EXISTENCE AND STABILITY OF SYMMETRIC AND ASYMMETRIC PATTERNS FOR THE
HALF-LAPLACIAN GIERER-MEINHARDT SYSTEM IN ONE-DIMENSIONAL DOMAIN
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ABSTRACT. In this paper, we study the existence and stability of multiple spikes pattern to the fractional Gierer-
Meinhardt model with periodic boundary conditions and the fractional power s = 1. Specifically, we rigor-
ously establish the existence of symmetric multiple spikes and asymmetric two-spikes solutions by the classical
Lyapunov-Schmidt reduction method. We also investigate the stability of the constructed solution by studying its
associated large and small eigenvalue problems, where we need to consider two nonlocal eigenvalue problems
in their fractional versions. In the study of the large eigenvalue problem, the quantity Dk (¢e) = HLK log % is the
critical threshold which determines the stability of K-peaked solutions. For the symmetric two-spikes pattern we
obtain the asymptotic expansion for the critical threshold Dk (¢) up to the second order. Moreover, we provide
some elementary properties of the Green’s function, including the first and second derivatives, they are linked to
the location of the spikes and the stability. Among these properties on the Green’s function, we find out that the

polygamma function ¢(x) = 4 log I'(x) plays a crucial role.
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1. INTRODUCTION

In mathematical biology, many models have been proposed and analyzed to explore the so-called Turing

&l
instability since the work 33}“1%%1952. One of the most famous in b;cilg&igal pajtern formation is the Gierer-
Meinhardt system proposed by Gierer and Meinhardt in 1972, see E8 , which reads as follows

ut:szAu—LH—”—vz, u>0 inQ,

T, =DAv—v+u?, v>0 inQ, (1.1)
Jdu _ du __

S =5=0 on 0Q).

Equation @m_lss used as a prototype of deterministic reaction-diffusion system to explain_the results of
experiments on head regeneration and transplantation in the freshwater polyp hydra. In ﬁjhe unknowns
u = u(x,t) and v = v(x,t) represent the concentrations of the activator and inhibitor at a point x € Q) and
ata time f > 0, where ( is a bounded and smooth domain and v = v(x) ig the outer normal at x € dQ).

In past decades, there have been many works concerning the system @thich focus on the analysis,
both rigorous and formal, of the existence, structure, and linear stability of such localized solutions. In a
1-D domain, the Gierer-Meinhardt sg@’(c%ng lo'léafbeeg B%Elfularl well stud$§ﬂ9 ?,Xa glslggopure.P]C)eE methods

war asymretric,wel éxistence

and formal asymptotic analysis see [[18] 134, 35, 138]. In the 2-D case, the rigorous analysis on the existence
and stability of multiple-peaked patterns that are far from m&}ﬁ% &%pﬂ?%?%gg for the gégg%agldy Ettegggébed

L, wel

Gierer-Meinhardt system has also been investigated, see [36,137]. There are alsq some works concerning
the extended 1D gpd 2-D cases which involyg the glfection ¢f the precusors E%%Eﬂg@mp ulk-membrane

coupling [I1], and anomalous diffusion [26,727,43]. For mqrrngrt%aa%k%%g’n% of this mode and other related
reaction diffusion systems, we refer the readers to the book [25/40] - -

Gierer-Meinhardt systems have widespread applications in the modelling of biological phenomena for
which distinct agents diffuse while simultaneously undergoing prescribed reaction kinetics. While these
models have typically assumed a normal (or Brownian) diffusion process for which the mean-squared-
displacement (MSD) is proportional to the elapsed time, a growing body of literature has considered the
alterna;fni{ytez 9&”’%%’6%?%%% diffusion w ;%ge@e%éif?ge@?gtter suited for biological processes in complex environ-
ments [24] 129, B1] (see also §7.1 in [5]). It has been shown that both superdiffusion and subdiffusion can
reduce the threshold for Turing instabilities when compared to the same systems with normal diffusion
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}fﬂ} Oféjn ﬁgggtlheni 2001 ndlf on hav so fo a diverse range of applications from popula-
onal reaction diffysion systems havie also fouy 8 PP pop

tion dynamics [T}, 20;, 23] to ecoNONIICS 12, jJ N onlocal, anomalous d1ffusu2lgfl7can allow systems to exhibit
novel behavior that cannot be modelled in local systems. For example hBW&(&& 4] emphasizes that their
results about fractional species competition have no local analouge, and [22] utilizes a fractional diffusion
model to resolve controversy arising from a local model of polymer transport. The study of fractional
generalizations of local systems has proven productive in enhancing our models of real-world phenom-
ena. Therefore, understanding the pattern formation and its linear stability of the fractional case is quite
necessary in studying the exj[en\giewd 1 Gierer-Meinhardt system.

As a continuation work of 43]w—eslﬁﬂ_stﬁ7ﬂ$e existence and stability of localized multi-spike solu-
tions to the one-dimensional Gierer-Meinhardt model with periodic boundary condition and the fractional
power s = %, ie.,

ut—l—e(—A)2u+u ——O forx € (—1,1),
101+ D(—=A) 2o+ v —u2 =0, forx € (—1,1), (1.2)
u(x) =u(x+2), v(x) =v(x+2), forxeR,

where 0 < ¢ < 1 and the parameters 0 < D < oo and T > 0 are independent of e. The (nonlocal)

fractional Laplacian (—A)% replaces the classical Laplacian as the infinitesimal generator of the underlying
Lévy process for s = % and is defined by

M

‘lJrZS

25T (s +1/2)

(=A)¢(x) = Cs fl“(l =9 .

Due to the periodicity of the funciton, we could also write

(~8)2p(x) = G [ (9(0) — p()Ks(x )y

dy, where C;=

with

1 > 1 1
Ks(x,y) = W+rr§1 <|x—y+2m|2 + |x—y—2m2>'

In previous work WZV], the last two authors of this paper and Gomez analyzed in the case where the
fractional power s = % in the equation of v is replaced by s € (%, 1). Specifically, it has been rigorously
proven that the symmetric and asymmetric two-spikes solutions exists and the linear stability of these
solutions is determined by the eigenvalues of a certain 2 x 2 matrix. 12], we prove the existence of
symmetric multiple spikes and asymmetric two spikes solutions for he only issue is that the decay
of the ansatz is not good enough; we use a symmetry property to deal with this difficulty and thus the
existence part can be obtained similarly. The stability turns to be more complicated for the case s = 1.
On one side, in the study of the large eigenvalue problem there are several cases need to be considered,
whereas we only need to study a single case when s > 1. On the other side, in the study of the small
eigenvalue problem we have to figure out the sign on the second derivative of the Green'’s function. Due
to the conditional convergence of the series for the case of s = %, it does not seem possible to handle
using elementary computation. Through a further analysis on the corresponding series we find that such a
function is closely related to the polygamma function ¢(z) := £ 4 JogT'(z), and using its properties we are
able to determine the sign of the second derivative the Green’s function thereby solving the stability part.

To state the main results of this paper, we write the steady problem of as
1
s(—A),%:J—b—u—“?z:O, x e (-1,1),
D(-A)2o+v—u?=0, xe(-1,1), (13)

u(x) =u(x+2), v(x) =v(x+2), xR

Let D = é and the Green’s function Gg(x, z) be the function satisfying

(—8)2Gp(x,2) + B2Gp(x,2) = 6(x —2),  xe€(-1,1),
Gp(x,z) = Gp(x +2,2), x € R.



thl.exist

It is not difficult to verify that Gg(x, z) admits the following Fourier series expansion
1 &® piln(x—2)

B 1, =2, cos(dm(x —z))
Gﬁ(x’z)_iézz_:m Fiin - 2P 2*,; B +im

Let Go(x,z) be the Green'’s function given by

(=A)21Gy(x,z) =d(x —2z), x€(=1,1), a4
Go(x,z) = Go(x+2,z2), x € R.
Then it is not difficult to check that
1
Gp(x,z) = T + Go(x,z) + O(B?). (1.5)
The singular part of Gg(x,z) behaves as 1 log ﬁ and we decompose Gg(x,z) as

1 1
Gp(x,z) = p log T Hg(x,z) = Kg(x,z) — Hg(x,2),
where Kg(x,z) = L1log %_z‘ and Hg(x,z) denote the singular part and the regular part of the Green func-

tion respectively.
To describe the location of spikes, we denote p € (—1,1)X, where p is arranged such that

0 = 02 - 2 0_2%-1-K .
peB(p) =qa="(qu ) | Llagj—pjl" <o p, where pf==—r—", j=1-- K (16
=1
For p € B;(p?), we define
K
F(p) = Y_ Hg(pj,pj) — Y_Gs(pi pj), (17)
= iZ]

and M(p) = V%,F (p). Here M(p) is a K x K matrix and one can easily see that it is a circulant matrix at p°.
In addition, we have rank(M(p®)) < K — 1 due to the fact that the summation of each row is 0.

Our first theorem concerns the existence of symmetric multiple spikes solutions.

Theorem 1.1. Let p° be defined as in @ Suppose M(p®) is a matrix of rank(M(p°)) = K — 1. Moreover, we
assume that the following technical condition holds:

: 2B 1
ifK>1, and 5o := lg‘%?logg # K. (1.8)
Then for € sufficiently small and D = é sufficiently large, problem @ghas a solution ue, v such that
K x——p?
e~ G | Yow | —— | +0((e p)) |, ve(pf) ~ & (19)
j=1
where w is the unique solution of
(—A)%w +w—w? =0, w(x)=w(-x), (1.10)
and e and h(e, B) are given by
E%Er #. ﬂe‘» Or
&= G if 7e— +oo, (1.11)

R e
and
e, if 17e =0,
he, )= qnt, if 1e— oo, 1.12)
B if e 1o

2.conclusic

1.ground

3.spike-h



l.stability

Furthermore, p§ — p? ase = 0forj=1,--- K.

Remark: For D sufficiently large or K = 2, 3,4 one can verify that rank(M(p?®)) = K — 1. In addition, under
these conditions one can show that all the non-zero eigenvalues of M(p®) are negative. This part is left to
section 4.

Next we study the stability and instability of the symmetric multiple spikes solution construted in The-

orem %Wﬁh‘ng the eigenvalue problem for the fractional Gierer-Meinhardt system as

1 2

S(_A)E(PS"_(PS_2%¢8+%§¢£+As¢s = 0/ (1 13)

1 .
D(_A)Elljs + e — 2uePe + T/\sl,bs =0,

_exist
where (u¢, v¢) is the solution constructed in Theoremﬁ%i and A, € C. Here we say (ug, ve) is linearly stable

if the eigenvalue A, < 0, while (1, v¢) is called linearly unstable if there exists a eigenvalue A, such that its
real part R(A¢) > 0.

Theorem 1.2. Suppose M(p°) is a semi-negative matrix of rank K — 1, and for e sufficiently small and D = é
is sufficiently large. Let 1, = % log% and (ug, ve) be the K-peaked solutions constructed in Theorem 0ith Fhe
center of peaks approaching p°. Then
(i). 7e — 0. If K = 1, then there exists an unique Ty > 0 such that for T < 11, (e, ve) is a linearly stable, while
for T > 1y, (ug, ve) is linearly unstable; while if K > 1, (u¢, ve) is linearly unstable for any T > 0.
(ii). 17e = +o00. (ug, ve) is linearly stable for any T > 0.
(iii). #e = no. If K > 1and o < K, then (ug, v¢) is linearly unstable for any T > 0. If 5y > K, then there exist
0 < 1 < 13 such that (ue, ve) is linearly stable for any T < T and T > 13. If K = 1 and ny < 1, then there
exists 0 < 1y < T5 such that (i, ve) is linearly stable for any T < 74 and linearly unstable T > Ts.

