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Abstract. In this paper, we consider the magnetic Ginzburg-Landau equa-

tion: 
−∆Aψ +

λ

2
(|ψ|2 − 1)ψ = 0 in R2,

∇×∇×A+ Im(ψ∇Aψ) = 0 in R2,

|ψ| → 1 as |x| → +∞,
where λ > 1 is a coupling parameter, ∇A = ∇− iA and ∆A = ∇A · ∇A are,
respectively, the covariant gradient and Laplacian. We prove, by perturbation

arguments, that the only possible minimizer of the magnetic Ginzburg-Landau

functional with degree 1 is the radial solution for λ sufficiently close to 1.
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1. Introduction

In this paper, we consider the magnetic Ginzburg-Landau equation:
−∆Aψ +

λ

2
(|ψ|2 − 1)ψ = 0 in R2,

∇×∇×A+ Im(ψ∇Aψ) = 0 in R2,

|ψ| → 1 as |x| → +∞,

(1.1)

where λ > 1 is a coupling parameter, ∇A = ∇ − iA and ∆A = ∇A · ∇A are,
respectively, the covariant gradient and Laplacian, and ∇× is the curl operator in
R2 so that for a vector function A, ∇×A = ∂1A2−∂2A1 while for a scalar function
A, ∇×A = (−∂2A, ∂1A). It is well known that (1.1) is the Euler-Lagrange equation
of the following Ginzburg-Landau energy functional in H1

loc(R2;C)×H1
loc(R2;R2):

Eλ(ψ,A) =
1

2

∫
R2

|∇Aψ|2 + |∇ ×A|2 +
λ

4
(|ψ|2 − 1)2.

That is, critical points of Eλ(ψ,A) in H1
loc(R2;C) ×H1

loc(R2;R2) are equivalent to
weak solutions of (1.1).

The Ginzburg-Landau energy functional Eλ(ψ,A) has a rich physical background.
It models the difference in free energy between the superconducting and normal
states near the transition temperature in the Ginzburg-Landau theory. In that
theory, ψ : R2 → C is called the order parameter, whose modulus (the density of
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Cooper pairs of superconducting electrons in the BCS theory) indicates the local
state of the material: If |ψ| ≈ 1 then the material is in the superconducting phase
while if |ψ| ≈ 0 then the material is in the normal phase. A is the vector potential
where ∇×A is the induced magnetic field. The parameter λ is a material constant,
corresponding to the ratio between characteristic lengthscales of the material: If
λ < 1 then the material is of type I superconductor while if λ > 1 then the material
is of type II superconductor. λ = 1 is the critical case of these two types. The
Ginzburg-Landau energy functional Eλ(ψ,A) can also arise as the energy of a static
configuration in the Yang-Mills-Higgs classical gauge theory on the plane, with
abelian gauge group U(1). In this theory, the Ginzburg-Landau energy functional
Eλ(ψ,A) is often written as

Eλ(ψ,A) =
1

2

∫
R2

FA ∧ ∗FA +DAψ ∧ ∗DAψ +
λ

4
∗ (|ψ|2 − 1)2,

where ∗ is the Hodge duality operator, iFA is the curvature of an S1 connection iA
and ψ is a section of the associated complex line bundle. The induced connection
couples A and ψ via the covariant derivative DA = d − iA. A is a real one-form
and FA = dA is a real two-form. The function B = ∗FA is known as the magnetic
field, while ψ is called either the order parameter or the Higgs field. We refer the
readers to [11,17,20] for more details of the physical backgrounds of Eλ(ψ,A).

As usual problems in the whole space R2, the Ginzburg-Landau energy functional
Eλ(ψ,A) (and also the equation (1.1)) is invariant under translations and rotations
which are given by

(ψ(x), A(x))→ (ψ(g−1x), gA(g−1x)) for all g ∈ SO(2).

Besides these geometric invariance, the significant feature of the Ginzburg-Landau
energy functional Eλ(ψ,A) (and the equation (1.1)), which is well known nowadays,
is that they are invariant under the gauge transformations:

(ψ,A)→ (ψeiχ, A+∇χ) for all χ ∈ C2(R2),

which generates an infinite dimensional symmetry group of Eλ(ψ,A) and (1.1).

For physical reasons, it is natural to consider solutions of (1.1) with finite en-
ergy values. It has been proved in [11] that these solutions satisfy the boundary
condition:

(|ψ|, |∇Aψ|, |∇ ×A|)→ (1, 0, 0) as |x| → +∞, (1.2)

which leads one to define the topological degree or winding number or vortex num-
ber of ψ as follows:

deg(ψ) = deg

(
ψ

|ψ|
||x|=R

)
=

1

2π

∫
|x|=R

d(arg(ψ)) for R sufficiently large.

Applying the Stokes theorem yields that this degree of ψ satisfies

2πdeg(ψ) =

∫
R2

∇×A.

Indeed, let us rewrite (ψ,A) = (weig, A), where (w(aj)e
ig(aj), A(aj)) should be

understood as the limit at the zeros aj . Since (ψ,A) has finite energy,
∫
R2 w

2|∇g−
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A|2 < +∞. Thus, by (1.2) there exists ρn → +∞ such that ρn
∫
∂Bρn

|∇g−A|2 → 0

as n→∞. It follows from the Stokes theorem and the Hölder inequality that∫
R2

∇×A = lim
n→∞

∫
∂Bρn

A

= lim
n→∞

∫
∂Bρn

∇g + lim
n→∞

∫
∂Bρn

(∇g −A)

= 2πdeg(ψ).

So that, deg(ψ) is nothing but just the flux quantization of the magnetic field
B = ∇ × A. In the Yang-Mills-Higgs theory, the degree deg(ψ) is also known as
the first chern number of the complex line bundle in which A is a connection and
commonly, is called charges (cf. [19]).

It is well known that the degree deg(ψ) is an integer and is invariant under small
and finite-energy perturbations. Thus, solutions of the magnetic Ginzburg-Landau
equation (1.1) can be classified by the degree deg(ψ). By integrations by parts as
that in [19,20], we have

Eλ(ψ,A) =
1

2

∫
R2

[(∂1ψ1 +A1ψ2)∓ (∂2ψ2 −A2ψ1)]2

+
1

2

∫
R2

[(∂2ψ1 +A2ψ2)± (∂1ψ2 −A1ψ1)]2

+
1

2

∫
R2

[∇×A± (|ψ|2 − 1)]2 ± 1

2

∫
R2

∇×A

+
λ− 1

8

∫
R2

(|ψ|2 − 1)2, (1.3)

where ψ = ψ1 + iψ2. Here, the upper sign corresponds to positive degrees and
the lower sign to negative degrees. Thus, for those (ψ,A) such that the degree
deg(ψ) 6= 0, we must have Eλ(ψ,A) ≥ π. It follows that the global minimizers of
Eλ(ψ,A) in H1

loc(R2;C) × H1
loc(R2;R2) must have degree zero and satisfy |ψ| ≡ 1

in R2. Hence, we may assume the global minimizers to be ψ = eig. By (1.1), we
know that

−∆g = 0, in R2.

