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On the Parabolic Gluing Method and
Singularity Formation

Juncheng Wei, FRSC, Qidi Zhang, and Yifu Zhou

Abstract. Singularity formation for evolution equations has attracted
much attention in recent years. In this survey article, we will introduce

some recent progress on the parabolic gluing method and its applications

in investigating the mechanism of singularity formation for parabolic flows.
Two model problems will be revisited to illustrate the ideas, and recent

developments and techniques will be presented.

Résumé. La formation de singularités pour les équations d’évolution a
attiré beaucoup d’attention ces dernières années. Dans cet article d’enquête,

nous présenterons quelques progrès récents sur la méthode de collage pa-

rabolique et ses applications dans l’étude du mécanisme de formation de
singularités pour les écoulements paraboliques. Deux problèmes modèles

seront revisités pour illustrer les idées, et les développements et techniques

récents seront présentés.

1. Introduction Singularity formation for evolution equations has attracted
much attention in recent years, probably because of the connection to the possi-
ble singularity or global regularity for the incompressible Navier-Stokes equation
in R3, a Clay Millennium Problem, as well as the motivations from geometric
flows (Ricci flow and mean curvature flow). As a matter of fact, the resolution
of Poincare’s conjecture (another Clay Millennium problem) by G. Perelman
[47, 48] is a manifesto of the importance of the analysis of singularity formula-
tion in evolution equations. Many equations, such as Fujita equations and har-
monic map heat flows, which certainly have their own interest and significance,
might be regarded as testing fields for the analysis of singularity formation in
evolution equations. In this survey, we shall report some recent development
on the parabolic gluing method and its applications in constructing finite- and
infinite-time blow-up solutions to various evolution equations.

In the elliptic context, the inner–outer gluing method was developed by del
Pino, Kowalczyk, and Wei [13,15] to investigate concentration on higher dimen-
sional sets such as curves and surfaces. The climax of this method is the reso-
lution of De Giorgi’s Conjecture in dimensions greater than 8 [15]. Since then,
many new phenomena and features have been found in the Allen-Cahn equa-
tions, critical or supercritical elliptic problems, and other settings. Its parabolic
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analogue, motivated by a recent surge of interests in the singularity formation
in evolution settings, was developed by Dávila, del Pino, Musso, and Wei to
investigate finite- and infinite-time blow-up solutions for energy critical heat
equations and heat flow of harmonic maps [7,12]. Later, the gluing method was
generalized and applied to a wider class of evolution equations. Without being
exhaustive, these include Euler equations and related fluid equations, geometric
flows, parabolic equations, and systems arising from mathematical biology and
physics such as Keller-Segel systems, nematic liquid crystal flow, the LLG equa-
tion, and others. We refer the reader to [9–11,17,18,40,53,57] and the references
therein.

Let us first explain some of the ideas and recent progress in the development
of the gluing method in an abstract fashion and then give two specific examples
to better illustrate the ideas. Roughly speaking, the parabolic gluing method
is a refined type of perturbative argument. Our aim is to construct solutions
exhibiting singular asymptotic behavior near some concentration points as t→ T
or t→ +∞. The construction starts with a well-chosen blow-up profile, usually
driven by energy concentration. Then one looks for a perturbation that consists
of inner and outer parts, where the inner part captures the heart of the singularity
formation and the outer part handles all the external noises. This leads to a
coupled inner–outer gluing system involving the inner and outer solutions and
the (typically scaling and translation) parameter functions. The full system is
then solved by a fixed point argument provided that one can obtain suitable
linear theories for inner and outer problems as well as the reduced problems that
determine the dynamics of parameters. The linear theories are designed such
that the full system is decoupled or less coupled, namely the gluing procedure
can be implemented, and it usually involves careful and rather precise choices of
weighted topologies in a pointwise sense for solution spaces. On the other hand,
the linearization for the inner problem is surely not invertible in the presence
of an infinitesimal generator of rigid motions, and thus for an inner solution
with sufficient decay to exist, orthogonality conditions are required ensuring the
development of the linear theory. These orthogonalities in turn determine the
dynamics of parameters, yielding the desired blow-up speed and location.

A typical first approximate solution is the steady state invariant under rescal-
ing and translation. These invariances naturally imply kernels in the linearized
operator. We call the case where all the kernels decay sufficiently fast the L2

case, while the case with slowly decaying kernels (̸∈ L2(Rn)) is called the non-
L2 case. Usually the non-L2 case happens in lower dimensions, and under such
circumstances, well chosen nonlocal corrections are needed in order to improve
the spatial decay. The new error terms introduced by nonlocal corrections en-
ter the orthogonality condition (at the corresponding mode) as leading order,
leading to a certain integro-differential operator in the reduced equation. This
global feature has been observed, for instance, in [8, 12,17, 58]. Techniques such
as the Laplace transform and Riemann-Liouville type can be applied for certain
cases, but for the other threshold cases, one has to take advantage of the Hölder
regularity inherited from the outer problem to control the nonlocal operator.
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In general, the development of the linear theory for the outer problem is more
straightforward compared to the one for the inner problem. In parabolic settings,
the maximum principle, or the direct and careful use of Duhamel’s formula, can
be employed. However, the design of the weighted space can be more delicate in
the absence of the maximum principle. The gluing method in such set-ups has
been developed and applied equally well. See [9–11, 57] for recent progress on
the incompressible Euler equations and LLG equation.

For the inner problem, solutions with sufficient decay in space-time can only
be expected with orthogonality conditions imposed, and careful choice of initial
data might be needed if instability is present for the corresponding linearized
operator, resulting in codimension stability. There are various techniques and
tools available, and the spectral information plays a key role. A refined version,
that gets less deteriorated in the innermost region, can be achieved by the re-
gluing process, namely another inner–outer gluing procedure. The distorted
Fourier transform also turns out to be a powerful tool in the gluing method
and is present in [57]. This is motivated by [28] on the spectral analysis of the
Schrödinger operator and [36–39] on the singularity formation for wave equations
and wave maps.

In the rest of this survey, we plan to revisit two model problems, the Fujita
equation with critical exponent in R5 (L2 case) and in R4 (non-L2 case) to
illustrate the ideas and techniques in the parabolic gluing method. In the last
section, recent application of the distorted Fourier transform in the LLG equation
will be presented. In the appendix we include the proof of a priori estimates of
linear theory by the blow-up arguments.

2. Fujita Equation: A Brief Introduction Let us start with a brief in-
troduction to singularity formation for the Fujita equation,

(1) ut = ∆u+ |u|p−1u in Ω× (0, T ),

where Ω is the entire space Rn or a smooth domain in Rn and 0 < T ≤ +∞.
This semilinear heat equation with p > 1 has been widely studied since Fu-
jita’s celebrated work [26]. The Fujita equation might be the one of the most
simple-looking semilinear parabolic equations. However, rich and sophisticated
phenomena arise, and those are intimately related to the power nonlinearity in
a rather precise manner. Much literature has been devoted to studying this
problem concerning the singularity formation. For a comprehensive survey in
the literature, we refer the readers to the book of Quittner and Souplet [49].

For the finite time blow-up, the solution u is said to be type I if

lim supt→T (T − t)
1

p−1 ∥u(·, t)∥∞ < +∞,

and type II if

lim supt→T (T − t)
1

p−1 ∥u(·, t)∥∞ = +∞.
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Type I blow-up is more generic and similar to that of the ODE ut = up, while
type II blow-up, where the Laplacian dominates, is much more difficult to detect.
In particular, two different types of blow-up phenomena in problem (1) depend
sensitively on the power nonlinearity. For instance, it is known after a series of
works, including [29,30], that type I is the only way possible if p < ps in the case
that Ω is Rn or a convex domain, where ps is the critical Sobolev exponent

ps :=

{
n+2
n−2 if n ≥ 3,

+∞ if n = 1, 2.

The critical exponent ps is special in various ways. For the energy critical case
p = ps, in the positive radial and monotonically decreasing class, Filippas, Her-
rero and Velázquez [24] excluded the possibility of type II blow-up for n ≥ 3,
and Matano and Merle [42, Theorem 1.7] removed the monotone assumption
and obtained the same result. Wang and Wei [56] generalized the result to the
non-radial positive class in higher dimensions n ≥ 7. For p < ps, finite time
type I blow-up solution was found and its stability was studied in [43]. For the
critical case p = ps in Rn with n ≥ 7, classification results were proved near the
ground state of the energy critical heat equation in [5]. In the aspect of type
II blow-ups, the first example was discovered by Herrero-Velázquez [33, 34], for
p > pJL where pJL is the Joseph-Lundgren exponent [35]

pJL =

{
1 + 4

n−4−2
√
n−1

if n ≥ 11,

+∞, if n ≤ 10.

See, for instance, [4, 6, 19, 44, 52] and references therein for more results on ex-
istence and construction of type II blow-ups. For the critical case p = ps in
dimensions n = 3, 4, 5, 6, sign-changing type II blow-up solutions were conjec-
tured to exist, via formal matched asymptotic analysis, by Filippas, Herrero and
Velazquez [24] and have been rigorously constructed recently in [16,20,22,31,32,
41,51].

In view of the results mentioned above, regarding finite-time blow-up for pos-
itive solutions to the Fujita equation (1), we mention three interesting open
questions/Conjectures.

Conjecture 1. For 3 ≤ n ≤ 6 and p = n+2
n−2 , all positive finite time blow-ups to

(1) are Type I.

Conjecture 2. For n ≥ 7 and p = n+2
n−2 , all (sign-changing) finite time blow-ups

to (1) are Type I.

Conjecture 3. For n+2
n−2 < p < pJL(n) and p ̸= n−m+2

n−m−2 , all finite time blow-ups
to (1) are Type I.

On the other hand, infinite time blow-ups for p = ps have also received some
attention recently. In dimensions n ≥ 3, Galaktionov and King [27] investigated
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positive, radially symmetric, infinite time blow-up solutions for problem (1) in
the case of the unit ball with Dirichlet boundary condition. See also [55, Theorem
1.4] for the case that the domain is convex and symmetric. In the non-radial
setting, the positive infinite time blow-up solutions for problem (1) with zero
Dirichlet boundary condition and n ≥ 5 was constructed in [7], where the role of
the Green’s function in the bubbling phenomenon was studied, in parallel to the
seminal works [2] and [3] in elliptic settings. See also [21] for the construction
based on non-degenerate sign-changing profile and [18,54] for the bubble towers
in higher dimensions at forward and backward time infinity. Infinite time blow-
ups for the lower dimensions n = 3, 4 have been constructed in [17,58] confirming
a conjecture by Fila and King [23].

3. L2 Case: Critical Fujita Equation in R5 In this section, we introduce
the first (simpler) parabolic gluing method when the kernels are in L2.

The first example is the type II singularity for Fujita equation with critical
exponent in R5. The first step is to find a suitable blow-up profile whose natural
choice is the steady state. We recall that all positive entire solutions of the
equation

∆u+ |u|
4

n−2u = 0 in Rn

are given by the family of Aubin-Talenti bubbles

(2) Uµ,ξ(x) = µ−n−2
2 U

(
x− ξ

µ

)
where

U(y) = αn

(
1

1 + |y|2

)n−2
2

, αn = (n(n− 2))
n−2
4 .

The solutions we construct do change sign, and look at main order near the
blow-up points like one of the bubbles (2) with time dependent parameters and
µ(t) → 0 as t→ T . Thus we consider the equation

(3)

{
ut = ∆u+ |u|

4
n−2u in Ω× (0, T ),

u(·, 0) = u0 in Ω

in the case n = 5, p = 7/3. Let us fix arbitrary points q1, q2, . . . qk ∈ Ω. We
consider a smooth function Z∗

0 ∈ L∞(Ω) with the property that

Z∗
0 (qj) < 0 for all j = 1, . . . , k.

The sign condition is required to ensure the existence of the desired blow-up
dynamics.
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Theorem 1 ([16]). Let n = 5. For each T > 0 sufficiently small there exists
an initial condition u0 such that the solution of problem ( 3) blows up at time T
exactly at the k points q1, . . . , qk. It looks at main order like

u(x, t) =

k∑
j=1

Uµj(t),ξj(t)(x) + Z∗
0 (x) + θ(x, t)

where
µj(t) → 0, ξj(t) → qj as t→ T,

and ∥θ∥L∞ ≤ T a for some a > 0. More precisely, for numbers βj > 0 we have

µj(t) = βj(T − t)2 (1 + o(1)).

We observe that, in particular, the solution constructed in Theorem 1 is type
II since

∥u(·, t)∥L∞(R5) ∼ (T − t)−3 ≫ (T − t)−3/4.

For notational simplicity we shall only sketch the proof in the single-bubble
case k = 1. The general case requires relatively minor changes.

• Ansatzes and error estimates.

We fix a point q ∈ Ω. Let us consider a function Z∗
0 smooth in Ω̄ with Z∗

0 = 0
on ∂Ω. We assume in addition that

(4) Z∗
0 (q) < 0.

We let Z∗(x, t) be the unique solution of the initial-boundary value problem

(5)

{
∂tZ

∗ = ∆Z∗ in Ω× (0,∞),

Z∗ = 0 on ∂Ω× (0,∞), Z∗(·, 0) = Z∗
0 in Ω.

We consider functions ξ(t) → q, and parameters µ(t) → 0 as t→ T . We look for
a solution of the form

(6) u(x, t) = Uµ(t),ξ(t)(x) + Z∗(x, t) + φ(x, t)

with a remainder φ consisting of inner and outer parts

(7) φ(x, t) = µ−n−2
2 ϕ (y, t) ηR(y) + ψ(x, t), y =

x− ξ(t)

µ(t)

where

ηR(y) = η0

(
|y|
R

)
and η0(s) is a smooth cut-off function with η0(s) = 1 for s < 1 and = 0 for s > 1.
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Let us define the error of u as

S(u) = −ut +∆u+ up.

