EXISTENCE AND STABILITY OF SYMMETRIC AND ASYMMETRIC PATTERNS FOR THE HALF-LAPLACIAN GIERER-MEINHARDT SYSTEM IN ONE-DIMENSIONAL DOMAIN

MARKUS DE MEDEIROS, JUN-CHENG WEI, AND WEN YANG

Abstract

In this paper, we study the existence and stability of multiple spikes pattern to the fractional GiererMeinhardt model with periodic boundary conditions and the fractional power $s=\frac{1}{2}$. Specifically, we rigorously establish the existence of symmetric multiple spikes and asymmetric two-spikes solutions by the classical Lyapunov-Schmidt reduction method. We also investigate the stability of the constructed solution by studying its associated large and small eigenvalue problems, where we need to consider two nonlocal eigenvalue problems in their fractional versions. In the study of the large eigenvalue problem, the quantity $D_{K}(\varepsilon)=\frac{2}{\pi K} \log \frac{1}{\varepsilon}$ is the critical threshold which determines the stability of K-peaked solutions. For the symmetric two-spikes pattern we obtain the asymptotic expansion for the critical threshold $D_{K}(\varepsilon)$ up to the second order. Moreover, we provide some elementary properties of the Green's function, including the first and second derivatives, they are linked to the location of the spikes and the stability. Among these properties on the Green's function, we find out that the polygamma function $\phi(x)=\frac{d}{d x} \log \Gamma(x)$ plays a crucial role.

Keywords: Gierer-Meinhardt system; eigenvalue; stability; fractional laplacian, localized solutions.

1. Introduction

In mathematical biology, many models have been proposed and analyzed to explore the so-called Turing instability since the work [33] 1 ng 1952 . One of the most famous in biological pattern formation is the GiererMeinhardt system proposed by Gierer and Meinhardt in 1972, see [8], wich reads as follows

$$
\begin{cases}u_{t}=\varepsilon^{2} \Delta u-u+\frac{u^{2}}{v}, \quad u>0 & \text { in } \Omega, \tag{1.1}\\ \tau v_{t}=D \Delta v-v+u^{2}, & v>0 \\ \frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0 & \\ \text { in } \Omega, \\ \text { on } \partial \Omega .\end{cases}
$$

Equation $\| \frac{\| .1]^{\text {s }} \text { is }}{}$ used as a prototype of deterministic reaction-diffusion system to explain the results of experiments on head regeneration and transplantation in the freshwater polyp hydra. In (1.1.1, the unknowns $u=u(x, t)$ and $v=v(x, t)$ represent the concentrations of the activator and inhibitor at a point $x \in \Omega$ and at a time $t>0$, where Ω is a bounded and smooth domain and $v=v(x)$ is the outer normal at $x \in \partial \Omega$.

In past decades, there have been many works concerning the system (1.1) which focus on the analysis, both rigorous and formal, of the existence, structure, and linear stability of such localized solutions. In a 1-D domain, the Gierer-Meinhardt system has been particularly well studied by using pure.PDE methods and formal asymptotic analysis see 18, 34, 35, 38]. In the 2-D case, the rigorous analysis on the existence and stability of multiple-peaked patterns that are far from spatial homogeneity for the singularly perturbed Gierer-Meinhardt system has also been investigated, see 36 , 37]. There are klso some work concerning the extended 1-D and 2-D cases which involye the effection of the precusors [39, 41,42 bulk-membrane-
 reaction diffusion systems, we refer the readers to the book [25; 40 .

Gierer-Meinhardt systems have widespread applications in the modelling of biological phenomena for which distinct agents diffuse while simultaneously undergoing prescribed reaction kinetics. While these models have typically assumed a normal (or Brownian) diffusion process for which the mean-squareddisplacement (MSD) is proportional to the elapsed time, a growing body of literature has considered the alternative of anomalous diffusion which may be better suited for biological processes in complex environments [24: 29, 31 (see also $\overline{8} 7.1$ in (51). It has been shown that both superdiffusion and subdiffusion can reduce the threshold for Turing instabilities when compared to the same systems with normal diffusion
anlovin 2008, henry_200.5
[10, 16|. Fractional reaction diffusion systems have also found a diverse range of applications from population dynamics [1,20, 23] to economics [2,3]. Nonlocal, anomalous diffusuigncan allow systems to exhibit novel behavior that cannot be modelled in local systems. For example [23 Section 4] emphasizes that their results about fractional species competition have no local analouge, and [22 utilizes a fractional diffusion model to resolve controversy arising from a local model of polymer transport. The study of fractional generalizations of local systems has proven productive in enhancing our models of real-world phenomena. Therefore, understanding the pattern formation and its linear stability of the fractional case is quite necessary in studying the extended Gierer-Meinhardt system.

As a continuation work of [12],43], we shall study the existence and stability of localized multi-spike solutions to the one-dimensional Gierer-Meinhardt model with periodic boundary condition and the fractional power $s=\frac{1}{2}$, i.e.,

$$
\begin{cases}u_{t}+\varepsilon(-\Delta)^{\frac{1}{2}} u+u-\frac{u^{2}}{v}=0, & \text { for } x \in(-1,1), \tag{1.2}\\ \tau v_{t}+D(-\Delta)^{\frac{1}{2}} v+v-u^{2}=0, & \text { for } x \in(-1,1), \\ u(x)=u(x+2), v(x)=v(x+2), & \text { for } x \in \mathbb{R},\end{cases}
$$

where $0<\varepsilon \ll 1$ and the parameters $0<D<\infty$ and $\tau \geq 0$ are independent of ε. The (nonlocal) fractional Laplacian $(-\Delta)^{\frac{1}{2}}$ replaces the classical Laplacian as the infinitesimal generator of the underlying Lévy process for $s=\frac{1}{2}$ and is defined by

$$
(-\Delta)^{s} \phi(x) \equiv C_{s} \int_{-\infty}^{\infty} \frac{\phi(x)-\phi(y)}{|x-y|^{1+2 s}} d y, \quad \text { where } \quad C_{s} \equiv \frac{2^{2 s} s \Gamma(s+1 / 2)}{\sqrt{\pi} \Gamma(1-s)} .
$$

Due to the periodicity of the funciton, we could also write

$$
(-\Delta)^{\frac{1}{2}} \phi(x)=C_{s} \int_{-1}^{1}(\phi(x)-\phi(y)) K_{s}(x, y) d y
$$

with

$$
K_{s}(x, y)=\frac{1}{|x-y|^{2}}+\sum_{m=1}^{\infty}\left(\frac{1}{|x-y+2 m|^{2}}+\frac{1}{|x-y-2 m|^{2}}\right)
$$

In previous work 12 fractional power $s=\frac{1}{2}$ in the equation of v is replaced by $s \in\left(\frac{1}{2}, 1\right)$. Specifically, it has been rigorously proven that the symmetric and asymmetric two-spikes solutions exists and the linear stability of these solutions is determined by the eigenvalues of a certain 2×2 matrix. As $\frac{0 W 1}{}$, we prove the existence of symmetric multiple spikes and asymmetric two spikes solutions for 1.2$)^{T M}$ The only issue is that the decay of the ansatz is not good enough; we use a symmetry property to deal with this difficulty and thus the existence part can be obtained similarly. The stability turns to be more complicated for the case $s=\frac{1}{2}$. On one side, in the study of the large eigenvalue problem there are several cases need to be considered, whereas we only need to study a single case when $s>\frac{1}{2}$. On the other side, in the study of the small eigenvalue problem we have to figure out the sign on the second derivative of the Green's function. Due to the conditional convergence of the series for the case of $s=\frac{1}{2}$, it does not seem possible to handle using elementary computation. Through a further analysis on the corresponding series we find that such a function is closely related to the polygamma function $\phi(z):=\frac{d}{d z} \log \Gamma(z)$, and using its properties we are able to determine the sign of the second derivative the Green's function thereby solving the stability part.

To state the main results of this paper, we write the steady problem of $\sqrt{11.2}$ as

$$
\begin{cases}\varepsilon(-\Delta)_{x}^{\frac{1}{2}} u+u-\frac{u^{2}}{v}=0, & x \in(-1,1) \tag{1.3}\\ D(-\Delta)^{\frac{1}{2}} v+v-u^{2}=0, & x \in(-1,1) \\ u(x)=u(x+2), v(x)=v(x+2), & x \in \mathbb{R} .\end{cases}
$$

Let $D=\frac{1}{\beta^{2}}$ and the Green's function $G_{\beta}(x, z)$ be the function satisfying

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} G_{\beta}(x, z)+\beta^{2} G_{\beta}(x, z)=\delta(x-z), & x \in(-1,1) \\ G_{\beta}(x, z)=G_{\beta}(x+2, z), & x \in \mathbb{R}\end{cases}
$$

It is not difficult to verify that $G_{\beta}(x, z)$ admits the following Fourier series expansion

$$
G_{\beta}(x, z)=\frac{1}{2} \sum_{\ell=-\infty}^{\infty} \frac{e^{i \ell \pi(x-z)}}{\beta^{2}+\ell \pi}=\frac{1}{2} \beta^{-2}+\sum_{\ell=1}^{\infty} \frac{\cos (\ell \pi(x-z))}{\beta^{2}+\ell \pi}
$$

Let $G_{0}(x, z)$ be the Green's function given by

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} G_{0}(x, z)=\delta(x-z), & x \in(-1,1) \tag{1.4}\\ G_{0}(x, z)=G_{0}(x+2, z), & x \in \mathbb{R}\end{cases}
$$

Then it is not difficult to check that

$$
\begin{equation*}
G_{\beta}(x, z)=\frac{1}{2 \beta^{2}}+G_{0}(x, z)+O\left(\beta^{2}\right) \tag{1.5}
\end{equation*}
$$

The singular part of $G_{\beta}(x, z)$ behaves as $\frac{1}{\pi} \log \frac{1}{|x-z|}$ and we decompose $G_{\beta}(x, z)$ as

$$
G_{\beta}(x, z)=\frac{1}{\pi} \log \frac{1}{|x-z|}-H_{\beta}(x, z)=K_{\beta}(x, z)-H_{\beta}(x, z)
$$

where $K_{\beta}(x, z)=\frac{1}{\pi} \log \frac{1}{|x-z|}$ and $H_{\beta}(x, z)$ denote the singular part and the regular part of the Green function respectively.

To describe the location of spikes, we denote $\mathbf{p} \in(-1,1)^{K}$, where \mathbf{p} is arranged such that

$$
\mathbf{p} \in B_{\sigma}\left(\mathbf{p}^{0}\right)=\left\{\mathbf{q}=\left(q_{1}, \cdots, q_{K}\right)\left|\sum_{j=1}^{K}\right| q_{j}-\left.p_{j}^{0}\right|^{2} \leq \sigma^{2}\right\}, \quad \text { where } \quad p_{j}^{0}=\frac{2 j-1-K}{K}, \quad j=1, \cdots, K .(1.6)
$$

For $\mathbf{p} \in B_{\sigma}\left(\mathbf{p}^{0}\right)$, we define

$$
\begin{equation*}
F(\mathbf{p})=\sum_{j=1}^{K} H_{\beta}\left(p_{j}, p_{j}\right)-\sum_{i \neq j} G_{\beta}\left(p_{i}, p_{j}\right) \tag{1.7}
\end{equation*}
$$

and $M(\mathbf{p})=\nabla_{\mathbf{p}}^{2} F(\mathbf{p})$. Here $M(\mathbf{p})$ is a $K \times K$ matrix and one can easily see that it is a circulant matrix at \mathbf{p}^{0}. In addition, we have $\operatorname{rank}\left(M\left(\mathbf{p}^{0}\right)\right) \leq K-1$ due to the fact that the summation of each row is 0 .

Our first theorem concerns the existence of symmetric multiple spikes solutions.
th1.exist Theorem 1.1. Let \mathbf{p}^{0} be defined as in (1.6). Suppose $M\left(\mathbf{p}^{0}\right)$ is a matrix of $\operatorname{rank}\left(M\left(\mathbf{p}^{0}\right)\right)=K-1$. Moreover, we assume that the following technical condition holds:

$$
\begin{equation*}
\text { if } K>1 \text {, and } \eta_{0}:=\lim _{\varepsilon \rightarrow 0} \frac{2 \beta^{2}}{\pi} \log \frac{1}{\varepsilon} \neq K . \tag{1.8}
\end{equation*}
$$

Then for ε sufficiently small and $D=\frac{1}{\beta^{2}}$ sufficiently large, problem (1.3) has a solution $u_{\varepsilon}, v_{\varepsilon}$ such that

$$
\begin{equation*}
u_{\varepsilon} \sim \xi_{\varepsilon}\left(\sum_{j=1}^{K} w\left(\frac{x-p_{j}^{\varepsilon}}{\varepsilon}\right)+O(h(\varepsilon, \beta))\right), \quad v_{\varepsilon}\left(p_{j}^{\varepsilon}\right) \sim \xi_{\varepsilon} \tag{1.9}
\end{equation*}
$$

where w is the unique solution of

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} w+w-w^{2}=0, \quad w(x)=w(-x) \tag{1.10}
\end{equation*}
$$

1.ground

and ξ_{ε} and $h(\varepsilon, \beta)$ are given by

$$
\xi_{\varepsilon}= \begin{cases}\frac{1}{\varepsilon K \pi}, & \text { if } \eta_{\varepsilon} \rightarrow 0 \tag{1.11}\\ \frac{1}{\varepsilon \eta_{\varepsilon} \pi}, & \text { if } \eta_{\varepsilon} \rightarrow+\infty \\ \frac{1}{\varepsilon\left(\eta_{0}+K\right) \pi}, & \text { if } \eta_{\varepsilon} \rightarrow \eta_{0}\end{cases}
$$

and

$$
h(\varepsilon, \beta)= \begin{cases}\eta_{\varepsilon}, & \text { if } \eta_{\varepsilon} \rightarrow 0 \tag{1.12}\\ \eta_{\varepsilon}^{-1}, & \text { if } \eta_{\varepsilon} \rightarrow \infty \\ \beta^{2}, & \text { if } \eta_{\varepsilon} \rightarrow \eta_{0}\end{cases}
$$

Furthermore, $p_{j}^{\varepsilon} \rightarrow p_{j}^{0}$ as $\varepsilon \rightarrow 0$ for $j=1, \cdots, K$.
Remark: For D sufficiently large or $K=2,3,4$ one can verify that $\operatorname{rank}\left(M\left(\mathbf{p}^{0}\right)\right)=K-1$. In addition, under these conditions one can show that all the non-zero eigenvalues of $M\left(\mathbf{p}^{0}\right)$ are negative. This part is left to section 4.

Next we study the stability and instability of the symmetric multiple spikes solution construted in Theorem W.1. Writing the eigenvalue problem for the fractional Gierer-Meinhardt system as

$$
\left\{\begin{array}{l}
\varepsilon(-\Delta)^{\frac{1}{2}} \phi_{\varepsilon}+\phi_{\varepsilon}-2 \frac{u_{\varepsilon}}{v_{\varepsilon}} \phi_{\varepsilon}+\frac{u_{\varepsilon}^{2}}{v_{\varepsilon}^{2}} \psi_{\varepsilon}+\lambda_{\varepsilon} \phi_{\varepsilon}=0, \tag{1.13}\\
D(-\Delta)^{\frac{1}{2}} \psi_{\varepsilon}+\psi_{\varepsilon}-2 u_{\varepsilon} \phi_{\varepsilon}+\tau \lambda_{\varepsilon} \psi_{\varepsilon}=0,
\end{array}\right.
$$

where $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is the solution constructed in Theorem and $1.1 \lambda_{\varepsilon} \in \mathbb{C}$. Here we say $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is linearly stable if the eigenvalue $\lambda_{\varepsilon}<0$, while $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is called linearly unstable if there exists a eigenvalue λ_{ε} such that its real part $\Re\left(\lambda_{\varepsilon}\right)>0$.

Theorem 1.2. Suppose $M\left(\mathbf{p}^{0}\right)$ is a semi-negative matrix of rank $K-1$, and for ε sufficiently small and $D=\frac{1}{\beta^{2}}$ is sufficiently large. Let $\eta_{\varepsilon}=\frac{2 \beta^{2}}{\pi} \log \frac{1}{\varepsilon}$ and $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ be the K-peaked solutions constructed in Theorem th.1. exist withe center of peaks approaching \mathbf{p}^{0}. Then
(i). $\eta_{\varepsilon} \rightarrow 0$. If $K=1$, then there exists an unique $\tau_{1}>0$ such that for $\tau<\tau_{1},\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is a linearly stable, while for $\tau>\tau_{1},\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is linearly unstable; while if $K>1,\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is linearly unstable for any $\tau \geq 0$.
(ii). $\eta_{\varepsilon} \rightarrow+\infty$. $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is linearly stable for any $\tau>0$.
(iii). $\eta_{\varepsilon} \rightarrow \eta_{0}$. If $K>1$ and $\eta_{0}<K$, then $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is linearly unstable for any $\tau>0$. If $\eta_{0}>K$, then there exist $0<\tau_{2} \leq \tau_{3}$ such that $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is linearly stable for any $\tau<\tau_{2}$ and $\tau>\tau_{3}$. If $K=1$ and $\eta_{0}<1$, then there exists $0<\tau_{4} \leq \tau_{5}$ such that $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is linearly stable for any $\tau<\tau_{4}$ and linearly unstable $\tau>\tau_{5}$.

Concerning the (iii) of Theorem . When $K \geq 1$ or τ is large, $D_{K}(\varepsilon)=\frac{2}{\pi K} \log \frac{1}{\varepsilon}$ is the critical threshold for the asymptotic behavior of the diffusion coefficient of the inhibitor which determines the stability of 2peaked solutions. This number also appears in the study of classical 1-D and 2-D Gierer-Meinhardt systems. For 1-D classical Gierer-Meinhardt system, it has been shown 18$]$ for $\bar{K} \geq 2$ that the leading order of the critical thresholds $D_{K}(\varepsilon)=D_{K}$ are independent of ε. Moreover, the critical thresholds arise in the computation of the small eigenvalues. While in the classical 2-D case, $D_{K}(\varepsilon)$ is obtained in the study of the large eigenvalues. In fact, system (1.3) is more like the classical Gierer-Meinhardt system in 2-D case. The quantity $D_{K}(\varepsilon)$ also appears in the study of large eigenvalue problem. In addition, by the formal asymptotic computation, we obtain the next order term in the asymptotic expansion of $D_{K}(\varepsilon)$, which is very useful in pratice.
Proposition 1.3. Consider the symmetric two spikes pattern of the Gierer-Meinhardt system $\frac{f}{11.3}$, where $D=$ $O\left(\log \frac{1}{\varepsilon}\right)$. If

$$
D \sim \frac{1}{\pi} \log \frac{1}{\varepsilon}+\frac{1}{\pi} \mu_{1}
$$

where μ_{1} and \hat{u} are

$$
\mu_{1}=\frac{1}{2 \pi} \int_{\mathbb{R}} w \hat{u} d y-\log \frac{\pi}{4}
$$

and

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} \hat{u}+\hat{u}-2 w \hat{u}+w^{2} \hat{v}=0, & \hat{u}(y) \rightarrow 0 \text { as }|y| \rightarrow \infty \\ (-\Delta)^{\frac{1}{2}} \hat{v}-\frac{1}{2} w^{2}=0, & \hat{v}(y) \rightarrow-\log |y| \text { as }|y| \rightarrow \infty\end{cases}
$$

 within an $O\left(\frac{1}{\log \frac{1}{\varepsilon}}\right)$ neighborhood of the origin $\lambda=0$ is given by

$$
\lambda=\frac{1}{\log \frac{1}{\varepsilon}}\left(\mu_{1}+\log \frac{\pi}{4}-\frac{1}{2 \pi} \int_{\mathbb{R}} w \hat{u} d y\right) .
$$

In Theorem and Theorem . We provide the existence and stability results for the symmetric multiple spikes. In fact, when $\eta_{\varepsilon} \rightarrow 0$ or $+\infty$ as $\varepsilon \rightarrow 0$, we could only see the symmetric pattern. While as η_{ε} tends to some positive constant η_{0}. The spike height may be the same or different yielding, respectively, symmetric and asymmetric patterns. Specifically, in the following result we shall see that the existence of asymmetric pattern for two spikes and such a solution is not stable

Theorem 1.4. Let $\mathbf{p}^{0}=\left(p_{1}^{0}, p_{2}^{0}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right)$. Suppose that

$$
\eta_{0}:=\lim _{\varepsilon \rightarrow 0} \frac{2 \beta^{2}}{\pi} \log \frac{1}{\varepsilon}>2
$$

then for ε sufficiently small and $D=\frac{1}{\beta^{2}}$ sufficiently large, problem (1.3) has a solution $u_{\varepsilon}, v_{\varepsilon}$ such that

$$
\begin{equation*}
u_{\varepsilon} \sim \sum_{j=1}^{2} \xi_{\varepsilon, j} w\left(\frac{x-p_{j}^{\varepsilon}}{\varepsilon}\right), \quad v_{\varepsilon}\left(p_{j}^{\varepsilon}\right) \sim \xi_{\varepsilon, j} \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\xi_{\varepsilon, 1}=\frac{1}{\pi \varepsilon}\left(\frac{1}{2 \eta_{0}}+\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{4+2 \eta_{0}}\right)\left(1+O\left(\beta^{2}\right)\right), \quad \xi_{\varepsilon, 2}\right)=\frac{1}{\pi \varepsilon}\left(\frac{1}{2 \eta_{0}}-\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{4+2 \eta_{0}}\right)\left(1+O\left(\beta^{2}\right)\right) \tag{1.15}
\end{equation*}
$$

Furthermore, the solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ is linearly unstable for any $\tau>0$.
Remark: From Theorem 1.4 , we have seen that when $\eta_{0}>2$ there exists asymmetric patterns. Besides, such a solution is always unstable due to the large eigenvalue is always positive. This shows a striking difference to the symmetric pattern.

Before we end the introduction, we would like to give some remarks on our proof for the results of the symmetric and asymmetric patterns. Since the proof of the existence part for both cases are almost the same, we shall only focus on the symmetric case and state the different points if necessary for asymmetric case. While for the stability, as we shall see, one of the spectrums for the large eigenvalue problem of the asymmetric case is always positive, it leads to the instability of the asymmetric pattern. So, in the small eigenvalue problem we shall always consider the symmetric case.

The paper is organized as follows: in section 2, we shall present some preliminary results, including the study of two nonlocal eigenvalue problems and the calculations on the height of the spikes. In section 3, we rigorously prove the existence of the symmetric and asymmetric patterns. In section 4, we consider the stability for the constructed solutions by studying the associated large and small eigenvalue problems. We also derive some properties on the Green's function $G_{\beta}(x, z)$, and these properties are useful in our study on the small eigenvalue problem. In section 5 we give the proof of Proposition 1.3 . and this part has independent interest. Some numerical explanation is given in the Appendix.

2. Preliminaries

In this section we collect several key preliminary results needed for the existence and stability proofs in $\$ 3$ and $\{4$. Let w be the ground state solution satisfying

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} w+w-w^{2}=0, & \text { in } \mathbb{R} \tag{2.1}\\ w(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty\end{cases}
$$

Proposition 2.1. Equation (2.1) admits a poem
(a) The solution w and its derivative have the following expression

$$
w(x)=\frac{2}{1+x^{2}} \quad \text { and } \quad w^{\prime}(x)=-\frac{4 x}{\left(1+x^{2}\right)^{2}}
$$

(b) Let $L_{0}=(-\Delta)^{\frac{1}{2}}+1-2 w$ be the linearized operator. Then we have

$$
\operatorname{Ker}\left(L_{0}\right)=\operatorname{span}\left\{\frac{\partial w}{\partial x}\right\}
$$

(c) Considering the following eigenvalue problem

$$
(-\Delta)^{s} \phi+\phi-2 w \phi+\mu_{1} \phi=0 .
$$

There is an unique positive eigenvalue $\mu_{1}>0$.
For the linearized operator L_{0}, one can easily derive the following useful indentities

$$
L_{0} w=-w^{2}, \quad L_{0}\left(w+x \cdot \partial_{x} w\right)=-w .
$$

Hence

$$
\int_{\mathbb{R}}\left(L_{0}^{-1} w\right) w d x=\int_{\mathbb{R}}\left(-x \cdot \partial_{x} w-w\right) w d x=-\frac{1}{2} \int_{\mathbb{R}} w^{2} d x
$$

and

$$
\int_{\mathbb{R}}\left(L_{0}^{-1} w\right) w^{2} d x=-\int_{\mathbb{R}} L_{0}^{-1} w L_{0} w d x=-\int_{\mathbb{R}} w^{2} d x
$$

Next we recall two stability results of the nonlocal eigenvalue problem. The reader can find the proof in [12. Theorem 3.2, Theorem 3.3].

Theorem 2.2. Consider the following nonlocal eigenvalue problem

$$
\begin{equation*}
(-\Delta)^{s} \phi+\phi-2 w \phi+\gamma \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} w^{2}+\alpha \phi=0 . \tag{2.2}
\end{equation*}
$$

(1) If $\gamma<1$, then there is a eigenvalue α to (2.2) such that $\Re(\alpha)>0$.
(2) If $\gamma>1$ and $s>\frac{1}{4}$, then for any nonzero eigenvalue α of (2.2), we have

$$
\Re(\alpha) \leq-c_{0}<0 .
$$

(3) If $\gamma \neq 1$ and $\alpha=0$, then $\phi=c_{0} \partial_{x} w$ for some constant c_{0}.
th3.2
Theorem 2.3. Consider the following nonlocal eigenvalue problem

$$
\begin{equation*}
(-\Delta)^{s} \phi+\phi-2 w \phi+\gamma(\tau \alpha) \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} w^{2}+\alpha \phi=0, \tag{2.3}
\end{equation*}
$$

where $\gamma(\tau \alpha)$ is a complex function of $\tau \alpha$ and satisfies that

$$
\begin{equation*}
\gamma(0) \in \mathbb{R}, \quad|\gamma(\tau \alpha)| \leq C \text { for } \alpha_{R} \geq 0, \tau \geq 0 \tag{2.4}
\end{equation*}
$$

Then there is a small number $\tau_{0}>0$ such that for $\tau<\tau_{0}$,
(1) if $\gamma(0)<1$, then there is a positive eigenvalue to (2.3);
(2) if $\gamma(0)>1$ and $s>\frac{1}{4}$, then for any nonzero eigenvalue α of $\left(\frac{3.3}{2.3}\right.$, we have

$$
\Re(\alpha) \leq-c_{0}<0 .
$$

$$
\begin{equation*}
L \phi:=(-\Delta)^{\frac{1}{2}} \phi+\phi-2 w \phi+\gamma \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} w^{2}+\lambda_{0} \phi=0, \quad \phi \in H^{1}(\mathbb{R}), \tag{2.5}
\end{equation*}
$$

where
(a). $\gamma=\frac{\mu}{1+\tau \lambda_{0}}, \quad$ where $\mu>0, \tau \geq 0$.
(b). $\gamma=\frac{2\left(K+\eta_{0}\left(1+\tau \lambda_{0}\right)\right)}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right)}$, where $\eta_{0}>0, \tau \geq 0$.

