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Abstract

In this paper, we utilize the variational structure to study the existence and asymptotic profiles
of ground states in multi-population ergodic Mean-field Games systems subject to some local
couplings with mass critical exponents. Of concern the attractive and repulsive interactions, we
impose some mild conditions on trapping potentials and firstly classify the existence of ground
states in terms of intra-population and interaction coefficients. Next, as the intra-population and
inter-population coefficients approach some critical values, we show the ground states blow up
at one of global minima of potential functions and the corresponding profiles are captured by
ground states to potential-free Mean-field Games systems for single population up to translations
and rescalings. Moreover, under certain types of potential functions, we establish the refined
blow-up profiles of corresponding ground states. In particular, we show that the ground states
concentrate at the flattest global minima of potentials.

Keywords: Multi-population Mean-field Games Systems; Variational Approaches; Constrained
Minimization; Blow-up Solutions

1 Introduction
Mean-field Games systems are proposed to describe decision-making among a huge number of indis-
tinguishable rational agents. In real world, various problems involve numerous interacting players,
which causes theoretical analysis and even numerical study become impractical. To overcome this
issue, Huang et al. [8] and Lasry et al. [9] borrowed the ideas arising from particle physics and
introduced Mean-field Games theories and systems independently. For their rich applications in eco-
nomics, finance, management, etc, we refer the readers to [7].

Focusing on the derivation of Mean-field Games systems, we assume that the i-th agent with
i = 1, · · · , n satisfies the following controlled stochastic differential equation (SDE):

dXi
t = −γ

i
tdt +

√
2dBi

t, Xi
0 = xi ∈ RN ,
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where xi is the initial state, γi
t denotes the controlled velocity and Bi

t represent the independent Brow-
nian motion. Suppose all agents are indistinguishable and minimize the following average cost:

J(γt) := E
∫ T

0
[L(γt) + V(Xt) + f (m(Xt))]dt + uT (XT ), (1.1) longsenseexpectation

where L is the Lagrangian, V describes the spatial preference and function f depends on the popu-
lation density. By applying the standard dynamic programming principle, the coupled PDE system
consisting of Hamilton–Jacobi–Bellman equation and Fokker-Planck equation is formulated, in which
the second equation characterize the distribution of the population. The crucial assumption here is all
agents are homogeneous and minimize the same cost (1.1). Whereas, in some scenarios, the game
processes involve several classes of players with distinct objectives and constraints. Correspondingly,
the distributions of games can not be modelled by classical Mean-field Games systems. Motivated
by this, multi-population Mean-field Games systems were proposed and the derivations of multi-
population stationary problems used to describe Nash equilibria are shown in [6]. For some relevant
results of the study of multi-population Mean-field Games systems, we refer the readers to [3].

The objective of this paper is to study the following stationary two-population second order Mean-
field Games system: 

−∆u1 + H(∇u1) + λ1 = V1(x) + f1(m1,m2), x ∈ RN ,
∆m1 + ∇ · (m1∇H(∇u1)) = 0, x ∈ RN ,
−∆u2 + H(∇u2) + λ2 = V2(x) + f2(m1,m2), x ∈ RN ,
∆m2 + ∇ · (m2∇H(∇u2)) = 0, x ∈ RN ,∫
RN m1 dx =

∫
RN m2 dx = 1,

(1.2) ss1

where H : RN → R is a Hamiltonian, (m1,m2) represents the population density, (u1, u2) denotes the
value function and ( f1, f2) is the coupling. Here Vi(x), i = 1, 2 are potential functions and (λ1, λ2) ∈
R × R denotes the Lagrange multiplier. In particular, Hamiltonian H is in general chosen as

H(p) = CH |p|γ with CH > 0 and γ > 1. (1.3) MFG-H

In light of the definition, the corresponding Lagrangian is given by

L = CL|γ|
γ′ , γ′ =

γ

γ − 1
> 1, CL =

1
γ′

(γCH)
1

1−γ > 0.

From the viewpoint of variational methods, the single population counterpart of (1.2) has been
studied intensively when the coupling f is local and satisfies f = −emα with constant e > 0, see
[2, 5, 10]. In detail, there exists a mass critical exponent α = α∗ := γ′

N such that only when α < α∗,
the stationary problem admits ground states for any e > 0. Moreover, when α = α∗, one can find
e∗ > 0 such that the stationary Mean-field Games system has ground states only for e < e∗ [5]. In this
paper, we shall extend the above results into two-species stationary Mean-field Games system (1.2).
Similarly as in [5], we consider the mass critical exponent case and define

f1 = −α1m
γ′

N
1 − βm

γ′

2N −
1
2

1 m
1
2+

γ′

N
2 , f2 = −α2m

γ′

N
2 − βm

γ′

2N −
1
2

2 m
1
2+

γ′

N
1 , (1.4) alpha12betadef

where αi > 0, i = 1, 2 and β measure the strengths of intra-population and inter-population inter-
actions, respectively. We shall employ the variational approach to classify the existence of ground
states and analyze their asymptotic profiles to (1.2) in terms of αi, i = 1, 2 and β. Noting the forms
of nonlinearities shown in (1.4), we assume γ′ > N here and in the sequel for our analysis; otherwise
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the strong singularities might cause difficulties for finding ground states to (1.2) while taking limits.
It is an intriguing but challenging problem to explore the existence of global minimizers in the case
of 1 < γ′ ≤ N.

By employing the variational methods, the existence of ground states to (1.2) is associated with
the following constrained minimization problem:

eα1,α2,β = inf
(m1,w1,m2,w2)∈K

E(m1,w1,m2,w2), (1.5) problem1p1

where

Eα1,α2,β(m1,w1,m2,w2) :=
∑
i=1,2

(
CL

∫
RN

∣∣∣∣∣wi

mi

∣∣∣∣∣γ′mi dx +
∫
RN

Vimi dx −
N

N + γ′
αi

∫
RN

m1+ γ
′

N
i dx

)
−

2βN
N + γ′

∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx, (1.6) energy1p3

and K = K1 × K2 with

Ki =

{
(mi,wi)

∣∣∣∣∣ − ∫
RN
∇mi · ∇φ dx +

∫
RN

wi · ∇φ dx = 0, ∀φ ∈ C∞c (RN),

mi ∈ W1,γ′(RN), wi ∈ L1(RN),
∫
RN

mi dx = 1,
∫
RN

Vimi dx < +∞, mi ≥ 0 a.e.
}

(1.7) mathcalkidefined

for i = 1, 2. Due to the technical restriction of our analysis, we impose the following assumptions on
potential functions Vi(x) with i = 1, 2:

(H1).

inf
x∈RN

Vi(x) = 0, Vi ∈ C1(RN) and lim
|x|→+∞

Vi(x) = +∞; (1.8) Vicondition1

(H2).

lim inf
|x|→+∞

Vi(x)
|x|b

> 0, lim sup
|x|→+∞

Vi(x)
eδ|x|

< +∞ with constants b > 0, δ > 0. (1.9) Vicondition2

Similarly as shown in [5], the existence of ground states to (1.2) has a strong connection with the
following minimization problem for the single species potential-free Mean-field Games System:

(M∗)
γ′

N = inf
(m,w)∈A

( ∫
RN CL

∣∣∣w
m

∣∣∣γ′m dx
)( ∫
RN dx

) γ′
N

1
1+ γ

′

N

∫
RN m1+ γ

′

N dx
, (1.10) GNinequalitybest

where

A :=
{
(m,w) ∈ W1,γ′(RN) ∩ L1(RN)

∣∣∣∣∣ − ∫
RN
∇m · ∇φ dx +

∫
RN

w · ∇φ dx = 0, ∀φ ∈ C∞c (RN),

0 ≤ m . 0,
∫
RN

m|x|b dx < +∞ with b > 0 given by (1.9)
}
.
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We would like to point out that it was shown in Theorem 1.2 [5] that problem (1.10) is attainable and
admits at least a minimizer satisfying

−∆u +CH |∇u|γ − γ′

NM∗ = −m
γ′

N ,
∆m +CHγ∇ · (m|∇u|γ−2∇u) = 0, w = −CHγm|∇u|γ−2∇u,∫
RN m dx = M∗, 0 < m < Ce−δ0 |x|,

(1.11) equmpotentialfree

where δ0 > 0 is some constant. As a consequence, the following Gagliardo-Nirenberg type’s inequal-
ity holds:

N
N + γ′

∫
RN

m1+ γ
′

N dx ≤
1
a∗

(
CL

∫
RN

∣∣∣∣∣wm
∣∣∣∣∣γ′m dx

)( ∫
RN

m dx
) γ′

N

∀ (m,w) ∈ A, (1.12) GNinequalityused

where a∗ := (M∗)
γ′

N . With the aid of (1.12), we shall establish several results for the existence and
non-existence of global minimizers to (1.2) and further study the blow-up behaviors of ground states
in terms of αi, i = 1, 2 and β defined in (1.4). We emphasize that αi > 0, i = 1, 2 represent the self-
focusing of the i-th component and β > 0 denotes the attractive interaction, while β < 0 represents
the repulsive interaction.

In the next subsection, we shall first state our existence results for attractive and repulsive interac-
tions then discuss the corresponding blow-up profiles results.

1.1 Main Results
⟨thm11multi⟩Theorem 1.1. Suppose that Vi(x) with i = 1, 2 satisfy (H1) and (H2) given by (1.8) and (1.9), respec-

tively. Define a∗ := (M∗)
γ′

N with M∗ given in (1.11), then we have

(i). if 0 < α1, α2 < a∗ and −∞ < β < β∗ :=
√

(a∗ − α1)(a∗ − α2), problem (1.5) has at least
one global minimizer (m1,a,w1,a,m2,a,w2,a) ∈ K . Correspondingly, there exists a solution
(m1,a,m2,a, u1,a, u2,a) ∈ W1,p(RN)×W1,p(RN)×C2(RN)×C2(RN) with any p > 1 and (λ1,a, λ2,a) ∈
R × R such that

−∆u1 +CH |∇u1|
γ + λ1 = V1(x) − α1m

γ′

N
1 − βm

γ′

2N −
1
2

1 m
1
2+

γ′

N
2 , x ∈ RN ,

∆m1 +CHγ∇ · (m1|∇u1|
γ−2∇u1) = 0, x ∈ RN ,

−∆u2 +CH |∇u2|
γ + λ2 = V2(x) − α2m

γ′

N
2 − βm

γ′

2N −
1
2

2 m
1
2+

γ′

N
1 , x ∈ RN ,

∆m2 +CHγ∇ · (m2|∇u2|
γ−2∇u2) = 0, x ∈ RN ,∫

RN m1 dx =
∫
RN m2 dx = 1;

(1.13) ss1thm11

(ii). either α1 > a∗ or α2 > a∗ or β > β∗ := 2a∗−α1−α2
2 , problem (1.5) has no minimizer.

Theorem 1.1 indicates that when the self-focusing cofficients αi, i = 1, 2 are small and the in-
teraction is repulsive, or attractive but with the weak effect, problem (1.5) admits minimizers and
correspondingly, there exist classical solutions to (1.13). Whereas, if the self-focusing effects and the
attractive interaction are strong, problem (1.5) does not have any minimizer. In fact, there are some
gap regions for the existence results shown in Theorem 1.1 since we have β∗ ≥ β∗ and the equality
holds only when α1 = α2. It is also an interesting problem to explore the case of αi < a∗, i = 1, 2 and
β∗ < β < β

∗.
Of concern one borderline case β = β∗ = β∗ with α1 = α2 < a∗ shown in Theorem 1.1, we further

obtain
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⟨thm12⟩Theorem 1.2. Assume all conditions in Theorem 1.1 hold and suppose Vi(x), i = 1, 2 satisfy

inf
x∈RN

(V1(x) + V2(x)) = 0. (1.14) moreassumptionforthm12

Then if α := α1 = α2 < a∗ and 0 < β = β∗ = β∗ = a∗ − α < a∗, we have problem (1.5) has no
minimizer.

Theorem 1.2 demonstrates that when the self-focusing effects are subcritical but the attractive
interaction is strong and under critical case, there is no minimizer to problem (1.5). Besides the
borderline case discussed in Theorem 1.2, we also study the case of αi = a∗ for i = 1 or 2 and obtain

⟨thmfinalexistence⟩Theorem 1.3. Assume all conditions in Theorem 1.1 hold. If one of the following conditions holds:

(i). α1 = α2 = a∗ and −∞ < β ≤ 0;

(ii). α1 = a∗, 0 < α2 < a∗ and 0 ≤ β ≤ β∗ = a∗−α2
2 ,

then we have problem (1.5) does not admit any minimizer.

Remark 1.1. We remark that when α2 = a∗, 0 < α1 < a∗ and 0 ≤ β ≤ β∗, (1.5) also does not have
any minimizer since m1-population and m2-population are symmetric in (1.2),

Theorem 1.3 shows that if one of self-focusing coefficients are critical, system (1.2) does not
admit the ground state. We next summarize results for the study of blow-up profiles of ground states
in some singular limits, in which two cases are concerned: attractive interactions with β > 0 and
repulsive ones with β < 0. Before stating our results, we give some preliminary notations. Define

Zi := {x|Vi(x) = 0}, i = 1, 2. (1.15) zerosdefinition20241005

For any p > 0, we denote

Hm̄,p(y) :=
∫
RN
|x + y|pm̄(x) dx, and ν̄p := inf

(m̄,w̄)∈M
inf

y∈RN
Hm̄,p(y), (1.16) Hmoibarnupi

with

M := {(m̄, w̄)|∃u such that (m̄, w̄, u) satisfies (1.11) and (m̄, w̄) is a minimizer of (1.10)}. (1.17) mathcalMdefinedbythm17

The following two theorems address the attractive case with (α1, α2) ↗ (a∗ − β, a∗ − β) and
Z1 ∩ Z2 , ∅, which are

⟨thm13attractive⟩Theorem 1.4. Assume that Vi(x) satisfies (1.8), (1.9) and Z1 ∩ Z2 , ∅. Let 0 < β < a∗, 0 < α1, α2 <
a∗−β := α∗β, (m1,a,w1,a,m2,a,w2,a) be a minimizer of eα1,α2,β with a := (α1, α2) and (m1,a, u1,a,m2,a, u2,a)
be a solution of (1.13). Define a∗β := (α∗β, α

∗
β) = (a∗ − β, a∗ − β), then as a↗ a∗β, we have for i = 1, 2,

lim
a↗a∗β

( ∫
RN

CL

∣∣∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a dx −
N(αi + β)

N + γ′

∫
RN

m
1+ γ

′

N
i,a dx

)
= 0, (1.18) thm13conclusion1

lim
a↗a∗β

∫
RN

V1(x)m1,a + V2(x)m2,a dx = 0, lim
a↗a∗β

∫
RN

(
m

1
2+

γ′

2N
1,a − m

1
2+

γ′

2N
2,a

)2
dx = 0, (1.19) thm13conclusion2
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lim
a↗a∗β

CL

∫
RN

∣∣∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a dx→ +∞ for both i = 1, 2 (1.20) 202401719conclu

and

lim
a↗a∗β

∫
RN

∣∣∣w1,a
m1,a

∣∣∣γ′m1,a dx∫
RN

∣∣∣w2,a
m2,a

∣∣∣γ′m2,a dx
= 1, lim

a↗a∗β

∫
RN m1+ γ

′

N
1,a dx∫

RN m1+ γ
′

N
2,a dx

= 1. (1.21) thm13conclusionpart23

Moreover, define

ε := εa :=
(
CL

∫
RN

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′m1,a

)− 1
γ′

→ 0. (1.22) defvarepsilon316

Let xi,ε, i = 1, 2 be one global minimal point of ui,a and yi,ε, i = 1, 2 be one global maximal point of
mi,a. Then we have up to a subsequence ∃x0 s.t. V1(x0) = V2(x0) = 0, and

xi,ε, yi,ε → x0, as a↗ a∗β;

moreover, we find

lim sup
ε→0+

|x1,ε − x2,ε|

ε
< +∞, (1.23) x1varepsilonminusx2varepsilon

and

lim sup
ε→0+

|xi,ε − y j,ε|

ε
< +∞, i, j = 1, 2. (1.24) moreoverholdsfinal

In addition, let

ui,ε := ε
2−γ
γ−1 ui,a(εx + x1,ε), mi,ε := εNmi,a(εx + x1,ε), wi,ε := εN+1wi,a(εx + x1,ε), (1.25) scalingthm31profile

then there exist u ∈ C2(RN), 0 ≤ m ∈ W1,γ′(RN), and w ∈ Lγ
′

(RN) such that

ui,ε → u in C2
loc(R

N), mi,ε → m in Lp(RN), ∀p ≥ 1, wi,ε ⇀ w in Lγ
′

(RN), i = 1, 2. (1.26) mlimiting20923

In particular, (m,w) is a minimizer of problem (1.10) and (u,m,w) solves
−∆u +CH |∇u|γ − γ′

N = −a∗m
γ′

N , x ∈ RN ,
∆m +CHγ∇ · (m|∇u|γ−2∇u) = 0, w = −CHγ|∇u|γ−2∇u, x ∈ RN ,∫
RN m dx = 1.

