
CHAPTER 2

Maximum Principles

2.1. Guide

rn this chapter we discuss maximum principles and their applications. TWo
kinds of maximum principles are discusr"d. OnL is due to uopi and the other to
Alexandroff. The former gives the estimates of solutions in terms of the Z@-norm
of the nonhomogeneous terms, while the latter gives the estimates in terms of the
Ln-notm. Applications include various a priori estimates and the moving plane
method.

Most of the statements in Secti on 2.2 are rather simple. One probably needs to
go over Theorem 2.lt and proposition 2.13. Sectionz.3 is often the starting point
of the a priori estimates. Section 2.4 can be omitted in the flrst reading, as we will
look atit again in Section 5.2. The moving plane method explained in Section 2.6
has many recent applications. We choose avery simple 

"*u*pl" to illustrate such a
method. The result goes back to Gidas-Ni-Nirenb"rg, but the proof contains some
recent observations in the paper [1]. The classical paper of Gilbarg-Serrin l7l rnaybe a very good supplement to this chapter. It *uy uiro be a gooJ idea to aisume
the Harnack inequality of Krylov-Safonov in Section 5.3, urio to ask students to
improve some of the results in the paper [7].

2.2. Strong Maximum principle ,

Suppose Q is a bounded and connected domain in IR". Consider the operatorZinQ
Lu : aii @) Diju * bi@) Diu * c(x)u

fot u e c21a1n C(CI). We always assume that a;;, bi, artrd c arecontinuous and
hence bounded in O and that L is uniformly elliptic in SZ in the following sense

aii@)€i€i >XEP foranyx e eandanyf e IR,
for some positive constant .1,.

Lnrrue 2.1. suppose u e cz(e)nc_(CI) satisfies Lu > oinewithc(x) < oA. If u has a nonnegative maximum in (2, then u cannot attain this maximum in

_ PRoor'. Suppose u attains its. nonnegative maximum of 0 in xs € e. ThenDiu(xs) : 0 and the marrix a : (?,i1xsj) is semi-negative deflnire."bv Jiin;*
condition the matril A : (aii @d) is poiitive deflniie. Hence the matrix AB issemi-negative deflnite with a nonpositive trace, that is, aii(xo)piju(xo) < 0. Thisimplies Lu(xd < 0, which is a contradiction. 
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ReN,Ienr 2.2. If c(x) ; 0, then the requirement for nonnegativeness can be

removed. This remark also holds for some results in the rest of this section.

TnBoRBrra 2.3 (Weak Maximum Principle). Suppose u e C2(O) n C$2) sat-

isfies Lu > O in Q with c(x) < 0 in Q. Then u attains on 0SZ its nonnegative

maximum in A.

pnoor. For any r > 0, consider ut(x) - u(x)*teo*t with a to be determined.

Then we have
Lw : Lu * eeq*t(anqz * bPt + c) .

Since blandcarebounded andan(x) >,1" > 0forany.x e S2,bychoosinga > 0
large enough we get

ay(x)az *bt@)a *c(;) > 0 foranyx e S2'

This implies Lw > 0 in O. By Lemma 2.1, w attains its nonnegative maximum

only on 0O, that is,
sup t < sup ul+ .

s2aa
Then we obtain

sup Lt < sup u/ < sup tp* < sup u+ * e sup- eo'r '
. s} S, AQ aS2 "veEQ

trWe finish the proof bY letting e -> 0.

As an application we have the uniqueness of solution u e CT(A) n C(O) to

the following nidchlet boundary value problem fot f e C(S2) and g e C(0S2)

Lu: f inQ
u : e on 0Q

if c(x) < 0 in S2.

RnuenKz.4. The boundedness of domain f2 is essential, since it guarantees

the existenie of maximum and minimum of a in 52. The uniqueness does not hold

if the domain is unbounded. Some examples are given in Remark 1.9 of Section

L.2 inChapter 1. Equally important is the nonpositiveness of the coefflcient c.