. .stabilit . ) 1. .
Concerning the (iii) of Theorem when K > 1 or 7 is large, Dk (e) = 7% log ¢ is the critical threshold

for the asymptotic behavior of the diffusion coefficient of the inhibitor which determines the stability of 2-
peaked solutions. This number also appears in the study of classical 1-D and 2-D Gierer-Meinhardt systems.
For 1-D classical Gierer-Meinhardt system, it has been shown [I8] Tor K > 2 that the leading order of
the critical thresholds Dk(¢) = Dk are independent of ¢. Moreover, the critical thresholds arise in the
computation of the small eigenvalues, While in the classical 2-D case, D (¢) is obtained in the study of the
large eigenvalues. In fact, system is more like the classical Gierer-Meinhardt system in 2-D case. The
quantity Dk (e) also appears in the study of large eigenvalue problem. In addition, by the formal asymptotic
computation, we obtain the next order term in the asymptotic expansion of D (e), which is very useful in
pratice.

Proposition 1.3. Consider the symmetric two spikes pattern of the Gierer-Meinhardt system @E,{ where D =
O(log ). If

1 1 1
D~ =log=-+—
7 08¢ Tt
where y1 and il are
1 . T
U1 = E/]Rwudy—logl,

and
40— 2wi + w0 = 0, i(y) — 0 as |y| — oo,
1

Ni= Nl=

A

o—tw? =0, o(y) — —logly| as |y| — oo,

{(A)
(—4)

t
and w is the solution to @?_u%%en the portion of the conitinuous spectrum of the linearized problem dl Ij fies

within an O(—1) neighborhood of the origin A = 0 is given by

log%
1 T 1 r .
A= log% (m +10g427t./]Rwudy).
4




sec:prelim

.exist .stabilit . . .
In Theorem ﬁa_ndl—['heorem ll hzt we prov1¥1e the existence and stability results for the symmetric mul-
tiple spikes. In fact, when 1, — 0 or +co as ¢ — 0, we could only see the symmetric pattern. While as 7,

tends to some positive constant 77p. The spike height may be the same or different yielding, respectively,
symmetric and asymmetric patterns. Specifically, in the following result we shall see that the existence of
asymmetric pattern for two spikes and such a solution is not stable

Theorem 1.4. Let p° = (p{, p3) = (—3, 3)- Suppose that
282 1
= lim —1 2,
= lim s >

then for ¢ sufficiently small and D = é sufficiently large, problem @ghas a solution ug, ve such that

u~ié-w<x_p]€'> 0 (1) ~ & (114)
e~ 2.5 c s Uelp; gjr .
j=1
where
1— 1- 2
a2 Ve : a1 e :

Furthermore, the solution (ue, ve) is linearly unstable for any T > 0.

.as
Remark: From Theorem ﬁwﬁave seen that when 179 > 2 there exists asymmetric patterns. Besides, such
a solution is always unstable due to the large eigenvalue is always positive. This shows a striking difference
to the symmetric pattern.

Before we end the introduction, we would like to give some remarks on our proof for the results of the
symmetric and asymmetric patterns. Since the proof of the existence part for both cases are almost the
same, we shall only focus on the symmetric case and state the different points if necessary for asymmetric
case. While for the stability, as we shall see, one of the spectrums for the large eigenvalue problem of the
asymmetric case is always positive, it leads to the instability of the asymmetric pattern. So, in the small
eigenvalue problem we shall always consider the symmetric case.

The paper is organized as follows: in section 2, we shall present some preliminary results, including the
study of two nonlocal eigenvalue problems and the calculations on the height of the spikes. In section 3,
we rigorously prove the existence of the symmetric and asymmetric patterns. In section 4, we consider
the stability for the constructed solutions by studying the associated large and small eigenvalue problems.
We also derive some properties on the Green’s function Gg(x,z), and these properties are useful in our
study on the small eigenvalue problem. In section 5 we give the proof of Propositiontﬁ'?nd this part has
independent interest. Some numerical explanation is given in the Appendix.

2. PRELIMINARIES

In, t ection we C%lleict several key preliminary results needed for the existence and stability proofs in
@e and $4; Let w be the ground state solution satisfying

(-A)w+w—w?=0, in R, @.1)
w(x) =0 as |x| — oo, '
frank 2013 _uniqueness wei 2019 multi bu

we have the following result [/ [ (also see Proposition 4.1 in [43[and the references therein)
—proble
Proposition 2.1. Equation (E I j admiits @ pos?iive, radially symmetric solution satisfying the following properties:
(a) The solution w and its derivative have the following expression

2 , _ 4x
and w'(x) = T

5
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3.stability

(b) Let Lo = (—A)% + 1 — 2w be the linearized operator. Then we have

Ker(Lg) = span {gi‘;} .
(c) Considering the following eigenvalue problem
(=APp+ ¢ —2wp + 19 = 0.
There is an unique positive eigenvalue 1 > 0.
For the linearized operator Ly, one can easily derive the following useful indentities
Low = —w?, Lo(w+ x-9yw) = —w.
Hence
/]R(Lalw)wdx = /]R (—x - 9yw — w) wdx = —% /]szdx,

and . .
/ (Ly 'w)w?dx = — / Lo_leowdx =— / w?dx.
R JR JR

..Next we recall two stability results of the nonlocal eigenvalue problem. The reader can find the proof in
ﬁTZ; Theorem 3.2, Theorem 3.3].

Theorem 2.2. Consider the following nonlocal eigenvalue problem

[g wodx

Jg w?dx

(1) If vy < 1, then there is a eigenvalue « to @ such that R () > 0.

@ Ify>1lands > }I, then for any nonzero eigenvalue « of @ we have
R(a) < —cg < 0.

(3) Ify #1and a = 0, then ¢ = codxw for some constant cy.

(=AY o+ —2wp +y w? + g = 0. 2.2)

Theorem 2.3. Consider the following nonlocal eigenvalue problem

[ wpdx

2 =0 2.3
hwmw+w , (2.3)

(=A)°¢ + ¢ — 2w + 7 (7a)

where y(Ta) is a complex function of T and satisfies that
7(0) €eR, |y(ta)| < C for ag >0, T > 0. (2.4)
Then there is a small number 1y > 0 such that for T < T,
(1) ify(0) < 1, then there is a positive eigenvalue to ;
() ify(0) > 1ands > %, then for any nonzero eigenvalue o of @, we have
R(a) < —cg < 0.
Based on Theorems @ﬁ?ﬁ% shall study the following two nonlocal eigenvalue problems:

[g wodx

2 _ 1
L&Mww4ww_a ¢ € H'(R), (2.5)

Lo = (—D)2¢ + ¢ — 2w+

where
(). v = 1+H7TAO' where u >0, T > 0.

2(K+1o(1+TA
). v= %, where 179 > 0, T > 0.
First, we study the problem @ in case (a).

Theorem 2.4. Let y = ﬁ where yu > 0, T > 0and let L be defined in @
6



(1). If 4 > 1, then there exists a unique 71 > 0 such thgt for T > 1, equation @ admits a positive eigenvalue,
d.for T < 11, all nonzero eigenvalues of problem satisfy R(A) < 0. At T = 1y, the eigenvalue problem
has a hopf bifurcation.
(2). If u < 1, then L admits a positive eigenvalue Ay > 0.

.1
We prove Theorem ﬁ'b’y the following two lemmas.
Lemma 2.5. If u < 1, then L has a positive eigenvalue Ay > 0.

Proof. We may assume that ¢ is an even positive function, namely,
¢ € H{(R) = {u e H'(R) | u(y) = u(-y) } .

Let Lo be given 1n Proposition @Then by the second conclusion, Ly is invertible in H!(R). Let us denote
the inverse as L, 1. By Proposition 0 has a unique positive eigenvalue yi;. It is easy to see that Ag # 4
since we have f]R wodx > 0.

Then Ay is a eigenvalue of @ if and only if it satisfies the following algebraic equation:

L -1,2
/IRw dx = 1T h /H{((LO+/\O) w)wdx. (2.6)

p(Ag) :== (p—1—TAg) /]R w?dx — pAg /]R ((Lo + Ao)71w> wdx = 0.

We notice that p(0) = (u — 1) [ w?*dx < 0. On the other hand, as Ag — 1 from left, we have [i((Lo +
o)~ lw)wdx — —oo, and hence p(Ag) — +co. By continuity, there exists a Ay € (0, 1) such that p(Ag) = 0.
Such a positive Ay will be a eigenvalue of L. O

When p > 1 we notice that the eigenvalues will not cross through zero: Indeed, if A = 0, then we have

Jrwepdx
L JRTVPEE 2 o,
op+ i Jg w?dx @
which implies that
Jg wepdx
L _ —
0 (4) Jg w?dx wl=0

.1
and hence, by Propositionﬁ
R w9
— w € Ker(L
¢ f]R 2 d er ( 0)

This is impossible since ¢ is radially symmetric and ¢ # cw for all ¢ € R. As a consequence, there must be a
point 7y at which L has a Hopf bifurcation, i.e., L has a purely imaginary eigenvalue « = v/ —1a;. To prove
Theorem [24] all we need to show that 7y is unique, that is,

Lemma 2.6. Let pu > 1. There there exists an unique vy > 0 such that L has Hopf bifurcation.

Proof. Let Ay = v/—1«j be a eigenvalue of L. We notice that v/ —1a; is a eigenvalue of L then —+/—1a is also
a eigenvalue of L. Therefore, in the following we shall assume that a; > 0. Let ¢ = —(Lo + v —1«a 1)~ tw?
Then becomes

d -
Jrwpodx 1+ 1y Tay. 27

Jg w?dx i
— 4§ + V7T Then om BB bt '
Let ¢g = ¢y + v —1¢. Then from we obtain the two equations

I
d
Jrwggdx _ 1 Jpwhodx _ Tar 2.8)

fIR wdx  p [gw?dx i
We write @ into its real and imaginary part. Then

— Log§ = w® —argy, —Logy = argy. (2.9)

7



So pf = —ay 1L04>0 and
90 =ai(Lg+ef) ", ¢ = —Lo(L§+af) T (2.10)
Substituting @ into @7 we obtain
Jr wLo(L3 + %) " tw?dx 1 Jgrw(L3+a?) tw2dx

0+ a7 __1 _ZI
Jg w?dx T f]R wzdx U @11)

H

Jgr wLo(L3+a3) tw?d
Jg w?dx
(L3+a?) 2wdx
Jg w?dx

x . . . Jg W (L2 +a?) 1w?dx
. Then intgeration by parts gives h(a;) = & ff; x

Let h(aj) = — . Note that

W (ay) = —2a Je? < 0. It is known that

Ly'w?)d
(o) = —dm o W a}( fUzZUx) toy,
R

h(ag) = 0as a; — 400 and p > 1, there exists an ynique a; > 0 such that the first equation of @ holds. .
Substituting this unique a; into the second one of , we obtain an unique T = 7y > 0. Then Lemma
is proved. O

Next, we study the following NLEP:

2(K+10(1+TAg)) [g wpdx 22
(K410)(1+TAo) [g w?dx

where 779 € (0,+o0) and T € [0, +o0). Then we have

Theorem 2.7. Consider the eigenvalue probl@, we have:

(1) Ifno < K, then for T small, problem is stable, while for, T, large it is unstable.
(2) Ifno > K, then there exists 0 < Ty < T3 such that problem is stable for T < Ty or T > 13.

(—A)2¢+ ¢ — 20 + w? +Agp =0, ¢ HY(R), (.12) [3.17

Proof. Let us set
2(K+1no(1+7A))

f(tA) = Kim)ALTh) (213) |3.21

We note that

: _ 2o
mlgﬂoof(ﬂ) - K+47no Jeo

If 79 < K, then by Theorem ] ﬂ psﬁglll 1'{4; with v = f has a positive eigenvalue «1. Now by pertur-
bation ar nts, for T large, problem ([2.I2) has a eigenvalue near a7 > 0. This implies that for 7 large,
problem is unstable.