(1.27) satisfythm13eqsinglezeropotential

Theorem 1.4 implies that as (α1, α2) ↗ (a∗ − β, a∗ − β), there are concentration phenomena in
the multi-population Mean-field Games system (1.2) with attractive interactions under the mass crit-
ical exponent case. In addition, the basic blow-up profiles of ground states are given in Theorem
1.4. Moreover, by imposing the local polynomial expansion on potential functions, we obtain the
following results of refined blow-up profiles:

⟨thm16refinedblowup⟩Theorem 1.5. Assume all conditions in Theorem 1.4 hold. Suppose that V1(x) and V2(x) have l
common global minimum points, i.e., Z1 ∩ Z2 = {x1, · · · , xl ∈ R

N}, and there exist d > 0, ai j > 0,
pi j > 0 with i = 1, 2, j = 1, · · · , l such that

Vi = ai j|x − x j|
pi j + O(|x − x j|

pi j+1) for 0 < |x − x j| < d. (1.28) Vi125negativebeta2024
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Let p j := min{p1 j, p2 j}, p0 := max1≤ j≤l p j and

µ j = lim
x→x j

V1(x) + V2(x)
|x − x j|

p j
=


a1 j, if p1 j < p2 j,
a1 j + a2 j, if p1 j = p2 j,
a2 j, if p1 j > p2 j.

(1.29) mujthm1point5

Define Z̄ := {x j|p j = p0, j = 1, · · · , l}, µ = min{µ j|x j ∈ Z̄} and Z0 = {x j|x j ∈ Z̄ and µ j = µ}. Let
(ui,ε,mi,ε,wi,ε), i = 1, 2 be given as (1.25). Then we have

lim
ε→0+

ε( 2γ′

p0µν̄p0 a∗
) 1
γ′+p0
(
a∗ − α1+α2+2β

2

) 1
γ′+p0

= 1, (1.30) 136refinedbetanegativenoteshold

and

x1,ε − x0

ε
→ y0 with x0 ∈ Z0 and y0 ∈ R

N satis f yingHm,p0(y0) = ν̄p0 , (1.31) 136refinedbetanegativenoteshold2

where m and ν̄p0 are given in (1.26) and (1.16), respectively.

Next, we discuss the blow-up profiles of ground states to (1.2) under repulsive interactions. We
remark that on one hand, one has shown in Theorem 1.1 that (1.2) admits ground states when 0 <
α1, α2 < a∗ and β ≤ 0; on the other hand, Theorem 1.3 indicates that (1.5) does not have any minimizer
when α1 = α2 = a∗ and β ≤ 0. Similarly as discussed in the proof of Theorem 1.4, we investigate the
concentration phenomena in (1.2) with repulsive interactions and obtain

⟨thm15blowupnegative⟩Theorem 1.6. Assume that Vi(x) with i = 1, 2 satisfy (H1) and (H2) given by (1.8) and (1.9), respec-
tively. Suppose

Z1 ∩ Z2 = ∅, (1.32) c26notesbetanegative

where Z1 and Z2 are given by (1.15). Let β < 0, 0 < α1, α2 < a∗, (m1,a,w1,a,m2,a,w2,a) be a minimizer
of eα1,α2,β with a := (α1, α2) and (m1,a, u1,a,m2,a, u2,a) be a solution of (1.13). Define a∗ := (a∗, a∗), then
we have as a↗ a∗,

lim
a↗a∗

( ∫
RN

CL

∣∣∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a dx +
∫
RN

Vimi,a dx −
Nαi

N + γ′

∫
RN

m1+ γ
′

N
i,a dx

)
= 0; (1.33) C7notesnegative

lim
a↗a∗

∫
RN

m
1
2+

γ′

2N
1,a m

1
2+

γ′

2N
2,a dx = 0, (1.34) C8notesnegative

and ∫
RN

V1m1,a + V2m2,a dx→ 0; (1.35) C9notesnegative

CL

∫
RN

∣∣∣wi,a

mi,a

∣∣∣γ′mi,a dx→ +∞,
∫
RN

m1+ γ
′

N
i,a dx→ +∞, i = 1, 2. (1.36) C10betanegative

Moreover, define

ε̂i :=
(
CL

∫
RN

∣∣∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a dx
)− 1

γ′

→ 0 as a↗ a∗, i = 1, 2.
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Let xi,ε̂, i = 1, 2 be a global minimum point of ui,a and

mi,ε̂ = ε̂
N
i mi,a(ε̂ix + xi,ε̂), wi,ε̂ = ε̂

N+1
i wi,a(ε̂ix + xi,ε̂), ui,ε̂ = ε̂

2−γ
γ−1

i ui,a(ε̂ix + xi,ε̂), (1.37) hatepsilonrescaling20240723

then there exist (ui,mi,wi) ∈ C2(RN) ×W1,γ′(RN) × Lγ
′

(RN) with i = 1, 2 such that

ui,ε → ui in C2
loc(R

N), mi,ε → mi in Lp(RN), ∀p ≥ 1, wi,ε ⇀ wi in Lγ
′

(RN), i = 1, 2. (1.38) mlimiting0923

In particular, (mi, ui,wi), i = 1, 2 both solve system (1.27).

Remark 1.2. We point out that unlike the attractive case discussed in Theorem 1.4 and Theorem 1.5,
ε̂1 and ε̂2 given in Theorem 1.6 both converge to zero but might not be in the same order since β < 0
and the behaviors of V1 and V2 might be distinct around global minimum points locally.

Theorem 1.6 indicates that when the interaction is repulsive, there are concentration phenomena
within system (1.2) in some singular limit of parameters α1, α2 and β. Moreover, similarly as the
conclusion shown in Theorem 1.5, we explore the refined blow-up profiles and obtain

⟨thm17multipopulation⟩Theorem 1.7. Assume all conditions in Theorem 1.6 hold. Suppose that each Vi, i = 1, 2 has only
one global minimum point xi with x1 , x2 and there exist d > 0, bi > 0 and pi > 0 such that

Vi(x) = bi|x − xi|
pi + O(|x − xi|

pi+1) for 0 < |x − xi| < d. (1.39) 52viinnotesbetacopy

Define for i = 1, 2,

ϵ̃i := (a∗ − αi)
1

γ′+pi and assume ∃ s ∈ (0, 1] such that ϵ̃1 = O(ϵ̃ s
2). (1.40) assumethm17notecopybeta

Let (m1,a,w1,a,m2,a,w2,a) be a minimizer of (1.5) and (mi,ε̂,wi,ε̂, ui,ε̂) be defined as (1.37). Then we have

xi,ε̂ − xi

ε̂i
→ yi0 such that Hmi,pi(yi0) = ν̄pi , (1.41) ?136refinedbetanegativenoteshold2repulsive?

where mi and ν̄pi , i = 1, 2 are given by (1.38) and (1.16), respectively. Moreover, the following
asymptotics hold as a↗ a∗,

ε̂
γ′

i = (1 + o(1))
(
γ′(a∗ − αi)
a∗biν̄pi pi

) 1
γ′+pi

, i = 1, 2.

Remark 1.3. In Theorem 1.7, we discuss the refined blow-up profiles of ground states when the in-
teraction coefficient is non-positive under some technical assumption (1.40). We would like to remark
that this condition is technical and could be improved if the refined decay estimate of population
density m is given. In fact, the improved condition will be exhibited in Section 5.

The rest of this paper is organized as follows: In Section 2, we give some preliminary results
for the existence and properties of the solutions to Hamilton-Jacobi equations and Fokker-Planck
equations, which are used to investigate the existence and blow-up behaviors of minimizers to problem
(1.5) . Section 3 is devoted to the exploration of the effect of the potentials Vi(x), i = 1, 2 and
coefficients α1, α2, β on the existence of minimizers. Correspondingly, the proof of Theorems 1.1-
1.3 will be finished. In Section 4, we perform the blow-up analysis of minimizers under the case of
attractive interactions β > 0, and show the conclusions of Theorem 1.4 and Theorem 1.5. Finally, in
Section 5, we focus on the asymptotic profiles of ground states with β < 0 and complete the proof of
Theorem 1.6 and Theorem 1.7.
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2 Preliminary Results
⟨preliminary⟩ In this section, we collect some preliminaries for the existence and regularities of solutions to Hamilton-

Jacobi equations and Fokker-Planck equations, respectively. Furthermore, some useful equalities and
estimates satisfied by the solution to the single population Mean-field Games system will be listed.

2.1 Hamilton-Jacobi Equations
?⟨subsection1⟩? Consider the following second order Hamilton-Jacobi equations:

−∆uk +CH |∇uk|
γ + λk = Vk(x) + fk(x), x ∈ RN , (2.1) HJB-regularity

where γ > 1 is fixed, CH is a given positive constant independent of k and (uk, λk) denote the solutions
to (2.1). For the gradient estimates of uk, we find

⟨sect2-lemma21-gradientu⟩Lemma 2.1. Suppose that fk ∈ L∞(RN) satisfies ∥ fk∥L∞ ≤ C f , |λk| ≤ λ, and the potential functions
Vk(x) ∈ C0,θ

loc(R
N) with θ ∈ (0, 1) satisfy 0 ≤ Vk(x) → +∞ as |x| → +∞, and ∃ R > 0 sufficiently large

such that

0 < C1 ≤
Vk(x + y)

Vk(x)
≤ C2, for all k and all |x| ≥ R with |y| < 2,

where the positive constants C f , λ, R, C1 and C2 are independent of k. Let (uk, λk) ∈ C2(RN) × R be a
sequence of solutions to (2.1). Then, for all k,

|∇uk(x)| ≤ C(1 + Vk(x))
1
γ , for all x ∈ RN ,

where constant C depends on CH, C1, C2, λ, γ, N and C f .
In particular, if there exist b ≥ 0 and CF > 0 independent of k, such that following conditions hold

on Vk

C−1
F (max{|x| −CF , 0})b ≤ Vk(x) ≤ CF(1 + |x|)b, for all k and x ∈ RN , (2.2) cirant-Vk

then we have

|∇uk| ≤ C(1 + |x|)
b
γ , for all k and x ∈ RN ,

where constant C depends on CH, CF , b, λ, γ, N and C f .

Proof. See Lemma 3.1 in [5] and the argument is the slight modification of the proof of Theorem 2.5
in [2]. □

For the lower bound of uk, we have
⟨lowerboundVkgenerallemma22⟩Lemma 2.2 (C.f. Lemma 3.2 in [5]). Suppose all conditions in Lemma 2.1 hold. Let uk be a family

of C2 solutions and assume that uk(x) are bounded from below uniformly. Then there exist positive
constants C3 and C4 independent of k such that

uk(x) ≥ C3V
1
r′

k (x) −C4, ∀x ∈ Rn, for all k. (2.3) 29uklemma22

In particular, if the following conditions hold on Vk

C−1
F (max{|x| −CF , 0})b ≤ Vk(x) ≤ CF(1 + |x|)b, for all k and x ∈ Rn, (2.4) cirant-Vk-1
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where constants b > 0 and CF are independent of k, then we have

uk(x) ≥ C3|x|1+
b
r′ −C4, for all k, x ∈ Rn. (2.5) usolutionlowerestimatepre-11

If b = 0 in (2.4) and there exist R > 0 and δ̂ > 0 independent of k such that

fk + Vk − λk > δ̂ > 0 for all |x| > R, (2.6) ?lemma22holdsbeforeconclusion?

then (2.5) also holds.

The existence result of the classical solution to (2.1) is summarized as
⟨lemma22preliminary⟩Lemma 2.3 (C.f. Lemma 3.3 in [5]). Suppose Vk + fk are locally Hölder continuous and bounded

from below uniformly in k. Define

λ̄k := sup{λ ∈ R | (2.1) has a solution uk ∈ C2(Rn)}.

Then

(i). λ̄k are finite for every k and (2.1) admits a solution (uk, λk) ∈ C2(Rn)×R with λk = λ̄k and uk(x)
being bounded from below (may not uniform in k). Moreover,

λ̄k = sup{λ ∈ R | (2.1) has a subsolution uk ∈ C2(Rn)}.

(ii). If Vk satisfies (2.2) with b > 0, then uk is unique up to constants for fixed k and there exists a
positive constant C independent of k such that

uk(x) ≥ C|x|
b
r′ +1 −C,∀x ∈ Rn. (2.7) lowerboundusect2

In particular, if Vk ≡ 0 in (2.1) and there exists σ > 0 independent of k such that

fk − λk ≥ σ > 0, for |x| > K2,

where K2 > 0 is a large constant independent of k, then (2.7) also holds.

(iii). If Vk satisfies (1.9), then there exist uniformly bounded from below classical solutions uk to
problem (2.1) satisfying estimate (2.3).

2.2 Fokker-Planck Equations
?⟨subsection2⟩? Of concern the second order Fokker-Planck equation

−∆m + ∇ · w = 0, x ∈ RN , (2.8) sect2-FP-eq

where w is given and m denotes the solution, we have the following results for the regularity:
⟨lemma21-crucial-cor⟩Lemma 2.4. Let (m,w) ∈

(
L1(RN) ∩W1,q̂(RN)

)
× L1(RN) be a solution to (2.8) with

q̂ :=


N

N−γ′+1 if γ′ < N,

∈
(

2N
N+2 ,N

)
if γ′ = N,

γ′ if γ′ > N.

Assume that
Λγ′ :=

∫
Rn
|m|
∣∣∣∣wm ∣∣∣∣γ′ dx < ∞,

then we have w ∈ L1(RN) ∩ Lq̂(RN) and there exists C = C(Λγ′ , ∥m∥L1(RN )) > 0 such that

∥m∥W1,q̂(RN ), ∥w∥L1(RN ), ∥w∥Lq̂(RN ) ≤ C.

10



Proof. See the proof of Lemma 3.5 in [5]. □

Next, we state some useful identities satisfied by the single population Mean-field Games system.
First of all, we have the exponential decay estimates of m when some condition is imposed on the
Lagrange multiplier, which is

⟨mdecaylemma⟩Lemma 2.5 ( C.f. Proposition 5.3 in [2] ). Assume γ′ > N. Let (u, λ,m) ∈ C2(Rn) × R ×
(
W1,γ′(Rn) ∩

L1(Rn)
)

with u bounded from below, and λ < 0 be the solution of the following Mean-field Games
system {

−∆u +CH |∇u|γ + λ = −mν, x ∈ RN ,
∆m +CHγ∇ · (m|∇u|γ−2∇u) = 0, x ∈ RN ,

(2.9) 26preliminaryfinal

where ν ∈ (0, γ
′

N ]. Then, we have there exist κ1, κ2 > 0 such that

m(x) ≤ κ1e−κ2 |x| for all x ∈ RN .

With the aid of Lemma 2.5, we have the following results for the Pohozaev identities satisfied by
the solution to system (2.9):

⟨poholemma⟩Lemma 2.6 (C.f. Proposition 3.1 in [4]). Assume all conditions in Lemma 2.5 hold and denote
w = −CHγm|∇u|γ−2∇u. Then we have the following Pohozaev type identities hold: λ

∫
RN m dx = − (ν+1)γ′−Nν

(α+1)γ′

∫
RN mν+1 dx,

CL

∫
RN m
∣∣∣w
m

∣∣∣γ′ dx = Nν
(ν+1)γ′

∫
RN mν+1 dx = (γ − 1)CH

∫
RN m|∇u|γ dx.

