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ABSTRACT. In this paper, we study the existence and stability of multiple spikes pattern to the fractional Gierer-
Meinhardt model with periodic boundary conditions and the fractional power s = 1

2 . Specifically, we rigor-
ously establish the existence of symmetric multiple spikes and asymmetric two-spikes solutions by the classical
Lyapunov-Schmidt reduction method. We also investigate the stability of the constructed solution by studying its
associated large and small eigenvalue problems, where we need to consider two nonlocal eigenvalue problems
in their fractional versions. In the study of the large eigenvalue problem, the quantity DK(ε) = 2

πK log 1
ε is the

critical threshold which determines the stability of K-peaked solutions. For the symmetric two-spikes pattern we
obtain the asymptotic expansion for the critical threshold DK(ε) up to the second order. Moreover, we provide
some elementary properties of the Green’s function, including the first and second derivatives, they are linked to
the location of the spikes and the stability. Among these properties on the Green’s function, we find out that the
polygamma function ϕ(x) = d

dx log Γ(x) plays a crucial role.
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1. INTRODUCTION

In mathematical biology, many models have been proposed and analyzed to explore the so-called Turing
instability since the work

turing
[33] in 1952. One of the most famous in biological pattern formation is the Gierer-

Meinhardt system proposed by Gierer and Meinhardt in 1972, see
gierer_1972
[8], which reads as follows

ut = ε2∆u − u + u2

v , u > 0 in Ω,
τvt = D∆v − v + u2, v > 0 in Ω,
∂u
∂ν = ∂v

∂ν = 0 on ∂Ω.
(1.1) 1.gms

Equation (
1.gms1.gms
1.1) is used as a prototype of deterministic reaction-diffusion system to explain the results of

experiments on head regeneration and transplantation in the freshwater polyp hydra. In (
1.gms1.gms
1.1), the unknowns

u = u(x, t) and v = v(x, t) represent the concentrations of the activator and inhibitor at a point x ∈ Ω and
at a time t > 0, where Ω is a bounded and smooth domain and ν = ν(x) is the outer normal at x ∈ ∂Ω.

In past decades, there have been many works concerning the system (
1.gms1.gms
1.1) which focus on the analysis,

both rigorous and formal, of the existence, structure, and linear stability of such localized solutions. In a
1-D domain, the Gierer-Meinhardt system has been particularly well studied by using pure PDE methods
and formal asymptotic analysis see

iron_2001,ward_2002_asymmetric,wei_1998,wei_2007_existence
[18, 34, 35, 38]. In the 2-D case, the rigorous analysis on the existence

and stability of multiple-peaked patterns that are far from spatial homogeneity for the singularly perturbed
Gierer-Meinhardt system has also been investigated, see

wei_2001_gm_2d_weak,wei_2002_gm_2d_strong
[36, 37]. There are also some works concerning

the extended 1-D and 2-D cases which involve the effection of the precusors
winter_2009,ww2017,wwy2017
[39, 41, 42], bulk-membrane-

coupling
gomez_2019
[11], and anomalous diffusion

nec_2012_levi,nec_2012_sub,wei_2019_multi_bump
[26, 27, 43]. For more background of this model and other related

reaction diffusion systems, we refer the readers to the book
murray_2003,wei_2014_book
[25, 40].

Gierer-Meinhardt systems have widespread applications in the modelling of biological phenomena for
which distinct agents diffuse while simultaneously undergoing prescribed reaction kinetics. While these
models have typically assumed a normal (or Brownian) diffusion process for which the mean-squared-
displacement (MSD) is proportional to the elapsed time, a growing body of literature has considered the
alternative of anomalous diffusion which may be better suited for biological processes in complex environ-
ments

metzler_2004,oliveira_2019,reverey_2015
[24, 29, 31] (see also §7.1 in

bressloff_2014
[5]). It has been shown that both superdiffusion and subdiffusion can

reduce the threshold for Turing instabilities when compared to the same systems with normal diffusion
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golovin_2008,henry_2005
[10, 16]. Fractional reaction diffusion systems have also found a diverse range of applications from popula-
tion dynamics

ebl_2012,karg_2020,mv_2017
[1, 20, 23] to economics

banerjee_2021,bb_2017
[2, 3]. Nonlocal, anomalous diffusuion can allow systems to exhibit

novel behavior that cannot be modelled in local systems. For example
mv_2017
[23, Section 4] emphasizes that their

results about fractional species competition have no local analouge, and
dmrv_2007
[22] utilizes a fractional diffusion

model to resolve controversy arising from a local model of polymer transport. The study of fractional
generalizations of local systems has proven productive in enhancing our models of real-world phenom-
ena. Therefore, understanding the pattern formation and its linear stability of the fractional case is quite
necessary in studying the extended Gierer-Meinhardt system.

As a continuation work of
gwy,wei_2019_multi_bump
[12, 43], we shall study the existence and stability of localized multi-spike solu-

tions to the one-dimensional Gierer-Meinhardt model with periodic boundary condition and the fractional
power s = 1

2 , i.e., 
ut + ε(−∆)

1
2 u + u − u2

v = 0, for x ∈ (−1, 1),
τvt + D(−∆)

1
2 v + v − u2 = 0, for x ∈ (−1, 1),

u(x) = u(x + 2), v(x) = v(x + 2), for x ∈ R,

(1.2) 1.fgm

where 0 < ε ≪ 1 and the parameters 0 < D < ∞ and τ ≥ 0 are independent of ε. The (nonlocal)
fractional Laplacian (−∆)

1
2 replaces the classical Laplacian as the infinitesimal generator of the underlying

Lévy process for s = 1
2 and is defined by

(−∆)sϕ(x) ≡ Cs

∫ ∞

−∞

ϕ(x)− ϕ(y)
|x − y|1+2s dy, where Cs ≡

22ssΓ(s + 1/2)√
πΓ(1 − s)

.

Due to the periodicity of the funciton, we could also write

(−∆)
1
2 ϕ(x) = Cs

∫ 1

−1
(ϕ(x)− ϕ(y))Ks(x, y)dy,

with

Ks(x, y) =
1

|x − y|2 +
∞

∑
m=1

(
1

|x − y + 2m|2 +
1

|x − y − 2m|2

)
.

In previous work
gwy
[12], the last two authors of this paper and Gomez analyzed (

1.fgm1.fgm
1.2) in the case where the

fractional power s = 1
2 in the equation of v is replaced by s ∈ ( 1

2 , 1). Specifically, it has been rigorously
proven that the symmetric and asymmetric two-spikes solutions exists and the linear stability of these
solutions is determined by the eigenvalues of a certain 2 × 2 matrix. As

gwy
[12], we prove the existence of

symmetric multiple spikes and asymmetric two spikes solutions for (
1.fgm1.fgm
1.2) The only issue is that the decay

of the ansatz is not good enough; we use a symmetry property to deal with this difficulty and thus the
existence part can be obtained similarly. The stability turns to be more complicated for the case s = 1

2 .
On one side, in the study of the large eigenvalue problem there are several cases need to be considered,
whereas we only need to study a single case when s > 1

2 . On the other side, in the study of the small
eigenvalue problem we have to figure out the sign on the second derivative of the Green’s function. Due
to the conditional convergence of the series for the case of s = 1

2 , it does not seem possible to handle
using elementary computation. Through a further analysis on the corresponding series we find that such a
function is closely related to the polygamma function ϕ(z) := d

dz log Γ(z), and using its properties we are
able to determine the sign of the second derivative the Green’s function thereby solving the stability part.

To state the main results of this paper, we write the steady problem of (
1.fgm1.fgm
1.2) as

ε(−∆)
1
2
x u + u − u2

v = 0, x ∈ (−1, 1),
D(−∆)

1
2 v + v − u2 = 0, x ∈ (−1, 1),

u(x) = u(x + 2), v(x) = v(x + 2), x ∈ R.

(1.3) 1.fg

Let D = 1
β2 and the Green’s function Gβ(x, z) be the function satisfying{

(−∆)
1
2 Gβ(x, z) + β2Gβ(x, z) = δ(x − z), x ∈ (−1, 1),

Gβ(x, z) = Gβ(x + 2, z), x ∈ R.
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It is not difficult to verify that Gβ(x, z) admits the following Fourier series expansion

Gβ(x, z) =
1
2

∞

∑
ℓ=−∞

eiℓπ(x−z)

β2 + ℓπ
=

1
2

β−2 +
∞

∑
ℓ=1

cos(ℓπ(x − z))
β2 + ℓπ

.

Let G0(x, z) be the Green’s function given by{
(−∆)

1
2 G0(x, z) = δ(x − z), x ∈ (−1, 1),

G0(x, z) = G0(x + 2, z), x ∈ R.
(1.4) 2.green

Then it is not difficult to check that

Gβ(x, z) =
1

2β2 + G0(x, z) + O(β2). (1.5) 2.rel-g

The singular part of Gβ(x, z) behaves as 1
π log 1

|x−z| and we decompose Gβ(x, z) as

Gβ(x, z) =
1
π

log
1

|x − z| − Hβ(x, z) = Kβ(x, z)− Hβ(x, z),

where Kβ(x, z) = 1
π log 1

|x−z| and Hβ(x, z) denote the singular part and the regular part of the Green func-
tion respectively.

To describe the location of spikes, we denote p ∈ (−1, 1)K, where p is arranged such that

p ∈ Bσ(p0) =

{
q = (q1, · · · , qK) |

K

∑
j=1

|qj − p0
j |

2 ≤ σ2

}
, where p0

j =
2j − 1 − K

K
, j = 1, · · · , K. (1.6) 2.p

For p ∈ Bσ(p0), we define

F(p) =
K

∑
j=1

Hβ(pj, pj)− ∑
i ̸=j

Gβ(pi, pj), (1.7) 2.f

and M(p) = ∇2
pF(p). Here M(p) is a K × K matrix and one can easily see that it is a circulant matrix at p0.

In addition, we have rank(M(p0)) ≤ K − 1 due to the fact that the summation of each row is 0.

Our first theorem concerns the existence of symmetric multiple spikes solutions.

th1.exist Theorem 1.1. Let p0 be defined as in (
2.p2.p
1.6). Suppose M(p0) is a matrix of rank(M(p0)) = K − 1. Moreover, we

assume that the following technical condition holds:

if K > 1, and η0 := lim
ε→0

2β2

π
log

1
ε
̸= K. (1.8) 2.tech

Then for ε sufficiently small and D = 1
β2 sufficiently large, problem (

1.fg1.fg
1.3) has a solution uε, vε such that

uε ∼ ξε

(
K

∑
j=1

w

(
x − pε

j

ε

)
+ O(h(ε, β))

)
, vε(pε

j) ∼ ξε, (1.9) 2.conclusion

where w is the unique solution of

(−∆)
1
2 w + w − w2 = 0, w(x) = w(−x), (1.10) 1.ground

and ξε and h(ε, β) are given by

ξε =


1

εKπ , if ηε → 0,
1

εηεπ , if ηε → +∞,
1

ε(η0+K)π , if ηε → η0,
(1.11) 3.spike-h

and

h(ε, β) =


ηε, if ηε → 0,
η−1

ε , if ηε → ∞,
β2, if ηε → η0.

(1.12)
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Furthermore, pε
j → p0

j as ε → 0 for j = 1, · · · , K.

Remark: For D sufficiently large or K = 2, 3, 4 one can verify that rank(M(p0)) = K − 1. In addition, under
these conditions one can show that all the non-zero eigenvalues of M(p0) are negative. This part is left to
section 4.

Next we study the stability and instability of the symmetric multiple spikes solution construted in The-
orem

th1.existth1.exist
1.1. Writing the eigenvalue problem for the fractional Gierer-Meinhardt system asε(−∆)

1
2 ϕε + ϕε − 2 uε

vε
ϕε +

u2
ε

v2
ε
ψε + λεϕε = 0,

D(−∆)
1
2 ψε + ψε − 2uεϕε + τλεψε = 0,

(1.13) 2.spectrum

where (uε, vε) is the solution constructed in Theorem
th1.existth1.exist
1.1 and λε ∈ C. Here we say (uε, vε) is linearly stable

if the eigenvalue λε < 0, while (uε, vε) is called linearly unstable if there exists a eigenvalue λε such that its
real part ℜ(λε) > 0.

th1.stability Theorem 1.2. Suppose M(p0) is a semi-negative matrix of rank K − 1, and for ε sufficiently small and D = 1
β2

is sufficiently large. Let ηε = 2β2

π log 1
ε and (uε, vε) be the K-peaked solutions constructed in Theorem

th1.existth1.exist
1.1 with the

center of peaks approaching p0. Then
(i). ηε → 0. If K = 1, then there exists an unique τ1 > 0 such that for τ < τ1, (uε, vε) is a linearly stable, while

for τ > τ1, (uε, vε) is linearly unstable; while if K > 1, (uε, vε) is linearly unstable for any τ ≥ 0.
(ii). ηε → +∞. (uε, vε) is linearly stable for any τ > 0.

(iii). ηε → η0. If K > 1 and η0 < K, then (uε, vε) is linearly unstable for any τ > 0. If η0 > K, then there exist
0 < τ2 ≤ τ3 such that (uε, vε) is linearly stable for any τ < τ2 and τ > τ3. If K = 1 and η0 < 1, then there
exists 0 < τ4 ≤ τ5 such that (uε, vε) is linearly stable for any τ < τ4 and linearly unstable τ > τ5.

Concerning the (iii) of Theorem
th1.stabilityth1.stability
1.2, when K ≥ 1 or τ is large, DK(ε) =

2
πK log 1

ε is the critical threshold
for the asymptotic behavior of the diffusion coefficient of the inhibitor which determines the stability of 2-
peaked solutions. This number also appears in the study of classical 1-D and 2-D Gierer-Meinhardt systems.
For 1-D classical Gierer-Meinhardt system, it has been shown

iron_2001
[18] for K ≥ 2 that the leading order of

the critical thresholds DK(ε) = DK are independent of ε. Moreover, the critical thresholds arise in the
computation of the small eigenvalues. While in the classical 2-D case, DK(ε) is obtained in the study of the
large eigenvalues. In fact, system (

1.fg1.fg
1.3) is more like the classical Gierer-Meinhardt system in 2-D case. The

quantity DK(ε) also appears in the study of large eigenvalue problem. In addition, by the formal asymptotic
computation, we obtain the next order term in the asymptotic expansion of DK(ε), which is very useful in
pratice.

pr1.1 Proposition 1.3. Consider the symmetric two spikes pattern of the Gierer-Meinhardt system (
1.fg1.fg
1.3), where D =

O(log 1
ε ). If

D ∼ 1
π

log
1
ε
+

1
π

µ1,

where µ1 and û are

µ1 =
1

2π

∫
R

wûdy − log
π

4
,

and {
(−∆)

1
2 û + û − 2wû + w2v̂ = 0, û(y) → 0 as |y| → ∞,

(−∆)
1
2 v̂ − 1

2 w2 = 0, v̂(y) → − log |y| as |y| → ∞,

and w is the solution to (
1.ground1.ground
1.10). Then the portion of the conitinuous spectrum of the linearized problem (

2.spectrum2.spectrum
1.13) lies

within an O( 1
log 1

ε

) neighborhood of the origin λ = 0 is given by

λ =
1

log 1
ε

(
µ1 + log

π

4
− 1

2π

∫
R

wûdy
)

.
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In Theorem
th1.existth1.exist
1.1 and Theorem

th1.stabilityth1.stability
1.2, we provide the existence and stability results for the symmetric mul-

tiple spikes. In fact, when ηε → 0 or +∞ as ε → 0, we could only see the symmetric pattern. While as ηε

tends to some positive constant η0. The spike height may be the same or different yielding, respectively,
symmetric and asymmetric patterns. Specifically, in the following result we shall see that the existence of
asymmetric pattern for two spikes and such a solution is not stable

th1.asy Theorem 1.4. Let p0 = (p0
1, p0

2) = (− 1
2 , 1

2 ). Suppose that

η0 := lim
ε→0

2β2

π
log

1
ε
> 2,

then for ε sufficiently small and D = 1
β2 sufficiently large, problem (

1.fg1.fg
1.3) has a solution uε, vε such that

uε ∼
2

∑
j=1

ξε,jw

(
x − pε

j

ε

)
, vε(pε

j) ∼ ξε,j, (1.14) 1.asy-conclu

where

ξε,1 =
1

πε

 1
2η0

+

√
1 − 4

η2
0

4 + 2η0

 (1 + O(β2)), ξε,2) =
1

πε

 1
2η0

−

√
1 − 4

η2
0

4 + 2η0

 (1 + O(β2)). (1.15) 1.asy-height

Furthermore, the solution (uε, vε) is linearly unstable for any τ > 0.

Remark: From Theorem
th1.asyth1.asy
1.4 we have seen that when η0 > 2 there exists asymmetric patterns. Besides, such

a solution is always unstable due to the large eigenvalue is always positive. This shows a striking difference
to the symmetric pattern.

Before we end the introduction, we would like to give some remarks on our proof for the results of the
symmetric and asymmetric patterns. Since the proof of the existence part for both cases are almost the
same, we shall only focus on the symmetric case and state the different points if necessary for asymmetric
case. While for the stability, as we shall see, one of the spectrums for the large eigenvalue problem of the
asymmetric case is always positive, it leads to the instability of the asymmetric pattern. So, in the small
eigenvalue problem we shall always consider the symmetric case.

