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Abstract

In this paper, we utilize the variational structure to study the existence and asymptotic profiles
of ground states in multi-population ergodic Mean-field Games systems subject to some local
couplings with mass critical exponents. Of concern the attractive and repulsive interactions, we
impose some mild conditions on trapping potentials and firstly classify the existence of ground
states in terms of intra-population and interaction coefficients. Next, as the intra-population and
inter-population coefficients approach some critical values, we show the ground states blow up
at one of global minima of potential functions and the corresponding profiles are captured by
ground states to potential-free Mean-field Games systems for single population up to translations
and rescalings. Moreover, under certain types of potential functions, we establish the refined
blow-up profiles of corresponding ground states. In particular, we show that the ground states
concentrate at the flattest global minima of potentials.

Keywords: Multi-population Mean-field Games Systems; Variational Approaches; Constrained
Minimization; Blow-up Solutions

1 Introduction

Mean-field Games systems are proposed to describe decision-making among a huge number of indis-
tinguishable rational agents. In real world, various problems involve numerous interacting players,
which causes theoretical analysis and even numerical study become impractical. To overcome this
issue, Huang et al. [8] and Lasry et al. [9] borrowed the ideas arising from particle physics and
introduced Mean-field Games theories and systems independently. For their rich applications in eco-
nomics, finance, management, etc, we refer the readers to [7].

Focusing on the derivation of Mean-field Games systems, we assume that the i-th agent with
i =1,---,n satisfies the following controlled stochastic differential equation (SDE):

dX' = —yidt + V2dB, X} = x'eR",
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where x' is the initial state, y' denotes the controlled velocity and B! represent the independent Brow-
nian motion. Suppose all agents are indistinguishable and minimize the following average cost:

T
J(y):=E f [L(y) + V(X)) + f(m(X)]dt + ur(X7), (1.1)/longsense
0

where L is the Lagrangian, V describes the spatial preference and function f depends on the popu-
lation density. By applying the standard dynamic programming principle, the coupled PDE system
consisting of Hamilton—Jacobi—Bellman equation and Fokker-Planck equation is formulated, in which
the second equation characterize the distribution of the population. The crucial assumption here is all
agents are homogeneous and minimize the same cost (1.1). Whereas, in some scenarios, the game
processes involve several classes of players with distinct objectives and constraints. Correspondingly,
the distributions of games can not be modelled by classical Mean-field Games systems. Motivated
by this, multi-population Mean-field Games systems were proposed and the derivations of multi-
population stationary problems used to describe Nash equilibria are shown in [6]. For some relevant
results of the study of multi-population Mean-field Games systems, we refer the readers to [3].

The objective of this paper is to study the following stationary two-population second order Mean-
field Games system:

—Auy; + HVuy) + 41 = Vi(x) + filmy,my), x € RY,

Am; +V - (m;VH(Vu))) =0, xeRV,
—Auy + HVup) + A = Vo(x) + fo(my,my), x € RN, (1.2)[ss1]
Amy +V - (myVH(Vu,)) =0, xeRN,

famidx= [ mydx=1,

where H : RY — R is a Hamiltonian, (m,, m,) represents the population density, (u;, u,) denotes the
value function and (f;, f>) is the coupling. Here V;(x), i = 1,2 are potential functions and (4;, 4,) €
R X R denotes the Lagrange multiplier. In particular, Hamiltonian H is in general chosen as

H(p) = Cylpl with Cyy > O and y > 1. (1.3) [MFG-H]|

In light of the definition, the corresponding Lagrangian is given by

L=Cly", v = . 1, C, = l()/CH)I%V > 0.
y-1 Y
From the viewpoint of variational methods, the single population counterpart of (1.2) has been
studied intensively when the coupling f is local and satisfies f = —em® with constant e > 0, see
[2, 5, 10]. In detail, there exists a mass critical exponent @ = " := yﬁ such that only when a < o,
the stationary problem admits ground states for any e > 0. Moreover, when @ = a”, one can find
e* > 0 such that the stationary Mean-field Games system has ground states only for e < e* [5]. In this
paper, we shall extend the above results into two-species stationary Mean-field Games system (1.2).
Similarly as in [5], we consider the mass critical exponent case and define
Y Y
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Y 1 Y Y 1
fl = —aqmlN —,Bml m22 "

Y Y Y 1 1.7
Y, fa=—aamy —pmY tmi ", (1.4)[alphal2be

where @; > 0,7 = 1,2 and B measure the strengths of intra-population and inter-population inter-
actions, respectively. We shall employ the variational approach to classify the existence of ground
states and analyze their asymptotic profiles to (1.2) in terms of «@;, i = 1,2 and S. Noting the forms
of nonlinearities shown in (1.4), we assume v’ > N here and in the sequel for our analysis; otherwise
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the strong singularities might cause difficulties for finding ground states to (1.2) while taking limits.
It is an intriguing but challenging problem to explore the existence of global minimizers in the case
of | <y <N.

By employing the variational methods, the existence of ground states to (1.2) is associated with
the following constrained minimization problem:

e = inf E(my, wi, my, wy), 1.5) |problemlp
a1,2,8 (w2 )€K ( 1 1 2 2) ( )
where
w; [V N 1+%
Saranp(Mi, Wi, my, wy) i= Z (CLf —| m dx+f Vim; dx — —a/if m. ¥ dx)
o m; N N+vy v
i:1,2 RN l R R
28BN Ly 1.
“Naw m; *m; " dx, (1.6) | energy1p3
Y JrN

and K = K x K, with
XK = {(m,-,wi)‘ - f Vm; - Vodx + f w;-Vodx =0, Yp € Cff’(RN),
RN RN
m; € W' @R, w; e L'RY), f m;dx = 1, f Vim; dx < +00, m; > 0 a.e. } (1.7)[mathcalki
RN RN

for i = 1,2. Due to the technical restriction of our analysis, we impose the following assumptions on
potential functions V;(x) with i = 1,2:

(H1).
inf Vi(x) =0, Vi € C'(R") and | |1im Vi(x) = +oo0; (1.8)[Viconditi
xeR xX|—+o0
(H2).
Vi . Vi )
lim inf () >0, limsup (x) < +oo0 with constants b > 0, 6 > 0. (1.9)|Viconditi

Id—+oo  |x]? e

|x|>+00

Similarly as shown in [5], the existence of ground states to (1.2) has a strong connection with the
following minimization problem for the single species potential-free Mean-field Games System:

==

’ (il‘%N CL %
= inf
(mw)eA

" m dx)( fRN dx)

1 142
v fRNm N dx

<2

|

(M")

(1.10) |GNinequal

where

A= {(m, w) € W' RY) n LY(RY)

—f Vm-Vgpdx+f w-Vedx =0, Yo € C(R"Y),
N N

R R

0<m#0, f m|x|? dx < 400 with b > 0 given by (1.9) }
RN



We would like to point out that it was shown in Theorem 1.2 [5] that problem (1.10) is attainable and
admits at least a minimizer satisfying

—Au+ CylVul = 2 = —m¥,
Am + CyyV - (m|Vu">Vu) = 0, w = —Crym|Vu|">Vu, (1.11)/equmpoten
fRN mdx = M*, 0 <m < Ce %M

where ¢) > 0 is some constant. As a consequence, the following Gagliardo-Nirenberg type’s inequal-
ity holds:

N fmlﬁv/dxsi(CLf id
N+’)/, RN a* RN

m

Y X
mdx)( f mdx)N Y (m.w) € A, (1.12) GNinequal
RN

where a* := (M *)LN’. With the aid of (1.12), we shall establish several results for the existence and
non-existence of global minimizers to (1.2) and further study the blow-up behaviors of ground states
in terms of @;, i = 1,2 and 8 defined in (1.4). We emphasize that a; > 0, i = 1,2 represent the self-
focusing of the i-th component and 8 > 0 denotes the attractive interaction, while 8 < 0 represents
the repulsive interaction.

In the next subsection, we shall first state our existence results for attractive and repulsive interac-
tions then discuss the corresponding blow-up profiles results.

1.1 Main Results

Theorem 1.1. Suppose that Vi(x) with i = 1,2 satisfy (HI) and (H2) given by (1.8) and (1.9), respec-
tively. Define a* := (M*)¥ with M* givenin (1.11), then we have

(thm11lmulti)

(i). if 0 < aj,a; < a* and —o < B < B, = V(a* —a))(a* — ay), problem (1.5) has at least
one global minimizer (my 4, W14, Mag, Waq) € K. Correspondingly, there exists a solution
(M1 g, Mg, U1 g, Ung) € WEP(RY) x WEP(RN) x C?(RN) x C2H(RN) with any p > 1 and (A1g,A2a) €

R X R such that
Y Y117
—Au; + CylVu " + 41 = Vi(x) —aym] —pm;" *m; ", x¢€ RV,
Amy + CyyV - (my|Vu " 2Vuy) = 0, xeRY,
v Y1 1.7
—Auy + CylVuo|” + Ay = Vo(x) — aomy — pm; 2mlerN, x € RY, (1.13)[ss1thm11]
Amy + CyyV - (mo|Vuo|~>Vu,) = 0, xeRY,
fRle dx = fRNmzdx =1;
(ii). either ay > a* ora, > a* orf > " = ML;_“Z, problem (1.5) has no minimizer.

Theorem 1.1 indicates that when the self-focusing cofficients «@;, i = 1,2 are small and the in-
teraction is repulsive, or attractive but with the weak effect, problem (1.5) admits minimizers and
correspondingly, there exist classical solutions to (1.13). Whereas, if the self-focusing effects and the
attractive interaction are strong, problem (1.5) does not have any minimizer. In fact, there are some
gap regions for the existence results shown in Theorem 1.1 since we have 8* > S, and the equality
holds only when a; = a;. It is also an interesting problem to explore the case of @; < a*,i = 1,2 and
B. <B <.

Of concern one borderline case 8 = 8. = §* with @; = @, < @ shown in Theorem 1.1, we further
obtain



hm12
(e >Theorem 1.2. Assume all conditions in Theorem 1.1 hold and suppose Vi(x), i = 1,2 satisfy

XiEIgN(Vl (x) + Vu(x)) = 0. (1.14) moreassum
Thenifa :==a; =ay <a*and0 < B =" =B, =a" —a < a*, we have problem (1.5) has no
minimizer.

Theorem 1.2 demonstrates that when the self-focusing effects are subcritical but the attractive
interaction is strong and under critical case, there is no minimizer to problem (1.5). Besides the
borderline case discussed in Theorem 1.2, we also study the case of @; = a* for i = 1 or 2 and obtain

finalexistence) Thegrem 1.3. Assume all conditions in Theorem 1.1 hold. If one of the following conditions holds:
(i). @y =a; =a" and —oco < 5 <0;
(ii) a1 =a",0<ar<a*and)<B <P = a*_Taz,

then we have problem (1.5) does not admit any minimizer.

