4y o o
2 o 2

*”U |141V+‘|w|2+f|uv+‘<pw}
2 2

= A/|u|y+‘|w|2+ B/Iuly“wmp. (2.12)

(V+l) (V+1 ﬁ(} +1)? (V+1)
where A = “Tra + >(0and B = Tya + 5 € R.

Now, we insert the test function ¥ in the latter inequality to find,
Y= q y

/[v(1u|’z;lu)121//2m g/|u\\”+11//2"’_2[An12|V1//]2+ Bm(m — D|VY[* + Bmy Ay, (2.13)
2 2

and hence

/IV(|u|L?r'u)|2v2’" /szluly“h#lz’” vyl + v ayl], (2.14)
2

with C; = max{|Am? + Bm(m — 1), |Bm|} > 0. Using Holder’s inequality in (2.14) yields:

r—1

1=y =1
/|V(lul”flu)lzwz”’ <Cz(/ﬂuw'w-zﬁ)' y(/UWiutwwl]ﬁ)p y
2 o

‘Q Ity =1
P+y 2ty \ p+v
< cz<f|u|f’+ylw|2'") (f[|vw|2+ l\ﬁMfI]ﬁ“‘)
2 2

Finally, inserting (2.11) into the latter we obtain:

2 = 2 Bty .
/|V (lulF | Yy < GO /(|V1//| +yllay)) T, (2.15)
2
which gives the desired inequality (2.5).

Step 4. End of proof. The desired conclusion follows immediately by adding inequality (2.4) to inequal-
ity (2.5). O

Proof of Proposition 6. Since £2 is smooth, u € C%($2), and u vanishes on 32 we can proceed as in the proof of
Proposition 4. Only some minor modifications are needed. Step 1 goes without any change if we remark that, for any
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¢ € CHRN\ K), the function [i]Y "ug? belongs to C! (22 \ K), has bounded support contained in §2 \ K and vanishes

on 9£2. In the same way, Step 2 can be carried over since, for any ¢ € CE(IRN \ K), the function Iul‘/‘f—l ug belongs
to C!(£2\K), has bounded support contained in £2 \ K and vanishes on 3£2. In particular, it belongs to Hol(.Q) and
hence it can be used as test function in the quadratic form Q,. The rest of the proof is unchanged and for this reason
we omit the details. [

3. Stable solutions

In this section we prove all the results concerning the classification of stable solutions, i.e., Theorems 1,7 and
Proposition 8. Let us start with:

Proof of Theorem 1. For every R > 0, we consider the function ¥y (x) = w(%—l), where ¢ € Cg(IR), 0«1
everywhere on R, and

e
$O=10 it >2

Let us fix p > 1. We first observe that for any y € [1,2p +24/p(p — 1) — 1) and any integer m > max{"p—t}f, 2},
Proposition 4 yields,

[ v = 0P < ) < Gy J70a + 1g1 1) 55

B(0,R) RV
+
<C(p,y,m,N, w)RN_Z(H) YR > 0, 3.1

where B(0, R) denotes the open ball centered at the origin and with radius R,and C(p,y,m,N,p) is a positive
constant independent of R.

Next we claim that, under the assumptions on the exponent p assumed in Theorem 1, we can always choose

Y €l1,2p+2/p(p=T1) — 1) such that
N—2<p+”)<o. (3.2)

p—1

To this end, we set yp(p) = 2p+2/p(p=T) — I and we consider separately the case N < 10 and the case
N > 11,

First case: N < 10 and p > 1. In this case we have:
Prym(p)>3p—1+2(p =D >5(p~—1)
and therefore
N—2<%Ml(p)><N—IO<O. (3.3)

The latter inequality and the continuity of the function t — N — 2(%) immediately imply the existence of y €
[1,2p +2{/p(p —1) — 1) satisfying (3.2).

Second case: N 2 11 and 1 < P < pe(N). In this case we consider the real-valued function (1, +0) 5t —
f) = 2(’—":,}/_“41*(')). Since f is a strictly decreasing function satisfying lim, _, 1+ f(¢) = +00 and lim,, 4o f(1) = 10,

there exists a unique po > 1 suchthat N = Z(MM). We claim that pg = p.(N). Indeed,

po—1

N =2<£M) & (N=2D(p-1-4p =4/ p(p -1,

which implies that pg satisfies:

(N =2)(V = 10)) pd + (=2(N = 2)2 +8N) po + (N = 2)? =0, (3.4)
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and
(N=2(po—1)—4po>4(pog—1). 3.5)
The roots of Eq. (3.4) are

_ (N—=2)2—4N +8JN — |

p= N =DV = 10) = pe(N), (3.6)
_(N=2?—4N—8J/N -1
p2= N =DV =10) < pc(N), 3.7)

while (3.5) easily implies pg > 1{,\’:1(’0 = ((/{/v——;))((jcf_—lzo)) = ((’X,”_Z;)—(;V/‘_Nl“gf > p2. This proves that pp = p.(&), as claimed.

Since we have just proven that f(p.(N)) = N and f is a strictly decreasing function, it follows that

p+ym(p)
p—1

Vi<p<p(N) N< f(p):?.( (3.8)

Now we can conclude as in the first case, i.e, the continuity of t > N — 2(1ﬂ) immediately implies the existence

p—1
of y €[1,2p +24/p(p — 1) — 1) satisfying (3.2).
We have proven that, under the assumptions of Theorem 1, there always exists areal y € [1,2p+ 2Vp(p—hH—=1)
satisfying (3.2). Therefore, by letting R — +o00 in (3.1), we deduce:

/(|V(|M|Lf‘lu)‘2 + |u|”+y) =0,
RN

which yields u = 0. This result concludes the first part of the proof of Theorem 1.
To prove the second claim of Theorem 1 we invoke Theorem 5 (see case Mb)). 4

Proof of Theorem 7. Fix an integer m > max{Il’)—tIK, 2} and notice that, as in the proof of the first part of Theorem 1

we have (here, instead of Proposition 4 with test functions ¥z, we use Proposition 6 with Yg x,(x) := (p(l'\_—RXO') and

K=0):

=1 2 . 2, (P+¥)/(p—=1)
/ (V (1l T w)? + 1ulPT7) < Cpomy / (VYR + 1R 1AV R )
N8B0, §) 2NB(xy.2R)

(3.9)

Ly(£2N B(xy, 2R
<CWmeNw{ N (xo D]

pty
RIG=D)

p—1
where B(0, 1) denotes the open ball centered at the origin and with radius 7, and C(p,y,m. N) is a positive constant
independent of R. The desired conclusion then follows by letting R — <00 in (3.9) and using the assumption (4). 0O

Proof of Proposition 8. A direct computation proves that any of the cases considered in the statement of Proposition 8
implies the volume growth condition (4). 0O

4. Non-negative solutions
Here we prove Theorems 11 and 12.
Proof of Theorem 11. We claim that u is a stable solution of (6). Indeed, by the strong minimum principle either

u =0, and then u is stable, or « > 0 in £2. In the latter case, since £2 is a coercive epigraph, a result of M.J. Esteban

and P.-L. Lions (cf. Proposition II.1 on page 8 of [18]) implies that 5‘% > 0in £2. Therefore a%l,iv‘ is a positive solution
of the linearized equation:

—As—pu”ls=0 ing, 4.1)
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24] to study semilinear phase transitions problems. Farina [15], and later Farina,
Sciunzi, and Valdinoci [16] for more general quasi-linear operators, have also used
this method to establish some Liouville-type results.