The paper is organized as follows: in section 2, we shall present some preliminary results, including the
study of two nonlocal eigenvalue problems and the calculations on the height of the spikes. In section 3,
we rigorously prove the existence of the symmetric and asymmetric patterns. In section 4, we consider
the stability for the constructed solutions by studying the associated large and small eigenvalue problems.
We also derive some properties on the Green’s function Gβ(x, z), and these properties are useful in our
study on the small eigenvalue problem. In section 5 we give the proof of Proposition

pr1.1pr1.1
1.3, and this part has

independent interest. Some numerical explanation is given in the Appendix.

2. PRELIMINARIES
sec:prelim

In this section we collect several key preliminary results needed for the existence and stability proofs in
§
sec:proof-existencesec:proof-existence
3 and §

sec:proof-stabilitysec:proof-stability
4. Let w be the ground state solution satisfying{

(−∆)
1
2 w + w − w2 = 0, in R,

w(x) → 0 as |x| → ∞,
(2.1) eq:core-problem

we have the following result
frank_2013_uniqueness
[7] (also see Proposition 4.1 in

wei_2019_multi_bump
[43] and the references therein)

pr3.1 Proposition 2.1. Equation (
eq:core-problemeq:core-problem
2.1) admits a positive, radially symmetric solution satisfying the following properties:

(a) The solution w and its derivative have the following expression

w(x) =
2

1 + x2 and w′(x) = − 4x
(1 + x2)2 .
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(b) Let L0 = (−∆)
1
2 + 1 − 2w be the linearized operator. Then we have

Ker(L0) = span
{

∂w
∂x

}
.

(c) Considering the following eigenvalue problem

(−∆)sϕ + ϕ − 2wϕ + µ1ϕ = 0.

There is an unique positive eigenvalue µ1 > 0.

For the linearized operator L0, one can easily derive the following useful indentities

L0w = −w2, L0 (w + x · ∂xw) = −w.

Hence ∫
R
(L−1

0 w)wdx =
∫

R
(−x · ∂xw − w)wdx = −1

2

∫
R

w2dx,

and ∫
R
(L−1

0 w)w2dx = −
∫

R
L−1

0 wL0wdx = −
∫

R
w2dx.

Next we recall two stability results of the nonlocal eigenvalue problem. The reader can find the proof in
gwy
[12, Theorem 3.2, Theorem 3.3].

th3.stability Theorem 2.2. Consider the following nonlocal eigenvalue problem

(−∆)sϕ + ϕ − 2wϕ + γ

∫
R

wϕdx∫
R

w2dx
w2 + αϕ = 0. (2.2) 3.2

(1) If γ < 1, then there is a eigenvalue α to (
3.23.2
2.2) such that ℜ(α) > 0.

(2) If γ > 1 and s > 1
4 , then for any nonzero eigenvalue α of (

3.23.2
2.2), we have

ℜ(α) ≤ −c0 < 0.

(3) If γ ̸= 1 and α = 0, then ϕ = c0∂xw for some constant c0.

th3.2 Theorem 2.3. Consider the following nonlocal eigenvalue problem

(−∆)sϕ + ϕ − 2wϕ + γ(τα)

∫
R

wϕdx∫
R

w2dx
w2 + αϕ = 0, (2.3) 3.4

where γ(τα) is a complex function of τα and satisfies that

γ(0) ∈ R, |γ(τα)| ≤ C for αR ≥ 0, τ ≥ 0. (2.4) 3.3

Then there is a small number τ0 > 0 such that for τ < τ0,
(1) if γ(0) < 1, then there is a positive eigenvalue to (

3.43.4
2.3);

(2) if γ(0) > 1 and s > 1
4 , then for any nonzero eigenvalue α of (

3.43.4
2.3), we have

ℜ(α) ≤ −c0 < 0.

Based on Theorems
th3.stabilityth3.stability
2.2 and

th3.2th3.2
2.3 we shall study the following two nonlocal eigenvalue problems:

Lϕ := (−∆)
1
2 ϕ + ϕ − 2wϕ + γ

∫
R

wϕdx∫
R

w2dx
w2 + λ0ϕ = 0, ϕ ∈ H1(R), (2.5) A.1

where
(a). γ = µ

1+τλ0
, where µ > 0, τ ≥ 0.

(b). γ = 2(K+η0(1+τλ0))
(K+η0)(1+τλ0)

, where η0 > 0, τ ≥ 0.

First, we study the problem (
A.1A.1
2.5) in case (a).

tha.1 Theorem 2.4. Let γ = µ
1+τλ0

where µ > 0, τ ≥ 0 and let L be defined in (
A.1A.1
2.5).
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(1). If µ > 1, then there exists a unique τ1 > 0 such that for τ > τ1, equation (
A.1A.1
2.5) admits a positive eigenvalue,

and for τ < τ1, all nonzero eigenvalues of problem (
A.1A.1
2.5) satisfy ℜ(λ) < 0. At τ = τ1, the eigenvalue problem

(
A.1A.1
2.5) has a hopf bifurcation.

(2). If µ < 1, then L admits a positive eigenvalue λ0 > 0.

We prove Theorem
tha.1tha.1
2.4 by the following two lemmas.

lea.1 Lemma 2.5. If µ < 1, then L has a positive eigenvalue λ0 > 0.

Proof. We may assume that ϕ is an even positive function, namely,

ϕ ∈ H1
e (R) =

{
u ∈ H1(R) | u(y) = u(−y)

}
.

Let L0 be given in Proposition
pr3.1pr3.1
2.1. Then by the second conclusion, L0 is invertible in H1

e (R). Let us denote
the inverse as L−1

0 . By Proposition
pr3.1pr3.1
2.1, L0 has a unique positive eigenvalue µ1. It is easy to see that λ0 ̸= µ1

since we have
∫

R
wϕ0dx > 0.

Then λ0 is a eigenvalue of (
A.1A.1
2.5) if and only if it satisfies the following algebraic equation:∫

R
w2dx = − µ

1 + τλ0

∫
R
((L0 + λ0)

−1w2)wdx. (2.6) a.p-1

We can rewrite (
a.p-1a.p-1
2.6) as

ρ(λ0) := (µ − 1 − τλ0)
∫

R
w2dx − µλ0

∫
R

(
(L0 + λ0)

−1w
)

wdx = 0.

We notice that ρ(0) = (µ − 1)
∫

R
w2dx < 0. On the other hand, as λ0 → µ1 from left, we have

∫
R
((L0 +

λ0)
−1w)wdx → −∞, and hence ρ(λ0) → +∞. By continuity, there exists a λ0 ∈ (0, µ1) such that ρ(λ0) = 0.

Such a positive λ0 will be a eigenvalue of L. □

When µ > 1 we notice that the eigenvalues will not cross through zero: Indeed, if λ0 = 0, then we have

L0ϕ + µ

∫
R

wϕdx∫
R

w2dx
w2 = 0,

which implies that

L0

(
ϕ − µ

∫
R

wϕdx∫
R

w2dx
w

)
= 0,

and hence, by Proposition
pr3.1pr3.1
2.1,

ϕ − µ

∫
R

wϕdx∫
R

w2dx
w ∈ Ker(L0).

This is impossible since ϕ is radially symmetric and ϕ ̸= cw for all c ∈ R. As a consequence, there must be a
point τ1 at which L has a Hopf bifurcation, i.e., L has a purely imaginary eigenvalue α =

√
−1αI . To prove

Theorem
tha.1tha.1
2.4, all we need to show that τ1 is unique, that is,

lea.3 Lemma 2.6. Let µ > 1. There there exists an unique τ1 > 0 such that L has Hopf bifurcation.

Proof. Let λ0 =
√
−1αI be a eigenvalue of L. We notice that

√
−1αI is a eigenvalue of L then −

√
−1αI is also

a eigenvalue of L. Therefore, in the following we shall assume that αI > 0. Let ϕ0 = −(L0 +
√
−1αI)

−1w2.
Then (

A.1A.1
2.5) becomes ∫

R
wϕ0dx∫

R
w2dx

=
1 + τ

√
−1αI

µ
. (2.7) 3.11

Let ϕ0 = ϕR
0 +

√
−1ϕI

0. Then from (
3.113.11
2.7), we obtain the two equations∫

R
wϕR

0 dx∫
R

w2dx
=

1
µ

,

∫
R

wϕI
0dx∫

R
w2dx

=
ταI
µ

. (2.8) 3.12

We write (
A.1A.1
2.5) into its real and imaginary part. Then

− L0ϕR
0 = w2 − aIϕ

I
0, −L0ϕI

0 = αIϕ
R
0 . (2.9) 3.13
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So ϕR
0 = −α−1

I L0ϕI
0 and

ϕI
0 = αI(L2

0 + α2
I )

−1w2, ϕR
0 = −L0(L2

0 + α2
I )

−1w2. (2.10) 3.14

Substituting (
3.143.14
2.10) into (

3.123.12
2.8), we obtain∫

R
wL0(L2

0 + α2
I )

−1w2dx∫
R

w2dx
= − 1

µ
,

∫
R

w(L2
0 + α2

I )
−1w2dx∫

R
w2dx

=
τ

µ
. (2.11) 3.15

Let h(αI) = −
∫

R
wL0(L2

0+α2
I )

−1w2dx∫
R

w2dx . Then intgeration by parts gives h(αI) =
∫

R
w2(L2

0+α2
I )

−1w2dx∫
R

w2dx . Note that

h′(αI) = −2αI

∫
R

w2(L2
0+α2

I )
−2w2dx∫

R
w2dx < 0. It is known that

h(0) = −
∫

R
w(L−1

0 w2)dx∫
R

w2dx
= 1,

h(αI) → 0 as αI → +∞ and µ > 1, there exists an unique αI > 0 such that the first equation of (
3.153.15
2.11) holds.

Substituting this unique αI into the second one of (
3.153.15
2.11), we obtain an unique τ = τ1 > 0. Then Lemma

lea.3lea.3
2.6

is proved. □

Next, we study the following NLEP:

(−∆)
1
2 ϕ + ϕ − 2wϕ +

2(K + η0(1 + τλ0))

(K + η0)(1 + τλ0)

∫
R

wϕdx∫
R

w2dx
w2 + λ0ϕ = 0, ϕ ∈ H1(R), (2.12) 3.17

where η0 ∈ (0,+∞) and τ ∈ [0,+∞). Then we have

tha.4 Theorem 2.7. Consider the eigenvalue problem (
3.173.17
2.12), we have:

(1) If η0 < K, then for τ small, problem (
3.173.17
2.12) is stable, while for τ large it is unstable.

(2) If η0 > K, then there exists 0 < τ2 ≤ τ3 such that problem (
3.173.17
2.12) is stable for τ < τ2 or τ > τ3.

Proof. Let us set

f (τλ) =
2(K + η0(1 + τλ))

(K + η0)(1 + τλ)
. (2.13) 3.21

We note that

lim
τλ→+∞

f (τλ) =
2η0

K + η0
:= f∞.

If η0 < K, then by Theorem
th3.stabilityth3.stability
2.2, problem (

3.23.2
2.2) with γ = f∞ has a positive eigenvalue α1. Now by pertur-

bation arguments, for τ large, problem (
3.173.17
2.12) has a eigenvalue near α1 > 0. This implies that for τ large,

problem (
3.173.17
2.12) is unstable.

Now we show that problem (
3.173.17
2.12) has no nonzero eigenvalues with nonnegative real part, provided that

either τ is small or η0 > K and τ is large. We apply the following inequality (
gwy
[12, Lemma A.2]): For any

real-valued function ϕ ∈ H1
e (R), we have∫

R
(|(−∆)

1
4 ϕ|2 + |ϕ|2 − 2wϕ2)dx + 2

∫
R

wϕdx
∫

R
w2ϕdx∫

R
w2dx

−
∫

R
w3dx(∫

R
w2dx

)2

(∫
R

wϕdx
)2

≥ 0, (2.14) 3.23

where equality holds if and only if ϕ is a multiple of w.
In (

3.173.17
2.12) we set λ0 = λR +

√
−1λI and ϕ = ϕR +

√
−1ϕI , we get

L0ϕ + f (τλ0)

∫
R

wϕdx∫
R

w2dx
w2 + λ0ϕ = 0. (2.15) 3.24

Multiplying the above equation by ϕ̄, the conjugate function of ϕ and integrating over R, we have∫
R
(|(−∆)

1
4 ϕ|2 + |ϕ|2 − 2wϕ2)dx = −λ0

∫
R
|ϕ|2dx − f (τλ0)

∫
R

wϕdx∫
R

w2dx

∫
R

w2ϕ̄dx. (2.16) 3.25
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Multiplying (
3.243.24
2.15) by w and integrating over R, we get that∫

R
w2ϕdx =

(
λ0 + f (τλ0)

∫
R

w3dx∫
R

w2dx

) ∫
R

wϕdx. (2.17) 3.26

Taking the conjugate of (
3.263.26
2.17), we have∫

R
w2ϕ̄dx =

(
λ̄0 + f (τλ̄0)

∫
R

w3dx∫
R

w2dx

) ∫
R

wϕ̄dx. (2.18) 3.27

Substituting (
3.273.27
2.18) into (

3.253.25
2.16), we have that∫

R

(
|(−∆)

1
4 ϕ|2 + |ϕ|2 − 2w|ϕ|2

)
dx = −λ0

∫
R
|ϕ|2dx − f (τλ0)

(
λ̄0 + f (τλ̄0)

∫
R

w3dx∫
R

w2dx

)
|
∫

R
wϕdx|2∫

R
w2dx

.

(2.19) 3.28

Consider the real part of (
3.283.28
2.19). By (

3.233.23
2.14) and (

3.273.27
2.18), we get

− λR ≥ ℜ
(

f (τλ0)

(
λ̄0 + f (τλ̄0)

∫
R

w3dx∫
R

w2dx

))
− 2ℜ

(
λ̄0 + f (τλ̄0)

∫
R

w3dx∫
R

w2dx

)
+

∫
R

w3dx∫
R

w2dx
, (2.20) 3.29

where we used λ0 = λR +
√
−1λI with λR, λI ∈ R.

Assuming that λR ≥ 0, then we have∫
R

w3dx∫
R

w2dx
| f (τλ0)− 1|2 +ℜ(λ̄0( f (τλ0)− 1)) ≤ 0. (2.21) 3.30

By direct computation, we see that ∫
R

w3dx =
3
2

∫
R

w2dx = 3π. (2.22) 3.31

Substituting (
3.313.31
2.22) and the expression (

3.213.21
2.13) for f (τλ) into (

3.303.30
2.21), we have

3
2
|η0 + K + (η0 − K)τλ0|2 +ℜ

(
(η0 + K)(1 + τλ̄0)((η0 + K)λ̄0 + (η0 − K)τ|λ0|2)

)
≤ 0,

which is equivalent to

3
2
(1 + µ0τλR)

2 + λR + (µ0τλR + τλR + µ0τ2|λ0|2)λR +

(
3
2

µ2
0τ2 + µ0τ − τ

)
λ2

I ≤ 0, (2.23) A.dis

where we have introduced that µ0 :=
η0 − K
η0 + K

.

If η0 > K (i.e., µ0 > 0) and τ is large, then

3
2

µ2
0τ2 + µ0τ − τ ≥ 0.

So (
A.disA.dis
2.23) does not hold for λR ≥ 0. To consider the case when τ is small, we have now derived an upper

bound for λI . From (
3.253.25
2.16), we have

λI

∫
R
|ϕ|2dx = ℑ

(
− f (τλ0)

∫
R

wϕdx∫
R

w2dx

∫
R

w2ϕ̄dx

)
.

Hence,

|λI | ≤ | f (τλ0)|

√∫
R

w4dx∫
R

w2dx
≤ C, (2.24) 3.35

where C is independent of λ0. Substituting (
3.353.35
2.24) into (

A.disA.dis
2.23), we see that (

A.disA.dis
2.23) cannot hold for λR ≥ 0, if τ

is small. Thus we have proved that the (2) point of Theorem
tha.4tha.4
2.7. □
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2.1. Calculating the Height of the spikes. Let χ be a smooth cut-off function which is equal to 1 in B1(0)
and equals to 0 in R \ B2(0). We also assume that a multiple spike solution (uε, vε) of (

1.fg1.fg
1.3) is given by the

following ansatz:

uε ∼
K

∑
j=1

ξε,jw
( x − pj

ε

)
χ

( x − pj

r0

)
, vε(pj) ∼ ξε,j, (2.25) 3.2.ansatz

where w = 2
1+|x|2 is the unique solution to (

eq:core-problemeq:core-problem
2.1), ξε,j, j = 1, · · · , K are the height of the peaks, to be deter-

mined later, p = (p1, · · · , pK) are the location of the points and satisfy

p = (p1, · · · , pK) ∈ Bσ(p0), p0
j =

2j − 1 − K
K

, j = 1, · · · , K, σ ≪ 1.

Now we shall derive a relation between each ξε,j. We write the second equation of (
1.fg1.fg
1.3) as

(−∆)
1
2 vε + β2vε − β2u2

ε = 0, (2.26) 3.2.v

we get by using (
2.rel-g2.rel-g
1.5) and (

3.2.v3.2.v
2.26),

vε(pj) = β2
∫ 1

−1
Gβ(pj, z)u2

ε (z)dz

= β2
∫ 1

−1

(
β−2

2
+ G0(pj, z) + O(β2)

)( K

∑
ℓ=1

ξ2
ε,ℓw

2
(

z − pℓ
ε

)
+ O(ε2)

)
dz

=
∫ 1

−1

(
1
2
+ β2G0(pj, z) + O(β4)

)( K

∑
ℓ=1

ξ2
ε,ℓw

2
(

z − pℓ
ε

)
+ O(ε2)

)
dz.

