CHAPTER 2

Maximum Principles

2.1. Guide

In this chapter we discuss maximum principles and their applications. Two
kinds of maximum principles are discussed. One is due to Hopf and the other to
Alexandroff. The former gives the estimates of solutions in terms of the L°°-norm
of the nonhomogeneous terms, while the latter gives the estimates in terms of the
L"-norm. Applications include various a priori estimates and the moving plane
method. | '

Most of the statements in Section 2.2 are rather simple. One probably needs to
go over Theorem 2.11 and Proposition 2.13. Section 2.3 is often the starting point
of the a priori estimates. Section 2.4 can be omitted in the first reading, as we will
look at it again in Section 5.2. The moving plane method explained in Section 2.6
has many recent applications. We choose a very simple example to illustrate such a
method. The result goes back to Gidas-Ni-Nirenberg, but the proof contains some
recent observations in the paper [1]. The classical paper of Gilbarg-Serrin [7] may
be a very good supplement to this chapter. It may ‘also be a good idea to assume
the Harnack inequality of Krylov-Safonov in Section 5.3, and to ask students to
improve some of the results in the paper [7].

2.2, Strong Maximum Principle

Suppose 2 is a bounded and connected domain in R”. Consider the operator
L in Q
Lu = aij (X)Dijbl ~+ bi (X)D,'Lt -+ c(x)u
foru e C2(Q)NnC (). We always assume that a;j, b;, and ¢ are continuous and
hence bounded in Q and that L is uniformly elliptic in € in the following sense

a;; (x)&:& > M|E|*  for any x € 2 and any £ € R"
for some positive constant A.
LEMMA 2.1. Suppose u € C2(2)N C'_(Q) satisfies Lu > 0 in Q with c(x) <0

in Q. If u has a nonnegative maximum in 2, then u cannot attain this maximum in
Q.

PROOF. Suppose u attains its nonnegative maximum of Q in x, € Q. Then
D;u(xp) = 0 and the matrix B = (Dij (xo)) is semi-negative definite. By ellipticity
condition the matrix A = (aij (x0)) is positive definite. Hence the matrix AB is
semi-negative definite with a nonpositive trace, that is, g; j (x0) Diju(xo) < 0. This
implies Lu(xo) < 0, which is a contradiction. ]
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26 2. MAXIMUM PRINCIPLES

REMARK 2.2. If ¢(x) = 0, then the requirement for nonnegativeness can be
removed. This remark also holds for some results in the rest of this section.

THEOREM 2.3 (Weak Maximum Principle). Suppose u € c’Qnc (Q) sat-
isfies Lu > 0 in Q with c¢(x) < 0 in Q. Then u attains on 92 its nonnegative
maximum in Q.

PROOF. For any & > 0, consider w(x) = u(x)+ee*! with o to be determined.
Then we have ~ '
Lw = Lu + ee® ' (aj@® + bja +c¢) .
Since b; and ¢ are bounded and a;;(x) > A > O forany x € 2, by choosing a > 0
large enough we get
aj;(x)a? +bi(x)a +c(x) >0 forany x € Q.

This implies Lw > 0 in . By Lemma 2.1, w attains its nonnegative maximum

only on 9£2, that is,

supw < supw™ .

. Q E19)
Then we obtain

supu < supw < supw™ < suput + e sup **'.
Q Q 29 0% x€dQ

We finish the proof by letting & — 0. ]

~"As an applicatidn we have the uniqueness of solution u € C*(2) N C(Q) to
the following Dirichlet boundary value problem for f € C (R2) and ¢ € C(3S2)

Lu= f in £
u=¢ ona2

if c(x) < 01in £2.

| REMARK 2.4. The boundedness of domain SE is essential, since it guarantees
the existence of maximum and minimum of u in €. The uniqueness does not hold

if the domain is unbounded. Some examples are given in Remark 1.9 of Section
1.2 in Chapter 1. Equally important is the nonpositiveness of the coefficient c.

EXAMPLE. Set @ = {(x,y) € R*0 < x < 7,0 <y < m}. Thenu =
sin x sin y is a nontrivial solution for the problem

Au~+2u =0 in Q2
u=0 onadL2.

THEOREM 2.5 (Hopf Lemma). Let B be an open ball in R" with xo & dB.
Suppose u € C*(B) N C(B U {x¢}) satisfies Lu = 0 in B with ¢(x) < 0 in B.
Assume in addition that

u(x) < u(xg) foranyx € B andu(xg) > 0.

Then for each outward direction v at xo with v - n(xo) > O there holds

1
liminf —[u(xp) — u(xo — tv)] > 0.
t—0t



REMARK 2.6. If in addition u € C'(B U {x¢}), then we have
0
—”—(xo) > 0.