In next section we prove our main estimate, Theorem 1.1. In Section 3 we
establish Theorem 1.4 and, as a simple consequence, Theorem 1.2.

2 Proof of the Main Estimate

In this section we prove our main estimate, estimate (1.4) of Theorem 1.1. For
this, we will use the following remarkable result. It is a Sobolev inequality due to
Allard [1] and Michael and Simon [20]. It holds on every compact hypersurface
of R”*! without boundary, and its constant is independent of the geometry of the
hypersurface.

THEOREM 2.1 (Allard [1], Michael and Simon [20]) Ler M C R™F! be g C°-
immersed, m-dimensional compact hypersurface without boundary. Then, for ev-
ery p € [1,m), there exists a constant C = C(in, p) depending only on the dimen-
sion m and exponent p such that, for every C®-function v : M — R,

G Up
2.1 (/[vl” a’V) 5C(;n,p)(/|Vv|p+|Hv|”dV) .

M M

where H is the mean curvature of M and p* = mp/(m — p).

This inequality is stated in proposition 5.2 of [19], where references for it and
related results are mentioned. In [5, sec. 28.5.2] it is stated and proved for p = 1.

The geometric Sobolev inequality (2.1) has been used in the PDE literature to
obtain estimates for the extinction time of some geometric evolution flows; see, for
instance, section F.2 of {14] and also [19].

In the proof of our main estimate in Theorem 1.1 we will use (2.1) with M =
{u = s} (alevel setof ), v = |Vu|l/2, and p = 2. The level sets of a solution
u and their curvature appear in the following result of Sternberg and Zumbrun [23,
24]. Its statement is an inequality that follows from the semistability hypothesis
(1.3) on the solution.

PROPOSITION 2.2 (Sternberg and Zumbrun [23, 24]) Let @ C R” be a smooth,
bounded domain and u a smooth, positive, semistable solution of (1.2). Then, for
every Lipschitz function n in 2 with n|gq = 0,

2.2) [ IVl + 1R dx < [ (9P dx,
QN{|Vu|>0) Q

where VT denotes the tangential or Riemannian gradient along a level set of u (it
is thus the orthogonal projection of the full gradient in R" along a level set of u)
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and where
n—1
AP = 4@ = e,
I=1
with ki being the principal curvatures of the level set of u passing through x for a
given x € N {|Vu| > 0}.

This result (stated for a Neumann problem instead of a Dirichlet problem) is
lemma 2.1 of [23] and theorem 4.1 of [24]. The authors conceived and used the
result to study qualitative properties of phase transitions in Allen-Cahn equations.
For the sake of completeness, we give an elementary proof of it here. See theo-
rem 2.5 of [16] for a quasi-linear extension.

PROOF OF PROPOSITION 2.2: The semistability condition (1.3) also holds, by
approximation, for every Lipschitz function £ in © with £|3q = 0. Now, take
= cnin (1.3), where ¢ is a smooth function, 7 is Lipschitz in @, and n|yq = 0.

A simple integration by parts gives that

2.3) Oulen) = / 2V = (Ac + f@)c)en? dx = 0.
Q

In contrast with [23, 24] (where they took ¢ = |Vu]) and to avoid some consider-
ations on the set {|Vu| = 0}, we take

¢ = /|Vul? + &2

for a given & > 0. Note that ¢ is smooth.

Since Au + f(v) = 0in Q, we have Au; + f'(1)u; = 0in Q. We use the
notation #; = dy,u and also u;; = Ox;x,; 4. Using these equations, we can easily
verify that

1

_ / 2 2 2 2 2 2
—m{—f @) IVul*v/iVul? + ¢ +;uij\/|Vu| + ¢

(S ) ) st

i J
and thus
2

T DS ) |

(A+ flu)e = f'(w)
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Using this equality in (2.3), we deduce
(2.4) /(IVuI" +€%)|Vn|? dx
Q

= / e?|Vn|? dx

Q

> /(Ac + f'(u)c)en*dx

Q
(2.5) = / Flane®n® dx
Q
. 2
(26) +/{ ul.z. _— ( Wi Uj ) }'72 dx.
Q ZXI: ’ 12 Z\j: leV”IZ"H;z

The integrand in the last integral is nonnegative. Thus, we have

2
Zu?——Z(ZuU—u{—> }nzdx
/{i,j Y A ~ VIVul? + ¢2

Q ! J
2
U
| (St e
— - - Vul? 2
QN{|Vul>0} o/ ! I Vul* +e
2
2 Uy 2
= [ - (D) fr e
QN{|Vul>03  J ! Y

From this and (2.4), (2.5), and (2.6), we arrive at

/(letlz + £2)|Vn)? dx

Q
> / flae?n? dx
Q

] DS e

Qn{Vuj=0} 1/ i

We now let ¢ | 0 to obtain

2
2 2 2 Y 2
/IVuI [Vy|*dx > / {E uj; — E (Ej MUW) })7 dx.
Q 4

Qn{Vul>0} '/
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We conclude the claimed inequality (2.2) of the proposition since
2
2 uj _ 2 2 2
Q.7) sz:uij —ZZ(};W,—V;-I) = |VrIVull® + |42 Vu
at every point x € QN {|Vu| > 0}. This last equality can easily be checked
assuming that Vu(x) = (0,...,0, Uy, (x)) and looking at the quantities in (2. 7)in

the orthonormal basis {ey,...,e,_1,(0,...,0,1)}, where {e1,...,en—1} are the
principal directions of the level set of u through x. See also lemma 2.1 of [23] for
a detailed proof of (2.7). O

Using Proposition 2.2 and Theorem 2.1, we can now establish Theorem 1.1.

PROOF OF THEOREM 1.1: By elliptic regularity, the solution u is smooth, that
is, u € C*°(Q). Recall that ¥ > 0in Q. Let us define

T .= mé\xu = Ju]lLoo(g)

and, for s € (0, T),
Fsi={x € Q:ux) =s}.

By Sard’s theorem, almost every s € (0, T) is a regular value of u. By definition,
if s is a regular value of u, then |[Vu(x)] > 0 forall x €  such that u(x) = s
(ie., forall x € Ty). In particular, if s is a regular value, Iy is a C* immersed
compact hypersurface of R” without boundary. Later we will apply Theorem 2.1
with M = I's. Note that 'y could have a finite number of connected components.
However, inequality (2.1) for connected manifolds M leads to the same inequality
(and with the same constant) for M with more than one component.
Since u is a semistable solution, we can use Proposition 2.2, In (2.2) we take

n(x) = pu(x)) forx e Q,
where ¢ is a Lipschitz function in [0, 7'] with
¢(0) = 0.
The right-hand side of (2.2) becomes

/|Vu12]Vr}[2 dx=/|Vu|4<p'(u)2 dx
Q Q
T
=/ (/fVuPst)go’(s)zds
0
Ty

by the coarea formula. We have denoted by d Vs the volume element in Iy, The
integral in ds is over the regular values of u, whose complement is of zero measure
in (0,T).
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d(x, S) to denote the Euclidean distance from a pointx € R" toaset S C R". We
generally use C to denote any constant arising in an estimate which is independent
of the small parameter ¢.