Now we show that problem @ has no nonzero eigenvalues with nonnegative real part, provided that

either 7 is small or 779 > K and 7 is large. We apply the following inequality (}[TZ Lemma A.2]): For any
real-valued function ¢ € H!(R), we have

AV 2 2 noup? Jrwgdx [pwipde [ widx ( )2
/R(|( A2+ (¢ — 20w¢?)dx + 2 o e /]qubdx >0,  (214) [3.23

where equality holds if and only if ¢ is a multiple of w.
In weset A\g = Ag + v/ —1A; andcp:q)R—i—\/—ilcpl,we get

) Jrwgdx

Jrw Zd
Multiplying the above equation by ¢, the conjugate function of ¢ and integrating over R, we have

Lo + f TA() ZU + Agp = 0. (2.15) |3.24

, d
/]R(|(—A)Z¢|2+|4>\2—2w4>2)dx:—)\O/R\4)|2dx—f(w\0 f]R w9 x/ w?dx. 2.16) [3.25

8



Multiplying @ by w and integrating over IR, we get that
w3d
/ wpdx = (AO + f(Tho) fIR x) / wedx. 2.17)
R

wzdx

Taking the conjugate of @, we have
w3
/]R w?pdx = (7\0 + f(tAp) flR 22z> / wdx. (2.18)
Substituting @ into @, we have that
2 2 2 Jrw | Jg wdx|?
/]R (|( AP + g2 — 2wlg] )dx = —)\0/ |p["dx — f(TAo) <)\0 +f(T)\0)wazdx> fﬂ;wzdx '
(2.19)
Consider the real part of (Eﬁ By (Eﬁ and (Eﬂ, we get
Jg widx . N f
—AR >R <f(er) (/\0 + f(tAg) "R o)) " 2R | Ao+ f(TAo) fi dex fi dex (2.20)

where we used Ayg = AR + v/ —1A; with Ag, A; € R.
Assuming that Ag > 0, then we have

f“‘ 5| F(Tho) = 1P+ R(Ro( f(Tho) = 1)) <. (221)
R W
By direct computation, we see that
/ wldx = 3 / w?dx = 37 (2.22)
R 2 Jr

Substituting @ and the expression @ for f(TA) into @, we have
3 . -
5 |10+ K+ (70 — K)TAo|* + R ((170 + K)(1+ tAo)((170 + K)Ag + (170 — K)T|Ao|2)) <0,

which is equivalent to

3 3
E(l + UoTAR)? + AR + (HoTAR + TAR + poT2| Ao AR + (y%rz + HotT — T> A2 <o, (2.23)

2
o —

10 +I<

If 5o > K (i.e., po > 0) and 7 is large, then

where we have introduced that y :=

3
Ey%rz +uot—1 > 0.

So @é does not hold _for Ax > 0. To consider the case when T is small, we have now derived an upper
bound for A;. From , we have

AI/]R|¢|2dx—£‘s< flr fIR ‘de/ w ¢dx>.

Hence,

Jrw*
ALl < |f(TAo)] Jow de < C, (2.24)

where C is independent of Ag. Substituting @ into @_ %e sge that @_ cannot hold for Ag > 0, if T

is small. Thus we have proved that the (2) point of Theorem



2.1. Calculating the Height of the spikes. Let x be a smooth cut-off function which is equal to 1 in B1(0)

and equals to 0 in R \ By(0). We also assume that a multiple spike solution (u, v¢) of is given by the
following ansatz:

K x—p x—p;
oo Rt () (ST, wtn) ~ g @)
=1

here w = —2 is the uni lution to EEESFLLER he height of the peaks, to be d
werew—mlsteunlquesoutlonto ) Gejr ] = ,- -+ ,K are the height of the peaks, to be deter-
mined later, p = (p1,- - -, pk) are the location of the points and satisfy

2i—1—-K
p:(plz"'/PK)EBU( ) p? ]T,]zl,...,l(, o< 1.

Now we shall derive a relation between each & ;. We write the second equation of @g as

we get by using @% @%

olp) = B [ Gylpy 2 el
=g / (+Go(p], )+ O(B ) <Z§Mw ( >+O( )) dz
—/ ( + B2Go(pj,2) ) <Z§Mw ( )+O(e2)) dz.

(—A) 20, + 20 — B2u =0, 226) [3.2.v

Thus,
1 R K
= Xyt [y & [ Gote? (a0 R )
- =1
Then we get
K1 0 [ 5 Lo o f! 1 2 (2P 2 2
Gej = Y ¢ s,e./IRw (y)dy + E(fs,jﬁ /_110g |z—p-\w < c )dz+O(sﬁ )Z‘fg,(z
R | C T e
—Z*EC / )dy+f8€ 2P log / (y)dy +O(ep%) Y 62,
=1
Define A
(.: _ ng,j
e [pw?(y)dy

Then @%het_(ﬁlivalent to
Z€£Z+U€§e]+o,32 Zggél j:1/"'/K1 (229)

where

1
Next, we shall divide our discussion on @'mto three cases according to the limit value of 7,

Case 1. 77e — 0. We always get the symmetric pattern

- 1 .
bej= g +OE), j=1- K.

This implies that
1 .
65] - Kﬂ_’<1+o(17£)) ] = 11. o IK' (2'30)

10



1
Case 2. ¢ — co. As Case 1 we only get the symmetric pattern. From @_ we have

C 7]€€€]+O Zé

1 1 )

Then we could get

Case 3. 17; — 179. (0 < 779 < 0). Then from @iwe get

K
Cej = (1410, +Z'§?£+O (F) L&

For the symmetric pattern we have

; . 1 )
T . N )
or equivalently,
-1 2, =1, -
Ci = gk gy L OB J=1 K (232) [3.n-3

While in the asymmetric case, we take two spikes into consideration and obtain the following system

Eeq = (1+10)&2, + &, +0() 212:1 ‘fg]‘/
. PO JNe (2.33) -3 .asy-2
{ﬁe,z = (1+50)&2, + 82, + OB T & S

From we derive that
. s 1
Ceq +Cep = %(1 +0(p%))-
As a consequence, we have
o 2 .
(2+10) ;-(ﬂ +1> i+ 0(8%) ngz— . j=12.

Solving the above quadratic equation we have

1— 4
&j= ! i7%+0(/3) =12 (2.34)

219 44219
Then
1— 4
§'—i LV m (1+p°), j=12 (2.35) [3.n-4
“ e \ 210 4+217 B, i=12 : :
For the symmetric pattern, we notice that in all three cases the heights satisfy the relation
Cej =Ge(1+0(h(e B), j=1--,K (2.36) [3.spike-h-1

where

S if 7.0,

TR @3
1 .

oK)’ if 1. — 1o,

and

e, if n7e—0,
h(e, ) =< nt, if 7. — oo,
B2, if #e = no.



f-existence

While for the asymmetric pattern, we have

1__ 4 1__4i
1 1 \/ Va > 1 1 72 >
— 1+ =— | — X —0 | (14p8%). 2.
Gea e \ 270 4+ 21 (1+57), Gea e \ 2n0 4+ 2n (1+57) (2.38)

3. RIGOROUS PROOF OF THE EXISTENCE RESULTS

In this section we shall prove the existence theorem, i.e., Theorem ﬁ'_%leiaivide the discussion into
three sections. First of all, we give an approximate solution. Then we apply the classical Liapunov-Schmidt
reduction method to reduce the infinite dimensional problem to a finite dimensional problem in sec
subsection. In last subsection we solve the finite dimensional problem and thereby prove the Theorem
As we pointed out in the introduction, the proof for the symmetric and asymmetric patterns are almost the
same, we shall only focus on the symmetric case and state the difference for the asymmetric case in the end
of this section.

.exist

3.1. Study of the Approximate Solutions. From the discussion in last section, we rescale
i(y) = futey), ye(-11),
0(x) = év(x), x e (—1,1),

ike-h
where ¢, is given in @?—ﬁﬁ equilibrium solution (1, 9) solves the following rescaled Gierer-Meinhardt
system

-2
+0-%2 =0, e(-11),
[ y ( € s) (3.1)
+ 20— EpH* =0, xe(-11).
For a function # € H! (— %, %) , let T[] be the unique solution of the following problem:

(~8)2T(a] + T[] ~ &> =0 x € (-11),

T[a](x) = T[a](x +2) x € R.

By Green representation formula, we have

1 2
rlilx) = & | Gatnd) (0 (2) )
S
System @yl_s equivalent to the following equation in operator form:
2oy — (S1(80)) _ (LY o 2( 11N e
Se(,0) = (Sz(ﬁ,6)> =0, H = x H'(-1,1) = L el L*(-1,1), (3.2)

where
$1(4,0) = (—A)

=

K (3.3) |4.eq

RN =

D
+ +
=
()
D
\
R
o
=
N
=
‘N

For p € B, (p?) we set
_ Pi Y—P
wily) =w |y = | X ,

5 . . score-problem
where w(y) = Tig i the ground state solution of (E{ I), 1t 1s then straightforward to check that

(~A)Fw(y) +w(y) ~w}(y) = hot,

where h.0.t. refers to terms of order €2 in L® (—1 1) .

e’ ¢

IMore specifically, h.0.t. means term which can be composed into two parts, the leading order is of €2 and even symmetric with
respect to p;, while the order of the left part is o(?).
12



We choose the approximate solutions as follows:
Uep(y Zw] , Uep(x) = Tlugpl(x), x=eye(-1,1).
Notice that v, , satisfies
0= (_A)%Us,p + .BZUSp —Ce 2”2p

= <_A)%ve,p+,32'0€p (5852 Zw _zésﬁ Zwéw
t#j

Hence,

K
() = &7 [ Gty ) Lt (£) de+ 0ete).

=1
Similar to the computation as in section, we otain

vep(pj) =1+ O(h(e B))-

inh
Substituting the ansatz @nTnto @H we get

S2(”e,p/ UE,p) - O/

To compute Sy (ie,p, Ve,p), We calculate for x = p; + ez, [ez| < pwithj=1,---,Kand p small
1
0ep (9 +62) = Oep(p)) = E:B? | (Gplpy +22,0) = Gyl ) udpll
1
=& [ (Gplpj+e2,0) — Gylp; ) whde

+eb [ (ol +e,0) — Gylpy g ) L udl + 0l&cp’e)
]

_ 2 l 4 2 oz 2 JF(p) 2
=& [ log g (O~ e (apj ez [ w (g)dg)
+o(Cepe|2]),

where

K
F(p) =Y Hg(pj, pj) — ;Gﬁ(Pir pj)-
i#]

G4

@9

j=1
oten
For convenience, in the following discussion we shall denote the first term on the right-hand side of
by P;(z). It is not difficult to verify that P;(z) is even symmetric in z. Substituting INto S1(Ue,p, Vep) We
have
2
1 Ug
S1(eps Vep) = (—D)2theyp + e — —
Uep

I
u[\qx
/\

[}
%:

3

N~
—
>
S—

N—

S
/N
N~~~
i nots

>
/N
oM
<
3=
N~
N
o]
N~~~
-
i pots
S
5 |~
+
@)
—
(o2}
N
SN—

vvhele K
K Z
w
8]/ p
E _E ] Z72 2 i1 E Z
! i1 < o > ( > i’ 2= vsp
= ,



According to the setting of cut-off function x(x), we have
E1 = 0(84),

and one can easily check that
1Bl 211y = O(7"2). (3.6)

In addition, for x — p; = ez with [ez| < p with p small, we calculate

ZU2 o Ve p — v, (x) n

=7 p\Pj P 2 4

Ey = UE,P(pj) (Us,P(x) UEP P] <1 + Z ( Uep(P]) ) ) +O(h(8,ﬁ))w] +O(g )
- J p T\ 2 _ ] 2.2 2 .
— Ug,p(pj)l’;(z) <1+};1 (vs,p(m)> ) +O(h(e, B))ws U%,p(pj)éeﬁ € o, z/]Rw (0)dg  (3.7)

+ O(‘:eﬁzsz)
= Ep1 + Exp +0(&B%e?),
where

Ey; = O(&:B%) + O(h(e, B)) is symmetry in x — pj, and ”E22HL2(_%,%) = O(&:p%%). (3.8)
Thus, we have thus established the following lemma
Lemma 3.1. For x = p; + €z, |ez| < p, we have the decomposition for Sup](x),
S1 (Uep, Vep) = S11+ S12,

where

S11(z) = —

as%”ffﬁaéw%oé+w@28»