Thus,

ξε,j =
K

∑
ℓ=1

1
2

εξ2
ε,ℓ

∫
R

w2(y)dy + ξ2
ε,jβ

2
∫ 1

−1
G0(pj, z)w2

( z − pj

ε

)
dz + O(εβ2)

K

∑
ℓ=1

ξ2
ε,ℓ. (2.27) 3.height

Then we get

ξε,j =
K

∑
ℓ=1

1
2

εξ2
ε,ℓ

∫
R

w2(y)dy +
1
π

ξ2
ε,jβ

2
∫ 1

−1
log

1
|z − pj|

w2
( z − pj

ε

)
dz + O(εβ2)

K

∑
ℓ=1

ξ2
ε,ℓ

=
K

∑
ℓ=1

1
2

εξ2
ε,ℓ

∫
R

w2(y)dy +
1
π

εξ2
ε,jβ

2 log
1
ε

∫
R

w2(y)dy + O(εβ2)
K

∑
ℓ=1

ξ2
ε,ℓ.

(2.28) 3.height-1

Define

ξε,j =
2ξ̂ε,j

ε
∫

R
w2(y)dy

.

Then (
3.height-13.height-1
2.28) is equivalent to

ξ̂ε,j =
K

∑
ℓ=1

ξ̂2
ε,ℓ + ηε ξ̂

2
ε,j + O(β2)

K

∑
ℓ=1

ξ̂2
ε,ℓ, j = 1, · · · , K, (2.29) 3.rel

where

ηε =
2β2

π
log

1
ε

.

Next, we shall divide our discussion on (
3.rel3.rel
2.29) into three cases according to the limit value of ηε,

Case 1. ηε → 0. We always get the symmetric pattern

ξ̂ε,j =
1
K
+ O(ηε), j = 1, · · · , K.

This implies that

ξε,j =
1

εKπ
(1 + O(ηε)), j = 1, · · · , K. (2.30) 3.h-1
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Case 2. ηε → ∞. As Case 1 we only get the symmetric pattern. From (
3.rel3.rel
2.29) we have

ξ̂ε,j = ηε ξ̂
2
ε,j + O(1)

K

∑
ℓ=1

ξ̂2
ε,ℓ.

Then we could get

ξε,j =
1

εηεπ

(
1 + O

(
1
ηε

))
, j = 1, · · · , K. (2.31) 3.h-2

Case 3. ηε → η0. (0 < η0 < ∞). Then from (
3.rel3.rel
2.29) we get

ξ̂ε,j = (1 + η0)ξ̂
2
ε,j + ∑

ℓ ̸=j
ξ̂2

ε,ℓ + O(β2)
K

∑
ℓ=1

ξ̂2
ε,ℓ.

For the symmetric pattern we have

ξ̂ε,1 = · · · = ξ̂ε,K =
1

K + η0

(
1 + O(β2)

)
,

or equivalently,

ξε,j =
1

ε(K + η0)π
(1 + O(β2)), j = 1, · · · , K. (2.32) 3.h-3

While in the asymmetric case, we take two spikes into consideration and obtain the following system{
ξ̂ε,1 = (1 + η0)ξ̂

2
ε,1 + ξ̂2

ε,2 + O(β2)∑2
j=1 ξ̂2

ε,j,

ξ̂ε,2 = (1 + η0)ξ̂
2
ε,2 + ξ̂2

ε,1 + O(β2)∑2
j=1 ξ̂2

ε,j.
(2.33) 3.asy-2

From (
3.asy-23.asy-2
2.33) we derive that

ξ̂ε,1 + ξ̂ε,2 =
1
η0

(1 + O(β2)).

As a consequence, we have

(2 + η0)ξ̂
2
ε,j −

(
2
η0

+ 1
)

ξ̂ε,j +
1
η2

0
+ O(β2)

2

∑
ℓ=1

ξ̂2
ε,ℓ = 0, j = 1, 2.

Solving the above quadratic equation we have

ξ̂ε,j =
1

2η0
±

√
1 − 4

η2
0

4 + 2η0
+ O(β2), j = 1, 2. (2.34) 3.asy

Then

ξε,i =
1

πε

 1
2η0

±

√
1 − 4

η2
0

4 + 2η0

 (1 + β2), j = 1, 2. (2.35) 3.h-4

For the symmetric pattern, we notice that in all three cases the heights satisfy the relation

ξε,j = ξε(1 + O(h(ε, β))), j = 1, · · · , K, (2.36) 3.spike-h-1

where

ξε =


1

εKπ , if ηε → 0,
1

εηεπ , if ηε → +∞,
1

ε(η0+K)π , if ηε → η0,
(2.37) 3.spike-h

and

h(ε, β) =


ηε, if ηε → 0,
η−1

ε , if ηε → ∞,
β2, if ηε → η0.
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While for the asymmetric pattern, we have

ξε,1 =
1

πε

 1
2η0

+

√
1 − 4

η2
0

4 + 2η0

 (1 + β2), ξε,2 =
1

πε

 1
2η0

−

√
1 − 4

η2
0

4 + 2η0

 (1 + β2). (2.38)

3. RIGOROUS PROOF OF THE EXISTENCE RESULTS
sec:proof-existence

In this section we shall prove the existence theorem, i.e., Theorem
th1.existth1.exist
1.1. We divide the discussion into

three sections. First of all, we give an approximate solution. Then we apply the classical Liapunov-Schmidt
reduction method to reduce the infinite dimensional problem to a finite dimensional problem in second
subsection. In last subsection we solve the finite dimensional problem and thereby prove the Theorem

th1.existth1.exist
1.1.

As we pointed out in the introduction, the proof for the symmetric and asymmetric patterns are almost the
same, we shall only focus on the symmetric case and state the difference for the asymmetric case in the end
of this section.

3.1. Study of the Approximate Solutions. From the discussion in last section, we rescaleû(y) = 1
ξε

u(εy), y ∈
(
− 1

ε , 1
ε

)
,

v̂(x) = 1
ξε

v(x), x ∈ (−1, 1),

where ξε is given in (
3.spike-h3.spike-h
2.37). The equilibrium solution (û, v̂) solves the following rescaled Gierer-Meinhardt

system (−∆)
1
2
y û + û − û2

v̂ = 0, y ∈
(
− 1

ε , 1
ε

)
,

(−∆)
1
2
x v̂ + β2v̂ − ξεβ2û2 = 0, x ∈ (−1, 1).

(3.1) 4.sys

For a function û ∈ H1
(
− 1

ε , 1
ε

)
, let T[û] be the unique solution of the following problem:{

(−∆)
1
2 T[û] + β2T[û]− ξεβ2û2 = 0 x ∈ (−1, 1),

T[û](x) = T[û](x + 2) x ∈ R.

By Green representation formula, we have

T[û](x) = ξεβ2
∫ 1

−1
Gβ(x, ζ)

(
û
(

ζ

ε

))2
dζ.

System (
4.sys4.sys
3.1) is equivalent to the following equation in operator form:

Sε(û, v̂) =
(

S1(û, v̂)
S2(û, v̂)

)
= 0, H1

(
−1

ε
,

1
ε

)
× H1(−1, 1) → L2

(
−1

ε
,

1
ε

)
× L2(−1, 1), (3.2) 4.ope

where  S1(û, v̂) = (−∆)
1
2
y û + û − û2

v̂ ,

S2(û, v̂) = (−∆)
1
2
x v̂ + β2v̂ − ξεβ2û2.

(3.3) 4.eq

For p ∈ Bσ(p0) we set

wj(y) = w
(

y −
pj

ε

)
χ

(
εy − pj

r0

)
,

where w(y) = 2
1+y2 is the ground state solution of (

eq:core-problemeq:core-problem
2.1), it is then straightforward to check that

(−∆)
1
2
y wj(y) + wj(y)− w2

j (y) = h.o.t.,

where h.o.t. refers to terms of order ε2 in L∞
(
− 1

ε , 1
ε

)
. 1

1More specifically, h.o.t. means term which can be composed into two parts, the leading order is of ε2 and even symmetric with
respect to pi , while the order of the left part is o(ε2).
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We choose the approximate solutions as follows:

uε,p(y) =
K

∑
j=1

wj(y), vε,p(x) = T[uε,p](x), x = εy ∈ (−1, 1). (3.4) 4.inh

Notice that vε,p satisfies

0 = (−∆)
1
2
x vε,p + β2vε,p − ξεβ2u2

ε,p

= (−∆)
1
2
x vε,p + β2vε,p − ξεβ2

K

∑
j=1

w2
j − 2ξεβ2 ∑

ℓ ̸=j
wℓwj.

Hence,

vε,p(pj) = ξεβ2
∫ 1

−1
Gβ(pj, ζ)

K

∑
ℓ=1

w2
ℓ

(
ζ

ε

)
dζ + O(ξεβ2ε2).

Similar to the computation as in section, we otain

vε,p(pj) = 1 + O(h(ε, β)).

Substituting the ansatz (
4.inh4.inh
3.4) into (

4.eq4.eq
3.3) we get

S2(uε,p, vε,p) = 0,

To compute S1(uε,p, vε,p), we calculate for x = pj + εz, |εz| < ρ with j = 1, · · · , K and ρ small

vε,p(pj + εz)− vε,p(pj) = ξεβ2
∫ 1

−1

(
Gβ(pj + εz, ζ)− Gβ(pj, ζ)

)
u2

ε,pdζ

= ξεβ2
∫ 1

−1

(
Gβ(pj + εz, ζ)− Gβ(pj, ζ)

)
w2

j dζ

+ ξεβ2
∫ 1

−1

(
Gβ(pj + εz, ζ)− Gβ(pj, ζ)

)
∑
ℓ ̸=j

w2
ℓdζ + O(ξεβ2ε2)

= ξεβ2ε
∫

R

1
π

log
|ζ|

|z − ζ|w
2(ζ)dζ − ξεβ2ε

(
∂F(p)

∂pj
εz
∫

R
w2(ζ)dζ

)
+ o(ξεβ2ε2|z|),

(3.5) 4.poten

where

F(p) =
K

∑
j=1

Hβ(pj, pj)− ∑
i ̸=j

Gβ(pi, pj).

For convenience, in the following discussion we shall denote the first term on the right-hand side of (
4.poten4.poten
3.5)

by Pj(z). It is not difficult to verify that Pj(z) is even symmetric in z. Substituting (
4.poten4.poten
3.5) into S1(uε,p, vε,p) we

have

S1(uε,p, vε,p) = (−∆)
1
2 uε,p + uε,p −

u2
ε,p

vε,p

=
K

∑
j=1

χ

(
εy − pj

r0

)
(−∆)

1
2 w
(

y −
pj

ε

)
+

K

∑
j=1

χ

(
εy − pj

r0

)
w
(

y −
pj

ε

)
−

K

∑
j=1

w2
j

vε,p
+ O(ε2)

= E1 + E2 + O(ε2) in L2
(
−1

ε
,

1
ε

)
,

where

E1 =
K

∑
j=1

χ

(
εy − pj

r0

)
w2
(

y −
pj

ε

)
−

K

∑
j=1

w2
j , and E2 =

K

∑
j=1

w2
j −

K
∑

j=1
w2

j

vε,p
.
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According to the setting of cut-off function χ(x), we have

E1 = O(ε4),

and one can easily check that

∥E1∥L2(− 1
ε , 1

ε )
= O(ε7/2). (3.6) 4.11

In addition, for x − pj = εz with |εz| < ρ with ρ small, we calculate

E2 =
w2

j

v2
ε,p(pj)

(vε,p(x)− vε,p(pj))

(
1 +

∞

∑
n=1

(
vε,p(pj)− vε,p(x)

vε,p(pj)

)n)
+ O(h(ε, β))w2

j + O(ε4)

=
w2

j

v2
ε,p(pj)

Pj(z)

(
1 +

∞

∑
n=1

(
−Pj(z)
vε,p(pj)

)n)
+ O(h(ε, β))w2

j −
w2

j

v2
ε,p(pj)

ξεβ2ε2 ∂F(p)
∂pj

z
∫

R
w2(ζ)dζ

+ o(ξεβ2ε2)

= E21 + E22 + o(ξεβ2ε2),

(3.7) 4.12

where

E21 = O(ξεβ2ε) + O(h(ε, β)) is symmetry in x − pj, and ∥E22∥L2(− 1
ε , 1

ε )
= O(ξεβ2ε2). (3.8) 4.13

Thus, we have thus established the following lemma

le4.1 Lemma 3.1. For x = pj + εz, |εz| < ρ, we have the decomposition for S[uε,p](x),

S1
(
uε,p, vε,p

)
= S1,1 + S1,2,

where

S1,1(z) = −
w2

j

v2
ε,p(pj)

ξεβ2ε2 ∂F(p)
∂pj

z
∫

R
w2(ζ)ζ + o(ξεβ2ε2),

and
S1,2(z) = ξεβ2εRj1(z) + h(ε, β)Rj2(z) + o(ξεβ2ε2),

where Rj1(z), Rj2(z) are even in z satisfying that Rj1(|z|) = O(log(1 + |z|)) and Rj2(z) = O
(

1
1+|z|2

)
. Further-

more,
S1
(
uε,p, vε,p

)
= O(ε2) for |x − pj| ≥ ρ, ∀j = 1, · · · , K.

3.2. The Liapunov-Schmidt Reduction Method. In this subsection, we use the Liapunov-Schmidt reduc-
tion method to solve the problem

S[uε,p + ϕ] := S1
(
uε,p + ϕ, vε,p + ψ

)
=

K

∑
j=1

cj
∂wj

∂y
(3.9) 5.1

for real constants cj and a perturbation ϕ ∈ H1
(
− 1

ε , 1
ε

)
which is small in the corresponding norm. To

proceed we study the linearized operator defined by

L̃ε,p := S′
ε

(
uε,p
vε,p

)
,

where

L̃ε,p : H1
T

(
−1

ε
,

1
ε

)
× H1

T(−1, 1) → L2
T

(
−1

ε
,

1
ε

)
× L2

T(−1, 1),

14



where ε > 0 is small and H1
T

(
− 1

ε , 1
ε

)
and L2

T(−1, 1) denote the periodic functions in H1
(
− 1

ε , 1
ε

)
and

L2(−1, 1) respectively, p ∈ Bδ(p0). The approximate kernel and co-kernel are respectively defined by

Kε,p := Span
{

∂wj

∂y

∣∣∣ j = 1, · · · , K
}

⊂ H1
(
−1

ε
,

1
ε

)
,

Cε,p := Span
{

∂wj

∂y

∣∣∣ j = 1, · · · , K
}

⊂ L2
(
−1

ε
,

1
ε

)
.

It is not difficult to see that L̃ε,p is not invertible in ε and β due to the approximate kernel,

Kε,p := Kε,p ⊕ {0} ⊂ H1
T

(
−1

ε
,

1
ε

)
× H1

T(−1, 1).

The approximate cokernel is defined as follows:

Cε,p = Cε,p ⊕ {0} ⊂ L2
T

(
−1

ε
,

1
ε

)
× L2

T(−1, 1).

We then define

K⊥
ε,p := K⊥

ε,p ⊕ H1
T(−1, 1) ⊂ H1

T

(
−1

ε
,

1
ε

)
× H1

T(−1, 1),

C⊥
ε,p := C⊥

ε,p ⊕ L2
T(−1, 1) ⊂ L2

T

(
−1

ε
,

1
ε

)
× L2

T(−1, 1),

where C⊥
ε,p and K⊥

ε,p denote the orthogonal complement with the scalar product of L2
(
− 1

ε , 1
ε

)
in H1

T

(
− 1

ε , 1
ε

)
and L2

T

(
− 1

ε , 1
ε

)
respectively.

Let πε,p denote the projection in L2
(
− 1

ε , 1
ε

)
× L2(−1, 1) onto C⊥

ε,p. Next, we shall prove that the equation

πε,p ◦ Sε

(
uε,p + Φε,p
vε,p + Ψε,p

)
= 0

has unique solution Σε,p =

(
Φε,p
Ψε,p

)
∈ K⊥

ε,p if ε, β are small enough. Set

Lε,p = πε,p ◦ L̃ε,p : K⊥
ε,p → C⊥

ε,p. (3.10) 4.defl

Now we show the invertibility of the corresponding linearized operator Lε,p.

pr5.1 Proposition 3.2. Let Lε,p be defined in (
4.defl4.defl
3.10). Then there exist positive ε0, β0, C such that for all ε ∈ (0, ε0),

β ∈ (0, β0),
∥Lε,pΣ∥L2(− 1

ε , 1
ε )×L2(−1,1) ≥ C∥Σ∥H1(− 1

ε , 1
ε )×H1(−1,1),

for arbitrary p ∈ Bσ(p0), Σ ∈ K⊥
ε,p.

