MATH 517 (2017-2018) Homework One

Due Date: Jan. 31, 2018

1. Use the following De Giorgi's iteration to prove the following simple estimate: Let u satisfy

$$
-\Delta u=f \text { in } \Omega
$$

then

$$
\sup _{\Omega}|u| \leq \sup _{\partial \Omega}|u|+C\|f\|_{L^{\infty}(\Omega)}
$$

Hint: Step 1: Multiplying the equation by $(u-k)_{+}$and showing that for $h>k \geq k_{0}$

$$
|A(h)| \leq\left(\frac{C\|f\|_{L^{\infty}}}{h-k}\right)^{p}|A(k)|^{p-1}
$$

where $A(h)=\mid\{u>h\}$. Here $p>2$. Step 2: use iteration to show that $|A(h)|=0$ for $h \geq k_{0}+d$.
2. Consider the following energy functional

$$
E[u]=\frac{\epsilon^{2}}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{4} \int_{\Omega}\left(1-u^{2}\right)^{2}
$$

in the space

$$
M=\left\{u \in H^{1}(\Omega) ; \frac{1}{|\Omega|} \int_{\Omega} u=m\right\}
$$

where $-1<m<1$. Use direct method to show the existence of minimizers of E and find the Euler-Lagrange equation.
3. (a) Let $\mathcal{D}^{1,2}\left(R^{N}\right)$ be the completion of C_{0}^{∞} under the norm $\|u\|=\left(\int|\nabla u|^{2}\right)^{1 / 2}$. Show that for $N \geq 3$ and $u=u(r) \in \mathcal{D}^{1,2}$ Then $|u(r)| \leq C r^{-\frac{N-2}{2}}$.
(b) Consider the following minimization problem

$$
S_{N}=\inf \left\{\left.\int|\nabla u|^{2}\left|\int\right| u\right|^{\frac{2 N}{N-2}}=1\right\}
$$

Show that S_{N} is attained. Hint: for compactness, use (a) and the scaling invariance of $\int|\nabla u|^{2}, \int u^{\frac{2 N}{N-2}}$.
(c) Compute the minimizers in (b) and the value S_{N}.
4. (a) State and prove Brezis-Lieb Lemma.
(b) Consider the following problem

$$
\Delta u-a(x) u+b(x) u^{p}=0 \quad u \in H^{1}\left(R^{N}\right)
$$

Assume that

$$
\begin{gathered}
1<p<\frac{N+2}{N-2} \\
a(x) \rightarrow a_{\infty}, b(x) \rightarrow b_{\infty} \text { as }|x| \rightarrow+\infty
\end{gathered}
$$

State a condition for existence and prove it.
5. Prove the monotone iteration scheme for the following elliptic system

$$
\left\{\begin{array}{l}
\Delta u+f(u, v)=0 \text { in } \Omega \\
\Delta v+g(u, v)=0 \text { in } \Omega \\
B[u]=B[v]=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $B[u]=\frac{\partial u}{\partial \nu}+b(x) u, b(x) \geq 0$. Here $\frac{\partial f}{\partial v} \leq 0, \frac{\partial g}{\partial u} \leq 0$.

Hint: Consider two pairs of sub-super solution $(\underline{u}, \underline{v})$:

$$
\Delta \underline{u}+f(\underline{u}, \underline{v})>0, \Delta \underline{v}+g(\underline{u}, \underline{v})<0
$$

and super-sub solution (\bar{u}, \bar{v}) :

$$
\Delta \bar{u}+f(\bar{u}, \bar{v})<0, \Delta \bar{v}+g(\bar{u}, \bar{v})>0
$$

so that

$$
\underline{u}<\bar{u}, \underline{v}>\bar{v}
$$

From sub-super solution, one constructs an increasing sequence of u_{n}, and a decreasing sequence of v_{n}.

