MATH 517 (2017-2018) Homework Three Due Date: March 9, 2018

1. Prove the following one-dimensional version of maximum principle by comparison function: Let u and w satisfy

$$u'' + V_1(x)u = 0, \quad w'' + V_2(x)w = 0$$

where $V_2 \ge V_1$. Show that if $w(x) \ne 0$ in the open interval (a, b), then u can have at most one zero on the closed interval [a, b] unless $w(a) = w(b) = 0, V_1 \equiv V_2$ and u is a constant multiple of w.

2. (a) State the narrow domain principle; (b) Prove a general version of Gidas-Ni-Nirenberg symmetry theorem: any positive solution to

$$\Delta u + f(|x|, u) = 0$$
 in $B_1, u = 0$ on ∂B_1

must be radially symmetric, where f(|x|, u) is monotone decreasing in |x|. Show that the last condition is also necessary.

3. Consider the following problem

$$\Delta u + f(u) = 0, u > 0$$
 in $\Omega, u = 0$ on $\partial \Omega$

(a) If Ω is a convex domain, show that there is a fixed neighborhood of $\partial\Omega$ (depending only on the geometry of the domain) such that $\nabla u \neq 0$. (b) When n = 2, show that the same result holds for any domain. (3) When $n \geq 3$, show that the same result holds for any domain if $f(u) = u^p, p \leq \frac{n+2}{n-2}$.

Hint: when Ω is not convex at a boundary, one can use Kelvin transform to make it convex near the point.

4. Use the method of moving planes to show that any positive solutions to

 $\Delta u - u + u^p = 0, u > 0$ in $\mathbb{R}^n, u(x) \to 0$ as $|x| \to +\infty$

must be radially symmetric around some point. (No fast-decaying principle needed.) Here p > 1. Hint: first prove that $u \leq e^{-|x|}$.

5.(a) State the fast-decaying principle. (b) Consider the following problem

$$\Delta u + f(u) = 0, u > 0 \text{ in } \mathbb{R}^n$$

where $f(u) \ge 0$ satisfies the following condition

$$\frac{f(t)}{t^{\frac{n+2}{n-2}}}$$
 is nonincreasing for $t > 0$

Show that u is radially symmetric around point.