Remark 1.1. We remark that when a, = a*, 0 < @y < a* and 0 < B < 8%, (1.5) also does not have
any minimizer since my-population and m,-population are symmetric in (1.2),

Theorem 1.3 shows that if one of self-focusing coefficients are critical, system (1.2) does not
admit the ground state. We next summarize results for the study of blow-up profiles of ground states
in some singular limits, in which two cases are concerned: attractive interactions with § > 0 and
repulsive ones with S < 0. Before stating our results, we give some preliminary notations. Define

Z; ={x|Vi(x)=0},i=1,2. (1.15)|zerosdefi
For any p > 0, we denote
Hy ,(y) = f Ix + y|’m(x) dx, and ¥, := ( iI’;fM inf Hy, (), (1.16)|Hmoibarnu
RN m,w)e yERN

with
M = {(m, w)|du such that (/m, w, u) satisfies (1.11) and (7, w) is a minimizer of (1.10)}.  (1.17) mathcalMd

The following two theorems address the attractive case with (oy,a;) / (@* — B,a" — ) and
Z, N Z, # 0, which are

ml3attractive) Thagrem 1.4. Assume that Vi(x) satisfies (1.8), (1.9)and Z, N Z, # 0. Let 0 < B < a*, 0 < aj,a; <
a* —p = aj, (M, Wia, Maa, Waa) be a minimizer of ey, o, p With a := (a1, @z) and (m) g, U 4, Mo, Us )
be a solution of (1.13). Define al*; = (a5, a;) =(a" —-B,a" —p), thenasa / a;, we have fori = 1,2,

lim ( f C,
a/a; \ JRrN

1,7 1,.7\2
lim f Vi(ma + Va(x)myadx =0, lim f (mf;” —m;;”) dx =0, (1.19)[thm13conc
a/ag RN a/‘a; RN ’ ”

a
Wia Y

Mjadx — w mlerW dx) =0, (1.18) | thml3conc

N + ’)” RN ia

m;a



,y/

) w; '
lim CLf 4 M;a dx — +oo for bothi = 1,2 (1.20)|202401719
a/ay RN [Mia
and
Wla Y 1+%’
) fRN | Miadx o Javmy, dx
lim — =1, lim — = 1. (1.21)|thm13conc
a/a; waa |Y a/a’ 1+%
ﬁf Myqdx s f ¥ d
RY 1m2a ’ RN mZ,a X

Moreover, define

la

Y -4
ml,a) " o (1.22)[defvareps

Let x;., i = 1,2 be one global minimal point of u;, and y;., i = 1,2 be one global maximal point of
m; 4. Then we have up to a subsequence Ax s.t. V(x9) = Va(xp) = 0, and

w
=g, = (CLf
RN

ml,a

*,
Xigs Yie = Xo, asa /" ag;

moreover, we find

. X1,e — X2
lim sup M < 400, (1.23)|x1varepsi
e—0" &
and
. |xi,.9 - yj,sl ..
lim sup ———— < +o0, i,j=1,2. (1.24) | moreoverh
-0+ &€
In addition, let
2y
Uie := U a(EX + X1 ), Mip = 8Nmi,a(8x + X1g), Wig i= ENHW,",,(SX + X1e), (1.25)|scalingth

then there exist u € C*(RY), 0 <m € W' ([RN), and w € LY (RY) such that

uiy — uin C> (RY), miz —» min PRY), Vp>1, wi, = win LY RY), i=1,2. (1.26)[mlimiting

loc

In particular, (m,w) is a minimizer of problem (1.10) and (u, m, w) solves

—Au+ CylVul =% = —a'm¥, x€RY,
Am + CyyV - (m|Vul">Vu) = 0, w = —Cry|Vu">Vu, x€RN, (1.27)|satisfyth
fRN mdx = 1.

Theorem 1.4 implies that as (@, @) / (a* — B,a* — B), there are concentration phenomena in
the multi-population Mean-field Games system (1.2) with attractive interactions under the mass crit-
ical exponent case. In addition, the basic blow-up profiles of ground states are given in Theorem
1.4. Moreover, by imposing the local polynomial expansion on potential functions, we obtain the
following results of refined blow-up profiles:

orefinedblowup) Thegrem 1.5. Assume all conditions in Theorem 1.4 hold. Suppose that V,(x) and V,(x) have [

common global minimum points, i.e., Zi N Z, = {x1, -+ ,x; € R}, and there exist d > 0, ajj > 0,
pij>0withi=1,2, j=1,---,lsuch that
Vi = ajjlx — x;1P7 + O(lx — x;|P71) for 0 < |x — x;| < d. (1.28)[Vi125nega



Let p; := min{pyj, p»j}, po := max<;q p; and

s ] i < p2"
Vi) + Va(x) | e TP < P2 :
T 2 o aj+ azj, if p1j = p2j (1.29) |mujthmipo

azj, if p1j > paj-

;= lim
IJJ XX |_x —_ lepj

Define Z := {xjlpj = po, j=1,---,1}, u = min{ylx; € Z)and Zy = {xjlx; € Zanduj = u}. Let
(Uier Mg, Wie), 1= 1,2 be given as (1.25). Then we have

&

lim > =1, (1.30)|136refine

£—0* ( )m(a* _ m+0;z+2ﬂ)m

POHYpa*

and

X1,e — X0

— yog with xg € Zy and y, € RNsatisfyingHm,pO(yo) = Vpo» (1.31)|136refine
€

where m and v, are given in (1.26) and (1.16), respectively.

Next, we discuss the blow-up profiles of ground states to (1.2) under repulsive interactions. We
remark that on one hand, one has shown in Theorem 1.1 that (1.2) admits ground states when 0 <
a1, @ < a” and B < 0; on the other hand, Theorem 1.3 indicates that (1.5) does not have any minimizer
when @ = @, = @" and 8 < 0. Similarly as discussed in the proof of Theorem 1.4, we investigate the
concentration phenomena in (1.2) with repulsive interactions and obtain

plowupnegative) Thegrem 1.6. Assume that Vi(x) with i = 1,2 satisfy (H1) and (H2) given by (1.8) and (1.9), respec-
tively. Suppose

Z1NZ, =0, (1.32)|c26notesb

where Zy and Z, are given by (1.15). Let B <0, 0 < @y, a; < a*, (my 4, Wi.a, Mo, Wa.a) be a minimizer
of €q, 0, With @ := (a1, a2) and (my g, U1 9, My 4, Us5) be a solution of (1.13). Define a* := (a*,a”), then
we have as a /" a’,

lim ( f C,
a/'a* RV

a
Wi,a

Y Ng; Y
;g dx + fR Vimiadx - fy, fR ) mT dx) = 0; (1.33)|C7notesne

m ia

. L,y 1,7
lim m; *m; * dx =0, (1.34)|C8notesne

a/'a* RN

and

f Vimiq + Vomyadx — 0; (1.35)|C9notesne
RN

Wiay 1+¥7’ .
CL fRNl ] | Mg dXx — +00, jl;f" m;, dx — +oo, i=1,2. (1.36)|C10betane

é,' = (CLf
RN

Moreover, define

,y/

-

Wi,a

m,-,adx) —0asa Sa,i=1,2.
mi,a



Let x; 3, i = 1,2 be a global minimum point of u; , and

2-y

AN a ANHL oa = A :
Mip = & Mig(Eix + Xiz), Wiz =& * Wia(Eix + Xiz), Uiz =&/ 'ul-,a(a,-x + Xiz), (1.37)|hatepsilo:

1

then there exist (u;, m;, w;) € CX(RY) x W' (RN) x LY (RN) with i = 1,2 such that
e — u;in Co (RY), m, — m;in L’(RY), Vp =2 1, wiz = wiin L' (RY), i = 1,2. (1.38)[mlimiting
In particular, (m;, u;, w;), i = 1,2 both solve system (1.27).

Remark 1.2. We point out that unlike the attractive case discussed in Theorem 1.4 and Theorem 1.5,
&1 and &, given in Theorem 1.6 both converge to zero but might not be in the same order since 8 < 0
and the behaviors of V| and V, might be distinct around global minimum points locally.

Theorem 1.6 indicates that when the interaction is repulsive, there are concentration phenomena
within system (1.2) in some singular limit of parameters «a;, a, and 5. Moreover, similarly as the
conclusion shown in Theorem 1.5, we explore the refined blow-up profiles and obtain

ultipopulation) thegrem 1.7, Assume all conditions in Theorem 1.6 hold. Suppose that each Vi, i = 1,2 has only
one global minimum point x; with x| # x, and there exist d > 0, b; > 0 and p; > 0 such that

Vi(x) = bilx — x)|P" + O(x — x,|P™) for 0 < |x — x;| < d. (1.39)|52viinnot
Define fori = 1,2,
&= (a' —a)7" and assume 3 s € (0, 1] such that & = O). (1.40) [assunethn

Let (m) 4, W1 4, Ma g, W2 ) be a minimizer of (1.5) and (m; s, iz, u; z) be defined as (1.37). Then we have

x. A — x
" s v such that H,, »,bio) = Vp,, (1.41)?136refine

i

where m; and v,, i = 1,2 are given by (1.38) and (1.16), respectively. Moreover, the following
asymptotics hold as a /" a*,

1 -
& =(1+ 0(1))(”“—__%))“”’", i=1.2.
! a*biv,pi
Remark 1.3. In Theorem 1.7, we discuss the refined blow-up profiles of ground states when the in-
teraction coefficient is non-positive under some technical assumption (1.40). We would like to remark
that this condition is technical and could be improved if the refined decay estimate of population
density m is given. In fact, the improved condition will be exhibited in Section 5.

The rest of this paper is organized as follows: In Section 2, we give some preliminary results
for the existence and properties of the solutions to Hamilton-Jacobi equations and Fokker-Planck
equations, which are used to investigate the existence and blow-up behaviors of minimizers to problem
(1.5) . Section 3 is devoted to the exploration of the effect of the potentials V;(x), i = 1,2 and
coefficients a, @, on the existence of minimizers. Correspondingly, the proof of Theorems 1.1-
1.3 will be finished. In Section 4, we perform the blow-up analysis of minimizers under the case of
attractive interactions S > 0, and show the conclusions of Theorem 1.4 and Theorem 1.5. Finally, in
Section 5, we focus on the asymptotic profiles of ground states with 8 < 0 and complete the proof of
Theorem 1.6 and Theorem 1.7.



2 Preliminary Results

(preliminary) p this section, we collect some preliminaries for the existence and regularities of solutions to Hamilton-
Jacobi equations and Fokker-Planck equations, respectively. Furthermore, some useful equalities and
estimates satisfied by the solution to the single population Mean-field Games system will be listed.

2.1 Hamilton-Jacobi Equations

Hsubsection)? congider the following second order Hamilton-Jacobi equations:

—Aug + CylVue” + A = Vi(x) + fi(x), xR, (2.1)HIB-regul

where y > 1 is fixed, Cy is a given positive constant independent of k and (i, 4;) denote the solutions
to (2.1). For the gradient estimates of u;, we find

nazl-gradientwy emma 2.1. Suppose that f, € L¥(RY) satisfies ||fill~ < Cy, |4l < A, and the potential functions
Vi(x) € COYRN) with 6 € (0, 1) satisfy 0 < Vi(x) — +oo as |x| = +o0, and A R > 0 sufficiently large

loc

such that

Vi(x +y)

0<C; <
AT

< C,, forall k and all |x| > R with |y| < 2,

where the positive constants Cy, A, R, Cy and C, are independent of k. Let (uy, A;) € C*(RM)x R be a
sequence of solutions to (2.1). Then, for all k,

V()] < C(1 + Vi(x))7, forall x € R,

where constant C depends on Cy, Cy, Cy, A, y, N and Cy.
In particular, if there exist b > 0 and Cr > 0 independent of k, such that following conditions hold
onV;

C7'(max{|x| — Cr,0})’ < Vi(x) < Cp(1 + |x|)?, for all k and x € R", (2.2)[cirant-Vk
then we have
|Vu,| < C(1 + le)l?), forall k and x € RN,
where constant C depends on Cy, Cp, b, A, y, N and Cy.

Proof. See Lemma 3.1 in [5] and the argument is the slight modification of the proof of Theorem 2.5
in [2]. ]

For the lower bound of u;, we have

enerallemmaz2) y omma 2.2 (C.f. Lemma 3.2 in [5]). Suppose all conditions in Lemma 2.1 hold. Let u; be a family
of C? solutions and assume that uy(x) are bounded from below uniformly. Then there exist positive
constants C3 and Cy4 independent of k such that

up(x) = G5V, (x) — Cs, Yx € R", for all k. (2.3)[29uklemma
In particular, if the following conditions hold on V

Cr(max{|x| — Cr, 0}’ < Vi(x) < Cp(1 + |x))°, for all k and x € R, (2.4)[cirant-vk



where constants b > 0 and Cr are independent of k, then we have
w(x) = C3lx"*7 — Cy, for all k,x € R". (2.5)[usolution
Ifb = 0in (2.4) and there exist R > 0 and 6 > 0 independent of k such that
fi+ Vi— > 6> 0forall |x| >R, (2.6) ?1emma22hc
then (2.5) also holds.

The existence result of the classical solution to (2.1) is summarized as

2Zprelininary) y amma 2.3 (C.f. Lemma 3.3 in [5]). Suppose Vi + fi are locally Holder continuous and bounded
Jfrom below uniformly in k. Define

A = sup{d € R | (2.1) has a solution u; € C%(RM)).
Then

(i). Ay are finite for every k and (2.1) admits a solution (ug, ;) € C2(R™) x R with A, = A and ux(x)
being bounded from below (may not uniform in k). Moreover,

A = sup{d € R | (2.1) has a subsolution u; € C*(R")}.

(ii). If Vi satisfies (2.2) with b > 0, then uy is unique up to constants for fixed k and there exists a
positive constant C independent of k such that

up(x) > Clx|#*' = C,Vx € R™. (2.7) [ Lowerboun
In particular, if Vi, = 0in (2.1) and there exists o > 0 independent of k such that

fi— A4 =20 >0, for|x| > K>,
where K, > 0 is a large constant independent of k, then (2.7) also holds.