Then

S(Uλ,ξ + Z∗ + φ) = − φt +∆φ+ pUp−1
µ,ξ (φ+ Z∗) + µ−n+2

2 E +N(Z∗ + φ)

= ηRµ
−n+2

2

[
− µ2ϕt +∆yϕ+ pU(y)p−1[ϕ+ µ

n−2
2 (Z∗ + ψ)] + E

]
− ψt +∆xψ + pµ−2(1− ηR)U(y)p−1(Z∗ + ψ) +A[ϕ]

+B[ϕ] + µ−n+2
2 E(1− ηR) +N(Z∗ + φ)

where

(8) E(y, t) := µµ̇[y · ∇U(y) +
n− 2

2
U(y)] + µξ̇ · ∇U(y),

Nµ,ξ(Z) := |Uµ,ξ + Z|p−1(Uµ,ξ + Z)− Upµ,ξ − pUp−1
µ,ξ Z,

A[ϕ] := µ−n+2
2 {∆yηRϕ+ 2∇yηR∇yϕ} ,

B[ϕ] := µ−n
2

{
µ̇
[
y · ∇yϕ+

n− 2

2
ϕ
]
ηR + ξ̇ · ∇yϕ ηR +

[
µ̇y · ∇yηR + ξ̇ · ∇yηR

]
ϕ

}
and we have used Up−1

µ,ξ φ = µ−2U(y)p−1φ. Thus, we will have a solution if the
pair (ϕ(y, t), ψ(x, t)) solves the following inner–outer gluing system

(9) µ2ϕt = ∆yϕ+ pU(y)p−1ϕ+H(ψ, µ, ξ) in B2R(0)× (0, T )

(10)


ψt = ∆xψ +G(ϕ, ψ, µ, ξ) in Ω× (0, T )

ψ =− Uµ,ξ on ∂Ω× (0, T ),

ψ(·, 0) = 0 in Ω

where

(11)

H(ψ, µ, ξ)(y, t) := µ
n−2
2 pU(y)p−1(Z∗(ξ + µy, t) + ψ(ξ + µy, t)) + E(y, t),

G(ϕ, ψ, µ, ξ)(x, t) := pµ−2(1− ηR)U(y)p−1(Z∗ + ψ) +A[ϕ] +B[ϕ]

+ µ−n+2
2 E(1− ηR) +N(Z∗ + φ), y =

x− ξ

µ
.
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• Formal derivation of µ and ξ.

Next we do a formal consideration that allows us to identify the parameters
µ(t) and ξ(t) at main order. Leaving aside smaller order terms, the inner problem
(9) is approximately an equation of the form

(12)
µ2ϕt = ∆yϕ+ pU(y)p−1ϕ+ h(y, t) in Rn × (0, T )

ϕ(y, t) → 0 as |y| → ∞

with

(13)
h(y, t) = µµ̇ (U(y) + y · ∇U(y)) + pµ

n−2
2 U(y)p−1Z∗

0 (q)

+ µξ̇ · ∇U(y) + pµ
n
2 U(y)p−1∇Z∗

0 (q) · y.

The condition of spatial decay in y for the inner problem solution ϕ mitigates
the effect of ϕ in the outer problem (10), making at main order (9) and (10)
decoupled.

Roughly speaking, for n ≥ 5, the elliptic equation

L[ϕ] := ∆yϕ+ pU(y)p−1ϕ = g(y) in Rn

ϕ(y) → 0 as |y| → ∞,

with g(y) = O((1 + |y|)−2−a) and 0 < a < 1, is solved by ϕ = O((1 + |y|)−a)
provided that ∫

Rn

g(y)Zi(y) dy = 0 for all i = 1, . . . , n+ 1,

where

Zi(y) = ∂iU(y), i = 1, . . . , n, Zn+1(y) =
n− 2

2
U(y) + y · ∇U(y).

These are in fact all bounded solutions of the linearized equation L[Z] = 0.
It seems reasonable to get an approximation to a solution of equation (12)

(valid up to large |y|) by solving the elliptic equation

∆yϕ+ pU(y)p−1ϕ+ h(y, t) = 0 in Rn × (0, T )

ϕ(y, t) → 0 as |y| → ∞,

which we can indeed do under the orthogonality conditions

(14)

∫
Rn

h(y, t)Zi(y) dy = 0 for all i = 1, . . . , n+ 1, t ∈ [0, T ).
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These orthogonalities imply the dynamics of the parameters. Indeed, integrating
against Zn+1(y) we get∫

Rn

h(y, t)Zn+1(y) dy = µµ̇(t)

∫
Rn

Z2
n+1dy −

n− 2

2
µ(t)

n−2
2 Z∗

0 (q)

∫
Rn

Updy.

Clearly, one sees from above that integrability issues arise for lower dimensional
cases, yielding nonlocal/global features, which we shall discuss in next Section
for the case n = 4. This quantity is zero if and only if for a certain explicit
constant βn > 0

µ̇(t) = −βn|Z∗
0 (q)|µ(t)

n−4
2 , µ(T ) = 0,

and thus for n = 5

(15) µ∗(t) = α(T − t)2, α =
1

4
β2
n|Z∗

0 (q)|2.

In a similar way, the remaining n relations in (14) lead us to ξ̇(t) = µ(t)
n−2
2 b for

a certain vector b. Hence ξ̇(t) = O(T − t)3 and

ξ(t) = q +O(T − t)2.

To solve the actual inner problem (12), even assuming orthogonalities (14) is
not sufficient, and further constraints are needed. Indeed, let us recall that the
operator L has a positive radially symmetric bounded eigenfunction Z0 associ-
ated to the only positive eigenvalue λ0 to the problem

L[ϕ] = λ0ϕ, ϕ ∈ L∞(Rn).

It is known that λ0 is a simple eigenvalue and

Z0(y) ∼ |y|−
n−1
2 e−

√
λ0 |y| as |y| → ∞.

Let us write

p(t) =

∫
Rn

ϕ(y, t)Z0(y) dy, q(t) =

∫
Rn

h(y, t)Z0(y) dy.

One expects instability produced by Z0 along the flow without restriction on the
initial data. Then we compute

µ(t)2ṗ(t)− λ0p(t) = q(t).

Since µ(t) ∼ (T−t)−2, then p(t) will have exponential growth in time p(t) ∼ e
c

T−t

unless

p(t) = e
∫ t
0

dτ
µ2(τ)

∫ T

t

e
−

∫ s
0

dτ
µ2(τ) µ(s)−2 q(s) ds
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This relation imposes a linear constraint on the initial data ϕ(y, 0) to the desired
solution ϕ(y, t) to (9)

(16)

∫
Rn

ϕ(y, 0)Z0(y) dy =

∫ T

0

e
−

∫ s
0

dτ
µ2(τ) µ(s)−2

∫
Rn

h(y, s)Z0(y) dy ds.

For this reason, we impose an initial data for the inner problem along Z0-direction
to get rid of such instability.

• The linear theories.

The outer problem (10) in linear version is actually simpler than its counter-
part (19), corresponding just to the standard heat equation with nearly singular
right hand sides and zero initial and boundary conditions. Thus we consider the
problem

(17)


ψt = ∆xψ + g(x, t) in Ω× (0, T )

ψ = 0 on ∂Ω× (0, T ),

ψ(·, 0) = 0 in Ω.

The class of right hand sides g that we want to take are naturally controlled by
the following norms. Let 0 < a < 1, q ∈ Ω and µ0(t) = (T − t)2. We define
the norms ∥g∥o∗ and ∥ψ∥o to be respectively the least numbers K1 and K2 such
that for all (x, t) ∈ Ω× [0, T ),

|g(x, t)| ≤ K1

[
1

µ0(t)2
1

1 + |y|2+a
+ 1

]
|ψ(x, t)| ≤ K2

[
1

1 + |y|a
+ T

3
2a

] , y =
x− q

µ0(t)
.

Then the following estimate holds.

Lemma 3.1. ([16, Lemma 4.2]) There exists a constant C such that for all
sufficiently small T > 0 and any g with ∥g∥o < +∞, the unique solution ψ =
Tout[g] of problem ( 17) satisfies the estimate

(18) ∥ψ∥o∗ ≤ C∥g∥o.

The proof can be carried out either by barriers or Duhamel’s representation.
The inner problem (19) in linear version is actually harder and more delicate

than its counterpart (10). In order to deal with the inner problem (9), we need to
solve a linear problem like (12) restricted to a large ball B2R where orthogonality
conditions like (14) are assumed and the initial condition of the solution depends
on a scalar parameter which is part of the unknown, connected with constraint
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(16). We construct a solution (ϕ, ℓ) which defines a linear operator of functions
h(y, t) defined on

D2R = B2R × (0, T )

to the initial value problem

(19)
µ2ϕt = ∆yϕ+ pU(y)p−1ϕ+ h(y, t) in D2R

ϕ(y, 0) = ℓZ0(y) in B2R,

for some constant ℓ, under the orthogonality conditions

(20)

∫
B2R

h(y, t)Zi(y) dy = 0 for all i = 1, . . . , Zn+1, t ∈ [0, T ).

We impose on the parameter function µ the following constraints, which are
motivated on the discussion earlier: let us write

µ0(t) = (T − t)2.

For some positive constants α and β (to be fixed later), we impose

αµ0(t) ≤ µ(t) ≤ βµ0(t) for all t ∈ [0, T ].

Let us fix numbers 0 < a < 1 and ν > 0. We will consider functions h satisfying

|h(y, t)| ≲ µ0(t)
ν

1 + |y|2+a
in D2R.

The formal analysis of the previous section would make us hope to find a solution
to (19) such that

|ϕ(y, t)| ≲ µ0(t)
ν

1 + |y|a
in D2R.

We will find a solution so that a somewhat worse bound for ϕ(y, t) in space
variable is found but coinciding with the expected behavior in the gluing regime
|y| ∼ R. Let us define the following norms. We let ∥h∥2+a,ν be the least number
K such that

(21) |h(y, t)| ≤ K
µ0(t)

ν

1 + |y|2+a
in D2R

and let ∥ϕ∥∗a,ν be the least number K with

(22) |ϕ(y, t)| ≤ Kµ0(t)
ν Rn+1−a

1 + |y|n+1
in D2R.

We observe that ∥ϕ∥∗a,ν ≤ ∥ϕ∥a,ν .
The following is the key linear result associated to the inner problem.
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Lemma 3.2. ([7, Proposition 7.1],[16, Lemma 4.1]) There is a C > 0 such that
for all sufficiently large R > 0 and any h with ∥h∥2+a,ν < +∞ that satisfies
relations (20) there exist linear operators

ϕ = Tinµ [h], ℓ = ℓ[h]

which solve Problem (19) and define linear operators of h with

|ℓ[h]|+ ∥(1 + |y|)∇yϕ∥∗a,ν + ∥ϕ∥∗a,ν ≤ C ∥h∥ν,2+a.

The proof is by using the self-similar variables (y, τ) with

τ = τ0 +

∫ t

0

µ(s)−2ds.

Expressing ϕ = ϕ(y, τ), problem (19) becomes

ϕτ = ∆yϕ+ pU(y)p−1ϕ+ h(y, τ) in B2R × (τ0,∞),

ϕ(y, 0) = ℓZ0(y) in B2R.

Then finding solution with sufficient decay in space-time consisting of three steps:

Step 1: solving an elliptic equation by orthogonality;
Step 2: solving a parabolic equation with slower decay by a spectrum gap esti-

mate (see Lemma 4.1) and energy estimates, then improving the pointwise
estimate;

Step 3: acting the linearized operator on both sides of the parabolic equation in
Step 2 yields a desired solution.

In fact, for the higher dimensional case n ≥ 5, blow-up argument can be em-
ployed to show a more refined version of the linear theory for the inner problem.
The result obtained via blow-up argument turns out to be exactly what we have
discussed formally before, and there is no loss of R’s in the innermost region.
We give a detailed proof in Appendix 5. Since we do not use maximum principle
in the blow-up argument, this argument is rather general and flexible and can
be applied to a larger class of equations. One good application of this blow-up
argument is the construction of infinite time blow-ups for the fractional Fujita
equation

ut + (−∆)su = |u|
4s

n−2su

in which the localization argument in the above does not work, since the operator
(−∆)s has to be defined globally. Another applictaion is the infinite-time blow-
up for sign-changing blow-ups for the Fujita equation. See [21,45].

• Proof of Theorem 1: fixed point argument.

With the above preliminaries we are now ready to carry out the proof of The-
orem 1 for the case k = 1. We want to find a tuple p⃗ = (ϕ, ψ, µ, ξ) solving the
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inner–outer gluing system (9)-(10) so that a desired blow-up solution u is con-
structed. This is achieved by formulating the problem as a fixed point problem
for p⃗ in a small region of a suitable Banach space.

We first set up inner problem. For a function h(y, t) defined in D2R, we write

cj [h](t) =

∫
B2R

h(y, t)Zj(y) dy∫
B2R

|Zj(y)|2dy

so that the function

h̄(y, t) = h(y, t)−
n+1∑
j=1

cj [h](t)Zj(y)

satisfies ∫
B2R

h̄(y, t)Zj(y) dy = 0 for all j = 1, . . . , n+ 1, t ∈ [0, T )

which makes the result of Lemma 3.2 applicable to the equation

(23)

{
µ2ϕt = ∆yϕ+ pU(y)p−1ϕ+ H̄(ψ, µ, ξ) in D2R

ϕ(·, 0) = ℓ Z0 in B2R

where

H̄(ψ, µ, ξ) = H(ψ, µ, ξ)−
n+1∑
j=1

cj [H(ψ, µ, ξ)]Zj

and H(ψ, µ, ξ) is defined in (11). Using Lemma 3.2, we find a solution to (23) if
the following equation is satisfied

(24) ϕ = Tinµ [ H̄(ψ, µ, ξ) ] =: F1(ϕ, ψ, µ, ξ).

Then the inner equation (9) is satisfied if in addition we have

(25) cj [H(ψ, µ, ξ)] = 0 for all j = 1, . . . , n+ 1.

In addition, the outer equation (10) is satisfied provided

(26) ψ = Tout[G(ϕ, ψ, µ, ξ) ] =: F2(ϕ, ψ, µ, ξ).

where the operator G(ϕ, ψ, µ, ξ) is defined in (11). We will solve system (23)-
(25)-(26) using a degree-theoretical argument.

For λ ∈ [0, 1], we define the homotopy

Hλ(ψ, µ, ξ)(y, t) = µ
n−2
2 pU(y)p−1Z∗

0 (q) + µµ̇Zn+1(y) + µ

n∑
j=1

ξ̇jZj(y)

+ λµ
n−2
2 pU(y)p−1(Z∗(ξ + µy, t)− Z∗

0 (q) + ψ(ξ + µy, t) ),
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and consider the system of equations

(27)


ϕ = Tinµ [Hλ(ψ, µ, ξ)−

n+1∑
j=1

cj [Hλ(ψ, µ, ξ)]Zj ]

cj [Hλ(ψ, µ, ξ)] = 0 for all j = 1, . . . , n+ 1,

ψ = Tout[λG(ϕ, ψ, µ, ξ) ].

We observe that for λ = 1 this problem precisely corresponds to the system
(23)-(25)-(26) that we want to solve.