ExavrplB. SetQ: {(x,y) e IR2; 0 < x <7t,0 < y < n}' Thena:
sinx sin y is a nontrivial solution for the problem

Lu*2u:O inSl
u :0 on 0S2.

TnsoRBMz.s (Hopf Lemma). Let B be an open ball inR" with xo € AB'

suppose u e cz(n) n c(B u {xo}) satisfies Lu > 0 in B with c(x) < 0 in B.

Assume in addition that

u(x) <u(xd foranyx e B andu(xd 20.
Thenfor each outward. direction v at xs with v' n(rg) > 0 there holds

1
liminf :lu(*d - u(xo - tv)l > 0.
r--+0* t
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Rruenr 2.6. If in addition u e Ct (B U {xo}), then we have

Y<*o> > o .

dv
pnoor'. We may assume that B has the center at the origin-with radius r. We

assumefurther thatu e C@)andu(x) <u(xd forany x e B \{xo} (sincewe

can construct a tangent ball ^B1 to B at xs and .B1 C B). '

Consider u(x) : u(x) + eh(x) for some nonnegative function h. We will

at xo.Denote !- - 
-n 

n B;r(xd.Define h(x) : s-alxlz - e-o" with cv to be

determined. We check in the following that

Lh>O inX.
Direct calculation yields

f o,,(x)x;xi -2af o,,(x) - ,*Z,bi(x)xi+ ") - ce-o"
i, j:l i:l n:l

L o,, (x)x;x1 - Zaflo,,,(x) + bi@)xil + "l .

i,j:l i:1 )

By ellipticity assumption, we have

f o,,(x)x;x1 > Llxl' . L(i)' .0 in l .

i, j:t

So for a large enough, we conclude Lh > 0 in ,. With such h, we have Lu :
Lu * eLh > 0 in X for any I > 0. By Lemma 2.t, v cannot attain its nonnegative

maximum inside X.
Next we prove for some small e > 0 u attains at x6 its nonnegative maximum.

Consider u on the boundarY 08.
(i) For x e0rnB,since u(x) <u(xo),soz(x) <u(xd -6forsome6 > 0.

u(x)<u(xdforx€A>nB.
(ii) on>naB,h(x):0and u(x) <u(xdforx * xo. Hence rt(x) <u(xo)

on E n AB \ {xo} and u(xo) : u(xo).

Therefore we conclude
u(.ro) -u(xo-tv) >0 foranysmallt>0.

t
Hence we obtain by letting r -+ 0

1 _ ah.
lilgbnf :lu(xd - u(xo - tv)) > -e, (xo) .

By definition of h, we have

This flnishes the proof.
*r.0, < o.

tr
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THeonew2.T (Strong MaximumPrinciple). Let u e C2(O) n C(CI) satisfy

Lu
Z 0 with c(x) < O in Q. Then the nonnegative rnaximum of u in {2 can be as-

sumed only on 0{2 unless u is a constant.

PnOOr'. Let M be the nonnegative maximum of u in A. Set E : {x €

Q; u(x) - M\.It is relatively closed in Q. we need to show E : S2.

W" pror"iby contradiction. If E is a proper subset of Q, then we may flnd an

qpen Uall .A C S2 \ E with a point on its boundary belonging to E'.(In fact, we may

,hoor" a point P € Q \ E such that d'(p,>) < d'(p,0S2) first and then extend the

ball centered at p.Ithits E before hitting 49.) Suppose xo € 0B n E. Obviously

we have Lu > 0 in B and

u(x) < u(xil for any x e B and u(xs) - M Z 0'

Theorem 2.5 impli"s H(xo) > 0 where n is the outward normal direction at xs to

the ball B. Whiie xs i"s'the interior maximal point of S2, hence Du(xs) : 0. This
nleads to a contradiction.