First, we study the problem (2.5) in case (a).
Theorem 2.4. Let $\gamma=\frac{\mu}{1+\tau \lambda_{0}}$ where $\mu>0, \tau \geq 0$ and let L be defined in (2.5).
(1). If $\mu>1$, then there exists a unique $\tau_{1}>0$ such that for $\tau>\tau_{1}$, equation admits a positive eigenvalue, and for $\tau<\tau_{1}$, all nonzero eigenvalues of problem 2.5) satisfy $\Re(\lambda)<0$. At $\tau=\tau_{1}$, the eigenvalue problem (2.5) has a hopf bifurcation.
(2). If $\mu<1$, then L admits a positive eigenvalue $\lambda_{0}>0$.

We prove Theorem $\frac{14}{2.4} \cdot \frac{1}{\mathrm{~b} y}$ the following two lemmas.
lea. 1 Lemma 2.5. If $\mu<1$, then L has a positive eigenvalue $\lambda_{0}>0$.
Proof. We may assume that ϕ is an even positive function, namely,

$$
\phi \in H_{e}^{1}(\mathbb{R})=\left\{u \in H^{1}(\mathbb{R}) \mid u(y)=u(-y)\right\}
$$

Let L_{0} be given in Proposition 2.1 . Then by the second conclusion, L_{0} is invertible in $H_{e}^{1}(\mathbb{R})$. Let us denote the inverse as L_{0}^{-1}. By Proposition 2.1 . $\cdot L_{0}$ has a unique positive eigenvalue μ_{1}. It is easy to see that $\lambda_{0} \neq \mu_{1}$ since we have $\int_{\mathbb{R}} w \phi_{0} d x>0$.

Then λ_{0} is a eigenvalue of (2.5) if and only if it satisfies the following algebraic equation:

$$
\begin{equation*}
\int_{\mathbb{R}} w^{2} d x=-\frac{\mu}{1+\tau \lambda_{0}} \int_{\mathbb{R}}\left(\left(L_{0}+\lambda_{0}\right)^{-1} w^{2}\right) w d x \tag{2.6}
\end{equation*}
$$

a.p-1

We can rewrite 2.6$)^{-1}$ as

$$
\rho\left(\lambda_{0}\right):=\left(\mu-1-\tau \lambda_{0}\right) \int_{\mathbb{R}} w^{2} d x-\mu \lambda_{0} \int_{\mathbb{R}}\left(\left(L_{0}+\lambda_{0}\right)^{-1} w\right) w d x=0
$$

We notice that $\rho(0)=(\mu-1) \int_{\mathbb{R}} w^{2} d x<0$. On the other hand, as $\lambda_{0} \rightarrow \mu_{1}$ from left, we have $\int_{\mathbb{R}}\left(\left(L_{0}+\right.\right.$ $\left.\left.\lambda_{0}\right)^{-1} w\right) w d x \rightarrow-\infty$, and hence $\rho\left(\lambda_{0}\right) \rightarrow+\infty$. By continuity, there exists a $\lambda_{0} \in\left(0, \mu_{1}\right)$ such that $\rho\left(\lambda_{0}\right)=0$. Such a positive λ_{0} will be a eigenvalue of L.

When $\mu>1$ we notice that the eigenvalues will not cross through zero: Indeed, if $\lambda_{0}=0$, then we have

$$
L_{0} \phi+\mu \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} w^{2}=0
$$

which implies that

$$
L_{0}\left(\phi-\mu \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} w\right)=0
$$

and hence, by Proposition 2.1 .

$$
\phi-\mu \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} w \in \operatorname{Ker}\left(L_{0}\right)
$$

This is impossible since ϕ is radially symmetric and $\phi \neq c w$ for all $c \in \mathbb{R}$. As a consequence, there must be a point τ_{1} at which L has a Hopf bifurcation, i.e., L has a purely imaginary eigenvalue $\alpha=\sqrt{-1} \alpha_{I}$. To prove Theorem 2.4 . all we need to show that τ_{1} is unique, that is,
lea. 3 Lemma 2.6. Let $\mu>1$. There there exists an unique $\tau_{1}>0$ such that L has Hopf bifurcation.
Proof. Let $\lambda_{0}=\sqrt{-1} \alpha_{I}$ be a eigenvalue of L. We notice that $\sqrt{-1} \alpha_{I}$ is a eigenvalue of L then $-\sqrt{-1} \alpha_{I}$ is also a eigenvalue of L. Therefore, in the following we shall assume that $\alpha_{I}>0$. Let $\phi_{0}=-\left(L_{0}+\sqrt{-1} \alpha_{I}\right)^{-1} w^{2}$. Then (2.5) becomes

$$
\begin{equation*}
\frac{\int_{\mathbb{R}} w \phi_{0} d x}{\int_{\mathbb{R}} w^{2} d x}=\frac{1+\tau \sqrt{-1} \alpha_{I}}{\mu} \tag{2.7}
\end{equation*}
$$

$$
3.11
$$

Let $\phi_{0}=\phi_{0}^{R}+\sqrt{-1} \phi_{0}^{I}$. Then from (2.7), we obtain the two equations

$$
\begin{equation*}
\frac{\int_{\mathbb{R}} w \phi_{0}^{R} d x}{\int_{\mathbb{R}} w^{2} d x}=\frac{1}{\mu}, \quad \frac{\int_{\mathbb{R}} w \phi_{0}^{I} d x}{\int_{\mathbb{R}} w^{2} d x}=\frac{\tau \alpha_{I}}{\mu} \tag{2.8}
\end{equation*}
$$

We write 2.5 into its real and imaginary part. Then

$$
\begin{equation*}
-L_{0} \phi_{0}^{R}=w^{2}-a_{I} \phi_{0}^{I}, \quad-L_{0} \phi_{0}^{I}=\alpha_{I} \phi_{0}^{R} \tag{2.9}
\end{equation*}
$$

So $\phi_{0}^{R}=-\alpha_{I}^{-1} L_{0} \phi_{0}^{I}$ and

$$
\begin{equation*}
\phi_{0}^{I}=\alpha_{I}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2}, \quad \phi_{0}^{R}=-L_{0}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2} \tag{2.10}
\end{equation*}
$$

Substituting $\frac{2^{2} 14}{(2.10)}$ into $\frac{\left.1^{3} .\right)^{2}}{(2.8)}$, we obtain

$$
\begin{equation*}
\frac{\int_{\mathbb{R}} w L_{0}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2} d x}{\int_{\mathbb{R}} w^{2} d x}=-\frac{1}{\mu}, \quad \frac{\int_{\mathbb{R}} w\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2} d x}{\int_{\mathbb{R}} w^{2} d x}=\frac{\tau}{\mu} \tag{2.11}
\end{equation*}
$$

3.15

Let $h\left(\alpha_{I}\right)=-\frac{\int_{\mathbb{R}} w L_{0}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2} d x}{\int_{\mathbb{R}} w^{2} d x}$. Then intgeration by parts gives $h\left(\alpha_{I}\right)=\frac{\int_{\mathbb{R}} w^{2}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2} d x}{\int_{\mathbb{R}} w^{2} d x}$. Note that $h^{\prime}\left(\alpha_{I}\right)=-2 \alpha_{I} \frac{\int_{\mathbb{R}} w^{2}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-2} w^{2} d x}{\int_{\mathbb{R}} w^{2} d x}<0$. It is known that

$$
h(0)=-\frac{\int_{\mathbb{R}} w\left(L_{0}^{-1} w^{2}\right) d x}{\int_{\mathbb{R}} w^{2} d x}=1
$$

$h\left(\alpha_{I}\right) \rightarrow 0$ as $\alpha_{I} \rightarrow+\infty$ and $\mu>1$, there exists an ynique $\alpha_{I}>0$ such that the first equation of (2.11) holds. Substituting this unique α_{I} into the second one of (2.11), we obtain an unique $\tau=\tau_{1}>0$. Then Lemma 2.6 is proved.

Next, we study the following NLEP:

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \phi+\phi-2 w \phi+\frac{2\left(K+\eta_{0}\left(1+\tau \lambda_{0}\right)\right)}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right)} \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} w^{2}+\lambda_{0} \phi=0, \quad \phi \in H^{1}(\mathbb{R}) \tag{2.12}
\end{equation*}
$$

where $\eta_{0} \in(0,+\infty)$ and $\tau \in[0,+\infty)$. Then we have
tha. 4 Theorem 2.7. Consider the eigenvalue problem $\frac{13}{(2.12}$, we have:
(1) If $\eta_{0}<K$, then for τ small, problem (2.12 is stable, while for τ_{1} large it is unstable.
(2) If $\eta_{0}>K$, then there exists $0<\tau_{2} \leq \tau_{3}$ such that problem (2.12) is stable for $\tau<\tau_{2}$ or $\tau>\tau_{3}$.

Proof. Let us set

$$
\begin{equation*}
f(\tau \lambda)=\frac{2\left(K+\eta_{0}(1+\tau \lambda)\right)}{\left(K+\eta_{0}\right)(1+\tau \lambda)} \tag{2.13}
\end{equation*}
$$

We note that

$$
\lim _{\substack{\tau \lambda \rightarrow+\infty \\ \text { oilit }\\}} f(\tau \lambda)=\frac{2 \eta_{0}}{K+\eta_{0}}:=f_{\infty}
$$

If $\eta_{0}<K$, then by Theorem 2.2, problem (2.2) with $\gamma=f_{\infty}$ has a positive eigenvalue α_{1}. Now by perturbation arguments, for τ large, problem (2.12 has a eigenvalue near $\alpha_{1}>0$. This implies that for τ large, problem (2.12) is unstable.

Now we show that problem 2.17 has no nonzero eigenvalues with nonnegative real part, provided that either τ is small or $\eta_{0}>K$ and τ is large. We apply the following inequality ([12, Lemma A.2]): For any real-valued function $\phi \in H_{e}^{1}(\mathbb{R})$, we have

$$
\begin{equation*}
\int_{\mathbb{R}}\left(\left|(-\Delta)^{\frac{1}{4}} \phi\right|^{2}+|\phi|^{2}-2 w \phi^{2}\right) d x+2 \frac{\int_{\mathbb{R}} w \phi d x \int_{\mathbb{R}} w^{2} \phi d x}{\int_{\mathbb{R}} w^{2} d x}-\frac{\int_{\mathbb{R}} w^{3} d x}{\left(\int_{\mathbb{R}} w^{2} d x\right)^{2}}\left(\int_{\mathbb{R}} w \phi d x\right)^{2} \geq 0 \tag{2.14}
\end{equation*}
$$

where equality holds if and only if ϕ is a multiple of w.
In (2.12) we set $\lambda_{0}=\lambda_{R}+\sqrt{-1} \lambda_{I}$ and $\phi=\phi_{R}+\sqrt{-1} \phi_{I}$, we get

$$
\begin{equation*}
L_{0} \phi+f\left(\tau \lambda_{0}\right) \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} w^{2}+\lambda_{0} \phi=0 \tag{2.15}
\end{equation*}
$$

Multiplying the above equation by $\bar{\phi}$, the conjugate function of ϕ and integrating over \mathbb{R}, we have

$$
\begin{equation*}
\int_{\mathbb{R}}\left(\left|(-\Delta)^{\frac{1}{4}} \phi\right|^{2}+|\phi|^{2}-2 w \phi^{2}\right) d x=-\lambda_{0} \int_{\mathbb{R}}|\phi|^{2} d x-f\left(\tau \lambda_{0}\right) \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} \int_{\mathbb{R}} w^{2} \bar{\phi} d x \tag{2.16}
\end{equation*}
$$

Multiplying $\frac{132}{2.15}$ by w and integrating over \mathbb{R}, we get that

$$
\begin{equation*}
\int_{\mathbb{R}} w^{2} \phi d x=\left(\lambda_{0}+f\left(\tau \lambda_{0}\right) \frac{\int_{\mathbb{R}} w^{3} d x}{\int_{\mathbb{R}} w^{2} d x}\right) \int_{\mathbb{R}} w \phi d x \tag{2.17}
\end{equation*}
$$

Taking the conjugate of ($\frac{13}{2.17}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}} w^{2} \bar{\phi} d x=\left(\bar{\lambda}_{0}+f\left(\tau \bar{\lambda}_{0}\right) \frac{\int_{\mathbb{R}} w^{3} d x}{\int_{\mathbb{R}} w^{2} d x}\right) \int_{\mathbb{R}} w \bar{\phi} d x . \tag{2.18}
\end{equation*}
$$

Substituting (2.18) into $\left(\frac{13}{2.16}\right)$, we have that

$$
\begin{equation*}
\int_{\mathbb{R}}\left(\left|(-\Delta)^{\frac{1}{4}} \phi\right|^{2}+|\phi|^{2}-2 w|\phi|^{2}\right) d x=-\lambda_{0} \int_{\mathbb{R}}|\phi|^{2} d x-f\left(\tau \lambda_{0}\right)\left(\bar{\lambda}_{0}+f\left(\tau \bar{\lambda}_{0}\right) \frac{\int_{\mathbb{R}} w^{3} d x}{\int_{\mathbb{R}} w^{2} d x}\right) \frac{\left|\int_{\mathbb{R}} w \phi d x\right|^{2}}{\int_{\mathbb{R}} w^{2} d x} . \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
-\lambda_{R} \geq \Re\left(f\left(\tau \lambda_{0}\right)\left(\bar{\lambda}_{0}+f\left(\tau \bar{\lambda}_{0}\right) \frac{\int_{\mathbb{R}} w^{3} d x}{\int_{\mathbb{R}} w^{2} d x}\right)\right)-2 \Re\left(\bar{\lambda}_{0}+f\left(\tau \bar{\lambda}_{0}\right) \frac{\int_{\mathbb{R}} w^{3} d x}{\int_{\mathbb{R}} w^{2} d x}\right)+\frac{\int_{\mathbb{R}} w^{3} d x}{\int_{\mathbb{R}} w^{2} d x}, \tag{2.20}
\end{equation*}
$$

where we used $\lambda_{0}=\lambda_{R}+\sqrt{-1} \lambda_{I}$ with $\lambda_{R}, \lambda_{I} \in \mathbb{R}$.
Assuming that $\lambda_{R} \geq 0$, then we have

$$
\begin{equation*}
\frac{\int_{\mathbb{R}} w^{3} d x}{\int_{\mathbb{R}} w^{2} d x}\left|f\left(\tau \lambda_{0}\right)-1\right|^{2}+\Re\left(\bar{\lambda}_{0}\left(f\left(\tau \lambda_{0}\right)-1\right)\right) \leq 0 . \tag{2.21}
\end{equation*}
$$

By direct computation, we see that

$$
\begin{equation*}
\int_{\mathbb{R}} w^{3} d x=\frac{3}{2} \int_{\mathbb{R}} w^{2} d x=3 \pi \tag{2.22}
\end{equation*}
$$

Substituting $\frac{\left(\frac{3}{2} 3\right.}{2.22)}$ and the expression $\left(\frac{12}{2.13)}\right.$ for $f(\tau \lambda)$ into $\left(\frac{3}{2.21}\right)$, we have

$$
\frac{3}{2}\left|\eta_{0}+K+\left(\eta_{0}-K\right) \tau \lambda_{0}\right|^{2}+\Re\left(\left(\eta_{0}+K\right)\left(1+\tau \bar{\lambda}_{0}\right)\left(\left(\eta_{0}+K\right) \bar{\lambda}_{0}+\left(\eta_{0}-K\right) \tau\left|\lambda_{0}\right|^{2}\right)\right) \leq 0
$$

which is equivalent to

$$
\begin{equation*}
\frac{3}{2}\left(1+\mu_{0} \tau \lambda_{R}\right)^{2}+\lambda_{R}+\left(\mu_{0} \tau \lambda_{R}+\tau \lambda_{R}+\mu_{0} \tau^{2}\left|\lambda_{0}\right|^{2}\right) \lambda_{R}+\left(\frac{3}{2} \mu_{0}^{2} \tau^{2}+\mu_{0} \tau-\tau\right) \lambda_{I}^{2} \leq 0, \tag{2.23}
\end{equation*}
$$

where we have introduced that $\mu_{0}:=\frac{\eta_{0}-K}{\eta_{0}+K}$.
If $\eta_{0}>K$ (i.e., $\mu_{0}>0$) and τ is large, then

$$
\frac{3}{2} \mu_{0}^{2} \tau^{2}+\mu_{0} \tau-\tau \geq 0
$$

So (2.23) ${ }^{(2)}$ does not hold for $\lambda_{R} \geq 0$. To consider the case when τ is small, we have now derived an upper bound for λ_{I}. From (2.16), we have

$$
\lambda_{I} \int_{\mathbb{R}}|\phi|^{2} d x=\Im\left(-f\left(\tau \lambda_{0}\right) \frac{\int_{\mathbb{R}} w \phi d x}{\int_{\mathbb{R}} w^{2} d x} \int_{\mathbb{R}} w^{2} \bar{\phi} d x\right) .
$$

Hence,

$$
\begin{equation*}
\left|\lambda_{I}\right| \leq\left|f\left(\tau \lambda_{0}\right)\right| \sqrt{\frac{\int_{\mathbb{R}} w^{4} d x}{\int_{\mathbb{R}} w^{2} d x}} \leq C, \tag{2.24}
\end{equation*}
$$

 is small. Thus we have proved that the (2) point of Theorem 2.7 .
2.1. Calculating the Height of the spikes. Let χ be a smooth cut-off function which is equal to 1 in $B_{1}(0)$ and equals to 0 in $\mathbb{R} \backslash \overline{B_{2}(0)}$. We also assume that a multiple spike solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ of $(1.3)^{g}$ is given by the following ansatz:

$$
\begin{equation*}
u_{\varepsilon} \sim \sum_{j=1}^{K} \xi_{\varepsilon, j} w\left(\frac{x-p_{j}}{\varepsilon}\right) \chi\left(\frac{x-p_{j}}{r_{0}}\right), \quad v_{\varepsilon}\left(p_{j}\right) \sim \xi_{\varepsilon, j}, \tag{2.25}
\end{equation*}
$$

 mined later, $\mathbf{p}=\left(p_{1}, \cdots, p_{K}\right)$ are the location of the points and satisfy

$$
\mathbf{p}=\left(p_{1}, \cdots, p_{K}\right) \in B_{\sigma}\left(\mathbf{p}^{0}\right), \quad p_{j}^{0}=\frac{2 j-1-K}{K}, j=1, \cdots, K, \quad \sigma \ll 1 .
$$

Now we shall derive a relation between each $\xi_{\varepsilon, j}$. We write the second equation of 1.3 as

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} v_{\varepsilon}+\beta^{2} v_{\varepsilon}-\beta^{2} u_{\varepsilon}^{2}=0, \tag{2.26}
\end{equation*}
$$

we get by using $\frac{(1.5) \text { el-g }}{\left(\frac{3}{2.26}\right)}{ }^{2}$,

$$
\begin{aligned}
v_{\varepsilon}\left(p_{j}\right) & =\beta^{2} \int_{-1}^{1} G_{\beta}\left(p_{j}, z\right) u_{\varepsilon}^{2}(z) d z \\
& =\beta^{2} \int_{-1}^{1}\left(\frac{\beta^{-2}}{2}+G_{0}\left(p_{j}, z\right)+O\left(\beta^{2}\right)\right)\left(\sum_{\ell=1}^{K} \xi_{\varepsilon, \ell}^{2}, w^{2}\left(\frac{z-p_{\ell}}{\varepsilon}\right)+O\left(\varepsilon^{2}\right)\right) d z \\
& =\int_{-1}^{1}\left(\frac{1}{2}+\beta^{2} G_{0}\left(p_{j}, z\right)+O\left(\beta^{4}\right)\right)\left(\sum_{\ell=1}^{K} \tilde{\xi}_{\varepsilon, \ell}^{2} w^{2}\left(\frac{z-p_{\ell}}{\varepsilon}\right)+O\left(\varepsilon^{2}\right)\right) d z .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\xi_{\varepsilon, j}=\sum_{\ell=1}^{K} \frac{1}{2} \xi_{\varepsilon, \ell}^{2} \int_{\mathbb{R}} w^{2}(y) d y+\xi_{\varepsilon, j}^{2} \beta^{2} \int_{-1}^{1} G_{0}\left(p_{j}, z\right) w^{2}\left(\frac{z-p_{j}}{\varepsilon}\right) d z+O\left(\varepsilon \beta^{2}\right) \sum_{\ell=1}^{K} \xi_{\varepsilon, \ell}^{2} . \tag{2.27}
\end{equation*}
$$

3.height

Then we get

$$
\begin{align*}
\xi_{\varepsilon, j} & =\sum_{\ell=1}^{K} \frac{1}{2} \varepsilon \xi_{\varepsilon, \ell}^{2} \int_{\mathbb{R}} w^{2}(y) d y+\frac{1}{\pi} \xi_{\varepsilon, j}^{2} \beta^{2} \int_{-1}^{1} \log \frac{1}{\left|z-p_{j}\right|} w^{2}\left(\frac{z-p_{j}}{\varepsilon}\right) d z+O\left(\varepsilon \beta^{2}\right) \sum_{\ell=1}^{K} \xi_{\varepsilon, \ell}^{2} \tag{2.28}\\
& =\sum_{\ell=1}^{K} \frac{1}{2} \varepsilon \xi_{\varepsilon, \ell}^{2} \int_{\mathbb{R}} w^{2}(y) d y+\frac{1}{\pi} \varepsilon \xi_{\varepsilon, j}^{2} \beta^{2} \log \frac{1}{\varepsilon} \int_{\mathbb{R}} w^{2}(y) d y+O\left(\varepsilon \beta^{2}\right) \sum_{\ell=1}^{K} \xi_{\varepsilon, \ell}^{2}
\end{align*}
$$

Define

$$
\xi_{\varepsilon, j}=\frac{2 \hat{\xi}_{\varepsilon, j}}{\varepsilon \int_{\mathbb{R}} w^{2}(y) d y}
$$

Then (2.28) is equivalent to

$$
\begin{equation*}
\hat{\xi}_{\varepsilon, j}=\sum_{\ell=1}^{K} \hat{\xi}_{\varepsilon, \ell}^{2}+\eta_{\varepsilon} \hat{\tilde{\xi}}_{\varepsilon, j}^{2}+O\left(\beta^{2}\right) \sum_{\ell=1}^{K} \hat{\xi}_{\varepsilon, \ell \prime}^{2} \quad j=1, \cdots, K \tag{2.29}
\end{equation*}
$$

$$
\eta_{\varepsilon}=\frac{2 \beta^{2}}{\pi} \log \frac{1}{\varepsilon}
$$

Next, we shall divide our discussion on $\frac{3.29}{2.29}$ into three cases according to the limit value of η_{ε}, Case 1. $\eta_{\varepsilon} \rightarrow 0$. We always get the symmetric pattern

$$
\hat{\xi}_{\varepsilon, j}=\frac{1}{K}+O\left(\eta_{\varepsilon}\right), \quad j=1, \cdots, K
$$

This implies that

$$
\begin{equation*}
\xi_{\varepsilon, j}=\frac{1}{\varepsilon K \pi}\left(1+O\left(\eta_{\varepsilon}\right)\right), \quad j=1, \cdots, K \tag{2.30}
\end{equation*}
$$

Case 2. $\eta_{\varepsilon} \rightarrow \infty$. As Case 1 we only get the symmetric pattern. From $\frac{12.29]}{2.29}$ we have

$$
\hat{\xi}_{\varepsilon, j}=\eta_{\varepsilon} \hat{\tilde{\xi}}_{\varepsilon, j}^{2}+O(1) \sum_{\ell=1}^{K} \hat{\xi}_{\varepsilon, \ell}^{2}
$$

Then we could get

$$
\begin{equation*}
\xi_{\varepsilon, j}=\frac{1}{\varepsilon \eta_{\varepsilon} \pi}\left(1+O\left(\frac{1}{\eta_{\varepsilon}}\right)\right), \quad j=1, \cdots, K . \tag{2.31}
\end{equation*}
$$

Case 3. $\eta_{\varepsilon} \rightarrow \eta_{0} .\left(0<\eta_{0}<\infty\right)$. Then from $\frac{(2 r e 1}{(2.29)^{1}}$ we get

$$
\hat{\xi}_{\varepsilon, j}=\left(1+\eta_{0}\right) \hat{\xi}_{\varepsilon, j}^{2}+\sum_{\ell \neq j} \hat{\xi}_{\varepsilon, \ell}^{2}+O\left(\beta^{2}\right) \sum_{\ell=1}^{K} \hat{\xi}_{\varepsilon, \ell}^{2}
$$

For the symmetric pattern we have

$$
\hat{\xi}_{\varepsilon, 1}=\cdots=\hat{\xi}_{\varepsilon, K}=\frac{1}{K+\eta_{0}}\left(1+O\left(\beta^{2}\right)\right)
$$

or equivalently,

$$
\begin{equation*}
\xi_{\varepsilon, j}=\frac{1}{\varepsilon\left(K+\eta_{0}\right) \pi}\left(1+O\left(\beta^{2}\right)\right), \quad j=1, \cdots, K \tag{2.32}
\end{equation*}
$$

While in the asymmetric case, we take two spikes into consideration and obtain the following system

$$
\left\{\begin{array}{l}
\hat{\zeta}_{\varepsilon, 1}=\left(1+\eta_{0}\right) \hat{\xi}_{\varepsilon, 1}^{2}+\hat{\xi}_{\varepsilon, 2}^{2}+O\left(\beta^{2}\right) \sum_{j=1}^{2} \hat{\xi}_{\varepsilon, j \prime}^{2} \tag{2.33}\\
\hat{\zeta}_{\varepsilon, 2}=\left(1+\eta_{0}\right) \hat{\xi}_{\varepsilon, 2}^{2}+\hat{\xi}_{\varepsilon, 1}^{2}+O\left(\beta^{2}\right) \sum_{j=1}^{2} \hat{\xi}_{\varepsilon, j}^{2}
\end{array}\right.
$$