UZP(PJ') j

and

S12(2) = Cep’eRp1 (2) + h(e, P)Rja(2) + 0(Cepe),

where Rj1(z), Rj2(z) are even in z satisfying that Rj1(|z]) = O(log(1 + |z|)) and Rjp(z) = O (m> Further-
mote,

St (tep,vep) = O() for |x—pj|>p, Vj=1,--- K

3.2. The Liapunov-Schmidt Reduction Method. In this subsection, we use the Liapunov-Schmidt reduc-
tion method to solve the problem

K aw]

S[uE;P + 4)] = Sl (uE,p + 47/ Ue,p + l/}) Z C] (39)

for real constants ¢; and a perturbation ¢ € H! (—%, %) which is small in the corresponding norm. To

proceed we study the linearized operator defined by
F ._ o [Uep
Lop =5t (57),
11 11

Lep : HY (8 8) x HL(-1,1) — L% <£,£> x [2(-1,1),

14
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11

e’ ¢

where ¢ > 0 is small and H: (—%, %) and L%(—1,1) denote the periodic functions in H* (—— —) and
0

L?(—1,1) respectively, p € Bs(p°). The approximate kernel and co-kernel are respectively defined by

ow; 11
— Jli—=1... Tf(_- =
Kep := Span{ 3y ‘] 1, ,K} CH ( g,g) ,

ow; 11
— Jli—1... 2(_2 =
Cep := Span{ 3y ‘] 1, ,K} CcL ( , )

€ &

It is not difficult to see that L is not invertible in ¢ and B due to the approximate kernel,

11
Kep = Kep @ {0} C Hy (—8, 8) x HL(—1,1).

The approximate cokernel is defined as follows:

11
Cep = Cep @ {0} C L% (—8, 8) x L2(—1,1).

We then define

11
Kep :=Kgp ® Hr(—1,1) C Hy <—€,8> x HX(—1,1),
CL =CL @l3(-1,1) C L3 11 x [2(—1,1)
ep &p T 4 T e ¢ T r =)

where ngp and K, denote the orthogonal complement with the scalar product of L2 ( -1 1) in HL (— %, 1)

/P e’ e €
and L2 <—%, %) respectively.
Let 7, p denote the projection in L? (— %, %) x L2(—1,1) onto Cép. Next, we shall prove that the equation
Uep + P
Se | P “Pl =0
Tep e (vap + Tw)

D p

has unique solution ¥ , = (‘Y ) € ICSL,P if ¢, B are small enough. Set

Ep
7 1 I
Lep = TepoLep: ICE,p — Cglp.

Now we show the invertibility of the corresponding linearized operator L, p.

(3.10)

£1
Proposition 3.2. Let L. be defined in @._Then there exist positive ey, Bo, C such that for all ¢ € (0,¢p),

B < (0,Bo),
HE&PZHLZ(—%%)><L2(—1,1) = C”ZHH](—%,%)XHl(—l,l)’
for arbitrary p € By (p®), T € K¢

g’roof. The TL:),roof follows the standard method of Liayégunov—Schmjdt reduction
gui 21999, gui 2000, wei 2001 _gm 2d weak,weil 2002_gm~ strong,wei

g, we existe

which was also used in

(13,114,136} 137,138]|. Suppose the proposition is not true. Then there exist sequences
with

e >0, e — 0, Br >0, B — 0, p* € Bs(p°),

= () <

and

such that

1e), (B}, (P} and =

HZkHHl(—%,%)XHl(—l,l) =1, ||L£k,Pka||L2(_%’%)XLZ(_Ll) —0, as k — o.

15



That is

1
(—=8)7Px+ P — 21 pro, kak gkpksp

( ) ¢’k - :Bkiabk + ngkﬁkugk pk(Pk Skr

fellz10y =0, ff€C, o e €K

H‘Pk”ip(f%%) + ||1Pk‘|%11(_1,1) =1

=R+ 1R

(3.11) |5.system-1i

We shall show this is impossible. To simplify our notation, we set uj = u,, pr and Oy = (—Sl, %) We cut

off ¢y as follows: introduce

ou0) = et ()

€k
and decompose ¢ into

K
k=) P+ Prxss
=1

it is easy to see that ¢ x 1 = o(1) in H(Q)) due to it satisfies the equation

(_A)y%ﬁbk,K—&—l +rrs1 =0(1) in  H'(Qy).

We then define ¢ ; forj=1,--- ,K+1by

1
(=) x,j + Bitn — et = 0.
Note that as ||gk|[;2(_1,1) — 0 we have

K+1

e — Y wejllz_11) = 0.

j=1

Since ¢y k11 = 0¢, (1) in H'(Q)), we also we have ¢y g1 = 0g, (1) in H! (—

that
¢rj — ¢j in H'(R)
with

¢je{¢eH1 \/ o= dy_o}_KOi.

In addition, ¢; verifies the following nonlocal problem
Casel : 7, — 0,

1 Ly Jg wedy
(=)0 4 9y = 2uogy + 25 e B e

Case 2 : 177, — oo,

Jr weidy

Case 3 : 17e, — 1o,

(1+10) Jg widy + 0 Jg wedy e

k

1,1). Sending k — oo, we can see

e cf. 612)

615)

1
ka2 2RI Ty
16
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where

—Co:Span{aaz;},

and Ky, Cy- denotes the orthogonal complement with respect to the scalar product of L?>(R) in the sapce
H'(R) and L?(RR) respectively. i i mi
After linear transformation, we could write the equation @‘%ﬂl denoted by ¢;):

3 Jr wjdy
(—A)Z ;i + ¢ — 2we; + 21, fﬂ‘ ]dy w* € Cy, (3.15)
where
0,---,0K, for case 1,
/\]- =<1,---,1, for case 2,
KZ-OW()’ cee, #0770, 1, for case 3.
It is known that )
(=A)2w +w — 2w = —w?.

imli
Therefore, equation @% be written as
1 Jr Wiy 1
((=A)2+1-2w) | ¢p; —2 A ———w | € Cq.
] ! g w?dy
Since the operator
(—A)2+1—2w: Kf —Cf

is one-to-one map with bounded inverse. As a consequence,

9 — 2, Jr wcp]dy
P fpwrdy

Mutiplying by w and after integration we get
1-21)) [ wydy =o.
( ]) R $idy
If A; # 5 we derive that [ wg;dy = 0 and it implies that
(A2 +1—2w)p; =0, j=1,--- K,
.1 , .
and by Proposition ﬁWe have ¢; € Ko, j =1,---,K. Then it implies that ¢; = 0, j = 1,-- -, K. By taking

e limit equation in ¢ we see that ¢ — 0in H 1(—1,1). On the other hand, from the fourth equation in
stem-11n
we have

K
Y 19712 gy + 1031 1)) = 1

j=1
Contradiction arises and the proof is complete. 0

.1
As a consequence of Proposition @We have

Proposition 3.3. There exist positive constants €1, B1 such that for all e € (0,€1) and p € (0, B1), the map L p is
surjective for arbitrary p € By (p°).

Now we are in position to solve the problem
Uep + ¢
Tep©S P =0.
&p € (Us,p 4 11,))
Since Lep |, L is invertible (call the inverse £ }1) we can rewrite the above problem as
P /.

Y= (ﬁgp 0 7Te,p)Se (Z:;’ :::i) - (Esg 0 Mep)Nep(Z) = Mep(X), (3.16)

17



where
— Uep + ¢\ _ Uep\ _ or [Uep ) |P
Nep(Z) = Se <Us,p i 1/’) Se (U&p Se vep ) |1
and the operator M, , is defined for & € H: (—%, %) x HL(—1,1). We are going to show that the operator

Mg p is a contraction map on

11
Beg = {2 € Hr <—€,E> X HE (=1, 1) IZll1 (11 e -10) < 5}, (317)

.1
if o and ¢ are small enough. By Proposition 3.2[we have

IMep )t peaniorn) < € (7m0 Nep (1 tyeazcan + 1m0 (42 ) st t)eizionn)
< C(c(8)6+Epe + h(e ),
where C > 0 is a constant independent of § > 0, e > 0 and ¢(6) — 0 as 6 — 0. Similarly we show that
1 Mep (1) = Mep(Z2) [ (-1 1y (1,0 = Ce(O)Z1 = Zoll a1 1) (1)

where ¢(d) — 0as & — 0. If we choose ¢ sufficiently small then M, is a contraction map on B, 5. The
existence then follows by the standard fixed point theorem and X ;, is a solution to . We thus proved

Lemma 3.4. There exists € > 0, B > 0 such that for every pair of e, p with 0 < ¢ < eand p € B,(p°) there is a

. o +
unique , € ICL satisfying S <u£'P P
que (Pe,p, Pep) &p Satisfying Se Vep + Yep

1@ $ep) L (—11) 1 _11) < C (EBPe+h(e,B)) -

More refined estimates for ¢, are needed. We recall from the discussion in last section that Sy (uep, Vep)
can be decomposed into the two parts S; 1 and Sy, if x is close to the center of spike, where Sj ; is in leading
order an odd function and Sy, is in leading order an even function. We can similarly decompose ¢, as in
the following lemma.

.2
Lemma 3.5. Let ¢;p be defined in Lemma @_Then for x = pj+ez

) € Cep. Furthermore, we have the estimate

ez| < p,j=1,--+,K, we have the

decomposition
Pep = Pep1 T Pep2, (3.18)
where ¢ p 2 is an even function in z which satisfies
11
Pep1 = O(§€ﬁ2£2> in H' <_E,€> , (3.19)
and
2 . 1 11
Pep2 =O(Cpe+h(e,p)) in H -7 ) (3.20)
Proof. We first solve
K
pi
Sluep + ‘Ps,p,2] — S[uep] — Z S12 <y - £]> € Cep, (3.21)
j=1
for ¢pepp € Kép. Then we solve
K pi
S[us,p + (Ps,p,Z + (PS,p,l] - S[us,p + (Ps,p,Z] - Z 51,1 (]/ - €]> € Cs,p/ (3'22)
j=1

.1
for ¢ep1 € Ksl,p. Using the same proof as in Proposition oth equations @ and @ have unique
solution provided ¢, < 1. By uniqueness, ¢ep = ¢ep1 + Pep2, and it is easy to see that ¢, 1 and ¢ep o
have the required properties. g
18

5.13

I

14

5.15

I

16

5.17



3.3. The Reduced %roblem In this subsecltlon, we solve the reduced problem which will will complete the

proof of Theorem
ICEL/P such that

y Proposition

Uep + Pep Eep
. <U€p+¢sp 0 ) < Cor

To complete the proof of Theoremli l l We lnseted to determine p® = (p1, p2, - - -, px) near p° such that

u 3 —|— (P 3
S &p &P 1 3
‘ (U&pg + %p‘) Cops

which in turn implies that S, Uepe T Pepr) 0. To this end, let
Vg, pe + lPS,PS

We(p) := (We1(p), Wea(p), -+, Wek(p)) : Bo(p®) — RX

where

1
a .
Ws,](p) ,328 / 51 (usp +¢5P/U€P —Fl/Jgp) p]dy, j=1,---,K

or every p € B, (p?) there exists an unique solution (¢¢p, Ye,p) €

Then W,(p) is a map which is contmuous in p and our problem is reduced to finding a zero of the vector

field We(p). Let us now calculate W, (p)

1

1 ow;
Wei(P) = w25 / S1 (Uep + Pep, Vep + ‘Psp) —Ldy
Gepre /-1 op;
1 '% 1 (tep + Pep)? | Owj
= & /l (—=8)2(uep + Pep) + (Uep + Pep) — Tep T ep ijdy
1 : 1 (tep + ¢ep)? | Ow;
= fjgﬁZe/_g (—=8)2(uep + Pep) + (Uep + Pep) — ooy aT,de
_ /1 (uep + Pep)?  (tep +ep)? aw]d
GeP?e J-1 | Veptep Ue,p op; /
=h+D,

where I;, I, are defined by the last equality and ¢ ;, satisifies

1
D(=A)2ep + Pep — 28etiepPep — (:S(Pg,p =0
.3

For I;, we have by Lemma ﬁ*

b (f

(— A)%(”ep““i’ep) (we,p+4’€,p)_

(ep + 4’s,p)21 %d

US'P(Pj) ap;
% € e 2 oW
/1%(Ug,p(Pj‘FS]/)—UE’P(pj))aZ;];dy>+0(1)
T &p
1 : | tgeo)?] o,
= T apa (/1 (—A)Z(w]-+4>g,p)+(wj+¢grp)_W awy]dy>
1 : (wj+47€,p,2)2 . aw].
_W</gvgp(pj)<”w(l’1+£y> vep(Pj)) 5 5y +o(1).