By the gauge invariance, we can choose ψ ≡ 1 and by (1.1) once more, A ≡ 0.
It follows that all global minimizers of Eλ(ψ,A) in H1

loc(R2;C) ×H1
loc(R2;R2) are

given by {(eig,∇g)}, where g is a harmonic function and thus, up to gauge trans-
lations, (ψ,A) = (1, 0) is the unique global minimizer of Eλ(ψ,A) in H1

loc(R2;C)×
H1
loc(R2;R2). Clearly, these degree zero solutions are all stable. For other solutions

with deg(ψ) 6= 0, ψ must have zeros. These zeros are often called vortices of ψ
and so that, the word “vortex” will be used to refer to a zero of ψ as well as to
a solution. A multi-vortex solution refers to the case in which ψ has at least two
zeros. Solutions with deg(ψ) 6= 0 are only well understood in the critical case λ = 1,
thanks to classical results of Jaffe and Taubes [11,19,20]. In this case, all solutions
with deg(ψ) 6= 0 can be classified by its vortices and they are all local minimizers
of Eλ(ψ,A) in H1

loc(R2;C) × H1
loc(R2;R2) and thus, they are all stable. To our

best knowledge, very few is known for the cases λ 6= 1, except the so-called radial
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solutions:

φλ,N (x) = fλ(r)eiNθ; Bλ,N (x) = Naλ(r)∇θ,

where |N | ≥ 1 is its degree deg(φ). We remark that the discrete symmetry ψ → ψ
and A → −A of (1.1) interchanges the negative degrees to the positive degrees.
Thus, we can assume the degrees of solutions to be nonnegative in what follows.
The existence of these radial solutions is established in [4] by variational arguments.
The uniqueness of these radial solutions is proved in [1] and [6], respectively for
λ > 0 sufficiently large and λ sufficiently close to 1 (including λ = 1). The stability
of these radial solutions is also studied in the literature. It has been proved in [9]
that (φλ,N , Bλ,N ) are all stable for λ < 1 while for λ > 1, (φλ,1, Bλ,1) is stable and
(φλ,N , Bλ,N ) are unstable for N ≥ 2.

Under suitable boundary conditions, the existence of non-radial solutions was
first established in bounded domains for λ sufficiently large, see, for example, [2,3]
for the non-magnetic case and [5, 18] for the magnetic case. This is due to the
boundary forces which keep repelling vortices within the bounded domain. In the
case of the Ginzburg-Landau equation on unbounded domains, it is conjectured
in [12] by numerical evidence that for the non-magnetic Ginzburg-Landau equations
on the whole plane, non-radial solutions do exist, while the studies in [10] suggest
that for magnetic vortices, stationary multi-vortex configurations of degrees ±1
occur with discrete symmetry group. The later conjecture was proved in [21] by
reduction arguments for large degrees and large number vortices. It is also worth
pointing out the work [14], which proved that (φλ,1, Bλ,1) is the unique global
minimizer of Eλ(ψ,A) in the degree 1 class (the definition is given below) for λ
sufficiently large, while there is no global minimizers of Eλ(ψ,A) in the degree
N(N ≥ 2) class (the definitions are also given below) for λ sufficiently large. These
results partially prove a conjecture in [11].

Thus, to our best knowledge, whether the magnetic Ginzburg-Landau equa-
tion (1.1) have non-radial solutions or not is still unknown for λ 6= 1 and not
sufficiently large. Since the critical case λ = 1 is well understood, it seems reson-
able to study the case when λ sufficiently close to 1. Therefore, the main purpose
of this paper is to investigate the magnetic Ginzburg-Landau equation (1.1) for λ
sufficiently close to 1 by perturbation arguments.

We shall mainly consider stable solutions of (1.1). For this, it is natural to
consider the minimizers of Eλ(ψ,A) in the following sense: (ψ0, A0) is a minimizer
of Eλ(ψ,A) if Eλ(ψ0, A0) ≤ Eλ(ψ0 + φ,A0 + B) for all (φ,B) ∈ C∞0 (R2;C × R2).
However, we remark that in this sense, the word “minimizer” is dependent on the
degree of (ψ0, A0). Indeed, if (ψ0, A0) and (ψ1, A1) are two minimizers of Eλ(ψ,A)
in the above sense, respectively with degrees k and l such that k 6= l. Then the
energy values Eλ(ψ0, A0) and Eλ(ψ1, A1) are incomparable in the above sense since
owing to their different degrees, one can not write (ψ0, A0) = (ψ1 + φ,A1 +B) for
some (φ,B) ∈ C∞0 (R2;C × R2). Thus, a more precise definition of minimizers in
the above sense is the following (cf. [14, Definition II.1]):

Definition 1.1. We say (ψ0, A0) is a minimizer of Eλ(ψ,A) with degree k 6= 0 if
deg(ψ0) = k and Eλ(ψ0, A0) ≤ Eλ(ψ0 +φ,A0 +B) for all (φ,B) ∈ C∞0 (R2;C×R2).



LOCAL UNIQUENESS 5

To make the minimizers of Eλ(ψ,A) with different degrees to be comparable, we
shall also introduce the following definition:

Definition 1.2. We say (ψ0, A0) is a nontrivial least-energy minimizer of Eλ(ψ,A)
if

(1) deg(ψ0) 6= 0;
(2) Eλ(ψ0, A0) ≤ Eλ(ψ0 + φ,A0 +B) for all (φ,B) ∈ C∞0 (R2;C× R2);
(3) Eλ(ψ0, A0) ≤ Eλ(ψ1, A1) for all other minimizers (ψ1, A1) in the sense of

Definition 1.1.

Our main result in this paper now can be stated as follows.

Theorem 1.1. Let (ψλ, Aλ) be a classical solution of (1.1) which is also a nontriv-
ial least-energy minimizer of Eλ(ψ,A). Then for λ sufficiently close to 1, (ψλ, Aλ)
must be the unique radial solution of (1.1) with degree one.

Let us briefly sketch our strategy in proving Theorem 1.1. Our start point is the
potential energy

H(ϕ) =

∫
R2

(|ϕ|2 − 1)2,

where ϕ is a solution of (1.1) with λ = 1. Now, if (ψλ, Aλ) is a classical solu-
tion of (1.1) which is also a nontrivial least-energy minimizer of Eλ(ψ,A), then
the upper-bound of (ψλ, Aλ)’s energy values, generated by the potential energy
H(ϕ), will impose the degree of (ψλ, Aλ) to be 1 for λ sufficiently close to 1. Since
the potential energy is well understood for degree one solutions (see, for exam-
ple Proposition 2.1 below for more details), we can follow the plans in [5, 14] to
choose suitable gauges such that (ψλ, Aλ) could weakly converge to some (φ,B) in
H1
loc(R2;C)×H1

loc(R2;R2) as λ→ 1 in a suitable sense. By comparing the energy
values carefully, this weak convergence could lead us to say that the weak limit
(φ,B) must be the unique radial solution with degree 1 for λ = 1 and so that we
could further say that (ψλ, Aλ) only has one vortex for λ sufficiently close to 1.
Next, we obtain some strong convergence of energy values as λ → 1, which, to-
gether with regularity arguments in [13] and the decaying estimates in [11], implies
that (|ψλ|, |∇Aλψλ|, |∇×Aλ|)→ (1, 0, 0) exponentially as |x| → +∞, uniformly for
λ sufficiently close to 1. Thus, we could say that (ψλ, Aλ) strongly converges to
(φ,B) in H1(R2;C)×H1(R2;R2) as λ→ 1. After doing this, we are in the position
to expand (ψλ, Aλ) at the unique radial solution by its H1 × H1-kernel, which is
well understood (cf. [9, 16]). Then the analysis on the possible errors yields that
(ψλ, Aλ) is the unique radial solution with degree 1 for λ sufficiently close to 1.

Since the potential energy is not very clear for solutions with λ = 1 and higher
degrees ≥ 2 (see [7, 16] for more discussions), our strategy seems to be invalid for
discussing these cases. For example, let (ψλ,2, Aλ,2) be a classical solution of (1.1)
which is also a minimizer of Eλ(ψ,A) in the sense of Definition 1.1 with degree 2.
Then the energy of (ψλ,2, Aλ,2) can be bounded from above by 2π + λ−1

8 H(ϕa),
where ϕa is any solution of (1.1) for λ = 1 with degree 2 and a is the distance of
the two vortices. The numerical computations in [15] yield that H(ϕa) is a strictly
decreasing function of a > 0 such that H(ϕa)→ 0 as a→ +∞. Thus, the minimum
can not be attained, in general. It is worth pointing out that the potential energy
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H(ϕa) also plays an important role in studying the magnetic Ginzburg-Landau
gradient flows, see, for example [7, 16].