(iii). If Vi satisfies (1.9), then there exist uniformly bounded from below classical solutions uy to
problem (2.1) satisfying estimate (2.3).
2.2 Fokker-Planck Equations
Hsubsection2)? Of concern the second order Fokker-Planck equation
~Am+V-w=0, xeR", (2.8)|sect2-FP-
where w is given and m denotes the solution, we have the following results for the regularity:

21-crucial-cor) 1 emma 2.4. Let (m, w) € (L‘(RN) N W"@(RN)) x L' (RY) be a solution to (2.8) with

N if y’ <N,
g:=1¢(&L.N) ify =N
Y ify’ > N.

Assume that

A, ::f ImI|K‘7 dx < oo,
R? m
then we have w € L'(RY) N L1(R") and there exists C = C(A, |lmllpiv)) > 0 such that

”m”WL‘?(RN)a ”W”Ll(RN)’ ”W”L‘?(RN) <C.

10



Proof. See the proof of Lemma 3.5 in [5]. O

Next, we state some useful identities satisfied by the single population Mean-field Games system.
First of all, we have the exponential decay estimates of m when some condition is imposed on the
Lagrange multiplier, which is

(mdecaylemna) y emma 2.5 ( C.f. Proposition 5.3 in [2] ). Assume y’ > N. Let (u, 1,m) € C*(R") X R x (W' (R") N
LY(R™)) with u bounded from below, and A < 0 be the solution of the following Mean-field Games
system

—Au+ CylVu|” + 1 = —-m’, xeRV, -
{ Am + CyyV - (mVul”2Vu) = 0, x € RV, (2.9)[26prelini

where v € (0, VN]. Then, we have there exist ki, k; > 0 such that
m(x) < ke ™™ forall x e RV.

With the aid of Lemma 2.5, we have the following results for the Pohozaev identities satisfied by
the solution to system (2.9):

(poholemma)y eyma 2.6 (C.f. Proposition 3.1 in [4]). Assume all conditions in Lemma 2.5 hold and denote
w = —Crym|Vul"~>Vu. Then we have the following Pohozaev type identities hold:

{ A Joymdx = DY WY vl

, (a+l)yy”  JRN
Cr fum|2] dx= 2o [ om™* dx = (y = 1)Cy [, mVul” dx.

(v+1)y” JR

3 Existence of ground states

(sec-existence) [y thig section, we shall discuss the existence of ground states to system (1.2) under some conditions
of coefficients a; with i = 1,2 and . To this end, we first estimate the energy &, o, g(m1, w1, My, w)
from below. Then, if the energy is shown to have some finite lower bound and the minimizers is
proved to exist, we will find the existence of ground states to (1.2) by the standard duality argument.
Before stating our main results for the existence of minimizers, we give some preliminary definitions,
which are

e, = inf & (mw),i=1,2, (3.1)[problems1

! (mw)eK;

where %; is given by (1.7) and

Y _ /
id mdx + f Vimdx — i f m* v dx. (3.2) lmathcalea
RV RN

m Y
1+N

&, (mw) =C, f

RN
Concerning the existence of ground states in (1.2), we have

nceleastenergy) y amyma 3.1. Assume all conditions in Theorem 1.1 hold, then we have

(i). if0<a; <a’,0<ay<a*and -0 <B<pB,:= V(a —a))(a* — a,), then problem (1.5) has a
global minimizer (m 4, W1 4, Mo g, Waq) € K;

2a"—a1—ay

(ii). either ay > a* ora, > a* orf > " = 5

, then problem (1.5) has no minimizer.

11



Proof. (i). Invoking inequality (1.12) and condition (1.8) satisfied by V; with i = 1,2, we have for
any (my, wi,my, wy) € K,

aal,dz,ﬁ(mla Wi, My, WZ)

2
> Vl‘id-i-
meN

2 7 a J
. 142 1.y 1.7
,[Z(a —oz,-)f mi+Ndx—2ﬁf mf+2Nm22+2N dx]
i=1 RY RY
2B.-PN [ 1k

1,2
N m? W m2 " dx, (3.3)[citeinequ
4

RN

where &,, o, 4 1s given by (1.6). Then, letting {(m 4, Wi x, Mo, wox} € K with k € Z* being a minimiz-
ing sequence of e,, 4, g, one has from (3.3) and —co < 5 < S, that

supi Vim; dx < 400, supf mfk”’mzk” dx < +oo, (3.4) |between31

and then

(3]

wir |’

m; dx < +oo. (3.5) | moreimpor

k N Mg

Thanks to Lemma 2.4 and (3.5), one obtains as k — +oo, fori =1, 2,
(M i) = (Mia, wia) in W' (RY) x LV (RY).

Moreover, by the compactly Sobolev embedding (C.f. Lemma 5.1 in [5]) and Fatou’s lemma, we find
from (3.4) that

mix — mia in L7 ®Y) 0 L'(RV).

Then it follows that (72 5, W14, M2, W2a) € K is a minimizer.

(ii). Let M be given by (1.17). Since v’ > N, by using Morrey’s embedding, the standard
elliptic regularity and the maximum principle, one follows the idea shown in [1] then obtain for any
(m,w) € M, m(x) > 0 for all x € RY. Next, we utilize some rescaled pair of (my, wy) € M to analyze
the bound of &,, 4, 3 from below.

Let (mg, wg) € M and define

N N+1

(o) = (=t = x0), Sowo(t(x = x0)). for £> 0 and xy € Y. (3.6) [byusingin

From Lemma 2.5 and Lemma 2.6, we have that

Woy
N | M

CL

' l+y N + 7’ * :
modx =1, my " dx = N modx = M". (3.7)| combine20
RN RN

Combining (3.6) with (3.7), one finds

Y ﬂ"
m,dx = CL—f
M* RN

12

Y ﬂ’/

modx = —, (3.8)|onefindsi.

M*

Wo

my

t

ch id
RN

ny




and

142 NA+R) N+y ¢

f m ¥ dx = ——— f my ¥ (1x) dx = . (3.9)[onefindsi
R (M*)HVW RN N (M*)HYW

N

Then it follows from (3.2), (3.6), (3.8) and (3.9) that

w, [ Na, 142
=L m, dx - m, N dx+ Vim, dx
m N + 'y/ RN RN

t

8(lyl (my, wy) :CLf
RN

’

o 1
(1= 2 fR V4o o (3.10)[colecting

a*

On the other hand, we choose
e—5llx|
m=———— w= Vmwith (m,w) € K>,
lle=011]]

and apply Holder’s inequality to get

, ) 1 1
L _ 1.y 1+% 2 Y 2 Y
m W i ax s( m ¥ dx) ( ¥ a’x) <crt, 3.11)[colecting
\[RN ! RN ! RN ( )

where C > 0 is some constant. Upon collecting (3.10) and (3.11), we obtain if a; > a*,

1 03} Y
Earan p(My, Wi, M, W) > ﬁ(l - —) —Ct?-C— —00, ast — +oo.
* a

Thus, ey, 0,5 = —00 when a; > a*. Similarly, we find if @, > a*, then ¢, 4,3 = —0co. Consequently,
we have if any @; > a” or @, > a*, problem (1.5) does not have a minimizer.
It is left to study the case of 8 > *. To this end, we compute and obtain

7 (2 g (%) Zﬁ

————— )+ O(1) = —oo0, ast — +oo,
M*

Sal,az,ﬁ(mta Wt9 mb Wt) = a* a* E
when B8 > B8 .= Z"Lz‘*‘” This completes the proof.
i

Lemma 3.1 states some existence results for the global minimizers (m,, wy, m,, w;) to (1.5) under
some conditions of @y, @, and S. In particular, when intra-population and inter-population coefficients
are all small, Lemma 3.1 implies there exists a minimizer to (1.5). Whereas, the existence of ground
states to (1.2) can not be shown unless (u;,u;) and (4;, A,) are obtained. Hence, to finish the proof
of Theorem 1.1, we establish the following lemma for the existence of the value function pair (u1, u,)
and Lagrange multipliers (4, 4,):

enma32multingg) y emma 3.2, Let (M1as Wia> Maas Waa) € K be a minimizer of eq, 4,5 with K = Ki X K, defined by
(1.7), then there exist (U 4, Upq) € (CZ(RN))2 and (A 4, Aa4) € R? such that (my a4, 1 4, My as Usas A1.a» A2.a)

solves
Y Y 1 1.7 N
—Auy + CylVu " + 4y = Vi(x) —aym|" —pm;"¥ *m; ", x€R",
Amy +V-w; =0, w; = —yCxm;|Vu,|""*Vu, xeRV,
Y Y 1 1+L, N (312)
—Auy + CylVup|” + A = Vo(x) — aomy’ —pmy" *m; ", x €RY,
Amy, +V-wy =0, wy, = —yCHm2|Vu2|7‘2Vu2, x € RV,

13



Moreover, we have the following identities and estimates hold:

Aig =Cyp f
RN

and there exists a constant C > 0 such that

4
Wia Y

1+2 Ly 17 )
Mg dx+f Vimiq dx—cx,-f mi;rN dx—ﬁf mfZ”"m%ZZN dx,i=1,2, (3.13)|1ambdal77.
RN RV 7 R¥N 7 ’

miq

[V, o(x)] < C(l + Vf(x)), Uig(x) > CVZ.; —C, forallxeR", i=1,2. (3.14)|gradientu

Proof. To prove this lemma, we follow the approaches employed to show Proposition 3.4 in [Z] and
make slight modifications. Define admissible sets ‘A; as

VYl |Ay|

limsup “2) < 4o, limsup =2 < +co } i=1,2, (3.15) 2definitic

|x]—c0 V; [x]—c0 i
i

A = {w e C2RY)

then we proceed the similar argument shown in the proof of Proposition 5.1 in [5] and obtain

_f m;aAY dx = f Wia - Vrdx, YWy eA, i=12 (3.16)|80innotes
RN RN

Next, we define

’

- wl”
Jim,w) := f [CL —| m+[Vi(x) + fi(m) 2, mya)Im|dx, (3.17)|definitio
RN m
where
fl(ml,aa m2,a) =samy _ﬁmz’a mia
and set

B, = {(m, w) € (L'RY) n W' (RY)) x LV (RY)

_fmAwdx:f w-Vtﬁdx,VlﬁG\(ﬂi,
RN RV

1
mZOa.e.inRN,fmdx:I, f Vimdx < +o0, f |w|Vl.7'dx<+00},i:1,2.
N RN RN

R

We have the fact that (m 5, Wi a, M2, W2 4) is @ minimizer of &, 4,5 in B X By, i.e.

o = inf 8(11,(,2’,3(7’111, Wi, My, Wz) = inf 8(“,02,/;(m1, Wi, My, Wz). (318) minimumB1.