Conolr-ARy 2.8 (Comparison Principle). Suppose u e Cz(Q) n C(C2) satis-

fies Lu > Oin{2withc(x) S 0in9. If u 3oon09, thenu <oin{2' Infact,

either u < 0 in {2 or u = 0 in {2.

.In order to discuss the boundary value problem with general boundary condi-

tion, we need the following result, which is just a corollary of Theorem 2.5 and

Theorem 2.7.

CoRoLl-ARy 2.9. Suppose {2 has the interior sphere property and that u e
Cz(tZ) n Cl $\ satisfies Lu > 0 in{2withc(x) < 0. Assume u attains its nonneg-

ative ruiaximum at xs e Q. Then xs e 0Q andfor any outward direction v at xs to

aa

unress u is constart in at. 
ff<*'> t o

-. AppLICATISN. Suppose Q is bounded in IR" and satisfies the interior sphere

property. Consider the the following boundary value problem

Lu: f inO
Eu

i.*a(x)u:9 on0Q
(x)

forsome f eC(h)and g eC(4s2).Assumeinadditionthat c(x) < 0inQand
a(x) > 0 on EA. T'hen the problem (*) has a unique solution u e C27{Z) n C1(CI)

if c t' 0ora #0. lf c:0andcv = 0,theproblem(*)has auniquesolution
u e C27tz) n C1(0) op to additive constants.

Pnoon. Suppose u Ls asolution to the following homogeneous bquation

Lu-O inS2

0u

*+ a(x)u - O on 0S2



Case l.c * 0 ora # 0. Wewantto show u =0.
Suppose that u has a positive maximum at xs e CI. rf u : const. > 0, this

contradicts the condition c # O in Q or a f 0 on 3Q. Otherwis a xs c Ee and
ffi@o) , 0 by Corollary 2'.9, which contradicts the boundary value. Thereforeu=0.

CasB 2. c :0 and cy = 0. We want to show z = const.
Suppose u is anonconstant solution. Then its maximum in O is assumed only

on 3Q by Theorem2.7, say at xo e 0e. Again corollary z.g implies Hf*A , o.
This is a contradiction. tr
The following theorem, due to Serrin, generalizes the comparison principle under
no restriction on c(x).

TuBoRnu 2.L0. supposeu e cz(e)nc(CI) satisfies Lu> o. If u <0inil
then either u < 0 in Q or u = O in e,

PRoor'. Method 1. Suppose u(xs): 0 for some ro € e. We will prove that
u = 0 in Q.

write c(x) : c+ @) - c- (.r) where c+ (x) and c- (x) arc the positive parr and
negative part of c(x) respectively. Hence z satisfies

aij Dtju * b;Diu - c-u ) -c*u > 0.
So we have u : O by Theorem 2.7.

, Method 2. set u : t1s-dx1 for some a > 0 to be determined. By Lu z 0, we
nave

aU Dijv * lot(ati * ai) * biDiu + (a1ra2 + bfi *c)u : 0.
Choose u large enough such that ato? * bp * c > 0. Therefore u satisfles

aij DUU * fa(au * ai) * bijDiu > 0
Hence we apply Theorem 2.7 to u to conclude that either u < 0 in e or u = 0 intr2. .n
The next result is the general maximum principle for the operator Z with no re-
striction on c(x).

TnpoRnu z.Lr. suppose there exists a w e cz(g)n cl (a) satisfying w > oinQandLu <ona. tf u € cz(a)nc(o)-satisfiesLuZoin{z,thenft
cannot assume in {2 its nonnegative ruaximum unless ff : con st. If, in add.itioil,
fi assumes its nonnegative maximum at xs e 0e o"i i t' consf then for any
outward direction v at xs to 0{l there hotds

A /u\
a, (;/ (xo) > o

if AA has the interior sphere property at xs.