From $(2.33)^{y-2}$ we derive that

$$
\hat{\xi}_{\varepsilon, 1}+\hat{\xi}_{\varepsilon, 2}=\frac{1}{\eta_{0}}\left(1+O\left(\beta^{2}\right)\right)
$$

As a consequence, we have

$$
\left(2+\eta_{0}\right) \hat{\xi}_{\varepsilon, j}^{2}-\left(\frac{2}{\eta_{0}}+1\right) \hat{\xi}_{\varepsilon, j}+\frac{1}{\eta_{0}^{2}}+O\left(\beta^{2}\right) \sum_{\ell=1}^{2} \hat{\xi}_{\varepsilon, \ell}^{2}=0, \quad j=1,2
$$

Solving the above quadratic equation we have

$$
\begin{equation*}
\hat{\xi}_{\varepsilon, j}=\frac{1}{2 \eta_{0}} \pm \frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{4+2 \eta_{0}}+O\left(\beta^{2}\right), \quad j=1,2 \tag{2.34}
\end{equation*}
$$

Then

$$
\begin{equation*}
\xi_{\varepsilon, i}=\frac{1}{\pi \varepsilon}\left(\frac{1}{2 \eta_{0}} \pm \frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{4+2 \eta_{0}}\right)\left(1+\beta^{2}\right), \quad j=1,2 \tag{2.35}
\end{equation*}
$$

For the symmetric pattern, we notice that in all three cases the heights satisfy the relation

$$
\begin{equation*}
\xi_{\varepsilon, j}=\xi_{\varepsilon}(1+O(h(\varepsilon, \beta))), \quad j=1, \cdots, K \tag{2.36}
\end{equation*}
$$

where

$$
\xi_{\varepsilon}= \begin{cases}\frac{1}{\varepsilon K \pi}, & \text { if } \quad \eta_{\varepsilon} \rightarrow 0 \tag{2.37}\\ \frac{1}{\varepsilon \eta_{\varepsilon} \pi}, & \text { if } \quad \eta_{\varepsilon} \rightarrow+\infty \\ \frac{1}{\varepsilon\left(\eta_{0}+K\right) \pi}, & \text { if } \quad \eta_{\varepsilon} \rightarrow \eta_{0}\end{cases}
$$

3.spike-h
and

$$
h(\varepsilon, \beta)= \begin{cases}\eta_{\varepsilon}, & \text { if } \quad \eta_{\varepsilon} \rightarrow 0 \\ \eta_{\varepsilon}^{-1}, & \text { if } \quad \eta_{\varepsilon} \rightarrow \infty \\ \beta^{2}, & \text { if } \quad \eta_{\varepsilon} \rightarrow \eta_{0}\end{cases}
$$

While for the asymmetric pattern, we have

$$
\begin{equation*}
\xi_{\varepsilon, 1}=\frac{1}{\pi \varepsilon}\left(\frac{1}{2 \eta_{0}}+\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{4+2 \eta_{0}}\right)\left(1+\beta^{2}\right), \quad \xi_{\varepsilon, 2}=\frac{1}{\pi \varepsilon}\left(\frac{1}{2 \eta_{0}}-\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{4+2 \eta_{0}}\right)\left(1+\beta^{2}\right) . \tag{2.38}
\end{equation*}
$$

3. Rigorous proof of the existence results

In this section we shall prove the existence theorem, i.e., Theorem th1 . Wexist divide the discussion into three sections. First of all, we give an approximate solution. Then we apply the classical Liapunov-Schmidt reduction method to reduce the infinite dimensional problem to a finite dimensional problem in second subsection. In last subsection we solve the finite dimensional problem and thereby prove the Theorem 1.1 As we pointed out in the introduction, the proof for the symmetric and asymmetric patterns are almost the same, we shall only focus on the symmetric case and state the difference for the asymmetric case in the end of this section.
3.1. Study of the Approximate Solutions. From the discussion in last section, we rescale

$$
\begin{cases}\hat{u}(y)=\frac{1}{\xi_{\varepsilon}} u(\varepsilon y), & y \in\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right), \\ \hat{v}(x)=\frac{1}{\xi_{\varepsilon}} v(x), & x \in(-1,1),\end{cases}
$$

where ξ_{ε} is given in $\frac{\left.2^{2} .37\right)^{i k} \text {. The }}{}$. equilibrium solution (\hat{u}, \hat{v}) solves the following rescaled Gierer-Meinhardt system

$$
\begin{cases}(-\Delta)_{y}^{\frac{1}{2}} \hat{u}+\hat{u}-\frac{\hat{u}^{2}}{\hat{v}}=0, & y \in\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right), \tag{3.1}\\ (-\Delta)_{x}^{\frac{1}{2}} \hat{v}+\beta^{2} \hat{v}-\xi_{\varepsilon} \beta^{2} \hat{u}^{2}=0, & x \in(-1,1) .\end{cases}
$$

For a function $\hat{u} \in H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$, let $T[\hat{u}]$ be the unique solution of the following problem:

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} T[\hat{u}]+\beta^{2} T[\hat{u}]-\xi_{\varepsilon} \beta^{2} \hat{u}^{2}=0 & x \in(-1,1), \\ T[\hat{u}](x)=T[\hat{u}](x+2) & x \in \mathbb{R} .\end{cases}
$$

By Green representation formula, we have

$$
T[\hat{u}](x)=\zeta_{\varepsilon} \beta^{2} \int_{-1}^{1} G_{\beta}(x, \zeta)\left(\hat{u}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2} d \zeta .
$$

System $\frac{14}{\left.3.1)^{2}\right)^{1}}$ is equivalent to the following equation in operator form:

$$
\begin{equation*}
S_{\varepsilon}(\hat{u}, \hat{v})=\binom{S_{1}(\hat{u}, \hat{v})}{S_{2}(\hat{u}, \hat{v})}=0, \quad H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H^{1}(-1,1) \rightarrow L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L^{2}(-1,1), \tag{3.2}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
S_{1}(\hat{u}, \hat{v})=(-\Delta)_{y}^{\frac{1}{2}} \hat{u}+\hat{u}-\frac{\hat{u}^{2}}{\hat{b}}, \tag{3.3}\\
S_{2}(\hat{u}, \hat{v})=(-\Delta)_{\hat{x}}^{\frac{1}{2}} \hat{v}+\beta^{2} \hat{v}-\xi_{\varepsilon} \beta^{2} \hat{u}^{2} .
\end{array}\right.
$$

For $\mathbf{p} \in B_{\sigma}\left(\mathbf{p}^{0}\right)$ we set

$$
w_{j}(y)=w\left(y-\frac{p_{j}}{\varepsilon}\right) \chi\left(\frac{\varepsilon y-p_{j}}{r_{0}}\right),
$$

$$
(-\Delta)_{y}^{\frac{1}{2}} w_{j}(y)+w_{j}(y)-w_{j}^{2}(y)=\text { h.o.t. }
$$

where h.o.t. refers to terms of order ε^{2} in $L^{\infty}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \cdot{ }^{1}$

[^0]We choose the approximate solutions as follows:

$$
\begin{equation*}
u_{\varepsilon, \mathbf{p}}(y)=\sum_{j=1}^{K} w_{j}(y), \quad v_{\varepsilon, \mathbf{p}}(x)=T\left[u_{\varepsilon, \mathbf{p}}\right](x), \quad x=\varepsilon y \in(-1,1) \tag{3.4}
\end{equation*}
$$

Notice that $v_{\varepsilon, \mathbf{p}}$ satisfies

$$
\begin{aligned}
0 & =(-\Delta)_{x}^{\frac{1}{2}} v_{\varepsilon, \mathbf{p}}+\beta^{2} v_{\varepsilon, \mathbf{p}}-\xi_{\varepsilon} \beta^{2} u_{\varepsilon, \mathbf{p}}^{2} \\
& =(-\Delta)_{x}^{\frac{1}{2}} v_{\varepsilon, \mathbf{p}}+\beta^{2} v_{\varepsilon, \mathbf{p}}-\xi_{\varepsilon} \beta^{2} \sum_{j=1}^{K} w_{j}^{2}-2 \xi_{\varepsilon} \beta^{2} \sum_{\ell \neq j} w_{\ell} w_{j}
\end{aligned}
$$

Hence,

$$
v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)=\xi_{\varepsilon} \beta^{2} \int_{-1}^{1} G_{\beta}\left(p_{j}, \zeta\right) \sum_{\ell=1}^{K} w_{\ell}^{2}\left(\frac{\zeta}{\varepsilon}\right) d \zeta+O\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right)
$$

Similar to the computation as in section, we otain

$$
v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)=1+O(h(\varepsilon, \beta))
$$

Substituting the ansatz $\frac{\left(\frac{1}{3 .} \text { inh }\right.}{(3.4) \text { inno }}$ to $\frac{14}{(3.3)}$ we get

$$
S_{2}\left(u_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}\right)=0
$$

To compute $S_{1}\left(u_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}\right)$, we calculate for $x=p_{j}+\varepsilon z,|\varepsilon z|<\rho$ with $j=1, \cdots, K$ and ρ small

$$
\begin{align*}
v_{\varepsilon, \mathbf{p}}\left(p_{j}+\varepsilon z\right)-v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)= & \xi_{\varepsilon} \beta^{2} \int_{-1}^{1}\left(G_{\beta}\left(p_{j}+\varepsilon z, \zeta\right)-G_{\beta}\left(p_{j}, \zeta\right)\right) u_{\varepsilon, \mathbf{p}}^{2} d \zeta \\
= & \xi_{\varepsilon} \beta^{2} \int_{-1}^{1}\left(G_{\beta}\left(p_{j}+\varepsilon z, \zeta\right)-G_{\beta}\left(p_{j}, \zeta\right)\right) w_{j}^{2} d \zeta \\
& +\xi_{\varepsilon} \beta^{2} \int_{-1}^{1}\left(G_{\beta}\left(p_{j}+\varepsilon z, \zeta\right)-G_{\beta}\left(p_{j}, \zeta\right)\right) \sum_{\ell \neq j} w_{\ell}^{2} d \zeta+O\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right) \tag{3.5}\\
= & \xi_{\varepsilon} \beta^{2} \varepsilon \int_{\mathbb{R}} \frac{1}{\pi} \log \frac{|\zeta|}{|z-\zeta|} w^{2}(\zeta) d \zeta-\xi_{\varepsilon} \beta^{2} \varepsilon\left(\frac{\partial F(\mathbf{p})}{\partial p_{j}} \varepsilon z \int_{\mathbb{R}} w^{2}(\zeta) d \zeta\right) \\
& +o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}|z|\right),
\end{align*}
$$

where

$$
F(\mathbf{p})=\sum_{j=1}^{K} H_{\beta}\left(p_{j}, p_{j}\right)-\sum_{i \neq j} G_{\beta}\left(p_{i}, p_{j}\right)
$$

For convenience, in the following discussion we shall denote the first term on the right-hand side of $\frac{(4)}{(B .5)}$ noten by $P_{j}(z)$. It is not difficult to verify that $P_{j}(z)$ is even symmetric in z. Substituting (3.5) into $S_{1}\left(u_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}\right)$ we have

$$
\begin{aligned}
S_{1}\left(u_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}\right) & =(-\Delta)^{\frac{1}{2}} u_{\varepsilon, \mathbf{p}}+u_{\varepsilon, \mathbf{p}}-\frac{u_{\varepsilon, \mathbf{p}}^{2}}{v_{\varepsilon, \mathbf{p}}} \\
& =\sum_{j=1}^{K} \chi\left(\frac{\varepsilon y-p_{j}}{r_{0}}\right)(-\Delta)^{\frac{1}{2}} w\left(y-\frac{p_{j}}{\varepsilon}\right)+\sum_{j=1}^{K} \chi\left(\frac{\varepsilon y-p_{j}}{r_{0}}\right) w\left(y-\frac{p_{j}}{\varepsilon}\right)-\sum_{j=1}^{K} \frac{w_{j}^{2}}{v_{\varepsilon, \mathbf{p}}}+O\left(\varepsilon^{2}\right) \\
& =E_{1}+E_{2}+O\left(\varepsilon^{2}\right) \quad \text { in } \quad L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)
\end{aligned}
$$

where

$$
E_{1}=\sum_{j=1}^{K} \chi\left(\frac{\varepsilon y-p_{j}}{r_{0}}\right) w^{2}\left(y-\frac{p_{j}}{\varepsilon}\right)-\sum_{j=1}^{K} w_{j}^{2}, \quad \text { and } \quad E_{2}=\sum_{j=1}^{K} w_{j}^{2}-\frac{\sum_{j=1}^{K} w_{j}^{2}}{v_{\varepsilon, \mathbf{p}}}
$$

According to the setting of cut-off function $\chi(x)$, we have

$$
E_{1}=O\left(\varepsilon^{4}\right),
$$

and one can easily check that

$$
\begin{equation*}
\left\|E_{1}\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)}=O\left(\varepsilon^{7 / 2}\right) \tag{3.6}
\end{equation*}
$$

In addition, for $x-p_{j}=\varepsilon z$ with $|\varepsilon z|<\rho$ with ρ small, we calculate

$$
\begin{align*}
E_{2}= & \frac{w_{j}^{2}}{v_{\varepsilon, \mathbf{p}}^{2}\left(p_{j}\right)}\left(v_{\varepsilon, \mathbf{p}}(x)-v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)\right)\left(1+\sum_{n=1}^{\infty}\left(\frac{v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)-v_{\varepsilon, \mathbf{p}}(x)}{v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)}\right)^{n}\right)+O(h(\varepsilon, \beta)) w_{j}^{2}+O\left(\varepsilon^{4}\right) \\
= & \frac{w_{j}^{2}}{v_{\varepsilon, \mathbf{p}}^{2}\left(p_{j}\right)} P_{j}(z)\left(1+\sum_{n=1}^{\infty}\left(\frac{-P_{j}(z)}{v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)}\right)^{n}\right)+O(h(\varepsilon, \beta)) w_{j}^{2}-\frac{w_{j}^{2}}{v_{\varepsilon, \mathbf{p}}^{2}\left(p_{j}\right)} \xi_{\varepsilon} \beta^{2} \varepsilon^{2} \frac{\partial F(\mathbf{p})}{\partial p_{j}} z \int_{\mathbb{R}} w^{2}(\zeta) d \zeta \tag{3.7}\\
& +o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right) \\
= & E_{21}+E_{22}+o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right),
\end{align*}
$$

where

$$
\begin{equation*}
E_{21}=O\left(\xi_{\varepsilon} \beta^{2} \varepsilon\right)+O(h(\varepsilon, \beta)) \text { is symmetry in } x-p_{j}, \quad \text { and } \quad\left\|E_{22}\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)}=O\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right) \tag{3.8}
\end{equation*}
$$

Thus, we have thus established the following lemma
Lemma 3.1. For $x=p_{j}+\varepsilon z,|\varepsilon z|<\rho$, we have the decomposition for $S\left[u_{\varepsilon, \mathbf{p}}\right](x)$,

$$
S_{1}\left(u_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}\right)=S_{1,1}+S_{1,2}
$$

where

$$
S_{1,1}(z)=-\frac{w_{j}^{2}}{v_{\varepsilon, \mathbf{p}}^{2}\left(p_{j}\right)} \xi_{\varepsilon} \beta^{2} \varepsilon^{2} \frac{\partial F(\mathbf{p})}{\partial p_{j}} z \int_{\mathbb{R}} w^{2}(\zeta) \zeta+o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right),
$$

and

$$
S_{1,2}(z)=\xi_{\varepsilon} \beta^{2} \varepsilon R_{j 1}(z)+h(\varepsilon, \beta) R_{j 2}(z)+o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right),
$$

where $R_{j 1}(z), R_{j 2}(z)$ are even in z satisfying that $R_{j 1}(|z|)=O(\log (1+|z|))$ and $R_{j 2}(z)=O\left(\frac{1}{1+|z|^{2}}\right)$. Furthermore,

$$
S_{1}\left(u_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}\right)=O\left(\varepsilon^{2}\right) \text { for }\left|x-p_{j}\right| \geq \rho, \forall j=1, \cdots, K .
$$

3.2. The Liapunov-Schmidt Reduction Method. In this subsection, we use the Liapunov-Schmidt reduction method to solve the problem

$$
\begin{equation*}
S\left[u_{\varepsilon, \mathbf{p}}+\phi\right]:=S_{1}\left(u_{\varepsilon, \mathbf{p}}+\phi, v_{\varepsilon, \mathbf{p}}+\psi\right)=\sum_{j=1}^{K} c_{j} \frac{\partial w_{j}}{\partial y} \tag{3.9}
\end{equation*}
$$

for real constants c_{j} and a perturbation $\phi \in H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$ which is small in the corresponding norm. To proceed we study the linearized operator defined by

$$
\tilde{L}_{\varepsilon, \mathbf{p}}:=S_{\varepsilon}^{\prime}\binom{u_{\varepsilon, \mathbf{p}}}{v_{\varepsilon, \mathbf{p}}},
$$

where

$$
\tilde{L}_{\varepsilon, p}: H_{T}^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H_{T}^{1}(-1,1) \rightarrow L_{T}^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L_{T}^{2}(-1,1),
$$

where $\varepsilon>0$ is small and $H_{T}^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$ and $L_{T}^{2}(-1,1)$ denote the periodic functions in $H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$ and $L^{2}(-1,1)$ respectively, $\mathbf{p} \in B_{\delta}\left(\mathbf{p}^{0}\right)$. The approximate kernel and co-kernel are respectively defined by

$$
\begin{aligned}
& \mathbf{K}_{\varepsilon, \mathbf{p}}:=\operatorname{Span}\left\{\left.\frac{\partial w_{j}}{\partial y} \right\rvert\, j=1, \cdots, K\right\} \subset H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right), \\
& \mathbf{C}_{\varepsilon, \mathbf{p}}:=\operatorname{Span}\left\{\left.\frac{\partial w_{j}}{\partial y} \right\rvert\, j=1, \cdots, K\right\} \subset L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) .
\end{aligned}
$$

It is not difficult to see that $\tilde{L}_{\varepsilon, \mathbf{p}}$ is not invertible in ε and β due to the approximate kernel,

$$
\mathcal{K}_{\varepsilon, \mathbf{p}}:=\mathbf{K}_{\varepsilon, \mathbf{p}} \oplus\{0\} \subset H_{T}^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H_{T}^{1}(-1,1) .
$$

The approximate cokernel is defined as follows:

$$
\mathcal{C}_{\varepsilon, \mathbf{p}}=\mathbf{C}_{\varepsilon, \mathbf{p}} \oplus\{0\} \subset L_{T}^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L_{T}^{2}(-1,1) .
$$

We then define

$$
\begin{aligned}
& \mathcal{K}_{\varepsilon, \mathbf{p}}^{\perp}:=\mathbf{K}_{\varepsilon, \mathbf{p}}^{\perp} \oplus H_{T}^{1}(-1,1) \subset H_{T}^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H_{T}^{1}(-1,1), \\
& \mathcal{C}_{\varepsilon, \mathbf{p}}^{\perp}:=\mathbf{C}_{\varepsilon, \mathbf{p}}^{\perp} \oplus L_{T}^{2}(-1,1) \subset L_{T}^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L_{T}^{2}(-1,1),
\end{aligned}
$$

where $\mathbf{C}_{\varepsilon, \mathbf{p}}^{\perp}$ and $\mathbf{K}_{\varepsilon, \mathbf{p}}^{\perp}$ denote the orthogonal complement with the scalar product of $L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$ in $H_{T}^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$ and $L_{T}^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$ respectively.

Let $\pi_{\varepsilon, \mathbf{p}}$ denote the projection in $L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L^{2}(-1,1)$ onto $\mathcal{C}_{\varepsilon, \mathbf{p}}^{\perp}$. Next, we shall prove that the equation

$$
\pi_{\varepsilon, \mathbf{p}} \circ S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}}+\Phi_{\varepsilon, \mathbf{p}}}{v_{\varepsilon, \mathbf{p}}+\Psi_{\varepsilon, \mathbf{p}}}=0
$$

has unique solution $\Sigma_{\varepsilon, \mathbf{p}}=\binom{\Phi_{\varepsilon, \mathbf{p}}}{\Psi_{\varepsilon, \mathbf{p}}} \in \mathcal{K}_{\varepsilon, \mathbf{p}}^{\perp}$ if ε, β are small enough. Set

$$
\begin{equation*}
\mathcal{L}_{\varepsilon, \mathbf{p}}=\pi_{\varepsilon, \mathbf{p}} \circ \tilde{L}_{\varepsilon, \mathbf{p}}: \mathcal{K}_{\varepsilon, \mathbf{p}}^{\perp} \rightarrow \mathcal{C}_{\varepsilon, \mathbf{p}}^{\perp} . \tag{3.10}
\end{equation*}
$$

Now we show the invertibility of the corresponding linearized operator $\mathcal{L}_{\varepsilon, \mathbf{p}}$.
pr5.1 Proposition 3.2. Let $\mathcal{L}_{\varepsilon, p}$ be defined in (3.10). Then there exist positive $\varepsilon_{0}, \beta_{0}, C$ such that for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$, $\beta \in\left(0, \beta_{0}\right)$,

$$
\left\|\mathcal{L}_{\varepsilon, p^{\Sigma}} \Sigma\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L^{2}(-1,1)} \geq C\|\Sigma\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H^{1}(-1,1)^{\prime}}
$$

for arbitrary $\mathbf{p} \in B_{\sigma}\left(\mathbf{p}^{0}\right), \Sigma \in \mathcal{K}_{\varepsilon, \mathbf{p}}^{\perp}$.
Proof. The proof follows the standard method of Liaypunov-Schmidt reduction which was also used in [13, 14, 36, 37, 38]. Suppose the proposition is not true. Then there exist sequences $\left\{\varepsilon_{k}\right\},\left\{\beta_{k}\right\},\left\{\mathbf{p}^{k}\right\}$ and Σ_{k} with

$$
\varepsilon_{k}>0, \varepsilon_{k} \rightarrow 0, \beta_{k}>0, \beta_{k} \rightarrow 0, \mathbf{p}^{k} \in B_{\delta}\left(\mathbf{p}^{0}\right),
$$

and

$$
\Sigma_{k}=\binom{\phi_{k}(y)}{\psi_{k}(x)} \in \mathcal{K}_{\varepsilon, \mathbf{p}}^{\perp}
$$

such that

$$
\left\|\Sigma_{k}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H^{1}(-1,1)}=1, \quad\left\|L_{\varepsilon_{k}, \mathbf{p}^{k}} \Sigma_{k}\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L^{2}(-1,1)} \rightarrow 0, \quad \text { as } \quad k \rightarrow \infty .
$$

That is

$$
\left\{\begin{array}{l}
(-\Delta)_{y}^{\frac{1}{2}} \phi_{k}+\phi_{k}-2 u_{\varepsilon_{k}, \mathbf{p}^{k}} v_{\varepsilon_{k}, \mathbf{p}^{k}}^{-1} \phi_{k}+v_{\varepsilon_{k}, \mathbf{p}^{k}}^{-2} u_{\varepsilon_{k}, \mathbf{p}^{\mathbf{k}}}^{2} \psi_{k}=f_{k}^{1}+f_{k}^{2} \tag{3.11}\\
(-\Delta)_{x}^{\frac{1}{2}} \psi_{k}-\beta_{k}^{2} \psi_{k}+2 \xi_{\varepsilon_{k}} \beta_{k}^{2} u_{\varepsilon_{k}, \mathbf{p}^{k}} \phi_{k}=g_{k} \\
\left\|f_{k}^{1}\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)} \rightarrow 0, f_{k}^{2} \in \mathbf{C}_{\varepsilon_{k}, \mathbf{p}^{k}}^{\perp}, \phi_{k} \in \mathbf{K}_{\varepsilon_{k}, \mathbf{p}^{k}}^{\perp} \\
\left\|\phi_{k}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)}^{2}+\left\|\psi_{k}\right\|_{H^{1}(-1,1)}^{2}=1 .
\end{array}\right.
$$

We shall show this is impossible. To simplify our notation, we set $u_{k}=u_{\varepsilon_{k}, \mathbf{p}^{k}}$ and $\Omega_{k}=\left(-\frac{1}{\varepsilon_{k}}, \frac{1}{\varepsilon_{k}}\right)$. We cut off ϕ_{k} as follows: introduce

$$
\phi_{k, j}(y)=\phi_{k}(y) \chi\left(\frac{\varepsilon_{k} y-p_{j}}{\varepsilon_{k}}\right)
$$

and decompose ϕ_{k} into

$$
\phi_{k}=\sum_{j=1}^{K} \phi_{k, j}+\phi_{k, K+1}
$$

it is easy to see that $\phi_{k, K+1}=o(1)$ in $H^{1}\left(\Omega_{k}\right)$ due to it satisfies the equation

$$
(-\Delta)_{y}^{\frac{1}{2}} \phi_{k, K+1}+\phi_{k, K+1}=o(1) \quad \text { in } \quad H^{1}\left(\Omega_{k}\right)
$$

We then define $\psi_{k, j}$ for $j=1, \cdots, K+1$ by

$$
(-\Delta)_{x}^{\frac{1}{2}} \psi_{k, j}+\beta_{k}^{2} \psi_{k, j}-2 \xi_{\varepsilon_{k}} u_{k} \phi_{k, j}=0
$$

Note that as $\left\|g_{k}\right\|_{L^{2}(-1,1)} \rightarrow 0$ we have

$$
\left\|\psi_{k}-\sum_{j=1}^{K+1} \psi_{k, j}\right\|_{L^{2}(-1,1)} \rightarrow 0
$$

Since $\phi_{k, K+1}=o_{\varepsilon_{k}}(1)$ in $H^{1}\left(\Omega_{k}\right)$, we also we have $\psi_{k, K+1}=o_{\varepsilon_{k}}(1)$ in $H^{1}(-1,1)$. Sending $k \rightarrow \infty$, we can see that

$$
\phi_{k, j} \rightarrow \phi_{j} \quad \text { in } \quad H^{1}(\mathbb{R})
$$

with

$$
\phi_{j} \in\left\{\phi \in H^{1}(\mathbb{R}) \left\lvert\, \int_{\mathbb{R}} \phi \frac{\partial w}{\partial y} d y=0\right.\right\}=K_{0}^{\perp}
$$

In addition, ϕ_{i} verifies the following nonlocal problem
Case $1: \eta_{\varepsilon_{k}} \rightarrow 0$,

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \phi_{j}+\phi_{j}-2 w \phi_{j}+2 \frac{\sum_{\ell=1}^{K} \int_{\mathbb{R}} w \phi_{\ell} d y}{K \int_{\mathbb{R}} w^{2}(y) d y} w^{2} \in C_{0}^{\perp} \tag{3.12}
\end{equation*}
$$

Case $2: \eta_{\varepsilon_{k}} \rightarrow \infty$,

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \phi_{j}+\phi_{j}-2 w \phi_{j}+2 \frac{\int_{\mathbb{R}} w \phi_{j} d y}{\int_{\mathbb{R}} w^{2}(y) d y} w^{2} \in C_{0}^{\perp} \tag{3.13}
\end{equation*}
$$

4.limit-2

Case $3: \eta_{\varepsilon_{k}} \rightarrow \eta_{0}$,

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \phi_{j}+\phi_{j}-2 w \phi_{j}+2 \frac{\left(1+\eta_{0}\right) \int_{\mathbb{R}} w \phi_{j} d y+\sum_{\ell \neq j}^{K} \int_{\mathbb{R}} w \phi_{\ell} d y}{\left(K+\eta_{0}\right) \int_{\mathbb{R}} w^{2} d y} w^{2} \in C_{0}^{\perp} \tag{3.14}
\end{equation*}
$$

where

$$
K_{0}=C_{0}=\operatorname{Span}\left\{\frac{\partial w}{\partial y}\right\}
$$

and $K_{0}^{\perp}, C_{0}^{\perp}$ denotes the orthogonal complement with respect to the scalar product of $L^{2}(\mathbb{R})$ in the sapce $H^{1}(\mathbb{R})$ and $L^{2}(\mathbb{R})$ respectively.