3 Existence of ground states
⟨sec-existence⟩ In this section, we shall discuss the existence of ground states to system (1.2) under some conditions

of coefficients αi with i = 1, 2 and β. To this end, we first estimate the energy Eα1,α2,β(m1,w1,m2,w2)
from below. Then, if the energy is shown to have some finite lower bound and the minimizers is
proved to exist, we will find the existence of ground states to (1.2) by the standard duality argument.
Before stating our main results for the existence of minimizers, we give some preliminary definitions,
which are

ei
αi

:= inf
(m,w)∈Ki

Ei
αi

(m,w), i = 1, 2, (3.1) problem51innotescopy

where Ki is given by (1.7) and

Ei
αi

(m,w) = CL

∫
RN

∣∣∣∣∣wm
∣∣∣∣∣γ′m dx +

∫
RN

Vim dx −
αi

1 + γ′

N

∫
RN

m1+ γ
′

N dx. (3.2) mathcalealphaii089

Concerning the existence of ground states in (1.2), we have

⟨lemma31existenceleastenergy⟩Lemma 3.1. Assume all conditions in Theorem 1.1 hold, then we have

(i). if 0 < α1 < a∗, 0 < α2 < a∗ and −∞ < β < β∗ :=
√

(a∗ − α1)(a∗ − α2), then problem (1.5) has a
global minimizer (m1,a,w1,a,m2,a,w2,a) ∈ K;

(ii). either α1 > a∗ or α2 > a∗ or β > β∗ := 2a∗−α1−α2
2 , then problem (1.5) has no minimizer.
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Proof. (i). Invoking inequality (1.12) and condition (1.8) satisfied by Vi with i = 1, 2, we have for
any (m1,w1,m2,w2) ∈ K ,

Eα1,α2,β(m1,w1,m2,w2)

≥

2∑
i=1

∫
RN

Vimi dx +
N

N + γ′

[ 2∑
i=1

(a∗ − αi)
∫
RN

m1+ γ
′

N
i dx − 2β

∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx

]
≥

2(β∗ − β)N
N + γ′

∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx, (3.3) citeinequality1

where Eα1,α2,β is given by (1.6). Then, letting {(m1,k,w1,k,m2,k,w2,k} ⊂ K with k ∈ Z+ being a minimiz-
ing sequence of eα1,α2,β, one has from (3.3) and −∞ < β < β∗ that

sup
k

2∑
i=1

∫
RN

Vimi,k dx < +∞, sup
k

∫
RN

m
1
2+

γ′

2N
1,k m

1
2+

γ′

2N
2,k dx < +∞, (3.4) between31and32embedding

and then

sup
k

2∑
i=1

∫
RN

∣∣∣∣∣wi,k

mi,k

∣∣∣∣∣γ′mi,k dx < +∞. (3.5) moreimportantthm11justminimizer

Thanks to Lemma 2.4 and (3.5), one obtains as k → +∞, for i = 1, 2,

(mi,k,wi,k) ⇀ (mi,a,wi,a) in W1,γ′(RN) × Lγ
′

(RN).

Moreover, by the compactly Sobolev embedding (C.f. Lemma 5.1 in [5]) and Fatou’s lemma, we find
from (3.4) that

mi,k → mi,a in L1+ γ
′

N (RN) ∩ L1(RN).

Then it follows that (m1,a,w1,a,m2,a,w2,a) ∈ K is a minimizer.
(ii). Let M be given by (1.17). Since γ′ > N, by using Morrey’s embedding, the standard

elliptic regularity and the maximum principle, one follows the idea shown in [1] then obtain for any
(m,w) ∈ M, m(x) > 0 for all x ∈ RN . Next, we utilize some rescaled pair of (m0,w0) ∈ M to analyze
the bound of Eα1,α2,β from below.

Let (m0,w0) ∈ M and define

(mt,wt) =
( tN

M∗
m0(t(x − x0)),

tN+1

M∗
w0(t(x − x0))

)
, for t > 0 and x0 ∈ R

N . (3.6) byusingintro1

From Lemma 2.5 and Lemma 2.6, we have that

CL

∫
RN

∣∣∣∣∣w0

m0

∣∣∣∣∣γ′m0 dx = 1,
∫
RN

m1+ γ
′

N
0 dx =

N + γ′

N
,

∫
RN

m0 dx = M∗. (3.7) combine20247131

Combining (3.6) with (3.7), one finds

CL

∫
RN

∣∣∣∣∣wt

mt

∣∣∣∣∣γ′mt dx = CL
tγ
′

M∗

∫
RN

∣∣∣∣∣w0

m0

∣∣∣∣∣γ′m0 dx =
tγ
′

M∗
, (3.8) onefindsintro1
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and ∫
RN

m1+ γ
′

N
t dx =

tN(1+ γ
′

N )

(M∗)1+ γ
′

N

∫
RN

m1+ γ
′

N
0 (tx) dx =

N + γ′

N
tγ
′

(M∗)1+ γ
′

N

. (3.9) onefindsintro2

Then it follows from (3.2), (3.6), (3.8) and (3.9) that

E1
α1

(mt,wt) =CL

∫
RN

∣∣∣∣∣wt

mt

∣∣∣∣∣γ′mt dx −
Nα1

N + γ′

∫
RN

m1+ γ
′

N
t dx +

∫
RN

V1mt dx

=
tγ
′

M∗

(
1 −

α1

a∗

)
+

1
M∗

∫
RN

V
( x

t
+ x0

)
m0 dx. (3.10) colecting1intro

On the other hand, we choose

m̄ =
e−δ1 |x|

∥e−δ1 |x|∥L1
, w̄ = ∇m̄ with (m̄, w̄) ∈ K2,

and apply Hölder’s inequality to get∫
RN

m
1
2+

γ′

2N
t m̄

1
2+

γ′

2N dx ≤
( ∫
RN

m1+ γ
′

N
t dx

) 1
2
( ∫
RN

m̄1+ γ
′

N dx
) 1

2

≤ Ct
γ′

2 , (3.11) colecting2intro

where C > 0 is some constant. Upon collecting (3.10) and (3.11), we obtain if α1 > a∗,

Eα1,α2,β(mt,wt, m̄, w̄) ≥
tγ
′

M∗

(
1 −

α1

a∗

)
−Ct

γ′

2 −C → −∞, as t → +∞.

Thus, eα1,α2,β = −∞ when α1 > a∗. Similarly, we find if α2 > a∗, then eα1,α2,β = −∞. Consequently,
we have if any αi > a∗ or α2 > a∗, problem (1.5) does not have a minimizer.

It is left to study the case of β > β∗. To this end, we compute and obtain

Eα1,α2,β(mt,wt,mt,wt) =
tγ
′

M∗

(
2 −

α1

a∗
−
α2

a∗
−

2β
a∗

)
+ O(1)→ −∞, as t → +∞,

when β > β∗ := 2a∗−α1−α2
2 . This completes the proof.

□

Lemma 3.1 states some existence results for the global minimizers (m1,w1,m2,w2) to (1.5) under
some conditions of α1, α2 and β. In particular, when intra-population and inter-population coefficients
are all small, Lemma 3.1 implies there exists a minimizer to (1.5). Whereas, the existence of ground
states to (1.2) can not be shown unless (u1, u2) and (λ1, λ2) are obtained. Hence, to finish the proof
of Theorem 1.1, we establish the following lemma for the existence of the value function pair (u1, u2)
and Lagrange multipliers (λ1, λ2):

⟨lemma32multimfg⟩Lemma 3.2. Let (m1,a,w1,a,m2,a,w2,a) ∈ K be a minimizer of eα1,α2,β with K = K1 × K2 defined by
(1.7), then there exist (u1,a, u2,a) ∈

(
C2(RN)

)2 and (λ1,a, λ2,a) ∈ R2 such that (m1,a, u1,a,m2,a, u2,a, λ1,a, λ2,a)
solves 

−∆u1 +CH |∇u1|
γ + λ1 = V1(x) − α1m

γ′

N
1 − βm

γ′

2N −
1
2

1 m
1
2+

γ′

N
2 , x ∈ RN ,

∆m1 + ∇ · w1 = 0, w1 = −γCHm1|∇u1|
γ−2∇u1 x ∈ RN ,

−∆u2 +CH |∇u2|
γ + λ2 = V2(x) − α2m

γ′

N
2 − βm

γ′

2N −
1
2

2 m
1
2+

γ′

N
1 , x ∈ RN ,

∆m2 + ∇ · w2 = 0, w2 = −γCHm2|∇u2|
γ−2∇u2, x ∈ RN .

(3.12) ss11new
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Moreover, we have the following identities and estimates hold:

λi,a = CL

∫
RN

∣∣∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a dx +
∫
RN

Vimi,a dx − αi

∫
RN

m
1+ γ

′

N
i,a dx − β

∫
RN

m
1
2+

γ′

2N
1,a m

1
2+

γ′

2N
2,a dx, i = 1, 2, (3.13) lambda177innotes

and there exists a constant C > 0 such that

|∇ui,a(x)| ≤ C
(
1 + V

1
γ

i (x)
)
, ui,a(x) ≥ CV

1
γ

i −C, for all x ∈ RN , i = 1, 2. (3.14) gradientuiViloweboun

Proof. To prove this lemma, we follow the approaches employed to show Proposition 3.4 in [2] and
make slight modifications. Define admissible setsAi as

Ai =

{
ψ ∈ C2(RN)

∣∣∣∣∣ lim sup
|x|→∞

|∇ψ|

V
1
γ

i

< +∞, lim sup
|x|→∞

|∆ψ|

Vi
< +∞

}
, i = 1, 2, (3.15) ?definitionmathcalAi12?

then we proceed the similar argument shown in the proof of Proposition 5.1 in [5] and obtain

−

∫
RN

mi,a∆ψ dx =
∫
RN

wi,a · ∇ψ dx, ∀ψ ∈ Ai, i = 1, 2. (3.16) 80innotessecondeqibp

Next, we define

J̃1(m,w) :=
∫
RN

[
CL

∣∣∣∣∣wm
∣∣∣∣∣γ′m + [V1(x) + f1(m1,a,m2,a)]m

]
dx, (3.17) definitionJ1tilde

where

f1(m1,a,m2,a) := −α1m
γ′

N
1,a − βm

γ′

2N +
1
2

2,a m
γ′

2N −
1
2

1,a ,

and set

Bi :=
{
(m,w) ∈ (L1(RN) ∩W1,γ′(RN)) × Lγ

′

(RN)
∣∣∣∣∣ − ∫

RN
m∆ψ dx =

∫
RN

w · ∇ψ dx ,∀ψ ∈ Ai,

m ≥ 0 a.e. in RN ,

∫
RN

m dx = 1,
∫
RN

Vim dx < +∞,
∫
RN
|w|V

1
γ′

i dx < +∞
}
, i = 1, 2.

We have the fact that (m1,a,w1,a,m2,a,w2,a) is a minimizer of Eα1,α2,β in B1 × B2, i.e.

eα1,α2,β := inf
(m1,w1,m2,w2)∈K1×K2

Eα1,α2,β(m1,w1,m2,w2) = inf
(m1,w1,m2,w2)∈B1×B2

Eα1,α2,β(m1,w1,m2,w2). (3.18) minimumB1B2K1K2

Now, we claim

J̃1(m1,a,w1,a) = min
(m,w)∈B1

J̃1(m,w), (3.19) tildeJ1m1w1attained

where J̃1 is defined by (3.17). Indeed, we set

J1(m,w) := Eα1,α2,β(m,w,m2,a,w2,a) := φ(m,w) + Λ(m) + G̃, (3.20) definitionofj1mandw

where

φ(m,w) := CL

∫
RN

m
∣∣∣∣∣wm
∣∣∣∣∣γ′ dx,
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Λ(m) := −
Nα1

N + γ′

∫
RN

m1+ γ
′

N dx +
∫
RN

V1m dx −
2βN

N + γ′

∫
RN

m
1
2+

γ′

2N m
1
2+

γ′

2N
2,a dx,

and

G̃ := CL

∫
RN

∣∣∣∣∣w2,a

m2,a

∣∣∣∣∣γ′m2,a dx −
Nα1

γ′ + N

∫
RN

m1+ γ
′

N
2,a dx +

∫
RN

V2m2,a dx.

For any (m,w) ∈ B1, we define

mλ = λm + (1 − λ)m1,a, wλ = λw + (1 − λ)w1,a, 0 < λ < 1,

and have the fact that (mλ,wλ) ∈ B1. Thus, by using (3.18) and (3.20), we obtain

J1(mλ,wλ) = Eα1,α2,β(mλ,wλ,m2,a,w2,a) ≥ Eα1,α2,β(m1,a,w1,a,m2,a,w2,a) = J1(m1,a,w1,a),

which implies

φ(mλ,wλ) + Λ(mλ) ≥ φ(m1,a,w1,a) + Λ(m1,a),

i.e.

φ(mλ,wλ) − φ(m1,a,w1,a) ≥ Λ(m1,a) − Λ(mλ). (3.21) 89innotes

Next, we simplitfy (3.21). On one hand, by the convexity of φ in (m,w), we have

φ(mλ,wλ) ≤ λφ(m,w) + (1 − λ)φ(m1,a,w1,a),

i.e.

φ(mλ,wλ) − φ(m1,a,w1,a) ≤ λ[φ(m,w) − φ(m1,a,w1,a)]. (3.22) 90innotes

On the other hand, for λ > 0 sufficiently small, we have

Λ(mλ) = Λ(m1,a) + λ⟨∇Λ(m1,a), (m − m1,a)⟩ + O(λ). (3.23) 91innotes

In addition, invoking (3.17) and (3.20), one can obtain

∇Λ(m1,a) = V1 + f1(m1,a,m2,a).

Upon substituting (3.22) and (3.23) into (3.21), we get

φ(m,w) − φ(m1,a,w1,a) ≥ −⟨∇Λ(m1,a),m − m1,a⟩.

Hence,

J̃1(m,w) = φ(m,w) + ⟨∇Λ(m1,a),m⟩ ≥ φ(m1,a,w1,a) + ⟨∇Λ(m1,a),m1,a⟩ = J̃1(m1,a,w1,a),

which indicates that claim (3.19) holds.
Now, we prove

sup{λ : −∆ψ +CH |∇ψ|
γ + λ ≤ V1 + f1(m1,a,m2,a) in RN for some ψ ∈ B1} = min

(m,w)∈B1
J̃1(m,w). (3.24) ourclaimhowtogetmulti
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In fact, by following the similar argument shown in the proof of Proposition 3.4 in [2], we define

L1(m,w, λ, ψ) := J̃1(m,w) +
∫
RN

(
m∆ψ + w · ∇ψ − λm

)
dx + λ,

and obtain

min
(m,w)∈B1

J̃1(m,w) = min
(m,w)∈Γ

sup
(λ,ψ)∈R×A1

L1(m,w, λ, ψ),

where Γ := (L1(RN) ∩W1,γ′(RN)) × Lγ
′

(RN). Invoking the convexity of L1(·, ·, λ, ψ) and the linearity
of L1(m,w, ·, ·), one has

min
(m,w)∈Γ

sup
(λ,ψ)∈R×A1

L1(m,w, λ, ψ) = sup
(λ,ψ)∈R×A1

min
(m,w)∈Γ

L1(m,w, λ, ψ)

= sup
(λ,ψ)∈R×A1

∫
RN

min
(m,w)∈R×RN

[
CL

∣∣∣∣∣wm
∣∣∣∣∣γ′m + [V1 + f1(m1,a,m2,a)]m + m∆ψ + w · ∇ψ − λm

]
dx + λ

=

{
0, V1 + f1(m1,a,m2,a) − [−∆ψ +CH |∇ψ|

γ] ≥ 0,
−∞, V1 + f1(m1,a,m2,a) − [−∆ψ +CH |∇ψ|

γ] < 0

= sup{λ|V1 + f1(m1,a,m2,a) − [−∆ψ +CH |∇ψ|
γ] ≥ 0 for some ψ ∈ A1},

which shows (3.24). Moreover, with the aid of Lemma 2.3, we have

λ1,a := sup{λ|V1 + f1(m1,a,m2,a) − [−∆ψ +CH |∇ψ|
γ] ≥ 0 for some ψ ∈ A1}

= min
(m,w)∈B1

J̃1(m,w) < +∞, (3.25) lambda1supmathcalAfinite

and there exists u1,a ∈ C2(RN) such that

−∆u1,a +CH |∇u1,a|
γ + λ1,a = V1 + f1(m1,a,m2,a) in RN . (3.26) u1eqf1m1m2thm13

In particular, we have from Lemma 2.1 and Lemma 2.2 that (3.14) holds for u1,a.
Since m1,a, m2,a ∈ L∞(RN) by Sobolev embedding, one obtains f1(m1,a,m2,a) ∈ L∞(RN). Then it

follows from (3.14) and (3.26) that

| − ∆u1,a(x)| ≤ C(1 + V1(x)).