Pnoor'. Set u - !!-. Then u satisfies

aii Diiu * BiDiu * (+)u > o
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where B; - bi * *o,ipijw.We may apply Theorem 2.7 and Corollary 2.9 to

u.n
Rnnaenr 2.12. If the operator L in S2 satisfles the condition of TheoremZ.LL,

then Z has the comparison principle. In particular, the Dirichlet bounclary value

problem

Lu:f ine
u: g on 0QT ---

has at most one solution,

The next result is the so-called maximum principle for narrow domain.

PRoposrTIoN 2.L3. Let d. be a positive number and e be a unit vector such

that l(y - x).el < dfor any x,y e t2. Thenthere exists a do > 0, depending only

on ). and the sup-nornx of bi and c*, such that the assumptions of Theorem 2.ll
are satisfied if d < ds.

PnOOr. By choosing e - (1,0, .. . ,0) we suppose Q lies in t0 < xr < d\.
Assume in addition lbil, c* S N for some positive constant N. We construct u as

follows: Set u : eod - edxt > 0 in O. gy direct calculation we have

Lw : -(orraz * bp)e"xt * c(e"d - edxt) < - (otro' * bp) + Neod .

Choose a so large that

ano?*bp>).a2-Na>2N.
Hence Lw S -2N * Ne"d :. N(eod - 2) < Oit d is sma1l such that eod < 2. tr

RgN4aRK 2.14. Some results in this section, including Proposition 2.13, hold

for unbounded domain. Compare Proposition2.l3 with Theorem 2.32.

2,3.' L Priori Estimates

In this section we derive a priori estimates for solutions to the Dirichlet prob-
lem and the Neumann problem.

Suppose Q is a bounded and connected domain in IR". Consider the operator

LinQ
Lu: aii(x)Piju * bi@)Diu * c(x)u

for u € C2(S)) n C(CI). We assume that aij, bi, and c are continuous and hence

bounded in O and that Z is uniformly elliptic in O, that is,

aii@)€i€i. XEP foranyx e Oandanyf e IRn

where.l. is a positive number. We denote by A the sup-norm of aii afid b;, that is,

maxlaiil +maxlbtl=/Y.
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PRoposlrroN Z.lS. Suppose u e C2(e) n C(CI) satisfies

Iu-y ine
lr-, onoe

forsome f e c@) andrp e c(la). If c(x) < 0, thenthereholds

lu(x)l 
= lgx lpl + C m;rx l/l for any-r e S2

where c is a positive constant depending onry on )", t\, anddiam(a).
Pnoop. we will construct a function ur in s2 such that
(i) L(w tu): Lu * f < O,or Lw 

=Tf in e;(ii) u *u : ut * g) 0, or w > +gon ES2.
Denote F : max a lf t and @ : ffi&X6e lgl. We need

Lw < *F in 52

rr:O onde.
Suppose the domain S2 lies in the set {0 < xr < d} for some d > O. Set u., :@+ (e"d * eaxt) F with a > o to be bhosln later. Then we have by direct calculation

*Lw : (attq2 + b1u)Fed*r - c@ _ c(eod _ eo*,)F
> (at:d * b1a)F > (a2)" * bp)F > F

bychoosingq large such that,'2),*b1@)a > l for any x e e. Hence,r, satisfles(i) and (ii). By corollary 2.g (the comparison prin"iple) we concrude _w 
= 

u < win f2, in particular

suplzl <O*(e"d_l)F
(2

where cv is a positive constant depending only on r. and A.
PRoposrrroN 2.16. Suppose u e C2({2) n Cr (e) satisfies

fu - 7 ins2

I#* a(x)u:e ono{Z

K\i;l:,,',#;f;il"#il:rmat direction to lsz. rf c(x) < o in s2 and ot(x) > cr, >

lu(x)l < c{ T3. ful +Tg* lrt} r', any x e {Z

where c is a positive constant depending onry on )", A, oto, and diam(tz).
pRoon. Sppclar Cese. c@) < _co < 0.