Proof. The proof follows the standard method of Liaypunov-Schmidt reduction which was also used in
gui_1999,gui_2000,wei_2001_gm_2d_weak,wei_2002_gm_2d_strong,wei_2007_existence
[13, 14, 36, 37, 38]. Suppose the proposition is not true. Then there exist sequences {εk}, {βk}, {pk} and Σk
with

εk > 0, εk → 0, βk > 0, βk → 0, pk ∈ Bδ(p0),

and

Σk =

(
ϕk(y)
ψk(x)

)
∈ K⊥

ε,p

such that
∥Σk∥H1(− 1

ε , 1
ε )×H1(−1,1) = 1, ∥Lεk ,pk Σk∥L2(− 1

ε , 1
ε )×L2(−1,1) → 0, as k → ∞.
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That is 

(−∆)
1
2
y ϕk + ϕk − 2uεk ,pk v−1

εk ,pk ϕk + v−2
εk ,pk u2

εk ,pk ψk = f 1
k + f 2

k ,

(−∆)
1
2
x ψk − β2

kψk + 2ξεk β2
kuεk ,pk ϕk = gk,

∥ f 1
k ∥L2(− 1

ε , 1
ε )

→ 0, f 2
k ∈ C⊥

εk ,pk , ϕk ∈ K⊥
εk ,pk ,

∥ϕk∥2
H1(− 1

ε , 1
ε )

+ ∥ψk∥2
H1(−1,1) = 1.

(3.11) 5.system-lin

We shall show this is impossible. To simplify our notation, we set uk = uεk ,pk and Ωk =
(
− 1

εk
, 1

εk

)
. We cut

off ϕk as follows: introduce

ϕk,j(y) = ϕk(y)χ
(

εky − pj

εk

)
and decompose ϕk into

ϕk =
K

∑
j=1

ϕk,j + ϕk,K+1,

it is easy to see that ϕk,K+1 = o(1) in H1(Ωk) due to it satisfies the equation

(−∆)
1
2
y ϕk,K+1 + ϕk,K+1 = o(1) in H1(Ωk).

We then define ψk,j for j = 1, · · · , K + 1 by

(−∆)
1
2
x ψk,j + β2

kψk,j − 2ξεk ukϕk,j = 0.

Note that as ∥gk∥L2(−1,1) → 0 we have

∥ψk −
K+1

∑
j=1

ψk,j∥L2(−1,1) → 0.

Since ϕk,K+1 = oεk (1) in H1(Ωk), we also we have ψk,K+1 = oεk (1) in H1(−1, 1). Sending k → ∞, we can see
that

ϕk,j → ϕj in H1(R)

with

ϕj ∈
{

ϕ ∈ H1(R)
∣∣ ∫

R
ϕ

∂w
∂y

dy = 0
}

= K⊥
0 .

In addition, ϕi verifies the following nonlocal problem

Case 1 : ηεk → 0,

(−∆)
1
2 ϕj + ϕj − 2wϕj + 2

∑K
ℓ=1
∫

R
wϕℓdy

K
∫

R
w2(y)dy

w2 ∈ C⊥
0 . (3.12) 4.limit-1

Case 2 : ηεk → ∞,

(−∆)
1
2 ϕj + ϕj − 2wϕj + 2

∫
R

wϕjdy∫
R

w2(y)dy
w2 ∈ C⊥

0 . (3.13) 4.limit-2

Case 3 : ηεk → η0,

(−∆)
1
2 ϕj + ϕj − 2wϕj + 2

(1 + η0)
∫

R
wϕjdy + ∑K

ℓ ̸=j
∫

R
wϕℓdy

(K + η0)
∫

R
w2dy

w2 ∈ C⊥
0 , (3.14) 4.limit-3
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where

K0 = C0 = Span
{

∂w
∂y

}
,

and K⊥
0 , C⊥

0 denotes the orthogonal complement with respect to the scalar product of L2(R) in the sapce
H1(R) and L2(R) respectively.

After linear transformation, we could write the equation (
4.limit-14.limit-1
3.12)-(

4.limit-34.limit-3
3.14) as (still denoted by ϕj):

(−∆)
1
2
y ϕj + ϕj − 2wϕj + 2λi

∫
R

wϕjdy∫
R

w2dy
w2 ∈ C⊥

0 , (3.15) 4.limlin

where

λj =


0, · · · , 0, K, for case 1,
1, · · · , 1, for case 2,

η0
K+η0

, · · · , η0
K+η0

, 1, for case 3.

It is known that
(−∆)

1
2 w + w − 2w2 = −w2.

Therefore, equation (
4.limlin4.limlin
3.15) can be written as

((−∆)
1
2 + 1 − 2w)

(
ϕj − 2λj

∫
R

wϕjdy∫
R

w2dy
w

)
∈ C⊥

0 .

Since the operator

(−∆)
1
2 + 1 − 2w : K⊥

0 → C⊥
0

is one-to-one map with bounded inverse. As a consequence,

ϕj − 2λj

∫
R

wϕjdy∫
R

w2dy
w = 0.

Mutiplying by w and after integration we get

(1 − 2λj)
∫

R
wϕjdy = 0.

If λj ̸= 1
2 we derive that

∫
R

wϕjdy = 0 and it implies that

((−∆)
1
2 + 1 − 2w)ϕj = 0, j = 1, · · · , K,

and by Proposition
pr3.1pr3.1
2.1 we have ϕj ∈ K0, j = 1, · · · , K. Then it implies that ϕj = 0, j = 1, · · · , K. By taking

the limit equation in ψk we see that ψk → 0 in H1(−1, 1). On the other hand, from the fourth equation in
(
5.system-lin5.system-lin
3.11) we have

K

∑
j=1

(∥ϕj∥2
H1(R) + ∥ψj∥2

H1(−1,1)) = 1.

Contradiction arises and the proof is complete. □

As a consequence of Proposition
pr5.1pr5.1
3.2 we have

pr5.2 Proposition 3.3. There exist positive constants ε1, β1 such that for all ε ∈ (0, ε1) and β ∈ (0, β1), the map Lε,p is
surjective for arbitrary p ∈ Bσ(p0).

Now we are in position to solve the problem

πε,p ◦ Sε

(
uε,p + ϕ
vε,p + ψ

)
= 0.

Since Lε,p |K⊥
ε,p

is invertible (call the inverse L−1
ε,p) we can rewrite the above problem as

Σ = −(L−1
ε,p ◦ πε,p)Sε

(
uε,p + ϕ
vε,p + ψ

)
− (L−1

ε,p ◦ πε,p)Nε,p(Σ) ≡ Mε,p(Σ), (3.16) 5.10
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where

Nε,p(Σ) = Sε

(
uε,p + ϕ
vε,p + ψ

)
− Sε

(
uε,p
vε,p

)
− S′

ε

(
uε,p
vε,p

) [
ϕ
ψ

]
and the operator Mε,p is defined for Σ ∈ H1

T

(
− 1

ε , 1
ε

)
× H1

T(−1, 1). We are going to show that the operator
Mε,p is a contraction map on

Bε,δ :=
{

Σ ∈ H1
T

(
−1

ε
,

1
ε

)
× H1

T(−1, 1)
∣∣∣ ∥Σ∥H1(− 1

ε , 1
ε )×H1(−1,1) < δ

}
, (3.17) 5.11

if σ and ε are small enough. By Proposition
pr5.1pr5.1
3.2 we have

∥Mε,p(Σ)∥H1(− 1
ε , 1

ε )×H1(−1,1) ≤ C
(
∥πε,p ◦ Nε,p(Σ)∥L2(− 1

ε , 1
ε )×L2(−1,1) + ∥πε,p ◦ Sε

(
uε,p
vε,p

)
∥L2(− 1

ε , 1
ε )×L2(−1,1)

)
≤ C(c(δ)δ + ξεβ2ε + h(ε, β)),

where C > 0 is a constant independent of δ > 0, ε > 0 and c(δ) → 0 as δ → 0. Similarly we show that

∥Mε,p(Σ1)− Mε,p(Σ2)∥H1(− 1
ε , 1

ε )×H1(−1,1) ≤ C(c(δ)δ)∥Σ1 − Σ2∥H1(− 1
ε , 1

ε )×H1(−1,1),

where c(δ) → 0 as δ → 0. If we choose δ sufficiently small then Mε,p is a contraction map on Bε,δ. The
existence then follows by the standard fixed point theorem and Σε,p is a solution to (

5.105.10
3.16). We thus proved

le5.2 Lemma 3.4. There exists ε > 0, β > 0 such that for every pair of ε, p with 0 < ε < ε and p ∈ Bσ(p0) there is a

unique (ϕε,p, ψε,p) ∈ K⊥
ε,p satisfying Sε

(
uε,p + ϕε,p
vε,p + ψε,p

)
∈ Cε,p. Furthermore, we have the estimate

∥(ϕε,p, ψε,p)∥H1(− 1
ε , 1

ε )×H1(−1,1) ≤ C
(

ξεβ2ε + h(ε, β)
)

.

More refined estimates for ϕε,p are needed. We recall from the discussion in last section that S1(uε,p, vε,p)
can be decomposed into the two parts S1,1 and S1,2 if x is close to the center of spike, where S1,1 is in leading
order an odd function and S1,2 is in leading order an even function. We can similarly decompose ϕε,p as in
the following lemma.

le5.3 Lemma 3.5. Let ϕε,p be defined in Lemma
le5.2le5.2
3.4. Then for x = pj + εz, |εz| < ρ, j = 1, · · · , K, we have the

decomposition
ϕε,p = ϕε,p,1 + ϕε,p,2, (3.18) 5.13

where ϕε,p,2 is an even function in z which satisfies

ϕε,p,1 = O(ξεβ2ε2) in H1
(
−1

ε
,

1
ε

)
, (3.19) 5.14

and

ϕε,p,2 = O(ξεβ2ε + h(ε, β)) in H1
(
−1

ε
,

1
ε

)
. (3.20) 5.15

Proof. We first solve

S[uε,p + ϕε,p,2]− S[uε,p]−
K

∑
j=1

S1,2

(
y −

pj

ε

)
∈ Cε,p, (3.21) 5.16

for ϕε,p,2 ∈ K⊥
ε,p. Then we solve

S[uε,p + ϕε,p,2 + ϕε,p,1]− S[uε,p + ϕε,p,2]−
K

∑
j=1

S1,1

(
y −

pj

ε

)
∈ Cε,p, (3.22) 5.17

for ϕε,p,1 ∈ K⊥
ε,p. Using the same proof as in Proposition

pr5.1pr5.1
3.2, both equations (

5.165.16
3.21) and (

5.175.17
3.22) have unique

solution provided ε, β ≪ 1. By uniqueness, ϕε,p = ϕε,p,1 + ϕε,p,2, and it is easy to see that ϕε,p,1 and ϕε,p,2
have the required properties. □
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3.3. The Reduced Problem. In this subsection, we solve the reduced problem which will will complete the
proof of Theorem

th1.existth1.exist
1.1. By Proposition

pr5.1pr5.1
3.2 for every p ∈ Bσ(p0) there exists an unique solution (ϕε,p, ψε,p) ∈

K⊥
ε,p such that

Sε

(
uε,p + ϕε,p
vε,p + ψε,p

)
=

(
Ξε,p

0

)
∈ Cε,p.

To complete the proof of Theorem
th1.existth1.exist
1.1 we need to determine pε = (p1, p2, · · · , pK) near p0 such that

Sε

(
uε,pε + ϕε,pε

vε,pε + ψε,pε

)
⊥ Cε,pε ,

which in turn implies that Sε

(
uε,pε + ϕε,pε

vε,pε + ψε,pε

)
= 0. To this end, let

Wε(p) := (Wε,1(p), Wε,2(p), · · · , Wε,K(p)) : Bσ(p0) → RK

where

Wε,j(p) :=
1

ξεβ2ε

∫ 1
ε

− 1
ε

S1
(
uε,p + ϕε,p, vε,p + ψε,p

) ∂wj

∂pj
dy, j = 1, · · · , K.

Then Wε(p) is a map which is continuous in p and our problem is reduced to finding a zero of the vector
field Wε(p). Let us now calculate Wε(p)

Wε,j(p) =
1

ξεβ2ε

∫ 1
ε

− 1
ε

S1
(
uε,p + ϕε,p, vε,p + ψε,p

) ∂wj

∂pj
dy

=
1

ξεβ2ε

∫ 1
ε

− 1
ε

[
(−∆)

1
2 (uε,p + ϕε,p) + (uε,p + ϕε,p)−

(uε,p + ϕε,p)2

vε,p + ψε,p

]
∂wj

∂pj
dy

=
1

ξεβ2ε

∫ 1
ε

− 1
ε

[
(−∆)

1
2 (uε,p + ϕε,p) + (uε,p + ϕε,p)−

(uε,p + ϕε,p)2

vε,p

]
∂wj

∂pj
dy

− 1
ξεβ2ε

∫ 1
ε

− 1
ε

[
(uε,p + ϕε,p)2

vε,p + ψε,p
−

(uε,p + ϕε,p)2

vε,p

]
∂wj

∂pj
dy

= I1 + I2,

(3.23) 6.3

where I1, I2 are defined by the last equality and ψε,p satisifies

D(−∆)
1
2 ψε,p + ψε,p − 2ξεuε,pϕε,p − ξεϕ

2
ε,p = 0. (3.24) 6.4

For I1, we have by Lemma
le5.3le5.3
3.5

I1 =
1

ξεβ2ε

(∫ 1
ε

− 1
ε

[
(−∆)

1
2 (uε,p + ϕε,p) + (wε,p + ϕε,p)−

(uε,p + ϕε,p)2

vε,p(pj)

]
∂wj

∂pj
dy

+
∫ 1

ε

− 1
ε

(uε,p + ϕε,p)2

v2
ε,p(pj)

(vε,p(pj + εy)− vε,p(pj))
∂wj

∂pj
dy

)
+ o(1)

= − 1
ξεβ2ε2

(∫ 1
ε

− 1
ε

[
(−∆)

1
2 (wj + ϕε,p) + (wj + ϕε,p)−

(wj + ϕε,p)2

vε,p(pj)

]
∂wj

∂y
dy

)

− 1
ξεβ2ε2

(∫ 1
ε

− 1
ε

(wj + ϕε,p,2)
2

v2
ε,p(pj)

(vε,p(pj + εy)− vε,p(pj))
∂wj

∂y
dy

)
+ o(1).

(3.25) 6.5

Note that, by Lemma
le5.3le5.3
3.5, we have∫ 1

ε

− 1
ε

[(−∆)
1
2 ϕε,p + ϕε,p − 2wjϕε,p]

∂wj

∂y
dy =

∫ 1
ε

− 1
ε

ϕε,p,1
∂

∂y

(
(−∆)

1
2 wj + wj − w2

j

)
dy + o(ξεβ2ε2) = o(ξεβ2ε2),

(3.26) 6.6
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and ∫ 1
ε

− 1
ε

ϕ2
ε,p

∂wj

∂y
dy = 2

∫ 1
ε

− 1
ε

ϕε,p,1ϕε,p,2
∂wj

∂y
dy = o(ξεβ2ε2). (3.27) 6.7

Now by Lemma
le5.3le5.3
3.5 and equations (

6.66.6
3.26) and (

6.76.7
3.27) we have

I1 =− 1
ξεβ2ε2

∫ 1
ε

− 1
ε

w2
j (vε,p(pj + εy)− vε,p(pj))

∂wj

∂y
dy + o(1)

=− 1
ε

∫ 1
ε

− 1
ε

w2
j

(
Pj(z)− εy∂pj F(p)

) ∂wj

∂y
dy + o(1)

=− 1
3

∫
R

w3(y)dy∂pj F(p) + o(1).

(3.28) 6.8

Similarly, we calculate

I2 =− 1
ξεβ2ε2

∫ 1
ε

− 1
ε

[
(uε,p + ϕε,p)2

vε,p + ψε,p
−

(uε,p + ϕε,p)2

vε,p

]
∂wj

∂y
dy

=
1

ξεβ2ε2

∫ 1
ε

− 1
ε

(uε,p + ϕε,p)2

v2
ε,p

ψε,p
∂wj

∂y
dy + o(1)

=
1

ξεβ2ε2

∫ 1
ε

− 1
ε

1
3

∂w3
j

∂y
(ψε,p − ψε,p(pj))dy + o(1).

(3.29) 6.9

Since ψε,p satisifies (
6.46.4
3.24), a similar argument to that used in Lemma

le5.3le5.3
3.5 gives

ψε,p(pj + εz)− ψε,p(pj) = ξε

∫ 1

−1

(
GD(pj + εz, ζ)− GD(pj, ζ)

) (
2uε,p

(
ζ

ε

)
ϕε,p

(
ζ

ε

)
+ ϕ2

ε,p

(
ζ

ε

))
dζ

= o
(

ξεβ2ε2|∂pj F(p)||z|
)
+ P̂j(z) + h.o.t.,

(3.30) 6.10

where P̂j(z) is an even function in z = y − pj
ε . Substituting (

6.106.10
3.30) into (

6.96.9
3.29) we obtain that

I2 = o(1). (3.31) 6.11

Combining the estimates for I1 and I2, we obtain

Wε(p) = −π∇pF(p) + o(1), (3.32) 6.12

where F(p) is defined in (
2.f2.f
1.7) and we have used that

∫
R

w3(y)dy = 3π, and o(1) is continuous function of p
which goes to 0 as ε → 0. At p0, we have ∇pF(p0) = 0. On the other hand, we have assumed that ∇2

pF(p0)

is a matrix of rank K − 1. 2

It is known that (1, · · · , 1)t ∈ Ker(∇2
pF(p0)) and we can choose p such that Wε(p) ⊥ (1, · · · , 1)t. Next,

we can apply Brouwer’s fixed point theorem to show that for ε ≪ 1 there exists a point p such that Wε(p) =
0 and p ∈ Bσ(p0). Thus we have proved the following proposition

pr6.1 Proposition 3.6. For ε sufficiently small there exist points pε with pε → p0 such that Wε(pε) = 0.