Notations. Throughout this paper, C and C ′ are indiscriminately used to denote
various absolutely positive constants. a ∼ b means that C ′b ≤ a ≤ Cb and a . b
means that a ≤ Cb.

2. Proof of Theorem 1.1

Let (ψλ, Aλ) be a classical solution of (1.1) which is also a nontrivial least-
energy minimizer of Eλ(ψ,A). For the sake of convenience, we shall sometimes
write (ψλ, Aλ) = (wλe

igλ , Aλ) in what follows. We remark that gλ(aj) makes no

sense when aj is a vortex of (ψλ, Aλ). Thus, (wλ(aj)e
igλ(aj), Aλ(aj)) should be

understood as the limit.

Lemma 2.1. We have 0 ≤ wλ ≤ 1 for all λ > 1.

Proof. The main idea of this proof comes from [20]. Under the notation (ψλ, Aλ) =
(wλe

igλ , Aλ), the magnetic Ginzburg-Landau functional can be rewritten as follows:

Eλ(ψλ, Aλ) =
1

2

∫
R2

|∇wλ|2 + w2
λ|∇gλ −Aλ|2 + |∇ ×Aλ|2 +

λ

4
(w2

λ − 1)2. (2.1)

Let Oλ be the singular set of (ψλ, Aλ), that is, Oλ is the set of vortices of the con-
figuration (ψλ, Aλ). Then, by the first equation in (1.1), we can write an equation
of wλ as follows:−∆wλ +

λ

2
(wλ + 1)wλ(wλ − 1) = −|∇gλ −Aλ|2wλ, in R2\Oλ,

wλ = 0, on ∂Oλ.
(2.2)

Since wλ → 1 as |x| → +∞ (cf. [11]), Oλ ⊂ BR0
(0) with some R0 > 0. Let R > 2R0

and τR(s) : [0,+∞) → [0, 1] be a smooth cut-off function such that τR(s) = 1 for
s ≤ R and τ(s) = 0 for s ≥ 2R. Clearly, by (2.1), wλ − 1 ∈ H1(R2) and thus,

(wλ − 1)+τR ∈ H1(R2) for all R > 2R0. Since wλ ≥ 0, ∂wλ
∂−→n ≤ 0 on ∂Oλ, where −→n

is the unit out normal on ∂Oλ. Now, multiplying (2.2) with (wλ − 1)+τR on both
sides and integrating by parts yield that∫

BR(0)

|∇(wλ − 1)+|2 . 1

R

(∫
B2R(0)

|∇wλ|2
) 1

2
(∫

B2R(0)

|(wλ − 1)+|2
) 1

2

. (2.3)

Here, we use the fact that (wλ − 1)+τR ≡ 0 for x sufficiently close to the closure
of Oλ. Since wλ − 1 ∈ H1(R2), by letting R → +∞ in (2.3), we know that
(wλ − 1)+ = 0 in R2 and thus, wλ ≤ 1 in R2. �

As we stated in the introduction, we shall use the perturbation argument to
prove Theorem 1.1. Thus, we need the following information on the limit case
λ = 1.

Proposition 2.1. Let (ϕ,B) be a solution of (1.1) with λ = 1. Then its degree is
N is equivalent to that it has N vortices.

Remark 2.1. (1) Proposition 2.1 was pointed out by Taubes in [19], without
a proof. For the convenience of the readers, we would like sketch its proof
in the appendix.
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(2) Proposition 2.1 tells us that vortices and anti-vortices can not co-exist for
(1.1) with λ = 1. In particular, up to gauge translations, the radial solution
is the unique solution of (1.1) in the degree 1 class for λ = 1.

In what follows, we shall denote the radial solution of (1.1) in the degree 1 class
for λ = 1 by

(ϕ,B) = (f(r)eiθ, a(r)∇θ).

Since it is well known that E1(ψ,A) is gauge invariance (cf. [9]), (ϕeiχ, B+∇χ) for
all χ ∈ C2(R2) are also solutions of (1.1) with λ = 1 and share the same energy
value E1(ϕ,B) in H1

loc(R2;C) ×H1
loc(R2;R2). We also remark that the properties

of (ϕ,B) is well known, see, for example, [4].

Lemma 2.2. For λ sufficiently close to 1, the degree of (ψλ, Aλ) is equal to one.
Moreover,

Eλ(ψλ, Aλ) ≤ λ− 1

8

∫
R2

(|f |2 − 1)2 + π. (2.4)

Proof. Since (ψλ, Aλ) be a classical solution of (1.1) which is also a nontrivial least-
energy minimizer of Eλ(ψ,A), ∫

R2

∇×Aλ ≥ 2π.

Thus, (ψλ, Aλ) has at least one vortex. Since (1.1) is invariant under translations,
we may always assume that 0 is a vortex of (ψλ, Aλ). Suppose that the degree
of (ψλ, Aλ) is equal to kλ + 1 for some kλ ∈ N. Now, we rewrite (ψλ, Aλ) =
(wλe

igλ , Aλ). Since (ψλ, Aλ) is a classical solution of (1.1) with wλ → 1 as |x| →
+∞, for sufficiently large R > 0, gλ = −i ln(ψλwλ ) is C2 in R2\BR(0). Thus, gλ −
(kλ + 1)θ is also C2 in R2\BR(0) and satisfies

gλ(R, θ + 2π)− (kλ + 1)(θ + 2π) = gλ(R, θ)− (kλ + 1)θ

for all θ. It follows that gλ − (kλ + 1)θ is a single-valued function on ∂BR(0) and
so that, we can harmonically extend gλ − (kλ + 1)θ from ∂BR(0) into BR(0). We
denote this extension by υλ, that is, υλ satisfies{

∆υλ = 0, in BR(0),

υλ = gλ(R, θ)− (kλ + 1)θ, on ∂BR(0).

By classical regularity theorems, υλ ∈ C2(BR). We extend υλ to R2 such that
υλ = gλ − (kλ + 1)θ in R2\BR(0). Then, υλ ∈ C2(R2). Now, by gauge invariance,

(wλe
i(gλ−υλ), Aλ −∇υλ)

is also a nontrivial least-energy minimizer of Eλ(ψ,A). Let αρ be a smooth cut-off
function such that αρ = 1 for |x| ≤ ρ and αρ = 0 for |x| ≥ 2ρ. Then

(φρ, Bρ) =

(
αρ(fkλ+1e

i(kλ+1)θ − wλei(gλ−υλ)),

αρ(akλ+1(kλ + 1)∇θ − (Aλ −∇υλ))

)
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belong to C2
0 (R2;C × R2), where (fkλ+1e

i(kλ+1)θ, akλ+1(kλ + 1)∇θ) is the radial
solution of (1.1) with degree kλ + 1 for λ = 1. It follows from the density of C∞0 in
C2

0 and the definition (1.2) that

Eλ(ψλ, Aλ) = Eλ(wλe
i(gλ−υλ), Aλ −∇υλ)

≤ Eλ(wλe
i(gλ−υλ) + φρ, Aλ −∇υλ +Bρ). (2.5)

By the constructions, for ρ > max{1, R},

(wλe
i(gλ−υλ) + φρ, Aλ −∇υλ +Bρ)

= (fkλ+1e
i(kλ+1)θ, akλ+1∇(kλ + 1)θ)

+(1− αρ)
(

(wλe
i(kλ+1)θ − fkλ+1e

i(kλ+1)θ),

(Aλ −∇gλ + (1− akλ+1)(kλ + 1)∇θ)
)

=

(
((1− αρ)wλ + αρfkλ+1)ei(kλ+1)θ,

(1− αρ)(Aλ −∇gλ) + (1− αρ + αρakλ+1)(kλ + 1)∇θ
)
.