.3
Note that, by Lemma ﬁTve have

: 1 aw]' : d 1
/71 [(=A)2¢ep + Pep — ijtpgrp]@dy = /,1 (PE,p,l@ ((—A)zw]- + w;j —

19

(3.23)

(3.24)

(3.25)

w]2) dy +0(5eB*e?) = 0(Zepe?),
(3.26)



and

‘Ps,p y d]/ = 2/ ‘Psplfps,p, y d]/ = o 8,5252)- (3.27)

Now by Lemma ﬁ?ld equat1ons @D and @ we have

€ a .
Il = 6&,3282 /;1 (Ue,p(p] +Sy) Ue’p(p]>)a£y]dy+o(1)
% o
__1/—%&]]2 (Pj(z) _EyanF(P)> aﬁy]d]/—i-o(l) (3.28)
1
=73 /]R @’ (y)dydy,F(p) + o(1)

Similarly, we calculate

; /1 (Uep +4’s,p)2 B (uep "’4’&1’)2 %dy
_ Vep + Pep Ue,p a9y

1 Uep + Pep)?  OWj
= g2 /_1 ( spv2 Pep) 1pg,pa—y]dy+o(1) (3.29)

&p
1 0w}
= e |1 35y Wor — Yen )y +0(1)

Since v satisifies @D, a similar argument to that used in Lemma ﬁﬁves
1 : : .
Vep(pj+€2) — Pep(pj) =Ge /71 (Gp(pj+ez,0) — Gp(pj. Q) (Zus,p <s> Pep <€> +¢82,p <£>> i
—o (r:gﬁzgz|a,,jp(p)||z|) L P(2) +hod,

(3.30)
where 15](2) is an even functioninz =y — =/ Substltutmg @ into @D we obtain that
L =o(1). (3.31)
Combining the estimates for I; and I, we obtain
We(p) = —V,F(p) +0(1), (3.32)

where F(p) is defined in dﬁ]} and we have used that [, w?(y)dy = 37, and o(1) is continuous function of p
which goes to 0 as e — 0. At p?, we have V,F(p?) = 0. On the other hand, we have assumed that V%,F )
is a matrix of rank K — 1. E]

It is known that (1,---,1)f € Ker(V%F(pO)) and we can choose p such that W,(p) L (1,---,1)!. Next,
we can apply Brouwer’s fixed point theorem to show that for ¢ < 1 there exists a point p such that W, (p) =
0and p € B,(p"). Thus we have proved the following proposition

Proposition 3.6. For e sufficiently small there exist points p¢ with p¢ — p° such that We(p¢) = 0.

Proof of Theorem ﬁ%};’l—?ﬁove Proposition, there exists p° — p° such that W,(p¢) = 0. In other words,
S[uepe + Pepe] = 0. Let ue = Cettep, ve = Ce .e%XSMaximum principle, ue > 0 and v, > 0. Moreover
(ug, ve) satisfies all the properties of Theoremii l ii O

Remark: In the asymmetric case, instead of considering the system @yvsve study the original system dﬁg
directly. Then, the ansatz is given by

2
Uep = Z ge,jwj(y)/ Vep = Tluep](x).
=1

2When D is large or K = 2,3,4, we are able to show that M(p®) is semi-negative and rank(M(p®)) = K — 1. The proof is given in
next section.
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After the standard procedurge as we did for the symmetric case, we reduce the original problem to a same
finite dimensional problem with K = 2. By the same proof we are able to establish the existence for
the asymmetric two spikes pattern.

— 4. RIGOROUS PROOF OF THE STABILITY ANALYSIS
f-stability

In this section, we shall consider the large and small eigenvalues respectively. From which we are able
to characterize the linear stability of the multi-spikes constructed in last section.

4.1. Stability Analysis: Large Eigenvalues. Linearizing around the equilibrium states (u¢, v¢), we obtain
the following eigenvalue problem

1 2
(_A)y24)€ + (PE - 2%4’8 + %we + )\84)8 =0,
1
é(_A)%lpe + e — 2uePe + TAYP: =0,

(4.1)

where A, is some complex number and
11
¢. € H' (—,€> , e € HY(—1,1).

€

In this subection, we study the large eigenvalues, i.e. those for which we may assume that there exists ¢ > 0
such that |[A¢] > ¢ > 0 for ¢ small. If R(A;) < —c then we are done (since these eigenvalues are always
stable) and we therefore assume that #(A.) > —c. For a subsequence ¢ — 0 and A, — Ao we shall derive
a limiting NLEP satisfied by A¢. In the following we shall divide our discussion into two cases: symmetric
pattern and asymmetric pattern. First, we study the symmetric case.

Symmetric pattern. Let
e = Cs_lug =Uep + Pep, Oc= 68_108 = Vg,p + Pe,p-
Then @ becomes
(“A)3 e + e — 2% + Lo+ Ao =0,
é(—A)%l[)E + e — 28etlee + TAehe = 0.
The second equation in @ is equivalent to

(*A)%#’e + /32(1 + T)\s)lps - 2132581284)8 =0. (4.3)

ﬁAg:;BV1+T/\s/

where in /1 + TA, we take the principal part of the square root. Let us assume that

4.2)

We introduce the following:

ell 1,1y = 1.

We cut off ¢, as follows: Introduce

¢£J(5y - Pj) = X (ey _ P]’) ,

To
where x(x) was introduced in ctmsgltrfg @, Lemma @?ﬁd R(Ae) > —c and the algebraic decay of w,
we get that
K 11
Pe =) ¢ej+oe(l) in H (—g,g) :
j=1

Then by a standard procedure, we extend ¢, ; to a function defined on R such that

el 1Ry < CllPejll 11y, j=1,---,K
(R) (-1
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Since ||(pg|\H1<_l N = 1, ||47e,j||H1(_1 ) < C. By taking a subsequence of ¢, we may assume that ¢, ; — ¢;
ase — 0in L2 NLP(R) forj=1,--- K.

We have by o . .
ve) =26 [ G, 0 (&) (£) 9

Atx = p]s., j=1,---,K, we calculate

o) =26 [ G, 05,0 Ko (5570 g (E510) 0 o

=1

—opz [ (W +co<p;,g>+o<|m|2>)f w (0 ”K)fm( Y dg + 0GR 1)

(=1

C-— ¢ 7—pt

+2¢SZ/ (3o +ﬁZGo<p;,@>+o<|ﬁAg|4>) (g ) g (B2

t#j

K

:;(1j§§A) [ w9y +o(1) +26.5  clog . = [ w90y + (Gl i, o)
=1 €

(4.5)
2
Lety, = % log % and we separate our discussion into three cases.

Case 1: 17 = 0, we get from &gﬁl_re
K

$el) = 2oy ey @endy (1 o1 (46)
Substituting @%ﬁo the first equation @, sending ¢ — 0 and using @% we derive the following

nonlocal eigenvalue problem (NLEP):
K
2 };1 Jr wedy
K(1+41Ag) g w?(y)dy

If K = 1, by Theorem @;E:Lhe above problem is stable if T < 7, which implies that the large eigenvalues
are stable. If T %' iy by Theorem “probl ('E?) has a eigenvalue Ay with ®(Ag) > a9 > 0 for some

(_Aﬁ¢f+%_2w@+‘ w? +Agp; =0, j=1,--,K 4.7)

ag. By Theorem . J{bglow, we have problem also its a eigenvalue A with Ag + 0(1) which implies
that the problem is unstable. If K > 1, problem admits a positive eigenvalue: We can choose, for
example,

f1=—¢2=Do, P3=---=¢x=0 Ao=p,
where @ is the principa] eigenfunction of Ly given in Proposition epeating the above arguments for
K = 1 and by Theorem f.T[again, we conclude that there is a eigenvalue of with eigenvalue whose real
part is positive. Thus all multiple-peaked solutions are unstable.

si-re
Case 2. 17, —+ 0. In this case, similar to Case 1, we get from @"ﬂﬁt‘g

Pe(p}) = eCere /]R wgedy(1+0o(1)), j=1,--- K (4.8)
and for any T > 0, in the limit ¢ — 0 we obtain the following NLEP:
(—A)%¢j+¢j—2w¢j+2ffﬂ{ 4)]01; 2+)\047]*0 j=1---,K 4.9)

By Theorem E 19 only stable eigenvalues. Therefore, if 7, — oo, then the large eigenvalues of a
K-peaked solutions are all stable.
2
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Case 3. 17 — 17p. Similar as above, we get from @%{_artgg

K
Ye(pf) = (): / W%zdyﬂémo/ w¢e]dy> (1+0(1)). (4.10)

1+ TA
Sending £ — 0, we obtain the following nonlocal eigenvalue problem

2 [(14 10(1 + TA0)) fye w9y + Lo wpedy
(K+170)(1+ TAo) [ w*(y)dy

w? + Ao =0, j=1,--- K

@

(—D)2¢; + §j — 2w; +

Let
1+ n0(14 TAp) 1 1
1 1+n0(14+71Ao) --- 1
g= : . .. : ’
1 1 <o T4+no(14TAp)
G is sysmmetric and eigenvalues of G are given by
A= =Ag1=n0(1+7TAo), Ak =K+10(l+ 10A0).
Let P be an orthogonal matrix such that
7o(1+TAo) 0 e 0
0 I’]()(l + ‘L'/\()) e 0
PGP = , . : :
0 0 - K4+10(1+7Ap)
From @%g the notation,
T
:(4)1//4)]() 7
we get

G [g Pwdy
(K+10)(1+ 7o) [ w?(y)dy

(—A)2D + P — 20d + w? + Ag® = 0.

Let PO = @, then we get

2 » N
(K+170)(1+T)\0)waz(y)dyPQP (/]qu)> w? 4+ AP =0,

and it can be written in components

(—A)2D + & —20d +

1. - Aj - -
CARD 4 B — 20, J / &, 24 0®i =0, j=1,--- K
(20 e ey (#0708 =0,
@12)
Forj=1,--- ,K—-1, @Wcomes
1< = = 2 0 = = . -
(—=A0)2®; 4+ &; — 20D, + &0 ]sz(y)dy (/chbj(y)dy) W+ Ap®; =0, j=1,---,K-1, (413
while for j = K, @%comes
le | & = 2(K+10(1 4 1Ao)) L& 2 2 :
(—=A) 2Pk + Dg — 2wdk + KT 70)(1+ tho) e 2 ()dy /]RwCDK(y)dy w”+ APk =0.  (414)
R .
2 . .stapilit in-t-1 .
If K> 1and Kﬂ%o <1 (1.e. ;70 < K), then by Theorem problem is unstable for all T > 0, which

implies that problem X
stab
o > K, then by Theorem iﬁ proBlem iﬁ lgi Sstable. Whlle for problem ﬁ_b’y Theorem we get that
itis stableif 0 < T < 1 or T > 13 for suitable » < 13.
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in—k .4
:glé_f 1and 779 < 1, we see that the problem can be written in the form as @r}_ﬁy Theorem ﬁﬁrolem

is stable if 0 < T < 74 and unstable for T > 15, for some suitable 7; < T5. Then we finish the whole
proof for the large eigenvalue of symmetric pattern.