It is convenient to write

µ(t) = µ∗(t) + µ(1)(t), ξ(t) = q + ξ(1)(t), t ∈ [0, T ]

where µ∗(t) is defined in (15), and µ(1)(T ) = 0, ξ(1)(t) = 0.
We assume that we have a solution (ϕ, ψ, µ(1), ξ(1)) to system (27) with

(28)

{
|µ̇(1)(t)|+ |ξ̇(1)(t)| ≤ δ0

∥ϕ∥∗a,ν + ∥ψ∥∞ ≤ δ1

where δ0, δ1 are small positive constants to be adjusted later. We will also assume
that Z∗ is sufficiently small but fixed independently of T , i.e., ∥Z∗∥∞ ≪ 1.

The function µ∗(t) solves the equation

(29) µ̇∗(t)

∫
RN

Z2
n+1dy + µ∗(t)

n−4
2 Z∗

0 (q)

∫
Rn

pUp−1Zn+1dy = 0.

The equation

(30) cn+1(Hλ(ψ, µ∗ + µ1, ξ))(t) = 0, t ∈ [0, T )

which corresponds to

0 = µ̇(t)
( ∫

B2R

Z2
n+1dy

)
+ µ(t)

n−4
2 Z∗

0 (q)

∫
B2R

pUp−1Zn+1dy

+ λµ(t)
n−4
2

∫
Rn

pU(y)p−1(Z∗(ξ(t) + µ(t)y, t)− Z∗
0 (q) + ψ(ξ(t) + µ(t)y, t) )Zn+1(y) dy

can be written as

µ̇(t) + βµ(t)
n−4
2 = µ(t)

n−4
2 (δR + λθ(ψ, ξ, µ1))

for a suitable number β > 0, δR = O(R−2) and the operator θ satisfies

|θ(ψ, ξ, µ1)| ≤ C (T + ∥ψ∥∞)



On the Parabolic Gluing Method and Singularity Formation 83

for some constant C. From (29), the equation for µ1 can then be written, in the
“linearized” form, as

µ̇1 +
γ

T − t
µ1 = (T − t)g0(ψ, µ, ξ)

for a suitable γ > 0, where

|g0(ψ, ξ, µ(1), λ)(t)| ≤ C (∥ψ∥∞ + T +R−2).

The linear problem

µ̇+
γ

T − t
µ = (T − t)g(t), µ1(T ) = 0

can be uniquely solved by the following operator in g

µ(t) = T0[g](t) := −(T − t)−γ
∫ T

t

(T − s)γ+1g0(s) ds.

It defines a linear operator on g with estimates

∥(T − t)−1µ̇∥∞ + ∥(T − t)−2µ∥∞ ≤ C∥g0∥∞.

Equation (30) then becomes

µ(1)(t) = T(0)[ g0(ψ, ξ, µ
(1), λ) ](t) for all t ∈ [0, T )

and we get

(31) ∥(T − t)−1µ̇(1)∥∞ + ∥(T − t)−2µ(1)∥∞ ≤ C (∥ψ∥∞ + T +R−2).

Similarly, equations

cj [Hλ(ψ, µ, ξ)] = 0 for all j = 1, . . . , n,

can be written in vector form as

(32) ξ(1)(t) = T(1)[g1(ψ, µ1, ξ1)](t) for all t ∈ [0, T ),

where

T(1)[g] :=

∫ T

t

(T − s)g(s) ds

and
|g1(ψ, ξ, µ(1), λ)(t)| ≤ C (∥ψ∥∞ + T ).
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From equation (32), we thus find

(33) ∥(T − t)−1ξ̇(1)∥∞ + ∥(T − t)−2ξ(1)∥∞ ≤ C (∥ψ∥∞ + T ).

On the other hand, we have

|H(ψ, µ, ξ)(y, t)| ≤ C
µ(t)

n−2
2

1 + |y|4
(∥ψ∥∞ + ∥Z∗∥∞) +

µµ̇

1 + |y|n−2
+

µ|ξ̇|
1 + |y|n−1

and thus

|H(ψ, µ, ξ)(y, t)| ≤ C
µ0(t)

n−2
2

1 + |y|2+a
(
∥ψ∥∞ + ∥Z∗∥∞

)
for 0 < a < 1. From the first equation in (27) and Lemma 3.2, we obtain

(34) ∥ϕ∥∗a,ν ≤ C
(
∥ψ∥∞ + ∥Z∗∥∞

)
, ν =

n− 2

2
.

with the ∥ · ∥∗a,ν-norm defined in (22). Next we consider the last equation in
(27). We recall that

G(ϕ, ψ, µ, ξ)(x, t) = pµ−2(1− ηR)U(y)p−1(Z∗ + ψ) +A[ϕ] +B[ϕ]

+ µ−n+2
2 E(1− ηR) +N(Z∗ + µ−n−2

2 ηRϕ+ Z∗ + ψ),

E(y, t) = µµ̇[y · ∇U(y) +
n− 2

2
U(y)] + µξ̇ · ∇U(y),

A[ϕ] = µ−n+2
2 {∆yηRϕ+ 2∇yηR∇yϕ} ,

B[ϕ] = µ−n
2

{
µ̇
[
y · ∇yϕ+

n− 2

2
ϕ
]
ηR + ξ̇ · ∇yϕ ηR +

[
µ̇y · ∇yηR + ξ̇ · ∇yηR

]
ϕ

}
.

Let us consider for example the error terms

g1(x, t) = µ−2(1− ηR)U
p−1(Z∗ + ψ), g2(x, t) = µ−n+2

2 E(1− ηR).

We see that

|g1(x, t)| ≤ 1

R2−σ µ
−2 C

1 + |y|2+σ
(∥Z∗∥∞ + ∥ψ∥∞)

and

|g2(x, t)| ≤ 1

µ2

[ 1

|y|n−2
µ−n−2

2 (|µµ̇|+ |µξ̇|) ≤ 1

R3−σ µ
−2 C

1 + |y|2+σ
.
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Let us now estimate the term A[ϕ]. Let us choose σ = a
2 , where a is the number

in the definition of ∥ϕ∥∗a,ν . We have∣∣A[ϕ](x, t)∣∣ ≤ µ−2 1

R2

1

1 +R−2−σ|y|2+σ
µ−n−2

2 sup
R<|y|<2R

(|ϕ|+ |y||∇ϕ|)

≤ µ−2 R− a
2

1 + |y|2+σ
∥ϕ∥∗a,n−2

2

and similarly,

∣∣B[ϕ](x, t)
∣∣ ≤ Cµ−2[µµ̇+ µ|ξ̇|] R

n+1−a

1 + |y|n+1
∥ϕ∥∗a,n−2

2
≤ Cµ−2µ

3
2Rn+1−a

1 + |y|2+σ
∥ϕ∥∗a,n−2

2
.

Now for some σ > 0 we have∣∣N(Z∗ + µ−n−2
2 ηRϕ+ Z∗ + ψ)

∣∣ ≤ Cµ−2 µσ

1 + |y|2+σ
(∥ϕ∥∗a,n−2

2
Rn+1−a

+ ∥Z∗∥∞ + ∥ψ∥∞)2 + C(∥Z∗∥∞ + ∥ψ∥∞)p.

According to the above estimates, it follows by Lemma 3.1 that

(35) ∥ψ∥∞ ≤ CTσ
′
∥Z∗∥∞ +R−σ′

∥ϕ∥∗a,n−2
2
.

Combining (34) and (35) and then using (31)-(33), we finally get

(36)



∥ψ∥∞ ≤ CTσ
′
∥Z∗∥∞

∥ϕ∥∗a,n−2
2

≤ C∥Z∗∥∞

∥(T − t)−1ξ̇(1)∥∞ + ∥(T − t)−2ξ(1)∥∞ ≤ C (Tσ
′
(∥Z∗∥∞ + 1) +R−2)

∥(T − t)−1µ̇(1)∥∞ + ∥(T − t)−2µ(1)∥∞ ≤ C T σ
′
(∥Z∗∥∞ + 1).

We write System (27) in the form

(37)



ϕ = Tinµ [ H̄λ(T
out[λG(ϕ, ψ, µ, ξ), µ, ξ)]

ψ = Tout[λG(ϕ, ψ, µ, ξ) ]

µ(1) = T(0)[ g̃0(ψ, ξ
(1), µ(1), λ) ]

ξ(1) = T(1)[g̃1(ψ, µ
(1), ξ(1), λ)].

Here, we can write

g̃0(ψ, ξ
(1), µ(1), λ) =c1R

∫
B2R

Hλ(T
out[λG(ϕ, ψ, µ, ξ)], µ, ξ)Zn+1(y)dy

g̃1(ψ, ξ
(1), µ(1), λ) =c2R

∫
B2R

Hλ(T
out[λG(ϕ, ψ, µ, ξ)], µ, ξ)∇U(y)dy
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for suitable positive constants cℓR, ℓ = 0, 1. We fix an arbitrarily small ε > 0 and
consider the problem defined only up to time t = T − ε.

(38)



ϕ = Tinµ [ H̄λ(T
out[λG(ϕ, ψ, µ, ξ), µ, ξ)], (y, t) ∈ B̄2R × [0, T − ε]

ψ = Tout[λG(ϕ, ψ, µ, ξ) ], (x, t) ∈ Ω̄× [0, T − ε]

µ(1) = T(0)
ε [ g̃0(ψ, ξ

(1), µ(1), λ) ], t ∈ [0, T − ε]

ξ(1) = T(1)
ε [g̃1(ψ, µ

(1), ξ(1), λ)], t ∈ [0, T − ε]

where

T0
ε [g](t) := −(T−t)−γ

∫ T−ε

t

(T−s)γ+1g0(s) ds, T(1)
ε [g] :=

∫ T−ε

t

(T−s)g(s) ds.

The key is that the operators in the right hand side of (38) are compact when
we regard them as defined in the space of functions

(ϕ, ψ, µ(1), ξ(1)) ∈ X1 ×X2 ×X3 ×X4

with their respective norms defined as

X1 ={ϕ / ϕ ∈ C(B2R × [0, T − ε]), ∇yϕ ∈ C(B2R × [0, T − ε])}, ∥ϕ∥X1
= ∥ϕ∥∞ + ∥∇yϕ∥∞

X2 ={ψ / ϕ ∈ C(Ω̄× [0, T − ve])}, ∥ψ∥X2
= ∥ψ∥∞

X3 ={µ(1) / µ(1) ∈ C1[0, T − ε]}, ∥µ(1)∥X3
= ∥µ(1)∥∞ + ∥µ̇(1)∥∞

X4 ={ξ(1) / ξ(1) ∈ C1[0, T − ε]}, ∥ξ(1)∥X4 = ∥ξ(1)∥∞ + ∥ξ̇(1)∥∞.

Compactness on bounded sets of all the operators involved in the above expres-
sion is a direct consequence of the Hölder estimate for the operator Tout and
Arzela-Ascoli’s theorem. On the other hand, the a priori estimate we obtained
for ε = 0 holds equally well, uniformly on arbitrary small ε > 0.

Leray Schauder degree applies in a suitable ball B that contains the origin
in this space: essentially one slightly bigger than that defined by relations (36),
which amounts to a choice of the parameters δ0 and δ1 in (28). In fact, the
homotopy connects with the identity at λ = 0, and hence the total degree in the
region defined by relations (36) is equal to 1. The existence of a solution to the
approximate problem satisfying bounds (36) then follows. Finally, a standard
diagonal argument yields a solution to the original problem with the desired
asymptotics. The proof of Theorem 1 for the case k = 1 is concluded.

The general case of k distinct points q1, . . . , qk is actually identical: in that
case we have k inner problems and one outer problem with analogous properties.
We look for a solution of the form
(39)

u(x, t) =

k∑
j=1

Uµj ,ξj (x)+Z∗(x, t)+µ
−n−2

2
j ϕ(yj , t)ηR(yj)+ψ(x, t), yj =

x− ξj
µj

,
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where Z∗ solves heat equation with initial condition Z∗
0 which is chosen so

that (4) holds at all concentration points, namely Z∗
0 (qj) < 0, and ξj(T ) =

qj , µj(T ) = 0.
A string of fixed point problems (with essentially decoupled equations associ-

ated at each point) then appears and can be solved in the same way. We omit
the details. □

4. Non-L2 Case: Critical Fujita Equation in R4 In this section, we in-
troduce the second parabolic gluing method when the kernels are not necessarily
in L2.

As a prototype, we consider the finite time blow-up for case n = 4 and p = 3.
In what follows we let Ω be a smooth bounded domain in R4 or Ω = R4 and

consider the equation

(40)


ut = ∆u+ u3 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

Let us fix arbitrary points q1, q2, . . . qk ∈ Ω. We consider a smooth function
Z∗
0 ∈ L∞(Ω) with the property that

Z∗
0 (qj) < 0 for all j = 1, . . . , k.

Theorem 2 ([22]). For each T > 0 sufficiently small, there exists an initial
condition u0 such that the solution to problem (40) blows up at time T exactly
at the k points q1, . . . , qk. The solution is of the sharply scaled form

u(x, t) =

k∑
j=1

Uλj(t),ξj(t)(x) + Z∗
0 (x) + θ(x, t)

where
λj(t) → 0, ξj(t) → qj as t→ T,

and ∥θ∥L∞ ≤ T a for some a > 0. More precisely,

λj(t) ∼
T − t

| log(T − t)|2
as t→ T.

We observe that the solution constructed in Theorem 2 is type II. The result
in Theorem 2 is the exact analog of Theorem 1 in dimension 5. We follow
the same general approach of the parabolic gluing method. However, substantial
differences and difficulties arise, due to the fact that the equation that determines
λ(t) involves a delicate nonlocal integro-differential operator. In dimension 5, the
dynamics of λ(t) is found in a much more direct way by just solving an ODE.
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This nonlocal effect is related to the slower decay of the linear generator of
dilations of the Aubin-Talenti bubbles in lower dimensions, i.e., Z5 ̸∈ L2(R4)
(see (43)). A very similar difficulty was already encountered in the work [12] on
blow-up in the harmonic map flow, where such nonlocal operator appeared in
the reduced complex system at mode 0. The similarity between these problems
in the presence of symmetries had already been noticed in [50,51].

• Approximation and correction.

We first choose a proper approximate solution to (40) and compute its error.
We consider the case k = 1 for simplicity and mention the minor changes for the
general multi-bubble case when needed. We define the error operator

S(u) := −ut +∆u+ u3.