(my,wi,mp,w2)eK1 XTI (my,w1,mp,w2)€B1XB,

Now, we claim

Ji(mya,wia) = min Jy(m,w), (3.19)[tilde]iml

(m,w)eB,
where J; is defined by (3.17). Indeed, we set
Jim,w) := Eq, 0r (M, W, M 5, Wa5) 1= @(m, w) + A(m) + G, (3.20) | definitio:

where

,y/
dx,

p(m,w) = CLf m'K
RN m

14



N 28BN 1,7
A(m) := — o f R dx +f Vimdx — A f m%+2le22+2N dx,
N+vy" Jry RN N+vy" Jry 2
and
~ Woal” Na 4
G = CLf 23 My, dx — ! m;N dx+f Vomy 2 dx.
RN mz’a ’ 'yl + N RN A RN ’

For any (m,w) € B,, we define
my=Adm+{1-Dmpy, wi=Aw+ (1 -Dw,, 0 <A<,
and have the fact that (m,, w,) € 8;. Thus, by using (3.18) and (3.20), we obtain
Ji(ma, w)) = Eay 0y p(MA, Wi, Mo, Woa) 2 Sy 0 p(M10, Wias Moa, Waa) = J1(My 0, W1 a),
which implies
o(ma, wy) + A(my) = p(my a, wia) + Alm ),
ie.
O(ma, wy) = @My a, wia) = Amya) — Almy). (3.21)[89innotes
Next, we simplitfy (3.21). On one hand, by the convexity of ¢ in (m, w), we have
@(ma, wy) < Ap(m, w) + (1 = Dp(my a, Wia),
ie.
o(ma, wa) — @(mya, wia) < Ap(m, w) — o(m 2, wia)l. (3.22)[90innotes
On the other hand, for A4 > 0 sufficiently small, we have
A(my) = Amya) + AVA(ma), (m —mya)) + O(). (3.23)[91innotes
In addition, invoking (3.17) and (3.20), one can obtain
VA(my2) = Vi + fi(mya,moa).
Upon substituting (3.22) and (3.23) into (3.21), we get
o(m, w) — @(mya, wia) = —(VAGN12),m — my ).
Hence,
Ji(m,w) = @(m, w) + (VA 5), m) > @(m 5, wi ) + (VAmy 2), m12) = J1(mya, wi ),

which indicates that claim (3.19) holds.
Now, we prove

sup{d : =AY + Cy|Vy|” + A < V| + fi(mya, my,) in RY for some Ve B} = ( m)inB Ji(m,w). (3.24)[ourclaimh
mw)ebq
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In fact, by following the similar argument shown in the proof of Proposition 3.4 in [2], we define
Li(m,w, L, ) := Ji(m,w) + (mAY +w - Vi — Am) dx + A,
RN

and obtain

min Ji(m,w)= min_ sup L,(m,w, A, ¥),
(m,w)eB (m,w)el (LP)ERXA,

where I := (L'(RY) n W' (RY)) x LY (RY). Invoking the convexity of £(-, -, A,¥) and the linearity
of Ly(m,w,-,-), one has

min_ sup Lim,w, A, ¥)= sup min_ Ly(m,w,A,¢)
mwEl (3 y)eRx Ay (A)eRxA (W)L

Y
= sup f min [C L
(AY)ERxA; JRN (m,w)eRXRN

:{ 0, Vi+ filmia,myy) — [-AY + Cy|Vy|"] 2 0,
—oo, Vi + filma,mya) — [-AY + Cy|Vy]"] <0

=sup{A|Vy + fi(mya,mp5) — [-AY + Cyx|Vy['] > 0 for some ¢ € A},

m+[Vi + filmya, mya)lm+mAy +w -V — Am|dx + A

w
m

which shows (3.24). Moreover, with the aid of Lemma 2.3, we have

Aa :=sup{A Vi + fi(mya, mya) — [-AY + Cy|Vy]"] > 0 for some ¢ € A}
=( m)inB Ji(m,w) < 400, (3.25)|1ambdalsu
m,w)eb
and there exists u; 5, € C 2(R") such that
—Atty g + CylVuyal” + A0 = Vi + fi(my 0, mag) in RY. (3.26)[uleqfimim

In particular, we have from Lemma 2.1 and Lemma 2.2 that (3.14) holds for u; ,.
Since my 5, My, € L¥(RY) by Sobolev embedding, one obtains f(m; a, my,) € L¥(RY). Then it
follows from (3.14) and (3.26) that

| = Aupa(x)] < C(1 + Vi(x)).
Thus, u; , € A;. Combining (3.19) with (3.25), one finds (3.13) holds for i = 1, i.e.

Wial”

/ll,a = jl(ml,a, Wl,a) = f

RN

[CL a4 Vi + fi(my e mo)lmia| dx,

l,a

where we have used (3.17). Next, we shall show
Wia = _CH')/ml,alvul,aly_zvul,a-

First of all, (3.13) and (3.26) imply that

Wia 14
0= f [CL + Vi+ filmya,mya) — /ll,a]ml,a dx
RN mia
W] 7/ ,y/
= Cy — Auya + CylVuy | |myadx.
RN ml’a
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Then we take ¥ = u;, in (3.16) to get

0 = f [CL
{xlmy 2>0}

By using the definition of H that

Wia L4

+ CulViural + Vi, - Wl’a]ml,a dx. (3.27) [therefore

mia

mia

w wial” w w
[ - 22) = o212 = sup (= ptt  H(p)) > ~CulVunal = Vi - =2,
mMia mia PERN mia l,a
where H(p) = Cy|p|”. Therefore, (3.27) indicates that
Wia 14 % Wla . N . :
Cy + CylVuy " + Vuy 4 - >0a.e.in{x € R"|m, > 0}. (3.28)|indicates
l,a l,a

Since sup (—p:ﬁ — H(p)) is attained by p = Vu,; , when m; , > 0, one has from (3.28) that

peRN

Wia = -VH(Vu,,)in {x € RNlml,a > 0}.

m],a
Thus, we obtain
~Amy 4 — CyV - (myo|Vuy o] "*Vu, 5) = 0 in a weak sense.

Proceeding the similar argument shown above, we have (3.13) holds for i = 2 and there exists u, €
C%(R") such that
Wya = —C Hymz,aWuz,aly_ZVuz,a, x € R in a weak sense.

Finally, by the standard elliptic regularity, we find (3.12) holds in a classical sense. This completes
the proof of this lemma. O

By summarizing Lemma 3.1 and Lemma 3.2, we are able to show conclusions stated in Theorem
1.1, which are
Proof of Theorem 1.1:

Proof. For Conclusion (i), we invoke Lemma 3.1 to get there exists a minimizer (1) 4, Wi a, M2.a, M2.a) €
K to (1.5). Moreover, Lemma 3.2 implies there exist (i 4, U2 5) € C2(RV)XC?(RY) and (1 4, A24) € R?

such that (m, 5, M2 a, U1 2, U2.a, 412, A2.a) SOlves (1.13). By standard regularity arguments, we have from

Lemma 2.4 that

(1110, M 0, Uy 5 U20) € WHPRY) X WHPRY) x C2(RY) x C*RY),

which completes the proof of this conclusion. Conclusion (i) is the straightforward corollary of
Lemma 3.1. O

We next focus on the borderline case when a; = @, shown in Theorem 1.1. In detail, we impose
the extra assumption (1.14) on the potentials and investigate the conclusions shown in Theorem 1.2,
which are

Proof of Theorem 1.2:
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Proof. In light of the assumption (1.14), we let (m;, w,) be (3.6) with x, € R satisfying
Vi(xo) = Valxo) = 0.

Then for i = 1,2, we compute to get

1 1
fRN Vitxm, dx =-2 fRN Vit mo(t(x — x0)) dx = e fRN Vi();; + xO)m()(y) dy.

By invoking Lebesgue Convergence Dominated Theorem, we further obtain as t — +oo,

f Viix)m,dx — Vi(xy) =0, fori=1,2.
RN

Proceeding the similar argument shown in the proof of Lemma 3.1, we get

Eapa—pp(My, w, m, w) = [Vi(xo) + Va(xo)] + 0,(1), (3.29) takeinfty
where 0,(1) > 0 as t —» +o00. We take r — +c0 in (3.29) to obtain
ey —ga—pp < 0. (3.30) |criticald

On the other hand, we rewrite (1.6) as

2 /
wi|” N(a; +p) 1+%
Sal,az,ﬁ(mlawl,mZaWZ) = Z (f CL|_' m; + Vimj — ———— m; Mdx
=1 RN m,- RN

N+
N, 1,7 1,7 \2
+ N +'By, » (m12+zyN - m{rgN) dx. (3.31)|uponsubst
Upon substituting @y = @, = a* —F and § = a* — a into (3.31), we deduce that
ex—pa—pp = 0. (3.32) |criticald

Combining (3.30) with (3.32), one has
ex—ga—pp = 0. (3.33)|eastar®ch

Now, we argue by contradiction and assume that (m, w, my, w;) is a minimizer of (1.5) with
a; =a; =a" — B and B = a* — a. Then we have

2
Sa*—ﬂ,a*—ﬂ,ﬂ(ml’ Wi, My, Wo) = Z CL f
i=1 RN

w;|” Na* 1+
—| m;dx - m; " dx
RN

m; N+vy
NB (mé”y”,’ - mé“y’,v)2 dx
N+y Jan ! 2
+ fN Vix)my + Vo(x)m, dx
=1 +Dj2+13. (334)]@

In light of (3.33), one finds from (3.34) that I; = I, = I3 = 0, in which I; = 0 implies each (m;, w;),
i = 1,2 1s a minimizer of problem (1.10). In addition, /, = 0 indicates that m; = m; in RN. Morever,
one gets from /3 = 0 that

f Vix)my + Vao(x)mydx = 0,
RN

which leads to a contradiction since m; > 0 for i = 1,2 by using the compactly Sobolev embedding
and the maximum principle as shown in [1]. O
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For the existence of minimizers, we next consider the case of @; = a* and show Theorem 1.3,
which is
Proof of Theorem 1.3:
Proof. We define the test solution-pair as
N

1
m;(x) = %mo(r(x - X+ (—1)‘L¥v)), Wi =

TN+1

1
Wwo(r(x - (—1)1L¥v)), (3.35)[scalingte

where (mg, wy) denotes a minimizer of (1.10) satisfying (1.11), v € S¥~!, %, € R" and constant ¢ will
be determined later.
By using Lemma 2.6, we have

’ ’

Wiz | 7 1+ N+y
Cp il midx = —, f mi:N dx = L4 -, (3.36) ?B5innotes
N M M RN N (M*)HYW —
and
1,7 1,7 v 1,7 1,7 o

mlz’T N miT Ndx = — mg M (x)mg N (x + (X — X2) + 2tInTv) dx. (3.37) B6innotes
R (M) Jar [Betmortes

We have the fact that

|T(X; — X)) + 2tInTyv| > 2tInT when 7 > 1.

Hence, for 7 large, if x € B,j, = {x||x| < ¢tIn7}, one gets from Lemma 2.5 that

mo(x + 7(X) — %) + 2tInTv) < Ce %07, (3.38)[byusingon

where C > 0 is a constant. And if x € Bf; _, then

my < Ce™%0InT, (3.39) | exponenti

where C is a positive constant, 6o > 0 and we have used the exponential decay property of m.
Combining (3.38) and (3.39), one finds from (3.37) that as 7 — +oo,

S 28 Moo b -
m; my M dx = — m0 (x)m (x +7(X] — X))+ 2tInTv)dx
RV , | (M*)l-‘—W Bint

C

1,7 17
+ mé+zN(x)mé+2N(x+T()‘cl - X))+ 2L11’1TV)dX]

tint

' (Le2 :
<Cyyt’e (ztamlooinT = Cnyt” (3+ 3 oo - 0, (3.40)|B8innotes

where constant ¢ is chosen as ¢ > In addition,

(N+ ’)6

I I
fNV,-m,.,de:M* fNV(:erl—( l)LnTvmodx —f g:.(x) dx.
R R

Noting that g.(x) — V;(X)my(x) a.e. in R, we obtain from (1.9), (3.38) and (3.39) that when 7 is
large,

Xz (—1)i/nTy, _%
g (x)| < Celle iD=kl < Com2h e LIRM),
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Thus, by Lebesgue dominated theorem, we further get

LN Vim; . dx — V(%) as T — +co. (3.41)[b10innote
Collecting (3.37), (3.40) and (3.41), one finds if @; = @, = a@" and 8 < 0, then
Sarar (M1, Wig, My, W o) = Vi(X1) + Va(X2) + 0:(1),
where 0.(1) — 0 as T — +oo. It follows that
Coranp < Vi(k)) + Va(Xp) = 0,

where X; € RY with i = 1, 2. If we choose &; such that V;(x;) = 0 for i = 1,2, then by using (1.12) and
B <0, one has e, 4,5 > 0. Therefore, we summarize to get e,, o, s = 0. Proceeding the same argument
as shown in the proof of Theorem 1.2, we show there is no minimizer in case (i).

For case (ii), if 8 = 0, one finds

2

_ 1
€a1,a,0 = €4 T eaz’

where e, and 3(212 are given by (3.1). Noting that this is the decoupled case, we have the fact that there
1S no minimizer as shown in [5].

If0<pB< ”*;(’2, taking ¢ = 0 in (3.35), we compute to get

1.7 750N x o\ .7 710/=N)
mi mg N dx = ——— mo(— + Xl)mé Mdx = ———1I.. (3'42)@
RN (M*)2tw Jrv T (M*)2*2n

We choose X; € RY such that my(x;) > Cy > 0 then obtain

T—+00

. 1.7
lim I, > C m? *Ndx>C;>0ast— +oo.
T 0 0 1
RN

Thus, (3.42) implies

’

,+L l+L’ 1o
f mi md T dx 2 Cri7 N - too,
RV

It follows that

1 ’
Ear ay g(M1 s Wi 7, Mo, Wo) < 0,(1) + C = Cpy 27 — —c0 for B > 0.