Thus, u1,a ∈ A1. Combining (3.19) with (3.25), one finds (3.13) holds for i = 1, i.e.

λ1,a = J̃1(m1,a,w1,a) =
∫
RN

[
CL

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′m1,a + [V1 + f1(m1,a,m2,a)]m1,a

]
dx,

where we have used (3.17). Next, we shall show

w1,a = −CHγm1,a|∇u1,a|
γ−2∇u1,a.

First of all, (3.13) and (3.26) imply that

0 =
∫
RN

[
CL

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′ + V1 + f1(m1,a,m2,a) − λ1,a

]
m1,a dx

=

∫
RN

[
CL

∣∣∣∣∣ w1

m1,a

∣∣∣∣∣γ′ − ∆u1,a +CH |∇u1,a|
γ′
]
m1,a dx.
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Then we take ψ = u1,a in (3.16) to get

0 =
∫
{x|m1,a>0}

[
CL

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′ +CH |∇u1,a|
γ′ + ∇u1,a ·

w1,a

m1,a

]
m1,a dx. (3.27) thereforeconcludethm11multi

By using the definition of H that

L
(
−

w1,a

m1,a

)
= CL

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′ = sup
p∈RN

(
− p

w1,a

m1,a
− H(p)

)
≥ −CH |∇u1,a|

γ − ∇u1,a ·
w1,a

m1,a
,

where H(p) = CH |p|γ. Therefore, (3.27) indicates that

CL

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′ +CH |∇u1,a|
γ + ∇u1,a ·

w1,a

m1,a
≥ 0 a.e. in {x ∈ RN |m1,a > 0}. (3.28) indicatesthatthmmultilemmakey

Since sup
p∈RN

(−p w1,a
m1,a
− H(p)) is attained by p = ∇u1,a when m1,a > 0, one has from (3.28) that

w1,a

m1,a
= −∇H(∇u1,a) in {x ∈ RN |m1,a > 0}.

Thus, we obtain

−∆m1,a −CH∇ · (m1,a|∇u1,a|
γ−2∇u1,a) = 0 in a weak sense.

Proceeding the similar argument shown above, we have (3.13) holds for i = 2 and there exists u2 ∈

C2(RN) such that
w2,a = −CHγm2,a|∇u2,a|

γ−2∇u2,a, x ∈ RN in a weak sense.

Finally, by the standard elliptic regularity, we find (3.12) holds in a classical sense. This completes
the proof of this lemma. □

By summarizing Lemma 3.1 and Lemma 3.2, we are able to show conclusions stated in Theorem
1.1, which are

Proof of Theorem 1.1:

Proof. For Conclusion (i), we invoke Lemma 3.1 to get there exists a minimizer (m1,a,w1,a,m2,a,m2,a) ∈
K to (1.5). Moreover, Lemma 3.2 implies there exist (u1,a, u2,a) ∈ C2(RN)×C2(RN) and (λ1,a, λ2,a) ∈ R2

such that (m1,a,m2,a, u1,a, u2,a, λ1,a, λ2,a) solves (1.13). By standard regularity arguments, we have from
Lemma 2.4 that

(m1,a,m2,a, u1,a, u2,a) ∈ W1,p(RN) ×W1,p(RN) ×C2(RN) ×C2(RN),

which completes the proof of this conclusion. Conclusion (ii) is the straightforward corollary of
Lemma 3.1. □

We next focus on the borderline case when α1 = α2 shown in Theorem 1.1. In detail, we impose
the extra assumption (1.14) on the potentials and investigate the conclusions shown in Theorem 1.2,
which are

Proof of Theorem 1.2:
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Proof. In light of the assumption (1.14), we let (mt,wt) be (3.6) with x0 ∈ R
N satisfying

V1(x0) = V2(x0) = 0.

Then for i = 1, 2, we compute to get∫
RN

Vi(x)mt dx =
1

M∗

∫
RN

Vi(x)tNm0(t(x − x0)) dx =
1

M∗

∫
RN

Vi

(y
t
+ x0

)
m0(y) dy.

By invoking Lebesgue Convergence Dominated Theorem, we further obtain as t → +∞,∫
RN

Vi(x)mt dx→ Vi(x0) = 0, for i = 1, 2.

Proceeding the similar argument shown in the proof of Lemma 3.1, we get

Ea∗−β,a∗−β,β(mt,wt,mt,wt) = [V1(x0) + V2(x0)] + ot(1), (3.29) takeinftybefore

where ot(1)→ 0 as t → +∞. We take t → +∞ in (3.29) to obtain

eα∗−β,α∗−β,β ≤ 0. (3.30) criticaldeduce1

On the other hand, we rewrite (1.6) as

Eα1,α2,β(m1,w1,m2,w2) =
2∑

i=1

( ∫
RN

CL

∣∣∣wi

mi

∣∣∣∣∣γ′mi + Vimi −
N(αi + β)

N + γ′

∫
RN

m1+ γ
′

N
i dx

)
+

Nβ
N + γ′

∫
RN

(
m

1
2+

γ′

2N
1 − m

1
2+

γ′

2N
2

)2
dx. (3.31) uponsubstitutingintobefore

Upon substituting α1 = α2 = a∗ − β and β = a∗ − α into (3.31), we deduce that

ea∗−β,a∗−β,β ≥ 0. (3.32) criticaldeduce2

Combining (3.30) with (3.32), one has

ea∗−β,a∗−β,β = 0. (3.33) eastar0check

Now, we argue by contradiction and assume that (m1,w1,m2,w2) is a minimizer of (1.5) with
α1 = α2 = a∗ − β and β = a∗ − α. Then we have

Ea∗−β,a∗−β,β(m1,w1,m2,w2) =
2∑

i=1

CL

∫
RN

∣∣∣∣∣wi

mi

∣∣∣∣∣γ′mi dx −
Na∗

N + γ′

∫
RN

m1+ γ
′

N
i dx

+
Nβ

N + γ′

∫
RN

(
m

1
2+

γ′

2N
1 − m

1
2+

γ′

2N
2

)2
dx

+

∫
RN

V1(x)m1 + V2(x)m2 dx

:=I1 + I2 + I3. (3.34) findsfromfirstone

In light of (3.33), one finds from (3.34) that I1 = I2 = I3 = 0, in which I1 = 0 implies each (mi,wi),
i = 1, 2 is a minimizer of problem (1.10). In addition, I2 = 0 indicates that m1 = m2 in RN . Morever,
one gets from I3 = 0 that ∫

RN
V1(x)m1 + V2(x)m2 dx = 0,

which leads to a contradiction since mi > 0 for i = 1, 2 by using the compactly Sobolev embedding
and the maximum principle as shown in [1]. □
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For the existence of minimizers, we next consider the case of α1 = a∗ and show Theorem 1.3,
which is

Proof of Theorem 1.3:

Proof. We define the test solution-pair as

mi,τ(x) =
τN

M∗
m0

(
τ
(
x − x̄i + (−1)iι

ln τ
τ
ν
))
, wi,τ =

τN+1

M∗
w0

(
τ
(
x − x̄i + (−1)iι

ln τ
τ
ν
))
, (3.35) scalingtestthm14

where (m0,w0) denotes a minimizer of (1.10) satisfying (1.11), ν ∈ SN−1, x̄i ∈ R
N and constant ι will

be determined later.
By using Lemma 2.6, we have

CL

∫
RN

∣∣∣∣∣wi,τ

mi,τ

∣∣∣∣∣γ′mi,τ dx =
τγ
′

M∗
,

∫
RN

m1+ γ
′

N
i,τ dx =

N + γ′

N
τγ
′

(M∗)1+ γ
′

N

, (3.36) ?B5innotesmultimfg?

and ∫
RN

m
1
2+

γ′

2N
1,τ m

1
2+

γ′

2N
2,τ dx =

τγ
′

(M∗)1+ γ
′

N

∫
RN

m
1
2+

γ′

2N
0 (x)m

1
2+

γ′

2N
0 (x + τ(x̄1 − x̄2) + 2ι ln τν) dx. (3.37) B6innotesmfgmulti

We have the fact that

|τ(x̄1 − x̄2) + 2ι ln τν| ≥ 2ι ln τ when τ ≫ 1.

Hence, for τ large, if x ∈ Bι ln τ = {x||x| < ι ln τ}, one gets from Lemma 2.5 that

m0(x + τ(x̄1 − x̄2) + 2ι ln τν) ≤ Ce−δ0ι ln τ, (3.38) byusingonegets1

where C > 0 is a constant. And if x ∈ Bc
ι ln τ, then

m0 ≤ Ce−δ0ι ln τ, (3.39) exponentialdecayusing

where C is a positive constant, δ0 > 0 and we have used the exponential decay property of m0.
Combining (3.38) and (3.39), one finds from (3.37) that as τ→ +∞,∫

RN
m

1
2+

γ′

2N
1,τ m

1
2+

γ′

2N
2,τ dx =

τγ
′

(M∗)1+ γ
′

N

[ ∫
Bι ln τ

m
1
2+

γ′

2N
0 (x)m

1
2+

γ′

2N
0 (x + τ(x̄1 − x̄2) + 2ι ln τν) dx

+

∫
Bc
ι ln τ

m
1
2+

γ′

2N
0 (x)m

1
2+

γ′

2N
0 (x + τ(x̄1 − x̄2) + 2ι ln τν) dx

]
≤CN,γ′τ

γ′e−( 1
2+

γ′

2N )δ0ι ln τ = CN,γ′τ
γ′−
(

1
2+

γ′

2N

)
δ0ι → 0, (3.40) B8innotesmultimfg

where constant ι is chosen as ι > 2γ′N
(N+γ′)δ0

. In addition,∫
RN

Vimi,τ dx =
1

M∗

∫
RN

Vi

( x
τ
+ x̄i − (−1)iι

ln τ
τ
ν
)
m0 dx :=

1
M∗

∫
RN

gτ(x) dx.

Noting that gτ(x) → Vi(x̄i)m0(x) a.e. in RN , we obtain from (1.9), (3.38) and (3.39) that when τ is
large,

|gτ(x)| ≤ Ceδ|
x
τ+x̄i−(−1)iι ln τ

τ ν|e−δ0 |x| ≤ Ce−
δ0
2 |x| ∈ L1(RN).
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Thus, by Lebesgue dominated theorem, we further get∫
RN

Vimi,τ dx→ Vi(x̄i) as τ→ +∞. (3.41) b10innotesmultimfg

Collecting (3.37), (3.40) and (3.41), one finds if α1 = α2 = a∗ and β ≤ 0, then

Eα1,α2,β(m1,τ,w1,τ,m2,τ,w2,τ) = V1(x̄1) + V2(x̄2) + oτ(1),

where oτ(1)→ 0 as τ→ +∞. It follows that

eα1,α2,β ≤ V1(x̄1) + V2(x̄2) = 0,

where x̄i ∈ R
N with i = 1, 2. If we choose x̄i such that Vi(x̄i) = 0 for i = 1, 2, then by using (1.12) and

β ≤ 0, one has eα1,α2,β ≥ 0. Therefore, we summarize to get eα1,α2,β = 0. Proceeding the same argument
as shown in the proof of Theorem 1.2, we show there is no minimizer in case (i).

For case (ii), if β = 0, one finds

eα1,α2,0 = e1
a∗ + e2

α2
,

where e1
a∗ and e2

α2
are given by (3.1). Noting that this is the decoupled case, we have the fact that there

is no minimizer as shown in [5].
If 0 < β < a∗−α2

2 , taking ι = 0 in (3.35), we compute to get∫
RN

m
1
2+

γ′

2N
1,τ m

1
2+

γ′

2N
0 dx =

τ
1
2 (γ′−N)

(M∗)
1
2+

γ′

2N

∫
RN

m0

( x
τ
+ x̄1

)
m

1
2+

γ′

2N
0 dx :=

τ
1
2 (γ′−N)

(M∗)
1
2+

γ′

2N

Iτ. (3.42) b12innotesmultimfg

We choose x̄1 ∈ R
N such that m0(x̄1) > C0 > 0 then obtain

lim
τ→+∞

Iτ ≥ C0

∫
RN

m
1
2+

γ′

2N
0 dx ≥ C1 > 0 as τ→ +∞.

Thus, (3.42) implies ∫
RN

m
1
2+

γ′

2N
1,τ m

1
2+

γ′

2N
0 dx ≥ C1τ

1
2 (γ′−N) → +∞,

It follows that

Ea∗.α2,β(m1,τ,w1,τ,m0,w0) ≤ oτ(1) +C −Cγ′βτ
1
2 (γ′−N) → −∞ for β > 0.

Hence ea∗,α2,β = −∞ if β > 0, which indicates (1.5) has no minimizer.
□

As shown in Theorem 1.1 and Theorem 1.2, we have obtained when all coefficients α1, α2 and β
are subcritical, (1.2) admits classical ground states; whereas, if α1 = α2 are subcritical and β is critical,
then (1.5) has no minimizer. A natural question is the behaviors of ground states as (α1, α2) ↗
(a∗ − β, a∗ − β). In fact, we can show there are concentration phenomena as coefficients approach
critical ones. In the next section, we shall discuss the asymptotic profiles of ground states in the
singular limits mentioned above.
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4 Asymptotic Profiles of Ground States with β > 0
⟨sect4multipopulation⟩This section is devoted to the blow-up behaviors of ground states to (1.2) in some singular limits. We

focus on the attractive interaction case and obtain
Proof of Theorem 1.4:

Proof. FIrst of all, we have from (3.31) that

Eα1,α2,β(m1,a,w1,a,m2,a,w2,a) =
2∑

i=1

( ∫
RN

CL

∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a −
N(αi + β)

N + γ′

∫
RN

m1+ γ
′

N
i,a dx

)
+

Nβ
N + γ′

∫
RN

(
m

1
2+

γ′

2N
1,a − m

1
2+

γ′

2N
2,a

)2
dx

+

∫
RN

V1(x)m1,a + V2(x)m2,a dx

:=II1 + II2 + II3. (4.1) thm13scalinglimitbestconstant

In light of (1.8) and (1.12), one finds II j ≥ 0, j = 1, 2, 3. Moreover, assumption (1.8) implies II3 ≥ 0.
Proceeding the same argument shown in the proof of Lemma 3.1, we use the test pair (3.6) and
compute from (4.1) that

lim
a↗a∗β

eα1,α2,β = ea∗−β,a∗−β,β = 0. (4.2) thm13scalinglimitbestconstant1

Combining (4.1) with (4.2), we obtain (1.18) and (1.19).
We next prove (1.20) and argue by contradiction. Without loss of generality, we assume that

lim sup
a↗a∗β

CL

∫
RN

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′m1,a dx < +∞.

Then, it follows from (1.18), (1.19) and Lemma 2.4 that (m1,a,w1,a,m2,a,w2,a) is uniformly bounded
in (W1,γ′(RN) × Lγ

′

(RN))2. Moreover, by compactly Sobolev embedding (C.f. Lemma 5.1 in [5]), one
finds mi,a → mi,0 strongly in L1(RN) ∩ L1+ γ

′

N (RN) for i = 1, 2. By using the convexity of
∫
RN

∣∣∣w
m

∣∣∣γ′m dx,
we have

ea∗−β,a∗−β,β = lim
a↗a∗β

eα1,α2,β = lim
a↗a∗β
Eα1,α2,β(m1,a,w1,a,m2,a,w2,a)

≥Ea∗−β,a∗−β,β(m0,w0,m0,w0) ≥ ea∗−β,a∗−β,β,

which implies (m0,w0,m0,w0) is a minimizer of ea∗−β,a∗−β,β and it is a contradiction since we have
showed that ea∗−β,a∗−β,β has no minimizer in Theorem 1.2.

Now, we find (1.20) holds and further obtain from (1.18) that for i = 1, 2

∫
RN

m1+ γ
′

N
i,a dx→ +∞ and lim

a↗a∗β

CL

∫
RN

∣∣∣wi,a
mi,a

∣∣∣γ′mi,a dx∫
RN m1+ γ

′

N
i,a dx

=
N + γ′

N
a∗.

