1. Use Mountain-Pass Lemma to prove the existence of one positive solution to

$$
-\Delta u=-\lambda u+u^{p} \text { in } \Omega, u>0 \text { in } \Omega, \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
$$

where $p<\frac{n+2}{n-2}$ and $\lambda>0$. Show that for λ large the Mountain-Pass solution is nontrivial, i.e., $u \not \equiv \lambda^{\frac{1}{p-1}}$. 2. Consider the critical exponent problem in an annulus

$$
-\Delta u=u^{\frac{n+2}{n-2}} \text { in } B_{r_{2}} \backslash B_{r_{1}}, u=0 \text { on } \partial\left(B_{r_{2}} \backslash B_{r_{1}}\right)
$$

where $r_{2}>r_{1}, n \geq 3$. Show that there always exists a solution.
3. Consider the following Henon's equation:

$$
-\Delta u=|x|^{\alpha} u^{p} \text { in } B_{1}(0), u>0 \text { in } B_{1}, u=0 \text { on } \partial B_{1}
$$

where $\alpha>0, p>1$, and $B_{1}(0)$ denotes the unit ball in $R^{n}, n \geq 3$.
(a) For $p \geq \frac{n+2+2 \alpha}{n-2}$, show that $u \equiv 0$.
(b) Show that for $p<\frac{n+2+2 \alpha}{n-2}$ there exists a solution.

Hint: Reference: Wei-Ming Ni, A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Ma 31 (1982), no. 6, 801807.
(c) Show that the exterior problem

$$
-\Delta u=u^{p} \text { in } R^{n} \backslash B_{1}, u=0 \text { on } \partial B_{1}
$$

admits a radially symmetric solution when $p>\frac{n+2}{n-2}$.
Hint: use Kelvin transformation $|x|^{n-2} u\left(\frac{x}{|x|^{2}}\right)$ to transform it into Henon's equation.
4. Consider the following problem in R^{n} :

$$
-\Delta u=-u+u^{p}, \text { in } R^{n}, u>0, u \in H^{1}\left(R^{n}\right)
$$

where $n \geq 3$.
(a) Show that for $p \geq \frac{n+2}{n-2}$, there are no solutions
(b) Show that the following problem

$$
-\Delta u=-u+u^{p}+u^{\frac{n+2}{n-2}}, \text { in } R^{n}, u>0, u \in H^{1}\left(R^{n}\right)
$$

admits a solution when $n \geq 5$.
Hint: Show that the mountain-pass value for the energy fucntional

$$
J[u]=\frac{1}{2} \int|\nabla u|^{2}+\frac{1}{2} \int u^{2}-\frac{n-2}{2 n} \int u^{\frac{2 n}{n-2}}-\frac{1}{p+1} \int u^{p+1}
$$

is strictly below $\frac{1}{n} S_{n}^{\frac{n}{2}}$. Here the functional space is $H_{r}^{1}=H^{1} \cap\{u=u(r)\}$.
5. Derive a Pohozaev identity for bi-harmonic equations

$$
\Delta^{2} u=f(u) \text { in } \Omega
$$

with either Navier boundary condition

$$
u=\Delta u=0 \text { on } \partial \Omega
$$

or Dirichlet boundary condition

$$
u=\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
$$

6. Consider the following inhomogeneous critical problem

$$
-\Delta u=u^{\frac{n+2}{n-2}}+\mu f(x) \text { in } \Omega, u=0 \text { on } \partial \Omega
$$

where $\Omega \subset R^{n}$ and $n \geq 3$. Here $f(x)>0$ is a smooth function.
(a) Use sub-super solution method to the existence of one solution u_{μ} for small μ.
(b) Let $u=u_{\mu}+v$. Use Mountain-Pass-Lemma to show the existence of the second solution for $n \geq 5$. Hint: For example let $n=6$. Then v satisfies

$$
-\Delta v=2 u_{\lambda} v+v^{2}
$$

For the new energy functional

$$
J[v]=\frac{1}{2} \int|\nabla v|^{2}-\int u_{\mu} v^{2}-\frac{1}{3} \int v^{3}
$$

Check the mountain-pass condition, and the energy condition.