After linear transformation, we could write the equation $\frac{4.12}{(3.12)-(3.14) \text { as }(s t i l l}$ denoted by $\left.\phi_{j}\right)$:

$$
\begin{equation*}
(-\Delta)_{y}^{\frac{1}{2}} \phi_{j}+\phi_{j}-2 w \phi_{j}+2 \lambda_{i} \frac{\int_{\mathbb{R}} w \phi_{j} d y}{\int_{\mathbb{R}} w^{2} d y} w^{2} \in \mathcal{C}_{0}^{\perp} \tag{3.15}
\end{equation*}
$$

where

$$
\lambda_{j}= \begin{cases}0, \cdots, 0, K, & \text { for case 1 } \\ 1, \cdots, 1, & \text { for case 2, } \\ \frac{\eta_{0}}{K+\eta_{0}}, \cdots, \frac{\eta_{0}}{K+\eta_{0}}, 1, & \text { for case 3 }\end{cases}
$$

It is known that

$$
(-\Delta)^{\frac{1}{2}} w+w-2 w^{2}=-w^{2}
$$

Therefore, equation $\frac{1.1 \text { imlin }}{\left(\frac{1}{2} \cdot 15\right) \text { can }}$ be written as

$$
\left((-\Delta)^{\frac{1}{2}}+1-2 w\right)\left(\phi_{j}-2 \lambda_{j} \frac{\int_{\mathbb{R}} w \phi_{j} d y}{\int_{\mathbb{R}} w^{2} d y} w\right) \in C_{0}^{\perp}
$$

Since the operator

$$
(-\Delta)^{\frac{1}{2}}+1-2 w: K_{0}^{\perp} \rightarrow C_{0}^{\perp}
$$

is one-to-one map with bounded inverse. As a consequence,

$$
\phi_{j}-2 \lambda_{j} \frac{\int_{\mathbb{R}} w \phi_{j} d y}{\int_{\mathbb{R}} w^{2} d y} w=0
$$

Mutiplying by w and after integration we get

$$
\left(1-2 \lambda_{j}\right) \int_{\mathbb{R}} w \phi_{j} d y=0
$$

If $\lambda_{j} \neq \frac{1}{2}$ we derive that $\int_{\mathbb{R}} w \phi_{j} d y=0$ and it implies that

$$
\left((-\Delta)^{\frac{1}{2}}+1-2 w\right) \phi_{j}=0, \quad j=1, \cdots, K
$$

and by Proposition 2.1 we have $\phi_{j} \in K_{0}, j=1, \cdots, K$. Then it implies that $\phi_{j}=0, j=1, \cdots, K$. By taking the limit equation in ψ_{k} we see that $\psi_{k} \rightarrow 0$ in $H^{1}(-1,1)$. On the other hand, from the fourth equation in (3.11) we have

$$
\sum_{j=1}^{K}\left(\left\|\phi_{j}\right\|_{H^{1}(\mathbb{R})}^{2}+\left\|\psi_{j}\right\|_{H^{1}(-1,1)}^{2}\right)=1
$$

Contradiction arises and the proof is complete.
As a consequence of Proposition 3.2 we have
pr5.2 Proposition 3.3. There exist positive constants $\varepsilon_{1}, \beta_{1}$ such that for all $\varepsilon \in\left(0, \varepsilon_{1}\right)$ and $\beta \in\left(0, \beta_{1}\right)$, the map $\mathcal{L}_{\varepsilon, \mathbf{p}}$ is surjective for arbitrary $\mathbf{p} \in B_{\sigma}\left(\mathbf{p}^{0}\right)$.

Now we are in position to solve the problem

$$
\pi_{\varepsilon, \mathbf{p}} \circ S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}}+\phi}{v_{\varepsilon, \mathbf{p}}+\psi}=0 .
$$

Since $\left.\mathcal{L}_{\varepsilon, \mathbf{p}}\right|_{\mathcal{K}_{\mathcal{\varepsilon}, \mathbf{p}}^{\perp}}$ is invertible (call the inverse $\mathcal{L}_{\varepsilon, \mathbf{p}}^{-1}$) we can rewrite the above problem as

$$
\begin{equation*}
\Sigma=-\left(\mathcal{L}_{\varepsilon, \mathbf{p}}^{-1} \circ \pi_{\varepsilon, \mathbf{p}}\right) S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}}+\phi}{v_{\varepsilon, \mathbf{p}}+\psi}-\left(\mathcal{L}_{\varepsilon, \mathbf{p}}^{-1} \circ \pi_{\varepsilon, \mathbf{p}}\right) N_{\varepsilon, \mathbf{p}}(\Sigma) \equiv M_{\varepsilon, \mathbf{p}}(\Sigma) \tag{3.16}
\end{equation*}
$$

where

$$
N_{\varepsilon, \mathbf{p}}(\Sigma)=S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}}+\phi}{v_{\varepsilon, \mathbf{p}}+\psi}-S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}}}{v_{\varepsilon, \mathbf{p}}}-S_{\varepsilon}^{\prime}\binom{u_{\varepsilon, \mathbf{p}}}{v_{\varepsilon, \mathbf{p}}}\left[\begin{array}{l}
\phi \\
\psi
\end{array}\right]
$$

and the operator $M_{\varepsilon, \mathbf{p}}$ is defined for $\Sigma \in H_{T}^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H_{T}^{1}(-1,1)$. We are going to show that the operator $M_{\varepsilon, \mathbf{p}}$ is a contraction map on

$$
\begin{equation*}
B_{\varepsilon, \delta}:=\left\{\Sigma \in H_{T}^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H_{T}^{1}(-1,1) \left\lvert\,\|\Sigma\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H^{1}(-1,1)}<\delta\right.\right\} \tag{3.17}
\end{equation*}
$$

if σ and ε are small enough. By Proposition 3.2 we have

$$
\begin{aligned}
\left\|M_{\varepsilon, \mathbf{p}}(\Sigma)\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H^{1}(-1,1)} & \leq C\left(\left\|\pi_{\varepsilon, \mathbf{p}} \circ N_{\varepsilon, \mathbf{p}}(\Sigma)\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L^{2}(-1,1)}+\left\|\pi_{\varepsilon, \mathbf{p}} \circ S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}}}{v_{\varepsilon, \mathbf{p}}}\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times L^{2}(-1,1)}\right) \\
& \leq C\left(c(\delta) \delta+\xi_{\varepsilon} \beta^{2} \varepsilon+h(\varepsilon, \beta)\right)
\end{aligned}
$$

where $C>0$ is a constant independent of $\delta>0, \varepsilon>0$ and $c(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. Similarly we show that

$$
\left\|M_{\varepsilon, \mathbf{p}}\left(\Sigma_{1}\right)-M_{\varepsilon, \mathbf{p}}\left(\Sigma_{2}\right)\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H^{1}(-1,1)} \leq C(c(\delta) \delta)\left\|\Sigma_{1}-\Sigma_{2}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H^{1}(-1,1)^{\prime}}
$$

where $c(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. If we choose δ sufficiently small then $M_{\varepsilon, p}$ is a contraction map on $B_{\varepsilon, \delta}$. The existence then follows by the standard fixed point theorem and $\Sigma_{\varepsilon, \mathbf{p}}$ is a solution to (B.16). We thus proved

Lemma 3.4. There exists $\bar{\varepsilon}>0, \bar{\beta}>0$ such that for every pair of ε, \mathbf{p} with $0<\varepsilon<\bar{\varepsilon}$ and $\mathbf{p} \in B_{\sigma}\left(\mathbf{p}^{0}\right)$ there is a unique $\left(\phi_{\varepsilon, \mathbf{p}}, \psi_{\varepsilon, \mathbf{p}}\right) \in \mathcal{K}_{\varepsilon, \mathbf{p}}^{\perp}$ satisfying $S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}}{v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}} \in \mathcal{C}_{\varepsilon, \mathbf{p}}$. Furthermore, we have the estimate

$$
\left\|\left(\phi_{\varepsilon, \mathbf{p}}, \psi_{\varepsilon, \mathbf{p}}\right)\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \times H^{1}(-1,1)} \leq C\left(\xi_{\varepsilon} \beta^{2} \varepsilon+h(\varepsilon, \beta)\right) .
$$

More refined estimates for $\phi_{\varepsilon, \mathbf{p}}$ are needed. We recall from the discussion in last section that $S_{1}\left(u_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}\right)$ can be decomposed into the two parts $S_{1,1}$ and $S_{1,2}$ if x is close to the center of spike, where $S_{1,1}$ is in leading order an odd function and $S_{1,2}$ is in leading order an even function. We can similarly decompose $\phi_{\varepsilon, \mathbf{p}}$ as in the following lemma.
le5.3
Lemma 3.5. Let $\phi_{\varepsilon, \mathbf{p}}$ be defined in Lemma 3.4 . Then for $x=p_{j}+\varepsilon z,|\varepsilon z|<\rho, j=1, \cdots, K$, we have the decomposition

$$
\begin{equation*}
\phi_{\varepsilon, \mathbf{p}}=\phi_{\varepsilon, \mathbf{p}, 1}+\phi_{\varepsilon, \mathbf{p}, 2} \tag{3.18}
\end{equation*}
$$

where $\phi_{\varepsilon, \mathbf{p}, 2}$ is an even function in z which satisfies

$$
\begin{equation*}
\phi_{\varepsilon, \mathbf{p}, 1}=O\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right) \quad \text { in } \quad H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{\varepsilon, \mathbf{p}, 2}=O\left(\xi_{\varepsilon} \beta^{2} \varepsilon+h(\varepsilon, \beta)\right) \quad \text { in } \quad H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) \tag{3.20}
\end{equation*}
$$

Proof. We first solve

$$
\begin{equation*}
S\left[u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}, 2}\right]-S\left[u_{\varepsilon, \mathbf{p}}\right]-\sum_{j=1}^{K} S_{1,2}\left(y-\frac{p_{j}}{\varepsilon}\right) \in \mathbf{C}_{\varepsilon, \mathbf{p}} \tag{3.21}
\end{equation*}
$$

for $\phi_{\varepsilon, \mathbf{p}, 2} \in \mathbf{K}_{\varepsilon, \mathbf{p}}^{\perp}$. Then we solve

$$
\begin{equation*}
S\left[u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}, 2}+\phi_{\varepsilon, \mathbf{p}, 1}\right]-S\left[u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}, 2}\right]-\sum_{j=1}^{K} S_{1,1}\left(y-\frac{p_{j}}{\varepsilon}\right) \in \mathbf{C}_{\varepsilon, \mathbf{p}} \tag{3.22}
\end{equation*}
$$

for $\phi_{\varepsilon, \mathbf{p}, 1} \in \mathbf{K}_{\varepsilon, \mathbf{p}}^{\perp}$. Using the same proof as in Proposition $3.2 . \frac{1}{b}$. solution provided $\varepsilon, \beta \ll 1$. By uniqueness, $\phi_{\varepsilon, \mathbf{p}}=\phi_{\varepsilon, \mathbf{p}, 1}+\phi_{\varepsilon, \mathbf{p}, 2}$, and it is easy to see that $\phi_{\varepsilon, \mathbf{p}, 1}$ and $\phi_{\varepsilon, \mathbf{p}, 2}$ have the required properties.
3.3. The Reduced Problem. In this subsection, we solve the reduced problem which will will complete the
 $\mathcal{K}_{\varepsilon, \mathbf{p}}^{\perp}$ such that

$$
S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}}{v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}}=\binom{\Xi_{\varepsilon, \mathbf{p}}}{0} \in \mathcal{C}_{\varepsilon, \mathbf{p}} .
$$

To complete the proof of Theorem we need to determine $\mathbf{p}^{\varepsilon}=\left(p_{1}, p_{2}, \cdots, p_{K}\right)$ near \mathbf{p}^{0} such that

$$
S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}^{\varepsilon}}+\phi_{\varepsilon, \mathbf{p}^{\varepsilon}}}{v_{\varepsilon, \mathbf{p}^{\varepsilon}}+\psi_{\varepsilon, \mathbf{p}^{\varepsilon}}} \perp \mathcal{C}_{\varepsilon, \mathbf{p}^{\varepsilon},}
$$

which in turn implies that $S_{\varepsilon}\binom{u_{\varepsilon, \mathbf{p}^{\varepsilon}}+\phi_{\varepsilon, \mathrm{p}^{\varepsilon}}}{v_{\varepsilon, \mathrm{p}^{\varepsilon}}+\psi_{\varepsilon, \mathbf{p}^{\varepsilon}}}=0$. To this end, let

$$
W_{\varepsilon}(\mathbf{p}):=\left(W_{\varepsilon, 1}(\mathbf{p}), W_{\varepsilon, 2}(\mathbf{p}), \cdots, W_{\varepsilon, K}(\mathbf{p})\right): B_{\sigma}\left(\mathbf{p}^{0}\right) \rightarrow \mathbb{R}^{K}
$$

where

$$
W_{\varepsilon, j}(\mathbf{p}):=\frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} S_{1}\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}\right) \frac{\partial w_{j}}{\partial p_{j}} d y, \quad j=1, \cdots, K .
$$

Then $W_{\varepsilon}(\mathbf{p})$ is a map which is continuous in \mathbf{p} and our problem is reduced to finding a zero of the vector field $W_{\varepsilon}(\mathbf{p})$. Let us now calculate $W_{\varepsilon}(\mathbf{p})$

$$
\begin{align*}
W_{\varepsilon, j}(\mathbf{p})= & \frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} S_{1}\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}, v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}\right) \frac{\partial w_{j}}{\partial p_{j}} d y \\
= & \frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left[(-\Delta)^{\frac{1}{2}}\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)+\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)-\frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}}\right] \frac{\partial w_{j}}{\partial p_{j}} d y \\
= & \frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left[(-\Delta)^{\frac{1}{2}}\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)+\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)-\frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}}\right] \frac{\partial w_{j}}{\partial p_{j}} d y \tag{3.23}\\
& -\frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left[\frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}}-\frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}}\right] \frac{\partial w_{j}}{\partial p_{j}} d y \\
= & I_{1}+I_{2},
\end{align*}
$$

where I_{1}, I_{2} are defined by the last equality and $\psi_{\varepsilon, \mathbf{p}}$ satisifies

$$
\begin{equation*}
D(-\Delta)^{\frac{1}{2}} \psi_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}-2 \xi_{\varepsilon} u_{\varepsilon, \mathbf{p}} \phi_{\varepsilon, \mathbf{p}}-\xi_{\varepsilon} \phi_{\varepsilon, \mathbf{p}}^{2}=0 . \tag{3.24}
\end{equation*}
$$

For I_{1}, we have by Lemma $\sqrt{\frac{13}{3.5} \text {. } 3}$

$$
\begin{align*}
I_{1}= & \frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon}\left(\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left[(-\Delta)^{\frac{1}{2}}\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)+\left(w_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)-\frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)}\right] \frac{\partial w_{j}}{\partial p_{j}} d y\right. \\
& \left.+\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}^{2}\left(p_{j}\right)}\left(v_{\varepsilon, \mathbf{p}}\left(p_{j}+\varepsilon y\right)-v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)\right) \frac{\partial w_{j}}{\partial p_{j}} d y\right)+o(1) \\
= & -\frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon^{2}}\left(\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left[(-\Delta)^{\frac{1}{2}}\left(w_{j}+\phi_{\varepsilon, \mathbf{p}}\right)+\left(w_{j}+\phi_{\varepsilon, \mathbf{p}}\right)-\frac{\left.\left(w_{j}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}\right]}{v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)}\right] \frac{\partial w_{j}}{\partial y} d y\right) \tag{3.25}\\
& -\frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon^{2}}\left(\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \frac{\left(w_{j}+\phi_{\varepsilon, \mathbf{p}, 2}\right)^{2}}{v_{\varepsilon, \mathbf{p}}^{2}\left(p_{j}\right)}\left(v_{\varepsilon, \mathbf{p}}\left(p_{j}+\varepsilon y\right)-v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)\right) \frac{\partial w_{j}}{\partial y} d y\right)+o(1) .
\end{align*}
$$

Note that, by Lemma 3.5 . ${ }^{3}$.

$$
\begin{equation*}
\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left[(-\Delta)^{\frac{1}{2}} \phi_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}-2 w_{j} \phi_{\varepsilon, \mathbf{p}}\right] \frac{\partial w_{j}}{\partial y} d y=\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \phi_{\varepsilon, \mathbf{p}, 1} \frac{\partial}{\partial y}\left((-\Delta)^{\frac{1}{2}} w_{j}+w_{j}-w_{j}^{2}\right) d y+o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right)=o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right), \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \phi_{\varepsilon, \mathbf{p}}^{2} \frac{\partial w_{j}}{\partial y} d y=2 \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \phi_{\varepsilon, \mathbf{p}, 1} \phi_{\varepsilon, \mathbf{p}, 2} \frac{\partial w_{j}}{\partial y} d y=o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\right) . \tag{3.27}
\end{equation*}
$$

Now by Lemma $\frac{105}{3.5}-\frac{3}{3} d$ equations $\left(\frac{3.26}{5}\right)$ and $\left(\frac{5}{3.27}\right)$ we have

$$
\begin{align*}
I_{1} & =-\frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon^{2}} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} w_{j}^{2}\left(v_{\varepsilon, \mathbf{p}}\left(p_{j}+\varepsilon y\right)-v_{\varepsilon, \mathbf{p}}\left(p_{j}\right)\right) \frac{\partial w_{j}}{\partial y} d y+o(1) \\
& =-\frac{1}{\varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} w_{j}^{2}\left(P_{j}(z)-\varepsilon y \partial_{p_{j}} F(\mathbf{p})\right) \frac{\partial w_{j}}{\partial y} d y+o(1) \tag{3.28}\\
& =-\frac{1}{3} \int_{\mathbb{R}} w^{3}(y) d y \partial_{p_{j}} F(\mathbf{p})+o(1) .
\end{align*}
$$

Similarly, we calculate

$$
\begin{align*}
I_{2} & =-\frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon^{2}} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left[\frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}}-\frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}}\right] \frac{\partial w_{j}}{\partial y} d y \\
& =\frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon^{2}} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \frac{\left(u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}\right)^{2}}{v_{\varepsilon, \mathbf{p}}^{2}} \psi_{\varepsilon, \mathbf{p}} \frac{\partial w_{j}}{\partial y} d y+o(1) \tag{3.29}\\
& =\frac{1}{\xi_{\varepsilon} \beta^{2} \varepsilon^{2}} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \frac{1}{3} \frac{\partial w_{j}^{3}}{\partial y}\left(\psi_{\varepsilon, \mathbf{p}}-\psi_{\varepsilon, \mathbf{p}}\left(p_{j}\right)\right) d y+o(1) .
\end{align*}
$$

Since $\psi_{\varepsilon, \mathbf{p}}$ satisifies $\left(\frac{6.4}{3.24}\right)$, a similar argument to that used in Lemma $\frac{105}{3.5}$. ${ }^{\frac{3}{2}}$ ives

$$
\begin{align*}
\psi_{\varepsilon, \mathbf{p}}\left(p_{j}+\varepsilon z\right)-\psi_{\varepsilon, \mathbf{p}}\left(p_{j}\right) & =\xi_{\varepsilon} \int_{-1}^{1}\left(G_{D}\left(p_{j}+\varepsilon z, \zeta\right)-G_{D}\left(p_{j}, \zeta\right)\right)\left(2 u_{\varepsilon, \mathbf{p}}\left(\frac{\zeta}{\varepsilon}\right) \phi_{\varepsilon, \mathbf{p}}\left(\frac{\zeta}{\varepsilon}\right)+\phi_{\varepsilon, \mathbf{p}}^{2}\left(\frac{\zeta}{\varepsilon}\right)\right) d \zeta \\
& =o\left(\xi_{\varepsilon} \beta^{2} \varepsilon^{2}\left|\partial_{p_{j}} F(\mathbf{p})\right||z|\right)+\hat{p}_{j}(z)+\text { h.o.t., } \tag{3.30}
\end{align*}
$$

where $\hat{P}_{j}(z)$ is an even function in $z=y-\frac{p_{j}}{\varepsilon}$. Substituting ($\frac{5.30}{10}$ into ($\frac{6.29)}{}$ we obtain that

$$
\begin{equation*}
I_{2}=o(1) . \tag{3.31}
\end{equation*}
$$

Combining the estimates for I_{1} and I_{2}, we obtain

$$
\begin{equation*}
W_{\varepsilon}(\mathbf{p})=-\pi \nabla_{p} F(\mathbf{p})+o(1), \tag{3.32}
\end{equation*}
$$

where $F(\mathbf{p})$ is defined in which goes to 0 as $\varepsilon \rightarrow 0$. At \mathbf{p}^{0}, we have $\nabla_{\mathbf{p}} F\left(\mathbf{p}^{0}\right)=0$. On the other hand, we have assumed that $\nabla_{\mathbf{p}}^{2} F\left(\mathbf{p}^{0}\right)$ is a matrix of rank $K-1$. ${ }^{2}$

It is known that $(1, \cdots, 1)^{t} \in \operatorname{Ker}\left(\nabla_{\mathbf{p}}^{2} F\left(\mathbf{p}^{0}\right)\right)$ and we can choose \mathbf{p} such that $W_{\varepsilon}(\mathbf{p}) \perp(1, \cdots, 1)^{t}$. Next, we can apply Brouwer's fixed point theorem to show that for $\varepsilon \ll 1$ there exists a point \mathbf{p} such that $W_{\varepsilon}(\mathbf{p})=$ 0 and $\mathbf{p} \in B_{\sigma}\left(\mathbf{p}^{0}\right)$. Thus we have proved the following proposition
Proposition 3.6. For ε sufficiently small there exist points \mathbf{p}^{ε} with $\mathbf{p}^{\varepsilon} \rightarrow \mathbf{p}^{0}$ such that $W_{\varepsilon}\left(\mathbf{p}^{\varepsilon}\right)=0$.
Proof of Theorem i.1. By above Proposition, there exists $\mathbf{p}^{\varepsilon} \rightarrow \mathbf{p}^{0}$ such that $W_{\varepsilon}\left(\mathbf{p}^{\varepsilon}\right)=0$. In other words, $S\left[u_{\varepsilon, \mathbf{p}^{\varepsilon}}+\phi_{\varepsilon, \mathbf{p}^{\varepsilon}}\right]=0$. Let $u_{\varepsilon}=\xi_{\varepsilon} u_{\varepsilon, \mathbf{p}}, v_{\varepsilon}=\xi_{\varepsilon} \tilde{\varepsilon}_{\varepsilon, p}$. By Maximum principle, $u_{\varepsilon}>0$ and $v_{\varepsilon}>0$. Moreover $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ satisfies all the properties of Theorem
 directly. Then, the ansatz is given by

$$
u_{\varepsilon, \mathbf{p}}=\sum_{j=1}^{2} \xi_{\varepsilon, j} w_{j}(y), \quad v_{\varepsilon, \mathbf{p}}=T\left[u_{\varepsilon, \mathbf{p}}\right](x) .
$$

[^1]After the standard procedure as we did for the symmetric case, we reduce the original problem to a same finite dimensional problem B.32 with $K=2$. By the same proof we are able to establish the existence for the asymmetric two spikes pattern.