We first establish two general identities. As was mentioned earlier, we have not
encountered the first one before.

Lemma 2.1. Let U C R" be any open set. Then for any C? function f : U — R,

(Z Ifo,-Iz) — VIV IR

@1 7

VRIS &) +IVLIVAIR  forx e (IVS] > 0N U,
0 Jorae xe{lVf=0INnU,

where k; are the principal curvatures of the level set of [ at x und Vi denotes the
orthogonal projection of the gradient along this level set.

Proof. Since f isof class C2, we know that |V f|is Lipschitz continuous and there-
fore differentiable a.e. in U. Restricting our attention to the set of differentiability
of [V f|, we note that on the set £ = {x ¢ U : |V f] = 0}, the co-area formula
([F]) yields

n
/F|V|an+2|vn,| dx
: o

n

= f H' T VS =510 E) + Y B (fy, = 5} N E)ds = 0.
o Z

Hence, the left-hand side of (2.1) vanishes a.e. in E.

Now suppose that |V f(x¢)| > 0 for some vy € U. Forall x ina neighborhood
of xo we denote by 1, the unit vector field 7,(x) = Vf(x)/1V f(x)| and then
introduce n — | vectors {z; (X))}, i = 1.....n—1 forming an orthonormal basis for
the tangent plane of the level set {v : f(y) = f(x)}atx.

Near xy we have

2.2) VAVID) =V
for each j. By writing

n—1i
Vi, =V u+) (Vi u)u

i=1

foreach j, j = 1,...,n, we find using (2.2) that

(Z ]Vfl\-,|2> —IVIVAR =Y VA - (V5 )
j=1 i=t

n—1 n

=3 S (Vh, w)

i=l j=I

(2.3)
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Observe that

0
(2.4) foj ‘T = gﬂvf] )1 =|Vf] (fn>xj' C T
J
Without loss of generality, we now assume that Vf(x0) =(0,0,..., fy, (x0)) and
that 7; (xp) points in the direction of the coordinate x; fori = 1,...,n — 1. Then

(2.4) implies that at xy we have

n—1 n—1

Z (foj ' Ti)z = |Vfl2 Z (Drjrn ' Ti)z

(25) " i'j—=II n—1
= VISP Y Byl =1V Yk}
i j=1 =1

where B = (B;j) denotes the second fundamental form at xg associated with the
level set {x : f(x) = fxo)).
We now evaluate (2.3) at x = xg and use (2.5) to obtain

(i[va) —~VIVFIP = f i (Viy-u) + Z] (Vfor - u)?

2.6) Jj=1 =l j=I i=1

n—1 n—1

= IVARY k4D (fax,)?
[=1 i=1

Finally note that at xy we have

n~1

n—1
VLV =3 (VUYL =3 (VYD) T,
i=1

i=1
$0 (2.2) gives

n—1

VLAV DI = 3 (V£
i=1

n—1 n~1

= Z‘(Vf\1 : Tn)z = Z(f.\'[x,,)z
i=1 i=1

Substituting this into (2.6) yields 2.1). o

Lemma 2.2, (cf. [CHo]) Let U c R” be any open set with c? boundary and

outer unit normal v. Then for any function u € C2(U) satisfying a homogeneous

Neumann condition Vu - v = 0 on 9U,

, 5 =2B(t. 1) |Vul>  on {{Vu| > 0} N 3,

2.7 3 (IVul®) = .
0 on{|Vul =0}NoU

where T = Vu(xq)/Vu(xo)| and B(-, ) denotes the second fundamental form
associated with 3U at xq.
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1. Introduction

We study the following model biharmonic superlinear elliptic equation
Ay = |[ufP~ly in 0, (1.1)

where 2 C R™ is a smoothly bounded domain or the entire space and p > 1 is a real
number. Inspired by the tangent cone analysis in minimal surface theory, more precisely
Fleming’s key observation that the existence of an entire nonplanar minimal graph im-
plies that of a singular area-minimizing cone (see his work on the Bernstein theorem (11]),
we derive a monotonicity formula for solutions of (1.1) to reduce the non-existence of
nontrivial entire solutions for the problem (1.1), to that of nontrivial homogeneous so-
lutions. Through this approach we give a complete classification of stable solutions and
those of finite Morse index, whether positive or sign changing, when 2 = R" is the
whole Euclidean space. This in turn enables us to obtain partial regularity as well as
an estimate of the Hausdorff dimension of the singular set of the extremal solutions in
bounded domains.

Let us first describe the monotonicity formula. Eq. (1.1) has two important features.
It is variational, with energy functional given by

[ 5802 = jup

and it is invariant under the scaling transformation

uMz) = AﬁTu(Am).

This suggests that the variations of the rescaled energy

apfon [ L 1 ]
rée-1 / {Q(Au) p+1lu| J
B, (z)

with respect to the scaling parameter 7 are meaningful. Augmented by the appropriate
boundary terms, the above quantity is in fact nonincreasing. More precisely, take u &
Wil() N LN (Q), fix 2 € 2, 1et 0 < 7 < R be such that B,(z) C Bg(z) C 2, and
define

E(ryz,u) := pi35t—n / F(Au)2—

p+1 |u’p+l}

+——2—<n—2— 41>ﬁ%+1*" / u?

OB (x)
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2 4 d 8
-9 -\ p—_T+2—n 2
+p—1<n p—1>d7‘< / u)

OB, (x)
3 d 8 4 ou\ 2
o Zﬁﬁ-l—n R | il
+2dr[r / <p—17 u+6‘7‘>}
0B, (r)
d oul?
4+ = s T+4-—n \v4 2 |XY
il [ (v =15
9B,.(z)
1 e . . loul?
+ §T.F7+d—n / <!vu'2 - 8_1,5 >,
9B, (z)

where derivatives are taken in the sense of distributions. Then, we have the following
monotonicity formula.

Theorem 1.1. Assume that

n+4
> . 1.2
p— (1.2)

nz>y5, p

Letu € Wﬁ’f(())ﬂLPH(Q) be a weak solution of (1.1). Then, E(r;z,u) is non-decreasing

loc
inr € (0, R). Furthermore there is a constant ¢(n,p) > 0 such that

d o 4 2
—E(r;0,u) = c(n, p)r "t / <-~—7'_1u + @> . (1.3)
dr b2

0B,

Remark 1.2. Monotonicity formulae have a long history that we will not describe here.
Let us simply mention two earlier results that seem closest to our findings: the formula
of Pacard |20 for the classical Lanc-Emden cquation and the one of Chang, Wang and
Yang [2] for biharmonic maps.