Note that under the notation (ψλ, Aλ) = (wλe
igλ , Aλ) and the choice of R, gλ

satisfies
−wλ∆gλ = 2(∇gλ −Aλ)∇wλ in R2\BR(0).

Thus, by the results in [11], that is,

(|ψλ|, |∇Aλψλ|, |∇ ×Aλ|)→ (1, 0, 0) as |x| → +∞,
exponentially (see also [7]), we have

(wλ − fkλ+1)ei(kλ+1)θ ∈ H1(R2\BR(0),C),

(Aλ −∇gλ + (1− akλ+1)(kλ + 1)∇θ) ∈ L2(R2\BR(0),R2),

∇× (Aλ −∇gλ + (1− akλ+1)(kλ + 1)∇θ) ∈ L2(R2\BR(0)).

Here, we also use the well-known facts of (fkλ+1e
i(kλ+1)θ, akλ+1(kλ + 1)∇θ), that

is, 1 − fkλ+1, 1 − akλ+1 → 0 exponentially as |x| → +∞ and
a′kλ+1

r ∈ L2(rdr) =

L2(R2) (cf. [4,9]). Since under the notation (ψλ, Aλ) = (wλe
igλ , Aλ), the magnetic

Ginzburg-Landau functional Eλ(ψλ, Aλ) can be rewritten as

Eλ(ψλ, Aλ) =
1

2

∫
R2

|∇wλ|2 + w2
λ|∇gλ −Aλ|2 + |∇ ×Aλ|2 +

λ

4
(w2

λ − 1)2. (2.6)

Thus, by letting ρ→ +∞ in (2.5), we have

Eλ(ψλ, Aλ) ≤ lim
ρ→+∞

Eλ(fkλ+1e
i(kλ+1)θ + φ̃ρ, akλ+1(kλ + 1)∇θ + D̃ρ)

= Eλ(fkλ+1e
i(kλ+1)θ, akλ+1(kλ + 1)∇θ)

=
λ− 1

8

∫
R2

(|fkλ+1|2 − 1)2 + (kλ + 1)π, (2.7)

where (φ̃ρ, D̃ρ) = ((1−αρ)(wλ−fkλ+1)ei(kλ+1)θ, (1−αρ)(Aλ−∇gλ+(1−akλ+1)(kλ+
1)∇θ)). Thus, for kλ = 0, we have Eλ(ψλ, Aλ) ≤ 3

2π for λ sufficiently close to 1.
By the computations in (1.3), we know that the nontrivial least-energy minimizer
of Eλ(ψ,A) must have kλ = 0 for λ sufficiently close to 1. That is, it has degree
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one for λ sufficiently close to 1. The estimate of (2.7) also give us an upper-bound
of the energy value of the nontrivial least-energy minimizer (ψλ, Aλ):

Eλ(ψλ, Aλ) ≤ Eλ(ϕ,B) =
λ− 1

8

∫
R2

(|f |2 − 1)2 + π.

It completes the proof. �

As in [14], we also need to recall a standard terminology in functional analysis
for gauge theory.

Definition 2.1. A sequence of configurations connection-section (ψn, An) is said
that it converges in some function space F to a limiting configuration (ψ0, A0) if
there exists a change of gauge (ψne

iχn , An +∇χn) such that this sequence of pairs
form-function converges to (ψ0, A0) in the function space F .

Lemma 2.3. Up to translations, (ψλ, Aλ) → (ϕ,B) strongly in C1,α
loc (R2;C) ×

C1,α
loc (R2;R2) as λ→ 1 in the sense of Definition 2.1 for some α ∈ (0, 1).

Proof. The main ideas of this proof come from [5] (see also [14]). Let us first
consider the following equation:

−∆χλ,R = divAλ, in BR(0);

∂χλ,R
∂−→n

= −Aλ · x, on ∂BR(0),
(2.8)

where −→n is the unit out normal of BR(0). Since Aλ is of class C2, the above
equation is unique solvable up to constants. Let χ̂λ,R be a solution of (2.8), we

choose χλ,R = χ̂λ,R −
∫
BR

χ̂λ,R

|BR| . Then

Ãλ,R = Aλ +∇χλ,R

satisfies divÃλ,R = 0 in BR(0) and Ãλ,R · x = 0 on ∂BR(0). In this situation,

Ãλ,R = (−∂2ξλ,R, ∂1ξλ,R) in BR(0), where up to constants, ξλ,R ∈ C2
0 (BR(0)) and

satisfies {
∆ξλ,R = ∇×Aλ, in BR(0);

ξλ,R = 0, on ∂BR(0).
(2.9)

Classical elliptic estimates then yield that∫
BR(0)

(|∇Ãλ,R|2 + |Ãλ,R|2) =

∫
BR(0)

(|∇2ξλ,R|2 + |∇ξλ,R|2) ≤ CR
∫
R2

|∇ ×Aλ|2,

which implies that {Ãλ,R} is bounded in H1(BR(0);R2) for λ sufficiently close to

1. Here, CR > 0 is a constant only dependent on R. Let ψ̃λ,R = ψλe
iχλ,R . Then

∇Ãλ,R ψ̃λ,R = (∇Aλψλ)eiχλ,R and |ψ̃λ,R|2 = |ψλ|2 in BR(0). (2.10)

Recall that {∇Aλψλ} and {|ψλ|2− 1} are, respectively, bounded in L2(R2;C2) and
L2(R2) for λ sufficiently close to 1. Since

∇ψ̃λ,R = ∇Ãλ,R ψ̃λ,R + iÃλ,Rψ̃λ,R,

by (2.10) and Lemma 2.1, {ψ̃λ,R} is also bounded in H1(BR(0);C) for λ suffi-

ciently close to 1. Without loss of generality, we may assume that (ψ̃λ,R, Ãλ,R) ⇀
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(ψ0,R, A0,R) weakly in H1(BR(0);C) × H1(BR(0);R2) as λ → 1 up to a subse-
quence. By (2.8), for R′ > R, the difference between (ψλe

iχλ,R , Aλ + ∇χλ,R)
and (ψλe

iχλ,R′ , Aλ +∇χλ,R′) in BR(0) is a gauge χλ,R′ − χλ,R which is harmonic
in BR(0). Moreover, by the boundedness of {Aλ +∇χλ,R} and {Aλ +∇χλ,R′} in
H1(BR(0)) for λ sufficiently close to 1 and the Poincaré inequality, {χλ,R′−χλ,R} is

bounded in H2(BR(0)) for λ sufficiently close to 1 and so that χλ,R′−χλ,R ⇀ χ̃R,R
′

weakly in H2(BR(0)) as λ→ 1 up to a subsequence. It follows that (ψ0,R, A0,R) =

(ψ0,R′e−iχ̃
R,R′

, A0,R′−∇χ̃R,R′
) in BR(0) for all R′ > R. Let us define the equivalent

classes as follows:

[(ψ0,R, A0,R)] = {(ψ0,Re
iχ, A0,R +∇χ) | χ ∈ H2(BR(0))}.