Asymmetric pattern. In the asymmetric case, we only consider the problem with two spikes. Using the
Green’s representation for the second equation of we get

1 2
l/}(p]) = 2182 /_1 G/SA‘g (x/ g) E Ce,éq)s,éwédg

- g (4.15)
_ €6e0 P 1 . .
- [221 ey /]chpg(y)dy+2(§£,] - elog - /Rmp]dy, i=12,
The eigenvalue problem turns to be
) 2
(=A)2¢; + ¢j — 2wep; +s§g,j;70/ﬂzw¢jdy+ T ‘:“ / wedy + Aepj =0, j=1,2, (4.16)
(=1
where
1-= 1— 4
o200 (1 VU L a0y (1 VIR L
T e fgwr(y)dy \2m0 4 +277 2 e fq@?dy \ 20 4+2m0 )

The associated two by two matrix of @%se_gf{ven by

[1-% -4
41 1y o 1 1 _ i
10 T 1572, m 2¥10 T+tAe | 70 2+10
1-4 ol 1- fz
1 1 0 1 1 0
o | 0t 2 (’70 + 1+r)\g) AT
After simple calculation we get the eigenvalues of the above matrix are

1 1 1 1 2 1 4 8
AMr=1+ — 3+, /14 — + — . 4.18
2 1+ TAe 170 \/ Araig T 24m mermary  HP

(4.17)

Next, we claim that

11 1 1 2 1 4
A =1+ —\/1+ + - 8 <1. (419

14 TAe 10 (1+7A);7 T+tAeno 2+10 702+10)(1+7Ae)

It is equivalent to show that

2 1 4 8
1+ — = - > 0. 4.20
1+7TAeno 2470 170(2+170)(1—|—T/\) (4.20)
-cla .stabilit

Using 7o > 2 we have_lei> ﬁ and it implies that @ lchuls (E o) holds By Theorem Ehg— We concliide

that the system admits an unstable eigenvalue and it proves that the asymmetric two spikes pattern
is always unstable.

In the end of this subsection, we give the following result which establishes the relati etween the

corresponding limit eigenvalue problem of each case and the original eigenvalue problem

Theorem 4.1. Let A, be a eigenvalue of @ such that ®(A¢) > —c for some ¢ > 0.

(1) Suppose that Q7.5 uitaple  SCAUENGES £q =2 Q we have Ae, — Ao # 0. Then Ag is a eigenvalue of the problem
given in (&7) ((BY) lﬂb and 'E.U’ o7 fhe other three cases). -
(2) Let Ag # 0 with R(Ag) > 0 be a eigenvalue of the problem given in 1@!‘(“

other three cases). Then for € sufficiently small, there is a eigenvalue A of (&2

Proof. One can see Wﬁl, Theorem 6.1] for the proof. g
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4.2. Stability Analysis: Small Eigenvalues. We now study the problem @ for small eigenvalues of the

symmetric pattern. As in last subsection, we set

1

ﬁg = gs_lug = ug,P + (Pg,p, @g = gs_ Ve = Z)g,p + lpg,P.

In the following discussion, we take T = 0 for simplicity. As A, < 1 the results in this section are also valid
for T finite, this is due to the fact that the small eigenvalue are of the order O(£?), we shall prove it in this

subsection.

We cut off il, as follows
te

&y — s
o

ei(y) = x de(y), j=1-,K

c:progof-existence

c:prelim
where x(x) and ry are given in iﬁ Slmliarly to the §3[we define

11
Kepnew = Span{ i=1,--- K} c H! <—€,£>,

z’:1,---,1<} c L2 (—1,1).
£ &

aa&]-

Y

a1,

Cepnew = Span{ 3y

Then it is easy to see that

Note that

and 7, ; satisfies

=2
1 ug
(—D) 2l + il — ;’] +0(2) =0
&€
Th o aae,,. isfi
us ug,j =y satisties
_ <2
1 T i us
A2 A & &] A1 _
(—A)ygile;+ g ; —2 5. e +e a2 0.+ h.o.t. =0,
and we have
L w pj
=5 (y— ) (1+0(1)).

Let us now decompose
K 1
_ e~/
P = ) ajiiy ;i + i,
j=1

where a;: are complex numbers and ¢~ L K¢ p yew. Similarly, we can decompose

K

L

Ye =) aite; + i,
j=1

where Pe i satisfies
D(=A)2 e+ e — 28eleill; =0, j=1,-- K,
and ¢/ satisfies
D(=2)2y5 + ¢ — 28elleg = 0.

We impose periodic boundary conditions for and
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Suppose that \|¢£||H1(_%,%> = 1. Then |a€| < Csince

f Cpe il ] d
f]R wzdy
Substituting the decompositions of ¢, and ¢, into @ we have

1 24 ej 00:  11Z
(=A) ¢ + ¢ — f ; A§¢€L+Ag¢§—sga§<ﬁg a; Uz¢€]> +hot. = —A¢ Za] b (429)
]:

Set
e (1 90¢
Lo (o ).

} i iz
Joi= (=B)jge + e = 2590 + 5he + Aehi
€
We divide the proof into two steps.

Step 1. In this step we shall use equation @ to give a good error bounds for ¢;-. Since ¢;- L Kep new,
then similar to the proof of Proposition 3.2} it follows that

a5 = +o(1).

and

||475L||H1(_%,%) < CH]OHLz(_%%)-
.exist
Let us now compute J;. Let ¢, be the same as Theorem ﬁ%—sﬂe, B) = & ,628, then we calculate that for

x € Bs(pj):
? =G /,1 9:Gg, (x,0) <u (i>)2dé

—ep [ Gﬁx@((a (f))2+[§](ue (i))zw(ez)) a,

oy = 26" [ Goglat = et [ (Kol — 2D~ Hy( ) o
Thus for x € B5(p ), we have

e[ ([ 2ot 00 (s (5)) -t (s (5)) ] )
[ (1 (5)) - <u~< )]«

+/ ):a Gp(x,0) <u£g<§>) dg + O(é

b

and by @

(il )?dC,

Using the fact that
0
SeKalx =)+ pKpllx—E) =0, Vx£L,
and using integration by parts, we get
0, 1 2 Jd .
B = Keh) [ (B0 +ole) ) ay, (430)
where

Fj(x) = Hg(x, pj) — ZGﬁxw)
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Observe that

2 :
SR [ v =p=o01),

since p¢ — p and p" is a critical point of F(p) (see dﬁ for the definition of F(p)). Hence we have

K
ITll 21,1y =0 <€k(€,ﬁ) Y |ﬂ§|> (4.31)
i

and
K
H‘PeL||H1(,%%) < C||]1HL2(,%/%) =0 <€k(€,/5) ) “ﬂ) . (4.32)
=1

Using the equation for ;- and @, we obtain that ;- = o (ezk(s, B) E]K:l |aj|) . We calculate
% aﬁs,j % ﬁ? a’Us L a”s] % L aas,j
/_1 (]2 8y)dy:./_i 02 ( “ox e llig) dy+/\e/_l¢£ dx 9y
i; 90,
S o [ 5 ( ey )) plig

- _ e 88776
N I, e 02 \' 0
! e (4.33) |8.20
AL (D -vton)da [ ok

P
1
€

L (Pj+e0) —
e 02 0y

( %k(e, B) + eAek( ) Z |aj].

where
ey ={y|pjreye (=L1)}
and we have used @ and avs =0(1).

Step 2. In this step we shall derlve an algebraic equation for ;.

integrating over (— %, %) , we obtain

p) 2
rhs:—mj / Sl 228k ag = A1 +olV)et [ (fj;’) dy=—Arn(1+o()df, (434

where we have used

j=1 e,p

Ko by i,
= ¢k(e, B) Zia]?/l ;%] <ax1-“j(x)> a;’dy+o ( 2k (e, B) + eAek( ) 2 |a€|

]: €

439
ow & 02
_ 2 29% € € 2 £
= &%k(e, B) /]Rw ayy];a] <8p§ap§P(P )) dy+o (e k(e, B) + eAek( ) Z a5
82

ZF(pE) +0 (szk(s,ﬁ) +elek(e ) ): |ag],
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where we have used that .
/ w? ydy =-3 /IR wd(y)dy = —m. (4.36)

Combining @gg_rtld @T/\/e have
92
Za ( o 8 8)> ( 2k (e, B) + eAek( ) Z |a] = Aertag(1+o(1)). (4.37)

la
From @Tesee that the small eigenvalues with Ay — 0 satlsfymg |Ae| ~ €%k(e, B). Furthermore,

Ae

- 4.
szk(s,ﬁ) — 0y, ( 38)
as e — 0, where 0p is a eigenvalue of the matrix M(p®) and p¢ — p®ase — 0. The vector at = (a5, - - - ,a%)”
approaches an eigenvector of M(p®) corresponding to the eigenvalue ¢y. In the following subsection, we
shall show that if anyone of the following two conditions holds

(1) D is sufficiently large.

(2) K=2,3,4and D is arbitrary positive constant.
Then rank(M(p®)) = K — 1 and all the nonzero eigenvalues are negative. It implies that the small eigen-
value is always stable when 2 < K < 4 or D is sufficiently large.

4.3. Eigenvalue of the circulant matrix. In the following, we shall compute the eigenvalue of the matrix
M(p?), defined by

— Y21 Gy (p1,pj) Gg(p1 p2) Gg (p1, Px)
Gg (Pz ) —LjaGglpp) - Gg (2, px)
‘3 ’ ]7&2 ’3 s Pi /3 ’
M(p®) = : : . : ’
Gy (P, p1) Gg(pxop2) -+ —Ljzx Gg(px pj)
where the Green'’s function Gg(x, z) admits the following expression
1 cos(km(x—z)) 1 (1 & cos(km(x—z) cos(km(x —z)) _ 1
Gp(x2) = 2ﬁ2+21 prkn P 2+k; krD Z k1+k7rD) - D=5

It is known that (the left-hand side of @E is the Fourier expansion of the right-hand side of @E in

(=1, 1)\ {0})
Yy w = —logsin <7r|2x|> —log2 for xe(-1,1)\{0}. (4.39)
k=1

After straightforward computations we have

1 7m—mx Li _sin(kmx)

1
/ _ = i -
Gp(x,0) = —5co ot + k(1 +knD)’

7 5 D D x>0, (4.40) |9.green-1

k=1
and

) T, X 1 . 7|x| B @ cos(krtx) —
Gg(x,0) = 16 5t (logsm <2 +log?2 5 2 k(1 + kD) (441) |9.green-2

Since pY, - - -, p% are equally distrikmvt% then it is easy to see that M (p°) is a c1rculant matrix and all the
eigenvalues can be written as (see [42} section 6])
2(0—1)jm
— -1
(o= ()

(4.42)

1 & j nD & 1 2kjmt
A = D2 2 llogsm(K)—HogZ—2+};k(l+knD) COS( X >

T2 (in 2(0-1)jmy _ 1.
+];4csc <K>(cos< % 1), (=1, LK.
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of each row of M(p )

Obviously, one can easily verify that A; = 0 and it corresponds tg the s g‘%@?&
vanishes. To compute , we recall the following identities (see [4] and [6])
! ' K*—1
4s3)

K—1 . K—
2 (] _ 2 (J7T _
];csc (K)—K—1+J;Cot (K>_ 3

and
' 6—1)]‘71) _ Kilcotz (;;(r) cos (2(£ —Kl)jn> +’<§COS (2(£ —Kl)jrc)
j=1 j=1
(@44)
TE & 72N 72\ .0 (-1 L0 2
=z B, (——)B K*—1,
2&;}(20() <‘B> 20 ( K ) 272a(ﬁ)