Consider again Eq. (1.1} in the case where 2 = R", i.e.,
Ay = |ulP"lu  in R™, (1.4)
Let
/ +oo  ifn <4,
ps(n) = { EETI

denote the Sobolev exponent. When 1 < p < ps(n), all positive solutions to (1.1} are
classified: if p < ps(n), then u = 0; if p = pg(n), then all solutions can be written in the
form u = C”<_>\2—+|w>\—~wm)% for some ¢, > 0,\ > 0, zg € R", see the work of Xu and one



244 J. Ddvila et al. / Advances in Mathematics 258 (2014) 240-285

Solving the corresponding quartic equation, (1.7} holds if and only if p > p.(n) where
pe(n) > ps(n) is the fourth-order Joseph-Lundgren exponent computed by Gazzola and
Grunau [12}:

+o00 if n €12,
pc(n) = n4+2—vn24+4-nvn2_8nt32 .o >
n—6—vn2+d4—nvn2—8nt3z =

-

Equivalently, for fixed p > pgs(n), define n, to be the smallest dimension such that (1.7)
holds. Then,

The existence, uniqueness and stability of regular radial positive solutions to (1.1)
is by now well understood (see the works of Gazzola—Grunau, of Guo and one of the
authors, and of Karageorgis {2.16.18}): for each @ > 0 there exists a unique entire radial
positive solution u,(|z]) to (1.4} with u,(0) = a. This radial positive solution is stable if
and only if {1.7) holds.

In our second result, which is a Liouville-type theorem, we give a complete charac-
terization of all finite Morse index solutions (whether radial or not, whether positive or
not).

Theorem 1.3. Let u be a smooth solution of {1.4) with finite Morse indez.

o Ifpe(l,p.(n), p+#ps(n), then u = 0;
o Ifp=ps(n), then u has finite encrgy i.c.

/(Au)2 = /|u]”+1 < +oc.

]Rn B»

If in addition u is stable, then in fact u = 0.

Remark 1.4. According to the preceding discussions, Theovem 1.3 is sharp: on the one
hand, in the critical case p = pg(n), Guo, Li and one of the authors {15/ have constructed
a large class of solutions to (1.1} with finite energy. Since in this case (”_—41)73 =p+1, by
a result of Rozenblum [26}, such solutions have finite Morse index. On the other hand,
for p > pc(n), all radial solutions are stable (see [16,1%]).

Remark 1.5. The above theorem generalizes a similar result of Farina [10] for the classical
Lane-Emden equation.

Now consider {1.1) when (2 is a smoothly bounded domain of R"* and supplement it

with Navier boundary conditions:
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of the authors [31]. However, there can be many sign-changing solutions to the equation
(see the work by Guo, Li and one of the authors [15] for the critical case P =ps(n)).

Here, we allow u to be sign-changing and p to be supercritical. Instead, we restrict
the analysis to stable and finite Morse index solutions. A solution u to (1.4) is said to
be stable if

/]Aqﬁ[?d;c > p/(uv’—lgb? dz, forall ¢ € H?(R"),
Rn

R'n

More generally, the Morse index of a solution is defined as the maximal dimension of al]
subspaces E of H?(R™) such that

/jAgzﬁ}zdfc <p/!u!p_lr,b2d:c,
RTL

]Rn

forany ¢ € E\ {0}. No assumption on the growth of u is needed in these definitions.
Clearly, a solution is stable if and only if its Morse index is equal to zero. It is also
standard knowledge that if a solution to (1.4) has finite Morse index, then there is a
compact set T C R™ such that

/1A¢|2d:c >p/yu|:”*1¢2 dz, V¢ e H*(R™\K).
Rn

Rn

Recall that if

4 -

then
us(r) = Ko/ P p=d/o-1) (1.6)

Is a singular solution to (1.4) in R" \ {0}. By the Hardy—Rellich inequality with best
constant [25)

2 nz(n —4)2 ﬁ 2 n
Rn R~

the singular solution us s stable if and only if

n?(n — 4)?

<
pKy < 16
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5 \1/2
Au+<——> u 2z €0 inR™ (1.10)
p+1

As observed in |9} for a similar equation, the use of the above inequality can be completely
avoided.

In this paper we take a completely new approach, which also avoids the use of (1.10)
and requires minimal integrability. One of our motivations is Fleming’s proof of the
Bernstein theorem for minimal surfaces in dimension 3. Fleming used a monotonicity
formula for minimal surfaces together with a compactness result to blow down the min-
imal surface. It turns out that the blow-down limit is a minimal cone. This is because
the monotonic quantity is constant only for minimizing cones. Then, he proved that
minimizing cones are flat, which implies in turn the flatness of the original minimal
surface.

At last, let us sketch the proof of Theorem 1.3: we first derive a monotonicity for-
mula for our equation (1.1). Then, we classify stable solutions: this is Theorem 4.1
in Section 4. To do this, we estimate solutions in the LP*! norm, utilizing the afore-
mentioned methods available in the literature, and then show that the blow-down limit
u®(z) = limy 500 /\ﬁu()\x) satisfles E(r) = const. Then, Theorem 1.1 implies that u®™
is a homogeneous stable solution, and we show in Theorem 3.1 that such solutions are
trivial if p < pc(n). Then similar to Fleming’s proof, the triviality of the blow-down limit
implies that the original entire solution is also trivial. In Section 5, we extend our result
to solutions of finite Morse index. Finally, in Section 6 we prove an e-regularity result
and use the Federer’s dimension reduction principle to obtain the partial regularity of
extremal solutions. This approach was used in [30] for (1.9), see also [6].

2. Proof of the monotonicity formula

In this section we derive a monotonicity formula for functions v € W42(By(0)) N
LP*1(BR(0)) solving (1.1) in Br(0) C £2. We assume that p > ate,

Proof of Theorem 1.1. Since the boundary integrals in E(r;z,u) only involve second

order derivatives of u, the boundary integrals in %(r;z,u) only involve third order

derivatives of u. By our assumption u € W*2(Bg(0)) N LP1(Bg(0)), for each B,(z) C
Bgr(0), v € W32(8B,(z)). Thus, the following calculations can be rigorously verified.
Assume that z = 0 and that the balls By are all centered at 0. Take

- 1 1
E(\) = \5an 5(Bu)” — 5ﬁyu1p+l.
By

Define
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and
ut(z) = )\v_ifu()\x), v z) = /\Ti_lw'u()\m).
We still have v* = Au?, Av* = [u*[P~1u?, and by differentiating in \,

dut _
d\  d\’

Note that differentiation in A commutes with differentiation and integration in z.
A rescaling shows

E()) = / %(U,\)2 _ ;‘UA‘pH'

p+1
By
Hence
d ~ A dv? sip—1 y du?
a‘;\‘E()\):/’Uﬁ—’U‘ U—dT
By
du du?
A \
= [ A A I
/ VA )
By
_ / v)‘g du? N QUA du’\. 2.1)
) or dA or dX
B,
In what follows, we express all derivatives of u* in the r = |z| variable in terms of

derivatives in the A variable. In the definition of «* and v?*, directly differentiating in A

gives
%i(:r) = % <p f luk(a:) + 7“%%(1)), (2.2)
%(aj) = ; <%v’\(3¢) + 7%—?(2:)) | (2.3)
In (2.2}, taking derivatives in X\ once again, we get
)\d;j\g\ (r) + %Ug(a) = p—éif%\)\(m) + rd—(z%(m) (2.4)

Substituting (2.3} and (2.4) into {2.1} we obtain

o 2, _ A A A .
i@; /v’\ )\dy L P 5dut\  du /\dv _2(p+1)v/\
A d 2 p-1 dA d\ d\ p—1

OBI
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2 \V2 .
Ay + (———) 2 <0 inR"™ (1.10)
p+1
As observed in [9] for a similar equation, the use of the above inequality can be completely

avoided.