Then in every class, we can re-choose (ψ0,R, A0,R) if necessary such that if R′ > R
then (ψ0,R′ , A0,R′) = (ψ0,R, A0,R) in BR(0). Hence, we can use these re-chosen
{(ψ0,R, A0,R)} to define a configuration (ψ0, A0) in the whole R2 by setting

(ψ0, A0) |BR(0)= (ψ0,R, A0,R)

in every BR(0). It follows that (ψλ, Aλ) ⇀ (ψ0, A0) weakly in H1
loc(R2;C) ×

H1
loc(R2;R2) as λ → 1 up to a subsequence in the sense of Definition 2.1. That

is, for every given compact set K, we can choose R > 0 such that K ⊂ BR(0) and

(ψ̃λ,Re
iχR , Ãλ,R +∇χR) ⇀ (ψ0,R, A0,R) weakly in H1(BR(0);C) ×H1(BR(0);R2)

as λ → 1 up to a subsequence, where (ψ0,R, A0,R) = (ψ0, A0) |BR(0) and χR ∈
H2
loc(R2). By our constructions, divÃλ,3R = 0 in B3R(0) for every R > 0. Thus, by

(2.6), for every R > 0,

−∆Ãλ,3R = w2
λ(∇gλ −Aλ), in B3R(0) in the weak sense. (2.11)

Here, we notice that wλ and ∇gλ −Aλ are independent of gauges. By Lemma 2.1,
0 ≤ wλ ≤ 1 in the whole R2. Thus, the right hand side of (2.11) belongs to
L2(R2;R2) by Lemma 2.2. Applying the interior Lp-estimates and the Sobolev
embedding theorem to (2.11) implies that

‖Ãλ,3R‖C1,α(B2R) ≤ CR‖Ãλ,3R‖H2(B2R)

≤ C ′R(‖∇gλ −Aλ‖L2(B3R) + ‖Ãλ,3R‖L2(B3R)), (2.12)

which implies that {Ãλ,3R} is uniformly bounded in C1,α(B2R) for every R > 0
and some α ∈ (0, 1). Here, CR, C

′
R > 0 are constants only dependent on R. Let us

come back to (1.1) and write

ψ̃λ,3R = ψ̃λ,3R,1 + iψ̃λ,3R,2.

Since divÃλ,3R = 0 for every R > 0, the first equation of (1.1) in B3R can be
rewritten as
−∆ψ̃λ,3R,1 + |Ãλ,3R|2ψ̃λ,3R,1 =

λ

2
(1− |ψ̃λ,3R|2)ψ̃λ,3R,1 + 2Ãλ,3R,2∇ψ̃λ,3R,2,

−∆ψ̃λ,3R,2 + |Ãλ,3R|2ψ̃λ,3R,2 =
λ

2
(1− |ψ̃λ,3R|2)ψ̃λ,3R,2 − 2Ãλ,3R,1∇ψ̃λ,3R,1,



LOCAL UNIQUENESS 11

where Ãλ,3R = (Ãλ,3R,1, Ãλ,3R,2). As (2.12), applying the interior Lp-estimates and
the Sobolev embedding theorem implies that

‖ψ̃λ,3R,i‖C1,α(BR) ≤ CR‖ψ̃λ,3R,i‖H2(BR)

≤ C ′R((‖Ãλ,3R‖2L∞(B2R) + 1)‖ψ̃λ,3R,i‖L2(B2R)

+‖Ãλ,3R‖L∞(B2R)‖∇ψ̃λ,3R,j‖L2(B2R)).

Thus, {ψ̃λ,3R,i} is uniformly bounded in C1,α(BR), which, without loss of generality,

implies that ψ̃λ,3R,i → ψ0,i strongly in C1,α(BR) as λ → 1 in the sense of Defini-
tion 2.1 (Here, we shall adjust α to be slightly small in the strong convergence).

Since R > 0 is arbitrary, (ψλ, Aλ)→ (ψ0, A0) strongly in C1,α
loc (R2;C)×C1,α

loc (R2;R2)
as λ→ 1 up to subsequence in the sense of Definition 2.1. It follows from the gauge
invariance of Eλ(ψ,A) that for every R > 0,

lim
λ→1
Eλ(ψλ, Aλ) ≥ lim

λ→1
(
1

2

∫
BR(0)

|∇Aλψλ|2 + |∇ ×Aλ|2 +
λ

4
(|ψλ|2 − 1)2)

=
1

2

∫
BR(0)

|∇A0
ψ0|2 + |∇ ×A0|2 +

1

4
(|ψ0|2 − 1)2. (2.13)

Letting R→ +∞ in the above inequality, we have

lim
λ→1
Eλ(ψλ, Aλ) ≥ E1(ψ0, A0). (2.14)

Since (ψλ, Aλ) is a classical solution of (1.1) for λ sufficiently close to 1, by the
gauge invariance, (ψ0, A0) must be a weak solution of (1.1) for λ = 1. Thanks to
the results in [11] and (2.14), (|ψ0|, |∇A0

ψ0|, |∇ × A0|) → (1, 0, 0) as |x| → +∞.
Thus, the degree of (ψ0, A0) is well defined and less than or equal to 1 by Lemma 2.2.
Since we assume that 0 is always a vortex of (ψλ, Aλ) for λ sufficiently close to 1,
gauge translations will not change the vortices and (ψλ, Aλ)→ (ψ0, A0) strongly in

C1,α
loc (R2;C)×C1,α

loc (R2;R2) as λ→ 1 up to subsequence in the sense of Definition 2.1,
(ψ0, A0) must be the degree 1 solution of (1.1) for λ = 1. By the uniqueness of |ϕ|
(cf. [19]), (ψ0, A0) = (ϕ,B) up to gauge translations. Since the above convergence
holds for every subsequence, by Proposition 2.1, we must have (ψλ, Aλ)→ (ψ0, A0)
strongly in C1

loc(R2;C)× C1
loc(R2;R2) as λ→ 1 in the sense of Definition 2.1. �

Using Lemmas 2.1 and 2.3 once more, we can obtain the following.

Lemma 2.4. Up to translations, 0 is the only vortex of (ψλ, Aλ) for λ sufficiently
close to 1. Moreover, for every R > 0, there exists δR > 0 independent of λ such
that wλ ≥ δR for all |x| ≥ R and λ sufficiently close to 1.

Proof. We first prove that for λ sufficiently close to 1, 0 is the only vortex of (ψλ, Aλ)
up to translations. Suppose the contrary that besides 0, (ψλ, Aλ) still has another
vortex a1,λ up to translations. Now, iny BR(a1,λ), we could run the regularity and
compactness arguments as used for Lemma 2.3 to (ψλ, Aλ). Then, (ψ1

λ, A
1
λ) →

(ϕ,B) strongly in C1,α
loc (R2;C) × C1,α

loc (R2;R2) as λ → 1 for some α ∈ (0, 1) in the
sense of Definition 2.1, where (ψ1

λ, A
1
λ) = (ψλ(x + a1,λ), Aλ(x + a1,λ)) for every j.

Since by Lemma 2.3, (ψλ, Aλ) → (ϕ,B) strongly in C1
loc(R2;C) × C1

loc(R2;R2) as
λ → 1 in the sense of Definition 2.1, we have |a1,λ| → +∞ as λ → 1. Now, using
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similar arguments as used for (2.13),

lim
λ→1
Eλ(ψλ, Aλ) ≥ lim

λ→1

1

2

∫
BR(0)

|∇Aλψλ|2 + |∇ ×Aλ|2 +
1

4
(|ψλ|2 − 1)2

+ lim
λ→1

1

2

∫
BR(a1,λ)

|∇Aλψλ|2 + |∇ ×Aλ|2 +
1

4
(|ψλ|2 − 1)2

≥
∫
BR(0)

|∇Bϕ|2 + |∇ ×B|2 +
1

4
(|ϕ|2 − 1)2

≥ 3π

2
(2.15)

by choosing R > 0 sufficiently large. It contradicts Lemma 2.2 for λ sufficiently
close to 1, which implies that up to translations, 0 is the only vortex of (ψλ, Aλ) for
λ sufficiently close to 1. Let us now prove the second part of this lemma. Suppose
that there exists {xλ} such that |xλ| → +∞ and |ψλ(xλ)| → 0 as λ → 1. Then

let us consider (ψ̃0
λ, Ã

0
λ) = (ψλ(x + xλ), Aλ(x + xλ)). By similar arguments as

used in the proof of Lemma 2.3, we can show that (ψ̃0
λ, Ã

0
λ)→ (ϕ0, B0) strongly in

C1,α
loc (R2;C)×C1,α

loc (R2;R2) as λ→ 1 for some α ∈ (0, 1) in the sense of Definition 2.1
and (ϕ0, B0) is a solution of (1.1) with λ = 1. As for (2.14), we can show that

lim
λ→1
Eλ(ψ0

λ, A
0
λ) ≥ E1(ϕ0, B0).