Recall that the Aubin-Talenti bubble

(41) U(y) =
α0

1 + |y|2

solves the Yamabe problem

∆yU + U3 = 0 in R4,

where α0 = 2
√
2. It is well-known that the linearized operator around the bubble

(42) L0(ϕ) := ∆ϕ+ 3U2ϕ

is non-degenerate in the sense that all bounded solutions to L0(ϕ) = 0 are the
linear combination of

(43) Zi(y) := ∂yiU(y), i = 1, 2, 3, 4, Z5(y) := U(y) +∇U(y) · y.

Our first approximation is chosen as

Uλ(t),ξ(t) = λ−1(t)U

(
x− ξ(t)

λ(t)

)
,

where λ(t) and ξ(t) are scaling and translation parameter functions to be ad-
justed later. Direct computations yield

(44)

S(Uλ(t),ξ(t)) = −∂tUλ(t),ξ(t) = λ−2(t)λ̇(t)

(
− α0

1 + |y|2
+

2α0

(1 + |y|2)2

)
+ λ−2(t)∇yU(y) · ξ̇(t),

where y = x−ξ(t)
λ(t) . Observe that the slow decaying error in (44) is

E0 = − α0λ̇(t)

λ2(t) + ρ2
≈ −α0λ̇(t)

ρ2
̸∈ L2(R4),
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where ρ := |x− ξ(t)|. In order to improve the approximation, we consider

(45) ∂tu1 = ∆u1 + E0 in R4 × (0, T ).

By similar computations as in [12]1, a solution to (45) is given explicitly by

u1 = −α0

∫ t

−T
λ̇(s)k(ρ, t− s)ds,

where

(46) k(ρ, t) :=
1− e−

ρ2

4t

ρ2
.

We regularize the above u1 and choose a correction Ψ0 to be

(47) Ψ0(x, t) = −α0

∫ t

−T
λ̇(s)k(ζ(ρ, t), t− s)ds,

where

ζ(ρ, t) =
√
ρ2 + λ2(t).

Then the new error produced by Ψ0 is given by

(48)

∂tΨ0 −∆Ψ0 − E0

= α0

[
y · ξ̇ − λ̇(t)

(1 + |y|2)1/2

]∫ t

−T
λ̇(s)kζ(ζ, t− s)ds

+
α0

λ(t)(1 + |y|2)3/2

∫ t

−T
λ̇(s) [−ζkζζ(ζ, t− s) + kζ(ζ, t− s)] ds

:= R[λ].

It is thus reasonable to choose the corrected approximation as

u∗ = Uλ(t),ξ(t) +Ψ0

and its error is

S(u∗) = S(Uλ(t),ξ(t))− E0 + (Uλ(t),ξ(t) +Ψ0)
3 − U3

λ(t),ξ(t)

= K[λ, ξ] + (Uλ(t),ξ(t) +Ψ0)
3 − U3

λ(t),ξ(t),

1See Section 17 in the full version available at https://personal.math.ubc.ca/∼jcwei/
hmf-2018-08-16.pdf

https://personal.math.ubc.ca/~jcwei/hmf-2018-08-16.pdf
https://personal.math.ubc.ca/~jcwei/hmf-2018-08-16.pdf
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where K[λ, ξ] is defined as

(49) K[λ, ξ] :=
2α0λ

−2(t)λ̇(t)

(1 + |y|2)2
+ λ−2(t)∇U(y) · ξ̇(t)− R[λ]

with R[λ] given in (48).

• Formulating the inner–outer gluing system.

We look for a solution of the following form

u = u∗ + w,

where w is a small perturbation consisting of inner and outer parts

w = φin + φout, φin = λ−1(t)ηRϕ(y, t), φout = ψ(x, t) + Z∗(x, t).

Here the cut-off function is defined by

ηR = ηR(t)(x, t) = η

(
|x− ξ(t)|
λ(t)R(t)

)
where the smooth cut-off function η(s) = 1 for s < 1 and η(s) = 0 for s > 2, and
Z∗ satisfies 

Z∗
t = ∆xZ

∗ in Ω× (0, T ),

Z∗(·, t) = 0 on ∂Ω× (0, T ),

Z∗(·, 0) = Z∗
0 in Ω.

Denote
B2R = {x ∈ Ω : |x− ξ(t)| ≤ 2λR} , D2R = B2R × (0, T ),

and Ψ∗ = ψ + Z∗. Then u is a solution to the original problem (40) if

• ϕ solves the inner problem

(50) λ2ϕt = ∆yϕ+ 3U2(y)ϕ+H(ϕ, ψ, λ, ξ) in D2R

where

(51)

H(ϕ, ψ, λ, ξ)(y, t) := 3λU2(y)[Ψ0 + ψ + Z∗](λy + ξ, t)

+ λ
[
λ̇(∇yϕ · y + ϕ) +∇yϕ · ξ̇

]
+ λ3N(w) + λ3K[λ, ξ]

with K[λ, ξ] defined in (49), and

(52) N(w) := (Uλ,ξ +Ψ0 + w)3 − U3
λ,ξ − 3U2

λ,ξ(Ψ0 + w).
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• ψ solves the outer problem

(53) ψt = ∆ψ + G(ϕ, ψ, λ, ξ) in Ω× (0, T )

with

(54)

G(ϕ, ψ, λ, ξ) := 3λ−2(1− ηR)U
2(y)(Ψ0 + ψ + Z∗)

+ λ−3
[
(∆yηR)ϕ+ 2∇yηR · ∇yϕ− λ2ϕ∂tηR

]
+ (1− ηR)K[λ, ξ] + (1− ηR)N(w).

• The choices of parameters.

We choose the leading orders λ∗(t), ξ∗(t) of the parameter functions λ(t)
and ξ(t). As mentioned earlier, a good inner solution can be found provided
approximately the following orthogonality conditions

(55)

∫
R4

H(ϕ, ψ, λ, ξ)Zj(y)dy = 0 for all j = 1, · · · , 5, t ∈ (0, T )

are satisfied. Here Zj are the kernel functions (c.f. (43)) of the linearized operator
L0 defined in (42). Basically, the scaling and translation parameters λ(t) and
ξ(t) at main order will be derived from the orthogonality conditions (55).

Singling out the leading term H∗ of H and computing∫
R4

H∗[λ, ξ,Ψ
∗]Zℓ(y)dy = 0 for ℓ = 1, · · · , 4

with

H∗[λ, ξ,Ψ
∗] := 3λU2(y)[Ψ0 +Ψ∗](λy + ξ, t) + λ3K[λ, ξ]

= 3λU2(y)[Ψ0 +Ψ∗](λy + ξ, t) +
2α0λ(t)λ̇(t)

(1 + |y|2)2
+ λ(t)∇U(y) · ξ̇(t)

− α0λ
2(t)

(1 + |y|2)3/2

∫ t

−T
λ̇(s) [−ζkζζ(ζ, t− s) + kζ(ζ, t− s)] ds

− α0λ
3(t)

[
y · ξ̇ − λ̇(t)

(1 + |y|2)1/2

]∫ t

−T
λ̇(s)kζ(ζ, t− s)ds

imply that
ξ̇ℓ = o(1),

where Ψ∗ = ψ + Z∗ and o(1) → 0 as t ↗ T. So the choice of ξ(t) at main order
is

ξ(t) = q,
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where q is a prescribed point in Ω.
The dynamics for λ(t) from∫

R4

H∗[λ, ξ,Ψ
∗]Z5(y)dy = 0

turns out to be more involved due to the non-local/global correction, and the
reduced problem involves the following integro-differential operator

(56) c∗

∫ t−λ2(t)

−T

λ̇(s)

t− s
ds = −3c0[Z

∗
0 (q) + ψ(q, 0)] + o(1),

where

c0 :=

∫
R4

U2(y)Z5(y)dy < 0.

Here careful calculations are needed for nonlocal terms, and detailed derivation
can be found in [22, Section 4]. Since λ(t) decreases to 0 as t↗ T, we impose

a∗ := Z∗
0 (q) + ψ(q, 0) < 0.

Now we claim that a good choice of λ(t) at main order is

(57) λ̇(t) = − c

| log(T − t)|2
,

where c > 0 is a constant to be determined later. Indeed, we get by substituting∫ t−λ2(t)

−T

λ̇(s)

t− s
ds =

∫ t−(T−t)

−T

λ̇(s)

t− s
ds+

∫ t−λ2(t)

t−(T−t)

λ̇(t)

t− s
ds−

∫ t−λ2(t)

t−(T−t)

λ̇(t)− λ̇(s)

t− s
ds

=

∫ t−(T−t)

−T

λ̇(s)

t− s
ds+ λ̇(t)(log(T − t)− 2 log λ(t))

−
∫ t−λ2(t)

t−(T−t)

λ̇(t)− λ̇(s)

t− s
ds

≈
∫ t

−T

λ̇(s)

T − s
ds− λ̇(t) log(T − t) := β(t).

By (57), we then get

log(T − t)
dβ

dt
(t) =

d

dt

(
− log2(T − t)λ̇(t)

)
= 0,

which means β(t) is a constant. Thus, equation (56) can be approximately solved
for

λ̇(t) = − c

| log(T − t)|2
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with the constant c chosen as

−c
∫ T

−T

ds

(T − s)| log(T − s)|2
= κ∗,

where κ∗ := − 3c0a∗
c∗

. At main order, we obtain

λ̇(t) = κ∗λ̇∗(t)

with

λ̇∗(t) = − | log T |
| log(T − t)|2

.

By imposing λ∗(T ) = 0, we obtain

λ∗(t) =
| log T |(T − t)

| log(T − t)|2
(1 + o(1)) as t↗ T.

Choosing Z∗
0 (qj) ∼ −| log T |−1, we can make λj(t) ∼ T−t

| log(T−t)|2 .

• Linear theories.

We start from the the outer problem (53) and consider

(58)


ψt = ∆ψ + f, in Ω× (0, T ),

ψ = 0, on ∂Ω× (0, T ),

ψ(x, 0) = 0, in Ω,

where the non-homogeneous term f in (58) is assumed to be bounded with
respect to the weights appearing in the outer problem (53). Define the weights

(59)


ϱ1 := λν−3

∗ (t)R−2−α(t)χ{|x−ξ(t)|≤2λ∗R}

ϱ2 := λ
ν2
∗

|x−ξ(t)|2χ{|x−ξ(t)|≥λ∗R}

ϱ3 := 1

where we choose R(t) = λ−β∗ (t) for β ∈ (0, 1/2). We define the norms

(60) ∥f∥∗∗ := sup
(x,t)∈Ω×(0,T )

(
3∑
i=1

ϱi(x, t)

)−1

|f(x, t)|,

(61)

∥ψ∥∗ :=
λ1−ν∗ (0)Rα(0)

| log T |
∥ψ∥L∞(Ω×(0,T )) +

λ2−ν∗ (0)R1+α(0)

| log T |
∥∇ψ∥L∞(Ω×(0,T ))

+ sup
(x,t)∈Ω×(0,T )

[
λ1−ν∗ (t)Rα(t)

| log(T − t)|
|ψ(x, t)− ψ(x, T )|

]

+ sup
(x,t)∈Ω×(0,T )

[
λ2−ν∗ (t)R1+α(t)|
| log(T − t)|

|∇ψ(x, t)−∇ψ(x, T )|
]

+ sup
Ω×IT

λ2γ+1−ν
∗ (t2)R

2γ+α(t2)

(t2 − t1)γ
|ψ(x, t2)− ψ(x, t1)|,
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where ν, α, γ ∈ (0, 1), and the last supremum is taken over

Ω× IT =

{
(x, t1, t2) : x ∈ Ω, 0 ≤ t1 ≤ t2 ≤ T, t2 − t1 ≤ 1

10
(T − t2)

}
.

For problem (58), we have the following estimates.

Proposition 4.1. ([12, Appendix A],[22, Proposition 1]) Let ψ be the solution
to problem (58) with ∥f∥∗∗ < +∞. Then it holds that

∥ψ∥∗ ≲ ∥f∥∗∗.

Proposition 4.1 is established by estimating carefully Duhamel’s formula with
different right hand sides.

To solve the inner problem (50), we consider the associated linear problem

(62) λ2ϕt = ∆yϕ+ 3U2(y)ϕ+ h(y, t) in D2R.

Recall that the linearized operator L0 = ∆+3U2 has only one positive eigenvalue
µ0 such that

L0(Z0) = µ0Z0, Z0 ∈ L∞(R4),

where the corresponding eigenfunction Z0 is radially symmetric with the asymp-
totic behavior

Z0(y) ∼ |y|−3/2e−
√
µ0|y| as |y| → +∞.

Similar to the discussion in previous section, such instability is reflected in the
need for a careful choice of the initial data to ensure a well-behaved solution.
Therefore, we consider the associated linear Cauchy problem of the inner problem
(50)

(63)

{
λ2ϕt = ∆yϕ+ 3U2(y)ϕ+ h(y, t), in D2R,

ϕ(y, 0) = e0Z0(y), in B2R(0),

where R = R(t) = λ−β∗ (t) for β ∈ (0, 1/2). On the other hand, the parabolic
operator −λ2∂t + L0 is certainly not invertible since all the time independent
elements in the 5 dimensional kernel of L0 (see (43)) also belong to the kernel
of −λ2∂t + L0. In order to construct solution to (63) with suitable space-time
decay, we expect some orthogonality conditions to hold. We shall construct a
solution (ϕ, e0) to problem (63) under the orthogonality conditions

(64)

∫
B2R

h(y, t)Zℓ(y)dy = 0 for ℓ = 1, · · · , 5, t ∈ (0, T ).

Define

(65) ∥h∥ν,2+a := sup
(y,t)∈D2R

λ−ν∗ (t)(1 + |y|2+a) [|h(y, t)|+ (1 + |y|)|∇h(y, t)|] .
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The construction of such solution is achieved by decomposing the equation into
different spherical harmonic modes. Consider an orthonormal basis {Θi}∞i=0

made up of spherical harmonics in L2(S3), i.e.

∆S3Θi + λiΘi = 0 in S3

with 0 = λ0 < λ1 = · · · = λ4 = 3 < λ5 ≤ · · · . More precisely, Θ0(y) =
a0, Θi(y) = a1yi, i = 1, · · · , 4 for two constants a0, a1 and

λi = i(2 + i) with multiplicity
(3 + i)!

6i!
for i ≥ 0.

For h ∈ L2(D2R), we decompose

h(y, t) =

∞∑
j=0

hj(r, t)Θj(y/r), r = |y|, hj(r, t) =
∫
S3
h(rθ, t)Θj(θ)dθ

and write h = h0 + h1 + h⊥ with

h0 = h0(r, t), h
1 =

4∑
j=1

hj(r, t)Θj , h
⊥ =

∞∑
j=5

hj(r, t)Θj .