In this paper we take a completely new approach, which also avoids the use of (1.10)
and requires minimal integrability. One of our motivations is Fleming’s proof of the
Bernstein theorem for minimal surfaces in dimension 3. Fleming used a monotonicity
formula for minimal surfaces together with a compactness result to blow down the min-
imal surface. It turns out that the blow-down limit is a minimal cone. This is because
the monotonic quantity is constant only for minimizing cones. Then, he proved that
minimizing cones are flat, which implies in turn the flatness of the original minimal
surface.

At last, let us sketch the proof of Theoremt 1.3: we first derive a monotonicity for-
mula for our equation (1.1). Then, we classify stable solutions: this is Theorem 4.1
in Section 4. To do this, we estimate solutions in the LP+1 norm, utilizing the afore-
mentioned methods available in the literature, and then show that the blow-down limit
u®(z) = limy_, 00 )\P_iTu(/\x) satisfies £(r) = const. Then, Theorem 1.1 implies that 4™
is a homogeneous stable solution, and we show in Theorerm 3.1 that such solutions are
trivial if p < pe(n). Then similar to Fleming’s proof, the triviality of the blow-down limit
implies that the original entire solution is also trivial. In Section 9, we extend our result
to solutions of finite Morse index. Finally, in Section 6 we prove an e-regularity result
and use the Federer’s dimension reduction principle to obtain the partial regularity of
extremal solutions. This approach was used in 130} for (1.9), see also [6].

2. Proof of the monotonicity formula

In this section we derive a monotonicity formula for functions u € W42(BR(0) N
LP*1(Bg(0)) solving (1.1) in Br(0) < £2. We assume that p>

Proof of Theorem 1.1. Since the boundary integrals in E(r;z,u) only involve second
order derivatives of u, the boundary integrals in ‘é—f(r;x,u) only involve third order
derivatives of u. By our assumption v € W*2(Br(0)) N LP*1(BR(0)), for each B.(z) C
Br(0), u € W2(8B,(z)). Thus, the following calculations can be rigorously verified.

Assume that £ = 0 and that the balls By are all centered at 0. Take

= p—1 — A _ P .
E(3) = | 3=
Y

Define

vi= Au
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R du® du? dov?
_ A A N
_ / A v T SR S (2.5)

249

8B,

Observe that v* is expressed as a combination of z derivatives of u*. So we also transform

v* into A derivatives of . By taking derivatives in r in (2.2) and noting (2.4), we get
on (9.81,

82u’\~ gduA _p-+38u’\
o2~ "or dh  p—1 or
:/\deu)‘+p~5 duA_p—H’) du’\_ 4 W
dA\?2  p—1"d\N p-1 dx  p-1
2, A A 4 3
_ /\Qd ut 8 /\du n (p+ )u’\.
A\ p—1" d\ (p—1)2

Then on 9B;,
%ur  n—10u 1
A A
= —A
v Oor? + r  Or + pa oot

d?u? 8 dut  4(p+3) du* 4
— )2 A _ _
B ES e e LA G 1><A T p=1

u 8 du* 4 4 N
= —1- —n+42 Agu?.
N2 +<” pwl)Ad)\ +p—1<p—1 n >“ +2ou

Here Ag is the Beltrami-Laplace operator on 0B and below Vg represents the tangential
derivative on 8B;. For notational convenience, we also define the constants

8 4 4
=n-1-—- = — —n+2].
a=n-—1 g J54 7 < 1 n >

Uf\> + Agu/\

Now (2.5) reads

d = . 5 d?u? du? £ A2t
9B,

>yt du? du?

2 Ay

+3</\ e + aA o + Bu > ™
d A d d2 A d A

A2y du? du? du?

A A _ /\ A
+ / ABoUT g 30T e = A= g —
0B

:R1+R2.
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Integrating by parts on 9By, we get

d?u? du? du?
R ~AVgul - —— AV —
9 = / Vou'Vy e 3V9u Vg N / 0 N
9B,
A d? \ 3 d A2 du
= —— — — - — 4 2 -
2d/\2</’v0u’) 2(1A</W"“|)+A/v9cu
oB
1 42 N 1 d
:—53/\—2( /{V()u ])—éd—</lvb;u >+2/\/‘
0B,
2—5w(/\/‘vmi ? ) —55(/{\79u ’ .
081 OBI
For Ry, after some simplifications we obtain
d?ut du® d?u?
_ 2 Ay
Rl—//\</\ 7 + N +ﬁu> e
681
2d2u i du? du?
+3(/\ 2 Fa)\ +ﬁ ) e
du? 2d3 A dPut du?
— )\ — A\ —— +B3) =
A (A o @@ T (ot B) o
d2ur\? d?ur du dgu)‘ du*
_ [ 3 au” g 38, 240
= //\ <d/\2) + A2 T + Baut e + 38u o
8B1
du\ ? 3du dJuA
HQQ*BM(’H) dh dxd
: d2ur\? 2u? du dur\?
= [ 2)3 2 200 — 28)\
/ZA <d/\2> T e Ty T a2 (dA)
831
B d Ld[yd(d*\N*] Bd, o2
et sV a1 E e

Here we have used the relations (writing f/' = %f etc.)

A

= (3

2f2) — 21 = M)

and

3 : ’/ "
_/\Sf/fm:—[%((f/)z)} +3/\2f/f//+/\3(f )2,
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In particular, if E(X;0.u) = const. for all A € (r, R), u is homogeneous in Br \ B,:

w(z) = y;;,:y—ﬁql(%)n

We end this section with the following observation: in the above computations we
just need the inequality (2.6} to hold. In particular the formula can be easily extended
to biharmonic equations with negative exponents. We state the following monotonicity
formula for solutions of

1
A%y = ——, u>0in Q2 CR" (2.8)
’Ll/)

Lemma 2.2. Assume that p satisfies

8 4 4
-2+ > +n-—-21. 2.9
" p+1 p+1<p+1 ) (2.9)

Let u be a classical solution to (2.5} in B.(x) C Br(z) C £2. Then the following quantity

8

2
d —n+42- 2. i - (
EE(T;O,U) > cor T ER / <—-'——-——7’ Yu + E) . (2.10)

In the rest of the paper, sometimes we use E(r;z) or E(r) if no confusion occurs.
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+oc
7 / |w|p+1d9></ r_lfr]E(r)er)
Sgnet 0
) ) +00
(f (s 10 g F ) oty

§n—1 0

+oo
( / roL(r)? 4 3l ()% + tns Vne(r) + rng(r)‘né’(r)’ dr)

0

><< /w(6)2+W9w(9)f2d9>]

§n—1

Note that

+ o0
J/ e (r)? dr > [loge),
0

+o0
[ O e+ )+ 6] ar <
0

for some constant C' independent of . By letting ¢ — 0, we obtain

‘ ' ‘ —1 s n2(n—4)?
P / ‘wlb-f—l dy < / IA()w|2+%|V6wIZ+ n (71116 ) w?.