Noting that as a↗ a∗β,[( ∫
RN

m1+ γ
′

N
1,a dx

) 1
2

−

( ∫
RN

m1+ γ
′

N
2,a dx

) 1
2
]2
≤

∫
RN

(
m

1
2+

γ′

2N
1,a − m

1
2+

γ′

2N
2,a

)2
dx→ 0,
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one gets (1.21) holds.
Noting that (m1,a,w1,a,m2,a,w2,a) satisfy (3.12), we have from the integration by parts that∫

RN
∇u1,a · ∇m1,a dx +CH

∫
RN
|∇u1,a|

γm1,a dx + λ1

=

∫
RN

V1m1,a dx − α1

∫
RN

m1+ γ
′

N
1,a dx − β

∫
RN

m
1
2+

γ′

2N
1,a m

1
2+

γ′

2N
2,a dx, (4.3) ibp120240719

and ∫
RN
∇u1,a · ∇m1,a dx = −CHγ

∫
RN

m1,a|∇u1,a|
γ dx. (4.4) ibp2202407192

Combining (4.3) with (4.4), one finds

λ1 =CL

∫
RN

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′m1,a dx +
∫
RN

V1m1,a dx − α1

∫
RN

m1+ γ
′

N
1,a dx − β

∫
RN

m
1
2+

γ′

2N
1,a m

1
2+

γ′

2N
2,a dx

=

(
CL

∫
RN

∣∣∣∣∣w1,a

m1,a

∣∣∣∣∣γ′m1,a dx −
N(α1 + β)

N + γ′

∫
RN

m1+ γ
′

N
1,a dx

)
−
γ′(α1 + β)
γ′ + N

∫
RN

m1+ γ
′

N
1,a dx

+ β

∫
RN

m
1
2+

γ′

2N
1,a

(
m

1
2+

γ′

2N
1,a − m

1
2+

γ′

2N
2,a

)
dx +

∫
RN

V1m1,a dx

=oε(1) −
γ′(α1 + β)
γ′ + N

∫
RN

m1+ γ
′

N
1,a dx + β

∫
RN

m
1
2+

γ′

2N
1,a

(
m

1
2+

γ′

2N
1,a − m

1
2+

γ′

2N
2,a

)
dx, (4.5) lambda1formulalimit39

where we have used (1.18) and (1.19) as a↗ a∗β. To further simplify (4.5), we use (1.19) to get∣∣∣∣∣ ∫
RN

m
1
2+

γ′

2N
1,a

(
m

1
2+

γ′

2N
1,a − m

1
2+

γ′

2N
2,a

)
dx
∣∣∣∣∣ ≤( ∫

RN
m1+ γ

′

N
1,a dx

) 1
2
[ ∫
RN

(
m

1
2+

γ′

2N
1,a − m

1
2+

γ′

2N
2,a

)2
dx
] 1

2

=oε(1)
( ∫
RN

m1+ γ
′

N
1,a dx

) 1
2

. (4.6) lambda1formulalimit40

By utilizing (1.18) and (1.22), one finds

lim
a↗a∗β

Nεγ
′

a (α1 + β)
N + γ′

∫
RN

m1+ γ′

2N
1,a dx = 1. (4.7) lambda1formulalimit41

Collecting (4.5), (4.6) and (4.7), we have

λ1 = −
(α1 + β)γ′

N + γ′

∫
RN

m1+ γ
′

N
1,a dx + oε(1) =

γ′

N
ε−γ

′

+ oε(1), (4.8) lambda1inthm13asymptotic

where ε→ 0 given by (1.22). Proceeding the similar argument shown above, one obtains from (1.21)
that

lim
ε→0

λ2ε
γ′ = −

γ′

N
.

Now, we substitute (1.25) into (3.12) and obtain

−∆u1,ε +CH |∇u1,ε|
γ + λ1ε

γ′ = εγ
′

V1(εx + x1,ε) − α1m
γ′

N
1,ε − βm

γ′

2N −
1
2

1,ε m
1
2+

γ′

N
2,ε , x ∈ RN ,

∆m1,ε + ∇ · w1,ε = 0, w1,ε = −γCHm1,ε|∇u1,ε|
γ−2∇u1,ε x ∈ RN ,

−∆u2,ε +CH |∇u2,ε|
γ + λ2ε

γ′ = εγ
′

V2(εx + x1,ε) − α2m
γ′

N
2,ε − βm

γ′

2N −
1
2

2,ε m
1
2+

γ′

N
1,ε , x ∈ RN ,

∆m2,ε + ∇ · w2,ε = 0, w2,ε = −γCHm2,ε|∇u2,ε|
γ−2∇u2,ε, x ∈ RN ,∫

RN m1,ε dx =
∫
RN m2,ε dx = 1.

(4.9) ss11newnew
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Without loss of the generality, we assume

inf
x∈RN

u1,a = inf
x∈RN

u2,a = 0.

In light of (1.21), (1.22) and (1.25), one finds

sup
ε→0+

CL

∫
RN

∣∣∣∣∣wi,ε

mi,ε

∣∣∣∣∣γ′mi,ε dx < +∞, i = 1, 2.

Then it follows from Lemma 2.4 that for i = 1, 2

sup
ε→0+
∥mi,ε∥W1,γ′ (RN ) < +∞, sup

ε→0+
∥wi,ε∥L1(RN ) < +∞, sup

ε→0+
∥wi,ε∥Lγ′ (RN ) < +∞. (4.10) fromregularitythm31

Invoking (1.19) and (1.22) , one finds for i = 1, 2, as ε→ 0+,∫
RN

Vi(εx + x1,ε)mi,ε dx→ 0, (4.11) convergencem1m2potentialvarepsilonthm13

and ∫
RN

(
m

1
2+

γ′

2N
1,ε − m

1
2+

γ′

2N
2,ε

)2
dx→ 0. (4.12) convergencem1m2varepsilonthm13

By using the standard Sobolev embedding, we have from (4.10) and (4.12) that

mi,ε ⇀ m in W1,γ′(RN), mi,ε → m ≥ 0, a.e. in RN . (4.13) convergencem1m2varepsilonthm131

Moreover, by using the Morrey’s embedding W1,γ′ ↪→ C0,θ(RN) with θ ∈ (0, 1 − γ′

N ), one finds

mi,ε → m in C0,θ
loc(R

N), sup
ε→0+
∥mi,ε∥C0,θ(RN ) < +∞, i = 1, 2. (4.14) convergencethm13holdercontinuousnew

Recall that u1,a(x1,ε) = infx∈RN u1,a = 0, then we have u1,ε(0) = infx∈RN u1,ε. Moreover, by applying the
maximum principle, one gets from the first equation of (4.9) that

λ1ε
γ′ ≥ − α1m

γ′

N
1,ε(0) − βm

1
2+

γ′

2N
2,ε (0)m

γ′

2N −
1
2

1,ε (0)

= − (α1 + β)m
γ′

N
1,ε(0) + oε(1),

where we have used mi,ε → m in Cloc(RN) shown in (4.14). In addition, noting (4.8), we have

lim
ε→0

m
γ′

N
1,ε(0) ≥

γ′

Na∗
,

where we have used α1 + β ↗ a∗. Since W1,γ′ ↪→ C0,θ, we have from (4.12) that for i = 1, 2, there
exists R0 > 0 and C > 0 such that

mi,ε(x) ≥ C > 0, ∀|x| < R0, for i = 1, 2. (4.15) mivarepsilonlowboundholdercontinuity

Moreover, we utilize (4.11) and (4.15) to get up to a subsequence,

lim
ε→0

x1,ε = x0, s.t. V1(x0) = 0 = V2(x0).
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Combining (4.14) with (4.15), one also has

m(x) ≥ C > 0, ∀|x| < R0, (4.16) mlowerboundpositivelocallimit

where C and R0 are positive constants.
Next, we study the regularity of the value function u. To this end, we rewrite the u1-equation in

(4.9) as

−∆u1,ε +CH |∇u1,ε|
γ = − λ1ε

γ′ + εγ
′

V1(εx + x1,ε) − α1m
γ′

N
1,ε − βm

γ′

2N −
1
2

1,ε m
1
2+

γ′

2N
2,ε

:=gε ∈ L∞loc(R
N) ∩C0,θ

loc(R
N). (4.17) rewriteueqthm13c2regularity

For R > 0 large enough, we have

∥gε(x)∥L∞(BR(0)) < CR < +∞, ∀|x| < 2R,

where CR > 0 is independent of ε. Then it follows from (4.17) and Sobolev embedding that

|∇u1,ε(x)| ≤ CR, ∀|x| < 2R.

Since u1,ε(0) = 0, we further have

|u1,ε| ≤ CR, ∀|x| < 2R.

By using the W2,p estimate, one gets

∥u1,ε∥W2,p(BR+1(0)) ≤ Cp,R
(
∥u1,ε∥Lp(B2R(0)) + ∥gε∥Lp(B2R(0)) + ∥|∇u1,ε|

γ∥Lp(B2R(0))
)
, ∀p > 1,

where Cp,R > 0 is a constant depending on p and R. Let p > N, then we obtain

∥u1,ε∥C1,θ1 (BR+1(0)) ≤ Cθ1,R < +∞,

where some θ1 ∈ (0, 1). Moreover, we rewrite (4.17) as

−∆u1,ε = −CH |∇u1,ε|
γ + gε ∈ C1,θ2(BR+1(0)).

One further deduces from the standard W2,p estimate that

∥u1,ε∥C2,θ3 (BR(0)) ≤ Cθ3,R < +∞,

where Cθ3,R > 0 is a constant. Then by the standard diagonal procedure and Arzelà-Ascoli theorem,
we have from (4.9), (4.10), (4.13) and (4.14) that there exist u1 ∈ C2(RN) and w1 ∈ Lγ

′

(RN) such that

u1,ε → u1 in C2
loc(R

N), w1,ε ⇀ w1 in Lγ
′

(RN), (4.18) eq4.180

and (u1,m,w1) satisfies
−∆u1 +CH |∇u1|

γ −
γ′

N = −a∗m
γ′

N , x ∈ RN ,
−∆m = γCH∇ · (m|∇u1|

γ−2∇u1) = −∇ · w1, x ∈ RN ,

0 <
∫
RN m dx ≤ 1,

where we have used (4.8) and (4.16). In addition, by Lemma 2.6 and (1.12), one finds∫
RN

m dx = 1. (4.19) 4182024106
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Thus, with the aid of (4.13), we obtain for i = 1, 2, mi,ε → m in L1(RN). Moreover, (4.14) indicates

mi,ε → m in Lp(RN), ∀p ≥ 1. (4.20) wefurtherhavelpconvergencethm13

This combine with (4.18) show that (1.26) holds for i = 1.
Next, we prove that (1.23). We first recall that u2,a(x2,ε) = 0 = infx∈RN u2,a. Then, we have from

(4.9) and (1.25) that

λ2 ≥V2(x2,ε) − α2m
γ′

N
2,a(x2,ε) − βm

γ′

2N −
1
2

2,a (x2,ε)m
1
2+

γ′

N
1,a (x2,ε)

≥ε−γ
′
[
− α2m

γ′

N
2,ε

( x2,ε − x1,ε

ε

)
− βm

γ′

2N −
1
2

2,ε

( x2,ε − x1,ε

ε

)
m

1
2+

γ′

N
1,ε

( x2,ε − x1,ε

ε

)]
,

which implies

α2m
γ′

N
2,ε

( x2,ε − x1,ε

ε

)
+ βm

γ′

2N −
1
2

2,ε

( x2,ε − x1,ε

ε

)
m

1
2+

γ′

N
1,ε

( x2,ε − x1,ε

ε

)
≥ εγ

′

λ2 ≥
γ′

2N
as ε→ 0. (4.21) lambda2thm13lowerboundvarepsilonconvergence

Combining (4.14) with (4.20), one can easily check that for i = 1, 2

lim
|x|→+∞

mi,ε(x) = 0 uniformly in ε.

Combining this with (4.21), one has (1.23) holds.
We next similarly show that there exist u2 ∈ C2(RN) and w2 ∈ Lγ

′

(RN) such that

u2,ε → u2 in C2
loc(R

N), and w2,ε ⇀ w2 in Lγ
′

(RN),

and (u2,m,w2) satisfies (1.27), in which (m,w2) is a minimizer of (1.10). Indeed, we rewrite the
u2-equation in (4.9) as

−∆u2,ε +CH |∇u2,ε|
γ = −λ2ε

γ′ + εγ
′

V2(εx + x1,ε) − α2m
γ′

N
2,ε − βm

γ′

2N −
1
2

2,ε m
1
2+

γ′

2N
1,ε

:= hε ∈ L∞loc(R
N) ∩C0,θ

loc(R
N). (4.22) argueforbddofu2

Moreover, by Lemma 2.1, one has for any R > 0 large enough,

|∇u2,ε| ≤ CR < +∞, ∀|x| < 2R. (4.23) gradientestimateboundedthm13u2component

In light of

u2,ε

( x2,ε − x1,ε

ε

)
= 0 = inf

x∈RN
u2,ε,

we use (1.23) and (4.23) to get

|u2,ε(0)| ≤ CR

∣∣∣∣∣ x2,ε − x1,ε

ε

∣∣∣∣∣ + ∣∣∣∣∣u2,ε

( x2,ε − x1,ε

ε

)∣∣∣∣∣ ≤ C̃R < +∞,

where constant C̃R > 0. Thus, thanks to (4.23), we find

|u2,ε(x)| ≤ CR, ∀|x| < 2R. (4.24) 69innoteseq

Upon collecting (4.22), (4.23) and (4.24), one obtains

∥u2,ε∥C2,θ5 (BR(0)) ≤ Cθ5,R < +∞.
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Moreover, we similarly get (u2,m,w2) satisfies (1.27), in which (m,w2) is a minimizer of (1.10). To
finish the proof of (1.26), it remains to show that u1 = u2 and w1 = w2, which can be obtained
by following the argument shown in the proof of Theorem 2.4 in [9], Indeed, since (m, u1, λ) and
(m, u2, λ) solve (1.27) with wi := γm|∇ui|

γ−2∇ui, we test the u1 − u2 equation and m1 − m2 equation
against m1 − m2 and u1 − u2 and integrate them by parts, then subtract them to get a useful identity.
With the aid of the strict convexity of |p|γ, γ > 1, one has the conclusion ∇u1 = ∇u2 and then w1 = w2.
By fixing the same minimum points of u1 and u2, we obtain u1 = u2.

Finally, proceeding the similar argument as shown in the proof of Case (ii), Theorem 1.4 in [5],
we have (1.24) holds. □

Theorem 1.4 demonstrates that under mild assumptions (1.8) and (1.9), ground states (m1,a, u1,a,m2,a, u2,a)
are localized as a↗ a∗β. We next discuss the proof of Theorem 1.5, which is for the refined asymptotic
profiles of (m1,a, u1,a,m2,a, u2,a). First of all, we establish the following upper bound of eα1,α2,β given
by (1.5):

⟨lemma4120240724⟩Lemma 4.1. Under the assumptions of Theorem 1.5, we have as (α1, α2)↗ (a∗ − β, a∗ − β),

0 ≤ eα1,α2,β ≤

(
γ′ + p0

p0

)(µν̄p0 p0

γ′

) γ′

γ′+p0
( 2
a∗

) p0
γ′+p0
(
a∗ −

α1 + α2 + 2β
2

) p0
γ′+p0 (1 + o(1)). (4.25) 2point1negativebetanotes

Proof. From the definition of ν̄p0 in (1.16), one can easily derive that, for any ν > ν̄p0 , there exist
(m0,w0) ∈ M and y ∈ RN such that

ν̄p0 ≤ Hm0,p0(y) =
∫
RN
|x + y|p0m0(x)dx ≤ ν. (4.26) eq-nu

Since (m0,w0) ∈ M is a minimizer of (1.10), we have from (1.10) and Lemma 2.6 that∫
RN

m0 dx = 1, CL

∫
RN

∣∣∣∣∣w0

m0

∣∣∣∣∣γ′m0 dx = 1, and
N

N + γ′

∫
RN

m1+ γ
′

N
0 dx =

1
a∗
. (4.27) 428negativebeta1

Let x j ∈ Z0, and define

mτ(x) = τNm0(τ(x − x j) − y), wτ(x) = τN+1w0(τ(x − x j) − y), (4.28) 429negativebeta2

then one finds from (4.27) and (4.28) that

CL

∫
RN

∣∣∣∣∣wτ

mτ

∣∣∣∣∣γ′mτ dx = τγ
′

CL

∫
RN

∣∣∣∣∣w0

m0

∣∣∣∣∣γ′m0 dx = τγ
′

,

N
N + γ′

∫
RN

m1+ γ
′

N
τ dx =

N
N + γ′

τγ
′

∫
RN

m1+ γ
′

N
0 dx =

τγ
′

a∗
,

and ∫
RN

(V1 + V2)mτ dx =
∫
RN

(V1 + V2)
( x + y

τ
+ x j

)
m0(x) dx

=
1
τp0

∫
RN

(V1 + V2)
( x+y
τ
+ x j
)∣∣∣ x+y

τ

∣∣∣p0
|x + y|pm0 dx. (4.29) combining1432negativerefine
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Note that

lim
τ→+∞

(V1 + V2)
( x+y
τ
+ x j
)∣∣∣ x+y

τ

∣∣∣p0
= µ. (4.30) combining1432negativerefine2

Combining (4.26), (4.29) with (4.30), one can get∫
RN

(V1 + V2)mτ(x) dx =
µν

τp0
+ O
( 1
τp0

)
.

