MATH 517 (2017-2018) Homework Three

Due Date: March 9, 2018

1. Prove the following one-dimensional version of maximum principle by comparison function: Let u and w satisfy

$$
u^{\prime \prime}+V_{1}(x) u=0, \quad w^{\prime \prime}+V_{2}(x) w=0
$$

where $V_{2} \geq V_{1}$. Show that if $w(x) \neq 0$ in the open interval (a, b), then u can have at most one zero on the closed interval $[a, b]$ unless $w(a)=w(b)=0, V_{1} \equiv V_{2}$ and u is a constant multiple of w.
2. (a) State the narrow domain principle; (b) Prove a general version of Gidas-NiNirenberg symmetry theorem: any positive solution to

$$
\Delta u+f(|x|, u)=0 \text { in } B_{1}, u=0 \text { on } \partial B_{1}
$$

must be radially symmetric, where $f(|x|, u)$ is monotone decreasing in $|x|$. Show that the last condition is also necessary.
3. Consider the following problem

$$
\Delta u+f(u)=0, u>0 \text { in } \Omega, u=0 \text { on } \partial \Omega
$$

(a) If Ω is a convex domain, show that there is a fixed neighborhood of $\partial \Omega$ (depending only on the geometry of the domain) such that $\nabla u \neq 0$. (b) When $n=2$, show that the same result holds for any domain. (3) When $n \geq 3$, show that the same result holds for any domain if $f(u)=u^{p}, p \leq \frac{n+2}{n-2}$.

Hint: when Ω is not convex at a boundary, one can use Kelvin transform to make it convex near the point.
4. Use the method of moving planes to show that any positive solutions to

$$
\Delta u-u+u^{p}=0, u>0 \text { in } \mathbb{R}^{n}, u(x) \rightarrow 0 \text { as }|x| \rightarrow+\infty
$$

must be radially symmetric around some point. (No fast-decaying principle needed.) Here $p>1$. Hint: first prove that $u \lesssim e^{-|x|}$.
5.(a) State the fast-decaying principle. (b) Consider the following problem

$$
\Delta u+f(u)=0, u>0 \text { in } \mathbb{R}^{n}
$$

where $f(u) \geq 0$ satisfies the following condition

$$
\frac{f(t)}{t^{\frac{n+2}{n-2}}} \text { is nonincreasing for } t>0
$$

Show that u is radially symmetric around point.