Also, we decompose ϕ = ϕ0+ϕ1+ϕ⊥ in a similar form. Then looking for a solu-
tion to problem (63) is equivalent to finding the pairs (ϕ0, h0), (ϕ1, h1), (ϕ⊥, h⊥)
in each mode.

The key linear result for the inner problem is stated as follows.

Proposition 4.2. Let the constants a, ν, ν1 ∈ (0, 1), a1 ∈ (1, 2) be given. For
T > 0 sufficiently small and any h(y, t) satisfying ∥h∥ν,2+a < +∞, ∥h1∥ν1,2+a1 <
+∞, and the orthogonality conditions (64), there exists a pair (ϕ, e0) solving
(63), and (ϕ, e0) = (ϕ[h], e0[h]) defines a linear operator of h(y, t) that satisfies
the estimates

|ϕ(y, t)|+ (1 + |y|)|∇ϕ(y, t)|

≲
λν∗(t)R

δ

1 + |y|a
∥h0∥ν,2+a +

λν1∗ (t)

1 + |y|a1
∥h1∥ν1,2+a1 +

λν∗(t)

1 + |y|a
∥h⊥∥ν,2+a

and
|e0[h]| ≲ ∥h∥ν,2+a

where 0 ≤ δ < 1 is small.

In the proof of Proposition 4.2, mode 0 and higher modes can be carried out
in a similar manner as in [58, Proposition 7.1] via a careful re-gluing process.
The rougher version can be found in [7, Proposition 7.1]. Mode 1 is obtained
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by blow-up argument. The restriction a1 ∈ (1, 2) is required to guarantee the
integrability in the blow-up argument at translation mode 1.

If we define the norm
(66)
∥ϕ0∥∗,ν,a,δ := sup

(y,t)∈D2R

λ−ν∗ (t)R−δ(1 + |y|a)
[
|ϕ0(y, t)|+ (1 + |y|)|∇ϕ0(y, t)|

]
,

then Proposition 4.2 implies that

∥ϕ0∥∗,ν,a,δ ≲ ∥h0∥ν,2+a.

We shall use the norm (66) when we solve the inner–outer gluing system.
The following spectrum gap plays a crucial role in the proof of the above

Proposition, In fact, we have

Lemma 4.1. For all sufficiently large R and all radially symmetric φ ∈ H1
0 (BR)

with
∫
B2R

φZ0 = 0, there exists a positive constant γ independent of R such that

∫
B2R

(
|∇φ|2 − pUp−1φ2

)
≥ γ



1

R2

∫
B2R

φ2, for n = 3,

1

R2 logR

∫
B2R

φ2, for n = 4,

1

Rn−2

∫
B2R

φ2, for n ≥ 5.

Similar estimates for the linearization of harmonic map equation around
degree 1 bubble are derived in [57, Lemma 9.2].

• Solving the inner–outer gluing system.

Our aim now is to find a solution (ϕ, ψ, λ, ξ) to the inner–outer gluing system
such that the desired blow-up solution is constructed. We shall solve the inner–
outer gluing system in the function space X defined in (97). We first make some
assumptions about the parameter functions. Write

λ∗(t) =
| log T |(T − t)

| log(T − t)|2

and assume that for some numbers c1, c2 > 0,

c1|λ̇∗(t)| ≤ |λ̇(t)| ≤ c2|λ̇∗(t)| for all t ∈ (0, T ).

For given ∥ϕ0∥∗,ν,a,δ, ∥ϕ1∥ν1,a1 , ∥ϕ⊥∥ν,a, ∥ψ∥∗, ∥Z∗∥∞, ∥λ∥F , ∥ξ∥G bounded,
we first estimate right hand sides G(ϕ, ψ, λ, ξ) and H(ϕ, ψ, λ, ξ) in the inner and
outer problems. Here the above norms are defined in (66), (65), (61), (95) and
(96).
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The outer problem: estimates of G.

Consider the outer problem

ψt = ∆ψ + G(ϕ, ψ, λ, ξ) in Ω× (0, T )

where

G(ϕ, ψ, λ, ξ) := 3λ−2(1− ηR)U
2(y)(Ψ0 + ψ + Z∗)

+ λ−3
[
(∆yηR)ϕ+ 2∇yηR · ∇yϕ− λ2ϕ∂tηR

]
+ (1− ηR)K[λ, ξ] + (1− ηR)N(w)

with K[λ, ξ] and N(w) defined in (49) and (52) respectively.
In order to apply the linear theory Proposition 4.1, we estimate all the terms

in G(ϕ, ψ, λ, ξ) in the ∥ · ∥∗∗-norm, defined in (60). Direct computations imply
that for a fixed number ϵ0 > 0

(67)
∥G∥∗∗ ≲ T ϵ0

(
∥ψ∥∗ + ∥Z∗∥∞ + ∥ϕ0∥∗,ν,a,δ + ∥ϕ1∥ν1,a1 + ∥ϕ⊥∥ν,a

+ ∥λ∥∞ + ∥ξ∥G + 1
)

if the parameters are chosen in the following range

(68)

ν − 1 + β(2 + α)− ν2 > 0, 2β − ν2 > 0, 0 < α+ δ < a < 1,

β + υ − ν2 > 0, 2ν1 − ν + β(2a1 − α) > 0, ν2 < 1,

2ν − ν2 − 1 + 2αβ > 0, ν − β(α+ 2δ − 2a) > 0.

The inner problem: Estimate of H.

Consider the inner problem

λ2ϕt = ∆yϕ+ 3U2(y)ϕ+H(ϕ, ψ, λ, ξ) in D2R

where
H(ϕ, ψ, λ, ξ)(y, t) := 3λU2(y)[Ψ0 + ψ + Z∗](λy + ξ, t)

+ λ
[
λ̇(∇yϕ · y + ϕ) +∇yϕ · ξ̇

]
+ λ3N(w) + λ3K[λ, ξ]

with N(w) and K[λ, ξ] defined in (52) and (49).
From the linear theory, we know that for H = H0 +H1 +H⊥ satisfying

∥H0∥ν,2+a, ∥H1∥ν1,2+a1 , ∥H⊥∥ν,2+a < +∞,
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there exists a solution (ϕ0, ϕ1, ϕ⊥, c0, cℓ) (ℓ = 1, · · · , 4) solving the projected
inner problems

(69)

{
λ2ϕ0t = ∆yϕ

0 + 3U2(y)ϕ0 +H0(ϕ, ψ, λ, ξ) + c0Z5 in D2R,

ϕ0(·, 0) = 0 in B2R,

(70)

λ2ϕ1t = ∆yϕ
1 + 3U2(y)ϕ1 +H1(ϕ, ψ, λ, ξ) +

4∑
ℓ=1

cℓZℓ in D2R,

ϕ1(·, 0) = 0 in B2R,

(71)

{
λ2ϕ⊥t = ∆yϕ

⊥ + 3U2(y)ϕ⊥ +H⊥(ϕ, ψ, λ, ξ) in D2R,

ϕ⊥(·, 0) = 0 in B2R,

and the inner solution ϕ[H] = ϕ0[H0]+ϕ1[H1]+ϕ⊥[H⊥] with proper space-time
decay can be obtained for the inner–outer gluing to be carried out. We have the
following estimate for some fixed ϵ0 > 0

(72)

∥H∥ν,2+a ≲ T ϵ0
(
∥ϕ0∥∗,ν,a,δ + ∥ϕ1∥ν1,a1 + ∥ϕ⊥∥ν,a + ∥ψ∥∗ + ∥Z∗∥∞

+ ∥λ∥∞ + ∥ξ∥G + 1

)
provided

(73)

0 < ν < 1, 1− β(2 +
a

2
) > 0, 1 + ν1 − ν − β(2 + a− a1) > 0,

1− 2β > 0, ν − β(4− a) > 0, 2ν1 − ν > 0,

2− ν − aβ > 0, ν − β(a− 2α) > 0, 2− ν − β(1 + a) > 0,

1− β(δ + 2) > 0, ν − 2δβ > 0.

Similar computations give that for some fixed ϵ0 > 0

(74) ∥H1∥ν1,2+a1 ≲ T ϵ0
(
∥ϕ1∥ν1,a1 + ∥ψ∥∗ + ∥Z∗∥∞ + ∥λ∥∞ + ∥ξ∥G + 1

)
provided

0 < ν1 < 1, ν − ν1 + αβ > 0, 2− ν1 − a1β > 0,

2ν − ν1 + 2αβ − a1β > 0, 1− ν1 − β(a1 − 1) > 0.
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• The parameter problems.

From (69)–(71), it remains to adjust the parameter functions λ(t), ξ(t) such
that

c0[λ, ξ,Ψ∗] = 0, cℓ[λ, ξ,Ψ∗] = 0, ℓ = 1, · · · , 4, ∀ t ∈ (0, T ),

where

(75) c0[λ, ξ,Ψ∗] = −
∫
B2R

HZ5dy∫
B2R

|Z5|2dy
,

(76) cℓ[λ, ξ,Ψ∗] = −
∫
B2R

HZℓdy∫
B2R

|Zℓ|2dy
for ℓ = 1, · · · , 4.

It turns out that we can easily achieve at the translation mode (76), but the
scaling mode (75) is more delicate.

We first consider the reduced equation for ξ(t). Observe that (76) is equivalent
to ∫

B2R

H(ϕ, ψ, λ, ξ)(y, t)Zℓ(y)dy = 0, for all t ∈ (0, T ), ℓ = 1, · · · , 4.

Write Ψ∗ = ψ + Z∗ and ξ(t) = (ξ1(t), · · · , ξ4(t)). Then for ℓ = 1, · · · , 4,∫
B2R

H(ϕ, ψ, λ, ξ)(y, t)Zℓ(y)dy = 0

give that

(77) ξ̇ℓ = bℓ[λ, ξ, ϕ,Ψ
∗],

where

bℓ[λ, ξ, ϕ,Ψ
∗] =

∫
B2R

(
H[λ, ξ, ϕ,Ψ∗](y, t)− λUyℓ(y)ξ̇ℓ

)
Zℓ(y)dy.

Furthermore, the size of bℓ[λ, ξ, ϕ,Ψ
∗] can be controlled by similarly estimating

H. Next, we analyze the reduced problem (77), which defines operators Ξℓ
(ℓ = 1, · · · , 4) that return the solutions ξℓ (ℓ = 1, · · · , 4) respectively. Here we
write

(78) Ξ = (Ξ1,Ξ2,Ξ3,Ξ4)

and ξ(t) = q + ξ1(t) where q = (q1, · · · , q4) is a prescribed point in Ω. We shall
solve ξ1(t) under the norm

∥ξ∥G = ∥ξ∥L∞(0,T ) + sup
t∈(0,T )

λ−υ∗ (t)|ξ̇(t)|
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for some fixed υ ∈ (0, 1). From (77), we have

|ξℓ(t)| ≤ |qℓ|+ ∥bℓ[λ, ξ, ϕ,Ψ∗]∥L∞(0,T ) (T − t).

Therefore, we obtain

(79) ∥Ξℓ∥G ≤ |qℓ|+ (T − t)−υ ∥bℓ[λ, ξ, ϕ,Ψ∗]∥L∞(0,T ) .

Since the reduced problem of λ(t) is essentially the same as the real part of
the reduced problem at mode 0 in [12], we shall follow the strategy and logic in
[12, Section 8].

Direct computations show that (75) gives a non-local integro-differential equa-
tion

(80)

∫ t

−T

λ̇(s)

t− s
Γ

(
λ2(t)

t− s

)
ds+ c0λ̇ = a[λ, ξ,Ψ∗](t) + ar[λ, ξ, ϕ,Ψ

∗](t),

where c0 = 2α0

∫
R4

Z5(y)
(1+|y|2)2 dy,

(81) a[λ, ξ,Ψ∗] = −
∫
B2R

3U2(y) (Ψ0 +Ψ∗)Z5(y)dy,

and the remainder term ar[λ, ξ, ϕ,Ψ
∗](t) turns out to be of smaller order and is

controlled by

|ar[λ, ξ, ϕ,Ψ∗](t)|

≲ λν∗R
δ
(
|λ̇∗|| log(T − t)|+ |ξ̇|

)
∥ϕ0∥∗,ν,a,δ

+ λν∗

(
|λ̇∗|R2−a1 + |ξ̇|

)
∥ϕ1∥ν1,a1 + λν∗

(
|λ̇∗|R2−a + |ξ̇|R1−a

)
∥ϕ⊥∥ν,a

+ λ2ν−1
∗ R2δ∥ϕ0∥2∗,ν,a,δ + λ2ν1−1

∗ ∥ϕ1∥2ν1,a1
+ λ2ν−1

∗ R2−2a∥ϕ⊥∥2ν,a + λ∗|λ̇∗|2| log(T − t)|3 + λ∗| log(T − t)|∥Z∗∥2∞
+ λ∗(t)| log(T − t)|λ2ν−2

∗ (0)R−2α(0)| log T |2∥ψ∥2∗.

To solve λ(t), we introduce the following norms

• ∥ · ∥Θ,l-norm

∥f∥Θ,l := sup
t∈[0,T ]

| log(T − t)|l

(T − t)Θ
|f(t)|,

where f ∈ C([−T, T ];R) with f(T ) = 0, and Θ ∈ (0, 1), l ∈ R.
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• [ · ]γ,m,l-seminorm

[g]γ,m,l := sup
IT

| log(T − t)|l

(T − t)m(t− s)γ
|g(t)− g(s)|,

where IT =
{
−T ≤ s ≤ t ≤ T : t− s ≤ 1

10 (T − t)
}
, g ∈ C([−T, T ];R) with

g(T ) = 0 and 0 < γ < 1, m > 0, l ∈ R.

Also, we define

(82) B0[λ](t) :=

∫ t

−T

λ̇(s)

t− s
Γ

(
λ2(t)

t− s

)
ds+ c0λ̇

and write

(83) c0[H] =
B0[λ]− (a[λ, ξ,Ψ∗] + ar[λ, ξ, ϕ,Ψ

∗])∫
B2R

|Z5(y)|2dy
.

We invoke a key proposition proved in [12, Proposition 6.5] concerning the solv-
ability of λ(t).