Proof of Theorem
th1.existth1.exist
1.1. By above Proposition, there exists pε → p0 such that Wε(pε) = 0. In other words,

S[uε,pε + ϕε,pε ] = 0. Let uε = ξεuε,p, vε = ξεvε,p. By Maximum principle, uε > 0 and vε > 0. Moreover
(uε, vε) satisfies all the properties of Theorem

th1.existth1.exist
1.1. □

Remark: In the asymmetric case, instead of considering the system (
4.sys4.sys
3.1) we study the original system (

1.fg1.fg
1.3)

directly. Then, the ansatz is given by

uε,p =
2

∑
j=1

ξε,jwj(y), vε,p = T[uε,p](x).

2When D is large or K = 2, 3, 4, we are able to show that M(p0) is semi-negative and rank(M(p0)) = K − 1. The proof is given in
next section.
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After the standard procedure as we did for the symmetric case, we reduce the original problem to a same
finite dimensional problem (

6.126.12
3.32) with K = 2. By the same proof we are able to establish the existence for

the asymmetric two spikes pattern.

4. RIGOROUS PROOF OF THE STABILITY ANALYSIS
sec:proof-stability

In this section, we shall consider the large and small eigenvalues respectively. From which we are able
to characterize the linear stability of the multi-spikes constructed in last section.

4.1. Stability Analysis: Large Eigenvalues. Linearizing around the equilibrium states (uε, vε), we obtain
the following eigenvalue problem(−∆)

1
2
y ϕε + ϕε − 2 uε

vε
ϕε +

u2
ε

v2
ε
ψε + λεϕε = 0,

1
β2 (−∆)

1
2
x ψε + ψε − 2uεϕε + τλεψε = 0,

(4.1) 7.1

where λε is some complex number and

ϕε ∈ H1
(
−1

ε
,

1
ε

)
, ψε ∈ H1(−1, 1).

In this subection, we study the large eigenvalues, i.e. those for which we may assume that there exists c > 0
such that |λε| ≥ c > 0 for ε small. If ℜ(λε) < −c then we are done (since these eigenvalues are always
stable) and we therefore assume that ℜ(λε) ≥ −c. For a subsequence ε → 0 and λε → λ0 we shall derive
a limiting NLEP satisfied by λ0. In the following we shall divide our discussion into two cases: symmetric
pattern and asymmetric pattern. First, we study the symmetric case.

Symmetric pattern. Let

ûε = ξ−1
ε uε = uε,p + ϕε,p, v̂ε = ξ−1

ε vε = vε,p + ψε,p.

Then (
7.17.1
4.1) becomes (−∆)

1
2
y ϕε + ϕε − 2 ûε

v̂ε
ϕε +

û2
ε

v̂2
ε
ψε + λεϕε = 0,

1
β2 (−∆)

1
2
x ψε + ψε − 2ξεûεϕε + τλεψε = 0.

(4.2) 5.2

The second equation in (
5.25.2
4.2) is equivalent to

(−∆)
1
2
x ψε + β2(1 + τλε)ψε − 2β2ξεûεϕε = 0. (4.3) 5.3

We introduce the following:
βλε

= β
√

1 + τλε,

where in
√

1 + τλε we take the principal part of the square root. Let us assume that

∥ϕε∥H1(− 1
ε , 1

ε )
= 1.

We cut off ϕε as follows: Introduce

ϕε,j(εy − pj) = ϕεχ

(
εy − pj

r0

)
,

where χ(x) was introduced in (
3.2.ansatz3.2.ansatz
2.25). Using (

5.25.2
4.2), Lemma

le5.2le5.2
3.4 and ℜ(λε) ≥ −c and the algebraic decay of w,

we get that

ϕε =
K

∑
j=1

ϕε,j + oε(1) in H1
(
−1

ε
,

1
ε

)
.

Then by a standard procedure, we extend ϕε,j to a function defined on R such that

∥ϕε,j∥H1(R) ≤ C∥ϕε,j∥H1(− 1
ε , 1

ε )
, j = 1, · · · , K.
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Since ∥ϕε∥H1(− 1
ε , 1

ε )
= 1, ∥ϕε,j∥H1(− 1

ε , 1
ε )

≤ C. By taking a subsequence of ε, we may assume that ϕε,j → ϕj

as ε → 0 in L2 ∩ L∞(R) for j = 1, · · · , K.
We have by (

5.35.3
4.3)

ψε(x) = 2β2ξε

∫ 1

−1
Gβλε

(x, ζ)ûε

(
ζ

ε

)
ϕε

(
ζ

ε

)
dζ. (4.4) 5.psi

At x = pε
j , j = 1, · · · , K, we calculate

ψ(pε
j) = 2β2ξε

∫ 1

−1
Gβλε

(pε
j , ζ)

K

∑
ℓ=1

w
(

ζ − pε
ℓ

ε

)
ϕε,ℓ

(
ζ − pε

ℓ

ε

)
dζ + O(ξε|β2

λε
|ε)

= 2β2ξε

∫ 1

−1

(
(βλε

)−2

2
+ G0(pε

j , ζ) + O(|βλε
|2)
)

K

∑
ℓ=1

w
(

ζ − pε
ℓ

ε

)
ϕε,ℓ

(
ζ − pε

ℓ

ε

)
dζ + O(ξε|β2

λε
|ε)

= 2ξε

∫ 1

−1

(
1

2(1 + τλε)
+ β2G0(pε

j , ζ) + O(|βλε
|4)
)

w

(
ζ − pε

j

ε

)
ϕε,j

(
ζ − pε

j

ε

)
dζ

+ 2ξε ∑
ℓ ̸=j

∫ 1

−1

(
1

2(1 + τλε)
+ β2G0(pε

j , ζ) + O(|βλε
|4)
)

w
(

ζ − pε
ℓ

ε

)
ϕε,ℓ

(
ζ − pε

ℓ

ε

)
dζ

=
K

∑
ℓ=1

εξε

(1 + τλε)

∫
R

w(y)ϕε,ℓ(y)dy(1 + o(1)) + 2ξε
β2

π
ε log

1
ε

∫
R

w(y)ϕε,j(y)dy + O(ξε|βλε
|2ε).

(4.5) 5.psi-rep

Let ηε =
2β2

π log 1
ε and we separate our discussion into three cases.

Case 1: ηε → 0, we get from (
5.psi-rep5.psi-rep
4.5):

ψε(pε
j) =

K

∑
ℓ=1

εξε

(1 + τλε)

∫
R

wϕε,ℓdy(1 + o(1)). (4.6) 5.psi-j

Substituting (
5.psi-j5.psi-j
4.6) into the first equation (

5.25.2
4.2), sending ε → 0 and using (

3.h-13.h-1
2.30), we derive the following

nonlocal eigenvalue problem (NLEP):

(−∆)
1
2 ϕj + ϕj − 2wϕj +

2
K
∑
ℓ=1

∫
R

wϕℓdy

K(1 + τλ0)
∫

R
w2(y)dy

w2 + λ0ϕj = 0, j = 1, · · · , K. (4.7) 5.phi-lin

If K = 1, by Theorem
tha.1tha.1
2.4, the above problem is stable if τ < τ1, which implies that the large eigenvalues

are stable. If τ > τ1, by Theorem
tha.1tha.1
2.4, problem (

5.phi-lin5.phi-lin
4.7) has a eigenvalue λ0 with ℜ(λ0) ≥ a0 > 0 for some

a0. By Theorem
th7.1th7.1
4.1 below, we have problem (

5.25.2
4.2) also admits a eigenvalue λε with λ0 + o(1) which implies

that the problem (
5.25.2
4.2) is unstable. If K > 1, problem (

5.25.2
4.2) admits a positive eigenvalue: We can choose, for

example,
ϕ1 = −ϕ2 = Φ0, ϕ3 = · · · = ϕK = 0, λ0 = µ1,

where Φ0 is the principal eigenfunction of L0 given in Proposition
pr3.1pr3.1
2.1. Repeating the above arguments for

K = 1 and by Theorem
th7.1th7.1
4.1 again, we conclude that there is a eigenvalue of (

5.25.2
4.2) with eigenvalue whose real

part is positive. Thus all multiple-peaked solutions are unstable.

Case 2. ηε → ∞. In this case, similar to Case 1, we get from (
5.psi-rep5.psi-rep
4.5) that

ψε(pε
j) = εξεηε

∫
R

wϕε,jdy(1 + o(1)), j = 1, · · · , K. (4.8)

and for any τ ≥ 0, in the limit ε → 0 we obtain the following NLEP:

(−∆)
1
2 ϕj + ϕj − 2wϕj + 2

∫
R

wϕjdy∫
R

w2dy
w2 + λ0ϕj = 0, j = 1, · · · , K. (4.9) 5.etainf

By Theorem
th3.stabilityth3.stability
2.2, (

5.etainf5.etainf
4.9) has only stable eigenvalues. Therefore, if ηε → ∞, then the large eigenvalues of a

K-peaked solutions are all stable.
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Case 3. ηε → η0. Similar as above, we get from (
5.psi-rep5.psi-rep
4.5) that

ψε(pε
j) =

(
K

∑
ℓ=1

1
1 + τλ0

εξε

∫
R

wϕε,ℓdy + εξεη0

∫
R

wϕε,jdy

)
(1 + o(1)). (4.10)

Sending ε → 0, we obtain the following nonlocal eigenvalue problem

(−∆)
1
2 ϕj + ϕj − 2wϕj +

2
[
(1 + η0(1 + τλ0))

∫
R

wϕjdy + ∑ℓ ̸=j wϕℓdy
]

(K + η0)(1 + τλ0)
∫

R
w2(y)dy

w2 + λ0ϕj = 0, j = 1, · · · , K.

(4.11) 5.phi-fin

Let

G =


1 + η0(1 + τλ0) 1 · · · 1

1 1 + η0(1 + τλ0) · · · 1
...

...
. . .

...
1 1 · · · 1 + η0(1 + τλ0)

 ,

G is sysmmetric and eigenvalues of G are given by

λ1 = · · · = λK−1 = η0(1 + τλ0), λK = K + η0(1 + τ0λ0).

Let P be an orthogonal matrix such that

PGP−1 =


η0(1 + τλ0) 0 · · · 0

0 η0(1 + τλ0) · · · 0
...

...
. . .

...
0 0 · · · K + η0(1 + τλ0)

 .

From (
5.phi-fin5.phi-fin
4.11), using the notation,

Φ = (ϕ1, · · · , ϕK)
T ,

we get

(−∆)
1
2 Φ + Φ − 2wΦ +

G
∫

R
Φwdy

(K + η0)(1 + τλ0)
∫

R
w2(y)dy

w2 + λ0Φ = 0.

Let PΦ = Φ̄, then we get

(−∆)
1
2 Φ̄ + Φ̄ − 2wΦ̄ +

2
(K + η0)(1 + τλ0)

∫
R

w2(y)dy
PGP−1

(∫
R

wΦ̄
)

w2 + λ0Φ̄ = 0,

and it can be written in components

(−∆)
1
2 Φ̄j + Φ̄j − 2wΦ̄j +

λj

(K + η0)(1 + τλ0)
∫

R
w2(y)dy

(∫
R

wΦ̄j(y)dy
)

w2 + λ0Φ̄j = 0, j = 1, · · · , K.

(4.12) 5.fin-t

For j = 1, · · · , K − 1, (
5.fin-t5.fin-t
4.12) becomes

(−∆)
1
2 Φ̄j + Φ̄j − 2wΦ̄j +

2η0

(K + η0)
∫

R
w2(y)dy

(∫
R

wΦ̄j(y)dy
)

w2 + λ0Φ̄j = 0, j = 1, · · · , K − 1, (4.13) 5.fin-t-1

while for j = K, (
5.fin-t5.fin-t
4.12) becomes

(−∆)
1
2 Φ̄K + Φ̄K − 2wΦ̄K +

2(K + η0(1 + τλ0))

(K + η0)(1 + τλ0)
∫

R
w2(y)dy

(∫
R

wΦ̄K(y)dy
)

w2 + λ0Φ̄K = 0. (4.14) 5.fin-k

If K > 1 and 2η0
K+η0

< 1 (i.e., η0 < K), then by Theorem
th3.stabilityth3.stability
2.2, problem (

5.fin-t-15.fin-t-1
4.13) is unstable for all τ ≥ 0, which

implies that problem (
5.25.2
4.2) is linearly unstable for all τ ≥ 0. If K ≥ 1 and 2η0

K+η0
> 1 or what is equivalent,

η0 > K, then by Theorem
th3.stabilityth3.stability
2.2, problem (

5.fin-t-15.fin-t-1
4.13) is stable. While for problem (

5.fin-k5.fin-k
4.14), by Theorem

tha.4tha.4
2.7 we get that

it is stable if 0 ≤ τ < τ2 or τ > τ3 for suitable τ2 ≤ τ3.
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If K = 1 and η0 < 1, we see that the problem can be written in the form as (
5.fin-k5.fin-k
4.14). By Theorem

tha.4tha.4
2.7, prolem

(
5.fin-k5.fin-k
4.14) is stable if 0 ≤ τ < τ4 and unstable for τ > τ5, for some suitable τ4 < τ5. Then we finish the whole

proof for the large eigenvalue of symmetric pattern.

Asymmetric pattern. In the asymmetric case, we only consider the problem with two spikes. Using the
Green’s representation for the second equation of (

7.17.1
4.1) we get

ψ(pj) = 2β2
∫ 1

−1
Gβλε

(x, ζ)
2

∑
ℓ=1

ξε,ℓϕε,ℓwℓdζ

=
2

∑
ℓ=1

εξε,ℓ

1 + τλε

∫
R

wϕℓ(y)dy + 2ξε,j
β2

π
ε log

1
ε

∫
R

wϕjdy, j = 1, 2,

(4.15)

The eigenvalue problem turns to be

(−∆)
1
2 ϕj + ϕj − 2wϕj + εξε,jη0

∫
R

wϕjdy +
2

∑
ℓ=1

εξε,ℓ

1 + τλε

∫
R

wϕℓdy + λεϕj = 0, j = 1, 2, (4.16) 5.asy-eig

where

ξε,1 =
2(1 + O(β2))

ε
∫

R
w2(y)dy

 1
2η0

+

√
1 − 4

η2
0

4 + 2η0

 , ξε,2 =
2(1 + O(β2))

ε
∫

R
w2(y)dy

 1
2η0

−

√
1 − 4

η2
0

4 + 2η0

 , where η0 > 2.

The associated two by two matrix of (
5.asy-eig5.asy-eig
4.18) is given by

(
η0 +

1
1+τλε

) 1
η0

+

√
1− 4

η2
0

2+η0

 1
1+τλε

 1
η0

−

√
1− 4

η2
0

2+η0


1

1+τλε

 1
η0

+

√
1− 4

η2
0

2+η0

 (
η0 +

1
1+τλε

) 1
η0

−

√
1− 4

η2
0

2+η0



 (4.17) 5.asy-matrix

After simple calculation we get the eigenvalues of the above matrix are

λ1,2 = 1 +
1

1 + τλε

1
η0

±
√

1 +
1

(1 + τλε)2
1
η2

0
+

2
1 + τλε

1
η0

− 4
2 + η0

− 8
η0(2 + η0)(1 + τλε)

. (4.18) 5.asy-eig

Next, we claim that

λ2 = 1 +
1

1 + τλε

1
η0

−
√

1 +
1

(1 + τλε)2
1
η2

0
+

2
1 + τλε

1
η0

− 4
2 + η0

− 8
η0(2 + η0)(1 + τλε)

< 1. (4.19) 5.asy-claim

It is equivalent to show that

1 +
2

1 + τλε

1
η0

− 4
2 + η0

− 8
η0(2 + η0)(1 + τλε)

> 0. (4.20) 5.asy-claim-1

Using η0 > 2 we have 1 > 4
2+η0

and it implies that (
5.asy-claim-15.asy-claim-1
4.20). Thus (

5.asy-claim5.asy-claim
4.19) holds. By Theorem

th3.stabilityth3.stability
2.2 we conclude

that the system (
5.asy-eig5.asy-eig
4.18) admits an unstable eigenvalue and it proves that the asymmetric two spikes pattern

is always unstable.

In the end of this subsection, we give the following result which establishes the relation between the
corresponding limit eigenvalue problem of each case and the original eigenvalue problem (

5.25.2
4.2)

th7.1 Theorem 4.1. Let λε be a eigenvalue of (
5.25.2
4.2) such that ℜ(λε) > −c for some c > 0.

(1) Suppose that for suitable sequences εn → 0 we have λεn → λ0 ̸= 0. Then λ0 is a eigenvalue of the problem
given in (

5.phi-lin5.phi-lin
4.7) ((

5.etainf5.etainf
4.9), (

5.phi-fin5.phi-fin
4.11) and (

5.asy-eig5.asy-eig
4.18) for the other three cases).