(") denotes the Bernoulli polynomial of order m and

where denotes the Binomial coefficient and B,
degree n defined using the generating functions
t "o ad
et
( > " =Y B -

et —1

(4.5

After a tedious computation we have

Z csc? cos 2L Vi
K
Substituting @_t @g we get
= 1 (ij n)
j cos

1 j D
M=o Z llOgSH‘(K)“OgZ2+k_zik(1+knD K
+§((£—1) —(-1K), (=1, K
. i
Concerning @%Wle see that if D is sufficiently large then the sign of A, is decided by (¢ —1)(¢{ —1 —K)
-, K.

and it is easy to see that Ay < 0 for ¢ = 2,
Next, we shall.show when K = 2,3, 4, rank(M(p”)) = K — 1 and non-zero eigenvalues are negative for

all D. Using we have
2 D © D T
2= T <_2_k211+k71DCOS(k7T)> )
_ @47)
_1(;_7D_ i 27D P
D 2 A (1+(@m—-1)nD)(1+2mnD) |’ ’
3 27D D
1—SnD— .
M(A3) = 2D ( 37 Z ( 1+ (3m —2)D)(1 + 3mnD) + (1+(3H1—1)7TD)(1+3m7TD)> , 3,
(449
and
1 3 . 47D 0 27D
M) == 2-2aD - N
2(Ag) D < 57 m; (14 (4m —2)D)(1 + 4mnD) El (1+(2m_1)”D)(1+2mnD)> ,
2 = 47D
1-7D— K=4.
B=p < & mzl 1+ (4m —2)7D)(1 +4m7rD)>
(449

—e-lD . 2-e-2 —e-3
To determine the sign of A, defined in ﬁﬁ%ﬁa—nd 1&129_ f we need the following lemma
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Lemma 4.2. Consider the following function

x 0 2x
Fi(x) =1~ D) _mgl (1+ 2m—1)x)(1+42mx)’

and
2 ad 2x X
Fa(x) =1—3x— nf; <(1 + (3m —2)x) (1 + 3mx) * (1+(@Bm—1)x)(1 +3mX))

Then F1(x) and JF,(x) are negative when x is positive.

Proof. Since the proof is almost the same, we shall only focus on the function F,(x). Recall that the

digamma function ¢ (z) = le" (z) = /((ZZ)) has the following series representation
d 1 1
— — — 7, 4.50
¥ n;()(erl m+x) T (4:50)

where 7 is the Euler constant. Therefore, we can deduce that

¢<1+1>_¢<1+1>i 1 B 1 i 6x?
3x 3 3x o\ st a+m 1+ +m = (14 (B3m —2)x) (1 4 3mx)’

m
(4.51)
and
1 2 ad 1 ad 3x?
1+_47 — P = s
1/’( Sx) lp( 3x> m;( + 4 +m 1+31x+m> Z:: 14 (3m —2)x)(1 + 3mx)
_ B (4.52)
Using @%d @%e derive that
2 1 2 1 1 1
A =G g (2 () e (5rs) 0 (G
To show F is negative for x > 0, it is enough to prove that
1 2 1 2
2¢(1+t)—1p(3+t)—1p<3+t>>t—gtz, t>0, (4.53)
Nemes2013
where t = 2. By the expansion of log I'(t + a) for t > 0 and a € [0,1] (See (25) in hZS , we have
1 2n+1 (_1)]‘3‘( )
logT'(t+a) = <t +a— > logt —t+ = log27r + Z W + R;’,?H(t), (4.54)
where n > 0 and
(a) (__1)n+1 © 2n —27ts —47s
Ry, 1(2) = ST /0 2 log(1 —2e cos(2mta) 4+ e *"%)ds
1 9 i (4.55)
+ ) /+°° &2+ aretan (-2 (27a) ds
2t Jooo 12482 €27 — cos (27ta)
and Bj(a) is the j-th Bernoulli polynomial. Then, we have
2log'(1+1t) —logT (; + t) —logT (; + t)
2 1 (%) (3)
=logt+ o + 2RM (1) — R (1) — R (#) (4.56)

2 S2 1__2672ns4_ef4ns
=logt+ — ——‘/ 1 d
ogt+ ot + o t(t2+s2) 08 1+ e 275 4 p—47s §
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Differentiating both sides of ﬁa&éﬁes

1 2 1/00 s2(3t? +52) o 14 e 27 g4 i
0 tz(t2+52)2 g1726—2n5+e—47rs

' 457)

P To R

le(l-l—t)—lp<;+t)—l/](§+t

1
> =

F T op vt > 0.
Hence @% proved and we finish the proof. O

With Lemma ﬁ%ﬁnre able to show that A, < 0by taking x = 7D in F; when K = 2. If K = 3, we take
x = 7D in 7, and it proves that A3 50 0. While when K = 4, to show A2(Ag) < 0 we could write the terms
in the bracket of A;(A4) (see (Ef%)i as F1(2nD) + F1(nD) and we get that it is negative. While for A3, we
could prove it is negative just by taking x = 27tD in F7.

.1
5. PROOF OF PROPOSITIONﬁ.—

In this section we shall analyze the linear stability of the fractional Gierer-Meinhardt system with two
spikes and give the proof for Propositionrﬁ_tonsider the following system

{E(_A)%ug +ug - ﬁ - 0,

g 61

D(—A)20e + v — e~ 12 =

In the inner region near the j—th spike, centered at Pj, j =12, wesetu = Duj, Ve = Dv]- and y =
e (x — pj), then

1 u?
—A)2u; — L =0, . 0 ;
( )ju]—l—u; e u](y) — 0 as |y| = +oo 652) [+
(=A)20; —uj =0, vj(y) ~ —Sjlogr +C;+o(1) as |y| — +oo,
where S; = % Ir u?dx. In @iﬂ since u, is algebraically small away from p;, we have in the sense of

C e . 1,2 22 . mo o,
distribution that e~ u; — D Z]»:1 S j5pj, therefore, from the second equation of @_We see that the limit
function v satisfies

1 2 S
(~M)fo+ Fo=nDY S5, o(x) = ~DS;log|x — pj| + D (‘é +c,»> asxop,  (53)
j=1
where 0 = — @ We define the Green function Gp(x,0) and its regular part Rp(x,0) by

(~4)1G(x,0) + 5GCp(x,0) =dy, Gn(x,0) = —%log|x| + Rp(x,0) as x — 0,

where Rp is the regular part of Gp and

D

1 1

.limj imi
The solution to (Egi iSO Jtc) = niD 212:1 S;Gp(x, pj). Comparing with the local behavior of v(x) in (ﬁ%i e

derive that S; satisfies

Sj+7T0’S]'RD(p]', p]) + ﬂUSiGD(pi,pj) = O’C]‘. (5.4)
Since the two spikes are equally distributed on (—1,1), we have Gp(p;, p;) = % - % log2+ 0O (%) .In the
stability threshold we require that D = O(c~!) >> 1, we expand @%0

(55)

S1 —oS1logm —0Sylog2 + PFy2 | S, =0Cy,
Sy —0Sylogm— oSy log2 + % Y7 1S =0Co.
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1-2
To determine what the appropriate scaling for S; in terms of o < 1 for the above equation @ew_e use
Ci = O(SZ) as §; — 0. Indeed, we set u; = Z/{S and v; = VS where U; and V; are O(1) as S; — 0, we
obtam that the f1rst equation in @‘15 kept the same but that the equation for v; becomes
5 P2 _ _ 1-p -P
(—A)Zvj - s].u]. =0, V= —S]. logr—l-S]- Cj as r — 0.

Comparing the powers of S; we see that p = 1 — p and it gives that p = % Then, to ensure that &; = O(1)

1
we need C; = O(S f ). This shows that if 5; ~ S joaz, the appropriate scaling for u;, v; and C; are all O(0).
To obtain a two-term expansion for the inner problem, we set

(Ll]', vj, Cj) = U'(Mjo, Ujo, C]'O) + O'Z(Mjl, Vi1, le) + 0'3(1/!]'2, Uj2, C]'z) +--,
and

S] = Sj00'2 + S]‘10'3 +--
m

Substituting these expansions into @_ and collecting powers of o we derive that

1 ll2
(—A)?ujo + ujo — #3 =0, u]()(y) — 0 as ‘y| — +00, (5.6)
) .
(—A)205 =0, vjo(y) — Cjo as |y| — +oo,
At next order, u;; and vj satisfy
l Zuv u?
(_A>2uj1 + uj — Wgou]-l + ij‘zvjl =0, u]l(y) — 0 as |y| — 400, (57)
1
(—A)20j — u]ZO =0, vi1(y) = —Sjologly| +Cji1 as |y| — +oo.
Then at one higher order, we obtain that vj, verifies that
1
(—A)ZU]Q — Zujou]'l =0, 0]2(y> — —S]'1 10g |]/| + Cj2 as |_1/| — +o0. (5.8)

t
The solution to @STS simply
ujp = Cjow, vjo = Cjo,

where w(x) = is the radially symmetric ground-state solution to (—A) bw 4w —w? = 0. Using the

2
L|xf? 4
n
Green function of (—A)% in R and representation formula ﬁ_we derive that
1 n
Sjo = —Ch [ widy =2C},
jo 70 g y 0
It is convenient to decompose uj; and vj; in terms of new variables il and 0 by
uj = lew + SjOﬁj/ vjp = Cj] + S]‘Oﬁ]‘,
then it is easy to check that i1; and 9; are the unique radially symmetric solutions to

{( A)%ﬁ + 4 — 2wil; —i—wv—O di(y) — 0 as |y| — +oo, (59)
1 .
2

(—D)20; — %w =0, 0j — —logly| as [y| = co.
d
Concerning @f_mtegrating both sides we see that
S]'17'L' =2 /]R C]-Ow(Cj1w + Sjoﬁ)dy = 4Cj0Cj17T + 2Cj05]‘0 / wﬁdy
= 4C]0C]17T + ZCJ()S]O ('(/U + xw )ZU U]dy ~ 4C]0C]17T + 11. 4482(:]05]0,

where we used

1 1 2 \*( 2 422 2
+zww?b:dz = — — ~ 5. .
/]R(w zw')wd;dz n/]R/]Rlog Epy (1+22> (1 270 22)2> (1+y2)2dzdy 5.7241

Summarizing the above computation, we have the following lemma
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Lemma 5.1. For S; = Sjo0® + $j10° + - - -, where ¢ = —1/ log e < 1, the asymptotic solution to the core problem
is
uj ~o(ujp+oujp+---), vj~o(vj+ooj +c720]-2 +-), Ci~o(Cio+oCi+--),
where ujo, uj1, vjo, vj1 are define by
Ujo :dC]éow, uj = lew + Sjoﬁ]', vjo = Cjo, vj1 = C]'1 + SjO@j/
nd-
with (i1, 9;) verifying @Wmlly, Cjo and Cjy are related to Sjy and Sy by

Sio
CjO = %, le = @ — 7/ wu]dy (510)

1
With Lemma @We are able to prove Proposmonﬁ_
1
Proof of Proposition @_Con&der the linearized problem

1
—A)2 2% Ap =0,
A A e A (5.11) [al.g
D(—=A)z¢p+ ¢ — 2sflug¢ + Ay =0.
In the inner region near the center p;, we introduce the local variables ®;(y) and ¥;(y) by
9(x) = @j(y), p(x) =¥;(y), y ="' (x —p)).
Upon substituting the above relation into , and using u, = Du; and v, = Dv; near pj, where u; and v;

satisfy the core problem , we obtain that

6.12)

1 2u; u?
{(_A)2q>j+q>f_vj]q>f+ijT]'+)\q>f_O’ CD](y) — 0 as ‘y| — 00,
1
(—A)ZTJ — ZM]CD] =0, IY](]/) ~ —9] IOg ‘]/| + B] as |y| — 0,

where B]- depends on S]- and A. One can easily check that 6]-71? =2 f]R u]-CIDjdy. To determine 6]-, we must
match the behavior of the core solution to an outer problem for 1. Since . is localized near the center, we
have 2¢ 1u.¢ — 2D 2]2:1 (Jx ujCIDjdy) op, = mD 2]2:1 0j0p,;. Using this expression we obtain that the outer
problem for 1 is

1 2 0;
(=A)Ip+ BAy = nZ()j(Spj, P(x) ~ —0;log|x — pj ——]—i—B asx — pj, (5.13)
j=1
where ), = /(1 + TA)/D. The solution to ll_sol,b = ]2:1 0;Gp, (x, p;) with Gp, satisfying

(~8)2Gp, (x,0) + B, (1,0) =&y, Gp, (x,0) ~ —_log|x| + Rp, as |x| +0.
From the above discussion, we conclude that
0; + to;Rp, (pj, p;) + 700,Gp, (pi, ;) = oB;.
Llog 7w+ O(c) we have

: D
USlng RD/\ (0) ~ m -

6:14)

91—91(710g7'[ 920’10g2+2/ 121+T/\)6€ 0B,
6 — O log T — 01010g2+zg 121+TA)64 0B,.