4. Rigorous proof of the stability analysis

In this section, we shall consider the large and small eigenvalues respectively. From which we are able to characterize the linear stability of the multi-spikes constructed in last section.
4.1. Stability Analysis: Large Eigenvalues. Linearizing around the equilibrium states $\left(u_{\varepsilon}, v_{\varepsilon}\right)$, we obtain the following eigenvalue problem

$$
\left\{\begin{array}{l}
(-\Delta)_{y}^{\frac{1}{2}} \phi_{\varepsilon}+\phi_{\varepsilon}-2 \frac{u_{\varepsilon}}{v_{\varepsilon}} \phi_{\varepsilon}+\frac{u_{\varepsilon}^{2}}{v_{\varepsilon}^{2}} \psi_{\varepsilon}+\lambda_{\varepsilon} \phi_{\varepsilon}=0 \tag{4.1}\\
\frac{1}{\beta^{2}}(-\Delta)_{x}^{\frac{1}{2}} \psi_{\varepsilon}+\psi_{\varepsilon}-2 u_{\varepsilon} \phi_{\varepsilon}+\tau \lambda_{\varepsilon} \psi_{\varepsilon}=0
\end{array}\right.
$$

where λ_{ε} is some complex number and

$$
\phi_{\varepsilon} \in H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right), \quad \psi_{\varepsilon} \in H^{1}(-1,1)
$$

In this subection, we study the large eigenvalues, i.e. those for which we may assume that there exists $c>0$ such that $\left|\lambda_{\varepsilon}\right| \geq c>0$ for ε small. If $\Re\left(\lambda_{\varepsilon}\right)<-c$ then we are done (since these eigenvalues are always stable) and we therefore assume that $\Re\left(\lambda_{\varepsilon}\right) \geq-c$. For a subsequence $\varepsilon \rightarrow 0$ and $\lambda_{\varepsilon} \rightarrow \lambda_{0}$ we shall derive a limiting NLEP satisfied by λ_{0}. In the following we shall divide our discussion into two cases: symmetric pattern and asymmetric pattern. First, we study the symmetric case.
Symmetric pattern. Let

$$
\hat{u}_{\varepsilon}=\xi_{\varepsilon}^{-1} u_{\varepsilon}=u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}, \quad \hat{v}_{\varepsilon}=\xi_{\varepsilon}^{-1} v_{\varepsilon}=v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}}
$$

Then (4.1) becomes

$$
\left\{\begin{array}{l}
(-\Delta)_{y}^{\frac{1}{2}} \phi_{\varepsilon}+\phi_{\varepsilon}-2 \frac{\hat{u}_{\varepsilon}}{\hat{v}_{\varepsilon}} \phi_{\varepsilon}+\frac{\hat{u}_{\varepsilon}^{2}}{\hat{v}_{\varepsilon}^{2}} \psi_{\varepsilon}+\lambda_{\varepsilon} \phi_{\varepsilon}=0 \tag{4.2}\\
\frac{1}{\beta^{2}}(-\Delta)_{x}^{\frac{1}{2}} \psi_{\varepsilon}+\psi_{\varepsilon}-2 \xi_{\varepsilon} \hat{u}_{\varepsilon} \phi_{\varepsilon}+\tau \lambda_{\varepsilon} \psi_{\varepsilon}=0
\end{array}\right.
$$

The second equation in 4.2 is equivalent to

$$
\begin{equation*}
(-\Delta)_{x}^{\frac{1}{2}} \psi_{\varepsilon}+\beta^{2}\left(1+\tau \lambda_{\varepsilon}\right) \psi_{\varepsilon}-2 \beta^{2} \xi_{\varepsilon} \hat{u}_{\varepsilon} \phi_{\varepsilon}=0 \tag{4.3}
\end{equation*}
$$

We introduce the following:

$$
\beta_{\lambda_{\varepsilon}}=\beta \sqrt{1+\tau \lambda_{\varepsilon}}
$$

where in $\sqrt{1+\tau \lambda_{\varepsilon}}$ we take the principal part of the square root. Let us assume that

$$
\left\|\phi_{\varepsilon}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)}=1
$$

We cut off ϕ_{ε} as follows: Introduce

$$
\phi_{\varepsilon, j}\left(\varepsilon y-p_{j}\right)=\phi_{\varepsilon} \chi\left(\frac{\varepsilon y-p_{j}}{r_{0}}\right),
$$

where $\chi(x)$ was introduced in (2.25). Using (4.2), Lemma 3.4 and $\Re\left(\lambda_{\varepsilon}\right) \geq-c$ and the algebraic decay of w, we get that

$$
\phi_{\varepsilon}=\sum_{j=1}^{K} \phi_{\varepsilon, j}+o_{\varepsilon}(1) \quad \text { in } \quad H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)
$$

Then by a standard procedure, we extend $\phi_{\varepsilon, j}$ to a function defined on \mathbb{R} such that

$$
\left\|\phi_{\varepsilon, j}\right\|_{H^{1}(\mathbb{R})} \leq C\left\|\phi_{\varepsilon, j}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)^{\prime}} \quad j=1, \cdots, K
$$

Since $\left\|\phi_{\varepsilon}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)}=1,\left\|\phi_{\varepsilon, j}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)} \leq C$. By taking a subsequence of ε, we may assume that $\phi_{\varepsilon, j} \rightarrow \phi_{j}$ as $\varepsilon \rightarrow 0$ in $L^{2} \cap L_{3}^{\infty}(\mathbb{R})$ for $j=1, \cdots, K$.

We have by (4.3)

$$
\begin{equation*}
\psi_{\varepsilon}(x)=2 \beta^{2} \xi_{\varepsilon} \int_{-1}^{1} G_{\beta_{\lambda_{\varepsilon}}}(x, \zeta) \hat{u}_{\varepsilon}\left(\frac{\zeta}{\varepsilon}\right) \phi_{\varepsilon}\left(\frac{\zeta}{\varepsilon}\right) d \zeta . \tag{4.4}
\end{equation*}
$$

At $x=p_{j}^{\varepsilon}, j=1, \cdots, K$, we calculate

$$
\begin{align*}
\psi\left(p_{j}^{\varepsilon}\right)= & 2 \beta^{2} \xi_{\varepsilon} \int_{-1}^{1} G_{\beta_{\lambda_{\varepsilon}}}\left(p_{j}^{\varepsilon}, \zeta\right) \sum_{\ell=1}^{K} w\left(\frac{\zeta-p_{\ell}^{\varepsilon}}{\varepsilon}\right) \phi_{\varepsilon, \ell}\left(\frac{\zeta-p_{\ell}^{\varepsilon}}{\varepsilon}\right) d \zeta+O\left(\xi_{\varepsilon}\left|\beta_{\lambda_{\varepsilon}}^{2}\right| \varepsilon\right) \\
= & 2 \beta^{2} \xi_{\varepsilon} \int_{-1}^{1}\left(\frac{\left(\beta_{\lambda_{\varepsilon}}\right)^{-2}}{2}+G_{0}\left(p_{j}^{\varepsilon}, \zeta\right)+O\left(\left|\beta_{\lambda_{\varepsilon}}\right|^{2}\right)\right) \sum_{\ell=1}^{K} w\left(\frac{\zeta-p_{\ell}^{\varepsilon}}{\varepsilon}\right) \phi_{\varepsilon, \ell}\left(\frac{\zeta-p_{\ell}^{\varepsilon}}{\varepsilon}\right) d \zeta+O\left(\xi_{\varepsilon}\left|\beta_{\lambda_{\varepsilon}}^{2}\right| \varepsilon\right) \\
= & 2 \xi_{\varepsilon} \int_{-1}^{1}\left(\frac{1}{2\left(1+\tau \lambda_{\varepsilon}\right)}+\beta^{2} G_{0}\left(p_{j}^{\varepsilon}, \zeta\right)+O\left(\left|\beta_{\lambda_{\varepsilon}}\right|^{4}\right)\right) w\left(\frac{\zeta-p_{j}^{\varepsilon}}{\varepsilon}\right) \phi_{\varepsilon, j}\left(\frac{\zeta-p_{j}^{\varepsilon}}{\varepsilon}\right) d \zeta \\
& +2 \xi_{\varepsilon} \sum_{\ell \neq j} \int_{-1}^{1}\left(\frac{1}{2\left(1+\tau \lambda_{\varepsilon}\right)}+\beta^{2} G_{0}\left(p_{j}^{\varepsilon}, \zeta\right)+O\left(\left|\beta_{\lambda_{\varepsilon}}\right|^{4}\right)\right) w\left(\frac{\zeta-p_{\ell}^{\varepsilon}}{\varepsilon}\right) \phi_{\varepsilon, \ell}\left(\frac{\zeta-p_{\ell}^{\varepsilon}}{\varepsilon}\right) d \zeta \\
= & \sum_{\ell=1}^{K} \frac{\varepsilon \xi_{\varepsilon}}{\left(1+\tau \lambda_{\varepsilon}\right)} \int_{\mathbb{R}} w(y) \phi_{\varepsilon, \ell}(y) d y(1+o(1))+2 \xi_{\varepsilon} \frac{\beta^{2}}{\pi} \varepsilon \log \frac{1}{\varepsilon} \int_{\mathbb{R}} w(y) \phi_{\varepsilon, j}(y) d y+O\left(\xi_{\varepsilon}\left|\beta_{\lambda_{\varepsilon}}\right|^{2} \varepsilon\right) . \tag{4.5}
\end{align*}
$$

Let $\eta_{\varepsilon}=\frac{2 \beta^{2}}{\pi} \log \frac{1}{\varepsilon}$ and we separate our discussion into three cases.
Case 1: $\eta_{\varepsilon} \rightarrow 0$, we get from (15.5):

$$
\begin{equation*}
\psi_{\varepsilon}\left(p_{j}^{\varepsilon}\right)=\sum_{\ell=1}^{K} \frac{\varepsilon \mathcal{\zeta}_{\varepsilon}}{\left(1+\tau \lambda_{\varepsilon}\right)} \int_{\mathbb{R}} w \phi_{\varepsilon, \ell} d y(1+o(1)) . \tag{4.6}
\end{equation*}
$$

 nonlocal eigenvalue problem (NLEP):

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \phi_{j}+\phi_{j}-2 w \phi_{j}+\frac{2 \sum_{\ell=1}^{K} \int_{\mathbb{R}} w \phi_{\ell} d y}{K\left(1+\tau \lambda_{0}\right) \int_{\mathbb{R}} w^{2}(y) d y} w^{2}+\lambda_{0} \phi_{j}=0, \quad j=1, \cdots, K . \tag{4.7}
\end{equation*}
$$

If $K=1$, by Theorem 2.4 , the above problem is stable if $\tau<\tau_{1}$, which implies that the large eigenvalues are stable. If τ 就, by Theorem [2.4, problem, (4.7) has a eigenvalue λ_{0} with $\Re\left(\lambda_{0}\right) \geq a_{0}>0$ for some a_{0}. By Theorem 4. bèlow, we have problem (4.2) also admits a eigenvalue λ_{ε} with $\lambda_{0}+o(1)$ which implies that the problem (4.2) is unstable. If $K>1$, problem (4.2) admits a positive eigenvalue: We can choose, for example,

$$
\phi_{1}=-\phi_{2}=\Phi_{0}, \quad \phi_{3}=\cdots=\phi_{K}=0, \lambda_{0}=\mu_{1},
$$

where Φ_{0} is the principal eigenfunction of L_{0} given in Proposition R.1. Repeating the above arguments for $K=1$ and by Theorem 4.1] again, we conclude that there is a eigenvalue of (4.2) with eigenvalue whose real part is positive. Thus all multiple-peaked solutions are unstable.
Case 2. $\eta_{\varepsilon} \rightarrow \infty$. In this case, similar to Case 1 , we get from 4.5$)^{\text {sit-rep }}$ that

$$
\begin{equation*}
\psi_{\varepsilon}\left(p_{j}^{\varepsilon}\right)=\varepsilon \zeta_{\varepsilon} \eta_{\varepsilon} \int_{\mathbb{R}} w \phi_{\varepsilon, j} d y(1+o(1)), \quad j=1, \cdots, K . \tag{4.8}
\end{equation*}
$$

and for any $\tau \geq 0$, in the limit $\varepsilon \rightarrow 0$ we obtain the following NLEP:

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \phi_{j}+\phi_{j}-2 w \phi_{j}+2 \frac{\int_{\mathbb{R}} w \phi_{j} d y}{\int_{\mathbb{R}} w^{2} d y} w^{2}+\lambda_{0} \phi_{j}=0, \quad j=1, \cdots, K . \tag{4.9}
\end{equation*}
$$

$$
\square
$$

Case 3. $\eta_{\varepsilon} \rightarrow \eta_{0}$. Similar as above, we get from (4.5) that in tep

$$
\begin{equation*}
\psi_{\varepsilon}\left(p_{j}^{\varepsilon}\right)=\left(\sum_{\ell=1}^{K} \frac{1}{1+\tau \lambda_{0}} \varepsilon \zeta_{\varepsilon} \int_{\mathbb{R}} w \phi_{\varepsilon, \ell} d y+\varepsilon \zeta_{\varepsilon} \eta_{0} \int_{\mathbb{R}} w \phi_{\varepsilon, j} d y\right)(1+o(1)) . \tag{4.10}
\end{equation*}
$$

Sending $\varepsilon \rightarrow 0$, we obtain the following nonlocal eigenvalue problem

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \phi_{j}+\phi_{j}-2 w \phi_{j}+\frac{2\left[\left(1+\eta_{0}\left(1+\tau \lambda_{0}\right)\right) \int_{\mathbb{R}} w \phi_{j} d y+\sum_{\ell \neq j} w \phi_{\ell} d y\right]}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right) \int_{\mathbb{R}} w^{2}(y) d y} w^{2}+\lambda_{0} \phi_{j}=0, \quad j=1, \cdots, K . \tag{4.11}
\end{equation*}
$$

Let

$$
\mathcal{G}=\left(\begin{array}{cccc}
1+\eta_{0}\left(1+\tau \lambda_{0}\right) & 1 & \cdots & 1 \\
1 & 1+\eta_{0}\left(1+\tau \lambda_{0}\right) & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1+\eta_{0}\left(1+\tau \lambda_{0}\right)
\end{array}\right)
$$

\mathcal{G} is sysmmetric and eigenvalues of \mathcal{G} are given by

$$
\lambda_{1}=\cdots=\lambda_{K-1}=\eta_{0}\left(1+\tau \lambda_{0}\right), \quad \lambda_{K}=K+\eta_{0}\left(1+\tau_{0} \lambda_{0}\right) .
$$

Let P be an orthogonal matrix such that

$$
P \mathcal{G} P^{-1}=\left(\begin{array}{cccc}
\eta_{0}\left(1+\tau \lambda_{0}\right) & 0 & \cdots & 0 \\
0 & \eta_{0}\left(1+\tau \lambda_{0}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & K+\eta_{0}\left(1+\tau \lambda_{0}\right)
\end{array}\right) .
$$

From (4..71), using the notation,

$$
\Phi=\left(\phi_{1}, \cdots, \phi_{K}\right)^{T},
$$

we get

$$
(-\Delta)^{\frac{1}{2}} \Phi+\Phi-2 w \Phi+\frac{\mathcal{G} \int_{\mathbb{R}} \Phi w d y}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right) \int_{\mathbb{R}} w^{2}(y) d y} w^{2}+\lambda_{0} \Phi=0 .
$$

Let $P \Phi=\bar{\Phi}$, then we get

$$
(-\Delta)^{\frac{1}{2}} \bar{\Phi}+\bar{\Phi}-2 w \bar{\Phi}+\frac{2}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right) \int_{\mathbb{R}} w^{2}(y) d y} P \mathcal{G} P^{-1}\left(\int_{\mathbb{R}} w \bar{\Phi}\right) w^{2}+\lambda_{0} \bar{\Phi}=0,
$$

and it can be written in components

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \bar{\Phi}_{j}+\bar{\Phi}_{j}-2 w \bar{\Phi}_{j}+\frac{\lambda_{j}}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right) \int_{\mathbb{R}} w^{2}(y) d y}\left(\int_{\mathbb{R}} w \bar{\Phi}_{j}(y) d y\right) w^{2}+\lambda_{0} \bar{\Phi}_{j}=0, \quad j=1, \cdots, K . \tag{4.12}
\end{equation*}
$$

For $j=1, \cdots, K-1$, $\frac{\sqrt{4.12 n}-\mathrm{t}}{\mathrm{fa}}$ becomes

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \bar{\Phi}_{j}+\bar{\Phi}_{j}-2 w \bar{\Phi}_{j}+\frac{2 \eta_{0}}{\left(K+\eta_{0}\right) \int_{\mathbb{R}} w^{2}(y) d y}\left(\int_{\mathbb{R}} w \bar{\Phi}_{j}(y) d y\right) w^{2}+\lambda_{0} \bar{\Phi}_{j}=0, \quad j=1, \cdots, K-1, \tag{4.13}
\end{equation*}
$$

while for $j=K$,

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \bar{\Phi}_{K}+\bar{\Phi}_{K}-2 w \bar{\Phi}_{K}+\frac{2\left(K+\eta_{0}\left(1+\tau \lambda_{0}\right)\right)}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right) \int_{\mathbb{R}} w^{2}(y) d y}\left(\int_{\mathbb{R}} w \bar{\Phi}_{K}(y) d y\right) w^{2}+\lambda_{0} \bar{\Phi}_{K}=0 . \tag{4.14}
\end{equation*}
$$

If $K>1$ and $\frac{2 \eta_{0}}{K+\eta_{0}}<1$ (i.e., $\eta_{0}<K$), then by Theorem 2.2. probility (4.13) it unstable for all $\tau \geq 0$, which implies that problem (4.2) is linearly unstable for all $\tau \geq 0$. If $K \geq 1$ and $\frac{2 \eta_{0}}{\left[K \neq \eta_{1}\right.}-\mathrm{k} 1$ or what is equivalent, $\eta_{0}>K$, then by Theorem [h2. it is stable if $0 \leq \tau<\tau_{2}$ or $\tau>\tau_{3}$ for suitable $\tau_{2} \leq \tau_{3}$.

If $K=1$ and $\eta_{0}<1$, we see that the problem can be written in the form as 4.14$)^{\frac{n}{2}-k}$. By Theorem 2.7. prolem (4.14) is stable if $0 \leq \tau<\tau_{4}$ and unstable for $\tau>\tau_{5}$, for some suitable $\tau_{4}<\tau_{5}$. Then we finish the whole proof for the large eigenvalue of symmetric pattern.
Asymmetric pattern. In the asymmetric case, we only consider the problem with two spikes. Using the Green's representation for the second equation of (4.1) we get

$$
\begin{align*}
\psi\left(p_{j}\right) & =2 \beta^{2} \int_{-1}^{1} G_{\beta_{\lambda_{\varepsilon}}}(x, \zeta) \sum_{\ell=1}^{2} \xi_{\varepsilon, \ell} \phi_{\varepsilon, \ell} w_{\ell} d \zeta \tag{4.15}\\
& =\sum_{\ell=1}^{2} \frac{\varepsilon \xi_{\varepsilon, \ell}}{1+\tau \lambda_{\varepsilon}} \int_{\mathbb{R}} w \phi_{\ell}(y) d y+2 \xi_{\varepsilon, j} \frac{\beta^{2}}{\pi} \varepsilon \log \frac{1}{\varepsilon} \int_{\mathbb{R}} w \phi_{j} d y, \quad j=1,2
\end{align*}
$$

The eigenvalue problem turns to be

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \phi_{j}+\phi_{j}-2 w \phi_{j}+\varepsilon \xi_{\varepsilon, j} \eta_{0} \int_{\mathbb{R}} w \phi_{j} d y+\sum_{\ell=1}^{2} \frac{\varepsilon \xi_{\varepsilon, \ell}}{1+\tau \lambda_{\varepsilon}} \int_{\mathbb{R}} w \phi_{\ell} d y+\lambda_{\varepsilon} \phi_{j}=0, \quad j=1,2 \tag{4.16}
\end{equation*}
$$

where

$$
\xi_{\varepsilon, 1}=\frac{2\left(1+O\left(\beta^{2}\right)\right)}{\varepsilon \int_{\mathbb{R}} w^{2}(y) d y}\left(\frac{1}{2 \eta_{0}}+\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{4+2 \eta_{0}}\right), \xi_{\varepsilon, 2}=\frac{2\left(1+O\left(\beta^{2}\right)\right)}{\varepsilon \int_{\mathbb{R}} w^{2}(y) d y}\left(\frac{1}{2 \eta_{0}}-\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{4+2 \eta_{0}}\right), \text { where } \eta_{0}>2
$$

The associated two by two matrix of 4.18 , is given by

$$
\left(\begin{array}{cc}
\left(\eta_{0}+\frac{1}{1+\tau \lambda_{\varepsilon}}\right)\left(\frac{1}{\eta_{0}}+\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{2+\eta_{0}}\right) & \frac{1}{1+\tau \lambda_{\varepsilon}}\left(\frac{1}{\eta_{0}}-\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{2+\eta_{0}}\right) \tag{4.17}\\
\frac{1}{1+\tau \lambda_{\varepsilon}}\left(\frac{1}{\eta_{0}}+\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{2+\eta_{0}}\right) & \left(\eta_{0}+\frac{1}{1+\tau \lambda_{\varepsilon}}\right)\left(\frac{1}{\eta_{0}}-\frac{\sqrt{1-\frac{4}{\eta_{0}^{2}}}}{2+\eta_{0}}\right)
\end{array}\right)
$$

After simple calculation we get the eigenvalues of the above matrix are

$$
\begin{equation*}
\lambda_{1,2}=1+\frac{1}{1+\tau \lambda_{\varepsilon}} \frac{1}{\eta_{0}} \pm \sqrt{1+\frac{1}{\left(1+\tau \lambda_{\varepsilon}\right)^{2}} \frac{1}{\eta_{0}^{2}}+\frac{2}{1+\tau \lambda_{\varepsilon}} \frac{1}{\eta_{0}}-\frac{4}{2+\eta_{0}}-\frac{8}{\eta_{0}\left(2+\eta_{0}\right)\left(1+\tau \lambda_{\varepsilon}\right)}} \tag{4.18}
\end{equation*}
$$

Next, we claim that

$$
\begin{equation*}
\lambda_{2}=1+\frac{1}{1+\tau \lambda_{\varepsilon}} \frac{1}{\eta_{0}}-\sqrt{1+\frac{1}{\left(1+\tau \lambda_{\varepsilon}\right)^{2}} \frac{1}{\eta_{0}^{2}}+\frac{2}{1+\tau \lambda_{\varepsilon}} \frac{1}{\eta_{0}}-\frac{4}{2+\eta_{0}}-\frac{8}{\eta_{0}\left(2+\eta_{0}\right)\left(1+\tau \lambda_{\varepsilon}\right)}}<1 \tag{4.19}
\end{equation*}
$$

It is equivalent to show that

$$
\begin{equation*}
1+\frac{2}{1+\tau \lambda_{\varepsilon}} \frac{1}{\eta_{0}}-\frac{4}{2+\eta_{0}}-\frac{8}{\eta_{0}\left(2+\eta_{0}\right)\left(1+\tau \lambda_{\varepsilon}\right)}>0 \tag{4.20}
\end{equation*}
$$

 that the system (4.18) admits an unstable eigenvalue and it proves that the asymmetric two spikes pattern is always unstable.

In the end of this subsection, we give the following result which establishes the relation between the corresponding limit eigenvalue problem of each case and the original eigenvalue problem 4.2
th7. 1
Theorem 4.1. Let λ_{ε} be a eigenvalue of (4.2) such that $\Re\left(\lambda_{\varepsilon}\right)>-c$ for some $c>0$.
(1) Suppose that for suitale sequences $\varepsilon_{n} \rightarrow 0$ we have $\lambda_{\varepsilon_{n}} \rightarrow \lambda_{0} \neq 0$. Then λ_{0} is a eigenvalue of the problem given in $(4.7)(44.9),(4.11)$ and (4.18) for the other three cases).
(2) Let $\lambda_{0} \neq 0$ with $\Re\left(\lambda_{0}\right)>0$ be a eigenvalue of the problem given in (4.7) $(4.9),(4.11)$ and (4.18) for the other three cases). Then for ε sufficiently small, there is a eigenvalue λ_{ε} of (4.2) with $\lambda_{\varepsilon} \rightarrow \lambda_{0}$ as $\varepsilon \rightarrow 0$.
Proof. One can see [12, Theorem 6.1] for the proof.
4.2. Stability Analysis: Small Eigenvalues. We now study the problem (4.1) for small eigenvalues of the symmetric pattern. As in last subsection, we set

$$
\hat{u}_{\varepsilon}=\xi_{\varepsilon}^{-1} u_{\varepsilon}=u_{\varepsilon, \mathbf{p}}+\phi_{\varepsilon, \mathbf{p}}, \quad \hat{v}_{\varepsilon}=\xi_{\varepsilon}^{-1} v_{\varepsilon}=v_{\varepsilon, \mathbf{p}}+\psi_{\varepsilon, \mathbf{p}} .
$$

In the following discussion, we take $\tau=0$ for simplicity. As $\lambda_{\varepsilon} \ll 1$ the results in this section are also valid for τ finite, this is due to the fact that the small eigenvalue are of the order $O\left(\varepsilon^{2}\right)$, we shall prove it in this subsection.

We cut off \hat{u}_{ε} as follows

$$
\begin{equation*}
\tilde{u}_{\varepsilon, j}(y)=\chi\left(\frac{\varepsilon y-p_{j}^{\varepsilon}}{r_{0}}\right) \hat{u}_{\varepsilon}(y), \quad j=1, \cdots, K \tag{4.21}
\end{equation*}
$$

$$
\begin{aligned}
& \mathcal{K}_{\varepsilon, \mathbf{p}, \text { new }}:=\operatorname{Span}\left\{\left.\frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y} \right\rvert\, i=1, \cdots, K\right\} \subset H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right), \\
& \mathcal{C}_{\varepsilon, \mathbf{p}, \text { new }}:=\operatorname{Span}\left\{\left.\frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y} \right\rvert\, i=1, \cdots, K\right\} \subset L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right) .
\end{aligned}
$$

Then it is easy to see that

$$
\begin{equation*}
\hat{u}_{\varepsilon}(y)=\sum_{j=1}^{K} \tilde{u}_{\varepsilon, j}(y)+O\left(\varepsilon^{2}\right) \tag{4.22}
\end{equation*}
$$

Note that

$$
\tilde{u}_{\varepsilon, j}(y) \sim w\left(y-\frac{p_{j}^{\varepsilon}}{\varepsilon}\right) \quad \text { in } \quad H^{1}(-1,1)
$$

and $\tilde{u}_{\varepsilon, j}$ satisfies

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \tilde{u}_{\varepsilon, j}+\tilde{u}_{\varepsilon, j}-\frac{\tilde{u}_{\varepsilon, j}^{2}}{\hat{v}_{\varepsilon}}+O\left(\varepsilon^{2}\right)=0 \tag{4.23}
\end{equation*}
$$

Thus $\tilde{u}_{\varepsilon, j}^{\prime}:=\frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y}$ satisfies

$$
\begin{equation*}
(-\Delta)_{y}^{\frac{1}{2}} \tilde{u}_{\varepsilon, j}^{\prime}+\tilde{u}_{\varepsilon, j}^{\prime}-2 \frac{\tilde{u}_{\varepsilon, j}}{\bar{v}_{\varepsilon}} \tilde{u}_{\varepsilon, j}^{\prime}+\varepsilon \frac{\tilde{u}_{\varepsilon, j}^{2}}{\hat{v}_{\varepsilon}^{2}} \hat{v}_{\varepsilon}^{\prime}+\text { h.o.t. }=0 \tag{4.24}
\end{equation*}
$$

and we have

$$
\tilde{u}_{\varepsilon, j}^{\prime}=\frac{\partial w}{\partial y}\left(y-\frac{p_{j}^{\varepsilon}}{\varepsilon}\right)(1+o(1))
$$

Let us now decompose

$$
\begin{equation*}
\phi_{\varepsilon}=\sum_{j=1}^{K} a_{j}^{\varepsilon} \tilde{u}_{\varepsilon, j}^{\prime}+\phi_{\varepsilon}^{\perp} \tag{4.25}
\end{equation*}
$$

where a_{j}^{ε} are complex numbers and $\phi_{\varepsilon}^{\perp} \perp \mathcal{K}_{\varepsilon, \mathbf{p}, \text { neww }}$. Similarly, we can decompose

$$
\begin{equation*}
\psi_{\varepsilon}=\sum_{j=1}^{K} a_{j}^{\varepsilon} \psi_{\varepsilon, j}+\psi_{\varepsilon}^{\perp} \tag{4.26}
\end{equation*}
$$

where $\psi_{\varepsilon, j}$ satisfies

$$
\begin{equation*}
D(-\Delta)^{\frac{1}{2}} \psi_{\varepsilon, j}+\psi_{\varepsilon, j}-2 \xi_{\varepsilon} \hat{u}_{\varepsilon} \tilde{u}_{\varepsilon, j}^{\prime}=0, \quad j=1, \cdots, K \tag{4.27}
\end{equation*}
$$

and $\psi_{\varepsilon}^{\perp}$ satisfies

$$
\begin{equation*}
D(-\Delta)^{\frac{1}{2}} \psi_{\varepsilon}^{\perp}+\psi_{\varepsilon}^{\perp}-2 \xi_{\varepsilon} \hat{u}_{\varepsilon} \phi_{\varepsilon}^{\perp}=0 . \tag{4.28}
\end{equation*}
$$

We impose periodic boundary conditions for (4.27) and (4.28).