(2) Let λ0 ̸= 0 with ℜ(λ0) > 0 be a eigenvalue of the problem given in (
5.phi-lin5.phi-lin
4.7) ((

5.etainf5.etainf
4.9), (

5.phi-fin5.phi-fin
4.11) and (

5.asy-eig5.asy-eig
4.18) for the

other three cases). Then for ε sufficiently small, there is a eigenvalue λε of (
5.25.2
4.2) with λε → λ0 as ε → 0.

Proof. One can see
gwy
[12, Theorem 6.1] for the proof. □
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4.2. Stability Analysis: Small Eigenvalues. We now study the problem (
7.17.1
4.1) for small eigenvalues of the

symmetric pattern. As in last subsection, we set

ûε = ξ−1
ε uε = uε,p + ϕε,p, v̂ε = ξ−1

ε vε = vε,p + ψε,p.

In the following discussion, we take τ = 0 for simplicity. As λε ≪ 1 the results in this section are also valid
for τ finite, this is due to the fact that the small eigenvalue are of the order O(ε2), we shall prove it in this
subsection.

We cut off ûε as follows

ũε,j(y) = χ

(
εy − pε

j

r0

)
ûε(y), j = 1, · · · , K, (4.21) 8.3

where χ(x) and r0 are given in §
sec:prelimsec:prelim
2. Similarly to the §

sec:proof-existencesec:proof-existence
3 we define

Kε,p,new := Span
{

∂ũε,j

∂y
| i = 1, · · · , K

}
⊂ H1

(
−1

ε
,

1
ε

)
,

Cε,p,new := Span
{

∂ũε,j

∂y
| i = 1, · · · , K

}
⊂ L2

(
−1

ε
,

1
ε

)
.

Then it is easy to see that

ûε(y) =
K

∑
j=1

ũε,j(y) + O(ε2). (4.22) 8.4

Note that

ũε,j(y) ∼ w

(
y −

pε
j

ε

)
in H1(−1, 1)

and ũε,j satisfies

(−∆)
1
2 ũε,j + ũε,j −

ũ2
ε,j

v̂ε
+ O(ε2) = 0. (4.23) 8.5

Thus ũ′
ε,j :=

∂ũε,j
∂y satisfies

(−∆)
1
2
y ũ′

ε,j + ũ′
ε,j − 2

ũε,j

v̄ε
ũ′

ε,j + ε
ũ2

ε,j

v̂2
ε

v̂′ε + h.o.t. = 0, (4.24) 8.6

and we have

ũ′
ε,j =

∂w
∂y

(
y −

pε
j

ε

)
(1 + o(1)).

Let us now decompose

ϕε =
K

∑
j=1

aε
j ũ

′
ε,j + ϕ⊥

ε , (4.25) 8.7

where aε
j are complex numbers and ϕ⊥

ε ⊥ Kε,p,new. Similarly, we can decompose

ψε =
K

∑
j=1

aε
j ψε,j + ψ⊥

ε , (4.26) 8.8

where ψε,j satisfies

D(−∆)
1
2 ψε,j + ψε,j − 2ξεûεũ′

ε,j = 0, j = 1, · · · , K, (4.27) 8.9

and ψ⊥
ε satisfies

D(−∆)
1
2 ψ⊥

ε + ψ⊥
ε − 2ξεûεϕ

⊥
ε = 0. (4.28) 8.10

We impose periodic boundary conditions for (
8.98.9
4.27) and (

8.108.10
4.28).
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Suppose that ∥ϕε∥H1(− 1
ε , 1

ε )
= 1. Then |aε

j | ≤ C since

aε
j =

∫ 1
ε

− 1
ε

ϕε
∂ũε,j
∂y dy∫

R
w2dy

+ o(1).

Substituting the decompositions of ϕε and ψε into (
5.25.2
4.2) we have

(−∆)
1
2
y ϕ⊥

ε + ϕ⊥
ε − 2ûε

v̂ε
ϕ⊥

ε +
û2

ε

v̂2
ε

ψ⊥
ε + λεϕ

⊥
ε − ε

K

∑
j=1

aε
j

(
ũ2

ε,j

v̂2
ε

∂v̂ε

∂x
− 1

ε

û2
ε

v̂2
ε

ψε,j

)
+ h.o.t. = −λε

K

∑
j=1

aε
j ũ

′
ε,j. (4.29) 8.11

Set

J1 := ε
K

∑
j=1

aε
j

ũ2
j,ε

v̂2
ε

(
−1

ε
ψε,j +

∂v̂ε

∂x

)
,

and

J2 := (−∆)
1
2
y ϕ⊥

ε + ϕ⊥
ε − 2

ûε

v̂ε
ϕ⊥

ε +
û2

ε

v̂2
ε

ψ⊥
ε + λεϕ

⊥
ε .

We divide the proof into two steps.
Step 1. In this step we shall use equation (

8.118.11
4.29) to give a good error bounds for ϕ⊥

ε . Since ϕ⊥
ε ⊥ Kε,p,new,

then similar to the proof of Proposition
pr5.1pr5.1
3.2, it follows that

∥ϕ⊥
ε ∥H1(− 1

ε , 1
ε )

≤ C∥J0∥L2(− 1
ε , 1

ε )
.

Let us now compute J1. Let ξε be the same as Theorem
th1.existth1.exist
1.1 and k(ε, β) = ξεβ2ε, then we calculate that for

x ∈ Bδ(pε
j):

∂v̂ε

∂x
= ξεβ2

∫ 1

−1
∂xGβλε

(x, ζ)

(
ûε

(
ζ

ε

))2
dζ

= ξεβ2
∫ 1

−1

∂

∂x
Gβ(x, ζ)

((
ũε,j

(
ζ

ε

))2
+ ∑

ℓ ̸=j

(
ũε,ℓ

(
ζ

ε

))2
+ O(ε2)

)
dζ,

and by (
8.98.9
4.27),

ψε,j = 2ξεβ2
∫ 1

−1
Gβũε,j

∂ũε,j

∂y
dζ = εξεβ2

∫ 1

−1
(Kβ(|x − ζ|)− Hβ(x, ζ))

∂

∂ζ
(ũε,j)

2dζ,

Thus for x ∈ Bδ(pε
j), we have

∂v̂ε

∂x
− 1

ε
ψε,j = ξεβ2

[(∫ 1

−1

[
∂

∂x
Kβ(|x − ζ|)

(
ũε,j

(
ζ

ε

))2
− Kβ(|x − ζ|) ∂

∂ζ

(
ũε,j

(
ζ

ε

))2
]

dζ

)

−
∫ 1

−1

[
∂

∂x
Hβ(x, ζ)

(
ũε,j

(
ζ

ε

))2
− Hβ(x, ζ)

∂

∂ζ

(
ũε,j

(
ζ

ε

))2
]

dζ

+
∫ 1

−1
∑
ℓ ̸=j

∂

∂x
Gβ(x, ζ)

(
ũε,ℓ

(
ζ

ε

))2
dζ + O(ε2)

]
.

Using the fact that
∂

∂x
Kβ(|x − ζ|) + ∂

∂ζ
Kβ(|x − ζ|) = 0, ∀x ̸= ζ,

and using integration by parts, we get

∂v̂ε

∂x
− 1

ε
ψε,j = k(ε, β)

∫
R

w2
(
− ∂

∂x
Fj(x) + o(ε)

)
dy, (4.30) 8.16

where
Fj(x) = Hβ(x, pε

j)− ∑
ℓ ̸=j

Gβ(x, pε
ℓ).
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Observe that
∂

∂x
Fj(x) | x = pε

j = oε(1),

since pε → p0 and p0 is a critical point of F(p) (see (
2.f2.f
1.7) for the definition of F(p)). Hence we have

∥J1∥L2(− 1
ε , 1

ε )
= o

(
εk(ε, β)

K

∑
j=1

|aε
j |
)

(4.31) 8.18

and

∥ϕ⊥
ε ∥H1(− 1

ε , 1
ε )

≤ C∥J1∥L2(− 1
ε , 1

ε )
= o

(
εk(ε, β)

K

∑
j=1

|aε
j |
)

. (4.32) 8.19

Using the equation for ψ⊥
ε and (

8.198.19
4.32), we obtain that ψ⊥

ε = o
(

ε2k(ε, β)∑K
j=1 |aε

j |
)

. We calculate

∫ 1
ε

− 1
ε

(
J2

∂ũε,j

∂y

)
dy = −

∫ 1
ε

− 1
ε

(
ũ2

ε,j

v̂2
ε

(
ε

∂v̂ε

∂x
ϕ⊥

ε −
∂ũε,j

∂y
ψ⊥

ε

))
dy + λε

∫ 1
ε

− 1
ε

ϕ⊥
ε

∂ũε,j

∂x
dy

= −
∫

Iε,pε
j

ũ2
ε,j

v̂2
ε

(
ε

∂v̂ε

∂x
(pε

j + εζ)− ε
∂v̂ε

∂x
(pε

j)

)
ϕ⊥

ε dζ −
∫

Iε,pε
j

ũ2
ε,j

v̂2
ε

(
ε

∂v̂ε

∂x
(pε

j)

)
ϕ⊥

ε dζ

+
∫

Iε,pε
i

ũ2
ε,j

v̂2
ε

∂ũε,j

∂y

(
ψ⊥

ε (pε
j + εζ)− ψ⊥

ε (pε
j)
)

dζ + λε

∫ 1
ε

− 1
ε

ϕ⊥
ε

∂ũε,j

∂x
dy

= o
(

ε2k(ε, β) + ελεk(ε, β)
) K

∑
j=1

|aε
j |.

(4.33) 8.20

where
Iε,pε

j
= {y | pε

j + εy ∈ (−1, 1)},

and we have used (
8.108.10
4.28) and ∂v̂ε

∂x = O(1).

Step 2. In this step we shall derive an algebraic equation for aε
j . Multiplying both sides of (

8.118.11
4.29) by ∂ũℓ,ε

∂y and

integrating over
(
− 1

ε , 1
ε

)
, we obtain

r.h.s. = −λε

K

∑
j=1

aε
j

∫ 1
ε

− 1
ε

∂ũε,j

∂y
∂ũε,ℓ

∂y
dζ = −λε(1 + o(1))aε

ℓ

∫
R

(
∂w
∂y

)2
dy = −λεπ(1 + o(1))aε

ℓ, (4.34) 8.right

where we have used ∫
R

(
∂w
∂y

)2
dy =

∫
R

16y2

(1 + y2)4 dy = π.

By (
8.168.16
4.30) and (

8.208.20
4.33)

l.h.s. =− ε
K

∑
j=1

aε
j

∫
Iε,pε

ℓ

(ũε,j)
2

(v̂ε)2

(
−1

ε
ψε,j +

∂v̂ε

∂x

)
∂ũε,ℓ

∂y
dy +

∫ 1
ε

− 1
ε

(
J2

∂ũε,ℓ

∂y

)
dy

= εk(ε, β)
K

∑
j=1

aε
j

∫ 1
ε

− 1
ε

ũ2
ε,j

v̂2
ε

(
∂

∂x
Fj(x)

)
∂ũε,ℓ

∂y
dy + o

(
ε2k(ε, β) + ελεk(ε, β)

) K

∑
j=1

|aε
j |

= ε2k(ε, β)
∫

R
w2 ∂w

∂y
y

K

∑
j=1

aε
j

(
∂2

∂pε
j ∂pε

ℓ

F(pε)

)
dy + o

(
ε2k(ε, β) + ελεk(ε, β)

) K

∑
j=1

|aε
j |

=− ε2k(ε, β)π
K

∑
j=1

aε
j

∂2

∂pε
j ∂pε

ℓ

F(pε) + o
(

ε2k(ε, β) + ελεk(ε, β)
) K

∑
j=1

|aε
j |,

(4.35) 8.left
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where we have used that ∫
R

w2 ∂w
∂y

ydy = −1
3

∫
R

w3(y)dy = −π. (4.36)

Combining (
8.right8.right
4.34) and (

8.left8.left
4.35) we have

ε2k(ε, β)π
K

∑
j=1

aε
j

(
∂2

∂pε
j ∂pε

ℓ

F(pε)

)
+ o

(
ε2k(ε, β) + ελεk(ε, β)

) K

∑
j=1

|aε
j | = λεπaε

ℓ(1 + o(1)). (4.37) 5.balance

From (
5.balance5.balance
4.37), we see that the small eigenvalues with λε → 0 satisfying |λε| ∼ ε2k(ε, β). Furthermore,

λε

ε2k(ε, β)
→ σ0, (4.38)

as ε → 0, where σ0 is a eigenvalue of the matrix M(p0) and pε → p0 as ε → 0. The vector a⃗ε = (aε
1, · · · , aε

K)
T

approaches an eigenvector of M(p0) corresponding to the eigenvalue σ0. In the following subsection, we
shall show that if anyone of the following two conditions holds

(1) D is sufficiently large.
(2) K = 2, 3, 4 and D is arbitrary positive constant.

Then rank(M(p0)) = K − 1 and all the nonzero eigenvalues are negative. It implies that the small eigen-
value is always stable when 2 ≤ K ≤ 4 or D is sufficiently large.

4.3. Eigenvalue of the circulant matrix. In the following, we shall compute the eigenvalue of the matrix
M(p0), defined by

M(p0) =


−∑j ̸=1 G′′

β (p1, pj) G′′
β (p1, p2) · · · G′′

β (p1, pK)

G′′
β (p2, p1) −∑j ̸=2 G′′

β (p2, pi) · · · G′′
β (p2, pK)

...
...

. . .
...

G′′
β (pK, p1) G′′

β (pK, p2) · · · −∑j ̸=K G′′
β (pK, pj)

 ,

where the Green’s function Gβ(x, z) admits the following expression

Gβ(x, z) =
1

2β2 +
∞

∑
k=1

cos(kπ(x − z))
β2 + kπ

=
1
β2

(
1
2
+

∞

∑
k=1

cos(kπ(x − z))
kπD

− 1
πD

∞

∑
k=1

cos(kπ(x − z))
k(1 + kπD)

)
, D =

1
β2 .

It is known that (the left-hand side of (
9.fou9.fou
4.39) is the Fourier expansion of the right-hand side of (

9.fou9.fou
4.39) in

(−1, 1) \ {0})
∞

∑
k=1

cos(kπx)
k

= − log sin
(

π|x|
2

)
− log 2 for x ∈ (−1, 1) \ {0}. (4.39) 9.fou

After straightforward computations we have

G′
β(x, 0) = −1

2
cot

πx
2

+
1

πD
π − πx

2
− 1

πD

∞

∑
k=1

sin(kπx)
k(1 + kπD)

, x > 0, (4.40) 9.green-1

and

G′′
β (x, 0) =

π

4
csc2 πx

2
+

1
πD2

(
log sin

(
π|x|

2

)
+ log 2 − πD

2
+

∞

∑
k=1

cos(kπx)
k(1 + kπD)

)
. (4.41) 9.green-2

Since p0
1, · · · , p0

K are equally distributed, then it is easy to see that M(p0) is a circulant matrix and all the
eigenvalues can be written as (see

wwy2017
[42, section 6])

λℓ =
1

πD2

K−1

∑
j=1

[
log sin

(
jπ
K

)
+ log 2 − πD

2
+

∞

∑
k=1

1
k(1 + kπD)

cos
(

2kjπ
K

)](
cos

(
2(ℓ− 1)jπ

K

)
− 1
)

+
K−1

∑
j=1

π

4
csc2

(
jπ
K

)(
cos

(
2(ℓ− 1)jπ

K

)
− 1
)

, ℓ = 1, · · · , K.

(4.42) a.eig
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Obviously, one can easily verify that λ1 = 0 and it corresponds to the summation of each row of M(p0)
vanishes. To compute (

a.eiga.eig
4.42), we recall the following identities (see

berndt2002
[4] and

cvijovic2009
[6])

K−1

∑
j=1

csc2
(

jπ
K

)
= K − 1 +

K−1

∑
j=1

cot2
(

jπ
K

)
=

K2 − 1
3

, (4.43) 9.id-1

and
K−1

∑
j=1

csc2
(

jπ
K

)
cos

(
2(ℓ− 1)jπ

K

)
=

K−1

∑
j=1

cot2
(

jπ
K

)
cos

(
2(ℓ− 1)jπ

K

)
+

K−1

∑
j=1

cos
(

2(ℓ− 1)jπ
K

)

=
1
2

1

∑
α=0

2

∑
β=0

(
2

2α

)(
2
β

)
B(1)

2α

(
ℓ− 1

K

)
B(2)

2−2α(β)K2α − 1,

(4.44) 9.id-2

where
(

m
n

)
denotes the Binomial coefficient and B(m)

n denotes the Bernoulli polynomial of order m and

degree n defined using the generating functions(
t

et − 1

)m
eetx

=
∞

∑
n=0

B(m)
n

tn

n!
.

After a tedious computation we have

K−1

∑
j=1

csc2
(

jπ
K

)(
cos

(
2(ℓ− 1)jπ

K

)
− 1
)
= 2(ℓ− 1)2 − 2(ℓ− 1)K. (4.45) a.sum-1

Substituting (
a.sum-1a.sum-1
4.45) into (

a.eiga.eig
4.42) we get

λℓ =
1

πD2

K−1

∑
j=1

[
log sin

(
jπ
K

)
+ log 2 − πD

2
+

∞

∑
k=1

1
k(1 + kπD)

cos
(

2kjπ
K

)](
cos

(
2(ℓ− 1)jπ

K

)
− 1
)

+
π

2
((ℓ− 1)2 − (ℓ− 1)K), ℓ = 1, · · · , K.