We wilt show

lu(x)l s +r + ao for any x e s2.Cg otg

l
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Define, : * F + *Q *u.Then wehave

Lu:.o,(*o***) * f '-F*f 'o ino

3 * ott) : " ( L" * !o) + e >- Q Le' o0n \ co o(,s /
on 0Q.

If u has a negative minimum in O, then u attains it on 3A by Theorem 2.5, say, at

xs e 0f,2. This implies ffi@d < 0 for n : n(xo), the outward normal direction at

xs. Therefore we get

/0u \
(, * uu 

)(xO 
< cuu(xs) < o

which is a contradiction. Hence we have u Z O in CI, in particular,

11
lu(x)l = AF + -O for any x e Q

. Note that for this special case cs and ofi ato independent of i. and A'
GrNBRal CesB. c(x) < 0 for any x e Q.

Consider the auxiliary function u(x) : 7(x)w(x) where z is a positive function in
Sl to be determined. Direct calculation shows that w satisfies

/
aii Diiw * BiD;w *(" * 

"ry-) 
* -- { in Q

* * (o + !%\,* :9 on oedn \ zon/ z

where Br : l@ti * ai)Diz *bi.Weneed to choose the function z > 0 in 0 such
that there hold in

c + aij Dijz * biDiz < -co(r, L, d,ao) < 0 in e
z

l0z 1

z}n - 2
ri

I

tl

aij Dijz * biDiz

ll0z.t--
lz 0n

<-co<0
1

1 -d,n-2

on 0Q,

inO

on 0Q.

SupposethedomainOliesin{0 lxr < d}. Choose z(x): A+efld -efr*'for
x e $2 for some positive A and B tobe determined. Direct calculation shows

-:(aii Diiz * b;D;a) -* W - W# = #;o) o,

if B is chosen such that B2a1r * flbt >- 1. Then we have

!a'l . P 
"F, 

.Lonz\nl- A - 2
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if A is chosen large. This reduces to the special case we just discussed. The new

extra first-order term does not change the result. We may apply the special case to

w,

RBuertK2.L-1. The result fails if we just assume a(x) > 0 on 0Q.
cannot even get the uniqueness.

tr

In fact, we

2,4. Gradient Estimates

The basic idea in the treatment of gradient estimates, due to Bernstein, involves

differentiation of the equation with respect to xk, k: 1, , . , ,1tt1 followed by multi-
plication by Dlru and summation over k. The maximum principle is then applied to

the resulting equation in the function u : lDulz, possibly with some modiflcation.
There are two kinds of gradient estimates, global.gradient estimates and interior -

gradient estimates. We will use semi-linear equations to illustrate the idea.

Suppose f,2 is a bounded and connected domain in IR". Consider the equation

aii (x) Diiu * bi@) Diu - f (x, u) in S2

for u e Cz (A) and f e C (O x IR). We always assume that aii and bi are continuous

and hence bounded in Q and that the equation is uniformly elliptic in Q in the

following sense

aii@)€i€i. \€P foranyx e Qandany6 e IR"

for some positive constant .1..

PRoposrrloN 2.L8. Suppose u e C3 (a) n 6'' (CI) satisfies

aii @) Diju * bi@) D;u : f (x , u) in {2(2.r)

for ai1,bi e C'(CI) and f e Ct (O * R). Thenthere holds

sup lDul < sup lDa I + C
aaa

where C is a positive constant depending only on )", diam(Q), laij, bilcr(o), M =
luly*'5.y, and l/l6rqi:xt_ M,M)).

Pnoor'. Set Z = aU Dii * biDi. We calculate L(lDul2) flrst. Note

DiQDul') - ZDnuDriu

and

(2.2) DiiQDul') - ZDrriDkju *2DruDkiju.
Differentiating (2.L) with respect to x/c, multiplying by Dpu, and summing over k,
we have by (2.2)

aij DijQDul') + biDiQDul\ :Za;i DpiuDkju - ZDpaii DpuD;iu

-2Dr,biDpuDiu *2Drf lDulz *2D*f D*u.