Hence e, o, 3 = —o0 if § > 0, which indicates (1.5) has no minimizer.
O

As shown in Theorem 1.1 and Theorem 1.2, we have obtained when all coefficients a;, @, and 8
are subcritical, (1.2) admits classical ground states; whereas, if @; = @, are subcritical and S is critical,
then (1.5) has no minimizer. A natural question is the behaviors of ground states as (a;,a;)
(a* — B,a* — B). In fact, we can show there are concentration phenomena as coeflicients approach
critical ones. In the next section, we shall discuss the asymptotic profiles of ground states in the
singular limits mentioned above.
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4 Asymptotic Profiles of Ground States with 5 > 0

ultipopulation) Thig section is devoted to the blow-up behaviors of ground states to (1.2) in some singular limits. We
focus on the attractive interaction case and obtain
Proof of Theorem 1.4:

Proof. Flrst of all, we have from (3.31) that

2

Earanp (M1 02 Wi.as Mo, Waa) = le ( fR ) CL|;:’1: " %J;ﬁ) N mi dX)
+ NB (m;“y’/v - m;+27;,)2 dx
Nty Jon\ la 2.a
+ fN Vi(x)ma + Va(x)mya dx
=11, v I + 115 (4.1)[thn13scal

In light of (1.8) and (1.12), one finds I1; > 0, j = 1,2, 3. Moreover, assumption (1.8) implies 113 > 0.
Proceeding the same argument shown in the proof of Lemma 3.1, we use the test pair (3.6) and
compute from (4.1) that

lim €a1.08 = Ca—Ba—Bf = 0. (4.2)| thm13scal

a /'a;

Combining (4.1) with (4.2), we obtain (1.18) and (1.19).
We next prove (1.20) and argue by contradiction. Without loss of generality, we assume that

limsup C;, f
a /'a;; RN

Then, it follows from (1.18), (1.19) and Lemma 2.4 that (1 4, W1 a, M2.a, W2a) 1S uniformly bounded
in (W' (RY) x LY (RV))2. Moreover, by compactly Sobolev embedding (C.f. Lemma 5.1 in [5]), one
finds m;y — m;g strongly in L'(RY) N L'+% (RN) for i = 1,2. By using the convexity of ﬁzN
we have

Wia 4

My dx < +o0o.

nia

y/
mdx,

w
m

€a—Ba—BB = Z}I/Ig € = 2}1/12* 8al,az,,3(ml,a, Wi,a, M2, WZ,a)
B B

>Ey—par—p g0, Wo, Mo, Wo) 2> €4r—g.a —pps

which implies (mg, wo, mo, wo) is a minimizer of e,_g,—gp and it is a contradiction since we have
showed that e,_g ,~_g 3 has no minimizer in Theorem 1.2.
Now, we find (1.20) holds and further obtain from (1.18) that fori = 1,2

Wia Y
1+2 . Cr ﬁRN Mia Mia dx N + 7,
N —
m. " dx — +ooand lim - = a
RN La a/ ay 1+ d N
fRN m i,a X

*

Noting that as a a7,

1 1
’ = ’ 242 ’ r\2
1+Z 2 1+42 2 1,y 1y
N _ N 272N __ 272N
[( ‘[RN ml’a dx) (LN mz’a dx) ] S \fR:N (ml’a mz’a dx - 0’



one gets (1.21) holds.
Noting that (1 4, W1 2, Mm2.a, W2a) satisfy (3.12), we have from the integration by parts that

f Vit - Vimyadx + Cy f Vuyal'my o dx + A,
RN RN

:f Vim adx - alf mlaN dx — ﬂf mlzaz’vm;;z” dx, (4.3)|ibp120246
RN RN

and

f Vuya - Vmyadx = —CHyf my a|Vuy ol dx. (4.4)]ibp220240
RN

RN
Combining (4.3) with (4.4), one finds

w1 4 147 1,7
A, =C;. 4 ml,adx+f Vlml,adx—aqf mlzN dx—,Bf mlz;z méz“’ dx
RN 1M a RN RV RN
Wi 4 N(a; + 1 "(a + 1+2
:(CLf 2"y 2 dx (a1 +pB) 1:1Nd) Y (ar +B) mlzN dx
RN mla N+’y’ RN '}/,+N RN ?
+ﬁf mfa“’ mfaz’v mzza”)dx+f Vimyadx
ap + 1
:08(1)—7(’;1\]’8) +Ndx +,8f mlzaZN mlzaZN m;aZN)dx (4.5)|1ambdalfo
Y RN

where we have used (1.18) and (1.19) asa aﬁ. To further simplify (4.5), we use (1.19) to get

% LN 2 ity 1+VT\; 2 2+271/v %Jf% : :
mi . —my, )dx S( m dx) [ (mla —my, ) dx]
RN RV

:08(1)(f mizN dx) . (4.6)|1ambdailfo
RN

NI—

By utilizing (1.18) and (1.22), one finds

Nel(a; + 7
lim M mi;“’ dx =1. (4.7)| 1lambda1fo
a/a;  N+vy RN
Collecting (4.5), (4.6) and (4.7), we have
+ ! 4 L
A= —% fR my Y dr+ o (1) = 267 +o,(1), (4.8)[Lanbdalin

where € — 0 given by (1.22). Proceeding the similar argument shown above, one obtains from (1.21)
that

/

lim Le” = -1
N

e—0

Now, we substitute (1.25) into (3.12) and obtain

’

%
\<\

+

2=

1
2

Y 211
—Auy o + Cy|Vu | + 2187 =" Vilex+ x1.) — alml’fa —ﬂmlzfv‘9 mig , xeRY,
Aml et V. Wie = 0 Wie = —7CHm1 £|VM1 gP/_ letl X € RN,
5 T4 1+% N (4.9)|ss1lnewne
—Auy . + Cy|Vuy " + e =& Viy(ex + x| &) — am,, —pmyy ‘my "N, x€ RY,
_ 2 N
AmZ,s + V W2,s - 0 W2,€ - _’yCHmZ,é:lVMZ,aly V”Z,sa xeR ’
fRN mydx = fRN myedx = 1.
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Without loss of the generality, we assume

inf Ula = inf Ura = 0.
xeRN xRN

In light of (1.21), (1.22) and (1.25), one finds

sup Cp. f
g—-0* RN

Then it follows from Lemma 2.4 that fori = 1,2

,y/

Wi .
ad mi.dx < +o0, i =1,2.

m,-,g

sup [|m; gllwiy @y < 400, sup [[wigllpieyy < 400,  sup [[wiglly gyy < +oo.

-0t -0t -0t

Invoking (1.19) and (1.22) , one finds fori = 1,2, as € — 07,
f Vi(ex + x1 o )m; . dx — 0,
RN
and

ody _ Ak
(ml‘9 Y —my | dx — 0.
RN ’ ’

By using the standard Sobolev embedding, we have from (4.10) and (4.12) that

miz — min W' RY), m;, - m >0, ae. inR".

Moreover, by using the Morrey’s embedding W' < C®*(RN) with 6 € (0, 1 — yﬁ’), one finds

mie — min CYORY),  sup [Im; llcoeeny < +o0, i=1,2.

loc
e—0"

(4.10)| fromregul

(4.11) | convergen

(4.12)| convergen

(4.13) | convergen

(4.14)| convergen

Recall that u 5(x; ) = inf gy 1) 5 = 0, then we have u; .(0) = inf, v u; .. Moreover, by applying the

maximum principle, one gets from the first equation of (4.9) that

, v 1,7 Y1
e’ z—aimy (0) — Bm, * (0)m;" *(0)

= — (a1 +Bm],(0) + 0,(1),

where we have used m;, — m in Cj,.(R") shown in (4.14). In addition, noting (4.8), we have

limm¥ 0>
limm;(0) 2 3=

where we have used a; + 8 " a*. Since W' — C%, we have from (4.12) that for i = 1,2, there

exists Ry > 0 and C > 0 such that
mie(x) > C >0, Y|x| <Ry, fori=1,2.
Moreover, we utilize (4.11) and (4.15) to get up to a subsequence,

lll’l’é X1,e = X0, S.t. V](.X()) =0= VQ(X()).
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Combining (4.14) with (4.15), one also has

m(x) > C > 0, Y|x| < Ry, (4.16) mlowerbou

where C and R are positive constants.
Next, we study the regularity of the value function u. To this end, we rewrite the u,-equation in
(4.9) as

! Y1 1.7

Y
— g ’ g WT2,,21N
—Auy e + CylVuy ) == 18" + & Vilex + x1.) —am)', — Bmi *m

=g, € Ly, RY) N CYURM). (4.17)[revriteue
For R > 0 large enough, we have
g (Ol (B0 < Cr < +00, Y|x| < 2R,
where Cg > 0 is independent of €. Then it follows from (4.17) and Sobolev embedding that
Vi (x)] < Cg, VY|x| <2R.
Since u; .(0) = 0, we further have
luy | < Cg, Y|x| < 2R.
By using the W?” estimate, one gets
et ellwzr e, 0y < CprUlltersllirar) + 18llror0y + VUL lrBor0y)s YD > 1,

where C, z > 0 is a constant depending on p and R. Let p > N, then we obtain

1 ellcron g, 0y < Corr < +00,
where some 6, € (0, 1). Moreover, we rewrite (4.17) as

—Auy, = —Cy|Vuy " + g5 € C"*(B:1(0)).

One further deduces from the standard W>” estimate that

llet1ellc263 R0y < Cosr < +00,

where Cy, g > 0 is a constant. Then by the standard diagonal procedure and Arzela-Ascoli theorem,
we have from (4.9), (4.10), (4.13) and (4.14) that there exist u; € C*(R") and w; € L (R") such that

Ui — uy in Cp (RY), wi, — wy in LY (RV), (4.18)[eq4. 180
and (u;, m, wy) satisfies
—Auy + CylVu [ = % = —a'm¥, x€RY,
—Am = yCyxV - (m|Vu,"">Vu,) = -V -w;, x€RV,
0< [ymdx<1,

where we have used (4.8) and (4.16). In addition, by Lemma 2.6 and (1.12), one finds

f mdx =1. (4.19)|418202410
RN
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Thus, with the aid of (4.13), we obtain for i = 1,2, m;, — min L'(R"). Moreover, (4.14) indicates

m;, — min LP(RY), Vp > 1. (4.20)[wefurther

This combine with (4.18) show that (1.26) holds fori = 1.
Next, we prove that (1.23). We first recall that u, 4(x2.) = 0 = inf,gnv up,. Then, we have from
(4.9) and (1.25) that

’ /

A 2Va(xp) — aam), (xa.e) — ,BméN : (x2.0)mi, " (x2.6)

_ x28 - xl,s %—% xl,s - xl,a %"’yﬁl X2e — xl,s
> [ am, 8(—8 - pmy, — m; — )|

1.7
2N
la

which implies

x2£ x2£ - X1 £ l+L, x2,5 - xl,a 4 Y
“2’"28(—)+ﬁ i 2(— m: V| ———=|>&" A, >
I £ 2

N ase — 0. (4.21)|1ambda2th:

Combining (4.14) with (4.20), one can easily check that fori = 1,2

lim m;(x) = 0 uniformly in €.

|x|>+00

Combining this with (4.21), one has (1.23) holds.
We next similarly show that there exist u, € C>(RY) and w, € L” (R") such that

Uy e — ty in C2 (RY), and wp, — w, in L (R"),

and (up, m,w,) satisfies (1.27), in which (m, w,) is a minimizer of (1.10). Indeed, we rewrite the
u-equation in (4.9) as

, , p A R
—Auy . + CHIVuz’gly = —he" +& Valex + x1.) — aam,, — fm;’, me: N
= he € L, RY) N CLARY). (4.22)[argueforb
Moreover, by Lemma 2.1, one has for any R > 0 large enough,
[Vuy | < Cg < +00, V|x| < 2R. (4.23)|gradiente
In light of
uz,g(—xz’s _ xl’g) 0 = inf u,,,
£ XxeRN
we use (1.23) and (4.23) to get
Xoe— Xie Xoe — Xig ~
2O < C o 2212 < G < oo,
e

where constant C > 0. Thus, thanks to (4.23), we find

luz o(x)] < Cgr, Y|x| <2R. (4.24)|69innotes
Upon collecting (4.22), (4.23) and (4.24), one obtains

II”Z,a”CZﬂs(BR(())) < Cy g < +00.
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Moreover, we similarly get (u,, m, w,) satisfies (1.27), in which (m, w,) is a minimizer of (1.10). To
finish the proof of (1.26), it remains to show that u; = u, and w; = w,, which can be obtained
by following the argument shown in the proof of Theorem 2.4 in [9], Indeed, since (m,u;, 1) and
(m, uy, A) solve (1.27) with w; := ym|Vu;|"~>Vu,, we test the u; — u, equation and m; — m, equation
against m; — m, and u; — u, and integrate them by parts, then subtract them to get a useful identity.
With the aid of the strict convexity of |p|”, ¥ > 1, one has the conclusion Vu; = Vu, and then w; = w,.
By fixing the same minimum points of u; and u,, we obtain u; = u5.