(4.46) a.eig-1

Concerning (
a.eig-1a.eig-1
4.46), we see that if D is sufficiently large then the sign of λℓ is decided by (ℓ− 1)(ℓ− 1−K)

and it is easy to see that λℓ < 0 for ℓ = 2, · · · , K.

Next, we shall show when K = 2, 3, 4, rank(M(p0)) = K − 1 and non-zero eigenvalues are negative for
all D. Using (

a.eig-1a.eig-1
4.46) we have

λ2 = − 2
πD2

(
−πD

2
−

∞

∑
k=1

πD
1 + kπD

cos(kπ)

)
− π

2

=
1
D

(
1 − πD

2
−

∞

∑
m=1

2πD
(1 + (2m − 1)πD)(1 + 2mπD)

)
, K = 2,

(4.47) 9.2-e-1

λ2(λ3) =
3

2D

(
1 − 2

3
πD −

∞

∑
m=1

(
2πD

(1 + (3m − 2)πD)(1 + 3mπD)
+

πD
(1 + (3m − 1)πD)(1 + 3mπD)

))
, K = 3,

(4.48) 9.2-e-2

and

λ2(λ4) =
1
D

(
2 − 3

2
πD −

∞

∑
m=1

4πD
(1 + (4m − 2)πD)(1 + 4mπD)

−
∞

∑
m=1

2πD
(1 + (2m − 1)πD)(1 + 2mπD)

)
,

λ3 =
2
D

(
1 − πD −

∞

∑
m=1

4πD
(1 + (4m − 2)πD)(1 + 4mπD)

)
, K = 4.

(4.49) 9.2-e-3

To determine the sign of λ, defined in (
9.2-e-19.2-e-1
4.47), (

9.2-e-29.2-e-2
4.48) and (

9.2-e-39.2-e-3
4.49), we need the following lemma
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le9.sign Lemma 4.2. Consider the following function

F1(x) = 1 − x
2
−

∞

∑
m=1

2x
(1 + (2m − 1)x)(1 + 2mx)

,

and

F2(x) = 1 − 2
3

x −
∞

∑
m=1

(
2x

(1 + (3m − 2)x)(1 + 3mx)
+

x
(1 + (3m − 1)x)(1 + 3mx)

)
Then F1(x) and F2(x) are negative when x is positive.

Proof. Since the proof is almost the same, we shall only focus on the function F2(x). Recall that the
digamma function ψ(z) = d

dz Γ(z) = Γ′(z)
Γ(z) has the following series representation

ψ(z) =
∞

∑
m=0

(
1

m + 1
− 1

m + x

)
− γ, (4.50)

where γ is the Euler constant. Therefore, we can deduce that

ψ

(
1 +

1
3x

)
− ψ

(
1
3
+

1
3x

)
=

∞

∑
m=0

(
1

1
3 + 1

3x + m
− 1

1 + 1
3x + m

)
=

∞

∑
m=1

6x2

(1 + (3m − 2)x)(1 + 3mx)
,

(4.51) gamma-1

and

ψ

(
1 +

1
3x

)
− ψ

(
2
3
+

1
3x

)
=

∞

∑
m=0

(
1

2
3 + 1

3x + m
− 1

1 + 1
3x + m

)
=

∞

∑
m=1

3x2

(1 + (3m − 2)x)(1 + 3mx)
,

(4.52) gamma-2

Using (
gamma-1gamma-1
4.51) and (

gamma-2gamma-2
4.52), we derive that

F2(x) = 1 − 2
3

x − 1
3x

(
2ψ

(
1 +

1
3x

)
− ψ

(
2
3
+

1
3x

)
− ψ

(
1
3
+

1
3x

))
.

To show F2 is negative for x > 0, it is enough to prove that

2ψ(1 + t)− ψ

(
1
3
+ t
)
− ψ

(
2
3
+ t
)
>

1
t
− 2

9t2 , t > 0, (4.53) gamma-e

where t = 1
3x . By the expansion of log Γ(t + a) for t > 0 and a ∈ [0, 1] (See (25) in

Nemes2013
[28]), we have

log Γ(t + a) =
(

t + a − 1
2

)
log t − t +

1
2

log 2π +
2n+1

∑
j=2

(−1)jBj(a)
j(j − 1)tj−1 + R(a)

2n+1(t), (4.54) gamma-exp

where n ≥ 0 and

R(a)
2n+1(z) =

(−1)n+1

2πt2n+1

∫ +∞

0

t2

t2 + s2 s2n log(1 − 2e−2πs cos(2πa) + e−4πs)ds

+
(−1)n+1

πt2n+2

∫ +∞

0

t2

t2 + s2 s2n+1 arctan
(

sin (2πa)
e2πs − cos (2πa)

)
ds

(4.55) gamma-rem

and Bj(a) is the j-th Bernoulli polynomial. Then, we have

2 log Γ(1 + t)− log Γ
(

1
3
+ t
)
− log Γ

(
2
3
+ t
)

= log t +
2
9t

+ 2R(1)
3 (t)− R( 2

3 )
3 (t)− R( 1

3 )
3 (t)

= log t +
2
9t

+
1
π

∫ ∞

0

s2

t(t2 + s2)
log

1 − 2e−2πs + e−4πs

1 + e−2πs + e−4πs ds.

(4.56) gamma-eq
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Differentiating both sides of (
gamma-eqgamma-eq
4.56) gives

2ψ(1 + t)− ψ

(
1
3
+ t
)
− ψ

(
2
3
+ t
)
=

1
t
− 2

9t2 +
1
π

∫ ∞

0

s2(3t2 + s2)

t2(t2 + s2)2 log
1 + e−2πs + e−4πs

1 − 2e−2πs + e−4πs ds

>
1
t
− 2

9t2 , ∀t > 0.

(4.57) gamma-con

Hence (
gamma-egamma-e
4.53) is proved and we finish the proof. □

With Lemma
le9.signle9.sign
4.2, we are able to show that λ2 < 0 by taking x = πD in F1 when K = 2. If K = 3, we take

x = πD in F2 and it proves that λ3 < 0. While when K = 4, to show λ2(λ4) < 0 we could write the terms
in the bracket of λ2(λ4) (see (

9.2-e-39.2-e-3
4.49)) as F1(2πD) + F1(πD) and we get that it is negative. While for λ3, we

could prove it is negative just by taking x = 2πD in F1.

5. PROOF OF PROPOSITION
pr1.1pr1.1
1.3.

In this section we shall analyze the linear stability of the fractional Gierer-Meinhardt system with two
spikes and give the proof for Proposition

pr1.1pr1.1
1.3. Consider the following system{

ε(−∆)
1
2 uε + uε − u2

ε
vε

= 0,

D(−∆)
1
2 vε + vε − ε−1u2

ε = 0.
(5.1) a.gmo

In the inner region near the j−th spike, centered at pj, j = 1, 2, we set uε = Duj, vε = Dvj and y =

ε−1(x − pj), then(−∆)
1
2 uj + uj −

u2
j

vj
= 0, uj(y) → 0 as |y| → +∞,

(−∆)
1
2 vj − u2

j = 0, vj(y) ∼ −Sj log r + Cj + o(1) as |y| → +∞,
(5.2) a.gm

where Sj = 1
π

∫
R

u2
j dx. In (

a.gmoa.gmo
5.1), since uε is algebraically small away from pj, we have in the sense of

distribution that ε−1u2
ε → πD2 ∑2

j=1 Sjδpj , therefore, from the second equation of (
a.gmoa.gmo
5.1) we see that the limit

function v satisfies

(−∆)
1
2 v +

1
D

v = πD
2

∑
j=1

Sjδpj , v(x) = −DSj log |x − pj|+ D
(
−

Sj

σ
+ Cj

)
as x → pj, (5.3) a.v.limit

where σ = − 1
log ε . We define the Green function GD(x, 0) and its regular part RD(x, 0) by

(−∆)
1
2 GD(x, 0) +

1
D

GD(x, 0) = δ0, GD(x, 0) = − 1
π

log |x|+ RD(x, 0) as x → 0,

where RD is the regular part of GD and

RD(0, 0) =
D
2
− 1

π
log π + O

(
1
D

)
.

The solution to (
a.v.limita.v.limit
5.3) is v(x) = πD ∑2

j=1 SjGD(x, pj). Comparing with the local behavior of v(x) in (
a.v.limita.v.limit
5.3) we

derive that Sj satisfies

Sj + πσSjRD(pj, pj) + πσSiGD(pi, pj) = σCj. (5.4) a.rel

Since the two spikes are equally distributed on (−1, 1), we have GD(pi, pj) =
D
2 − 1

π log 2 + O
(

1
D

)
. In the

stability threshold we require that D = O(σ−1) ≫ 1, we expand (
a.rela.rel
5.4) to{

S1 − σS1 log π − σS2 log 2 + Dπσ
2 ∑2

ℓ=1 Sℓ = σC1,
S2 − σS2 log π − σS1 log 2 + Dπσ

2 ∑2
ℓ=1 Sℓ = σC2.

(5.5) a.rel-2
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To determine what the appropriate scaling for Sj in terms of σ ≪ 1 for the above equation (
a.rel-2a.rel-2
5.5) we use

Cj = O(S
1
2
j ) as Sj → 0. Indeed, we set uj = UjS

p
j and vj = VjS

p
j , where Uj and Vj are O(1) as Sj → 0, we

obtain that the first equation in (
a.gma.gm
5.2) is kept the same but that the equation for vj becomes

(−∆)
1
2 Vj − Sp

j U
2
j = 0, Vj = −S1−p

j log r + S−p
j Cj as r → 0.

Comparing the powers of Sj we see that p = 1 − p and it gives that p = 1
2 . Then, to ensure that Uj = O(1)

we need Cj = O(S
1
2
j ). This shows that if Sj ∼ Sj0σ2, the appropriate scaling for uj, vj and Cj are all O(σ).

To obtain a two-term expansion for the inner problem, we set

(uj, vj, Cj) = σ(uj0, vj0, Cj0) + σ2(uj1, vj1, Cj1) + σ3(uj2, vj2, Cj2) + · · · ,

and
Sj = Sj0σ2 + Sj1σ3 + · · · .

Substituting these expansions into (
a.gma.gm
5.2) and collecting powers of σ we derive that(−∆)

1
2 uj0 + uj0 −

u2
j0

vj0
= 0, uj0(y) → 0 as |y| → +∞,

(−∆)
1
2 vj0 = 0, vj0(y) → Cj0 as |y| → +∞,

(5.6) a.1st

At next order, uj1 and vj1 satisfy(−∆)
1
2 uj1 + uj1 −

2uj0
vj0

uj1 +
u2

j0

v2
j0

vj1 = 0, uj1(y) → 0 as |y| → +∞,

(−∆)
1
2 vj1 − u2

j0 = 0, vj1(y) → −Sj0 log |y|+ Cj1 as |y| → +∞.
(5.7) a.2nd

Then at one higher order, we obtain that vj2 verifies that

(−∆)
1
2 vj2 − 2uj0uj1 = 0, vj2(y) → −Sj1 log |y|+ Cj2 as |y| → +∞. (5.8) a.3rd

The solution to (
a.1sta.1st
5.6) is simply

uj0 = Cj0w, vj0 = Cj0,

where w(x) = 2
1+|x|2 is the radially symmetric ground-state solution to (−∆)

1
2 w + w − w2 = 0. Using the

Green function of (−∆)
1
2 in R and representation formula (

a.2nda.2nd
5.7) we derive that

Sj0 =
1
π

C2
j0

∫
R

w2dy = 2C2
j0.

It is convenient to decompose uj1 and vj1 in terms of new variables û and v̂ by

uj1 = Cj1w + Sj0ûj, vj1 = Cj1 + Sj0v̂j,

then it is easy to check that ûj and v̂j are the unique radially symmetric solutions to{
(−∆)

1
2 ûj + ûj − 2wûj + w2v̂j = 0, ûj(y) → 0 as |y| → +∞,

(−∆)
1
2 v̂j − 1

2 w2 = 0, v̂j → − log |y| as |y| → +∞.
(5.9) a.2nd-2

Concerning (
a.3rda.3rd
5.8), integrating both sides we see that

Sj1π = 2
∫

R
Cj0w(Cj1w + Sj0ûj)dy = 4Cj0Cj1π + 2Cj0Sj0

∫
R

wûjdy

= 4Cj0Cj1π + 2Cj0Sj0

∫
R
(w + xw′)w2v̂jdy ≈ 4Cj0Cj1π + 11.4482Cj0Sj0,

where we used∫
R
(w + zw′)w2v̂jdz =

1
π

∫
R

∫
R

log
1

|z − y|

(
2

1 + z2

)2 ( 2
1 + z2 − 4z2

(1 + z2)2

)
2

(1 + y2)2 dzdy ≈ 5.7241.

Summarizing the above computation, we have the following lemma
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lea.1 Lemma 5.1. For Sj = Sj0σ2 + Sj1σ3 + · · · , where σ = −1/ log ε ≪ 1, the asymptotic solution to the core problem
(
a.gma.gm
5.2) is

uj ∼ σ(uj0 + σuj1 + · · · ), vj ∼ σ(vj0 + σvj1 + σ2vj2 + · · · ), Cj ∼ σ(Cj0 + σCj1 + · · · ),
where uj0, uj1, vj0, vj1 are define by

uj0 = Cj0w, uj1 = Cj1w + Sj0ûj, vj0 = Cj0, vj1 = Cj1 + Sj0v̂j,

with (ûj, v̂j) verifying (
a.2nd-2a.2nd-2
5.9). Finally, Cj0 and Cj1 are related to Sj0 and Sj1 by

Cj0 =

√
Sj0

2
, Cj1 =

Sj1

4Cj0
−

Sj0

2π

∫
R

wûjdy. (5.10) a.le3

With Lemma
lea.1lea.1
5.1 we are able to prove Proposition

pr1.1pr1.1
1.3.

Proof of Proposition
pr1.1pr1.1
1.3. Consider the linearized problemε(−∆)

1
2 ϕ + ϕ − 2 uε

vε
ϕ + u2

ε

v2
ε
ψ + λϕ = 0,

D(−∆)
1
2 ψ + ψ − 2ε−1uεϕ + λψ = 0.

(5.11) al.g

In the inner region near the center pj, we introduce the local variables Φj(y) and Ψj(y) by

ϕ(x) = Φj(y), ψ(x) = Ψj(y), y = ε−1(x − pj).

Upon substituting the above relation into (
al.gal.g
5.11), and using uε = Duj and vε = Dvj near pj, where uj and vj

satisfy the core problem (
a.gma.gm
5.2), we obtain that(−∆)

1
2 Φj + Φj −

2uj
vj

Φj +
u2

j

v2
j
Ψj + λΦj = 0, Φj(y) → 0 as |y| → ∞,

(−∆)
1
2 Ψj − 2ujΦj = 0, Ψj(y) ∼ −θj log |y|+ Bj as |y| → ∞,

(5.12) a.lin

where Bj depends on Sj and λ. One can easily check that θjπ = 2
∫

R
ujΦjdy. To determine θj, we must

match the behavior of the core solution to an outer problem for ψ. Since uε is localized near the center, we
have 2ε−1uεϕ → 2D ∑2

j=1
(∫

R
ujΦjdy

)
δpj = πD ∑2

j=1 θjδpj . Using this expression we obtain that the outer
problem for ψ is

(−∆)
1
2 ψ + β2

λψ = π
2

∑
j=1

θjδpj , ψ(x) ∼ −θj log |x − pj| −
θj

σ
+ Bj as x → pj, (5.13) a.psi-o

where βλ =
√
(1 + τλ)/D. The solution to (

a.psi-oa.psi-o
5.13) is ψ = π ∑2

j=1 θjGDλ
(x, pj) with GDλ

satisfying

(−∆)
1
2 GDλ

(x, 0) + β2
λGDλ

(x, 0) = δ0, GDλ
(x, 0) ∼ − 1

π
log |x|+ RDλ

as |x| → 0.

From the above discussion, we conclude that

θj + πσθjRDλ
(pj, pj) + πσθiGDλ

(pi, pj) = σBj.