Suppose that $\left\|\phi_{\varepsilon}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)}=1$. Then $\left|a_{j}^{\varepsilon}\right| \leq C$ since

$$
a_{j}^{\varepsilon}=\frac{\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \phi_{\varepsilon} \frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y} d y}{\int_{\mathbb{R}_{15} z}^{w w^{2} d y}}+o(1)
$$

Substituting the decompositions of ϕ_{ε} and ψ_{ε} into 4.2 we have

$$
\begin{equation*}
(-\Delta)_{y}^{\frac{1}{2}} \phi_{\varepsilon}^{\perp}+\phi_{\varepsilon}^{\perp}-\frac{2 \hat{u}_{\varepsilon}}{\hat{v}_{\varepsilon}} \phi_{\varepsilon}^{\perp}+\frac{\hat{u}_{\varepsilon}^{2}}{\hat{v}_{\varepsilon}^{2}} \psi_{\varepsilon}^{\perp}+\lambda_{\varepsilon} \phi_{\varepsilon}^{\perp}-\varepsilon \sum_{j=1}^{K} a_{j}^{\varepsilon}\left(\frac{\tilde{u}_{\varepsilon, j}^{2}}{\hat{v}_{\varepsilon}^{2}} \frac{\partial \hat{v}_{\varepsilon}}{\partial x}-\frac{1}{\varepsilon} \frac{\hat{u}_{\varepsilon}^{2}}{\hat{v}_{\varepsilon}^{2}} \psi_{\varepsilon, j}\right)+\text { h.o.t. }=-\lambda_{\varepsilon} \sum_{j=1}^{K} a_{j}^{\varepsilon} \tilde{u}_{\varepsilon, j}^{\prime} . \tag{4.29}
\end{equation*}
$$

Set

$$
J_{1}:=\varepsilon \sum_{j=1}^{K} a_{j}^{\varepsilon} \tilde{u}_{j, \varepsilon}^{2}\left(-\frac{1}{\varepsilon} \psi_{\varepsilon, j}+\frac{\partial \hat{v}_{\varepsilon}}{\partial x}\right),
$$

and

$$
J_{2}:=(-\Delta)_{y}^{\frac{1}{2}} \phi_{\varepsilon}^{\perp}+\phi_{\varepsilon}^{\perp}-2 \frac{\hat{u}_{\varepsilon}}{\hat{v}_{\varepsilon}} \phi_{\varepsilon}^{\perp}+\frac{\hat{u}_{\varepsilon}^{2}}{\hat{v}_{\varepsilon}^{2}} \psi_{\varepsilon}^{\perp}+\lambda_{\varepsilon} \phi_{\varepsilon}^{\perp} .
$$

We divide the proof into two steps.
Step 1. In this step we shall use equation $\frac{1817}{4.29}$ to give a good error bounds for $\phi_{\varepsilon}^{\perp}$. Since $\phi_{\varepsilon}^{\perp} \perp \mathcal{K}_{\varepsilon, \mathbf{p}, \text { new }}$, then similar to the proof of Proposition B.2 it follows that

$$
\left\|\phi_{\varepsilon}^{\perp}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)} \leq C\left\|J_{0}\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)} .
$$

Let us now compute J_{1}. Let ξ_{ε} be the same as Theoremand and $k(\varepsilon, \beta)=\xi_{\varepsilon} \beta^{2} \varepsilon$, then we calculate that for $x \in B_{\delta}\left(p_{j}^{\varepsilon}\right)$:

$$
\begin{aligned}
\frac{\partial \hat{v}_{\varepsilon}}{\partial x} & =\zeta_{\varepsilon} \beta^{2} \int_{-1}^{1} \partial_{x} G_{\beta_{\lambda_{\varepsilon}}}(x, \zeta)\left(\hat{u}_{\varepsilon}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2} d \zeta \\
& =\zeta_{\varepsilon} \beta^{2} \int_{-1}^{1} \frac{\partial}{\partial_{x}} G_{\beta}(x, \zeta)\left(\left(\tilde{u}_{\varepsilon, j}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2}+\sum_{\ell \neq j}\left(\tilde{u}_{\varepsilon, \ell}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2}+O\left(\varepsilon^{2}\right)\right) d \zeta
\end{aligned}
$$

and by (4.27),

$$
\psi_{\varepsilon, j}=2 \xi_{\varepsilon} \beta^{2} \int_{-1}^{1} G_{\beta} \tilde{u}_{\varepsilon, j} \frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y} d \zeta=\varepsilon \zeta_{\varepsilon} \beta^{2} \int_{-1}^{1}\left(K_{\beta}(|x-\zeta|)-H_{\beta}(x, \zeta)\right) \frac{\partial}{\partial \widetilde{\zeta}}\left(\tilde{u}_{\varepsilon, j}\right)^{2} d \zeta
$$

Thus for $x \in B_{\delta}\left(p_{j}^{\varepsilon}\right)$, we have

$$
\begin{aligned}
\frac{\partial \hat{v}_{\varepsilon}}{\partial x}-\frac{1}{\varepsilon} \psi_{\varepsilon, j}= & \xi_{\varepsilon} \beta^{2}\left[\left(\int_{-1}^{1}\left[\frac{\partial}{\partial x} K_{\beta}(|x-\zeta|)\left(\tilde{u}_{\varepsilon, j}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2}-K_{\beta}(|x-\zeta|) \frac{\partial}{\partial \zeta}\left(\tilde{u}_{\varepsilon, j}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2}\right] d \zeta\right)\right. \\
& -\int_{-1}^{1}\left[\frac{\partial}{\partial x} H_{\beta}(x, \zeta)\left(\tilde{u}_{\varepsilon, j}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2}-H_{\beta}(x, \zeta) \frac{\partial}{\partial \zeta}\left(\tilde{u}_{\varepsilon, j}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2}\right] d \zeta \\
& \left.+\int_{-1}^{1} \sum_{\ell \neq j} \frac{\partial}{\partial x} G_{\beta}(x, \zeta)\left(\tilde{u}_{\varepsilon, \ell}\left(\frac{\zeta}{\varepsilon}\right)\right)^{2} d \zeta+O\left(\varepsilon^{2}\right)\right] .
\end{aligned}
$$

Using the fact that

$$
\frac{\partial}{\partial x} K_{\beta}(|x-\zeta|)+\frac{\partial}{\partial \zeta} K_{\beta}(|x-\zeta|)=0, \quad \forall x \neq \zeta
$$

and using integration by parts, we get

$$
\begin{equation*}
\frac{\partial \hat{v}_{\varepsilon}}{\partial x}-\frac{1}{\varepsilon} \psi_{\varepsilon, j}=k(\varepsilon, \beta) \int_{\mathbb{R}} w^{2}\left(-\frac{\partial}{\partial x} F_{j}(x)+o(\varepsilon)\right) d y, \tag{4.30}
\end{equation*}
$$

where

$$
F_{j}(x)=H_{\beta}\left(x, p_{j}^{\varepsilon}\right)-\sum_{\ell \neq j} G_{\beta}\left(x, p_{\ell}^{\varepsilon}\right) .
$$

Observe that

$$
\left.\frac{\partial}{\partial x} F_{j}(x) \right\rvert\, x=p_{j}^{\varepsilon}=o_{\varepsilon}(1)
$$

since $\mathbf{p}^{\varepsilon} \rightarrow \mathbf{p}^{0}$ and \mathbf{p}^{0} is a critical point of $F(\mathbf{p})$ (see $\frac{17.7)}{}$ for the definition of $F(\mathbf{p})$). Hence we have

$$
\begin{equation*}
\left\|J_{1}\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)}=o\left(\varepsilon k(\varepsilon, \beta) \sum_{j=1}^{K}\left|a_{j}^{\varepsilon}\right|\right) \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\phi_{\varepsilon}^{\perp}\right\|_{H^{1}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)} \leq C\left\|J_{1}\right\|_{L^{2}\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)}=o\left(\varepsilon k(\varepsilon, \beta) \sum_{j=1}^{K}\left|a_{j}^{\varepsilon}\right|\right) \tag{4.32}
\end{equation*}
$$

Using the equation for $\psi_{\varepsilon}^{\perp}$ and $\left(\frac{1.19}{4.32)}\right.$, we obtain that $\psi_{\varepsilon}^{\perp}=o\left(\varepsilon^{2} k(\varepsilon, \beta) \sum_{j=1}^{K}\left|a_{j}^{\varepsilon}\right|\right)$. We calculate

$$
\begin{align*}
\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left(J_{2} \frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y}\right) d y= & -\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left(\frac{\tilde{u}_{\varepsilon, j}^{2}}{\hat{v}_{\varepsilon}^{2}}\left(\varepsilon \frac{\partial \hat{v}_{\varepsilon}}{\partial x} \phi_{\varepsilon}^{\perp}-\frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y} \psi_{\varepsilon}^{\perp}\right)\right) d y+\lambda_{\varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \phi_{\varepsilon}^{\perp} \frac{\partial \tilde{u}_{\varepsilon, j}}{\partial x} d y \\
= & -\int_{I_{\varepsilon, p j}^{\varepsilon}} \frac{\tilde{u}_{\varepsilon, j}^{2}}{\hat{v}_{\varepsilon}^{2}}\left(\varepsilon \frac{\partial \hat{v}_{\varepsilon}}{\partial x}\left(p_{j}^{\varepsilon}+\varepsilon \zeta\right)-\varepsilon \frac{\partial \hat{v}_{\varepsilon}}{\partial x}\left(p_{j}^{\varepsilon}\right)\right) \phi_{\varepsilon}^{\perp} d \zeta-\int_{I_{\varepsilon, p_{j}^{\varepsilon}}} \frac{\tilde{u}_{\varepsilon, j}^{2}}{\hat{v}_{\varepsilon}^{2}}\left(\varepsilon \frac{\partial \hat{v}_{\varepsilon}}{\partial x}\left(p_{j}^{\varepsilon}\right)\right) \phi_{\varepsilon}^{\perp} d \zeta \tag{4.33}\\
& +\int_{I_{\varepsilon, p_{i}^{\varepsilon}}} \frac{\tilde{u}_{\varepsilon, j}^{2}}{\hat{v}_{\varepsilon}^{2}} \frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y}\left(\psi_{\varepsilon}^{\perp}\left(p_{j}^{\varepsilon}+\varepsilon \zeta\right)-\psi_{\varepsilon}^{\perp}\left(p_{j}^{\varepsilon}\right)\right) d \zeta+\lambda_{\varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \phi_{\varepsilon}^{\perp} \frac{\partial \tilde{u}_{\varepsilon, j}}{\partial x} d y \\
= & o\left(\varepsilon^{2} k(\varepsilon, \beta)+\varepsilon \lambda_{\varepsilon} k(\varepsilon, \beta)\right) \sum_{j=1}^{K}\left|a_{j}^{\varepsilon}\right|
\end{align*}
$$

where

$$
I_{\varepsilon, p_{j}^{\varepsilon}}=\left\{y \mid p_{j}^{\varepsilon}+\varepsilon y \in(-1,1)\right\}
$$

and we have used $\sqrt{4.28}$ and $\frac{\partial \hat{v}_{\varepsilon}}{\partial x}=O(1)$.
 integrating over $\left(-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right)$, we obtain

$$
\begin{equation*}
r . h . s .=-\lambda_{\varepsilon} \sum_{j=1}^{K} a_{j}^{\varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \frac{\partial \tilde{u}_{\varepsilon, j}}{\partial y} \frac{\partial \tilde{u}_{\varepsilon, \ell}}{\partial y} d \zeta=-\lambda_{\varepsilon}(1+o(1)) a_{\ell}^{\varepsilon} \int_{\mathbb{R}}\left(\frac{\partial w}{\partial y}\right)^{2} d y=-\lambda_{\varepsilon} \pi(1+o(1)) a_{\ell}^{\varepsilon} \tag{4.34}
\end{equation*}
$$

where we have used

$$
\int_{\mathbb{R}}\left(\frac{\partial w}{\partial y}\right)^{2} d y=\int_{\mathbb{R}} \frac{16 y^{2}}{\left(1+y^{2}\right)^{4}} d y=\pi
$$

By (4.30) and (4.33)

$$
\begin{align*}
\text { l.h.s. } & =-\varepsilon \sum_{j=1}^{K} a_{j}^{\varepsilon} \int_{I_{\varepsilon, p}^{\varepsilon}} \frac{\left(\tilde{u}_{\varepsilon, j}\right)^{2}}{\left(\hat{v}_{\varepsilon}\right)^{2}}\left(-\frac{1}{\varepsilon} \psi_{\varepsilon, j}+\frac{\partial \hat{v}_{\varepsilon}}{\partial x}\right) \frac{\partial \tilde{u}_{\varepsilon, \ell}}{\partial y} d y+\int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}}\left(J_{2} \frac{\partial \tilde{u}_{\varepsilon, \ell}}{\partial y}\right) d y \\
& =\varepsilon k(\varepsilon, \beta) \sum_{j=1}^{K} a_{j}^{\varepsilon} \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} \frac{\tilde{u}_{\varepsilon, j}^{2}}{\hat{v}_{\varepsilon}^{2}}\left(\frac{\partial}{\partial x} F_{j}(x)\right) \frac{\partial \tilde{u}_{\varepsilon, \ell}}{\partial y} d y+o\left(\varepsilon^{2} k(\varepsilon, \beta)+\varepsilon \lambda_{\varepsilon} k(\varepsilon, \beta)\right) \sum_{j=1}^{K}\left|a_{j}^{\varepsilon}\right| \\
& =\varepsilon^{2} k(\varepsilon, \beta) \int_{\mathbb{R}} w^{2} \frac{\partial w}{\partial y} y \sum_{j=1}^{K} a_{j}^{\varepsilon}\left(\frac{\partial^{2}}{\partial p_{j}^{\varepsilon} \partial p_{\ell}^{\varepsilon}} F\left(\mathbf{p}^{\varepsilon}\right)\right) d y+o\left(\varepsilon^{2} k(\varepsilon, \beta)+\varepsilon \lambda_{\varepsilon} k(\varepsilon, \beta)\right) \sum_{j=1}^{K}\left|a_{j}^{\varepsilon}\right| \tag{4.35}\\
& =-\varepsilon^{2} k(\varepsilon, \beta) \pi \sum_{j=1}^{K} a_{j}^{\varepsilon} \frac{\partial^{2}}{\partial p_{j}^{\varepsilon} \partial p_{\ell}^{\varepsilon}} F\left(\mathbf{p}^{\varepsilon}\right)+o\left(\varepsilon^{2} k(\varepsilon, \beta)+\varepsilon \lambda_{\varepsilon} k(\varepsilon, \beta)\right) \sum_{j=1}^{K}\left|a_{j}^{\varepsilon}\right|
\end{align*}
$$

where we have used that

$$
\begin{equation*}
\int_{\mathbb{R}} w^{2} \frac{\partial w}{\partial y} y d y=-\frac{1}{3} \int_{\mathbb{R}} w^{3}(y) d y=-\pi \tag{4.36}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon^{2} k(\varepsilon, \beta) \pi \sum_{j=1}^{K} a_{j}^{\varepsilon}\left(\frac{\partial^{2}}{\partial p_{j}^{\varepsilon} \partial p_{\ell}^{\varepsilon}} F\left(\mathbf{p}^{\varepsilon}\right)\right)+o\left(\varepsilon^{2} k(\varepsilon, \beta)+\varepsilon \lambda_{\varepsilon} k(\varepsilon, \beta)\right) \sum_{j=1}^{K}\left|a_{j}^{\varepsilon}\right|=\lambda_{\varepsilon} \pi a_{\ell}^{\varepsilon}(1+o(1)) \tag{4.37}
\end{equation*}
$$

From (4.37), we see that the small eigenvalues with $\lambda_{\varepsilon} \rightarrow 0$ satisfying $\left|\lambda_{\varepsilon}\right| \sim \varepsilon^{2} k(\varepsilon, \beta)$. Furthermore,

$$
\begin{equation*}
\frac{\lambda_{\varepsilon}}{\varepsilon^{2} k(\varepsilon, \beta)} \rightarrow \sigma_{0} \tag{4.38}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$, where σ_{0} is a eigenvalue of the matrix $M\left(\mathbf{p}^{0}\right)$ and $\mathbf{p}^{\varepsilon} \rightarrow \mathbf{p}^{0}$ as $\varepsilon \rightarrow 0$. The vector $\overrightarrow{a^{\varepsilon}}=\left(a_{1}^{\varepsilon}, \cdots, a_{K}^{\varepsilon}\right)^{T}$ approaches an eigenvector of $M\left(\mathbf{p}^{0}\right)$ corresponding to the eigenvalue σ_{0}. In the following subsection, we shall show that if anyone of the following two conditions holds
(1) D is sufficiently large.
(2) $K=2,3,4$ and D is arbitrary positive constant.

Then $\operatorname{rank}\left(M\left(\mathbf{p}^{0}\right)\right)=K-1$ and all the nonzero eigenvalues are negative. It implies that the small eigenvalue is always stable when $2 \leq K \leq 4$ or D is sufficiently large.
4.3. Eigenvalue of the circulant matrix. In the following, we shall compute the eigenvalue of the matrix $M\left(\mathbf{p}^{0}\right)$, defined by

$$
M\left(\mathbf{p}^{0}\right)=\left(\begin{array}{cccc}
-\sum_{j \neq 1} G_{\beta}^{\prime \prime}\left(p_{1}, p_{j}\right) & G_{\beta}^{\prime \prime}\left(p_{1}, p_{2}\right) & \cdots & G_{\beta}^{\prime \prime}\left(p_{1}, p_{K}\right) \\
G_{\beta}^{\prime \prime}\left(p_{2}, p_{1}\right) & -\sum_{j \neq 2} G_{\beta}^{\prime \prime}\left(p_{2}, p_{i}\right) & \cdots & G_{\beta}^{\prime \prime}\left(p_{2}, p_{K}\right) \\
\vdots & \vdots & \ddots & \vdots \\
G_{\beta}^{\prime \prime}\left(p_{K}, p_{1}\right) & G_{\beta}^{\prime \prime}\left(p_{K}, p_{2}\right) & \cdots & -\sum_{j \neq K} G_{\beta}^{\prime \prime}\left(p_{K}, p_{j}\right)
\end{array}\right)
$$

where the Green's function $G_{\beta}(x, z)$ admits the following expression
$G_{\beta}(x, z)=\frac{1}{2 \beta^{2}}+\sum_{k=1}^{\infty} \frac{\cos (k \pi(x-z))}{\beta^{2}+k \pi}=\frac{1}{\beta^{2}}\left(\frac{1}{2}+\sum_{k=1}^{\infty} \frac{\cos (k \pi(x-z))}{k \pi D}-\frac{1}{\pi D} \sum_{k=1}^{\infty} \frac{\cos (k \pi(x-z))}{k(1+k \pi D)}\right), \quad D=\frac{1}{\beta^{2}}$.
It is known that (the left-hand side of $(4.39)^{u}$ is the Fourier expansion of the right-hand side of 4.39$)^{u}$ in $(-1,1) \backslash\{0\}$)

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\cos (k \pi x)}{k}=-\log \sin \left(\frac{\pi|x|}{2}\right)-\log 2 \quad \text { for } \quad x \in(-1,1) \backslash\{0\} \tag{4.39}
\end{equation*}
$$

> 9.fou

After straightforward computations we have

$$
\begin{equation*}
G_{\beta}^{\prime}(x, 0)=-\frac{1}{2} \cot \frac{\pi x}{2}+\frac{1}{\pi D} \frac{\pi-\pi x}{2}-\frac{1}{\pi D} \sum_{k=1}^{\infty} \frac{\sin (k \pi x)}{k(1+k \pi D)}, \quad x>0 \tag{4.40}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\beta}^{\prime \prime}(x, 0)=\frac{\pi}{4} \csc ^{2} \frac{\pi x}{2}+\frac{1}{\pi D^{2}}\left(\log \sin \left(\frac{\pi|x|}{2}\right)+\log 2-\frac{\pi D}{2}+\sum_{k=1}^{\infty} \frac{\cos (k \pi x)}{k(1+k \pi D)}\right) \tag{4.41}
\end{equation*}
$$

Since $p_{1}^{0}, \cdots, p_{K}^{0}$ are equally distributed then it is easy to see that $M\left(\mathbf{p}^{0}\right)$ is a circulant matrix and all the eigenvalues can be written as (see [42, section 6])

$$
\begin{align*}
\lambda_{\ell}= & \frac{1}{\pi D^{2}} \sum_{j=1}^{K-1}\left[\log \sin \left(\frac{j \pi}{K}\right)+\log 2-\frac{\pi D}{2}+\sum_{k=1}^{\infty} \frac{1}{k(1+k \pi D)} \cos \left(\frac{2 k j \pi}{K}\right)\right]\left(\cos \left(\frac{2(\ell-1) j \pi}{K}\right)-1\right) \\
& +\sum_{j=1}^{K-1} \frac{\pi}{4} \csc ^{2}\left(\frac{j \pi}{K}\right)\left(\cos \left(\frac{2(\ell-1) j \pi}{K}\right)-1\right), \quad \ell=1, \cdots, K . \tag{4.42}
\end{align*}
$$

Obviously, one can easily yerify that $\lambda_{1}=0$ and it corresponds to the summation of each row of $M\left(\mathbf{p}^{0}\right)$ vanishes. To compute $\sqrt{7.42}$, we recall the following identities (see $[4]$ and $[6]$)

$$
\begin{equation*}
\sum_{j=1}^{K-1} \csc ^{2}\left(\frac{j \pi}{K}\right)=K-1+\sum_{j=1}^{K-1} \cot ^{2}\left(\frac{j \pi}{K}\right)=\frac{K^{2}-1}{3} \tag{4.43}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{j=1}^{K-1} \csc ^{2}\left(\frac{j \pi}{K}\right) \cos \left(\frac{2(\ell-1) j \pi}{K}\right) & =\sum_{j=1}^{K-1} \cot ^{2}\left(\frac{j \pi}{K}\right) \cos \left(\frac{2(\ell-1) j \pi}{K}\right)+\sum_{j=1}^{K-1} \cos \left(\frac{2(\ell-1) j \pi}{K}\right) \\
& =\frac{1}{2} \sum_{\alpha=0}^{1} \sum_{\beta=0}^{2}\binom{2}{2 \alpha}\binom{2}{\beta} B_{2 \alpha}^{(1)}\left(\frac{\ell-1}{K}\right) B_{2-2 \alpha}^{(2)}(\beta) K^{2 \alpha}-1 \tag{4.44}
\end{align*}
$$

where $\binom{m}{n}$ denotes the Binomial coefficient and $B_{n}^{(m)}$ denotes the Bernoulli polynomial of order m and degree n defined using the generating functions

$$
\left(\frac{t}{e^{t}-1}\right)^{m} e^{e^{t x}}=\sum_{n=0}^{\infty} B_{n}^{(m)} \frac{t^{n}}{n!} .
$$

After a tedious computation we have

$$
\begin{equation*}
\sum_{j=1}^{K-1} \csc ^{2}\left(\frac{j \pi}{K}\right)\left(\cos \left(\frac{2(\ell-1) j \pi}{K}\right)-1\right)=2(\ell-1)^{2}-2(\ell-1) K \tag{4.45}
\end{equation*}
$$

Substituting (1.45m-1 into (4.42) we get

$$
\begin{align*}
\lambda_{\ell}= & \frac{1}{\pi D^{2}} \sum_{j=1}^{K-1}\left[\log \sin \left(\frac{j \pi}{K}\right)+\log 2-\frac{\pi D}{2}+\sum_{k=1}^{\infty} \frac{1}{k(1+k \pi D)} \cos \left(\frac{2 k j \pi}{K}\right)\right]\left(\cos \left(\frac{2(\ell-1) j \pi}{K}\right)-1\right) \\
& +\frac{\pi}{2}\left((\ell-1)^{2}-(\ell-1) K\right), \quad \ell=1, \cdots, K . \tag{4.46}
\end{align*}
$$

Concerning (4.46), we see that if D is sufficiently large then the sign of λ_{ℓ} is decided by $(\ell-1)(\ell-1-K)$ and it is easy to see that $\lambda_{\ell}<0$ for $\ell=2, \cdots, K$.