Since ψ0
λ(0) → 0 as λ → 1, by Proposition 2.1, ϕ0(0) = 0 and thus by the results

in [11], either ϕ0 ≡ 0 or the degree of ϕ0 is at least 1. It follows from (2.4)
that |ϕ0| − 1 ∈ H1(R2), which implies that the degree of ϕ0 is at least 1 and
E1(ϕ0, B0) ≥ π. Now, since |xλ| → +∞ as λ → 1 and 0 is always a vortex of ψλ,
by using similar calculations in (2.15) in BR(0) and BR(xλ) for a sufficiently large
R, we will arrive at

Eλ(ψλ, Aλ) ≥ 3π

2
for λ sufficiently close to 1, which contradicts (2.4). Thus, for every R > 0, there
exists δR > 0 independent of λ such that |ψλ| ≥ δR for all |x| ≥ R and λ sufficiently
close to 1. �

To continue our analysis, we need to drive some global compactness results of
{(ψλ, Aλ)}. Let us begin with

Lemma 2.5. Under the notation (ψλ, Aλ) = (wλe
igλ , Aλ), we have wλ−1→ f−1

strongly in H1(R2) and wλ(∇gλ − Aλ) → f(∇θ − B) strongly in L2(R2;R2) as
λ→ 1.

Proof. Since ∫
R2

|∇Aλψλ|2 ≥
∫
BR(0)

|∇Aλψλ|2 (2.16)

for all R > 0, by (2.10) and Lemma 2.3, we can let λ→ 1 first and R→ +∞ next
in (2.16). It follows that

lim
λ→1

∫
R2

|∇Aλψλ|2 ≥
∫
R2

|∇Bϕ|2.

Recall that by our choice of gauges in the proof of Lemma 2.3, divÃλ,R = 0 in BR(0)
for every R > 0. Since for the radial solution (ϕ,B), we also have divB = 0 in R2,
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by Lemma 2.3, (ψ̃λ,R, Ãλ,R)→ (ϕ,B) strongly in C1(BR(0);C)×C1(BR(0);R2) as
λ→ 1 up to a gauge χR which is harmonic in BR(0). Now, using elliptic estimates
to (2.9), we know that∫

BR(0)

|∇B|2 = lim inf
λ→1

∫
BR(0)

|∇Ãλ,R|2

= lim inf
λ→1

∫
BR(0)

|∇2ξλ,R|2

≤ lim inf
λ→1

∫
R2

|∇ ×Aλ|2. (2.17)

Letting R→ +∞ in (2.17) and noting that divB = 0, we could use integrating by
parts and the decaying property of B at infinity to show that∫

R2

|∇ ×B|2 =

∫
R2

|∇B|2 ≤ lim inf
λ→1

∫
R2

|∇ ×Aλ|2.

Now, by the weakly lower semi-continuity of the energy functional Eλ(ψλ, Aλ) and
(2.4), we actually have ∇Aλψλ → ∇Bϕ strongly in L2(R2;C2), w2

λ − 1 → f2 − 1
strongly in L2(R2) and ∇× Aλ → ∇× B strongly in L2(R2;R4) as λ → 1, which
implies that wλ − 1→ f − 1 strongly in H1(R2) and wλ(∇gλ −Aλ)→ f(∇θ −B)
strongly in L2(R2;R2) as λ→ 1. �

By Lemma 2.4, we may assume that 0 is the only vortex of (ψλ, Aλ) for λ
sufficiently close to 1. Then for R > 0 sufficiently large, we can act the operator
(∂2,−∂1) on both sides of the second equation of (1.1) to write down the following
equation (cf. [11, Proposition 6.1]):

| −∆qλ + w2
λqλ| ≤ |hλ|2 in R2\BR(0), (2.18)

where hλ = ∇Aλψλ and qλ = ∇ × Aλ. Moreover, by [11, Corollary 6.2], we also
have the following equation:

|hλ|∆|hλ| ≥ (−2|qλ|+
λ

2
(1− w2

λ))|hλ|2 + w2
λ|hλ|2 in R2\BR(0) (2.19)

for R > 0 sufficiently large.

Lemma 2.6. Under the notation (ψλ, Aλ) = (wλe
igλ , Aλ), we have that wλ − 1,

|∇wλ|, |∇gλ−Aλ| and |∇(∇gλ−Aλ)| all exponentially decays to zero as |x| → +∞,
uniformly for λ sufficiently close to 1.

Proof. Let us consider (1.1) in B3(y) with |y| >> 1. Then by similar choices of
gauges in the proof of Lemma 2.3 and running the regularity arguments as that
used in the proof of Lemma 2.3, we will obtain that∫

B3(y)
(|∇Ãyλ|2 + |Ãyλ|2) .

∫
R2 |∇ ×Aλ|2 . 1,

‖Ãyλ‖C1,α(B2(y)) . ‖∇gλ −Aλ‖L2(B2(y)) +
∫
R2 |∇ ×Aλ|2 . 1.

and

‖ψ̃yλ‖C1,α(B1(y)) . (‖Ãyλ‖
2
L∞(B2(y))

+ 1)‖ψ̃yλ‖L2(B2(y))

+‖Ãyλ‖L∞(B2(y))‖∇ψ̃
y
λ‖L2(B2(y))

. 1 + ‖∇Ãyλ ψ̃
y
λ‖L2(B2(y))

. 1
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uniformly for λ sufficiently close to 1 and |y| ≥ 2R with R > 0 sufficiently

large, where (ψ̃yλ, Ã
y
λ) is the correspondingly modified (ψλ, Aλ) in B3(y), as that

of (ψ̃λ,R, Ãλ,R) in the proof of Lemma 2.3. Here, we also use the uniform bound
of wλ obtained in Lemma 2.1, the strong convergence obtained in Lemma 2.5 and
the gauge invariance of hλ. It follows from the gauge invariance of ∇gλ − Aλ and
Lemma 2.4 that

|hλ| ≤ |∇wλ|+ |∇g̃yλ − Ã
y
λ| .

1

δR
|∇ψ̃yλ|+ |Ã

y
λ| .

1

δR
+ 1

uniformly for λ sufficiently close to 1 and |y| ≥ 2R with R > 0 sufficiently
large. Therefore, ‖hλ‖L∞(R2\BR(0)) . 1 uniformly for λ sufficiently close to 1,
where R > 0 is sufficiently large. Now, applying the classical regularity theo-
rems to (2.18) and using the strong convergence obtained by Lemma 2.5 yield that
‖qλ‖L∞(R2\BR(0)) << 1 by taking R >> 1 uniformly for λ sufficiently close to 1. By

Lemma 2.4, we can rewrite the equation (2.2) in R2\BR(0) with R > 0 sufficiently
large as follows:

−∆wλ +
λ

2
(wλ + 1)wλ(wλ − 1) = −|∇gλ −Aλ|2wλ, in R2\BR(0).

Then by ‖hλ‖L∞(R2\BR(0)) . 1 uniformly for λ sufficiently close to 1, the strong
convergence obtained by Lemma 2.5 and the classical regularity theorems, ‖1 −
wλ‖L∞(R2\BR(0)) << 1 by taking R >> 1 uniformly for λ sufficiently close to 1. It
follows from Lemma 2.4 that we can rewrite (2.19) as follows:

|hλ|∆|hλ| ≥ δR|hλ|2 in R2\BR(0),

which, together with Lemma 2.3, [11, Proposition 7.2] and the classical elliptic
estimates, implies the desired conclusions. That is, wλ − 1, |∇wλ|, |∇gλ − Aλ|
and |∇(∇gλ − Aλ)| all exponentially decays to zero as |x| → +∞, uniformly for λ
sufficiently close to 1. �

With the uniform estimates in Lemma 2.6, we can obtain the following global
compactness result of {(ψλ, Aλ)}.