Using RDλ
(0) ∼ D

2(1+τλ)
− 1

π log π + O(σ) we have{
θ1 − θ1σ log π − θ2σ log 2 + ∑2

ℓ=1
πDσ

2(1+τλ)
θℓ = σB1,

θ2 − θ2σ log π − θ1σ log 2 + ∑2
ℓ=1

πDσ
2(1+τλ)

θℓ = σB2.
(5.14) a.rel-12

Using Lemma
lea.1lea.1
5.1 we first calculate the coefficients in (

a.lina.lin
5.12) as

uj

vj
=

Cj0w + (Cj1w + Sj0ûj)σ + · · ·
Cj0 + (Cj1 + Sj0v̂j)σ + · · · = w +

σSj0

Cj0
(ûj − wv̂j) + · · · ,

u2
j

v2
j
=

(
Cj0w + (Cj1w + Sj0ûj)σ + · · ·

Cj0 + (Cj1 + Sj0v̂j)σ + · · ·

)2

= w2 +
2σSj0

Cj0
w(ûj − wv̂j) + · · · ,
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So that the local problem becomes
(−∆)

1
2 Φj + Φj −

[
2w +

2σSj0
Cj0

(ûj − wv̂j) + · · ·
]

Φj +
[
w2 +

2σSj0
Cj0

w(ûj − wv̂j) + · · ·
]

Ψj + λΦj = 0,

(−∆)
1
2 Ψj − 2σ

[
Cj0w + σ(Cj1w + Sj0ûj) + · · ·

]
Φj = 0,

Φj(y) → 0, Ψj(y) ∼ −θj log |y|+ Bj as |y| → +∞,
(5.15) a.sys

To analyze (
a.sysa.sys
5.15) together with (

a.rel-12a.rel-12
5.14), we substitute the appropriate expansions{

Φj =
1
σ

(
Φj0 + σΦj1 + · · ·

)
, Ψj =

1
σ

(
Ψj0 + σΨj1 + · · ·

)
, Bj =

1
σ

(
Bj0 + σBj1 + · · ·

)
,

θj = θj0 + σθj1 + · · · , λ = λ0 + σλ1 + · · · .
(5.16) a.par-rel

The leading order is{
(−∆)

1
2 Φj0 + Φj0 − 2wΦj0 + w2Ψj0 + λ0Φj0 = 0, Φj0(y) → 0 as |y| → +∞,

(−∆)
1
2 Ψj0 = 0, Ψj0(y) → Bj0 as |y| → +∞,

(5.17) a.lead

then we conclude Ψj0 = Bj0. At next order, we have
(−∆)

1
2 Φj1 + Φj1 − 2wΦj1 + w2Ψj1 −

2Sj0
Cj0

(ûj − wv̂j)Φj0 +
2Sj0
Cj0

w(ûj − wv̂j)Ψj0 + λ1Φj0 + λ0Φj1 = 0,

(−∆)
1
2 Ψj1 − 2Cj0wΦj0 = 0,

Φj1(y) → 0, Ψj1(y) → −θj0 log |y|+ Bj1 as y → ∞.
(5.18) a.sec

At one more higher order, the problem for Ψj2 is

(−∆)
1
2 Ψj2 − 2Cj0wΦj1 − 2(Cj1w + Sj0ûj)Φj0 = 0, Ψj2(y) → −θj1 log |y|+ Bj2 as |y| → +∞. (5.19) a.third

In addition, substituting (
a.par-rela.par-rel
5.16) into (

a.rel-12a.rel-12
5.14)

θj0 +
2
∑
ℓ=1

πσD
2(1+λτ)

θℓ0 = Bj0, j = 1, 2,

θ11 − θ10 log π − θ20 log 2 +
2
∑
ℓ=1

πσD
2(1+λτ)

θℓ1 = B11,

θ21 − θ20 log π − θ10 log 2 +
2
∑
ℓ=1

πσD
2(1+λτ)

θℓ1 = B21.

(5.20) a.coe-1

Next, we solve (
a.leada.lead
5.17)-(

a.thirda.third
5.19). First we notice that

θj0 =
2Cj0

π

∫
R

wΦj0dy.

To identify Cj0 we use the expansion of Cj, Sj and (
a.rel-2a.rel-2
5.5). Since we consider the symmetric case, i.e.,

û1 = û2 = û, v̂1 = v̂2 = v̂, S1 = S2 = S, C1 = C2 = C, S1l = S2l = Sl , C1l = C2l = Cl , l = 0, 1, 2, · · · .

We set
µ = πDσ. (5.21) a.def-mu

Collecting the power of σ we get

C0 = S0(1 + µ) =

√
S0

2
, S0 =

1
2(1 + µ)2 , θj0 =

2C0

π

∫
R

wΦj0dy =
2

1 + µ

∫
R

wΦj0dy∫
R

w2dy
.

In the following we consider Φ̂ = Φ1 − Φ2, from (
a.leada.lead
5.17) and the fact that θ10 − θ20 = B10 − B20 we see that

(−∆)
1
2 Φ̂0 + Φ̂0 − 2wΦ̂0 +

2
1 + µ

∫
R

wΦ̂0dy∫
R

w2dy
w2 + λ0Φ̂0 = 0, Φ̂0 → 0 as |y| → +∞. (5.22) a.lead-1

For (
a.lead-1a.lead-1
5.22) we have seen that ℜ(λ0) < 0 if and only if 2/(1+ µ) > 1. Therefore, the stability threshold where

λ0 = 0, Φ̂0 = w occurs and µ = 1. We derive that

C0 =
1
4

, S0 =
1
8

, Φ̂0 = w, θ10 − θ20 = B10 − B20 = Ψ10 − Ψ20 = 1.
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Upon substituting the above equation into (
a.seca.sec
5.18) we obtain at λ0 = 0 that Ψ11 − Ψ21 verifies

(−∆)
1
2 (Ψ11 − Ψ21)−

1
2

w2 = 0, Ψ11 − Ψ21 ∼ − log r + B11 − B21 as |x| → ∞. (5.23) a.psi1

Compared with (
a.2nd-2a.2nd-2
5.9) we conclude that

Ψ11 − Ψ21 = v̂ + B11 − B21. (5.24) a.psi1-v

In the following we are going to analyze the effect of the higher-order terms. To this aim, we set

λ = σλ1 + · · · , µ = 1 + σµ1 + · · · , (5.25) a.exp-mu

and we shall derive an expression for λ1 in terms of the parameter µ1. We first use (
a.rel-2a.rel-2
5.5), Lemma

lea.1lea.1
5.1 and the

asymptotic behavior of RD(0, 0) to obtain

[1 + (1 + σµ1)− σ log π + · · · ](σ2S0 + σ3S1 + · · · ) = σ2(C0 + σC1 + · · · ). (5.26) a.eq

From the O(σ3) we obtain that
C1 = µ1S0 + 2S1 − S0 log π.

Combined with (
a.le3a.le3
5.10) we derive that

C1 = −µ1

8
− 1

8π

∫
R

wûdy +
log π

8
. (5.27) a.eq-1

Next, using (
a.seca.sec
5.18), (

a.thirda.third
5.19) and (

a.psi1a.psi1
5.23) we have

(−∆)
1
2 Φ̂1 + Φ̂1 − 2wΦ̂1 + w2(B11 − B21) + w2v̂ + λ1w = 0,

(−∆)
1
2 Ψ̂2 − 1

2 wΦ̂1 − 2(C1w + 1
8 û)w = 0,

Φ̂1(y) = Φ11(y)− Φ21(y) → 0 as |y| → +∞,
Ψ̂2(y) = Ψ12(y)− Ψ22(y) ∼ −(θ11 − θ21) log r + B12 − B22 as |y| → +∞.

(5.28) a.eq-3

Using the asymptotic behavior we obtain that

(θ11 − θ21) =
1

2π

∫
R

wΦ̂1dy + 4C1 +
1

4π

∫
R

wûdy. (5.29) a.eq-5

Using (
a.coe-1a.coe-1
5.20) we have

B11 − B21 = θ11 − θ21 − log
π

2
.

Combined with equation (
a.eq-3a.eq-3
5.28)

(−∆)
1
2 Φ̂1 + Φ̂1 − 2wΦ̂1 +

∫
R

wΦ̂1dy∫
R

w2dy
w2 + λ1w = R1, (5.30) a.eq-6

where

R1 = w2 log
π

2
− w2v̂ − 4C1w2 − 1

4π
w2
∫

R
wûdx.

In order to make equation (
a.eq-6a.eq-6
5.30) has solution, we need

λ1

∫
R

w(w + yw′)dy =
∫

R

(
log

π

2
− v̂ − 4C1 −

1
4π

∫
R

wûdz
)

w2(w + yw′)dy,

it implies that

πλ1 = 2π log
π

2
− 8πC1 −

1
2

∫
R

wûdy −
∫

R
wûdy

= πµ1 + 2π log
π

2
− π log π +

∫
R

wûdy − 3
2

∫
R

wûdy

= πµ1 + π log
π

4
− 1

2

∫
R

wûdy.

So the threshold for µ1 is

µ1 =
1

2π

∫
R

wûdy − log
π

4
≈ 0.911019 + 0.241564 = 1.15258.
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Substituting it into (
a.exp-mua.exp-mu
5.25), and using (

a.def-mua.def-mu
5.21) we derive that

D =
1
π

log
1
ε
+

1
π

(
1

2π

∫
R

wûdy − log
π

4

)
.

Thus we finish the proof. □

6. OVERVIEW OF NUMERICAL CALCULATIONS
app:numerical

In this section we outline the numerical solutions to the time-dependent fractional GM system with peri-
odic boundary conditions (

1.fgm1.fgm
1.2). Our methodology is based upon the simulations performed in appendix B

of
gwy
[12]. To approximate the fractional laplacian we discretize over [−1, 1] using the finite difference quadra-

ture discretization developed in
huang_2013
[17] and perfrom time stepping using an implicit-explicit semi-backwards

difference scheme as in
ruuth_1995
[32].

Let xi = −1 + ih for i = 0, . . . N − 1 discretize the interval [−1, 1] into N uniformly distributed points.
Noting that C1/2 = 1

π , the quadratic interpolant weights of
huang_2013
[17] for α = 1 become

wj =
1

πh


4 − 5

2 log(3) j = ±1

−4 + 2x log
(

x+1
x−1

)
j = ±2,±4,±6, . . .

4 + 3 log(x)−
(

x + 3
2
)

log(x + 2) +
(

x − 3
2
)

log(x − 2) j = ±3,±5,±7, . . .

(6.1) disc-weights

(the value of w0 is irrelevant to the computation). Let ϕ be a 2-periodic funcition discretized over [−1, 1] as
ϕi = ϕ(−1+ 2i/N) for i = 0, . . . , N − 1. By periodicity, the discretizaton provided by (FLh) in

huang_2013
[17] simplifies

to

(−∆)1/2ϕ(xi) ≈ (−∆h)
1/2ϕi =

N−1

∑
j=0

Wi−j(ϕi − ϕj) (6.2) disc-lap

where

Wσ = wσ +
∞

∑
k=1

(wσ+Nk + wσ−Nk).

In our computations we truncate this series to 5000 terms. To simulate the full system (
1.fgm1.fgm
1.2) we use an identi-

cal time-stepping as in
gwy
[12] which we summarize here. Let Φ(t) = (u0(t), . . . , uN−1(t), v0(t), . . . , vN−1(t))T ,

A = diag(ϵ(−∆h)
1/2), τ−1D(−∆h)

1/2) and N (Φ) be a function which computes the nonlinearities of the
system. Now (

1.fgm1.fgm
1.2) is approximated as

dΦ
dt

+AΦ +N (Φ) = 0.

Fix a timestep ∆t > 0 and denote Φn = Φ(n∆t). The 2-SBDF scheme
ruuth_1995
[32] uses an implicit second-order

backwards time-stepping for the fractional laplace term, and explicit time-stepping for the nonlinear terms.
In particular, we compute the next time-step by solving

(3I − 2∆tA)Φn+1 = 4Φn − Φn−1 + 4∆tN (Φn)− 2∆tN (Φn−1).

To attain Φ1 we perform five steps of size ∆t/5 using the first order 1-SBDF scheme

(I − ∆tA)Φn+1 = Φn + ∆tN (Φn−1). (6.3)

In our computations, we use a mesh size of N = 2000 and timesteps of size ∆t = 0.01. For the initial
conditions we set the ansatz as (

3.2.ansatz3.2.ansatz
2.25) with the spike heights are (

3.h-13.h-1
2.30), (

3.h-23.h-2
2.31), and (

3.h-33.h-3
2.32) for the η tends to

0, ∞, η0 respectively in the symmetric case and (
3.h-43.h-4
2.35) in the asymmetric case.

Based on our numerical simulations, we attach the following three figures to explain what we have done:

(1). In Figure
fig:Two_Spike_Formingfig:Two_Spike_Forming
1 we have ploted three curves: the first order approximation of the threshold 1

π log 1
ε , the

second order approximation of the threshold (established in Proposition
pr1.1pr1.1
1.3), and the computed

threshold. They are represented by the blue dotted curve, the orange dotted curve and the X marks
respectively. The computed threshold is attained by simulating the two-spike system for several
initial values of ϵ and D. As a we have seen in the figure, the difference between the first-order
approximation of the threshold and the computed threshold is approximately 1

2| log(1/ϵ)| , and the
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second-order approximation of of the threshold is approximately 1
| log(1/ϵ)| . As this simulation can

become expensive, it is economical to determine a coarse estimation of the critical thereshold by
simulating the system for a short time and observing the trend in spike height differences |u(1/2)−
u(−1/2)| since unstable two spike solutions near the threshold degenerate into solutions of a single
bump at ±1/2. Solutions for which the small errors do not grow or decay exponentially are further
simulated to attain a more precise value of the threshold.

(2). The activator and inhibitor of one such stable state is pictured in Figure
fig:Two_Spike_Finalfig:Two_Spike_Final
2. In this simulation, the

final two spike state for ε = 0.05, D = 1.0 and τ = 0.02 is shown. This value is attained at time
T = 500 with the difference in spike heights is on the order 10−8 and decreasing. The analagous
simulations starting with the asymmetric initial conditions did not yield such any stable states.
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129(3):272–299, 2012.

nec_2012_sub [27] Y. Nec, M. Ward. Dynamics and stability of spike-type solutions to a one dimensional gierer–meinhardt model with subdiffusion.
Physica D: Nonlinear Phenomena, 241:947–963, 05 2012.

Nemes2013 [28] G. Nemes Error bounds and exponential improvement for Hermite’s asymptotic expansion for the Gamma function. Applicable
Analysis and Discrete Mathematics, 2013: 161-179.

oliveira_2019 [29] F. Oliveira, R. Ferreira, L. Lapas, M. Vainstein. Anomalous diffusion: A basic mechanism for the evolution of inhomogeneous
systems, 02 2019.

Fengqi2015 [30] F. Qi, C. Mortici, Some inequalities for the trigamma function in terms of the digamma function. Applied Mathematics and Compu-
tation, 2015, 271: 502-511.

reverey_2015 [31] J. Reverey, J.H. Jeon, H. Bao, M. Leippe, R. Metzler, C. Selhuber-Unkel. Superdiffusion dominates intracellular particle motion in
the supercrowded space of pathogenic acanthamoeba castellanii. Scientific reports, 5:11690, 07 2015.

ruuth_1995 [32] S.J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol., 34(2):148–176, 1995.
turing [33] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond. B 237 (1952), 37-72.

ward_2002_asymmetric [34] M.J. Ward, J. Wei. Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability. European
J. Appl. Math., 13(3):283–320, 2002. 24

wei_1998 [35] J. Wei. On the interior spike layer solutions to a singularly perturbed neumann problem. Tohoku Math. J. (2), 50(2):159–178, 1998.
wei_2001_gm_2d_weak [36] J.Wei, M.Winter. Spikes for the two-dimensional gierer-meinhardt system: the weak coupling case. J. Nonlinear Sci., 11(6):415–458,

2001.
wei_2002_gm_2d_strong [37] J.Wei, M.Winter. Spikes for the Gierer-Meinhardt system in two dimensions: the strong coupling case. J. Differential Equations,

178(2):478–518, 2002.
wei_2007_existence [38] J.Wei, M.Winter. Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in

R. Methods Appl. Anal., 14(2):119–163, 2007.
winter_2009 [39] J. Wei, M. Winter. On the gierer-meinhardt system with precursors. Discrete Contin. Dyn. Syst. 25 (2009), no. 1, 363-398.

38



wei_2014_book [40] J. Wei, M. Winter. Mathematial aspects of pattern formation in biological systems, volume 189. Applied Mathematical Sciences
Series, Springer, 2014.

ww2017 [41] J. Wei, M. Winter. Stable spike clusters for the one-dimensional Gierer-Meinhardt system. European J. Appl. Math. 28 (2017), no.
4, 576–635.

wwy2017 [42] J. Wei, M. Winter, W. Yang. Stable spike clusters for the precursor Gierer-Meinhardt system in R2. Calc. Var. Partial Differential
Equations, 56 (2017), no. 5, Paper No. 142, 40 pp.

wei_2019_multi_bump [43] J. Wei, W. Yang. Multi-bump ground states of the fractional Gierer-Meinhardt system on the real line. J. Dynam. Differential Equa-
tions, 31(1):385–417, 2019.

MARKUS DE MEDEIROS, DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC CANADA

V6T 1Z2
Email address: markusdemedeiros@outlook.com

JUN-CHENG WEI, DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC CANADA V6T
1Z2

Email address: jcwei@math.ubc.ca

WEN YANG, WUHAN INSTITUTE OF PHYSICS AND MATHEMATICS, INNOVATION ACADEMY FOR PRECISION MEASUREMENT SCI-
ENCE AND TECHNOLOGY, CHINESE ACADEMY OF SCIENCES, WUHAN 430071, P. R. CHINA.

Email address: wyang@wipm.ac.cn

39


	1. Introduction
	2. Preliminaries
	2.1. Calculating the Height of the spikes

	3. Rigorous proof of the existence results
	3.1. Study of the Approximate Solutions
	3.2. The Liapunov-Schmidt Reduction Method
	3.3. The Reduced Problem

	4. Rigorous proof of the stability analysis
	4.1. Stability Analysis: Large Eigenvalues
	4.2. Stability Analysis: Small Eigenvalues
	4.3. Eigenvalue of the circulant matrix

	5. Proof of Proposition 1.3.
	6. Overview of Numerical Calculations
	References