PROOF. We may assume that B has the center at the origin with radius r. We
assume further that u € C(B) and u(x) < u(x) for any x € B \ {xo} (since we
can construct a tangent ball B; to B at xg and By C B).-

Consider v(x) = u(x) + eh(x) for some nonnegative function A. We will
choose ¢ > 0 appropriately such that v attains its nonnegatlve maximum only
at xg. Denote ¥ = BN B1 (x0). Define h(x) = el _ ¢ ~ar’ with « to be
determined. We check in the followmg that

Lh >0 inX.

Direct calculation yields

i,j=1

Lh = ““1’"2{405 Z a;; (x)x;ix; — 20 Za”(x) — 200 Zb (x)x; + C} — ce™"

o—alxl? {4a Z a;; (X)x;x; — 20 Z[a,, (x) + b; (x)x;] + c}
i,j=1
By ellipticity assumption, we have

2
Z aij(x)xixj = )\lxl2 > A <2) >0 inX.
i,j=1
So for « large enough, we conclude Li > 0 in X. With such 4, we have Lv =
Lu+eLh > 0in X for any ¢ > 0. By Lemma 2.1, v cannot attain its nonnegative
maximum inside 3.
Next we prove for some small ¢ > 0 v attains at xo its nonnegative maximum.
Consider v on the boundary 0 X.
(i) For x € X N B, since u(x) < u(xp), so u(x) < u(xp) — 4 for some § > O.
Take ¢ small such that ¢4 < & on % N B. Hence for such ¢ we have
v(x) < u(xg) forx € 92 N B.
(ii) On = N'dB, h(x) = 0 and u(x) < u(xp) for x # xo. Hence v(x) < u(xg)
on ¥ NAB \ {x0} and v(xp) = u(xo).
Therefore we conclude
' v(x0) — v(x0 — 1V)
4
Hence we obtain by letting t — 0

> (0 for anysmallz > 0.

oh
liminf —[u(xg) — u(xg — tv)] = —e—(xo) .
t—0 t av

By definition of /4, we have
oh
—(xp) < 0. ,
v v
This finishes the proof. _ ]
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THEOREM 2.7 (Strong Maximum Principle). Let u € C2(Q2) N C(Q) satisfy
Lu v
> 0 with c(x) < 0in Q. Then the nonnegative maximum of u in  can be as-
sumed only on 32 unless u is a constant.

PROOF. Let M be the nonnegative maximum of u in Q. Setx = {x €
Q: u(x) = M}. It is relatively closed in £2. We need to show X = 2.

We prove by contradiction. If ¥ is a proper subset of 2, then we may find an
open ball B C €2\ X with a point on its boundary belonging to %. (In fact, we may
choose a point p € 2\ X such that d(p, &) < d(p, 3K2) first and then extend the
ball centered at p. It hits ¥ before hitting 9€2.) Suppose xo € 9.8 N 3. Obviously
we have Lu > 0in B and '

u(x) < u(xg) foranyx € B andu(xo) = M =>0.
Theorem 2.5 implies g—Z(xO) > 0 where n is the outward normal direction at xg to

the ball B. While xp is the interior maximal point of €2, hence Du(xg) = 0. This
leads to a contradiction. U

COROLLARY 2.8 (Comparison Principle). Suppose u € c*(QnNcC (Q) satis-
fies Lu > 0 in Q with c(x) < 0in S2. Ifu < 0ond, thenu < 0in Q. In fact,
eitheru < 0in Qoru =0 in Q.

~.In order to discuss the boundary value problem with general boundary condi-
tion, we need the following result, which is just a corollary of Theorem 2.5 and
Theorem 2.7.

COROLLARY 2.9. Suppose Q2 has the interior sphere property and that u €
C?(Q2)N CY(Q) satisfies Lu > 0 in Q with c(x) < 0. Assume u attains its nonneg-
ative maximum at xo € S2. Then xo € 32 and for any outward direction v at xo o
a2

?*Li(xo) >0
av
unless u is constant in Q.

APPLICATION. Suppose 2 is bounded in R" and satisfies the interior sphere
property. Consider the the following boundary value problem
Lu= f in 2
(%) | )

tad 4+ a(x)u =¢ onds2
on

for some f € C() and ¢ € C(8R). Assume in addition that ¢(x) < 0 in 2 and
a(x) > 0 on 2. Then the problem () has a unique solution u € C2(2) N CH(Q)
ifc 2 0ora # 0. If c = 0and a = 0, the problem (%) has a unique solution
u € C2(2) N CY(L) up to additive constants.

PROOF. Suppose u is a solution to the following homogeneous equation
Lu=0 1in 2
ou

— 4+ a(x)u =0 ondf2.
n



CASE 1. ¢ # 0 or « # 0. We want to show u = 0.

Suppose that u has a positive maximum at x, € . If u = const. > 0, this
contradicts the condition ¢ # 0 in Q or & # 0 on Q. Otherwise Xo € 02 and
g%(xo) > 0 by Corollary 2.9, which contradicts the boundary value. Therefore
u=0.

CASE 2. ¢ = 0 and o = 0. We want to show u = const.