Lemma 2.7. We have (ψλ − ϕ,Aλ −B)→ 0 strongly in H1(R2;R2)×H1(R2;C)
as λ→ 1.

Proof. Since by Lemma 2.4, we may assume that (ψλ, Aλ) only has a single vortex
at 0 for λ sufficiently close to 1, θ − gλ ∈ C2(R2\B1(0)) and

gλ(R, θ + 2π)− (θ + 2π) = gλ(R, θ)− θ (2.20)

for sufficiently large R > 0. Thus, θ− gλ is a single-valued function on ∂BR(0) and
so we can harmonically extend θ − gλ from ∂BR(0) into BR(0). We denote this
extension by υλ, that is, υλ satisfies{

∆υλ = 0, in BR(0),

υλ = θ − gλ(R, θ), on ∂BR(0).

By classical regularity theorems, υλ ∈ C2(BR). By Lemma 2.3, we may assume
that Aλ → B strongly in C1,α(B3R(0);R2) as λ→ 1 for some α ∈ (0, 1). We remark
that in the sense of Definition 2.1, the possible changes in this strong convergence
is the gauges {χλ,R} ⊂ C2(B3R(0)), which will not change the computation (2.20).
Now, by the Arzela-Ascoli theorem, Aλ → B uniformly in B2R\BR/2 as λ→ 1 for
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R sufficiently large. Since |B| ∼ 1
R in B2R\BR/2 (cf. [4]), we know that |Aλ| ∼ 1

R in

B2R\BR/2 for λ sufficiently close to 1. It follows from Lemma 2.6 that |∇gλ| ∼ 1
R in

B2R\BR/2 for λ sufficiently close to 1. Since we have assumed that Aλ → B strongly

in C1,α(B3R(0);R2) as λ→ 1 for some α ∈ (0, 1), by Lemma 2.5, wλe
igλ−feiθ → 0

strongly in L2(B3R(0);C) and wλ − f → 0 strongly in L2(B3R(0)) as λ → 1,
which implies gλ − θ → 2πk(x) a.e. in B3R(0) for some k(x) ∈ Z as λ → 1. Let
x0 ∈ B3R(0) such that gλ(x0) − θ(x0) → 2πk0 for some k0 ∈ Z. Then |gλ(x)| .
|gλ(x0)|+ |∇gλ|R . 1 for all x ∈ B2R\BR/2 and λ sufficiently close to 1. It follows
from the Arzela-Ascoli theorem that gλ − θ → 2πk(x) uniformly in B2R\BR/2 for
some continuous k(x) ∈ Z as λ → 1. By the continuity of k(x), we must have
that k(x) ≡ k. Thus, gλ − θ → 2πk in B2R\BR/2 uniformly as λ → 1 for some

k ∈ Z. By translating (ψλ, Aλ) under the possible constant gauge α0 = e−2πki if
necessary, which will change nothing in passing to the limit, we may assume that
gλ − θ → 0 in B2R\BR/2 uniformly as λ → 1. Recall that we have assumed that

Aλ → B strongly in C1,α(B3R(0);R2) as λ→ 1 for some α ∈ (0, 1), by Lemma 2.5,
gλ − θ → 0 strongly in H1(B2R\BR/2) as λ → 1. It follows from the Sobolev

embedding theorem that gλ → θ strongly in H
1
2 (∂BR(0)) as λ→ 1, which implies

υλ → 0 strongly in H1(BR(0)) as λ → 1. We extend υλ from BR to the whole R2

by setting υλ = θ− gλ in R2\BR. It follows that υλ ∈ C2(R2). Let us consider the
gauge translation (ψλ, Aλ)→ (ψλe

iυλ , Aλ +∇υλ) if necessary. Then

ψλe
iυλ =

{
ψλe

iυλ , in BR(0);

wλe
iθ in R2\BR(0)

(2.21)

and

Aλ +∇υλ =

{
Aλ +∇υλ, in BR(0);

Aλ −∇gλ +∇θ in R2\BR(0).
(2.22)

Since we have proved that υλ → 0 strongly in H1(BR(0)) as λ→ 1, by Lemmas 2.3
and 2.5, we still have (ψλe

iυλ , Aλ + ∇υλ) → (ϕ,B) strongly in H1
loc(R2;R2) ×

H1
loc(R2;C) as λ → 1 in the sense of Definition 2.1. Now, by the gauge invariance

of Eλ(ψλ, Aλ), we may assume that gλ = θ in R2\BR(0) for λ sufficiently close to
1. Therefore, in R2\BR(0),

(ψλ, Aλ)− (ϕ,B) = (wλe
iθ − f(r)eiθ, Aλ −∇gλ + (1− a(r))∇θ).

Recall that by Lemma 2.6, wλ − 1, ∇wλ, |∇gλ −Aλ| and |∇(∇gλ −Aλ)| all expo-
nentially decay to zero as |x| → +∞, uniformly for λ sufficiently close to 1. By the
strong convergence of (ψλ, Aλ) in H1

loc(R2;R2) × H1
loc(R2;C) as λ → 1, we know

that (ψλ − ϕ,Aλ −B)→ 0 strongly in H1(R2;R2)×H1(R2;C) as λ→ 1. �

We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1: Let (φλ, Dλ) = (fλ(r)eiθ, dλ(r)∇θ) be a radial solution
of (1.1) such that its degree is 1. By [6, Theorem 1], (φλ, Dλ) is unique for λ
sufficiently close to 1. By the variational formula of (φλ, Dλ) (cf. [4]), we can use
similar arguments as used for (ψλ, Aλ) to show that (φλ−ϕ,Dλ−B)→ 0 strongly
in H1(R2;R2) × H1(R2;C) as λ → 1. By the results of Stuart in [16], the set of
translational 0-modes of the linearized equation of (1.1) for λ = 1 at (ϕ,B) in
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H1(R2;C)×H1(R2;R2) is given by

Kt =

{
(∂1ϕ+ iϕχ1, ∂1B +∇χ1), (∂2ϕ+ iϕχ2, ∂2B +∇χ2)

}
,

where χj are real functions and satisfy the following equations:

−∆χj + |ϕ|2χj = −1

2
|ϕ|2∂jθ, in R2.

As in [9], by the uniqueness of solutions of the above equation in H1(R2) and by the
fact that (ϕ,B) is a solution of (1.1) for λ = 1, it is easy to observe that χj = −Bj ,
where B = (B1, B2). Thus,

Kt =

{
((∇Bϕ)1, (0,∇×B)), ((∇Bϕ)2, (−∇×B, 0))

}
.

Moreover, Kt ⊥ Kg in L2(R2;C)× L2(R2;R2), where

Kg = {(iϕχ,∇χ) | χ ∈ H2(R2)}
is the set of gauge translational 0-modes of the linearized equation of (1.1) for λ = 1
at (ϕ,B). For the sake of simplicity, we shall denote

T1 = (T1,1, T1,2) = ((∇Bϕ)1, (0,∇×B)),

T2 = (T2,1, T2,2) = ((∇Bϕ)2, (−∇×B, 0)),

Gχ = (iϕχ,∇χ).