34 2. MAXIMUM PRINCIPLES

Ellipticity assumption implies

Lo,,D1,;uDlaiu > XID'rl' .

i,j,k

By Cauchy inequality, we have

L(lDul\ . )'lDzul' - ClDulz - C

where C is a positive constant depending only on

X, loij, bilcr(a) , and lf lc,(Ax[-M,M)) .

We need to add another term u2. We have by ellipticity assumption

L(u') - zaii DiuDiu * Zu{aij Duu * biDiu} > z|lDul' * Zuf .

Therefore we obtain

L(lDulz + orz) > xlDzulz + (zxa - c)lDulz - c > )'lDzul' + lDulz - c
if we choose cv > 0 large, with C depending in addition on M. In order to control
the constant term we may consider another function efl*' for fr = 0.Hence we get

r(loulz + auz * e7*r) > lt D'ul' * lDul' + {fr'onefl*' * frbtr7*' - c} .

If we put the domain S2 c {x1 > 0}, then e?*t > 1 for any x e S2. By choosing F
large, we may make the last term positive. Therefore, if we set ur - lDul'+olul'+
eF*, for large u, B depending only on )., diam(Q),lai.i , bilcr6z), M - lull-1e; and

lf lc'(AxlM,M11, then we obtain

Lw>0 inQ.

By the maximum principle we have

sHP 1l, s tiY' '

- This finishes the proof f

Similarly, we can discuss the interior gradient bound. In this case, we just
require the bound of supn lz l.

PRoposITIoN 2.19. Suppose u e C3 (SZ) satisJies

aii (x) Dij u * bi@) Diu : f (x , u) in S2

for ai1 , br e Cl (A), and f e C\(S2 * R). Then there holds for any compact subset
S2,GS2

sup lDr,rl < C

where C is a positive constatxt arOlnaing only on )", diam(Q), dist(Q', aQ), laij,
bil4gy, M : lulp*p1, and lf lcr(AxVM,Ml).



consider the auxiliary function with the following form:

w : ylDul, * alul, + rp*, .

set u - ylDul2. Then we have for operator L defined as before

Lu : (Ly)lDul2 * y LQDull + 2a;i Diy DilDulz .

Recall an inequality in the proof of proposition Z.Ig,
LqDul\ - ),lD2ul, - ClDrl2 _ C .

Hence we have

Lu > )"ylDzul' + Za,, Dr,uDiy Dtiu - ClDulz + (LillDulz _ C .

Cauchy inequality implies for any e > 0
l2a;i DpuDiy D*jul < elDylrlDrul, + ,1r1lDulz .

For the cut-off function y, warequire that

lDvl2 3 cv in Q.
Therefore we have by taking e > 0 small

Lu > ).ylDzu,, (, - rry) - 
", 

Drt, - c z *^r,Drut, - clDut, * c .

Now we may proceed as before. tr
In the rest of this section we use barrier functions to derive the boundary gradi-

ent estimates. We need to assume that the domain S2 satisfles the uniform Lx-terior
sphere property.

PROposrrroN 2.20. suppose u e c2(a) n c(CI) satisfies

aii @) D4u * bi@) Diu - f (x, u) in Q

for a;i, bi e C(CI) and f e C(CI x IR). Then there holds

lu(x) - u(x)l < Clx - xol for any x e {Z and.re € 0S2

where C is a positive constant depending only on )", e, loij,bilr_(o), M :
lulv*p1, ;711""1ox t-M,MD and lcplcrtol yoi ro*, ,p . ir(a) ,ik' , : u on o{2.

pnobr'. For simplicity we assume u : }on Ee. As before set L - aij Dii *
bi Di. Then we have

L(*.u) - *f > -F in e
where we denote F : supo l-f (.,u)1. Now flx xs e 0o. we will construct afunction u such that