Finally, by taking

τ =
(

µνp0a∗

2γ′
(
a∗ − α1+α2+2β

2

)) 1
γ′+p0 (4.31) bytakingtaunotebetacopy

in (1.6), we obtain

0 ≤ eα1,α2,β ≤ E(mτ,wτ,mτ,wτ) = τγ
′
[
2 −

α1 + α2 + 2β
a∗

]
+
µν

τp0
+ O
( 1
τp0

)
=
γ′ + p0

p0

(
µνp0

γ′

) γ′

γ′+p0
( 2
a∗

) p0
γ′+p0
(
a∗ −

α1 + α2 + 2β
2

) p0
γ′+p0 (1 + oτ(1)),

which indicates (4.25) since ν > ν̄p0 is arbitrary. □

Now, we are ready to prove Theorem 1.5, which is

Proof of Theorem 1.5:

Proof. In light of (1.25), we compute

eα1,α2,β =E(m1,ε,w1,ε,m2,ε,w2,ε)

=

2∑
i=1

[
ε−γ

′

CL

∫
RN

∣∣∣∣∣wi,ε

mi,ε

∣∣∣∣∣γ′mi,ε dx −
αiε
−γ′

1 + γ′

N

∫
RN

m1+ γ
′

N
i,ε dx +

∫
RN

V(εx + xε)mi,ε dx
]

−
2βε−γ

′

1 + γ′

N

∫
RN

m
1
2+

γ′

2N
1,ε m

1
2+

γ′

2N
2,ε dx, (4.32) 3point1notesbetanegative2

where we redefine x1,ε as xε here and in the sequel for simplicity. Noting that V1(x0) = V2(x0) shown
in Theorem 1.4, we find there exists some j satisfying 1 ≤ j ≤ l such that x0 = x j. Then, we rewrite
the potential energy as∫

RN
Vi(εx + xε)mi,ε(x) dx = εp j

∫
RN

Vi(εx + xε)
|εx + xε − x j|

p j

∣∣∣∣∣x + xε − x j

ε

∣∣∣∣∣p j

mi,ε dx, (4.33) 3point2notesnegativebeta2

where i = 1, 2. In addition, since xε → x j, we obtain

lim
ε→0+

2∑
i=1

Vi(εx + xε)
|εx + xε − x j|

p j
= µ j a.e. in RN , (4.34) {?}

where µ j is defined in (1.29). Without loss of generality, we assume p2 j ≥ p1 j = p j with p1 j and p2 j

defined by (1.28).
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Now, we claim that

p j = p0 = max{p1, · · · , pl}, and
∣∣∣ xε − x j

ε

∣∣∣ is uniformly bounded as ε→ 0+. (4.35) claimattractiverefined

To show (4.35), we argue by contradiction and obtain either p j < p0 or up to a subsequence,

lim
ε→0+

∣∣∣∣∣ xε − x j

ε

∣∣∣∣∣ = +∞.
By using (4.33) and mi,ε → m0 in L1 ∩ L∞ shown in Theorem 1.4, one deduces that for any Γ > 0
large enough,

lim
ε→0

ε−p0

∫
RN

V1(εx + xε)m1,ε dx

= lim
ε→0

εp j−p0

∫
RN

V1(εx + xε)
|εx + xε − x j|

p j

∣∣∣x + xε − x j

ε

∣∣∣p jm1,ε dx ≥ Γ. (4.36) 441negativebeta

Recall the definition of ε shown in (1.22) and the estimate of (1.19), then we find∫
RN

m
1
2+

γ′

2N
1,ε m

1
2+

γ′

2N
2,ε dx =

∫
RN

m1+ γ
′

N
1,ε dx +

∫
RN

(
m

1
2+

γ′

2N
2,ε − m

1
2+

γ′

2N
1,ε

)
m

1
2+

γ′

2N
1,ε dx

=

∫
RN

m1+ γ
′

N
1,ε dx + oε(1). (4.37) interactionbetanegative442

Thus, one finds

CL

∫
RN

∣∣∣∣∣w1,ε

m1,ε

∣∣∣∣∣γ′m1,ε dx −
α1

1 + γ′

N

∫
RN

m1+ γ
′

N
1,ε dx −

2β

1 + γ′

N

∫
RN

m
1
2+

γ′

2N
1,ε m

1
2+

γ′

2N
2,ε dx

=CL

∫
RN

∣∣∣w1,ε

m1,ε

∣∣∣γ′m1,ε dx −
α1 + 2β

1 + γ′

N

∫
RN

m1+ γ
′

N
1,ε dx + oε(1)

≥

(
1 −

α1 + 2β
a∗

) ∫
RN

∣∣∣∣∣w1,ε

m1,ε

∣∣∣∣∣γ′m1,ε dx + oε(1). (4.38) 3p5notesbetanegative

In addition, in light of (1.21) and (1.22), one has∫
RN

∣∣∣∣∣wi,ε

mi,ε

∣∣∣∣∣γ′mi,ε dx = 1 + oε(1), i = 1, 2, (4.39) alsohavefact445negatvebeta

and obtain from (4.38) that∫
RN

∣∣∣∣∣w2,ε

m2,ε

∣∣∣∣∣γ′m2,ε dx −
α2

1 + γ′

N

∫
RN

m1+ γ
′

N
2,ε dx ≥

(
1 −

α2

a∗

) ∫
RN

∣∣∣∣∣w2,ε

m2,ε

∣∣∣∣∣γ′m2,ε dx. (4.40) 3p6notesbetanegative

Upon substituting (4.36), (4.37) and (4.40), (4.39), one finds from (4.32) that

E(m1,ε,w1,ε,m2,ε,w2,ε) ≥ε−γ
′
[
1 −

α1 + α2 + 2β
a∗

]
(1 + o(1)) + Γε−p0

≥(1 + oε(1))
p0 + γ

′

p0

( p0Γ

γ′

) γ′

γ′+p0
( 2
a∗

) γ′

γ′+p0
(
a∗ −

α1 + α2 + 2β
2

) p0
γ′+p0

,
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which is contradicted to Lemma 4.1. This completes the proof of claim (4.35). Hence, we obtain
∃y0 ∈ R

N such that

lim
ε→0

xε − x j

ε
= y0.

We next show that y0 satisfies (1.31). Since pi = p0, it follows from Theorem 1.4 that

lim
ε→0+

ε−p0

∫
RN

2∑
i=1

Vi(εx + xε)mi,ε(x) dx

= lim
ε→0+

∫
RN

∑2
i=1 Vi

(
ε(x + x−x j

ε
) + x j

)
∣∣∣ε(x + x−x j

ε
)
∣∣∣p0

∣∣∣∣∣x + x − xε
ε

∣∣∣∣∣p0

mi,ε dx

≥µi

∫
RN
|x + y0|

p0m0 dx ≥ µν̄p0 , (4.41) 4100negativebetanotes

where the last two inequalities hold if and only if one has (1.31). As a consequence, we deduce from
(4.38) and (4.40) that

eα1,α2,β ≥ε
−γ′
[
2 −

α1 + α2 + 2β
a∗

]
[1 + o(1)] + εp0µν[1 + o(1)]

≥[1 + o(1)]
[
γ′ + p0

p0

(µν̄p0 p0

γ′

) γ′

γ′+p0
( 2
a∗

) p0
γ′+p0
(
a∗ −

α1 + α2 + 2β
2

) p0
γ′+p0
]
, (4.42) 4101negativebetanotes

where the equality in the second inequality holds if and only if

ε =
( µν̄p0 p0a∗

2γ′
(
a∗ − α1+α2+2β

2

))− 1
γ′+p0
=

( 2γ′

p0µν̄p0a∗

) 1
γ′+p0
(
a∗ −

α1 + α2 + 2β
2

) 1
γ′+p0

.

Combining the lower bound (4.42) with the upper bound (4.25), we find the equalities in (4.41) and
(4.42) hold. As a consequence, we obtain (1.30) and (1.31) and finish the proof of this theorem. □

5 Asymptotic Profiles of Ground States with β < 0
⟨sect520240929⟩ In this section, we shall discuss the concentration phenomena within (1.2) under the repulsive case

with β < 0. Similarly as shown in Section 4, we first investigate the basic blow-up profiles of ground
states with some assumptions imposed on the potentials, which is summarized as Theorem 1.6. Then,
we investigate the refined blow-up profiles shown in Theorem 1.7 when potentials satisfy local poly-
nomial expansions.

Proof of Theorem 1.6:

Proof. As shown in the proof of Theorem 1.1, we have proved that when β < 0,

lim
a↗a∗

eα1,α2,β = 0. (5.1) C4negativenotes

In addition, one obtains from (1.12) that

Ei
αi

(mi,wi) ≥ 0 if αi < a∗,
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where Ei
αi

(mi,wi) are given by (3.2). Moreover, noting that Eα1,α2,β(m1,w1,m2,w2) defined by (1.6)
can be written as

Eα1,α2,β(m1,w1,m2,w2) =
2∑

i=1

Ei
αi

(mi,wi) −
2βN

N + γ′

∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx,

we find from (5.1) that (1.33), (1.34) and (1.35) hold.
Next, we shall prove (1.36) and argue by contradiction. Assume

lim sup
a↗a∗

∫
RN

CL

∣∣∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a dx < +∞,

then it follows from (1.12) that

lim sup
a↗a∗

∫
RN

m1+ γ
′

N
i,a dx < +∞.

Therefore, we deduce from (1.33) that

lim
a↗a∗
Ei

a∗(m1,a,w1,a,m2,a,w2,a) = lim
a↗a∗
Ei
αi

(m1,a,w1,a,m2,a,w2,a) = 0 = ei
a∗ , i = 1, 2,

where ei
αi

is defined by ei
αi
= inf

(m,w)∈Ki
Ei
αi

(m,w). Recall that {(m1,a,w1,a)} is a bounded minimizing

sequence of ei
a∗ given by (3.1) and its limit is a minimizer of ei

a∗ , i.e.

lim
αi↗a∗

ei
αi
= ei

a∗ .

This is a contradiction to the fact that ei
a∗ does not admit any minimizer as shown in [5]. Hence, one

finds (1.36) holds.
Let

ε̂i :=
(
CL

∫
RN

∣∣∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a dx
)− 1

γ′

→ 0 as a↗ a∗.

Recall that (m1,a,w1,a,m2,a,w2,a) ∈ K is a minimizer and by using Lemma 3.2, one has for i = 1, 2,

λi,a =CL

∫
RN

∣∣∣∣∣wi,a

mi,a

∣∣∣∣∣γ′mi,a dx +
∫
RN

Vimi,a dx − αi

∫
RN

m1+ γ
′

N
i,a dx − β

∫
RN

m
1
2+

γ′

2N
1,a m

1
2+

γ′

2N
2,a dx

=Ei
αi

(mi,a,wi,a) −
Nαi

N + γ′

∫
RN

m1+ γ
′

N
i,a dx − β

∫
RN

m
1
2+

γ′

2N
1,a m

1
2+

γ′

2N
2,a dx

= −
γ′

N
ε̂
−γ′

i + oεi(1),

which implies

λi,aε̂
γ′

i → −
γ′

N
as ε̂i → 0+, i = 1, 2. (5.2) c15notebetanegative

Since (u1,a, u2,a) is bounded from below, we have ui,a → +∞ as |x| → +∞. Thus, there exist xi,ε̂,
i = 1, 2 such that

ui,ε̂(0) = ui,a(xi,ε̂) = inf
x∈RN

ui,a.
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By using (1.37) and (3.12), we find (m1,ε̂, u1,ε̂,m2,ε̂, u2,ε̂) satisfies
−∆u1,ε̂ +CH |∇u1,ε̂|

γ + λ1,aε̂
γ′

1 = ε̂
γ′

1 V1(ε̂1x + x1,ε̂) − α1m
γ′

N
1,ε̂ − β

( ε̂1
ε̂2

) γ′
2 +

N
2 m

γ′

2N −
1
2

1,ε̂ m
γ′

2N +
1
2

2,ε̂
( ε̂1 x+x1,ε̂−x2,ε̂

ε̂2

)
,

−∆m1,ε̂ = CHγ∇ · (m1,ε̂|∇u1,ε̂|
γ−2∇u1,ε̂) = −∇ · w1,ε̂,

−∆u2,ε̂ +CH |∇u2,ε̂|
γ + λ2,aε̂

γ′

2 = ε̂
γ′

2 V2(ε̂2x + x2,ε̂) − α2m
γ′

N
2,ε̂ − β

( ε̂2
ε̂1

) γ′
2 +

N
2 m

γ′

2N −
1
2

2,ε̂ m
γ′

2N +
1
2

1,ε̂
( ε̂2 x+x2,ε̂−x1,ε̂

ε̂1

)
,

−∆m2,ε̂ = CHγ∇ · (m2,ε̂|∇u2,ε̂|
γ−2∇u2,ε̂) = −∇ · w2,ε̂.

(5.3) takelimitnotebetanegative

Then by applying the maximum principle on (5.3), one finds for i, j = 1, 2 and i , j that

λi,aε̂
γ′

i ≥ −αim
γ′

N
i,ε̂(0) + ε̂γ

′

i Vi(ε̂ix + xi,ε̂) − β
(
ε̂i

ε̂ j

) γ′
2 +

N
2

m
γ′

2N −
1
2

i,ε̂ (0)m
γ′

2N +
1
2

j,ε̂

( xi,ε̂ − x j,ε̂

ε̂ j

)
,

Noting that αi > 0, β < 0 and Vi ≥ 0 with i = 1, 2, we further have when αi ↗ a∗,

C ≥ m
γ′

N
i,ε(0) >

γ′

2a∗N
> 0, (5.4) c19notesbetanegative

where C > 0 is a constant. Invoking (1.35) and (1.36), we obtain∫
RN

Vi(ε̂ix + xi,ε̂)mi,ε̂(x) dx→ 0 as a↗ a∗, (5.5) c22notesbetanegative

and ∫
RN

CL

∣∣∣∣∣wi,ε̂

mi,ε̂

∣∣∣∣∣γ′mi,ε̂ dx = 1,
∫
RN

m1+ γ
′

N
i,ε̂ dx→

N + γ′

Na∗
. (5.6) c21innotesbetanegative

Now, we claim up to a subsequence,

xi,ε̂ → xi with Vi(xi) = 0, i = 1, 2. (5.7) claimc23notesbetanegative

Indeed, we have from (5.6) and Lemma 2.4 that

lim sup
ε̂1,ε̂2→0+

∥mi,ε̂∥W1,γ′ (RN ) < +∞. (5.8) c23primenotebetsnegative

Moreover, since γ′ > N, one gets from Morrey’s estimate that

lim sup
ε̂1,ε̂2→0+

∥mi,ε̂∥
C

0, N
γ′ (RN )

< +∞. (5.9) c24notebetsnegative

(5.9) together with (5.4) gives us that there exists R > 0 such that

mi,ε̂(x) ≥
C
2
> 0, ∀|x| < R, i = 1, 2, (5.10) c25notesbetanegative

where C > 0 is a constant independent of ε̂i. As a consequence, we obtain claim (5.7) thanks to (5.5)
and (5.10). In light of (1.32) and (5.7), one finds

lim
ε̂1,ε̂2→0+

|x1,ε̂ − x2,ε̂|

ε̂i
= +∞, i = 1, 2.