Since by Lemma 2.7, (φλ−ϕ,Dλ−B)→ 0 and (ψλ−ϕ,Aλ−B)→ 0 both strongly in
H1(R2;R2)×H1(R2;C) as λ→ 1, the difference of (ψλ, Aλ) and (φλ, Dλ) strongly
converges to zero in H1(R2;R2)×H1(R2;C) as λ→ 1. We claim that the projection
of (ψλ, Aλ) in (Kt

⊕
Kg)⊥ is unique for λ sufficiently close to 1. Indeed, let

F(ψ,A, λ) = E ′λ(ψ,A),

then F(ψλ, Aλ, λ) = 0 in L2(R2;C) × L2(R2;R2) for λ sufficiently close to 1. Let
L = E ′′1 (ϕ,B). Then by a direct calculation,

L(η) =

(
−∆Bξ +

1

2
(2|ϕ|2 − 1)ξ +

1

2
ϕ2ξ + i[2∇BϕD + ϕdiv(D)],

[−∆ + |ϕ|2]D +∇div(D) + Im(∇Bϕξ − ϕ∇Bξ)
)
,

where η = (ξ,D) ∈ H2(R2;C)×H2(R2;R2). By the computations in [9], in (Kg)⊥,
the operator L has the form:

L̃(η) =

(
−∆Bξ + (

1

2
+

1

2
|ϕ|2)ξ + (|ϕ|2 − 1)ξ + 2i∇BϕD,

[−∆ + |ϕ|2]D + 2Im(∇Bϕξ)
)

= T
(
ξ +K(ξ,D), D + Y(ξ,D)

)
,

where T is an operator from H2(R2;C× R2) to L2(R2;C× R2) and is given by

T (ξ,D) = (T1(ξ,D), T2(ξ,D))

=

(
−∆Bξ + (

1

2
+

1

2
|ϕ|2)ξ,−∆D + |ϕ|2D

)
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with

K(ξ,D) = T −11

(
(|ϕ|2 − 1)ξ + 2i∇BϕD

)
, Y(ξ,D) = T −12

(
2Im(∇Bϕξ)

)
two operators from H2(R2;C × R2) to H2(R2;C × R2). Since ∇Bϕ ∈ L2(R2;C)
and |ϕ|2 − 1 ∈ H1(R2), it is standard to check that K and Y are both compact.
Moreover, since |ϕ| → 1 as |x| → +∞, we also know that T is a bijection. Thus, by
the results in [9] and the Fredholm alternative, the operator L & 1 in (Kt

⊕
Kg)⊥.

It follows from the implicit function theorem that the projection of (ψλ, Aλ) in
(Kt

⊕
Kg)⊥ is unique for λ sufficiently close to 1. Here, the orthogonal complement

is in H1(R2;R2)×H1(R2;C). Thus, if (ψλ, Aλ) 6= (φλ, Dλ), then the difference of
(ψλ, Aλ) and (φλ, Dλ) must lie in Kt

⊕
Kg for λ sufficiently close to 1. That is, for

λ sufficiently close to 1, we have

(ψλ, Aλ) = (φλ, Dλ) + αλT1 + βλT2 + Gχλ , (2.23)

where χλ ∈ H2(R2) with χλ → 0 in H2(R2) and αλ, βλ → 0 as λ→ 1. By a direct
calculation,

T1 =

(
(f ′(r) cos θ − if(r)

1− a(r)

r
sin θ)eiθ, (0, (

a(r)

r
)′ +

a(r)

r2

)
, (2.24)

T2 =

(
(f ′(r) sin θ − if(r)

1− a(r)

r
cos θ)eiθ, (−((

a(r)

r
)′ +

a(r)

r2
), 0)

)
.(2.25)

Let τλ = max{αλ, βλ} and define

(υλ, ϑλ) =
1

τλ
((ψλ, Aλ)− (φλ, Dλ)).

Recall that by Lemma 2.4, 0 is the only vortex point of (ψλ, Aλ). Moreover, it is
also well known that 0 is also the only vortex point of the radial solutions (φλ, Dλ)
and (ϕ,B). Thus, we always have υλ(0) = 0. Since it is well known that f(r) ∼ r
and a(r) ∼ r2 as r → 0 (cf. [9]), by (2.23), (2.24) and (2.25),

υλ(0) =
αλ
τλ
T1,1(0) +

βλ
τλ
T2,1(0) +

1

τλ
ϕ(0)χλ(0)

= (
αλ
τλ
− iβλ

τλ
)f ′(0).

We remark that since 0 is the vortex point of ϕ, Tj,1(0) should be understood
as the limit of r → 0. It follows that αλ = βλ = 0 for λ sufficiently close to
1. It remains to show χλ = 0 for λ sufficiently close to 1. By Lemma 2.7, we
can choose gauges (cf. (2.21) and (2.22)) such that the considered nontrivial least-
energy minimizer (ψλ, Aλ) satisfies (ψλ, Aλ)→ (ϕ,B) strongly in H1(R2) as λ→ 1.
If Gχλ 6= 0 in (2.23) for λ sufficiently close to 1, then divAλ = ∆χλ in R2. Since
χλ ∈ H2(R2) now, divAλ ∈ L2(R2) for λ sufficiently close to 1. Let us consider the
possible gauge translation (ψλ, Aλ)→ (ψλe

iχλ , Aλ +∇χλ). Since χλ → 0 strongly

in H2(R2) as λ→ 1, (ψ̂λ, Âλ) = (ψλe
iχλ , Aλ +∇χλ)→ (ϕ,B) strongly in H1(R2)

as λ → 1. Moreover, we still have the expansion (2.23) for (ψ̂λ, Âλ) and (φλ, Dλ)

with αλ = βλ = 0 and some χ′λ ∈ H2(R2). However, for Âλ, we have div(Âλ) = 0.
Thus, without loss of generality, we may assume that div(Aλ) = 0 in R2 now. Since
div(Aλ) = 0, we have ∆χλ = 0 in R2, which together with χλ ∈ H2(R2), implies
χλ = 0 for λ sufficiently close to 1. Thus, by (2.23) once more, we must have
(ψλ, Aλ) = (φλ, Dλ) for λ sufficiently close to 1 up to gauges. 2
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3. Appendix

In this appendix, we shall prove Proposition 2.1.

Proof of Proposition 2.1: Let (ϕ,B) be a solution of (1.1) with λ = 1 such that
its degree is N , then under Taubes’s notations and results in [19] (see also [16]),

ϕ = e
1
2 (u+iθ) with θ =

∑m
j=1 arg(x − aj) and B = 1

2 (∂1θ + ∂2u, ∂2θ − ∂1u), where

(a1, a2, · · · , am) is the m vortices of (ϕ,B). Moreover, u also satisfies the following
elliptic equation:

−∆u+ (eu − 1) = −4π

m∑
j=1

δaj in R2, (3.1)

where δaj is the Dirac function at aj . Now, using this information in the energy
functional E1(ψ,A), we have

E1(ψ,B) =

∫
R2

1

4
|∇u|2eu +

1

8
|∆u|2 +

1

8
(eu − 1)2. (3.2)

By Levi’s monotone convergence theorem and (3.1),∫
R2

|∆u|2 = lim
ε→0

∫
R2\∪mj=1Bε(aj)

|∆u|2 =

∫
R2

(eu − 1)2. (3.3)

On the other hand, since |ϕ| ≤ 1 (cf. [20]), by the diamagnetic inequality (cf.
[8, (2.3)]), we know that |ϕ|2 − 1 = eu − 1 in H1(R2). Moreover, since u =
−
∑m
j=1 ln(1 + σ

|x−aj |2 ) + v for some σ > 4m and smooth v which exponentially

decays to zero as |x| → +∞ (cf. [19]), |∇u| ∼ 1
|x−aj | near each vortex point aj and

|∇u| ∼ 1
|x|3 as |x| → +∞. Thus, we can multiply (3.1) in R2\ ∪mj=1 Bε(aj) with

eu − 1 and integrate by parts, which implies that∫
R2\∪mj=1Bε(aj)

|∇u|2eu +

∫
R2\∪mj=1Bε(aj)

(eu − 1)2 = 4mπ.

Let ε→ 0 and applying Levi’s monotone convergence theorem yield that∫
R2

|∇u|2eu +

∫
R2

(eu − 1)2 = 4mπ. (3.4)

Inserting (3.3) and (3.4) into (3.2) and recalling that E1(ψ,B) = Nπ since (ϕ,B)’s
degree is N , we must have m = N . 2
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Mathematics. European Mathematical Society (EMS), Zürich, 2015.
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