Finally, proceeding the similar argument as shown in the proof of Case (ii), Theorem 1.4 in [5],
we have (1.24) holds. O

Theorem 1.4 demonstrates that under mild assumptions (1.8) and (1.9), ground states (1, , U1 2, 2.9, U2.2)
are localized as a ” a;. We next discuss the proof of Theorem 1.5, which is for the refined asymptotic
profiles of (m 4, U a, M4, Us,). First of all, we establish the following upper bound of e, 4,3 given
by (1.5):

enmad120240724) 1 erama 4.1. Under the assumptions of Theorem 1.5, we have as (a1,a;) /" (a* —B,a" = p),

— Y Po P

"+ v Yo 2\ + @y + 2B\

0 < €p < (T2 ER2) 0 (2) 7 o - W) " (1 + o(1)). (4.25)[2pointine
o Ny a

Proof. From the definition of ¥,, in (1.16), one can easily derive that, for any v > v, , there exist
(mg, wy) € M and y € R" such that

Vo < Hipg po(y) = f |x + y|PPmo(x)dx < v. (4.26)[eq-nu]
RN
Since (mg, wg) € M is a minimizer of (1.10), we have from (1.10) and Lemma 2.6 that
wWo 14 N 1+L, 1
dx=1, C — dx =1, and —— Ndx = —. 4.27) 428 i
fRNmo X LLN - modx an N+7’LNmO X e ( ) negati
Let x; € Zy, and define

mo(x) = ™Vmo(r(x = x;) = y), we(x) = ™V wo(r(x = x)) = y), (4.28)[429negati

_y/
WO ’
—| modx=1",
My

T

then one finds from (4.27) and (4.28) that

we [ ,
Cy m.dx=1"Cp
RV RV

me
N 147 N , 147 Ty’
m; N dx = 77 my ¥ dx=—,
N+vy" Jry N+vy RN a

and

f (V) + Va)my dx = f Vi + VZ)(X LR xj)mo(x) dx
RN RN

T
1 Vi + Vo)(Z2 + x;
= : 2+§ o Dt ymo (4.29) | conbining
T RN X_
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Note that

(Vi + V)(Z2 + x))

=k (4.30) conbining

x+y
p

Combining (4.26), (4.29) with (4.30), one can get

f Vi + Voym.(x)dx = 22 & o(i).
RN

TPO TPO0

T—=+00

Finally, by taking

1

_ Hypoa” Yo _
o ez ) (431 kgt
2

2y'(a" -
in (1.6), we obtain

a1+a/2+2ﬁ]+ﬂ+0(i)

* TPo

0< €28 < S(m‘r, Wr, Mg, WT) =17 [2 - P

TPo

Y+ po(ﬂvpo)ﬂ;o(z)&(a* ot +2

_Po
. ) (1 + 0,(1)),
Po v ar 2

which indicates (4.25) since v > v, is arbitrary. O

Now, we are ready to prove Theorem 1.5, which is

Proof of Theorem 1.5:

Proof. In light of (1.25), we compute

€aim .8 :8(”’11,8, Wi g, Mg, W p)

y 14 a;e”” 147
g’ Cy m; . dx — - m; " dx+ Viex + x.)m; . dx
RV L+ 5 Jrv © RN

2B LA
T (432 Spoincino
y RN l,e 2,e
N

where we redefine x; . as x. here and in the sequel for simplicity. Noting that V;(xy) = V>(xo) shown
in Theorem 1.4, we find there exists some j satisfying 1 < j < [ such that xy = x;. Then, we rewrite
the potential energy as

. Vi(ex + x) Xg — X;|Pi
Vi + X )M, o dx = gl igd , 4.33)|3point2no
LN (ex+ x )m;(x)dx = ¢ fRN ox+ % — X, . m; e dx ( )| 3point2no
where i = 1, 2. In addition, since x, — x;, we obtain
) Vi(ex + x,) N
lim ;a.e. iIn RY, 4.34) {2
£—0* Z lex + x, — x]l[’] = Hj ( ) {?)

where u; is defined in (1.29). Without loss of generality, we assume p,; > p;; = p; with p;; and p,;
defined by (1.28).
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Now, we claim that

Xe = Xj| . .
pj = po = max{pi,---,p;}, and | j| is uniformly bounded as £ — 0. (4.35)|claimattr
&

To show (4.35), we argue by contradiction and obtain either p; < p, or up to a subsequence,

. Xe — Xj
lim

e—0"

= +o00.

€

By using (4.33) and m;, — mg in L' N L™ shown in Theorem 1.4, one deduces that for any I > 0
large enough,

-0

lim g™ f Vilex + x.)m; . dx
RN

Vilex + x;) | N Xe — xj|pj

mp.dx >T. (4.36) |441negati
&

Recall the definition of &£ shown in (1.22) and the estimate of (1.19), then we find

1,y 1.7 Y Y Y 1,7
2ty 2ty _ I+ 3+ A AW
‘[RN my > my dx = » m, dx + » my N —my N my dx

= f m!" dx + 0,(1). (4.37)[interacti
RV

=lim gli o
£—0 RV |EX + Xz — x;lPI

Thus, one finds

c. [
RN

Wie )’ 1+2ﬁ 1+
—CLf | My dx — = | m ¥ dx+o0.(1)
RN mls 1+ RV

(=227 ).

In addition, in light of (1.21) and (1.22), one has

L.
and obtain from (4.38) that

,y/
(0723 1+2 (0%)
myedx — - ng’v dx>(1——)
RV 1+ 5 Jry a*/ Jrn

Upon substituting (4.36), (4.37) and (4.40), (4.39), one finds from (4.32) that

Wl,s Y

Q) 1+ 23 1,2 1.7
my dx — - m, " dx— - m2 "m? N dx
s l.e l,e 2.
mj e RN

Wl,s 14

myedx + o.(1). (4.38) | 3p5notesb

ml,a

Wi,s L4

mi.dx=1+o0.1),i=1,2, (4.39) alsohavef

m,-,g

/
WZ,S W2,£ L4

My dx. (4.40) | 3p6notesb

my e nj e

S(ml,sa Wl,sa m2,s, WZ,S) 28—7

’[1 - “1“;—”23](1 +o(1)) + Te

por)y’fpo(z)vfpo(a* (0] +a2+2,6’)/270
Y at 2

>(1 + 0,1t (
0
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which is contradicted to Lemma 4.1. This completes the proof of claim (4.35). Hence, we obtain
y, € RY such that

Xe — Xj

lim

= O'
e—0 E Y

We next show that yj satisfies (1.31). Since p; = py, it follows from Theorem 1.4 that

2
lim g7 f Z Vi(ex + xo)m; o(x) dx
RN

e—0*

2 X—X;
Zi:l Vi(S(.X' + TJ) + Xj) — X, Po
= lim f — X+ m; . dx
e T e 8
2 i lx + yol"mo dx > uv,,, (4.41)|4100negat

RN
where the last two inequalities hold if and only if one has (1.31). As a consequence, we deduce from
(4.38) and (4.40) that

Q1+Qz+2ﬂ

*

o1 p 2€ [2

201+ o) Lo (IR0 T Z)7 (L MECEEIN (4 40) 10 tnesar
Do Y a

][1 +o(1)] + &™uv[1 + o(1)]

where the equality in the second inequality holds if and only if

8_( Y p, Pod’ )_0_( 2y’ )o(a a’l"'a’2+2,3)7’+]1’0
2y/(a» — W) PoYpyd* 2 '

Combining the lower bound (4.42) with the upper bound (4.25), we find the equalities in (4.41) and
(4.42) hold. As a consequence, we obtain (1.30) and (1.31) and finish the proof of this theorem. O

S Asymptotic Profiles of Ground States with 5 < 0

(sect520240929) [ thjs section, we shall discuss the concentration phenomena within (1.2) under the repulsive case
with 8 < 0. Similarly as shown in Section 4, we first investigate the basic blow-up profiles of ground
states with some assumptions imposed on the potentials, which is summarized as Theorem 1.6. Then,
we investigate the refined blow-up profiles shown in Theorem 1.7 when potentials satisfy local poly-
nomial expansions.

Proof of Theorem 1.6:

Proof. As shown in the proof of Theorem 1.1, we have proved that when g < 0,
11/m a0, = 0. (5.1)|C4negativ

In addition, one obtains from (1.12) that

&, (mi,w) > 0if o; < a’,
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where SQi(m,-,wi) are given by (3.2). Moreover, noting that &,, 4, g(m1, wi, my, w,) defined by (1.6)
can be written as

/ ’
2BN N A4

2
— i 27N
Sal,az,ﬂ(mla W], m25 WZ) - Z aai(ml" Wi) - N + y, N ml m2 d-x’

i=1

we find from (5.1) that (1.33), (1.34) and (1.35) hold.
Next, we shall prove (1.36) and argue by contradiction. Assume

) w
lim sup f Cr|—2
a/a* RN

m,-,a

’

Y
Miadx < +00,

then it follows from (1.12) that

. 1+2
lim supf m;, " dx < +o0.
aa* RV 7

Therefore, we deduce from (1.33) that

all/‘m 83*(m1 as Wl ,a’ m2 ,as W2 a) - llm 8(1 (ml a’ W] ,a m2 ,a W2 a) - = eil*’ i = 1’ 2’
where eg, is defined by efl_ = inf 8’ (m,w). Recall that {(m;a, w;a)} is a bounded minimizing
' ! (m,w)ek;

sequence of ¢, given by (3.1) and its limit is a minimizer of €', i.e.

lim ¢, =é'..
a;/a* @i

This is a contradiction to the fact that ez* does not admit any minimizer as shown in [5]. Hence, one

finds (1.36) holds.
-(c f
RN

Let
1
Recall that (71 5, Wi 4, M2, W2a) € K is a minimizer and by using Lemma 3.2, one has fori = 1,2,

v

Y

mi,adx) —0Oasa 7 a’.

Wial”

m,-,a

w; 4
Aia =Cp i m: m,-,aa’x+f Vim; o dx — a,f 5 dx ﬁf mfaszZaZN dx
, Na;
:SLI(mi’a,wi,a) Nty f la"’ dx — ﬁf mfaz’vmzaz"’ dx
Y oy
=-=&" +o.,(1
e (D),
which implies
digdl > —% as & — 0%, i=1,2. (5.2)[cI5notebe

Since (u 4, Us,) 1s bounded from below, we have u;, — +co as [x] — +oco. Thus, there exist x;z,
i = 1,2 such that

u;2(0) = u;a(xiz) = Inf u;,.
xeRN
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By using (1.37) and (3.12), we find (m, ¢, uy s, my s, U5 z) satisfies

» / / 1 +l - .
~Aurg + ClVur g7 + A1 28] = 81 Vi@ix+ x10) - aym] —ﬁ(ﬁ;)“zmz iR (At

1,& 2,& & ’
—Amy g = CgyV - (ml,élvm,gly Vurs) = -V-wig,

’

7

Y . N
A +5
—Aup g + Cy|Vua )" + /12,a8 =&} Va(Epx + X22) — @amy —ﬁ(?) *im
—Amaz = CyyV - (mog|Vuo s~ 2VM2, ) ==V -wos.

4

Y 1 1

2N im2N+z m)
2,& 1, & ’

Then by applying the maximum principle on (5.3), one finds for i, j = 1,2 and i # j that

’

Ay % N &\7*2
Aia€) 2 —aimi’é(O) +& Vi(&ix + x;) —,6’(;)
j

N
2

2N 3 (0) 2N 2(xivé A_ Xjé ),

€j
Noting that @; > 0, 8 < 0 and V; > 0 with i = 1, 2, we further have when «; " a”,

’

Y
2a*N

C=mi0) > >0,

where C > 0 is a constant. Invoking (1.35) and (1.36), we obtain

f Vi(éix + xi’g)mi,g(X) dx —>0asa /‘ a*,
RN

Le
RN

Now, we claim up to a subsequence,

and

W,',g

4 4 N+vy
1+
miadx =1, f m., " dx — 7.
7 i, *
RN Na

m,-,é

Xizg ™ X; with V,'(Xl') = 0, i = 1, 2.
Indeed, we have from (5.6) and Lemma 2.4 that

lim sup [|m; glly1» @yy < +00.
é‘],éz—)o+

Moreover, since y* > N, one gets from Morrey’s estimate that

lim sup ||m; | o < 400,
£1,8,—0% Y (RN)

(5.9) together with (5.4) gives us that there exists R > 0 such that

C
mi,g(.X) > 5 > 0, V|X| <R i=1,2,

(5.3)|takelimit:

(5.4)|c19notesb

(5.5)|c22notesb

(5.6)|c2linnote

(5.7)| claimc23n

(5.8)|c23primen

(5.9)|c24notebe

(5.10)|c25notesb

where C > 0 is a constant independent of &;. As a consequence, we obtain claim (5.7) thanks to (5.5)

and (5.10). In light of (1.32) and (5.7), one finds

. |x1 2 — X2l .
lim ———% = to0, i=1,2.