Proposition 4.3. Let ω,Θ ∈ (0, 12 ), γ ∈ (0, 1), m ≤ Θ − γ and l ∈ R. If a(t)
satisfies a(T ) < 0 with 1/C ≤ a(T ) ≤ C for some constant C > 1, and

(84) TΘ| log T |1+c−l∥a(·)− a(T )∥Θ,l−1 + [a]γ,m,l−1 ≤ C1

for some c > 0, then there exist two operators P and R0 such that λ = P[a] :
[−T, T ] → R satisfies

(85) B0[λ](t) = a(t) + R0[a](t)

with

|R0[a](t)| ≲
(
T

1
2
+c + TΘ log | log T |

| log T | ∥a(·)− a(T )∥Θ,l−1 + [a]γ,m,l−1

)
(T − t)m+(1+ω)γ

| log(T − t)|l .

When applying Proposition 4.3, the Hölder property is essentially inherited
from regularity of the outer solution, and this is one of the reasons that we work
in the weighted space (61).

• The fixed point formulation.

We first transform the inner–outer problems (50), (53) into the problems
of finding solutions (ψ, ϕ0, ϕ1, ϕ⊥, λ, ξ) solving the following inner–outer gluing
system

(86)


ψt = ∆ψ + G(ϕ0 + ϕ1 + ϕ⊥, ψ + Z∗, λ, ξ), in Ω× (0, T ),

ψ = 0, on ∂Ω× (0, T ),

ψ(x, 0) = 0, in Ω,
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(87)

{
λ2ϕ0t = ∆yϕ

0 + 3U2(y)ϕ0 +H0(ϕ, ψ, λ, ξ) + c̃0[H0]Z5 in D2R,

ϕ0(·, 0) = 0 in B2R,

(88)

λ2ϕ1t = ∆yϕ
1 + 3U2(y)ϕ1 +H1(ϕ, ψ, λ, ξ) +

4∑
ℓ=1

cℓ[H1]Zℓ in D2R,

ϕ1(·, 0) = 0 in B2R,

(89){
λ2ϕ⊥t = ∆yϕ

⊥ + 3U2(y)ϕ⊥ +H⊥(ϕ, ψ, λ, ξ) + c0∗[λ, ξ,Ψ
∗]Z5 in D2R,

ϕ⊥(·, 0) = 0 in B2R,

c0[H](t)− c̃0[λ, ξ,Ψ∗](t) = 0 for all t ∈ (0, T ),(90)

c1[H](t) = 0 for all t ∈ (0, T ),(91)

where G is defined in (54), H0, H1, H⊥ are the projections of H (see (51)) on
different modes. It is direct to see that if (ψ, ϕ0, ϕ1, ϕ⊥, λ, ξ) satisfies the system
(86)–(91), then

Ψ∗ = ψ + Z∗, ϕ = ϕ0 + ϕ1 + ϕ⊥

solve the inner–outer problems (50), (53) and thus the desired blow-up solution
is obtained.

The inner–outer gluing system (86)–(91) can be then formulated as a fixed
point problem for operators we will describe below.

We first define the following function spaces

(92)

Xϕ0 :=
{
ϕ0 ∈ L∞(D2R) : ∇yϕ

0 ∈ L∞(D2R), ∥ϕ0∥∗,ν,a,δ < +∞
}
,

Xϕ1 :=
{
ϕ1 ∈ L∞(D2R) : ∇yϕ

1 ∈ L∞(D2R), ∥ϕ1∥ν1,a1 < +∞
}
,

Xϕ⊥ :=
{
ϕ⊥ ∈ L∞(D2R) : ∇yϕ

⊥ ∈ L∞(D2R), ∥ϕ⊥∥ν,a < +∞
}
,

Xψ :=
{
ψ ∈ L∞(Ω× (0, T )) : ∥ψ∥∗ < +∞

}
.

In order to introduce the space for the parameter function λ(t), we recall from
(82) that the integral operator B0 takes the following approximate form

B0[λ] =

∫ t−λ2
∗(t)

−T

λ̇(s)

t− s
ds+O(∥λ̇∥∞).

Proposition 4.3 defines an approximate inverse operator P of the integral operator
B0 such that for a satisfying (84), λ := P[a] satisfies

B0[λ] = a+ R0[a] in [−T, T ],



On the Parabolic Gluing Method and Singularity Formation 103

where R0[a] is a small remainder. Also, the proof as in [12, Proposition 6.6]
implies a refined decomposition

(93) P[a] = λ0,κ + P1[a]

with

λ0,κ := κ| log T |
∫ T

t

1

| log(T − s)|2
ds, t ≤ T,

κ = κ[a] ∈ R, and the function λ1 = P1[a] satisfies

(94) ∥λ1∥∗,3−ι ≲ | log T |1−ι log2(| log T |)

for 0 < ι < 1, where the ∥ · ∥∗,3−ι-norm is defined by

∥f∥∗,k := sup
t∈[−T,T ]

| log(T − t)|k|ḟ(t)|.

Therefore, we define

Xλ := {λ1 ∈ C1([−T, T ]) : λ1(T ) = 0, ∥λ1∥∗,3−ι <∞}.

Here by (κ, λ1) we represent λ in the form

λ = λ0,κ + λ1,

and from [12, Proposition 6.6], one can write the norm

(95) ∥λ∥F = |κ|+ ∥λ1∥∗,3−ι.

For the translation parameter function ξ(t), we write ξ(t) = q + ξ1(t) and
define the following space for ξ1(t)

Xξ =
{
ξ ∈ C1((0, T );R4), ξ̇(T ) = 0, ∥ξ∥G < +∞

}
with

(96) ∥ξ∥G = ∥ξ∥L∞(0,T ) + sup
t∈(0,T )

λ−υ∗ (t)|ξ̇(t)|

for some fixed υ ∈ (0, 1).
Define

(97) X = Xϕ0 ×Xϕ1 ×Xϕ⊥ ×Xψ × R×Xλ ×Xξ.

We will solve the inner–outer gluing system in a closed ball B in which

(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1) ∈ X
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satisfies

(98)



∥ϕ0∥∗,ν,a,δ + ∥ϕ1∥ν1,a1 + ∥ϕ⊥∥ν,a ≤ 1

∥ψ∥∗ ≤ 1

|κ− κ0| ≤ | log T |−1/2

∥λ1∥∗,3−ι ≤ C| log T |1−ι log2(| log T |)
∥ξ∥G ≤ 1

for some large and fixed constant C, where κ0 = Z∗
0 (0). The inner–outer gluing

system (86)–(91) can be formulated as the following fixed point problem. We
define an operator F which returns the solution from B to X

F : B ⊂ X → X

v 7→ F(v) = (Fϕ0(v),Fϕ1(v),Fϕ⊥(v),Fψ(v),Fκ(v),Fλ1(v),Fξ(v))

with

(99)

Fϕ0(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1) = T0(H

0[λ, ξ,Ψ∗])

Fϕ1(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1) = T1(H

1[λ, ξ,Ψ∗])

Fϕ⊥(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1) = T⊥

(
H⊥[λ, ξ,Ψ∗] + c0∗[λ, ξ,Ψ

∗]Z5

)
Fψ(ϕ

0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1) = Tψ

(
G(ϕ0 + ϕ1 + ϕ⊥,Ψ∗, λ, ξ)

)
Fκ(ϕ

0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1) = κ

[
a0[λ, ξ,Ψ∗]

]
Fλ1(ϕ

0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1) = P1

[
a0[λ, ξ,Ψ∗]

]
Fξ(ϕ

0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1) = Ξ(ϕ0, ϕ1, ϕ⊥, ψ, λ, ξ).

Here T0, T1 and T⊥ are the operators given in Proposition 4.2 which solve differ-
ent modes of the inner problems (87)–(89). The operator Tψ defined by Propo-
sition 4.1 deals with the outer problem (86). Operators κ[a], P1 and Ξ handle
the equations for λ and ξ which are defined in Proposition 4.3, (93) and (78),
respectively.

• Choices of constants.

We list all the constraints of the constants β, α, a, a1, ν, ν1, ν2, δ which are
sufficient for the inner–outer gluing scheme to work.

First, we indicate all the parameters used in different norms.

• R(t) = λ−β∗ (t) with β ∈ (0, 1/2).
• The norm for ϕ0 solving mode 0 of the inner problem (87) is ∥ · ∥∗,ν,a,δ which

is defined in (66), where we require that ν, a ∈ (0, 1) and δ ≥ 0 small enough.
• The norm for ϕ1 solving modes 1 to 4 of the inner problem (88) is ∥ · ∥ν1,a1

which is defined in (65), where we require that ν1 ∈ (0, 1) and a1 ∈ (1, 2).
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• The norm for ϕ⊥ solving higher modes (j ≥ 5) of the inner problem (89) is
∥ · ∥ν,a which is defined in (65), where ν, a ∈ (0, 1).

• The norm for ψ solving the outer problem (86) is ∥ · ∥∗ which is defined in
(61), while the ∥ · ∥∗∗-norm for the right hand side of the outer problem (86)
is defined in (60). Here we require that ν, α, ν2, γ ∈ (0, 1) .

• In Proposition 4.3, we have the parameters ω,Θ,m, l, γ. Here ω is the parame-
ter used to describe the remainder Rω and ω ∈ (0, 1/2). To apply Proposition
4.3 in our setting, we let

Θ = ν − 1 + αβ, m = ν − 2− γ + β(2 + α), l < 1 + 2m,

and require that β > 1−ω
2 such that m+ (1 + ω)γ > Θ is guaranteed.

In order to get the desired estimates for the outer problem (86), we need

ν − 1 + β(2 + α)− ν2 > 0, 2β − ν2 > 0, 0 < α < a < 1,

β + υ − ν2 > 0, 2ν1 − ν + β(2a1 − α) > 0, ν2 < 1,

2ν − ν2 − 1 + 2αβ > 0, ν − β(α+ 2δ − 2a) > 0.

In order to get the desired estimates for the inner problems at different modes
(87)–(89), we require

0 < ν < 1, 1− β(2 +
a

2
) > 0, 1 + ν1 − ν − β(2 + a− a1) > 0,

1− 2β > 0, ν − β(4− a) > 0, 2ν1 − ν > 0,

2− ν − aβ > 0, ν − β(a− 2α) > 0, 2− ν − β(1 + a) > 0,

1− β(δ + 2) > 0, ν − 2δβ > 0,

0 < ν1 < 1, ν − ν1 + αβ > 0, 2− ν1 − a1β > 0,

2ν − ν1 + 2αβ − a1β > 0, 1− ν1 − β(a1 − 1) > 0.

It turns out that suitable choices of the parameters satisfying all the restrictions
in this section can be found. Here we give a specific example:

β ≈ 1

4
(β >

1

4
), α ≈ a ≈ a1 ≈ 1, ν ≈ ν1 ≈ 1, ν2 ≈ 0, δ ≈ 0.

• Proof of Theorem 2.

Consider the operator

(100) F = (Fϕ0 ,Fϕ1 ,Fϕ⊥ ,Fψ,Fκ,Fλ1 ,Fξ)

given in (99). To prove Theorem 2, our strategy is to show the existence of a fixed
point for the operator F in B by the Schauder fixed point theorem, where the
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closed ball B is defined in (98). By collecting the estimates (67), (72), (74), (79),
(94), and using Proposition 4.1, Proposition 4.2, Proposition 4.3, we conclude
that for (ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ

1) ∈ B

(101)



∥Fϕ0(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1)∥∗,ν,a,δ ≤ CT ϵ

∥Fϕ1(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1)∥ν1,a1 ≤ CT ϵ

∥Fϕ⊥(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ
1)∥ν,a ≤ CT ϵ

∥Fψ(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ1)∥∗ ≤ CT ϵ∣∣Fκ(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ1)− κ0
∣∣ ≤ C| log T |−1

∥Fλ1
(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ

1)∥∗,3−ι ≤ C| log T |1−ι log2(| log T |)

∥Fξ(ϕ0, ϕ1, ϕ⊥, ψ, κ, λ1, ξ1)∥G ≤ CT ϵ

where C > 0 is a constant independent of T , and ϵ > 0 is a small fixed number.
On the other hand, compactness of the operator F defined in (100) can be proved
by proper variants of (101). Therefore, the existence of the desired blow-up
solution for k = 1 is concluded from the Schauder fixed point theorem.

The proof of multi-bubble case follows similarly by taking the ansatz (39)
with nonlocal corrections supported around each concentration zone added. □

5. Distorted Fourier Transform in Gluing Method In this section, we
introduce the third parabolic gluing method when the kernels are not in L2 and
when the maximum principle is absent. To this end, we consider the Landau-
Lifshitz-Gilbert equation in critical dimension{

ut = a(∆u+ |∇u|2u)− bu ∧∆u in R2 × (0, T ),

u(·, 0) = u0 ∈ S2 in R2,

where a2 + b2 = 1, a > 0, b ∈ R. The inner linearization around degree 1
harmonic map, in self-similar variables, looks like

(a+ ib)∂τ −
(
∂ρρ +

1

ρ
∂ρ −

(n+ 1)2ρ4 + (2n2 − 6)ρ2 + (n− 1)2

(ρ2 + 1)2
1

ρ2

)
.

We utilize distorted Fourier transform at mode n = −1 in [57, Section 9.6]. The
use of aforementioned techniques in Section 4 does imply a solution. However,
such solution is not sufficient for the gluing to work as it loses too many R’s
and makes the nonlinear terms non-controllable. So we use distorted Fourier
transform (DFT) instead to get desired estimates. The reason behind this is
that formally the worst mode is −1 as it corresponds to 2-dimensional heat
operator, and usually estimates in 2D come with a logarithmic loss because of
lack of maximum principle.
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The derivation of desired estimates for mode −1 is done by first deducing the
Duhamel’s representation via DFT and then estimating pointwisely. For ℓ ∈ R
and v(τ) > 0 and vectorial complex-valued function f , the weighted topology
are defined by

∥f∥v,ℓ := sup
(y,τ)∈R2×(τ0,∞)

v−1(τ)⟨y⟩ℓ|f(y, τ)|.

Consider {
(a+ ib)∂τϕn(ρ, τ) = Lnϕn(ρ, τ),

ϕn(ρ, τ0) = g(ρ),

where τ0 ≥ 1,

Ln = ∂ρρ +
1

ρ
∂ρ −

(n− 1)2

ρ2
− 4n

ρ2 + 1
+

8

(ρ2 + 1)2
.

Assume g is a Schwartz function. Set ϕn(ρ, τ) = ρ−
1
2An(ρ, τ), then{

(a+ ib)∂τAn(ρ, τ) = L̃nAn(ρ, τ),

An(ρ, τ0) = ρ
1
2 g(ρ).

where L̃n = ∂ρρ +
1
4ρ

−2 − (n−1)2

ρ2 − 4n
ρ2+1 + 8

(ρ2+1)2 .