Lw < -F in f2, w(xil - 0, wlaa 
= 

0.
Then by the maximum principle we have

-w<u1w ine.
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Taking normal derivative at xs, we have

0ul0w
^ (xo)ls ^ (xo).
dnldn

So we need to bound ffi{*d independently of xs.
Consider the exterior ball Bn(y) with Bp(y) n O - {,rs}. Define d.(x) as the

distance from x to 0Bp(y). Then we have

O <. d(x) I P - diam(A) for any x e S2

In fact, d(x) : lx - yl - R for any x e Q. Consider w : rb(d) forsome function
ry' deflned in [0, oo). Then we need

f (o) : o (=-1 ut(xO - 0)

,b@) > 0 for d > 0 (=a urlao Z 0)

,t'Q) is controlled .

From the flrst two inequalities, it is natural to require that ,h'@) > 0. Note

Lw : V"o,j DidDjd * ,lr'aij P,i d * t'biDid .

Direct calculation yields

Did(x)-xt-lilx-yl
Diid(x)= 6u 

, -@i-Y)(xi: 
Yi)

lx-yl lx-yl3
which imply lDdl - 1 and with A - sup la;y I

aiiDiid : # /- W 5t DidDid 
= W+- Fh

n/t, - )" nA - )"_,w-/ 5 n '

. Therefore we obtain by ellipticity

Lw < r/r"arjDidDjd + (/, (# + lbl) . )"rlr,, +.,1, ("t1 + lbl)

if we require ,,1r" < 0. Hence in order to have Lw < -F we need

L,tr" +,b' (T+ tbr) + r' < o.

To this end, we study the equation for some positive constants a and, b

lr" +arh' +b -0
whose solution is given by

{r@.)--b d+9f -92r-"aaaa
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for some constants C1 and Cz. Fonl/(O) : 0, we need Cr : C2. Hence we,have
for some constant C

which impries 
@) : -b- d + 9(l - e-od)

,h" (d) : -Cae-'d .

Inordertohave (t'@) > 0, weneed C > *noD. Since ,h,@) > 0ford > 0, so
lr(d) > ,/(0) - 0 for any d > 0. Therefore we take

v@) : -:o * $,""(r - ,-oo) : ?{*,'o (L - ,-'a) - ,l
Such ry' satisfies all the requirements we imposed. This finishes the proof.

2.5. Alexandroff Maximum Principle

Suppose Q is a bounded domain in IR' and consider a second-order elliptic
operator Z in Q

, : ari@)Dii * bi@)Di * c(x)
where coefflcients aii , bi, c are at least continuous in O. Ellipticity means that
the coefflcient matrix A : (ai) is positive definite everywhere in e. we sot
p - det(A) and D* : D* so that D* is the geometric mean of the eigenvalues of
A. Throughout this section we assume

0<l<D*<A
where,l" pd A are two positive constants, which denote, respectively, the minimal
and maximal eigenvalues of A.

Before stating the main theorem we first introduce the concept of contact sets.
For u e C2 (A) we define

n* 
- 

l-. 
- 

t^t. --/--\ > --/--\ , 
^ 

/ \ /r : tll e $2; u(x) S u(y) + Du(y).(x - y) for arLy x e S2).

The set l+ is called the upper contact set of u andHessian matrix D2u : (D;iu) is
nonpositive on f+. In fact, the upper contact set can also be defined for continuous
function, uby the following:

p+-
{y e a; u@) < u(y)+ p'(x -y) foranyx e eandsome p - p(y) € R"}.

clearly, z is concave if and only if r+ - S2. rf u e cl(e), then p(y) - Du(y)
and any support hyperplane must then be a tangent plane to the graph.

Now we consider the equation of the following form

Lu:f ine
forsome/eC(A).

V'@) : Qs-ad - 
u, : ,-'o (, -'r"')