Next, we shall show when $K=2,3,4, \operatorname{rank}\left(M\left(\mathbf{p}^{0}\right)\right)=K-1$ and non-zero eigenvalues are negative for all D. Using (4.46) ${ }^{\text {we }}$ have

$$
\begin{align*}
\lambda_{2} & =-\frac{2}{\pi D^{2}}\left(-\frac{\pi D}{2}-\sum_{k=1}^{\infty} \frac{\pi D}{1+k \pi D} \cos (k \pi)\right)-\frac{\pi}{2} \\
& =\frac{1}{D}\left(1-\frac{\pi D}{2}-\sum_{m=1}^{\infty} \frac{2 \pi D}{(1+(2 m-1) \pi D)(1+2 m \pi D)}\right), \quad K=2 \tag{4.47}\\
\lambda_{2}\left(\lambda_{3}\right)=\frac{3}{2 D}\left(1-\frac{2}{3} \pi D\right. & \left.-\sum_{m=1}^{\infty}\left(\frac{2 \pi D}{(1+(3 m-2) \pi D)(1+3 m \pi D)}+\frac{\pi D}{(1+(3 m-1) \pi D)(1+3 m \pi D)}\right)\right), \quad K=3, \tag{4.48}
\end{align*}
$$

and

$$
\begin{align*}
\lambda_{2}\left(\lambda_{4}\right) & =\frac{1}{D}\left(2-\frac{3}{2} \pi D-\sum_{m=1}^{\infty} \frac{4 \pi D}{(1+(4 m-2) \pi D)(1+4 m \pi D)}-\sum_{m=1}^{\infty} \frac{2 \pi D}{(1+(2 m-1) \pi D)(1+2 m \pi D)}\right) \\
\lambda_{3} & =\frac{2}{D}\left(1-\pi D-\sum_{m=1}^{\infty} \frac{4 \pi D}{(1+(4 m-2) \pi D)(1+4 m \pi D)}\right), \quad K=4 \tag{4.49}
\end{align*}
$$

To determine the sign of λ, defined in $(4.47), \frac{2-14}{(4.48)}$ and $\frac{2-2}{(4.49)}$, we need the following lemma

Lemma 4.2. Consider the following function

$$
\mathcal{F}_{1}(x)=1-\frac{x}{2}-\sum_{m=1}^{\infty} \frac{2 x}{(1+(2 m-1) x)(1+2 m x)}
$$

and

$$
\mathcal{F}_{2}(x)=1-\frac{2}{3} x-\sum_{m=1}^{\infty}\left(\frac{2 x}{(1+(3 m-2) x)(1+3 m x)}+\frac{x}{(1+(3 m-1) x)(1+3 m x)}\right)
$$

Then $\mathcal{F}_{1}(x)$ and $\mathcal{F}_{2}(x)$ are negative when x is positive.

Proof. Since the proof is almost the same, we shall only focus on the function $\mathcal{F}_{2}(x)$. Recall that the digamma function $\psi(z)=\frac{d}{d z} \Gamma(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}$ has the following series representation

$$
\begin{equation*}
\psi(z)=\sum_{m=0}^{\infty}\left(\frac{1}{m+1}-\frac{1}{m+x}\right)-\gamma \tag{4.50}
\end{equation*}
$$

where γ is the Euler constant. Therefore, we can deduce that

$$
\begin{equation*}
\psi\left(1+\frac{1}{3 x}\right)-\psi\left(\frac{1}{3}+\frac{1}{3 x}\right)=\sum_{m=0}^{\infty}\left(\frac{1}{\frac{1}{3}+\frac{1}{3 x}+m}-\frac{1}{1+\frac{1}{3 x}+m}\right)=\sum_{m=1}^{\infty} \frac{6 x^{2}}{(1+(3 m-2) x)(1+3 m x)} \tag{4.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi\left(1+\frac{1}{3 x}\right)-\psi\left(\frac{2}{3}+\frac{1}{3 x}\right)=\sum_{m=0}^{\infty}\left(\frac{1}{\frac{2}{3}+\frac{1}{3 x}+m}-\frac{1}{1+\frac{1}{3 x}+m}\right)=\sum_{m=1}^{\infty} \frac{3 x^{2}}{(1+(3 m-2) x)(1+3 m x)} \tag{4.52}
\end{equation*}
$$

Using (4.51) and (4.52), we derive that

$$
\mathcal{F}_{2}(x)=1-\frac{2}{3} x-\frac{1}{3 x}\left(2 \psi\left(1+\frac{1}{3 x}\right)-\psi\left(\frac{2}{3}+\frac{1}{3 x}\right)-\psi\left(\frac{1}{3}+\frac{1}{3 x}\right)\right)
$$

To show \mathcal{F}_{2} is negative for $x>0$, it is enough to prove that

$$
\begin{equation*}
2 \psi(1+t)-\psi\left(\frac{1}{3}+t\right)-\psi\left(\frac{2}{3}+t\right)>\frac{1}{t}-\frac{2}{9 t^{2}}, \quad t>0 \tag{4.53}
\end{equation*}
$$

where $t=\frac{1}{3 x}$. By the expansion of $\log \Gamma(t+a)$ for $t>0$ and $a \in[0,1]$ (See (25) in $\left.\| 28 \mid\right)$, we have

$$
\begin{equation*}
\log \Gamma(t+a)=\left(t+a-\frac{1}{2}\right) \log t-t+\frac{1}{2} \log 2 \pi+\sum_{j=2}^{2 n+1} \frac{(-1)^{j} B_{j}(a)}{j(j-1) t^{j-1}}+R_{2 n+1}^{(a)}(t) \tag{4.54}
\end{equation*}
$$

where $n \geq 0$ and

$$
\begin{align*}
R_{2 n+1}^{(a)}(z)= & \frac{(-1)^{n+1}}{2 \pi t^{2 n+1}} \int_{0}^{+\infty} \frac{t^{2}}{t^{2}+s^{2}} s^{2 n} \log \left(1-2 e^{-2 \pi s} \cos (2 \pi a)+e^{-4 \pi s}\right) d s \\
& +\frac{(-1)^{n+1}}{\pi t^{2 n+2}} \int_{0}^{+\infty} \frac{t^{2}}{t^{2}+s^{2}} s^{2 n+1} \arctan \left(\frac{\sin (2 \pi a)}{e^{2 \pi s}-\cos (2 \pi a)}\right) d s \tag{4.55}
\end{align*}
$$

and $B_{j}(a)$ is the j-th Bernoulli polynomial. Then, we have

$$
\begin{align*}
& 2 \log \Gamma(1+t)-\log \Gamma\left(\frac{1}{3}+t\right)-\log \Gamma\left(\frac{2}{3}+t\right) \\
& =\log t+\frac{2}{9 t}+2 R_{3}^{(1)}(t)-R_{3}^{\left(\frac{2}{3}\right)}(t)-R_{3}^{\left(\frac{1}{3}\right)}(t) \tag{4.56}\\
& =\log t+\frac{2}{9 t}+\frac{1}{\pi} \int_{0}^{\infty} \frac{s^{2}}{t\left(t^{2}+s^{2}\right)} \log \frac{1-2 e^{-2 \pi s}+e^{-4 \pi s}}{1+e^{-2 \pi s}+e^{-4 \pi s}} d s
\end{align*}
$$

Differentiating both sides of 4.56 gives

$$
\begin{align*}
2 \psi(1+t)-\psi\left(\frac{1}{3}+t\right)-\psi\left(\frac{2}{3}+t\right) & =\frac{1}{t}-\frac{2}{9 t^{2}}+\frac{1}{\pi} \int_{0}^{\infty} \frac{s^{2}\left(3 t^{2}+s^{2}\right)}{t^{2}\left(t^{2}+s^{2}\right)^{2}} \log \frac{1+e^{-2 \pi s}+e^{-4 \pi s}}{1-2 e^{-2 \pi s}+e^{-4 \pi s}} d s \tag{4.57}\\
& >\frac{1}{t}-\frac{2}{9 t^{2}}, \quad \forall t>0
\end{align*}
$$

Hence (4.53) is proved and we finish the proof.
With Lemma 4.2 . wign are able to show that $\lambda_{2}<0$ by taking $x=\pi D$ in \mathcal{F}_{1} when $K=2$. If $K=3$, we take $x=\pi D$ in \mathcal{F}_{2} and it proves that $\lambda_{3}<0$. While when $K=4$, to show $\lambda_{2}\left(\lambda_{4}\right)<0$ we could write the terms in the bracket of $\lambda_{2}\left(\lambda_{4}\right)$ (see (4.49) as $\mathcal{F}_{1}(2 \pi D)+\mathcal{F}_{1}(\pi D)$ and we get that it is negative. While for λ_{3}, we could prove it is negative just by taking $x=2 \pi D$ in \mathcal{F}_{1}.

5. Proof of Proposition 1.3.

In this section we shall analyze the linear stability of the fractional Gierer-Meinhardt system with two spikes and give the proof for Proposition 1.3 . Consider the following system

$$
\left\{\begin{array}{l}
\varepsilon(-\Delta)^{\frac{1}{2}} u_{\varepsilon}+u_{\varepsilon}-\frac{u_{\varepsilon}^{2}}{v_{\varepsilon}}=0 \tag{5.1}\\
D(-\Delta)^{\frac{1}{2}} v_{\varepsilon}+v_{\varepsilon}-\varepsilon^{-1} u_{\varepsilon}^{2}=0
\end{array}\right.
$$

a.gmo

In the inner region near the $j-$ th spike, centered at $p_{j}, j=1,2$, we set $u_{\varepsilon}=D u_{j}, v_{\varepsilon}=D v_{j}$ and $y=$ $\varepsilon^{-1}\left(x-p_{j}\right)$, then

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} u_{j}+u_{j}-\frac{u_{j}^{2}}{v_{j}}=0, & u_{j}(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty, \tag{5.2}\\ (-\Delta)^{\frac{1}{2}} v_{j}-u_{j}^{2}=0, & v_{j}(y) \sim-S_{j} \log r+C_{j}+o(1) \text { as }|y| \rightarrow+\infty,\end{cases}
$$

where $S_{j}=\frac{1}{\pi} \int_{\mathbb{R}} u_{j}^{2} d x$. In 5.1, since u_{ε} is algebraically small away from p_{j}, we have in the sense of distribution that $\varepsilon^{-1} u_{\varepsilon}^{2} \rightarrow \pi D^{2} \sum_{j=1}^{2} S_{j} \delta_{p_{j}}$, therefore, from the second equation of 5.1$)^{\text {wo }}$ e see that the limit function v satisfies

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} v+\frac{1}{D} v=\pi D \sum_{j=1}^{2} S_{j} \delta_{p_{j}} \quad v(x)=-D S_{j} \log \left|x-p_{j}\right|+D\left(-\frac{S_{j}}{\sigma}+C_{j}\right) \quad \text { as } x \rightarrow p_{j} \tag{5.3}
\end{equation*}
$$

where $\sigma=-\frac{1}{\log \varepsilon}$. We define the Green function $G_{D}(x, 0)$ and its regular part $R_{D}(x, 0)$ by

$$
(-\Delta)^{\frac{1}{2}} G_{D}(x, 0)+\frac{1}{D} G_{D}(x, 0)=\delta_{0}, \quad G_{D}(x, 0)=-\frac{1}{\pi} \log |x|+R_{D}(x, 0) \text { as } x \rightarrow 0
$$

where R_{D} is the regular part of G_{D} and

$$
R_{D}(0,0)=\frac{D}{2}-\frac{1}{\pi} \log \pi+O\left(\frac{1}{D}\right)
$$

 derive that S_{j} satisfies

$$
\begin{equation*}
S_{j}+\pi \sigma S_{j} R_{D}\left(p_{j}, p_{j}\right)+\pi \sigma S_{i} G_{D}\left(p_{i}, p_{j}\right)=\sigma C_{j} \tag{5.4}
\end{equation*}
$$

Since the two spikes are equally distributed on $(-1,1)$, we have $G_{D}\left(p_{i}, p_{j}\right)=\frac{D}{2}-\frac{1}{\pi} \log 2+O\left(\frac{1}{D}\right)$. In the stability threshold we require that $D=O\left(\sigma^{-1}\right) \gg 1$, we expand $\frac{1 . .4)}{5.4)}$ to

$$
\left\{\begin{array}{l}
S_{1}-\sigma S_{1} \log \pi-\sigma S_{2} \log 2+\frac{D \pi \sigma}{2} \sum_{\ell=1}^{2} S_{\ell}=\sigma C_{1} \tag{5.5}\\
S_{2}-\sigma S_{2} \log \pi-\sigma S_{1} \log 2+\frac{D \pi \sigma}{2} \sum_{\ell=1}^{2} S_{\ell}=\sigma C_{2} \\
31
\end{array}\right.
$$

To determine what the appropriate scaling for S_{j} in terms of $\sigma \ll 1$ for the above equation w. 5 we use $C_{j}=O\left(S_{j}^{\frac{1}{2}}\right)$ as $S_{j} \rightarrow 0$. Indeed, we set $u_{j}=\mathcal{U}_{j} S_{j}^{p}$ and $v_{j}=\mathcal{V}_{j} S_{j}^{p}$, where \mathcal{U}_{j} and \mathcal{V}_{j} are $O(1)$ as $S_{j} \rightarrow 0$, we obtain that the first equation in 5.2 is kept the same but that the equation for v_{j} becomes

$$
(-\Delta)^{\frac{1}{2}} \mathcal{V}_{j}-S_{j}^{p} \mathcal{U}_{j}^{2}=0, \quad \mathcal{V}_{j}=-S_{j}^{1-p} \log r+S_{j}^{-p} C_{j} \text { as } r \rightarrow 0
$$

Comparing the powers of S_{j} we see that $p=1-p$ and it gives that $p=\frac{1}{2}$. Then, to ensure that $\mathcal{U}_{j}=O(1)$ we need $C_{j}=O\left(S_{j}^{\frac{1}{2}}\right)$. This shows that if $S_{j} \sim S_{j 0} \sigma^{2}$, the appropriate scaling for u_{j}, v_{j} and C_{j} are all $O(\sigma)$. To obtain a two-term expansion for the inner problem, we set

$$
\left(u_{j}, v_{j}, C_{j}\right)=\sigma\left(u_{j 0}, v_{j 0}, C_{j 0}\right)+\sigma^{2}\left(u_{j 1}, v_{j 1}, C_{j 1}\right)+\sigma^{3}\left(u_{j 2}, v_{j 2}, C_{j 2}\right)+\cdots,
$$

and

$$
S_{j}=S_{j 0} \sigma^{2}+S_{j 1} \sigma^{3}+\cdots
$$

Substituting these expansions into $\sqrt{5.2}$ a and collecting powers of σ we derive that

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} u_{j 0}+u_{j 0}-\frac{u_{j 0}^{2}}{v_{j 0}}=0, & u_{j 0}(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty, \tag{5.6}\\ (-\Delta)^{\frac{1}{2}} v_{j 0}=0, & v_{j 0}(y) \rightarrow C_{j 0} \text { as }|y| \rightarrow+\infty,\end{cases}
$$

At next order, $u_{j 1}$ and $v_{j 1}$ satisfy

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} u_{j 1}+u_{j 1}-\frac{2 u_{j 0}}{v_{j 0}} u_{j 1}+\frac{u_{j 0}^{2}}{v_{j 0}^{2}} v_{j 1}=0, & u_{j 1}(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty, \tag{5.7}\\ (-\Delta)^{\frac{1}{2}} v_{j 1}-u_{j 0}^{2}=0, & v_{j 1}(y) \rightarrow-S_{j 0} \log |y|+C_{j 1} \text { as }|y| \rightarrow+\infty\end{cases}
$$

Then at one higher order, we obtain that $v_{j 2}$ verifies that

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} v_{j 2}-2 u_{j 0} u_{j 1}=0, \quad v_{j 2}(y) \rightarrow-S_{j 1} \log |y|+C_{j 2} \text { as }|y| \rightarrow+\infty \tag{5.8}
\end{equation*}
$$

a.1st
a.2nd
a.3rd

The solution to $\left(5.6\right.$ is ${ }^{\text {s.t. }}$ simply

$$
u_{j 0}=C_{j 0} w, \quad v_{j 0}=C_{j 0}
$$

where $w(x)=\frac{2}{1+|x|^{2}}$ is the radially symmetric ground-state solution to $(-\Delta)^{\frac{1}{2}} w+w-w^{2}=0$. Using the Green function of $(-\Delta)^{\frac{1}{2}}$ in \mathbb{R} and representation formula $\frac{2.3}{5.7)^{\text {nd }} \text { we derive that }}$

$$
S_{j 0}=\frac{1}{\pi} C_{j 0}^{2} \int_{\mathbb{R}} w^{2} d y=2 C_{j 0}^{2}
$$

It is convenient to decompose $u_{j 1}$ and $v_{j 1}$ in terms of new variables \hat{u} and \hat{v} by

$$
u_{j 1}=C_{j 1} w+S_{j 0} \hat{u}_{j}, \quad v_{j 1}=C_{j 1}+S_{j 0} \hat{v}_{j}
$$

then it is easy to check that \hat{u}_{j} and \hat{v}_{j} are the unique radially symmetric solutions to

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} \hat{u}_{j}+\hat{u}_{j}-2 w \hat{u}_{j}+w^{2} \hat{v}_{j}=0, & \hat{u}_{j}(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty \tag{5.9}\\ (-\Delta)^{\frac{1}{2}} \hat{v}_{j}-\frac{1}{2} w^{2}=0, & \hat{v}_{j} \rightarrow-\log |y| \text { as }|y| \rightarrow+\infty\end{cases}
$$

Concerning (5.8), integrating both sides we see that

$$
\begin{aligned}
S_{j 1} \pi & =2 \int_{\mathbb{R}} C_{j 0} w\left(C_{j 1} w+S_{j 0} \hat{u}_{j}\right) d y=4 C_{j 0} C_{j 1} \pi+2 C_{j 0} S_{j 0} \int_{\mathbb{R}} w \hat{u}_{j} d y \\
& =4 C_{j 0} C_{j 1} \pi+2 C_{j 0} S_{j 0} \int_{\mathbb{R}}\left(w+x w^{\prime}\right) w^{2} \hat{v}_{j} d y \approx 4 C_{j 0} C_{j 1} \pi+11.4482 C_{j 0} S_{j 0}
\end{aligned}
$$

where we used

$$
\int_{\mathbb{R}}\left(w+z w^{\prime}\right) w^{2} \hat{v}_{j} d z=\frac{1}{\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \log \frac{1}{|z-y|}\left(\frac{2}{1+z^{2}}\right)^{2}\left(\frac{2}{1+z^{2}}-\frac{4 z^{2}}{\left(1+z^{2}\right)^{2}}\right) \frac{2}{\left(1+y^{2}\right)^{2}} d z d y \approx 5.7241
$$

Summarizing the above computation, we have the following lemma
lea.1 Lemma 5.1. For $S_{j}=S_{j 0} \sigma^{2}+S_{j 1} \sigma^{3}+\cdots$, where $\sigma=-1 / \log \varepsilon \ll 1$, the asymptotic solution to the core problem 5.2. ${ }^{2}$ is

$$
u_{j} \sim \sigma\left(u_{j 0}+\sigma u_{j 1}+\cdots\right), \quad v_{j} \sim \sigma\left(v_{j 0}+\sigma v_{j 1}+\sigma^{2} v_{j 2}+\cdots\right), \quad C_{j} \sim \sigma\left(C_{j 0}+\sigma C_{j 1}+\cdots\right)
$$

where $u_{j 0}, u_{j 1}, v_{j 0}, v_{j 1}$ are define by

$$
u_{j 0}=C_{j 0} w, \quad u_{j 1}=C_{j 1} w+S_{j 0} \hat{u}_{j}, \quad v_{j 0}=C_{j 0}, \quad v_{j 1}=C_{j 1}+S_{j 0} \hat{v}_{j}
$$

with $\left(\hat{u}_{j}, \hat{v}_{j}\right)$ verifying $\frac{3.9 \text { nd }-2}{\text { Einally }, ~} C_{j 0}$ and $C_{j 1}$ are related to $S_{j 0}$ and $S_{j 1}$ by

$$
\begin{equation*}
C_{j 0}=\sqrt{\frac{S_{j 0}}{2}}, \quad C_{j 1}=\frac{S_{j 1}}{4 C_{j 0}}-\frac{S_{j 0}}{2 \pi} \int_{\mathbb{R}} w \hat{u}_{j} d y . \tag{5.10}
\end{equation*}
$$

With Lemma 5.1 we 1.1
Proof of Proposition $1.3 \cdot{ }^{1}$ Consider the linearized problem

$$
\left\{\begin{array}{l}
\varepsilon(-\Delta)^{\frac{1}{2}} \phi+\phi-2 \frac{u_{\varepsilon}}{v_{\varepsilon}} \phi+\frac{u_{\varepsilon}^{2}}{v_{\varepsilon}^{2}} \psi+\lambda \phi=0 \tag{5.11}\\
D(-\Delta)^{\frac{1}{2}} \psi+\psi-2 \varepsilon^{-1} u_{\varepsilon} \phi+\lambda \psi=0
\end{array}\right.
$$

In the inner region near the center p_{j}, we introduce the local variables $\Phi_{j}(y)$ and $\Psi_{j}(y)$ by

$$
\phi(x)=\Phi_{j}(y), \psi(x)=\Psi_{j}(y), y=\varepsilon^{-1}\left(x-p_{j}\right)
$$

Upon substituting the above relation into (5.11), and using $u_{\varepsilon}=D u_{j}$ and $v_{\varepsilon}=D v_{j}$ near p_{j}, where u_{j} and v_{j} satisfy the core problem $\sqrt{5.2} 2$, , we obtain that

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} \Phi_{j}+\Phi_{j}-\frac{2 u_{j}}{v_{j}} \Phi_{j}+\frac{u_{j}^{2}}{v_{j}^{2}} \Psi_{j}+\lambda \Phi_{j}=0, & \Phi_{j}(y) \rightarrow 0 \text { as }|y| \rightarrow \infty \tag{5.12}\\ (-\Delta)^{\frac{1}{2}} \Psi_{j}-2 u_{j} \Phi_{j}=0, & \Psi_{j}(y) \sim-\theta_{j} \log |y|+B_{j} \text { as }|y| \rightarrow \infty\end{cases}
$$

where B_{j} depends on S_{j} and λ. One can easily check that $\theta_{j} \pi=2 \int_{\mathbb{R}} u_{j} \Phi_{j} d y$. To determine θ_{j}, we must match the behavior of the core solution to an outer problem for ψ. Since u_{ε} is localized near the center, we have $2 \varepsilon^{-1} u_{\varepsilon} \phi \rightarrow 2 D \sum_{j=1}^{2}\left(\int_{\mathbb{R}} u_{j} \Phi_{j} d y\right) \delta_{p_{j}}=\pi D \sum_{j=1}^{2} \theta_{j} \delta_{p_{j}}$. Using this expression we obtain that the outer problem for ψ is

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \psi+\beta_{\lambda}^{2} \psi=\pi \sum_{j=1}^{2} \theta_{j} \delta_{p_{j}}, \quad \psi(x) \sim-\theta_{j} \log \left|x-p_{j}\right|-\frac{\theta_{j}}{\sigma}+B_{j} \text { as } x \rightarrow p_{j} \tag{5.13}
\end{equation*}
$$

where $\beta_{\lambda}=\sqrt{(1+\tau \lambda) / D}$. The solution to (E.13) is $\psi=\pi \sum_{j=1}^{2} \theta_{j} G_{D_{\lambda}}\left(x, p_{j}\right)$ with $G_{D_{\lambda}}$ satisfying

$$
(-\Delta)^{\frac{1}{2}} G_{D_{\lambda}}(x, 0)+\beta_{\lambda}^{2} G_{D_{\lambda}}(x, 0)=\delta_{0}, \quad G_{D_{\lambda}}(x, 0) \sim-\frac{1}{\pi} \log |x|+R_{D_{\lambda}} \text { as }|x| \rightarrow 0
$$

From the above discussion, we conclude that

$$
\theta_{j}+\pi \sigma \theta_{j} R_{D_{\lambda}}\left(p_{j}, p_{j}\right)+\pi \sigma \theta_{i} G_{D_{\lambda}}\left(p_{i}, p_{j}\right)=\sigma B_{j}
$$

Using $R_{D_{\lambda}}(0) \sim \frac{D}{2(1+\tau \lambda)}-\frac{1}{\pi} \log \pi+O(\sigma)$ we have

$$
\left\{\begin{array}{l}
\theta_{1}-\theta_{1} \sigma \log \pi-\theta_{2} \sigma \log 2+\sum_{\ell=1}^{2} \frac{\pi D \sigma}{2(1+\tau \lambda)} \theta_{\ell}=\sigma B_{1} \tag{5.14}\\
\theta_{2}-\theta_{2} \sigma \log \pi-\theta_{1} \sigma \log 2+\sum_{\ell=1}^{2} \frac{\pi D \sigma}{2(1+\tau \lambda)} \theta_{\ell}=\sigma B_{2}
\end{array}\right.
$$

Using Lemma 5.1 we first calculate the coefficients in 5.12 as

$$
\begin{aligned}
& \frac{u_{j}}{v_{j}}=\frac{C_{j 0} w+\left(C_{j 1} w+S_{j 0} \hat{u}_{j}\right) \sigma+\cdots}{C_{j 0}+\left(C_{j 1}+S_{j 0} \hat{v}_{j}\right) \sigma+\cdots}=w+\frac{\sigma S_{j 0}}{C_{j 0}}\left(\hat{u}_{j}-w \hat{v}_{j}\right)+\cdots \\
& \frac{u_{j}^{2}}{v_{j}^{2}}=\left(\frac{C_{j 0} w+\left(C_{j 1} w+S_{j 0} \hat{u}_{j}\right) \sigma+\cdots}{C_{j 0}+\left(C_{j 1}+S_{j 0} \hat{v}_{j}\right) \sigma+\cdots}\right)^{2}=w^{2}+\frac{2 \sigma S_{j 0}}{C_{j 0}} w\left(\hat{u}_{j}-w \hat{v}_{j}\right)+\cdots,
\end{aligned}
$$

So that the local problem becomes

$$
\left\{\begin{array}{l}
(-\Delta)^{\frac{1}{2}} \Phi_{j}+\Phi_{j}-\left[2 w+\frac{2 \sigma S_{j 0}}{C_{j 0}}\left(\hat{u}_{j}-w \hat{v}_{j}\right)+\cdots\right] \Phi_{j}+\left[w^{2}+\frac{2 \sigma S_{j 0}}{C_{j 0}} w\left(\hat{u}_{j}-w \hat{v}_{j}\right)+\cdots\right] \Psi_{j}+\lambda \Phi_{j}=0, \tag{5.15}\\
(-\Delta)^{\frac{1}{2}} \Psi_{j}-2 \sigma\left[C_{j 0} w+\sigma\left(C_{j 1} w+S_{j 0} \hat{u}_{j}\right)+\cdots\right] \Phi_{j}=0, \\
\Phi_{j}(y) \rightarrow 0, \Psi_{j}(y) \sim-\theta_{j} \log |y|+B_{j} \text { as }|y| \rightarrow+\infty,
\end{array}\right.
$$