§n—1 §n-—-1
Substituting (3.2} into this we get

(n—4 *(n — 4)?
L/@—anw+Qm—ﬁ@;J)vwF+@h—ﬁﬁ%—lyﬂgo

1
§n—1

If 252 < p < pe(n), then p— 1> 0, pJy — "4 5 0 and pJ, — 0= 5 0 (cof. 13,
p. ,H.x_;), sow =0 and thenu=0. O

For applications in Section 6, we record the form of E(R;0,u) for a homogeneous
solution wu.

n+4
n—4

Remark 3.2. Suppose u(r,0) = 'Fﬁw(é) is a homogeneous solution, where p >
and w € W22(S"=1y N LPTI(S*1). In this case, for any r > 0,

/ |Aul? + JuPT < T

B:\B,.;
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4. The blow down analysis

In this section we use the blow-down analysis to prove the Liouville theorem for stable
solutions. Throughout this section u always denotes a smooth stable solution of {1.1)

in R™.

Theorem 4.1. Let u be a smooth stable solution of (1.1) on R™. If1 <p < pe(n), then

u = 0.

The following lemma appears in |32} for positive solution. It remains valid for sign-

changing solutions, see also [17].

Lemma 4.2. Let u be a smooth stable solution of (1.1) and let v = Au. Then for some C

we have
/('u2 + \ulpH)nQ < C/ uz(‘V(An) : VT/‘ + (An)? + iA(|V7}|2)’) dzx
R" Rn
+C/]uv||V77|2d:E
Rn

for alln € C§°(R™).

Proof. For completeness we give the proof. We have the identity

/(A%)gn? de = /(A.(gn))2 + /(‘-4(vg - Vn)? 4 26A€|Vn|?) dx

Rn R xn

+ /62(2V(A77) -V + (An)?) dz,

Rn

for ¢ € C*(R™) and n € C§°(R™), see for example 32. Lot 2.3,
Taking € = u yields

/lu]”“n2 dr = /(A(un))2 + /(—4(Vu - Vn)? + 2uv|Vn*) do
Rn

R~n R

+ /u2 (2V(An) - Vi + (An)?) da.

Rn
Using the stability inequality with un yields

p/ uPtin? da < /(A(u77))2.

Rn R™

(4.1)
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Since p > 244 direct calculations show that
8 4 4
a—ﬁ-(n—l—m>—j< 1—77,+2)>1 (26)
Thus,
g [ d?u\ 2 o d*u? dut du*\ 2
d?ur dur 2 dur\ 2
= - 20— 28 — o)a [ L
2/\</\ VIR d/\> + (20 — 28 )/\<d/\>
>0 (2.7)
Then,
8 d? N _Lldfgd/de\NT g4, .,
> Lt _ = . [t
Rl//wku)] 2o Vo) [ Fr o
8B,
Now,

rescaling back, we can write those A derivatives in Ry and Ry as follows.

[ Lyt <Ap rise | u2>,

0B,

B,
d2 Ay 23 dz +2—n 2
/ e )] = o5 <A' /” )
0B, 0B,
d .5 d[du*\? d[ 5 d 1en 4 ou\
/ E[A ﬁ(ﬁ)} ci/\[/\ d/\(/\p / =1 ) )l
8B, 8B,
IV u)\, At FEr2+l-n / V|2 — Ou|?
’ dA? ar| )|
8B, 8,
d a2Y o d P R, W / 2 du?
a(/ww;>_ﬁp vap - |21,
2B,

Substituting these into %E()\; 0,u) we finish the proof. QO

Denote c(n,p) =20 — 24 — 2 > 0. By (2.7), we have

Corollary 2.1.

L B 0,4) > e / 1, 0w

— ; p=1 T - .

ar (T, ,U) = C(nap>T p—1 T or
9B,
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Therefore

/(|u|P+1n2 T (A@un)?) da < C’/(IVU[2[V77|2 + Juvl| V) do
R~ R

+ C/uQ(N(An) V| + (An)?) d.
R

Using A(nu) = vn +2Vn - Vu + uln we obtain

/(!u{p“ +v?)n?de < c/(;wmvmz + lwv||Vn|?) do
Rn Rn

+ C/uz(bV(An) - V?ﬁ + (An)z) dz.
i

But
2/|Vu[2]Vn|2da:=/A(uQ)(Vn[Q da:—2/uv[V77]2da:
Rn Rr RBn
= /uQA(]an2) da:—Q/UUIanz dz,
R» R™
and hence

J P+ )i dn < 0 [ (i) ol + (an? + [Ava)]) as
Rn Rn

+C | |uwv||[Vn|? dz.
/

This proves (4.1) 0O
Corollary 4.3. There exists a constant C such that

/ v? + [u|PTt < OR™* / u? + CR™? / |uv], (4.2)

Br(x) Bar(x)\Br(z) Bar(z)\Br(x)
and
/ v+ JulPTl S CRVAR (4.3)
BR(J,)

for all Br(z).
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Proof. The first inequality is a direct consequence of (-1.1), by choosing a cut-off function
n € C5°(Bzr(x)), such that n = 1 in Br(z), and for k < 3, Vel < 12(2.0.

Exactly the same argument as in 32/ or [17] provides the second estimate. For com-
pleteness, we record the proof here. Replace 77 in (4.1) by 7™, where m is a large integer

and 7 is a cut-off function as before. Then

J e Y T L

Bar(z)\BRr(zx)
1 "
< o /,02772177, i C/ W24 A,

Substituting this into (4.1 i, we obtain

/(1)2 + ]ulp-ﬁ-l)n?m, < CvR—4 / u2772m,—4

Bar(x)

2
< CR*4< / |uiP+1n(m~2)(p+l)> T R
BQR((L')

This gives (1.3). Here we have used the fact n*m > pm=2+1) hecause 0 n<1, mis
large, and p > 1. 0O

Proof of Theorem 4.1 for 1 < p < %i‘—j. For p < 21 "we can let R — +00 in (4.3) to

n—4’

get u = 0 directly. If p = Z:fj, this gives
/02 + [ulPt < oo
Rn
So
lim v? 4 JuP T = 0.
R—4oc
Byr(w)\Br(w)

Then by (1.2}, and noting that now n = 41“:—%

P 3

j/ v? + lulP™ < CR™* / u? + C / IU|2

Br(x) Bar(w)\Bgr(x) Bar(x)\BRr(x)

2
< CR—4< / luy“l) "R g o / |o]?

Ba g (2)\Br(x) Bar(z)\Br(x)
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2
' P+I
< C( / |u}p+1> +C / [u]2.

Bar(z)\Br(z) B2r(z)\Br(x)

This goes to 0 as R — +o00, and we still get u=0 0O
Next we concentrate on the case p > Z—*_’j. We first use (4.3) to show
Lemma 4.4. lim,_, ;o E(r;0,u) < +oc.

