1. Show that if $p \leq \frac{n}{n-2}$ (Serrin's exponent) and u satisfies the following differential inequality

$$
\Delta u+u^{p} \leq 0, u \geq 0 \text { in } R^{n}
$$

then $u \equiv 0$.
2. Prove the following Hardy's inequality: If $n \geq 3$ and $\phi \in C_{0}^{\infty}\left(R^{n} \backslash\{0\}\right)$, then

$$
\frac{(n-2)^{2}}{4} \int_{R^{n}} \frac{\phi^{2}}{|x|^{2}} d x \leq \int_{R^{n}}|\nabla \phi|^{2}
$$

Show that $\frac{(n-2)^{2}}{4}$ is the best constant.
3. Consider the following equation:

$$
\Delta u+e^{u}=0 \text { in } R^{n}, n \geq 2
$$

Show that for $n \leq 9$ there is no stable solution.
Hint: test the function $e^{\gamma u} \eta^{2}$.
4. (a) Derive a monotonicity formula for solutions of

$$
\Delta u+|x|^{l} u^{p}=0 \text { in } R^{n}
$$

where $l>-2$. (b) Compute the corresponding Joseph-Lundgren exponent $p_{J L}(l, n)$.
(c) Show that for $p<p_{J L}(l, n)$ the homogeneous stable solution must be zero. What can you say about the stable solutions?
5. Consider the Allen-Cahn equation

$$
\Delta u+u-u^{3}=0,|u| \leq 1 \text { in } R^{n}
$$

(a) Prove the Modica's estimate

$$
\frac{1}{2}|\nabla u|^{2} \leq \frac{1}{4}\left(1-u^{2}\right)^{2}
$$

(b) Using Modica' estimate to prove the following monotonicity formula:

$$
\begin{gathered}
E(r)=\frac{1}{r^{n-2}} \int_{B_{r}}\left(\frac{1}{2}|\nabla u|^{2}+\frac{1}{4}\left(1-u^{2}\right)^{2}\right) \\
\frac{d E}{d r} \geq 0
\end{gathered}
$$