Recall the generalized eigenfunctions Φn(ρ, ξ) with respect to −L̃n is given
by

−L̃nΦ
n(ρ, ξ) = ξΦn(ρ, ξ).

We multiply it by Φn(ρ, ξ) and integrate by parts and get{
(a+ ib)∂τ Ân(ξ, τ) = −ξÂn(ξ, τ),
Ân(ξ, τ0) =

∫∞
0
ρ

1
2 g(ρ)Φn(ρ, ξ)dρ,

where Ân(ξ, τ) =
∫∞
0
A−1(ρ, τ)Φ

n(ρ, ξ)dρ. Thus

Ân(ξ, τ) = e−(a−ib)ξτ Ân(ξ, τ0).

Taking inverse DFT, one has

An(ρ, τ) =

∫ ∞

0

Ân(ξ, τ)Φ
n(ρ, ξ)ρn(dξ) =

∫ ∞

0

e−(a−ib)ξτ Ân(ξ, 0)Φ
n(ρ, ξ)ρn(dξ)

=

∫ ∞

0

e−(a−ib)ξτΦn(ρ, ξ)

∫ ∞

0

x
1
2 g(x)Φn(x, ξ)dxρn(dξ)

=

∫ ∞

0

∫ ∞

0

e−(a−ib)ξτΦn(ρ, ξ)Φn(x, ξ)ρn(dξ)x
1
2 g(x)dx.
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By Duhamel’s principle, it holds that
(102)

ϕn(ρ, τ) =

∫ τ

τ0

∫ ∞

0

∫ ∞

0

e−(a−ib)ξ(τ−s)ρ−
1
2Φn(ρ, ξ)Φn(x, ξ)x

1
2hn(x, s)ρn(dξ)dxds

gives a solution to the non-homogeneous equation with RHS hn and zero initial
data.

To estimate solution in above formulation, one needs precise estimates of
generalized eigenfunctions and density of spectral measure. For n = −1, we
summarize the results in [37, Section 4.3.2] as follows.

Proposition 5.1 ( [37]). For all ρ ≥ 0, ξ ≥ 0, we have

∣∣Φ−1(ρ, ξ)
∣∣ ≲ {ρ 5

2 ⟨ρ⟩−2 if ρ2ξ ≤ 1

ξ−
1
4 ⟨ξ⟩−1 if ρ2ξ > 1

.

Φ−1(ρ, ξ) has the following expansion:

Φ−1(ρ, ξ) = Φ−1
0 (ρ) + ρ

1
2

∞∑
j=1

(−ρ2ξ)jΦj(ρ2),

which converges absolutely, where Φ−1
0 (ρ) = ρ

5
2

1+ρ2 . It converges uniformly if ρξ
1
2

remains bounded. Here Φj(u) ≥ 0 are smooth functions of u ≥ 0 satisfying

Φj(u) ≤
1

j!

u

1 + u
, for all u ≥ 0, j ≥ 1,

and Φ1(u) ≥ c1
u

1+u for all u ≥ 0 with some absolute constant c1 > 0.

The spectrum measure ρ−1(dξ) of −L̃−1 is absolutely continuous on ξ ≥ 0
with density

dρ−1(ξ)

dξ
∼ ⟨ξ⟩2.

Our linear theory for LLG mode −1 without orthogonality condition is stated
as follows.

Proposition 5.2. ([57, Proposition 9.8]) Consider{
(a+ ib)∂τϕ−1(ρ, τ) = L−1ϕ−1(ρ, τ) + h(ρ, τ) in (0,∞)× (τ0,∞),

ϕ−1(ρ, τ0) = 0 in (0,∞).

where τ0 ≥ 1, ∥h∥v,ℓ <∞, where ℓ > 3
2 . Then the solution ϕ−1 = T−1[h], where

T−1[h] is given by the linear mapping (102) with n = −1, satisfies the following
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estimate

|ϕ−1(ρ, τ)| ≲ ∥h∥v,ℓ1{ρ≤τ
1
2 }


v(τ)τ1−

ℓ
2 + τ−

ℓ
2

∫ τ
2
τ0
2

v(s)ds if ℓ < 2

v(τ)(ln τ)2 + τ−1 ln τ
∫ τ

2
τ0
2

v(s)ds if ℓ = 2

v(τ) ln τ + τ−1
∫ τ

2
τ0
2

v(s)ds if ℓ > 2

+ ∥h∥v,ℓ1{ρ>τ
1
2 }
ρ−

1
2


v(τ)τ

5
4−

ℓ
2 + τ

1
4−

ℓ
2

∫ τ
2
τ0
2

v(s)ds if ℓ < 2

v(τ)τ
1
4 ⟨ln τ⟩+ τ−

3
4 ⟨ln τ⟩

∫ τ
2
τ0
2

v(s)ds if ℓ = 2

v(τ)τ
1
4 + τ−

3
4

∫ τ
2
τ0
2

v(s)ds if ℓ > 2

.

Better estimates with orthogonality condition imposed can be obtained simi-
larly, see [57, Section 9.6].

Appendix A. Linear Theory via Blow-up Argument In this section,
we present a linear theory by a priori estimates, which are proved by blow-up
argument. This is the reminiscent of Liapunov-Schmidt reduction method or
gluing method in the elliptic concentration problems. See [14, 15, 46]. However
the proofs are more involved.

Define
∥h∥a,ν := sup

(y,τ)∈Rn×(τ0,∞)

τν⟨y⟩a|h(y, τ)|.

The main results are the following.

Proposition A.1. Consider

(A.1)

{
∂τϕ = ∆ϕ+ pUp−1(y)ϕ+ h(y, τ) in Rn × (τ0,∞)

ϕ(y, τ0) = e0Z0(y) in Rn.

Suppose 2 < a < n− 2, ν < 1, ∥h∥2+a,ν <∞ and

(A.2)

∫
Rn

h(y, τ)Zj(y)dy = 0 for all τ ∈ (τ0,∞), j = 1, 2, · · · , n+ 1.

Then for τ0 ≥ 1, there exists a linear mapping (ϕ, e0) = (ϕ[h], e0[h]) satisfying
(A.1) and

(A.3)

∫
Rn

ϕ(y, τ)Zj(y)dy = 0 for all τ ∈ (τ0,∞), j = 1, 2, · · · , n+ 1,

(A.4) ⟨y⟩|∇ϕ|+ |ϕ| ≲ τ−ν⟨y⟩−a∥h∥2+a,ν , |e0[h]| ≲ τ−ν0 ∥h∥2+a,ν .

Proposition A.1 is in fact a consequence of the following
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Proposition A.2. Suppose 2 < a < n− 2, ν < 1, ∥h∥2+a,ν <∞ and

(A.5)

∫
Rn

h(y, τ)Zj(y)dy = 0 for all τ ∈ (τ0,∞), j = 0, 1, · · · , n+ 1.

Then for τ0 ≥ 1, there exists a unique solution ϕ of

(A.6)

{
∂τϕ = ∆ϕ+ pUp−1(y)ϕ+ h(y, τ) in Rn × (τ0,∞)

ϕ(y, τ0) = 0 in Rn

in L∞(Rn × (τ0, τ̃)) for all τ̃ > τ0 and ϕ satisfies

(A.7)

∫
Rn

ϕ(y, τ)Zj(y)dy = 0 for all τ > τ0, j = 0, 1, · · · , n+ 1

and the estimate

(A.8) ⟨y⟩|∇ϕ|+ |ϕ| ≲ τ−ν⟨y⟩−a∥h∥2+a,ν .

We first use Proposition A.2 to deduce Proposition A.1.

Proof of Proposition A.1. First, set ϕ(y, τ) = ϕ1(y, τ) + c(τ)Z0(y). Then
it suffices to consider

(A.9)

{
∂τϕ1 = ∆ϕ1 + pUp−1(y)ϕ1 + h1 in Rn × (τ0,∞)

ϕ1(y, τ0) = 0 in Rn.

with h1 := h + c(τ)λ0Z0 − c′(τ)Z0 where we used ∆Z0 + pUp−1(y)Z0 = λ0Z0

with λ0 > 0. We take

c′(τ)− λ0c(τ) =

(∫
Rn

Z2
0 (y)dy

)−1 ∫
Rn

h(y, τ)Z0(y)dy

with

c(τ) = −
(∫

Rn

Z2
0 (y)dy

)−1

eλ0τ

∫ ∞

τ

e−λ0s

∫
Rn

h(y, s)Z0(y)dyds

so that
∫
Rn h1(y, τ)Z0(y)dy = 0. Combining this with (A.2) implies (A.5). It is

direct to see that

|c(τ)|+ |c′(τ)| ≲ ∥h∥2+a,ντ−ν , ∥h1∥2+a,ν ≲ ∥h∥2+a,ν .

By Proposition A.2, (A.9) has a unique solution ϕ1 satisfying∫
Rn

ϕ1(y, τ)Zj(y)dy = 0

for all τ > τ0, j = 0, 1, · · · , n+ 1, ⟨y⟩|∇ϕ1|+ |ϕ1| ≲ τ−ν⟨y⟩−a∥h∥2+a,ν .

Then ϕ = ϕ1 + c(τ)Z0 satisfies (A.3) and (A.4). Finally, letting e0 = c0(τ0)
completes the proof. □
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Next, we use blow-up argument to prove Proposition A.2. Our method does
not rely on the use of maximum principle, so we expect that this method is ap-
plicable to more general equations/systems in the absence of maximum principle
(assuming non-degeneracy of the profile in certain sense). Typical examples are
parabolic equations with complex coefficients such as

A0∂τu = ∆u+ V (u,Du) + h,

where the complex constant A0 satisfies Re(A0) > 0 (with dissipation). This
kind of operator naturally arises, for instance, in the study of Landau-Lifshitz-
Gilbert equations.

Proof of Proposition A.2. The existence and uniqueness of (A.6) are given
by the classical parabolic theory. Denote

∥f∥a,ν,τ1 := sup
(y,τ)∈Rn×(τ0,τ1)

τν⟨y⟩a|f(y, τ)|.

For all τ > τ0, by the estimate of parabolic fundamental solution (See [25]) and
convolution estimate in [58, Lemma A.1, Lemma A.2], for 0 < a < n − 2, we
have

(A.10) ∥ϕ∥a,ν,τ <∞.

By scaling argument, we have ∥∇ϕ∥1+a,ν,τ <∞.
For a > 2, multiplying (A.6) by Zj , j = 0, 1, . . . , n + 1 and integrating by

parts, we obtain (A.7) by (A.5) and the initial data of (A.6).
In order to prove (A.8), it suffices to prove the following claim.

Claim: For all τ1 > τ0 large enough, there exists C independent of τ1 such that

(A.11) ∥ϕ∥a,ν,τ1 ≤ C∥h∥2+a,ν,τ1 .

Indeed, by taking τ1 → ∞, (A.11) implies (A.8). To prove (A.11), we argue by
contradiction. Suppose that there exist sequences τk1 → ∞ and ϕk, hk satisfying

(A.12)


∂τϕk = ∆ϕk + pUp−1(y)ϕk + hk in Rn × (τ0,∞)∫

Rn

ϕk(y, τ)Zj(y)dy = 0 for all τ ∈ (τ0, τ
k
1 ), j = 0, 1, · · · , n+ 1

ϕk(y, τ0) = 0 in Rn

and

(A.13) ∥ϕk∥a,ν,τk
1
= 1, ∥hk∥2s+a,ν,τk

1
= o(1) where o(1) → 0 as k → ∞.

First, we claim that for any compact subset Ω in Rn,

(A.14) sup
τ0<τ<τk

1

τν |ϕk(y, τ)| → 0 uniformly in Ω.
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Assume this is not true. Then there exist a constant M > 0 such that |yk| ≤M
and τ0 < τk2 < τk1 ,

(A.15) (τk2 )
ν |ϕk(yk, τk2 )| ≥ δ0 > 0,

for a constant δ0 > 0. Since ∥hk∥2+a,ν,τk
1
= o(1), we have τk2 → ∞ by the same

reason for getting (A.10). Without loss of generality, we assume τk2 ≥ 9τ0. Set

ϕ̃k(y, t) = (τk2 )
νϕk(y, τ

k
2 + t), h̃k(y, t) = (τk2 )

νhk(y, τ
k
2 + t).

Then by (A.12), one has

(A.16) ∂tϕ̃k = ∆ϕ̃k + pUp−1(y)ϕ̃k + h̃k in Rn × (τ0 −
τk2
2
, 0]

with
(A.17)

|ϕ̃k(y, τ)| ≤ C(ν)⟨y⟩−a, |h̃k(y, τ)| ≤ o(1)C(ν)⟨y⟩−2−a in Rn × (τ0 −
τk2
2
, 0],

where C(ν) is a constant only depending on ν.
By the parabolic regularity theorem, up to a subsequence, we have ϕ̃k → ϕ̃ in

C1
loc, that is, ϕ̃k → ϕ̃ in C1 topology on any compact subsets of Rn × (−∞, 0].

Combining this with (A.15) yields

(A.18) |ϕ̃(y, τ)| ≤ C(ν)⟨y⟩−a, ϕ̃ ̸= 0.

By (A.16), we have

ϕ̃k(y, t) =

∫
Rn

[4π(t− τ0 +
τk2
2
)]−

n
2 exp

(
− |y − z|2

4(t− τ0 +
τk
2

2 )

)
ϕ̃k(z, τ0 −

τk2
2
)dz

+

∫ t

τ0−
τk
2
2

∫
Rn

[4π(t− s)]−
n
2 exp

(
−|y − z|2

4(t− s)

)(
pUp−1(z)ϕ̃k(z, s) + h̃k(z, s)

)
dzds.

Then for any fixed (y, t) ∈ Rn× (−∞, 0], by a > 0, (A.17), (A.18), [54, Corollary

B.4, Lemma B.5] (used for time integral
∫ t1
t2

· · · for some t1 ≤ −1), [58, Lemma

A.3] (used for Cauchy integral) and ϕ̃k → ϕ̃ in C1
loc, we have

(A.19) ϕ̃(y, t) =

∫ t

−∞

∫
Rn

[4π(t− s)]−
n
2 e−

|y−z|2
4(t−s) pUp−1(z)ϕ̃(z, s)dzds.

Then the limiting equation reads

(A.20)


∂τ ϕ̃ = ∆ϕ̃+ pUp−1(y)ϕ̃ in Rn × (−∞, 0]∫

Rn

ϕ̃(y, τ)Zj(y)dy = 0 for all τ ∈ (−∞, 0], j = 0, 1, · · ·n+ 1

|ϕ̃(y, τ)| ≤ C(ν)⟨y⟩−a in Rn × (−∞, 0]
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where we have used a > 2 in the orthogonality by dominated convergence theo-
rem.