Proof. Let us write E(r) = E(r;0,u). Since B(r) is non-decreasing in r, we have

7 A
E(r) < ;/ < —2//E(/\) dxdt.
r r ot
By ('1 ‘)’):
2r t4r
3 / (/\4%“" —(Au)? 1|u|p+1> dhdt < C.
™ t BA
Next
1 2r t4+r
= /(Ap—f—l“*”/ >d/\dt
r ¢ OB,
2r
1 £ _41-n 2
= r—2 / {;L*|r>—1 u(a?) dl dt

7 Biyr\B,

p=1

2r 2
<5 afite g ) ! )T
r2

T Bang,

< C.
The same estimate holds for the term in £(r) containing

[ (e i2)

0By

%
or

For this we need to note the following estimate

2
— +1
/]Vu!2 < Cr? /(Au)2 + Cpm¥tnie < / |u|p+1> ’ < CrmEtiT?, (4.4)
Br

Bgr B2r
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Now consider

2r t+ 7‘\3 4 5 9
4 ‘1‘7-1+1 T -_— U
LT e [ (s 2
OBy
2r
1 4 )L+4—-n / 4 (t+7) u+ ou 2
= — rir—1 . d -
2r2 ( p—1 or
r OBiyr
8 i 4 ou\?
o tp—_7+4——n —1, el dt
/<p-1t +37‘) }
OB,
2r t+r 4 9 2
+3—-n —1 u
T R — I d
27“2//)\ /(p—l/\ u+8r> dAdt
9By
C 4 ou\?
< = = 1—{-4 nf = q.q—-1 et
<z [ (e 3
B3-,‘\B,~
< C.

The remaining terms in E(r) can be treated similarly. 0O
For any A > 0, define

uMz) = Ap u(Ax), vMz) = ApT 2p(Az).

u? is also a smooth stable solution of 1.1) on R™.

By rescaling («.3), for all A > 0 and balls B,(z) C R",

/ (17)‘)2 + ’u)“pH < Cr""“ﬁ.

B (x)
In particular, u* are uniformly bounded in LYY R™) and v* = Au? are uniformly
bounded in L7 (R™). By elliptic estimates, u* are also uniformly bounded in I/Vlzof (R™).

Hence, up to a subsequence of A — 400, we can assume that u® — u™ weakly in
W22 (R™) N Lffcl(R“). By compactness embedding for Sobolev functions, u* — u>

loc

strongly in I/Vllof(R”) Then for any ball Br(0), by interpolation between L9 spaces and
noting (4.3}, for any g € [1,p+ 1), as A = +o0,

H“A - UOOHL‘I(BR(O)) < H“A uoo“tl(BR(O))“qL;\ OCHUH(BR(O) — 0, (4.5)

where t € (0, 1] satlsﬁes L=yl T%. That is, v* — u™ in L} (R") for any ¢ € [1,p+1).

P
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For any function ¢ € C§°(R™),

A o0

/Auoozkp - (u‘”)p(p = lim AutAgp — (u’\)pgo =0,
R R~

A—+00
Rn Rn

/(A¢)2 —p(u®)Pp? = lim /(Aso)2 ~p(a*) "2 > 0.

Thus u® € VV&?(R") N LYY (R™) is a stable solution of (1.1) in R™,
Lemma 4.5. u® is homogeneous.

Proof. For any 0 < 7 < R < +c0, by the monotonicity of E(r;0,u) and Lemnmnia 4.4,

lim E(AR;0,u) — E(\r;0,u) = 0.

A—r+00

Therefore, by the scaling invariance of F

lim E(R;0,u) — E(r;0,u*) = 0.
A= 400
We note that E(r;0,u*) is absolutely continuous with respect to 7, since we assume u*
smooth. This still holds if we assume u € W*?(Bg(0)) N LP+1(Bg(0)), since boundary
integrals only involve second order derivatives of « and so for each B,(0) C Bg(0),
u € W32(8B,.(0)). Then by Corollary 2.1 we see that
0= lim E(R;0,u") - E(r;0,u")

A-—+00

/ (G la| M (@) + 222 (2))?

> C(n,p) /\'1—33—100 ’;1;|n'—2_5‘§—1 dz
BR\BT
(E5lel (@) + %= (2))?
2 C(n)p) / L |$’n__2__p_§T ! dm.
BR\B'V

Note that in the last inequality we only used the weak convergence of u* to u™ in
Wh2(R"). Now

loc

That is, u® is homogeneous. 0O
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By Theorem 3.1, 4 = 0. Since this holds for the limit of any sequence A — +00,
by (1.5) we get

lim v =0 strongly in L* (B4(0)).

A—=+oo

Now we show
Lemma 4.6. lim, _, ., E(r;:0,u) = 0.

Proof. For all A\ — 40,

lim / ('u,/\)2 = 0.

A—+00
B4(0)

A

Because v* are uniformly bounded in L*(B4(0)), by the Cauchy inequality we also have

) 3 "2 3
lim /[uAV‘[< lim < / (uk)> </(v )) =0.
A—+o00 A— 400
B4(0) B4(0) B4 (0)
By (4.2},

lim /(v’\)2+1‘u’\‘p+l<0 lim (/ (u’\)2+ /]u’\v’\o
A= 400 ! A= 400

B3(0) B4(0) B4(0)
—0. (4.6)

By the interior L? estimate, we get
lim E ’V}” ’\|
A—+o00
Ba0) <2
In particular, we can choose a sequence \; — 400 such that

S[vhe

By (0) P2

By this choice we have

[E [seera<S ] [

1= lc')B k<2 z:ll OB,

That is, the function
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+oo

N=3 [ Sivh

1= laBr k<2

LH((1,2)).

There exists an rg € (1,2) such that f(rg) < -co. From this we get

Hm Hu = 0.

t—r 400

W22(8B,,)
Combining this with (1.6) and the scaling invariance of E(r), we get

hm E(X\iro;0,u) = lim E(ro;0,u™) = 0.

i—+oo 1400

Since A;rg — 400 and E(r;0,u) is non-decreasing in r, we get

lim E(r;0,u) =0. O

r-—>-+00

By the smoothness of u, lim,_,q E(r;0,u) = 0. Then again by the monotonicity of
E(r;0,u) and the previous lemma, we obtain

E(r;0,u)=0 forallr > 0.

Then again by Corollary 2.1, u is homogeneous, and then u = 0 by Theoremn 3.1 (or by
the smoothness of ). This finishes the proof of Iheorem 4.1.

5. Finite Morse index solutions

In this section we prove Theorcin 1.3 and we always assume that u is a smooth
solution. First, by the doubling lemma [22] and our Liouville theorem for stable solutions,
Theorem 4.1, we have

Lemma 5.1. Let u be a smooth, finite Morse index (positive or sign changing) solution
of (1.1). There exist a constant C and Ro such that for all x € Bpg,(0),

{u(:r)} < Clz|7 71
Proof. Assume that u is stable outside Bg,. For z € Bg,, let M(z) = |u(zx )% and
d(z) = |z| — Ry, the distance to Bg,. Assume that there exists a sequence of y € Bf,_
such that

M(zy)d(zy) = 2k. (5.1)

Since u is bounded on any compact set of R”, d(zy) — +oo.
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Consider n := sgn(6)x for 1 < k < m, where again sgn(x) is the Sign function. The
geometric Poincaré inequality (32) yields

/ PR TEDY / (IVuil*k7 + V7| Vuil?) x

BR\B g ! C V10

+ 30 [ (V- Ty = sgn@)sgn @) IVl 1) Hiy, o
I#/RN
=11+ 1. (38)