&1,6,-0% &E;

Next, we study the convergence of (m;z, u; g, maz, uzz) as & — 0 with i = 1,2. First of all, we

have from (5.8) and (5.10) that there exist 0 #, < m; € W' (R") with i = 1,2 such that

m;z — m; in W' (RY).
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Without loss of the generality, we assume

& =& (5.11)|assumenot
Since (5.9) and (5.11), one has
& Y+x 1LY (& X+ Xpp— X1\ L1
2] (B <
€1 ’ €1 ’

where constant C > 0 is independent of & and &,. In addition, by using Lemma 2.1, one obtains for
any x € Bg(0),

[Vuy o(x)] < Cp, (5.12)|446notene
where Cg > 0 is a constant. Moreover, the u; z-equation in (5.3) becomes
—Auy s = —CylVupg|” + go(x),

where gz(x) is given by (4.17) with & replaced by &. We further find from (5.12) that | — Cy|Vu, g|” +
gl < Cy with Cz > 0. Then we apply the standard elliptic regularity to get [|us ¢llc2¢(p,) < Cr, Where
Cr > O is a constant and 8 € (0, 1). Thus, we take the limit in the u, s;-equation and m; ;-equation of
(5.3), use the diagonalization procedure and Arzela-Ascoli theorem to deduce that as &, & — 07,

Upp — Uy In Cﬁf(RN)
with 8 € (0, 1), and (m,, u,) satisfies

—Auy + Cy|Vuo|” - % = a'my,
—Amy = CyyV - (o Vo Vup) = =V - wy,
0< jj‘%N my dx < 1.

Similar as the derivation of (4.19), one uses Lemma 2.6 to get fRN mydx = 1. It follows that m, ; — m,
in L'(R"). Combining this with (5.9) , we deduce

mys — my in LY(RY), Vg > 1. (5.13)[4551qbeta
Invoking Lemma 2.2, (5.2) and (5.9), one has
l/tz,g(X) > C max {|X|, (8;/ Vo(érx + xl’g))%}, if |x| > R, (5.14)]478202408

where C > 0 and R > 0 are constants independent of &; and &,. Indeed, it suffices to prove u; z(x) >
C|x| for some constant C > 0 when |x| > R. To this end, we find from (5.3) that when &;,i = 1,2 are
small,

! Y & 55y Y8 X+ Xpp— X1z
—Auyp + CulVup g + Ag > ;N — aymy, —ﬁ(A—) m3y, meN;z( = F ) (5.15)[20240811n
’ €1 ’ ’ &1
where Ay := —%\, and we have used (5.2) and the positivity of V,. In addition, (5.11) and (5.13)
indicate that as |x| — +oo0,
Y & THY Y1 L EX+ Xps — Xis . A N
—aym, —ﬁ(A—) myy mi’ 2( — : ) — 0 uniformly in &, and &,. (5.16) 20240811n
&1 ’ &1
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Thus, one further obtains from (5.15) and (5.16) that
—Auz s + Cy|Vuys|” + 1o > 0 when [x]| > 1. (5.17)]481202408

Now, we fix any || large enough and define
(X
o = Kilie( )
|X]

where constant K; > 0 will be chosen later and y > 9 denotes the smooth cut-off function satisfying
x = 0 when x € (0, %) U (%, +00). We compute to get

K
—Ah + Cy|lVh]" + 2y < ﬁ + CHKIV + Ap <0, (5.18)]482202408
X
if we choose K; small enough. Applying the comparison principle into (5.17) and (5.18), one has

1 3
uy :(x) > h(x) for Elfcl < |x] < El)?l,

which finishes the proof of (5.14).
Next, we claim that for any p > 1, there exist R > 0 and C > 0 such that

my s(x) < Clx|™", VY|x| > R.
Indeed, let ¢ = ug’é, then we have

—Ap + Cyy|Vup o *Vup s - Vo

p—1 |Vu2,é|2
=piy, [-Aure —(p— 1) CrylVugl”]
Uz z
-1 Ay Vi 4
=pub, |Cu(y = DIVugsl" — 18] —(p—1)
Uz
Y R YN, & Gy %_% %4.% E)X + X5 — X1.5
+ & Va(érx + x2p) — @my, —ﬁ(é—l) Mys “my’y ( 2 )]

=pub, Ga(x). (5.19)[C34notesb

Lemma 2.1 implies

[Vup sl < C[1 + é;/ Va(&rx + Xz‘s)]% (5.20) |456betane

Hence, we deduce from (5.14) that

, 2=y
1+ ég Vz(ézx + Xz,g) Y

Vu, o> Culy —1
[Vicz| <C - — < Hy ), for |x| > R.
Uz max{[xl, [8] Va(gox + xp0)17) 2P — D
Thus,
Vit 52
Culy = DIVurel — (p— 1) u2
2,&
Vi o>~

=Vurs/"|Cy(y = 1) = (p— 1) > 0 for |x| > R.

Uz
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In light of (5.19), we further find

~A¢ + CyyVurs *Vu s - Vo > Cpul,!, for |x| > R. (5.21)[459n0tesb

By using Theorem 3.1 in [ 1], one gets

f mg,éu’z’; dx < +o0.

RV ’

Noting that x; ¢ is uniformly bounded, we have R is independent of &; in (5.21). Thus,
lim supf mz,gué’; dx < +oo0. (5.22)[461betane
21,600 JRV

Indeed, we test the m, s-equation in (5.3) against ¢ and integrate it by parts to obtain

0= f mys[-Ap + CrylVir e > Vuo s - Vol dx = p f mz,éGé“g? dx.
R¥ R ’

N

It follows that for some large R; > 0 independent of &;, i = 1,2,

f mz’éGéuggl dx = —f mg’gGgug_él dx. (5.23)[collectin
{xllx>R } | |

{xllxI<Ry}

On one hand, in light of (5.21), one has

f mygul . dx < C f masGeul dx, (5.24)[collectin
{xllxl>R1) ’ ’

{xllx|>Ry }

where C > 0 is some constant independent of &;. On the other hand, by fixing ian uz = 11n (5.19),
xeR

we get G; > —C for some constant C > 0 independent of €. Combining this with (5.20), one has from
the boundedness of |x; ;| that

‘ f masGeul ! dx| < C f mysdx < C, (5.25) collectin
{xllxl<R1) ’ RV

where C and C are positive constants independent of &. Collecting (5.23), (5.24) and (5.25), one finds
(5.22) holds. Moreover, (5.22) indicates

mys < Clx'™7, Vp > 1,
where C > 0 is a constant independent of &;. As a consequence, for any fixed x € R", we have

é‘lx + X1~ X2z

Eilxl  1lxiz—x4 _ C
+ —

& T & 2 & &
where C > 0 is a constant. It follows that
A LyN o, A A LN / ,
ENTTY ZLLEIX+ X1~ X2z &1\7%2 e ) N
(A—) mé’i 2( - 8) < (7 8’27 < &} ? by choosing p > Y + —. (5.26)|464implie
& [>0) & 2 2
We rewrite the u; ;-equation in (5.3) as
— Aul’g + CH|VM1"§|Y + /11’a871/
/ A YN N
n n r E1\2'2 EIX+ X1~ X2z _
=& Vi(&1x + Xl’g) - CZ]I’I’llN _ﬂ(é_) ml,émz,é( z c 8) =1V, (5.27)| takelimit
2 2
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Since (5.26) indicates for any R > 0,
[IVs] < Cp, for |x| <R,
we have from Lemma 2.1 that
IVu, 2| < Cy, for |x] < R.
Thus, we find by the standard diagonal procedure that
Ui — uy in C;Y(RY) with @ € (0, 1),

then take the limit in (5.27) to obtain u; satisfies

J L’
—Aul + CH|VI/£1|Y - yﬁ = a*mlN ,

—Am; = CyyV - (m|Vuy "~ Vuy),
0< [ymdx<1.

f mpdx = 1.
RN

my s — my in L"(RY), ¥p > 1,

Similarly, Lemma 2.6 implies

We further deduce from (5.8) that

which finishes the proof of this theorem. O

Next, we focus on the refined blow-up rate of minimizers under the case 8 < 0 and proceed
to complete the proof of Theorem 1.7. Before proving Theorem 1.7, we collect the results of the
existence of minimizers to (3.1) and the corresponding asymptotic profiles as follows

Pnotesbetacopy) 1 amma 5.1. Define K; and 8;l_(m, w), i = 1,2 as (1.7). Then we have problem (3.1) admit minimizers
(mi, wi, u;)) € WHP(RN) x LP(RV) x C*(RN), i = 1,2 with p > 1. Moreover, w; = —Cym;|Vu;|"*Vu;
and the following conclusions hold fori = 1,2:

1

(i) &:= (CL o |K’i|y’mi dx) T S 0asa; S a

m;

(ii). Let x;., be a global minimum point of u;, then

2y

Uje := EIF u(€x + Xig), Mje := efvmi(eix + Xig)s Wie := ElN”w(e,-x + Xie) (5.28)|5p6notebe
satisfies up to a subsequence,
(RM), m; . — m; in LP(RY),Vp € [1,+0], w;, = w;in LY (RY),  (5.29)[5p7betano

_ . 2
Ui — Ui N Cloc

where (m;, w;) is a minimizer of (1.10) and (m;, ii;) satisfies (1.11);
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(iii). if V; satisfies (1.39) and set

vy, o= inf f |x + y|P'm; dx, (5.30) nupidefin
RN

yeERN
then v, = v, with v, given in (1.16) and
Pi

i 1 " (PiVp;bi V’L; =\ "(a* - «q; 7’%17,-
¢ = (1+ 0(1))P; +y (P Vpi ) 1(51 i ) ,6=(1+ 0(1))(M) . (5.31)|eialphain
Pi Y

; ¢ a* a*biv,,p;

Moreover, we have

where y; € RY satisfies
Hﬁ’li,[)i(yi) = lnf Hmiapi(.Y) = ]_/Pi'
yeRN
In particular, there exist R > 0, C > 0 and «y, 69 > 0 small such that

0<mg < Ce M ywhen x| > R, (5.32)|algebraic

Proof. Proceeding the similar arguments shown in [5], we are able to show Conclusion (1), (ii) and
(ii1) with v, replaced by v,,. (5.32) follows directly from Proposition A.1 shown in Appendix A. It is
left to show v, = v, with v,, defined by (5.30). First of all, it is straightforward to see that v, < v,,,.
Then, we argue by contradiction and assume

Vp <Vp, i=1or2.

In light of the definition of v,, given in (1.16), we find that there exists (m, w, u) € M with M defined
by (1.17) and y; € R such that

Vio 1= ianf |x + y|P'm(x)dx = f lx + yil"'m(x)dx < v,,. (5.33) |nui®20240
yeR: RN RN

Let

N+1

me = TVm(T(x — x;) — y), we 1= T w(r(x — x) — y,),

where 7 is defined by (4.31) and y; is the minimum point of v;, given in (5.33). Then one can obtain

~ i+ (PViobi (@ - P\
¢ <1 +o(nPY (pvo ) (“ 0‘) . (5.34)[4109reach
: pi \

; 7 a*
Whereas, (5.31) gives that

, A Pi
pi+ 7V (Pivybi\vT (@ — a;\7n
X / a* ?

e, = (1+o(1))

1

which reaches a contradiction to (5.34). O
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Now, we establish the lower and upper bounds of E(my 5, Wi a, M2, Wo.a) in the following lemma,

where (1 4, W1, M2.4, W2.4) denotes the minimizer of (1.5).

enma4320240809) | emyma 5.2. Assume that each Vi satisfies (1.39) with x| # x, and (1.40) holds. Let (m; 4, W14, M24,W24)

be a minimizer of eq, o, p defined by (1.5) with B < 0. Then for any q > max{p, p»}, we have there

exists Cy > 0 such that

1 2 —
e, te <ea1,a2,ﬁ - 8(nll,aa Wl,a’ m2,a’ WZ,a)

[e3] ay —
1 2 ~
Seal + ea/z + qug’ as (all’ (},’2) /| ((l*, a*)a

where efyl,, i = 1,2 are defined by (3.1). In particular, the following estimates hold:
e <8’ (m,,,w,,,)<e +C, 62, i=1,2.