To analyze (5.15) together with (5.14), we substitute the appropriate expansions

$$
\left\{\begin{array}{l}
\Phi_{j}=\frac{1}{\sigma}\left(\Phi_{j 0}+\sigma \Phi_{j 1}+\cdots\right), \quad \Psi_{j}=\frac{1}{\sigma}\left(\Psi_{j 0}+\sigma \Psi_{j 1}+\cdots\right), \quad B_{j}=\frac{1}{\sigma}\left(B_{j 0}+\sigma B_{j 1}+\cdots\right), \tag{5.16}\\
\theta_{j}=\theta_{j 0}+\sigma \theta_{j 1}+\cdots, \quad \lambda=\lambda_{0}+\sigma \lambda_{1}+\cdots .
\end{array}\right.
$$

The leading order is

$$
\begin{cases}(-\Delta)^{\frac{1}{2}} \Phi_{j 0}+\Phi_{j 0}-2 w \Phi_{j 0}+w^{2} \Psi_{j 0}+\lambda_{0} \Phi_{j 0}=0, & \Phi_{j 0}(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty, \tag{5.17}\\ (-\Delta)^{\frac{1}{2}} \Psi_{j 0}=0, & \Psi_{j 0}(y) \rightarrow B_{j 0} \text { as }|y| \rightarrow+\infty,\end{cases}
$$

a.lead
then we conclude $\Psi_{j 0}=B_{j 0}$. At next order, we have

$$
\left\{\begin{array}{l}
(-\Delta)^{\frac{1}{2}} \Phi_{j 1}+\Phi_{j 1}-2 w \Phi_{j 1}+w^{2} \Psi_{j 1}-\frac{2 S_{j 0}}{C_{j 0}}\left(\hat{u}_{j}-w \hat{v}_{j}\right) \Phi_{j 0}+\frac{2 S_{j 0}}{C_{j 0}} w\left(\hat{u}_{j}-w \hat{v}_{j}\right) \Psi_{j 0}+\lambda_{1} \Phi_{j 0}+\lambda_{0} \Phi_{j 1}=0, \tag{5.18}\\
(-\Delta)^{\frac{1}{2}} \Psi_{j 1}-2 C_{j 0} w \Phi_{j 0}=0, \\
\Phi_{j 1}(y) \rightarrow 0, \Psi_{j 1}(y) \rightarrow-\theta_{j 0} \log |y|+B_{j 1} \quad \text { as } \quad y \rightarrow \infty .
\end{array}\right.
$$

At one more higher order, the problem for $\Psi_{j 2}$ is

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \Psi_{j 2}-2 C_{j 0} w \Phi_{j 1}-2\left(C_{j 1} w+S_{j 0} \hat{u}_{j}\right) \Phi_{j 0}=0, \quad \Psi_{j 2}(y) \rightarrow-\theta_{j 1} \log |y|+B_{j 2} \quad \text { as } \quad|y| \rightarrow+\infty . \tag{5.19}
\end{equation*}
$$

In addition, substituting (5.16) into (5.14)

$$
\left\{\begin{array}{l}
\theta_{j 0}+\sum_{\ell=1}^{2} \frac{\pi \sigma D}{2(1+\lambda \tau)} \theta_{\ell 0}=B_{j 0}, \quad j=1,2, \tag{5.20}\\
\theta_{11}-\theta_{10} \log \pi-\theta_{20} \log 2+\sum_{\ell=1}^{2} \frac{\pi \sigma D}{2(1+\lambda \tau)} \theta_{\ell 1}=B_{11}, \\
\theta_{21}-\theta_{20} \log \pi-\theta_{10} \log 2+\sum_{\ell=1}^{2} \frac{\pi \sigma D}{2(1+\lambda \tau)} \theta_{\ell 1}=B_{21} .
\end{array}\right.
$$

Next, we solve $\frac{\text { E.17 }}{}$ - E.19. First we notice that

$$
\theta_{j 0}=\frac{2 C_{j 0}}{\pi_{h}} \int_{\mathbb{R}} w \Phi_{j 0} d y .
$$

To identify $C_{j 0}$ we use the expansion of C_{j}, S_{j} and (5.5). Since we consider the symmetric case, i.e.,

$$
\hat{u}_{1}=\hat{u}_{2}=\hat{u}, \hat{v}_{1}=\hat{v}_{2}=\hat{v}, S_{1}=S_{2}=S, C_{1}=C_{2}=C, S_{1 l}=S_{2 l}=S_{l}, C_{1 l}=C_{2 l}=C_{l}, l=0,1,2, \cdots .
$$

We set

$$
\begin{equation*}
\mu=\pi D \sigma . \tag{5.21}
\end{equation*}
$$

a. def-mu

Collecting the power of σ we get

$$
C_{0}=S_{0}(1+\mu)=\sqrt{\frac{S_{0}}{2}}, \quad S_{0}=\frac{1}{2(1+\mu)^{2}}, \quad \theta_{j 0}=\frac{2 C_{0}}{\pi} \int_{\mathbb{R}} w \Phi_{j 0} d y=\frac{2}{1+\mu} \frac{\int_{\mathbb{R}} w \Phi_{j 0} d y}{\int_{\mathbb{R}} w w^{2} d y} .
$$

In the following we consider $\hat{\Phi}=\Phi_{1}-\Phi_{2}$, from (E.17) and the fact that $\theta_{10}-\theta_{20}=B_{10}-B_{20}$ we see that

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \hat{\Phi}_{0}+\hat{\Phi}_{0}-2 w \hat{\Phi}_{0}+\frac{2}{1+\mu} \frac{\int_{\mathbb{R}} w \hat{\Phi}_{0} d y}{\int_{\mathbb{R}} w^{2} d y} w^{2}+\lambda_{0} \hat{\Phi}_{0}=0, \quad \hat{\Phi}_{0} \rightarrow 0 \text { as }|y| \rightarrow+\infty . \tag{5.22}
\end{equation*}
$$

For (5.22) we have seen that $\Re\left(\lambda_{0}\right)<0$ if and only if $2 /(1+\mu)>1$. Therefore, the stability threshold where $\lambda_{0}=0, \Phi_{0}=w$ occurs and $\mu=1$. We derive that

$$
C_{0}=\frac{1}{4}, \quad S_{0}=\frac{1}{8}, \quad \hat{\Phi}_{0}=w, \quad \theta_{10}-\theta_{20}=B_{10}-B_{20}=\Psi_{10}-\Psi_{20}=1 .
$$

Upon substituting the above equation into $\frac{s .18}{}$ we obtain at $\lambda_{0}=0$ that $\Psi_{11}-\Psi_{21}$ verifies

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}}\left(\Psi_{11}-\Psi_{21}\right)-\frac{1}{2} w^{2}=0, \quad \Psi_{11}-\Psi_{21} \sim-\log r+B_{11}-B_{21} \text { as }|x| \rightarrow \infty \tag{5.23}
\end{equation*}
$$

Compared with 5.9 nd -2 we conclude that

$$
\begin{equation*}
\Psi_{11}-\Psi_{21}=\hat{v}+B_{11}-B_{21} \tag{5.24}
\end{equation*}
$$

In the following we are going to analyze the effect of the higher-order terms. To this aim, we set

$$
\begin{equation*}
\lambda=\sigma \lambda_{1}+\cdots, \quad \mu=1+\sigma \mu_{1}+\cdots \tag{5.25}
\end{equation*}
$$

> a.psil
a.psi1-v
a. exp-mu
 asymptotic behavior of $R_{D}(0,0)$ to obtain

$$
\begin{equation*}
\left[1+\left(1+\sigma \mu_{1}\right)-\sigma \log \pi+\cdots\right]\left(\sigma^{2} S_{0}+\sigma^{3} S_{1}+\cdots\right)=\sigma^{2}\left(C_{0}+\sigma C_{1}+\cdots\right) \tag{5.26}
\end{equation*}
$$

From the $O\left(\sigma^{3}\right)$ we obtain that
Combined with $\frac{10}{3}$ we derive that

$$
\begin{equation*}
C_{1}=-\frac{\mu_{1}}{8}-\frac{1}{8 \pi} \int_{\mathbb{R}} w \hat{u} d y+\frac{\log \pi}{8} \tag{5.27}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
(-\Delta)^{\frac{1}{2}} \hat{\Phi}_{1}+\hat{\Phi}_{1}-2 w \hat{\Phi}_{1}+w^{2}\left(B_{11}-B_{21}\right)+w^{2} \hat{v}+\lambda_{1} w=0 \tag{5.28}\\
(-\Delta)^{\frac{1}{2}} \hat{\Psi}_{2}-\frac{1}{2} w \hat{\Phi}_{1}-2\left(C_{1} w+\frac{1}{8} \hat{u}\right) w=0 \\
\hat{\Phi}_{1}(y)=\Phi_{11}(y)-\Phi_{21}(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty \\
\hat{\Psi}_{2}(y)=\Psi_{12}(y)-\Psi_{22}(y) \sim-\left(\theta_{11}-\theta_{21}\right) \log r+B_{12}-B_{22} \text { as }|y| \rightarrow+\infty
\end{array}\right.
$$

Using the asymptotic behavior we obtain that

$$
\begin{equation*}
\left(\theta_{11}-\theta_{21}\right)=\frac{1}{2 \pi} \int_{\mathbb{R}} w \hat{\Phi}_{1} d y+4 C_{1}+\frac{1}{4 \pi} \int_{\mathbb{R}} w \hat{u} d y \tag{5.29}
\end{equation*}
$$

Using $\frac{(5.20 \text { e-1 }}{}$ we have

$$
B_{11}-B_{21}=\theta_{11}-\theta_{21}-\log \frac{\pi}{2}
$$

$$
\begin{equation*}
(-\Delta)^{\frac{1}{2}} \hat{\Phi}_{1}+\hat{\Phi}_{1}-2 w \hat{\Phi}_{1}+\frac{\int_{\mathbb{R}} w \hat{\Phi}_{1} d y}{\int_{\mathbb{R}} w^{2} d y} w w^{2}+\lambda_{1} w=\mathcal{R}_{1} \tag{5.30}
\end{equation*}
$$

where

$$
\mathcal{R}_{1}=w^{2} \log \frac{\pi}{2}-w^{2} \hat{v}-4 C_{1} w^{2}-\frac{1}{4 \pi} w^{2} \int_{\mathbb{R}} w \hat{u} d x
$$

In order to make equation 5.30 has solution, we need

$$
\lambda_{1} \int_{\mathbb{R}} w\left(w+y w^{\prime}\right) d y=\int_{\mathbb{R}}\left(\log \frac{\pi}{2}-\hat{v}-4 C_{1}-\frac{1}{4 \pi} \int_{\mathbb{R}} w \hat{u} d z\right) w^{2}\left(w+y w^{\prime}\right) d y
$$

it implies that

$$
\begin{aligned}
\pi \lambda_{1} & =2 \pi \log \frac{\pi}{2}-8 \pi C_{1}-\frac{1}{2} \int_{\mathbb{R}} w \hat{u} d y-\int_{\mathbb{R}} w \hat{u} d y \\
& =\pi \mu_{1}+2 \pi \log \frac{\pi}{2}-\pi \log \pi+\int_{\mathbb{R}} w \hat{u} d y-\frac{3}{2} \int_{\mathbb{R}} w \hat{u} d y \\
& =\pi \mu_{1}+\pi \log \frac{\pi}{4}-\frac{1}{2} \int_{\mathbb{R}} w \hat{u} d y .
\end{aligned}
$$

So the threshold for μ_{1} is

$$
\mu_{1}=\frac{1}{2 \pi} \int_{\mathbb{R}} w \hat{u} d y-\log \frac{\pi}{4} \approx 0.911019+0.241564=1.15258
$$

$$
D=\frac{1}{\pi} \log \frac{1}{\varepsilon}+\frac{1}{\pi}\left(\frac{1}{2 \pi} \int_{\mathbb{R}} w \hat{u} d y-\log \frac{\pi}{4}\right)
$$

Thus we finish the proof.

6. Overview of Numerical Calculations

In this section we outline the numerical solutions to the time-dependent fractional GM system with periodic boundary conditions 1.2 . Our methodology is based upon the simulations performed in appendix B of [12]. To approximate the fractional laplaçian we discretize over $[-1,1]$ using the finite difference quadrature discretization developed in 177 and perfrom time stepping using an implicit-explicit semi-backwards difference scheme as in |32].

Let $x_{i}=-1+$ ih for $i=0, \ldots N-1$ discretize the interval $[-1,1]$ into N uniformly distributed points. Noting that $C_{1 / 2}=\frac{1}{\pi}$, the quadratic interpolant weights of 17$]$ for $\alpha=1$ become

$$
w_{j}=\frac{1}{\pi h} \begin{cases}4-\frac{5}{2} \log (3) & j= \pm 1 \tag{6.1}\\ -4+2 x \log \left(\frac{x+1}{x-1}\right) & j= \pm 2, \pm 4, \pm 6, \ldots \\ 4+3 \log (x)-\left(x+\frac{3}{2}\right) \log (x+2)+\left(x-\frac{3}{2}\right) \log (x-2) & j= \pm 3, \pm 5, \pm 7, \ldots\end{cases}
$$

(the value of w_{0} is irrelevant to the computation). Let ϕ be a 2-periodic funcition discretized over [-1 1 1] as $\phi_{i}=\phi(-1+2 i / N)$ for $i=0, \ldots, N-1$. By periodicity, the discretizaton provided by $\left(\mathrm{FL}_{h}\right)$ in [17] simplifies to

$$
\begin{equation*}
(-\Delta)^{1 / 2} \phi\left(x_{i}\right) \approx\left(-\Delta_{h}\right)^{1 / 2} \phi_{i}=\sum_{j=0}^{N-1} W_{i-j}\left(\phi_{i}-\phi_{j}\right) \tag{6.2}
\end{equation*}
$$

where

$$
W_{\sigma}=w_{\sigma}+\sum_{k=1}^{\infty}\left(w_{\sigma+N k}+w_{\sigma-N k}\right)
$$

In our computations we truncate this series to 5000 terms. To simulate the full system we use an identical time-stepping as in [12] which we summarize here. Let $\Phi(t)=\left(u_{0}(t), \ldots, u_{N-1}(t), v_{0}(t), \ldots, v_{N-1}(t)\right)^{T}$, $\left.\mathcal{A}=\operatorname{diag}\left(\epsilon\left(-\Delta_{h}\right)^{1 / 2}\right), \tau^{-1} D\left(-\Delta_{h}\right)^{1 / 2}\right)$ and $\mathcal{N}(\Phi)$ be a function which computes the nonlinearities of the system. Now (1.2) is approximated as

$$
\frac{d \Phi}{d t}+\mathcal{A} \Phi+\mathcal{N}(\Phi)=0
$$

Fix a timestep $\Delta t>0$ and denote $\Phi_{n}=\Phi(n \Delta t)$. The 2-SBDF scheme [32] uses an implicit second-order backwards time-stepping for the fractional laplace term, and explicit time-stepping for the nonlinear terms. In particular, we compute the next time-step by solving

$$
(3 \mathcal{I}-2 \Delta t \mathcal{A}) \Phi_{n+1}=4 \Phi_{n}-\Phi_{n-1}+4 \Delta t \mathcal{N}\left(\Phi_{n}\right)-2 \Delta t \mathcal{N}\left(\Phi_{n-1}\right)
$$

To attain Φ_{1} we perform five steps of size $\Delta t / 5$ using the first order 1-SBDF scheme

$$
\begin{equation*}
(\mathcal{I}-\Delta t \mathcal{A}) \Phi_{n+1}=\Phi_{n}+\Delta t \mathcal{N}\left(\Phi_{n-1}\right) \tag{6.3}
\end{equation*}
$$

In our computations, we use a mesh size of $N=2000$ and timesteps of size $\Delta t \overline{\overline{3}} 0.01$. For the initial conditions we set the ansatz as 2.25 , with the spike heights are $2.30,2.31$, and (2.32) for the η tends to $0, \infty, \eta_{0}$ respectively in the symmetric case and 2.35 in the asymmetric case.

Based on our numerical simulations, we attach the following three figures to explain what we have done:
(1). In Figure 1 we have ploted three curves: the first order approximation of the threshold $\frac{1}{\pi} \log \frac{1}{\varepsilon}$, the second order approximation of the threshold (established in Proposition 1.3 , and the computed threshold. They are represented by the blue dotted curve, the orange dotted curve and the X marks respectively. The computed threshold is attained by simulating the two-spike system for several initial values of ϵ and D. As a we have seen in the figure, the difference between the first-order approximation of the threshold and the computed threshold is approximately $\frac{1}{2|\log (1 / \epsilon)|}$, and the

Figure 1. Two spike stability threshold

Figure 2. Two Spike Final State
second-order approximation of of the threshold is approximately $\frac{1}{\log (1 / \epsilon)}$. As this simulation can become expensive, it is economical to determine a coarse estimation of the critical thereshold by simulating the system for a short time and observing the trend in spike height differences $\mid u(1 / 2)$ -$u(-1 / 2)$ | since unstable two spike solutions near the threshold degenerate into solutions of a single bump at $\pm 1 / 2$. Solutions for which the small errors do not grow or decay exponentially are further simulated to attain a more precise value of the threshold.
(2). The activator and inhibitor of one such stable state is pictured in Figure $\frac{f=\text { iq:Two_Spike Final }}{2}$ In this simulation, the final two spike state for $\varepsilon=0.05, D=1.0$ and $\tau=0.02$ is shown. This value is attained at time $T=500$ with the difference in spike heights is on the order 10^{-8} and decreasing. The analagous simulations starting with the asymmetric initial conditions did not yield such any stable states.

Acknowledgement

The reseach of J. Wei is partially supported by NSERC of Canada. The research of W. Yang is partially supported by NSFC No. 11801550 and 11871470. The authors thank Daniel Gomez for his assistance with the implementation of the numerical methods.

REFERENCES

[1] E. Abad, S.B. Yuste, K. Lindenberg. Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: a fractional equation approach. Physical review. E, Statistical, nonlinear, and soft matter physics, 866 Pt 1 (2012), 061120.
[2] M. Banerjee, S.V. Petrovskii, V. Volpert. Nonlocal Reaction-Diffusion Models of Heterogeneous Wealth Distribution. Mathematics. 9(4):351 (2021).
[3] M. Benzaquen, J. Bouchaud, A fractional reaction-diffusion description of supply and demand. The European Physical Journal B, 91 (2017), 1-7.
[4] B.C. Berndt, B.P. Yeap. Explicit evaluations and reciprocity theorems for finite trigonometric sums. Advances in Applied Mathematics, 29(3):358-385, 2002.

Ssloff 2014
vijovic2009 _uniqueness
gierer_1972 Gordon1994 olovin_2008
gomez_2019
gwy
gui_1999
gui_2000
gbe_2017
henry_2005
huang_2013
iron_2001
iron_2014
karg_2020
Inikov_2020
dmrv_2007
mv_2017
etzler_2004
nurray_2003
c_2012_levi
ec_2012_sub
Nemes2013
iveira_2019
Fengqi2015
everey_2015
ruuth 1995
turing _asymmetric
wei 1998 _gm_2d_weak
n_2d_strong
7_existence
winter_2009
[5] P. Bressloff. Stochastic Processes in Cell Biology. Interdisciplinary Applied Mathematics. Springer International Publishing, 2014.
[6] D. Cvijović. Summation formulae for finite cotangent sums. Applied mathematics and computation, 215(3):1135-1140, 2009.
[7] R.L. Frank, E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in \mathbb{R}. Acta Math. 210 (2013), no. 2, 261-318.
[8] A. Gierer, H. Meinhardt. A theory of biological pattern formation. Kybernetik, 12(1):30-39, Dec 1972.
[9] L. Gordon, A stochastic approach to the gamma function. The American Mathematical Monthly, 1994, 101(9): 858-865.
[10] A.A. Golovin, B.J. Matkowsky, V.A. Volpert. Turing pattern formation in the brusselator model with superdiffusion. SIAM Journal on Applied Mathematics, 69(1):251-22, 2008.
[11] D. Gomez, M. J.Ward, J.Wei. The linear stability of symmetric spike patterns for a bulk-membrane coupled Gierer-Meinhardt model. SIAM J. Appl. Dyn. Syst., 18(2):729-768, 2019.
[12] D. Gomez, J. Wei, W. Yang. Multi-Spike Solutions to the Fractional Gierer-Meinhardt System in a One-Dimensional Domain, preprint.
[13] C. Gui, J. Wei. Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differential Equations, 158(1):1-27, 1999.
[14] C. Gui, J. Wei, M. Winter. Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire, 17(1):47-82, 2000.
[15] K. Gustafson, B. Bayati, P. Eckhoff. Fractional Diffusion Emulates a Human Mobility Network during a Simulated Disease Outbreak. Frontiers in Ecology and Evolution, 26 April 2017.
[16] B. Henry, T. Langlands, S. Wearne. Turing pattern formation in fractional activator-inhibitor systems. Physical review. E, Statistical, nonlinear, and soft matter physics, 72:026101, 092005.
[17] Y. Huang, A. Oberman. Numerical methods for the fractional laplacian: A finite difference-quadrature approach. SIAM Journal on Numerical Analysis, 52, 112013.
[18] D. Iron, M.J. Ward, J. Wei. The stability of spike solutions to the one-dimensional Gierer-Meinhardt model. Phys. D, 150(1-2):25-62, 2001.
[19] D. Iron, J. Rumsey, M.J. Ward, J. Wei, Logarithmic expansions and the stability of periodic patterns of localized spots for reactiondiffusion systems in \mathbb{R}^{2}. J. Nonlinear Sci. 24 (2014), no. 5, 857-912.
[20] M. Khalighi, J. Ardalankia, A.K. Rizi, H. Ebadi, G. Jafari. The strategy of survival for a competition between normal and anomalous diffusion. arXiv: Physics and Society, (2020).
[21] T. Kolokolnikov, F. Paquin-Lefebvre, M.J. Ward. Stable asymmetric spike equilibria for the Gierer-Meinhardt model with a precursor field. IMA Journal of Applied Mathematics, 85(4):605-634, 072020.
[22] A. Milchev, J. Dubbeldam, V. Rostiashvili, T. Vilgis. Polymer Translocation through a Nanopore: A Showcase of Anomalous Diffusion. Annals of the New York Academy of Sciences, 1161 (2009).
[23] A. Massaccesi, E. Valdinoci. Is a nonlocal diffusion strategy convenient for biological populations in competition? Journal of Mathematical Biology, 74 (2017), 113-147.
[24] R. Metzler, J. Klafter. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General, 37(31):R161-R208, jul 2004.
[25] J.D. Murray. Mathematical biology. II, volume 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York, third edition, 2003. Spatial models and biomedical applications.
[26] Y.Nec. Spike-type solutions to one dimensional gierer-meinhardt model with lévy flights. Studies in Applied Mathematics, 129(3):272-299, 2012.
[27] Y. Nec, M. Ward. Dynamics and stability of spike-type solutions to a one dimensional gierer-meinhardt model with subdiffusion. Physica D: Nonlinear Phenomena, 241:947-963, 052012.
[28] G. Nemes Error bounds and exponential improvement for Hermite's asymptotic expansion for the Gamma function. Applicable Analysis and Discrete Mathematics, 2013: 161-179.
[29] F. Oliveira, R. Ferreira, L. Lapas, M. Vainstein. Anomalous diffusion: A basic mechanism for the evolution of inhomogeneous systems, 022019.
[30] F. Qi, C. Mortici, Some inequalities for the trigamma function in terms of the digamma function. Applied Mathematics and Computation, 2015, 271: 502-511.
[31] J. Reverey, J.H. Jeon, H. Bao, M. Leippe, R. Metzler, C. Selhuber-Unkel. Superdiffusion dominates intracellular particle motion in the supercrowded space of pathogenic acanthamoeba castellanii. Scientific reports, 5:11690, 072015.
[32] S.J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol., 34(2):148-176, 1995.
[33] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond. B 237 (1952), 37-72.
[34] M.J. Ward, J. Wei. Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability. European J. Appl. Math., 13(3):283-320, 2002. 24
[35] J. Wei. On the interior spike layer solutions to a singularly perturbed neumann problem. Tohoku Math. J. (2), 50(2):159-178, 1998.
[36] J.Wei, M.Winter. Spikes for the two-dimensional gierer-meinhardt system: the weak coupling case. J. Nonlinear Sci., 11(6):415-458, 2001.
[37] J.Wei, M.Winter. Spikes for the Gierer-Meinhardt system in two dimensions: the strong coupling case. J. Differential Equations, 178(2):478-518, 2002.
[38] J.Wei, M.Winter. Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in R. Methods Appl. Anal., 14(2):119-163, 2007.
[39] J. Wei, M. Winter. On the gierer-meinhardt system with precursors. Discrete Contin. Dyn. Syst. 25 (2009), no. 1, 363-398.

ww2017
wwy2017
_multi_bump
[40] J. Wei, M. Winter. Mathematial aspects of pattern formation in biological systems, volume 189. Applied Mathematical Sciences Series, Springer, 2014.
[41] J. Wei, M. Winter. Stable spike clusters for the one-dimensional Gierer-Meinhardt system. European J. Appl. Math. 28 (2017), no. 4,576-635.
[42] J. Wei, M. Winter, W. Yang. Stable spike clusters for the precursor Gierer-Meinhardt system in \mathbb{R}^{2}. Calc. Var. Partial Differential Equations, 56 (2017), no. 5, Paper No. 142, 40 pp.
[43] J. Wei, W. Yang. Multi-bump ground states of the fractional Gierer-Meinhardt system on the real line. J. Dynam. Differential Equations, 31(1):385-417, 2019.

Markus de Medeiros, Department of Mathematics, The University of British Columbia, Vancouver, BC Canada V6T 1Z2

Email address: markusdemedeiros@outlook.com
Jun-cheng Wei, Department of Mathematics, The University of British Columbia, Vancouver, BC Canada V6T 1Z2

Email address: jcwei@math.ubc.ca
Wen Yang, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.

Email address: wyang@wipm. ac.cn

[^0]: ${ }^{1}$ More specifically, h.o.t. means term which can be composed into two parts, the leading order is of ε^{2} and even symmetric with respect to p_{i}, while the order of the left part is $o\left(\varepsilon^{2}\right)$.

[^1]: ${ }^{2}$ When D is large or $K=2,3,4$, we are able to show that $M\left(\mathbf{p}^{0}\right)$ is semi-negative and $\operatorname{rank}\left(M\left(\mathbf{p}^{0}\right)\right)=K-1$. The proof is given in next section.