Note that /y is clearly nonnegative. Moreover, (37) yields that Huiujsgn((ii)sgn(()j) < 0 for
all i < j, and therefore, I; can be written as

L = Z/ (sgn (H,,,.,,j) Vu; - Vu; + qu;lIVujD H,,i,,jsgn (H,,,.uj) xz,
I#JgN
which is also nonnegative.
On the other hand, since

1
. lfN = 2’
) ) ) log R
/ S VuPvxlt<c RN=2 4 R(N-2)2
R . if N # 2,

IN = 2||log R|> "’

one can see that in dimension two the left hand side of (38) goes to zero as R — 0. Since
1} = 0, one concludes that all u; for i = 1, ..., m are one-dimensional and from the fact
that [ = 0, provided H,,,.,(J is not identically zero, we obtain that for all x € R?,

—sgn(Hy ;) )Vu; - Vuj = [Vu;||Vuy],
which completes the proof of the theorem. O
Now, we are ready to state and prove the main result of this paper.
Theorem 5 Conjecture (2) holds for N < 3.

Proof Letagain ¢; := dyu; and ; := Vu; - n for any fixed n = (', 0) € RV~ x {0} in

such a way that o; = % is a solution of system (13) for hij(x) = H,,,ujq')i (X)¢j(x)and f

to be the identity. Since |Vu;| € L= (RY), we have I|¢,~<7,-|ILOO(RN) < 0.

In dimension N = 2, assumption (12) holds and Proposition 1 then yields that o; is
constant, which finishes the proof as argued before.

In dimension N = 3, we shall follow ideas used by Ambrosio and Cabré [4] and Alberti et
al. [2] in the case of a single equation. We first note that 1 being H-monotone means that u is
a stable solution of (6). Moreover, the function v(xy, x2) 1= limy; o0 u(x], X2, x3) is also a
bounded stable solution for (6) in R2. Indeed, it suffices to test (10) on £ (x) = np (x ) xr (xN)
where n; € Cg (RN¥=1y and XR € CCl (R) is defined as

I, iftR+1 <t <2R+1,

XRW =407 it < R or t > 2R 4+ 2.

forR>1,0< xg <land0 < X)/'e < 2. Note also that since u is an H-monotone solution,
the system (6) is then orientable. It follows from Theorem 4 that v is one dimensional and

@ Springer
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consequently the energy of v in a two-dimensional ball of radius R is bounded by a multiple
of R, which yields that

limsup E(u") < CR?, (39)

t—> 00

where here u' (x') 1= u(x’, x, + 1) forr € R and Eg(u) = Jp, 3IVU? + Hu) — cudx for
¢y = inf H(u).
To finish the proof, we shall show that

/ |Vu|* < CR2. (40)
By

Note that shifted function u’ is also a bounded solution of (6) with |Vul| € L®RM), ie.,

Au' =VH®u') in RY, (41)
and also
diui > 0> 9u'; foralli € Iand j € J andin RV, (42)
Since uf converges to v; in C}OC(RN) foralli =1,..., m, we have

’1_1&10 E@W') = E).

Now, we claim that the following upper bound for the energy holds.

Er(w) < Eg (u') + M PACEIHED T ui) | dS forall 1 e R*@3)
9Br \ el jel

where M = max; ||VL¢,'HLOO(RN). Indeed, by differentiating the energy functional along the
path u’, one gets

OER (') = / Vu' -V (0,u') + / VH (u') d,u', (44)
Br Bg
where VH u')d,u' = Y, Hy, (u")8;ul. Now, multiply (41) with 9,4, to obtain
- / Vu' -V (8u") + / dyu'du’ = / VH (u') ou'. (45)
Bg 9Bx Bg
From (45) and (44) we obtain
ER (u') = / dyu'du’ :Z / Byuidul. (46)
9Bk [ aBg

Note that —M < J,u’ < M and du; >0 > Bfu’j fori € I and j € J. Therefore,

0 Eg (1) zM/ Dol = > 8ul | ds. 47)
J i

dBpR

Al Springer
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On the other hand,

t
Er(u) = Eg (u') —/E),ER (') ds,
0

!
ER(uf)+M// D ol = > dau | dSds
. , -

0 dBg !

IA

=Er(u')+ M / Z(u}—uﬂ%—Z(w—u?) ds. (48)
J

dBg !
To finish the proof of the theorem just note that u; < u! and u’j <wujforalliel, jelJ
and t € R™. Moreover, from (39) we have lim; o Eg(u') < CR?. Therefore, (48) yields

Eg(u) < C|3Bg| < CR?,
and we are done. O

The above proof suggests that—just as in the case of a single equation—any H-monotone
solution u of (6) must satisfy the following estimate

[ 1Vul> < CR¥=' forany R > 1, (49)
Br

for some constant C > 0. This can be done in the following particular case.

Theorem 6 If u is a bounded H-monotone solution of (6) such that fori =1,....m

»

lim u; (X', xn) =a;, Vx= (x',xn) € RY ! xR
AN OO

where a; are constants, then

1
Eru) = / 5|vu|2 + H(u) — H(a)dx < CRV™/, (30)
Br

where a = {a;}.=' and C is a positive constant independent of R.
i=1 I

Proof We first note the following decay on the energy of the shifted function u’ as defined
above,

lim Eg (u') = 0. (51
[ —>0C
Indeed, since «' is convergent to « pointwise, one can see that

. e
fll:&/(H (u') — H(@) dx — 0.
Bg

Therefore, we need to prove that

lim /Wu;lzdx — 0.
=00
Br
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To do so, multiply both sides of (41) with u} — a; and integrate by parts to get

- / |Vuf|2 + / Bvuf (u? ~a,~) = / VH (u’) (uf —a,-),

Bgr dBg Bg

which yields (51).
To get the energy bound in (50), one can follow the proof of the previous theorem to end
up with

Er(u) < Eg (u') + C|0Bg| forall ¢ e RT.

To conclude, it suffices to send r — oo and to use the fact that lim; ;o0 Eg(#') = 0to finally
obtain that

Eg() < C|dBg| < CRN™L,
Remark 2 Using Pohozaev type arguments one can see that
g = %’}f_’—‘,) is increasing (52)

provided the following pointwise estimate holds:
IVul? < 2H ). (53)

Note that this is an extension of the pointwise estimate that Modica [14] proved in the case of
asingle equation. It is still not known for systems, though Caffarelli and Lin in [10] and later,
Alikakos in [3] have shown, in the case where H > 0, the following weaker monotonicity
formula, namely that

Ap = %%(:“7) is increasing in R. (54)

Remark 3 The H-monotonicity assumption seems to be crucial for concluding that the
solutions are one-dimensional. Indeed, it was shown in [1] that when H is a multiple-well
potential on R, the system has entire heteroclinic solutions (u, v), meaning that for each
fixed x2 € R, they connect (when x; — 00) a pair of constant global minima of W, while
if x; — Zoo, they connect a pair of distinct one dimensional stationary wave solutions
z1(x1) and z2(x). Note that these convergence are even uniform, which means that the cor-
responding Gibbons conjecture for systems of equations is not valid in general, without the
assumption of H-monotonicity.
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