Proof. Noting that 8 < 0, we deduce from (3.1) and (3.2) that

2
§ i 1 2
8(m1,a, Wl,a’ mZ,a’ W2,a) > Sai(mi,aa Wi,a) > e(yl + eaz

i=1

Moreover, let (m;, w;) be the minimizers of egi, i = 1,2 obtained in Lemma 5.1, then one has

: i 2B %+LN Ity
Cararp S EML, Wi, Mg, W2) =28ai(mi,wi) - | my m, ’ dx

i=1 L+ 5 Jey

23 12 1,7
:e(ll +e — —— m? Mm2 N dx.
1 %] 1+ Y N 1 2
N VR
By using (5.28), one finds
Ly 1.7 el €1 Xl,ee — X2,
f m my N dx = (€ &) NG+ el mIEZN( x)m; iy P T —— 7
RN RN ) €

Since x;, — x;, i = 1,2 and x; # x,, we take R := i|X1 — X| and obtain for any x € B/, (0),

xl,E] - x2,52 n EX > |x1,61 - x2,62| _ ﬂ X 3 le - X2| _ R

x| >— —
6 & & 153 4 e €
1]x; —x 1
Ll —xf _ 0(_)_) oo
2 € (3)

It then follows from (5.32) that there exists constant C > 0 such that

€1 Xl — X0
mZ,E(_x + —|<C
() )

X1 — X2|

’ vx € BR/E] (0)’

€

which implies

€ X1, — X2,
f mlew( ) 2 2N( 1x+ €l Q)d < CGq(2 ZN)f +3y dx < Ceq(2 ZN)’
|x|<§ €& € RN

where we have used (5.29). In addition, invoking (5.32), we obtain m, . satisfies for any g > 0,

my (x) < Clx|™ for |x| > R,
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(5.35)|513notebe

(5.36)|514notebe

(5.37)|515no0tebe

(5.38)|516noteco:

(5.39) | 517notebe

(5.40)|518betano

(5.41) |by519note



where C, > 0 is some constant. On the other hand, (5.29) indicates that

lim sup ||my ||~ < +oo0. (5.42)4120combi:

e—0"

Combining (5.41) with (5.42), we deduce that

1.y 1,7 (€ X1. —X 1,7
5+5v  5+5v [ €l le 2,6 5+3%
f meZNmZZEZN(—)Hr—I )dxs C m; N dx
|x\>§ ’ ' € € |x|>§ ’

+oo / O AN
<C, f a2 N gy < 0, dETE)N (5.43)[526n0tebe
€l
where we have used (5.41). Upon collecting (5.39), (5.40) and (5.43), we deduce that
L, 7 1Y 1,y N Gl Yy
fRN mlz+2Nm§+2N dx < Cq(el62)_N(2+2N)6{V(6§(2+2N) + elq(2+2"’) N). (5.44)|4122havef
Since (1.40) and (5.31) imply up to a subsequence,
li;n ? =C;, i=1,2,C; > 0 are constants,
a;/a* €

we have from (5.44) that

f ml%+;/ 3ty dx <C ~ N(2N 2) (’1 N)(z ZN) C ~(‘1 N)(z 2N)~2N(2 2N
RN

-1+ 2)=sn( 2 -1 2
:C[]g;q N)(2+2N) N(zN 2) (‘1 N)(z tan N(z tan (545)@
By choosing ¢ > 0 large enough, one finds for any ¢ > max{p,, p»},

(Q—N)(l+y,)—sN(y,—l)>q, 5@ - N)( y,) N(l+y,)>q.
27N N 2 2 an) M2 o

Thus, we obtain from (5.45) that

1, Y 1
fN mlﬁ"’y’V o dx < C,&l, Yq > max{p, p}, (5.46)]@
R

where C, > 0 is a constant. Finally, (5.46) together with (5.37) and (5.38) implies (5.35).
We next show estimate (5.36). First of all, it is straightforward to obtain from the definitions of
e that

e, <&l (ma,wia), i=1,2. (5.47)[521notebe

Then, we argue by contradiction to establish the estimate shown in the right hand side of (5.36).
Without loss of generality, we assume for i = 1,

8 (ml a» Wi a) 2 € +F62’

(%)

where I' > 0 is large enough and & < min{e]
has

} thanks to (5.31). Whereas, by using (5.47), one

(X]’

1 2 =4 E
e, te, +1¢g < Ea;(Mia, Wia) < €ay 0,55
i=1

which is contradicted to (5.35). Therefore, we find (5.36) holds for i = 1. Proceeding the similar

argument, we can show (5.36) holds for i = 2.
O
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Remark 5.1. We remark that by using the exponential decay properties of m shown in Proposition
A.l, the conclusion in Lemma 5.2 holds when (1.40) is replaced by the following condition

lim < =0, (5.48) 550condit
a/a* €

where p, is given in (1.39) and constant 6 > 0 depends on 8, and k,, which are defined in Proposition
A.l. Moreover, with the aid of (5.48), one can show all conclusions of Theorem 1.7. In other words,
assumption (1.40) can be relaxed as (5.48) if the exponential decay properties of m; and m, are
established.

Now, we are ready to prove Theorem 1.7, which is
Proof of Theorem 1.7:

Proof. First of all, we have the fact that
i AY a; A
&, (Mia,wia) 2 & |1 - p + Vi(€ix + x;2)m; ; dx.
RN

We compute to get

N o Vi€ix + xiz)
f Vi(&ix + x;2)miz dx = & f - ad .
RN

rY |EiX + Xip — x| &
=&V (5.49)[413120240

By using (3.1), (5.36) and (5.31), we proceed the similar argument shown in Theorem 1.5, then obtain
up to a subsequence,

Xiz

Xi
'mi,g dx

Xig — X

i

Hence, one has I; defined in (5.49) satisfies

— yyo for some y;y € RY.

lim I > b,-f Ix + yiol”'mi(x) dx > v,.b;.
£—0 RN

It then follows that

a*

. a*
i N
&,.(Mia, wia) 28

+ &by, (1 + o(1))

, - A pi
pi+ Y (PVpbiNTT (a* — @;\Vn
. ’ a* ’

>(1 +o(1))

1

and the equality holds if and only if

1

Y@ - aa)wm

1 = .
a bivp,’pi

& =1+ 0(1))(

Comparing the lower bound and the upper bound of 8@1, (m;a,w;a) withi = 1,2 shown in Lemma 5.2,
we finish the proof of this theorem. O

Theorem 1.7 exhibits the refined blow-up profiles of ground states when interaction coeflicient
B < 0 under some technical assumptions (1.39) and (1.40). It is worthy mentioning that with the aid
of Proposition A.1, we are able to improve the condition (1.40) such that the conclusion shown in
Theorem 1.7 still holds.
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6 Conclusions

In this paper, we have studied the stationary multi-population Mean-field Games system (1.2) with
decreasing cost self-couplings and interactive couplings under critical mass exponents via variational
methods. Concerning the existence of ground states, we classified the existence of minimizers to con-
straint minimization problem (1.5) in terms of self-focusing coeflicients and interaction coefficients,
in which the attractive and repulsive interactions were discussed, respectively. In particular, when
all coefficients are subcritical, we showed the existence of ground states to (1.2) by the duality argu-
ment. Then, the basic and refined blow-up profiles of ground states were studied under some mild
assumptions of potential functions V;,i = 1, 2.

We would like to mention that there are also some open problems deserve explorations in the
future. In this paper, we focus on the existence and asymptotic profiles of ground states to (1.2) with
mass critical local couplings under the case of y < N’ with y given in (1.3) since population density
m can be shown in some Holder space by using Morrey’s estimate and system (1.2) enjoys the better
regularity. Whereas, if v > N’, nonlinear terms (1.4) in (1.2) become singular and one can only show
m € LP(RY) for some p > 1 by standard Sobolev embedding. Correspondingly, the positivities of m;
and m; given in (1.2) can not be shown due to the worse regularities. Hence, when y > N’, it seems a
challenge but interesting to prove the existence of ground states even under the mass subcritical local
couplings. On the other hand, while discussing the concentration phenomena in (1.2), we impose
some assumptions on potential functions V;, i = 1,2. In detail, when the interaction coefficient g
satisfies 8 > 0, (1.14) is assumed for the convenience of analysis. However, when V; and V, satisfy
inf  pv (Vi(x) + Va(x)) > 0, the classification of the existence of minimizers is more intriguing and
the corresponding blow-up profiles analysis might be more complicated. Similarly, if the interaction
is repulsive, the investigation of the concentration property of global minimizers is also challenging
when V; and V, have common global minima.
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Appendix A Exponential Decay Estimates of Population Densi-
ties
(appendixh) In this appendix, we investigate the exponential decay property of population density m. More pre-
cisely, we consider the following system:

—Aug + Cy|Vu|” + A, = € V(ex + x;) + g.(x), x €RY,
—Am, + CyyV - (mg|Vug|7_2Vu8) =0, xeRVN,

where y > 1, V and g, are given. Under some assumptions of g, and 1., one can show m, satisfies the
exponential decay property, which is

(appenexp) Proposition A.1. Denote (m,, u,, A,) € W'P(RY) x C2(RN) x R as the solution to

—Aug + Cy|Vu|” + A, = & V(ex + x,) + g.(x), x €RY,
—Am, + CyyV - (mg|Vue"">Vu,) = 0, x € RV,
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where m, > 0 in R, u, is uniformly bounded from below and Holder continuous function V satisfies
(1.8) and (1.9); moreover, g, is assumed to satisfy g. € C**(RN) with 6 € (0,1) independent of &.
Suppose that

(i). Az — Ao up to a subsequence with 1y < 0;
(ii). g<(x) — O uniformly as |x| — +oo,
then we have there exist constants C > 0 and R > 0 independent of & such that
0 < m, < Ce ™ when |x| > R, (A.1)[A02624160
where constant 6 € (0, min{y — 1, 1}), constant k; > 0 and they are independent of ¢.

Proof. By following the same argument shown in the proof of Theorem 1.6, one has
us(x) > Clx| for |x| > R, (A.2)|appendixa

where R > 0 is some constant. Then we define the Lyapunov function ® = ¢’ with 0 < k < 1 and
0 < dp < 1 will be determined later. We compute to get

— AD + Cyy|Vu, | *Vu, - VO

=kSo @l [~ Au, — (kSou™" + (69 — Du;HIVuel* + CrylVul]

=kSoDul ™ [Cy(y = DIVul" — Ae + &'V(ex + x) + go(x) — (k6o + (6o — Dz ) Vuel].
Without loss of generality, we assume u, > 1 by fixing u.(0). Then it is straightforward to show that

(kSoul ™" + (80 — D HIVul < 2k80u~" [Vu,*, x| > R,
where R > 0 is a large constant and we have used u*~! > y~!. In addition, by using Lemma 2.1 and
Lemma 2.2, we have facts that
VuP < C(1+ V)7, and u'™ > C(1 + V)5 for |x| > R,

where C > 0 is a constant and 0 < ¢y < 1.
Next, we would like to prove there exists R > 0 independent of € such that

Cu(y -1
2

When y > 2, it is easy to show (A.3) holds by choosing « small enough. When 1 < y < 2, by taking
0o and « such that 2 —y < 1 — ¢y and « small, one finds (A.3) holds. In summary, upon choosing
0p € (0,y — 1) and « small enough, we apply Condition (i) and (ii) to get

~AD + Cpy|Vu,["*Vu, - VO > Cké,u’~' @, if |x| > R,

\Vug|” > 2x6,u® ' |Vu,|*, ¥|x| > R. (A.3)[A82024081

where ¢; > 0 is some constant. Proceeding the similar argument shown in the proof of (5.22), one
finds

Kuzo 6o—1
sup e u" mg dx < +oo.
& RN

Therefore, by using the uniformly Hoélder continuity of m, and the fact that u, > 1, we obtain for
|x| > R with constant R > 0 independent of &,

0<m, <Ce 3 65e(,y—1), (A.4)[appenhave
where C > 0, « > 0 is small and 9, € (0, min{y — 1, 1}), which are all independent of £. Moreover, in
light of (A.2), one has from (A.4) that (A.1) holds. O
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