Next, we study the convergence of (m1,ε̂, u1,ε̂,m2,ε̂, u2,ε̂) as ε̂i → 0 with i = 1, 2. First of all, we
have from (5.8) and (5.10) that there exist 0 .,≤ mi ∈ W1,γ′(RN) with i = 1, 2 such that

mi,ε̂ ⇀ mi in W1,γ′(RN).
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Without loss of the generality, we assume

ε̂1 ≥ ε̂2. (5.11) assumenotesbetanegative

Since (5.9) and (5.11), one has

β
(
ε̂2

ε̂1

) N
2 +

γ′

2

m
1
2+

γ′

2N
1,ε̂

( ε̂2x + x2,ε̂ − x1,ε̂

ε̂1

)
m

γ′

2N −
1
2

2,ε̂ (x) ≤ C,

where constant C > 0 is independent of ε̂1 and ε̂2. In addition, by using Lemma 2.1, one obtains for
any x ∈ BR(0),

|∇u2,ε̂(x)| ≤ CR, (5.12) 446notenegativebeta

where CR > 0 is a constant. Moreover, the u2,ε̂-equation in (5.3) becomes

−∆u2,ε̂ = −CH |∇u2,ε̂|
γ + gε̂(x),

where gε̂(x) is given by (4.17) with ε replaced by ε̂. We further find from (5.12) that | − CH |∇u2,ε̂|
γ +

gε̂| ≤ C̃R with C̃R > 0. Then we apply the standard elliptic regularity to get ∥u2,ε̂∥C2,θ(BR) ≤ CR, where
CR > 0 is a constant and θ ∈ (0, 1). Thus, we take the limit in the u2,ε̂-equation and m2,ε̂-equation of
(5.3), use the diagonalization procedure and Arzelà-Ascoli theorem to deduce that as ε̂1, ε̂2 → 0+,

u2,ε̂ → u2 in C2,θ̂
loc(R

N)

with θ̂ ∈ (0, 1), and (m2, u2) satisfies
−∆u2 +CH |∇u2|

γ −
γ′

N = a∗m2,
−∆m2 = CHγ∇ · (m2|∇u2|

γ−2∇u2) = −∇ · w2,

0 <
∫
RN m2 dx ≤ 1.

Similar as the derivation of (4.19), one uses Lemma 2.6 to get
∫
RN m2 dx = 1. It follows that m2,ε̂ → m2

in L1(RN). Combining this with (5.9) , we deduce

m2,ε̂ → m2 in Lq(RN),∀q ≥ 1. (5.13) 455lqbetanegative

Invoking Lemma 2.2, (5.2) and (5.9), one has

u2,ε̂(x) ≥ C max
{
|x|,
(
ε
γ′

2 V2(ε̂2x + x2,ε̂)
) 1
γ
}
, if |x| > R, (5.14) 47820240811lowerbound

where C > 0 and R > 0 are constants independent of ε̂1 and ε̂2. Indeed, it suffices to prove u2,ε̂(x) ≥
C|x| for some constant C > 0 when |x| > R. To this end, we find from (5.3) that when ε̂i, i = 1, 2 are
small,

−∆u2,ε̂ +CH |∇u2,ε̂|
γ + λ0 ≥

γ′

3N
− α2m

γ′

N
2,ε̂ − β

(
ε̂2

ε̂1

) γ′
2 +

N
2

m
γ′

2N −
1
2

2,ε̂ m
γ′

2N +
1
2

1,ε̂

( ε̂2x + x2,ε̂ − x1,ε̂

ε̂1

)
, (5.15) 20240811newlowerboundu

where λ0 := − γ′

2N and we have used (5.2) and the positivity of V2. In addition, (5.11) and (5.13)
indicate that as |x| → +∞,

−α2m
γ′

N
2,ε̂ − β

(
ε̂2

ε̂1

) γ′
2 +

N
2

m
γ′

2N −
1
2

2,ε̂ m
γ′

2N +
1
2

1,ε̂

( ε̂2x + x2,ε̂ − x1,ε̂

ε̂1

)
→ 0 uniformly in ε̂1 and ε̂2. (5.16) 20240811newlowerboundu1
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Thus, one further obtains from (5.15) and (5.16) that

−∆u2,ε̂ +CH |∇u2,ε̂|
γ + λ0 > 0 when |x| ≫ 1. (5.17) 48120240811

Now, we fix any |x̃| large enough and define

h(x) := K1|x̃|χ
( x
|x̃|

)
,

where constant K1 > 0 will be chosen later and χ ≥ 9 denotes the smooth cut-off function satisfying
χ ≡ 0 when x ∈ (0, 1

2 ) ∪ ( 3
2 ,+∞). We compute to get

−∆h +CH |∇h|γ + λ0 ≤
K1

|x̃|
+CHKγ

1 + λ0 < 0, (5.18) 48220240811

if we choose K1 small enough. Applying the comparison principle into (5.17) and (5.18), one has

u2,ε̂(x) ≥ h(x) for
1
2
|x̃| < |x| <

3
2
|x̃|,

which finishes the proof of (5.14).
Next, we claim that for any p > 1, there exist R > 0 and C > 0 such that

m2,ε̂(x) ≤ C|x|−p, ∀|x| > R.

Indeed, let ϕ = up
2,ε̂, then we have

− ∆ϕ +CHγ|∇u2,ε̂|
γ−2∇u2,ε̂ · ∇ϕ

=pup−1
2,ε̂ [−∆u2,ε̂ − (p − 1)

|∇u2,ε̂|
2

u2,ε̂
+CHγ|∇u2,ε̂|

γ]

=pup−1
2,ε̂

[
CH(γ − 1)|∇u2,ε̂|

γ − λ2ε̂
γ′

2 − (p − 1)
|∇u2,ε̂|

2

u2,ε̂

+ ε̂
γ′

2 V2(ε̂2x + x2,ε̂) − α2m
γ′

N
2,ε̂ − β

(
ε̂2

ε̂1

) γ′
2 +

N
2

m
γ′

2N −
1
2

2,ε̂ m
γ′

2N +
1
2

1,ε̂

( ε̂2x + x2,ε̂ − x1,ε̂

ε̂1

)]
:=pup−1

2,ε̂ Gε̂(x). (5.19) C34notesbetanegativelya

Lemma 2.1 implies

|∇u2,ε̂| ≤ C
[
1 + ε̂γ

′

2 V2(ε̂2x + x2,ε̂)
] 1
γ . (5.20) 456betanegative20240723

Hence, we deduce from (5.14) that

|∇u2,ε̂|
2−γ

u2,ε̂
≤ C

[
1 + ε̂γ

′

2 V2(ε̂2x + x2,ε̂)
2−γ
γ

]
max{|x|, [ε̂γ

′

2 V2(ε̂2x + x2,ε̂)]
1
γ }
≤

CH(γ − 1)
2(p − 1)

, for |x| > R.

Thus,

CH(γ − 1)|∇u2,ε̂|
γ − (p − 1)

|∇u2,ε̂|
2

u2,ε̂

=|∇u2,ε̂|
γ
[
CH(γ − 1) − (p − 1)

|∇u2,ε̂|
2−γ

u2,ε̂

]
> 0 for |x| > R.
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In light of (5.19), we further find

−∆ϕ +CHγ|∇u2,ε̂|
γ−2∇u2,ε̂ · ∇ϕ ≥ Cpup−1

2,ε̂ , for |x| > R. (5.21) 459notesbetanegative

By using Theorem 3.1 in [11], one gets∫
RN

m2,ε̂u
p−1
2,ε̂ dx < +∞.

Noting that x2,ε̂ is uniformly bounded, we have R is independent of ε̂1 in (5.21). Thus,

lim sup
ε̂1,ε̂2→0+

∫
RN

m2,ε̂u
p−1
2,ε̂ dx < +∞. (5.22) 461betanegative20240723

Indeed, we test the m2,ε̂-equation in (5.3) against ϕ and integrate it by parts to obtain

0 =
∫
RN

m2,ε̂[−∆ϕ +CHγ|∇u2,ε̂|
γ−2∇u2,ε̂ · ∇ϕ] dx = p

∫
RN

m2,ε̂Gε̂u
p−1
2,ε̂ dx.

It follows that for some large R1 > 0 independent of ε̂i, i = 1, 2,∫
{x||x|>R1}

m2,ε̂Gε̂u
p−1
2,ε̂ dx = −

∫
{x||x|≤R1}

m2,ε̂Gε̂u
p−1
2,ε̂ dx. (5.23) collecting1202407231

On one hand, in light of (5.21), one has∫
{x||x|>R1}

m2,ε̂u
p−1
2,ε̂ dx ≤ C

∫
{x||x|>R1}

m2,ε̂Gε̂u
p−1
2,ε̂ dx, (5.24) collecting1202407232

where C > 0 is some constant independent of ε̂1. On the other hand, by fixing inf
x∈RN

u2,ε̂ = 1 in (5.19),

we get Gε̂ ≥ −C for some constant C > 0 independent of ε̂. Combining this with (5.20), one has from
the boundedness of |x2,ε̂| that∣∣∣∣∣ ∫

{x||x|≤R1}

m2,ε̂Gε̂u
p−1
2,ε̂ dx

∣∣∣∣∣ ≤ C
∫
RN

m2,ε̂ dx ≤ C̃, (5.25) collecting1202407233

where C and C̃ are positive constants independent of ε̂. Collecting (5.23), (5.24) and (5.25), one finds
(5.22) holds. Moreover, (5.22) indicates

m2,ε̂ ≤ C|x|1−p, ∀p > 1,

where C > 0 is a constant independent of ε̂1. As a consequence, for any fixed x ∈ RN , we have∣∣∣∣∣ ε̂1x + x1,ε̂ − x2,ε̂

ε̂2

∣∣∣∣∣ ≥ ε̂1|x|
ε̂2
+

1
2
|x1,ε̂ − x2,ε̂|

ε̂2
≥

C
ε̂2
,

where C > 0 is a constant. It follows that(
ε̂1

ε̂2

) γ′
2 +

N
2

m
γ′

2N +
1
2

2,ε̂

( ε̂1x + x1,ε̂ − x2,ε̂

ε̂2

)
≤

(
ε̂1

ε̂2

) γ′
2 +

N
2

ε̂
p
2 ≤ ε̂

γ′

2 −
N
2

1 by choosing p >
γ′

2
+

N
2
. (5.26) 464implies20240723

We rewrite the u1,ε̂-equation in (5.3) as

− ∆u1,ε̂ +CH |∇u1,ε̂|
γ + λ1,aε

γ′

1

=ε̂1V1(ε̂1x + x1,ε̂) − α1m
γ′

N
1 − β

(
ε̂1

ε̂2

) γ′
2 +

N
2

m1,ε̂m2,ε̂

( ε̂1x + x1,ε̂ − x2,ε̂

ε̂2

)
:= IVε̂. (5.27) takelimitbefore20240723
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Since (5.26) indicates for any R̂ > 0,

|IVε̂| ≤ CR̂, for |x| < R̂,

we have from Lemma 2.1 that

|∇u1,ε̂| ≤ CR̂, for |x| < R̂.

Thus, we find by the standard diagonal procedure that

u1,ε → u1 in C1,α
loc (RN) with α ∈ (0, 1),

then take the limit in (5.27) to obtain u1 satisfies
−∆u1 +CH |∇u1|

γ −
γ′

N = a∗m
γ′

N
1 ,

−∆m1 = CHγ∇ · (m1|∇u1|
γ−2∇u1),

0 <
∫
RN m1 dx ≤ 1.

Similarly, Lemma 2.6 implies ∫
RN

m1 dx = 1.

We further deduce from (5.8) that

m1,ε̂ → m1 in Lp(RN), ∀p ≥ 1,

which finishes the proof of this theorem. □

Next, we focus on the refined blow-up rate of minimizers under the case β ≤ 0 and proceed
to complete the proof of Theorem 1.7. Before proving Theorem 1.7, we collect the results of the
existence of minimizers to (3.1) and the corresponding asymptotic profiles as follows

⟨lemma42notesbetacopy⟩Lemma 5.1. Define Ki and Ei
αi

(m,w), i = 1, 2 as (1.7). Then we have problem (3.1) admit minimizers
(mi,wi, ui) ∈ W1,p(RN) × Lp(RN) × C2(RN), i = 1, 2 with p > 1. Moreover, wi = −CHγmi|∇ui|

γ−2∇ui

and the following conclusions hold for i = 1, 2:

(i). ϵi :=
(
CL

∫
RN

∣∣∣wi
mi

∣∣∣γ′mi dx
)− 1

γ′

→ 0 as αi ↗ a∗;

(ii). Let xi,ϵi be a global minimum point of ui, then

ui,ϵ := ϵ
2−γ
γ−1

i ui(ϵix + xi,ϵi), mi,ϵ := ϵN
i mi(ϵix + xi,ϵi), wi,ϵ := ϵN+1

i w(ϵix + xi,ϵi) (5.28) 5p6notebetacopy

satisfies up to a subsequence,

ui,ϵi → ūi in C2
loc(R

N), mi,ϵi → m̄i in Lp(RN),∀p ∈ [1,+∞], wi,ϵi → w̄i in Lγ
′

(RN), (5.29) 5p7betanotecopy

where (m̄i, w̄i) is a minimizer of (1.10) and (m̄i, ūi) satisfies (1.11);
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(iii). if Vi satisfies (1.39) and set

νpi := inf
y∈RN

∫
RN
|x + y|pim̄i dx, (5.30) nupidefinedbybetacopy

then νpi = ν̄pi with ν̄pi given in (1.16) and

ei
αi

:= (1 + o(1))
pi + γ

′

pi

( piν̄pibi

γ′

) γ′

γ′+1
(a∗ − αi

a∗

) pi
γ′+pi

, ϵi = (1 + o(1))
(
γ′(a∗ − αi)
a∗biν̄pi pi

) 1
γ′+pi

. (5.31) eialphainotebetacopy

Moreover, we have

xi,ϵi − xi

ϵi
→ yi,

where yi ∈ R
N satisfies

Hm̄i,pi(yi) = inf
y∈RN

Hm̄i,pi(y) = ν̄pi .

In particular, there exist R > 0, C > 0 and κ1, δ0 > 0 small such that

0 < mi,ϵi ≤ Ce−
κ1
2 |x|

δ0 when |x| > R, (5.32) algebraicdecaynotebeta

Proof. Proceeding the similar arguments shown in [5], we are able to show Conclusion (i), (ii) and
(iii) with ν̄pi replaced by νpi . (5.32) follows directly from Proposition A.1 shown in Appendix A. It is
left to show ν̄pi = νpi with νpi defined by (5.30). First of all, it is straightforward to see that ν̄pi ≤ νpi .
Then, we argue by contradiction and assume

ν̄pi < νpi , i = 1 or 2.

In light of the definition of ν̄pi given in (1.16), we find that there exists (m,w, u) ∈ M withM defined
by (1.17) and yi ∈ R

N such that

νi0 := inf
y∈RN

∫
RN
|x + y|pim(x) dx =

∫
RN
|x + yi|

pim(x) dx < νpi . (5.33) nui020240927

Let

mτ := τNm(τ(x − xi) − yi), wτ := τN+1w(τ(x − xi) − yi),

where τ is defined by (4.31) and yi is the minimum point of νi0 given in (5.33). Then one can obtain

ei
αi
≤ (1 + o(1))

pi + γ
′

pi

( piνi0bi

γ′

) γ′

γ′+1
(a∗ − αi

a∗

) pi
γ′+pi

. (5.34) 4109reachcontradiction2024089

Whereas, (5.31) gives that

ei
αi
= (1 + o(1))

pi + γ
′

pi

( piνpibi

γ′

) γ′

γ′+1
(a∗ − αi

a∗

) pi
γ′+pi

,

which reaches a contradiction to (5.34). □
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Now, we establish the lower and upper bounds of E(m1,a,w1,a,m2,a,w2,a) in the following lemma,
where (m1,a,w1,a,m2,a,w2,a) denotes the minimizer of (1.5).