.1 '
Using Lemma ﬁWe first calculate the coefficients in @g

uj  Cjow+ (Chw+ Sjpttj)o+ - - - oS;

Y=o (Cn 0 i) — w4 Jo(ﬁ]_w@j)Jr...,

v; Cio + (Cj1 + Sjod;) o + - - Cio

2 N 2

us Ciow + (Cqw + S;pti;)o + - - - 20°S;

]:< iow + (G o) ) :w2+7]0w(ﬁ]—wﬁj)+ ,

30

CjO + (C]‘1 + 5]'073]')0'+ SR
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So that the local problem becomes

20Sj 2(75]0

1 N
(—A)ZCD]'-‘rq)j [2?/04— (]—wv]-)—l—---]cbj—i-[w +
1 ~
(—A)Z‘Y]' — 20 [C]ow + O'(C]lw + 5]'01/!]‘) + - ] CD] =0,
@(y) =0, ¥j(y) ~ —0;jlogly| + B; as |y| = +oo,

(ﬁj—w@j)+---}11fj+)\q>j:0,

(5.15)
1-12
To analyze @Etogether with @W substitute the appropriate expansions
@ =3 ( JOJF‘TCDJlJr ) ¥i=3 (\130*‘7‘"}’11Jr ), Bj=7 (Bo+oBut---), (5.16)
9—9]0+0'9]1+ , A= /\0—1—0')\14—
The leading order is
1
(—A)i@j@ + q>]'0 — qu)]‘o + wZ‘I’]‘Q + )L()CDjo =0, (D]‘o(]/) — 0 as |y| — +00, (5.17)
(—A)E‘on =0, Tm(]/) — B]O as |y| — 400,

then we conclude Yo = Bjy. At next order, we have
2§ o 25; o
(— A) i1+ CI>]1 2wdj; + wz‘I’] — ?’;(u] wd;)Pjo + c Ow(u] wd;)¥jo + M Pjo + AoPj1 =0,
( A)Z‘Yﬂ Ow(D]O = 0,
<I>]1(y) =0, ¥ (y) — —0jlog ly| + Bjy as y— oo
(5.18)
At one more higher order, the problem for ¥, is

(— A)2‘I’]2 —2Cjwdj Z(C]1w1+ S]Ou ) Djo = =0, ¥Yp(y) = —Oaloglyl+Bp as |yl = +oo. (5.19)
re

In addition, substituting (ﬁ 16) into

9]0+ E %95 = BjOl ]: 1,2,
911 - 910 log T — 920 10g2 + Z 2 1+)\T) 9 Bllr (520)

1 — B0 log T — B1plog2 + ): 5 1+)\T)9£ = By;.

a ird
Next, we solve - . First we notice that

2Cjo
9]'0 = 7/]qu>]ody
el-2
To identify Cjp we use the expansion of C;, S; and @Tﬁce we consider the symmetric case, i.e.,
2=0,51=5=5C=C=C, S5;=5;=5,C;=Cy=C,1=0,12,---.

DS

=iy =1, 01 =

We set
# = nDg. (5.21)
Collecting the power of o we get
So 1 2Cy 2 f]RwCD]()dy
Co = So(1 =1\/=, So=—7—, 0‘:—/ D ody = .
0=S(1+p)=1/5, So A 0T T J Pl = [ wrdy
In the following we consider d = &) — Py, from a.a?nd the fact that 619 — 69 = B1g — By we see that
1 2 g wdody .
—A)2dg + g — 20d RO w? + Aedg =0, dy—0 : 5.22
(—=A)2®g + Dy wdo+ [wdy + Ao®o 0—0as [y| = +oo (5.22)

For @%have seen that ®(Ag) < Oif and only if 2/(1+ ) > 1. Therefore, the stability threshold where
Ag =0, Py = w occurs and y = 1. We derive that

1 1 .
7 50=§, Dy =w, b1g—0 =Big— By ="T10—¥20=1.

Co =
34

a.sys

a.par-rel

a.lead

a.coe-1



Upon substituting the above equation into @g we obtain at Aj = 0 that ¥; — ¥ verifies

1 1
(—A)Z (‘Ifll - 11121) — sz =0, Y1—-9Y91~-— IOgT’ + B11 — By1 as |x| — 00, (5.23)
. nd-2

Compared with @Te conclude that

Y11 — Y21 =90+ By1 — Bar. (5.24)

In the following we are going to analyze the effect of the higher-order terms. To this aim, we set
A=ocA+---, =14+ou+---, 5.25 . -
! H M s 62
and we shall derive an expression for A; in terms of the parameter y;. We first use , Lemma @ﬁld the
asymptotic behavior of Rp(0,0) to obtain
14 (1 +ou) —clogm+---](02Sg+0°Sy + ) = *(Co+0Cy +---). (5.26)

From the O(¢?) we obtain that
G = — .
3 1 ],1150 + 251 So log 7T
Combined with @_ we derive that

o=t L[y 08T

. 8 8mJr 8
Next, using ﬁﬁ)‘f . lgrdmi d%f? )l\}ve have
(—A)%Cbl + qA>1 - 2w<f>1 + ZU2<BH —By)+ w0 + AMw =0,
(=A8)2%, — Lwd; —2(Cyw + dn)w =0,
&1 (y) = C11(y) — Puly) — 0 as |y| = +oo,
Ya(y) = ¥12(y) — Y22(y) ~ —(011 — 021) log 7 + Bz — By as [y[ — +oo.

Using the asymptotic behavior we obtain that

1 ) 1
(011~ 01) = 5 /]R whidy +4Cy + L /IR widy. (5.29) [a.09-5

(5.27) |a.eqg-1

(5.28) |a.eqg-3

-1
Using @e_we have

Combined with equation @ﬁ

(=4)

T
Bi1 — By = 011 — 021 — log 5

bd
sz + AMw ="Rq, (5.30) |a.eqg-6
R

Nl=

qA)l + Ci)l - ZZUCi)l +
where
2100 L 2.4 I -
R1=w"log - — w0 —4Ciw* — —w / wildx.
. 2 4r R
In order to make equation @"ﬁas solution, we need

/ _ T _ i/ A 2 /
M /IRw(eryw Ydy = /IR (log 7 0 4C, in IRwudz) w(w + yw')dy,
it implies that
A = 2nlog§ —8mCy — %/ widy — / wiidy
R R

= T +27rlogg—nlogn—i—/ﬂzwﬁdy—g/]Rwﬁdy
T

1 A
=y + nlogz —5 /]Rwudy.

So the threshold for y; is

1 . T _
o= /]R widy — log 7 ~ 0911019 + 0241564 = 115258,
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o:numerical

Substituting it into @},}_a_mﬂld using @% derive that
1 1
ngl gf—i- ( /wudy—log )

Thus we finish the proof. 0

6. OVERVIEW OF NUMERICAL CALCULATIONS

In this section we outline the numerical solutions to the time-dependent fractional GM system with peri-
odic boundary conditions :“ g; Our methodology is based upon the simulations performed in appendix B
of [12]. To approximate the fractional laplagian we discretize over [—1,1] using the finite difference quadra-
ture discretization deve&opgg ip [1/l'and perfrom time stepping using an implicit-explicit semi-backwards
difference scheme as in 32]7

Let x; = —1+ih for i =0,...N — 1 discretize the 1ntervala -1 11 into N uniformly distributed points.
Noting that C; », = —, the quadrat1c interpolant weights of hﬁ}'?m 1 become

flog( ) j==1

=) x+1 -
w = — 4+2xlog( ) j= 42,44, 46, ... 6.1)

4+43log(x) — (x+3)log(x +2) + (x — 3) log(x —2) j==£3,45+7,...

(the value of wy is irrelevant to the computation). Let ¢ be a 2-periodic funcition discretized gver
¢i = ¢(—1+2i/N)fori=0,...,N — 1. By periodicity, the discretizaton provided by (FL;) in 7] s p ifies
to

(=) 2p(x;) = (—Ay) % Z Wi_j(¢ (6.2)
where
Wo = wo + Z Wo Nk T woka)'
k=1
In our computations we truncate this series to 5000 terms. To simulate the full system @gWe use an identi-
cal time-stepping as in TH] which we summarize here. Let ®(t) = (ug(t),...,un_1(t),v0(t),...,on_1(1))7T,

A = diag(e(=py)/2), T7ID(=A,)/2) and N(P) be a function which computes the nonlinearities of the
system. Now 1s approximated as

dd
—+Ac1>+/\f( ) =
ruuth 199

Fix a timestep At > 0 and denote ®, = ®(nAt). The 2-SBDF scheme h32 uses an implicit second-order
backwards time-stepping for the fractional laplace term, and explicit time-stepping for the nonlinear terms.
In particular, we compute the next time-step by solving

(3T — 28t A) D,y 1 = 4Dy — Dy +4AEN (D) — 2AtN (D_1).

To attain @1 we perform five steps of size At/5 using the first order 1-SBDF scheme

(T — AMtA)D, 1 = Dy + AN (P, (6.3)
In our computations, we use a h size of N = 2000 and timgsteps of 51%e At =,0.01. For the initial
conditions we set the ansatz as with the spike heights are , and @_ for the # tends to
0, oo, 19 respectively in the symmetric case and in the asymmetrlc case.

Based on our numerlcal simulations, we attach the following three figures to explain what we have done:
:Two_Spike Forming

(1). In Figure Uwe have ploted three curves: the first order approximation of the threshold Liog ] =, the
second order approximation of the threshold (established in Proposition %Tand the computed
threshold. They are represented by the blue dotted curve, the orange dotted curve and the X marks
respectively. The computed threshold is attained by simulating the two-spike system for several
initial values of € and D. As a we have seen in the figure, the difference between the first-order
approximation of the threshold and the computed threshold is approximately m, and the
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ike_Forming

Spike_Final

).

Two Spike Stability Threshold

=== log(1/e)/n
1.4 % log(1/e)/m + pa/m
X X computed threshold
X
o127 X
\\\\ *ox «
~~.l x
1.0 o x
~d-_ X
~~~~~~ x o
08—
0.03 0.04 0.05 0.06 0.07 0.08 0.09

&€

FIGURE 1. Two spike stability threshold

D =1.0, € =0.05 Final State

0.15 A =\
\"

0.10 -
0.05 - J k
0.00 : : ; ;
-1.0 -0.5 0.0 0.5 1.0

FIGURE 2. Two Spike Final State

second-order approximation of of the threshold is approximately —L __ As this simulation can
[log(1/€)]
become expensive, it is economical to determine a coarse estimation of the critical thereshold by
simulating the system for a short time and observing the trend in spike height differences |u(1/2) —
u(—1/2)| since unstable two spike solutions near the threshold degenerate into solutions of a single
bump at +1/2. Solutions for which the small errors do not grow or decay exponentially are further
simulated to attain a more precise value of the threshold. . . .
X o K R . . fig:Two_Spike Final
The activator and inhibitor of one such stable state is pictured in Figure P} Tn this simulation, the
final two spike state for ¢ = 0.05, D = 1.0 and T = 0.02 is shown. This value is attained at time
T = 500 with the difference in spike heights is on the order 108 and decreasing. The analagous
simulations starting with the asymmetric initial conditions did not yield such any stable states.
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