Using (A.19), [54, Corollary B.4, Lemma B.5] finitely many times for τ ∈
(−∞,−M0) with M0 large and then applying [58, Lemmas A.1, A.2, A.3] in
[M0, 0], we have

|ϕ̃| ≲ ⟨y⟩2−n,

and ϕ̃ is smooth by the parabolic regularity theory. By scaling argument, one
has

⟨y⟩−1|Dϕ̃|+ |ϕ̃τ |+ |D2ϕ̃| ≲ ⟨y⟩−n.

Differentiating (A.20), we get

(A.21) ∂τ ϕ̃τ = ∆ϕ̃τ + pUp−1(y)ϕ̃τ ,

and then scaling argument gives

⟨y⟩−1|Dϕ̃τ |+ |ϕ̃ττ |+ |D2ϕ̃τ | ≲ ⟨y⟩−n−2.

Moreover, multiplying (A.21) by ϕ̃τ and integrating by parts, we get

1

2
∂τ

∫
Rn

|ϕ̃τ |2dy +B(ϕ̃τ , ϕ̃τ ) = 0,

where

B(f, f) :=

∫
Rn

(
|∇f |2 − pUp−1(y)|f |2

)
dy.

By orthogonality in (A.20), we have
∫
Rn ∂τ ϕ̃(y, τ)Zj(y)dy = 0 for all τ ∈ (−∞, 0],

j = 0, 1, · · · , n + 1. Then B(ϕ̃τ , ϕ̃τ ) ≥ 0 by
∫
Rn ∂τ ϕ̃(y, τ)Z0(y)dy = 0 since

Z0 is the only eigenfucntion corresponding to the positive eigenvalue. Thus,
∂τ
∫
Rn |ϕ̃τ |2dy ≤ 0.

Multiplying (A.20) by ϕ̃τ and integrating by parts, we have∫
Rn

|ϕ̃τ |2dy = −1

2
∂τB(ϕ̃, ϕ̃).

From these relations, one has

∂τ

∫
Rn

|ϕ̃τ |2dy ≤ 0,

∫ 0

−∞
dτ

∫
Rn

|ϕ̃τ |2dy <∞.

Hence ϕ̃τ = 0. So ϕ̃ is independent of τ and ∆ϕ̃ + pUp−1(y)ϕ̃ = 0. By the
nondegeneracy of ∆ + pUp−1(y) (see [1, Lemma 5.2]), ϕ̃ is a linear combination
of Zj , j = 1, · · · , n + 1. Due to the orthogonal conditions in (A.20), we must

have ϕ̃ ≡ 0, which contradicts (A.18). Thus (A.14) holds.
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By (A.13) and (A.14), there exists a sequence yk with |yk| → ∞ such that

(τk2 )
ν⟨yk⟩a|ϕk(yk, τk2 )| ≥

1

2
.

Set

ϕ̃k(z, t) := (τk2 )
ν⟨yk⟩aϕk(yk + |yk|z, |yk|2t+ τk2 ).

Then

(A.22) |ϕ̃k(0, 0)| ≥
1

2
.

We reformulate (A.12) as
(A.23)∂tϕ̃k = ∆zϕ̃k + p|yk|2Up−1(yk + |yk|z)ϕ̃k + h̃k(z, t) in Rn × (

τ0−τk
2

|yk|2 ,∞)

ϕ̃k(·, τ0−τ
k
2

|yk|2 ) = 0 in Rn

where

h̃k(z, t) = (τk2 )
ν⟨yk⟩a|yk|2hk(yk + |yk|z, |yk|2t+ τk2 ).

By (A.13), one has

|h̃k(z, t)| ≲ o(1)(τk2 )
ν⟨yk⟩a|yk|2⟨yk + |yk|z⟩−2−a (|yk|2t+ τk2

)−ν
∼ o(1)

(
|yk|−1 + |ŷk + z|

)−2−a (
(τk2 )

−1|yk|2t+ 1
)−ν

, for (z, t) ∈ Rn × (
τ0 − τk2
|yk|2

,
τk1 − τk2
|yk|2

),

∣∣∣|yk|2Up−1(yk + |yk|z)ϕ̃k
∣∣∣ ≲ |yk|2⟨yk + |yk|z⟩−4(τk2 )

ν⟨yk⟩a⟨yk + |yk|z⟩−a
(
|yk|2t+ τk2

)−ν
∼ |yk|−2

(
|yk|−1 + |ŷk + z|

)−4−a (
(τk2 )

−1|yk|2t+ 1
)−ν

, for (z, t) ∈ Rn × (
τ0 − τk2
|yk|2

,
τk1 − τk2
|yk|2

)

where ŷk = yk|yk|−1. By (A.23), we have

ϕ̃k(z, t) =

∫ t

τ0−τk
2

|yk|2

∫
Rn

[4π(t− s)]
−n

2 e−
|z−w|2
4(t−s)

(
p|yk|2Up−1(yk + |yk|w)ϕ̃k(w, s) + h̃k(w, s)

)
dwds.

Then∣∣∣ϕ̃k(0, 0)∣∣∣ ≲ ∫ 0

τ0−τk
2

|yk|2

∫
Rn

(−s)−n
2 e

|w|2
4s

[
|yk|−2

(
|yk|−1 + |ŷk + w|

)−4−a (
(τk2 )

−1|yk|2s+ 1
)−ν

+ o(1)
(
|yk|−1 + |ŷk + w|

)−2−a (
(τk2 )

−1|yk|2s+ 1
)−ν ]

dwds.
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Claim: Suppose that τk2 ≥ 2τ0, |yk| ≥ 2, m > 2, n > 2, ν < 1, then
(A.24)∫ 0

τ0−τk
2

|yk|2

∫
Rn

(−s)−n
2 e

|w|2
4s

(
|yk|−1 + |ŷk + w|

)−m (
(τk2 )

−1|yk|2s+ 1
)−ν

dwds

≲


1, if m < n

⟨ln |yk|⟩, if m = n

|yk|m−n, if m > n.

Assuming (A.24), for 0 < a < n− 2, one then has

∣∣∣ϕ̃k(0, 0)∣∣∣ ≲ o(1) +


|yk|−2, if 4 + a < n

|yk|−2⟨ln |yk|⟩, if 4 + a = n

|yk|2+a−n, if 4 + a > n

→ 0 as k → ∞

which contradicts (A.22).

Finally, we prove (A.24).

Proof of (A.24):

∫ 0

τ0−τk
2

|yk|2

∫
Rn

(−s)−n
2 e

|w|2
4s

(
|yk|−1 + |ŷk + w|

)−m (
(τk2 )

−1|yk|2s+ 1
)−ν

dwds

=

∫ 0

τ0−τk
2

|yk|2

(
(τk2 )

−1|yk|2s+ 1
)−ν

(−s)−m
2

∫
Rn

e−
|x|2
4

(
(−s)− 1

2 |yk|−1 + |(−s)− 1
2 ŷk + x|

)−m
dxds.
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Notice for 0 < 2c0 ≤ |v⃗|, we estimate the spatial integral as

∫
Rn

e−
|x|2
4 (c0 + |v⃗ + x|)−m dx =

(∫
|x|≤ |v⃗|

2

+

∫
|v⃗|
2 <|x|≤2|v⃗|

+

∫
|x|>2|v⃗|

)
e−

|x|2
4 (c0 + |v⃗ + x|)−m dx

∼
∫
|x|≤ |v⃗|

2

e−
|x|2
4 (c0 + |v⃗|)−m dx+

∫
|v⃗|
2 <|x|≤2|v⃗|

e−
|x|2
4 (c0 + |v⃗ + x|)−m dx

+

∫
|x|>2|v⃗|

e−
|x|2
4 (c0 + |x|)−m dx

≲ |v⃗|−m
∫
|x|≤ |v⃗|

2

e−
|x|2
4 dx+ e−

|v⃗|2
16

∫
|x+v⃗|≤3|v⃗|

(c0 + |v⃗ + x|)−m dx+

∫
|x|>2|v⃗|

e−
|x|2
4 |x|−mdx

≲ 1{|v⃗|≤1}|v⃗|n−m + 1{|v⃗|>1}|v⃗|−m + e−
|v⃗|2
16

(∫ c0

0

+

∫ 3|v⃗|

c0

)
(c0 + r)−mrn−1dr

+ 1{|v⃗|≤1}


1, if m < n

⟨ln |v⃗|⟩, if m = n

|v⃗|n−m, if m > n

+ 1{|v⃗|>1}e
− |v⃗|2

2

≲ e−
|v⃗|2
16


|v⃗|n−m, if m < n

⟨ln( |v⃗|c0 )⟩, if m = n

cn−m0 , if m > n

+ 1{|v⃗|≤1}


1, if m < n

⟨ln |v⃗|⟩, if m = n

|v⃗|n−m, if m > n

+ 1{|v⃗|>1}|v⃗|−m

∼ 1{|v⃗|≤1}


1, if m < n

⟨ln |v⃗|⟩+ ⟨ln( |v⃗|c0 )⟩, if m = n

cn−m0 , if m > n

+ 1{|v⃗|>1}


|v⃗|−m, if m < n

|v⃗|−m + e−
|v⃗|2
16 ⟨ln( |v⃗|c0 )⟩, if m = n

|v⃗|−m + e−
|v⃗|2
16 cn−m0 , if m > n.
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Thus, we obtain

∫ 0

τ0−τk
2

|yk|2

(
(τk2 )

−1|yk|2s+ 1
)−ν

(−s)−m
2

∫
Rn

e−
|x|2
4

(
(−s)− 1

2 |yk|−1 + |(−s)− 1
2 ŷk + x|

)−m
dxds

≲
∫ 0

τ0−τk
2

|yk|2

(
(τk2 )

−1|yk|2s+ 1
)−ν

(−s)−m
2

(
1{s≤−1}


1, if m < n

⟨ln(−s)⟩+ ⟨ln |yk|⟩, if m = n(
(−s)− 1

2 |yk|−1
)n−m

, if m > n

+ 1{s>−1}


(−s)m

2 , if m < n

(−s)m
2 + e

1
16s ⟨ln |yk|⟩, if m = n

(−s)m
2 + e

1
16s

(
(−s)− 1

2 |yk|−1
)n−m

, if m > n

)
ds

=

∫ 0

τ0−τk
2

|yk|2

(
(τk2 )

−1|yk|2s+ 1
)−ν (

1{s≤−1}


(−s)−m

2 , if m < n

(−s)−n
2 (⟨ln(−s)⟩+ ⟨ln |yk|⟩) , if m = n

(−s)−n
2 |yk|m−n, if m > n

+ 1{s>−1}


1, if m < n

1 + (−s)−n
2 e

1
16s ⟨ln |yk|⟩, if m = n

1 + (−s)−n
2 e

1
16s |yk|m−n, if m > n

)
ds := A.

If
τ0−τk

2

|yk|2 ≥ −2, for |yk| ≥ 2, we estimate

A ≲
∫ 0

τ0−τk
2

|yk|2

(
(τk2 )

−1|yk|2s+ 1
)−ν

1, if m < n

⟨ln |yk|⟩, if m = n

|yk|m−n, if m > n

ds ≲


1, if m < n

⟨ln |yk|⟩, if m = n

|yk|m−n, if m > n

where we have used

∫ 0

τ0−τk
2

|yk|2

(
(τk2 )

−1|yk|2s+ 1
)−ν

ds = τk2 |yk|−2(1− ν)−1
[
1− (τ0(τ

k
2 )

−1)1−ν
]
≲ 1

for ν < 1.
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If
τ0−τk

2

|yk|2 < −2, we have

A =

∫ 0

−1

(
(τk2 )

−1|yk|2s+ 1
)−ν

1, if m < n

1 + (−s)−n
2 e

1
16s ⟨ln |yk|⟩, if m = n

1 + (−s)−n
2 e

1
16s |yk|m−n, if m > n

ds

+

∫ −1

τ0−τk
2

2|yk|2

+

∫ τ0−τk
2

2|yk|2

τ0−τk
2

|yk|2

((τk2 )−1|yk|2s+ 1
)−ν

(−s)−m
2 , if m < n

(−s)−n
2 (⟨ln(−s)⟩+ ⟨ln |yk|⟩) , if m = n

(−s)−n
2 |yk|m−n, if m > n

ds

≲ (1− ν)−1τk2 |yk|−2
[
1−

(
1− (τk2 )

−1|yk|2
)1−ν]

1, if m < n

⟨ln |yk|⟩, if m = n

|yk|m−n, if m > n

ds

+

∫ −1

τ0−τk
2

2|yk|2


(−s)−m

2 , if m < n

(−s)−n
2 (⟨ln(−s)⟩+ ⟨ln |yk|⟩) , if m = n

(−s)−n
2 |yk|m−n, if m > n

ds

+

∫ τ0−τk
2

2|yk|2

τ0−τk
2

|yk|2

(
(τk2 )

−1|yk|2s+ 1
)−ν


(
τk
2 −τ0
|yk|2 )−

m
2 , if m < n

(
τk
2 −τ0
|yk|2 )−

n
2

(
⟨ln( τ

k
2 −τ0
|yk|2 )⟩+ ⟨ln |yk|⟩

)
, if m = n

(
τk
2 −τ0
|yk|2 )−

n
2 |yk|m−n, if m > n

ds

≲


1, if m < n

⟨ln |yk|⟩, if m = n

|yk|m−n, if m > n

+ τk2 |yk|−2(1− ν)−1

[(
τ0(τ

k
2 )

−1

2
+

1

2

)1−ν

− (τ0(τ
k
2 )

−1)1−ν

]

×


(
τk
2 −τ0
|yk|2 )−

m
2 , if m < n

(
τk
2 −τ0
|yk|2 )−

n
2

(
⟨ln( τ

k
2 −τ0
|yk|2 )⟩+ ⟨ln |yk|⟩

)
, if m = n

(
τk
2 −τ0
|yk|2 )−

n
2 |yk|m−n, if m > n

≲


1, if m < n

⟨ln |yk|⟩, if m = n

|yk|m−n, if m > n

where we have used τk2 ≥ 2τ0, |yk| ≥ 2, m > 2 , n > 2, ν < 1. Therefore, we
conclude the validity of (A.24). □
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the energy critical nonlinear heat equation in large dimensions. Comm. Math. Phys.,
352(1):215–285, 2017.

6. Charles Collot, Frank Merle, and Pierre Raphaël. Strongly anisotropic type II blow
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