⟨lemma4320240809⟩Lemma 5.2. Assume that each Vi satisfies (1.39) with x1 , x2 and (1.40) holds. Let (m1,a,w1,a,m2,a,w2,a)
be a minimizer of eα1,α2,β defined by (1.5) with β < 0. Then for any q > max{p1, p2}, we have there
exists Cq > 0 such that

e1
α1
+ e2

α2
≤eα1,α2,β = E(m1,a,w1,a,m2,a,w2,a)

≤e1
α1
+ e2

α2
+Cqϵ̃

q
2 , as (α1, α2)↗ (a∗, a∗), (5.35) 513notebetanegativecopy

where ei
αi

, i = 1, 2 are defined by (3.1). In particular, the following estimates hold:

ei
αi
≤ Ei

αi
(mi,a.wi,a) ≤ ei

αi
+Cqϵ̃

q
2 , i = 1, 2. (5.36) 514notebetanegativecopy

Proof. Noting that β < 0, we deduce from (3.1) and (3.2) that

E(m1,a,w1,a,m2,a,w2,a) ≥
2∑

i=1

Ei
αi

(mi,a,wi,a) ≥ e1
α1
+ e2

α2
. (5.37) 515notebetacopynegative

Moreover, let (mi,wi) be the minimizers of ei
αi

, i = 1, 2 obtained in Lemma 5.1, then one has

eα1,α2,β ≤ E(m1,w1,m2,w2) =
2∑

i=1

Ei
αi

(mi,wi) −
2β

1 + γ′

N

∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx

=e1
α1
+ e2

α2
−

2β

1 + γ′

N

∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx. (5.38) 516notecopybetanegative

By using (5.28), one finds∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx = (ϵ1ϵ2)−N( 1

2+
γ′

2N )ϵN
1

∫
RN

m
1
2+

γ′

2N
1,ϵ (x)m

1
2+

γ′

2N
2,ϵ

(
ϵ1

ϵ2
x +

x1,ϵ1 − x2,ϵ2

ϵ2

)
dx. (5.39) 517notebetacopy

Since xi,ϵi → xi, i = 1, 2 and x1 , x2, we take R := 1
4 |x1 − x2| and obtain for any x ∈ BR/ϵ1(0),∣∣∣∣∣ x1,ϵ1 − x2,ϵ2

ϵ2
+
ϵ1

ϵ2
x
∣∣∣∣∣ ≥ |x1,ϵ1 − x2,ϵ2 |

ϵ2
−
ϵ1

ϵ2
|x| ≥

3
4
|x1 − x2|

ϵ2
−

R
ϵ2

=
1
2
|x1 − x2|

ϵ2
= O
( 1
ϵ2

)
→ +∞.

It then follows from (5.32) that there exists constant C > 0 such that

m2,ϵ

(
ϵ1

ϵ2
x +

x1,ϵ1 − x2,ϵ2

ϵ2

)
≤ C
∣∣∣∣∣ x1 − x2

ϵ2

∣∣∣∣∣−q̂

, ∀x ∈ BR/ϵ1(0),

which implies∫
|x|< R

ϵ1

m
1
2+

γ′

2N
1,ϵ (x)m

1
2+

γ′

2N
2,ϵ

(
ϵ1

ϵ2
x +

x1,ϵ1 − x2,ϵ2

ϵ2

)
dx ≤ Cϵ

q̂
(

1
2+

γ′

2N

)
2

∫
RN

m
1
2+

γ′

2N
1,ϵ dx ≤ Cϵ

q̂
(

1
2+

γ′

2N

)
2 , (5.40) 518betanotecopy

where we have used (5.29). In addition, invoking (5.32), we obtain m1,ϵ satisfies for any q̂ > 0,

m1,ϵ(x) ≤ Cϵ |x|−q̂ for |x| > R, (5.41) by519notebetacopy
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where Cϵ > 0 is some constant. On the other hand, (5.29) indicates that

lim sup
ϵ2→0+

∥m2,ϵ∥L∞ < +∞. (5.42) 4120combining20809

Combining (5.41) with (5.42), we deduce that∫
|x|> R

ϵ1

m
1
2+

γ′

2N
1,ϵ m

1
2+

γ′

2N
2,ϵ

(
ϵ1

ϵ2
x +

x1,ϵ1 − x2,ϵ2

ϵ2

)
dx ≤ C

∫
|x|> R

ϵ1

m
1
2+

γ′

2N
1,ϵ1

dx

≤ Cq̂

∫ +∞

R
ϵ1

r−q̂
(

1
2+

γ′

2N

)
rN−1 dr ≤ Cq̂ϵ

q̂
(

1
2+

γ′

2N

)
−N

1 , (5.43) 520notebetacopy

where we have used (5.41). Upon collecting (5.39), (5.40) and (5.43), we deduce that∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx ≤ Cq̂(ϵ1ϵ2)−N( 1

2+
γ′

2N )ϵN
1

(
ϵ

q̂( 1
2+

γ′

2N )
2 + ϵ

q̂( 1
2+

γ′

2N )−N
1

)
. (5.44) 4122havefrom2024089

Since (1.40) and (5.31) imply up to a subsequence,

lim
αi↗a∗

ϵi

ϵ̃i
= Ci, i = 1, 2,Ci > 0 are constants,

we have from (5.44) that∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx ≤Cq̂ϵ̃

−N( γ
′

2N −
1
2 )

1 ϵ̃
(q̂−N)
(

1
2+

γ′

2N

)
2 +Cq̂ϵ̃

(q̂−N)
(

1
2+

γ′

2N

)
1 ϵ̃

−N
(

1
2+

γ′

2N

)
2

=Cq̂ϵ̃
(q̂−N)
(

1
2+

γ′

2N

)
−sN
(
γ′

2N −
1
2

)
2 + ϵ̃

s(q̂−N)
(

1
2+

γ′

2N

)
−N
(

1
2+

γ′

2N

)
2 . (5.45) 4124obtainfrom20204089

By choosing q̂ > 0 large enough, one finds for any q > max{p1, p2},

(q̂ − N)
(1
2
+
γ′

2N

)
− sN

(
γ′

2N
−

1
2

)
> q, s(q̂ − N)

(1
2
+
γ′

2N

)
− N
(1
2
+
γ′

2N

)
> q.

Thus, we obtain from (5.45) that∫
RN

m
1
2+

γ′

2N
1 m

1
2+

γ′

2N
2 dx ≤ Cqϵ̃

q
2 , ∀q > max{p1, p2}, (5.46) 4125notebetacopynegative

where Cq > 0 is a constant. Finally, (5.46) together with (5.37) and (5.38) implies (5.35).
We next show estimate (5.36). First of all, it is straightforward to obtain from the definitions of

ei
αi

that

ei
αi
≤ Ei

αi
(mi,a,wi,a), i = 1, 2. (5.47) 521notebetanegativecopy

Then, we argue by contradiction to establish the estimate shown in the right hand side of (5.36).
Without loss of generality, we assume for i = 1,

E1
α1

(m1,a,w1,a) ≥ e1
αi
+ Γϵ̃

q
2 ,

where Γ > 0 is large enough and ϵ̃q
2 ≪ min{e1

α1
, e2

α2
} thanks to (5.31). Whereas, by using (5.47), one

has

e1
α1
+ e2

α2
+ Γϵ̃

q
2 ≤

2∑
i=1

Eαi(mi,a,wi,a) ≤ eα1,α2,β,

which is contradicted to (5.35). Therefore, we find (5.36) holds for i = 1. Proceeding the similar
argument, we can show (5.36) holds for i = 2.

□
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Remark 5.1. We remark that by using the exponential decay properties of m shown in Proposition
A.1, the conclusion in Lemma 5.2 holds when (1.40) is replaced by the following condition

lim
a↗a∗

e−ϵ̃1
δ̂

ϵ̃
p2
2

= 0, (5.48) 550condition20240929

where p2 is given in (1.39) and constant δ̂ > 0 depends on δ0 and κ1, which are defined in Proposition
A.1. Moreover, with the aid of (5.48), one can show all conclusions of Theorem 1.7. In other words,
assumption (1.40) can be relaxed as (5.48) if the exponential decay properties of m1 and m2 are
established.

Now, we are ready to prove Theorem 1.7, which is
Proof of Theorem 1.7:

Proof. First of all, we have the fact that

Ei
αi

(mi,a,wi,a) ≥ ε̂γ
′

i

(
1 −

αi

a∗

)
+

∫
RN

Vi(ε̂ix + xi,ε̂)mi,ε̂ dx.

We compute to get∫
RN

Vi(ε̂ix + xi,ε̂)mi,ε̂ dx = ε̂pi
i

∫
RN

Vi(ε̂ix + xi,ε̂)
|ε̂ix + xi,ε̂ − xi|

pi

∣∣∣∣∣x + xi,ε̂ − xi

ε̂i

∣∣∣∣∣mi,ε̂ dx

:= ε̂pi
i Iε̂. (5.49) 413120240809

By using (3.1), (5.36) and (5.31), we proceed the similar argument shown in Theorem 1.5, then obtain
up to a subsequence,

xi,ε̂ − xi

ε̂i
→ yi0 for some yi0 ∈ R

N .

Hence, one has Iε̂ defined in (5.49) satisfies

lim
ε̂→0

Iε̂ ≥ bi

∫
RN
|x + yi0|

pimi(x) dx ≥ ν̄pibi.

It then follows that

Ei
αi

(mi,a,wi,a) ≥ε̂γ
′

i
a∗ − αi

a∗
+ ε̂

pi
i biν̄pi(1 + o(1))

≥(1 + o(1))
pi + γ

′

pi

( piν̄pibi

γ′

) γ′

γ′+1
(a∗ − αi

a∗

) pi
γ′+pi

,

and the equality holds if and only if

ε̂
γ′

i = (1 + o(1))
(
γ′(a∗ − αi)
a∗biν̄pi pi

) 1
γ′+pi

.

Comparing the lower bound and the upper bound of Ei
αi

(mi,a,wi,a) with i = 1, 2 shown in Lemma 5.2,
we finish the proof of this theorem. □

Theorem 1.7 exhibits the refined blow-up profiles of ground states when interaction coefficient
β < 0 under some technical assumptions (1.39) and (1.40). It is worthy mentioning that with the aid
of Proposition A.1, we are able to improve the condition (1.40) such that the conclusion shown in
Theorem 1.7 still holds.
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6 Conclusions
In this paper, we have studied the stationary multi-population Mean-field Games system (1.2) with
decreasing cost self-couplings and interactive couplings under critical mass exponents via variational
methods. Concerning the existence of ground states, we classified the existence of minimizers to con-
straint minimization problem (1.5) in terms of self-focusing coefficients and interaction coefficients,
in which the attractive and repulsive interactions were discussed, respectively. In particular, when
all coefficients are subcritical, we showed the existence of ground states to (1.2) by the duality argu-
ment. Then, the basic and refined blow-up profiles of ground states were studied under some mild
assumptions of potential functions Vi, i = 1, 2.

We would like to mention that there are also some open problems deserve explorations in the
future. In this paper, we focus on the existence and asymptotic profiles of ground states to (1.2) with
mass critical local couplings under the case of γ < N′ with γ given in (1.3) since population density
m can be shown in some Hölder space by using Morrey’s estimate and system (1.2) enjoys the better
regularity. Whereas, if γ ≥ N′, nonlinear terms (1.4) in (1.2) become singular and one can only show
m ∈ Lp(RN) for some p > 1 by standard Sobolev embedding. Correspondingly, the positivities of m1

and m2 given in (1.2) can not be shown due to the worse regularities. Hence, when γ ≥ N′, it seems a
challenge but interesting to prove the existence of ground states even under the mass subcritical local
couplings. On the other hand, while discussing the concentration phenomena in (1.2), we impose
some assumptions on potential functions Vi, i = 1, 2. In detail, when the interaction coefficient β
satisfies β > 0, (1.14) is assumed for the convenience of analysis. However, when V1 and V2 satisfy
infx∈RN (V1(x) + V2(x)) > 0, the classification of the existence of minimizers is more intriguing and
the corresponding blow-up profiles analysis might be more complicated. Similarly, if the interaction
is repulsive, the investigation of the concentration property of global minimizers is also challenging
when V1 and V2 have common global minima.
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Appendix A Exponential Decay Estimates of Population Densi-
ties

⟨appendixA⟩
In this appendix, we investigate the exponential decay property of population density m. More pre-
cisely, we consider the following system:{

−∆uε +CH |∇uε|γ + λε = εγV(εx + xε) + gε(x), x ∈ RN ,
−∆mε +CHγ∇ · (mε|∇uε|γ−2∇uε) = 0, x ∈ RN ,

where γ > 1, V and gε are given. Under some assumptions of gε and λε, one can show mε satisfies the
exponential decay property, which is

⟨appenexp⟩Proposition A.1. Denote (mε, uε, λε) ∈ W1,p(RN) ×C2(RN) × R as the solution to{
−∆uε +CH |∇uε|γ + λε = εγV(εx + xε) + gε(x), x ∈ RN ,
−∆mε +CHγ∇ · (mε|∇uε|γ−2∇uε) = 0, x ∈ RN ,
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where mε > 0 in RN , uε is uniformly bounded from below and Hölder continuous function V satisfies
(1.8) and (1.9); moreover, gε is assumed to satisfy gε ∈ C0,θ(RN) with θ ∈ (0, 1) independent of ε.
Suppose that

(i). λε → λ0 up to a subsequence with λ0 < 0;

(ii). gε(x)→ 0 uniformly as |x| → +∞,

then we have there exist constants C > 0 and R > 0 independent of ε such that

0 < mε ≤ Ce−
κ1
2 |x|

δ0 when |x| > R, (A.1) A020241008

where constant δ0 ∈ (0,min{γ − 1, 1}), constant κ1 > 0 and they are independent of ε.

Proof. By following the same argument shown in the proof of Theorem 1.6, one has

uε(x) ≥ C|x| for |x| > R̂, (A.2) appendixA4lowerbound

where R̂ > 0 is some constant. Then we define the Lyapunov function Φ = eκu
δ0
ε with 0 < κ < 1 and

0 < δ0 < 1 will be determined later. We compute to get

− ∆Φ +CHγ|∇uε|γ−2∇uε · ∇Φ

=κδ0Φuδ0−1
ε [−∆uε − (κδ0uδ0−1

ε + (δ0 − 1)u−1
ε )|∇uε|2 +CHγ|∇uε|γ]

=κδ0Φuδ0−1
ε [CH(γ − 1)|∇uε|γ − λε + εγV(εx + xε) + gε(x) − (κδ0uδ0−1

ε + (δ0 − 1)u−1
ε )|∇uε|2].

Without loss of generality, we assume uε ≥ 1 by fixing uε(0). Then it is straightforward to show that

(κδ0uδ0−1
ε + (δ0 − 1)u−1

ε )|∇uε|2 ≤ 2κδ0uδ0−1
ε |∇uε|2, |x| > R,

where R > 0 is a large constant and we have used uα−1 ≥ u−1. In addition, by using Lemma 2.1 and
Lemma 2.2, we have facts that

|∇u|2−γ ≤ C(1 + εγV)
2−γ
γ , and u1−δ0 ≥ C(1 + εγV)

1−δ0
γ for |x| > R,

where C > 0 is a constant and 0 < δ0 < 1.
Next, we would like to prove there exists R > 0 independent of ε such that

CH(γ − 1)
2

|∇uε|γ ≥ 2κδ1uδ0−1
ε |∇uε|2, ∀|x| > R. (A.3) A820240811appen

When γ ≥ 2, it is easy to show (A.3) holds by choosing κ small enough. When 1 < γ < 2, by taking
δ0 and κ such that 2 − γ ≤ 1 − δ0 and κ small, one finds (A.3) holds. In summary, upon choosing
δ0 ∈ (0, γ − 1) and κ small enough, we apply Condition (i) and (ii) to get

−∆Φ +CHγ|∇uε|γ−2∇uε · ∇Φ ≥ Cκδ1uδ0−1
ε Φ, if |x| > R,

where δ1 > 0 is some constant. Proceeding the similar argument shown in the proof of (5.22), one
finds

sup
ε

∫
RN

eκu
δ0
ε uδ0−1

ε mε dx < +∞.

Therefore, by using the uniformly Hölder continuity of mε and the fact that uε ≥ 1, we obtain for
|x| > R with constant R > 0 independent of ε,

0 < mε ≤ Ce−
κ
2 u

δ0
ε , δ0 ∈ (0, γ − 1), (A.4) appenhavefrombefore

where C > 0, κ > 0 is small and δ0 ∈ (0,min{γ − 1, 1}), which are all independent of ε. Moreover, in
light of (A.2), one has from (A.4) that (A.1) holds. □
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