MATH 517 (2017-2018) Homework Five (Last Written Homework)

 Due Date: April 6, 20181. Consider the following problem

$$
\epsilon^{2} \Delta u-V(x) u+K(x) u^{p}=0, u \in H^{1}, u>0 \text { in } \mathbb{R}^{n}
$$

where $1<p<\frac{n+2}{n-2}$ and

$$
0<C_{1} \leq V(x) \leq C_{2}, 0<C_{1} \leq K(x) \leq C_{2}
$$

Use the reduction method to construct a single spike solution.
2. Let $U_{0}=c_{n}\left(\frac{1}{1+|y|^{2}}\right)^{\frac{n-2}{2}}$ be the radial solution of

$$
\Delta U+U^{\frac{n+2}{n-2}}=0
$$

Show that it is nondegenerate, i.t., all bounded solutions to

$$
\Delta \phi+\frac{n+2}{n-2} U_{0}^{\frac{4}{n-2}} \phi=0
$$

are given by $Z_{0}, Z_{j}, j=1, \ldots, n$. Here $Z_{0}=\frac{n-2}{2} U_{0}+x \cdot \nabla U_{0}$.
3. Use reduction method to construct a solution to

$$
\Delta u+u^{\frac{n+2}{n-2}-\epsilon}=0, u>0 \text { in } \Omega, u=0 \text { on } \partial \Omega
$$

concentrating on a minimum of the Robin function $R(\xi, \xi)$, as $\epsilon \rightarrow 0+$.
4. (a) Let $w(t)$ be the unique homoclinic solution to

$$
w^{\prime \prime}-w+w^{p}=0,-\infty<x<+\infty, w^{\prime}(0)=0, w(\pm \infty)=0
$$

Show that the first eigenvalue is

$$
\lambda_{1}=\frac{(p-1)(p+3)}{4}, Z_{1}(x)=w^{\frac{p+1}{2}}
$$

(b) Prove that all bounded solutions to

$$
\Delta \phi-\phi+p w^{p-1}(x) \phi=0 \text { in } \mathbb{R}^{2}
$$

are

$$
\phi=c w^{\prime}(x)+d_{1} Z_{1}(x) \cos \left(\sqrt{\lambda_{1}} y\right)+d_{2} Z_{1}(x) \sin \left(\sqrt{\lambda_{1}} y\right)
$$

5. Consider the following problem

$$
\epsilon^{2} \Delta u+a(x)\left(u-u^{3}\right)=0 \quad x \in \mathbb{R}^{2}
$$

Let Γ be a closed and compact curve in \mathbb{R}^{2}. We want to construct a solution whose zero level set lying close to Γ.
Derive the necessary condition for Γ. Set-up the inner-outer gluing procedure. Derive the reduced Jacobi equation.