Suppose u is a nonconstant solution. Then its maximum in £ is assumed only
on 92 by Theorem 2.7, say at xy € 2. Again Corollary 2.9 implies %";‘(xo) > 0.
This is a contradiction. ]

The following theorem, due to Serrin, generalizes the comparison principle under
no restriction on c(x).

THEOREM 2.10. Suppose u € C?*(Q) N C(RQ) satisfies Lu > 0. If u < 0in 2,
then either u < Q0in Q oru =0 in Q. '

PROOF. Method 1. Suppose u(xy) = 0 for some X0 € §2. We will prove that
u = 0in Q.

Write c(x) = ¢™(x) — ¢~ (x) where ¢t (x) and ¢~ (x) are the positive part and
negative part of c(x) respectively. Hence u satisfies '

a,'j-Dl-ju +biDiI/t —Cc u > —c+u > 0.
So we have u = 0 by Theorem 2.7. : _
Method 2. Set v = ue™**! for some o > 0 to be determined. By Lu > 0, we
have . b
al-jDijv —+ [a(al,- + a,-l) -+ bi]D,'U -+ (011052 -+ bIC\( + C)U > 0.
Choose « large enough such that ana? + bia + ¢ > 0. Therefore v satisfies
a;j Dijv + [ee(ay; + a;1) + b;1Djv > 0.

Hence we apply Theorem 2.7 to v to conclude that either v < Oin Qorv = 0in
Q. O

The next result is the general maximum principle for the operator L with no re-
striction on c(x).

_THEOREM 2.11. Suppose there exists a w € C2(2)N Cl(2) satisfying w > 0
in2and Lw < 0in Q. Ifu € C2(2) N C(82) satisfies Lu > 0 in S, then =

cannot assume in 2 its nonnegative maximum unless “ = const. If, in addition,

o assumes its nonnegative maximum at x, € 92 and = & const, then for any

outward direction v at xo to 32 there holds

0 /u
— (——) (x0) >0
v \w

if 0S2 has the interior sphere property at x.

PROOF. Setv = I_Lut— Then v satisfies

L
ClijDijU + B;D;v + (-g—) v>0
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where B; = b; + %aij D;jw. We may apply Theorem 2.7 and Corollary 2.9 to
v. Ll

REMARK 2.12. If the operator L in 2 satisfies the condition of Theorem 2.11,
then L has the comparison principle. In particular, the Dirichlet boundary value
problem

Lu= f in S
u=¢ onaif2
has at most one solution.

The next result is the so-called maximum principle for narrow domain.

PROPOSITION 2.13. Let d be a positive number and e be a unit vector such
that |(y — x) - €| < d for any x,y € Q2. Then there exists a dy > 0, depending only
on A and the sup-norm of b; and c*, such that the assumptions of Theorem 2.11
are satisfied if d < dj.

PROOF. By choosing e = (1,0, ... ,0) we suppose Q lies in {0 < x; < d}.
Assume in addition |b;|, ¢t < N for some positive constant N. We construct w as
follows: Set w = €%*? — ¢**1 > 0 in . By direct calculation we have

- Ll = —(anocz -+ bla)eo‘x‘ + c(e% — ) < ——(a“oéz + bloc) + Ne™®
Choose o so large that
a11a2 + b > rax? — Na > 2N .
Hence Lw < —2N 4+ Ne%d = N(e® —2) < 0if d is small such that e < 2. [

REMARK 2.14. Some results in this section, including Proposition 2.13, hold
for unbounded domain. Compare Proposition 2.13 with Theorem 2.32.

2.3. A Priori Estimates

In this section we derive a priori estimates for solutions to the Dirichlet prob-
lem and the Neumann problem.
Suppose Q2 is a bounded and connected domain in R". Consider the operator
L in Q2
Lu = a;j(x)D;ju + b;(x) Diu + c(x)u

for u € C2(Q) N C(2). We assume that a;;, b;, and ¢ are continuous and hence
bounded in 2 and that L is uniformly elliptic in €2, that is,

a;; (x)&:&; = A|E]* forany x € 2 and any £ € R"
where A is a positive number. We denote by A the sup-norm of a;; and b;, that is,

max laij| + max |bi] < A
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PROPOSITION 2.15. Suppose u € C?(Q2) N C(Q) satisfies

Lu=f inQ
U=g on 42

Jor some f € C(Q) and ¢ € C(3Q). If c(x) <O, then there holds

[u(x)| < ngsalegpl “+ Cmgxlfl fofcmyx e Q

where C is a positive constant depending only on A, A, and diam (£2).

PROOE. We will construct a function w in €2 such that

(1) L(w:ﬂ:u)=Lw:l:f§0,oer§:}:finSZ;
(i1) w:tu:w:i:gon,orwzngoonaSZ.

Denote F' = maxq | /| and ® = max,q [o]. We need
Lw<—-F inQ
w > O on 0%2.

Suppose the domain  lies in the set {0 < x; < d} for some d > (0. Set w —
O+ (e —e* )V F with o > 0 to be chosen later. Then we have by direct calculation

—Lw = (a;;0? + bia) Fe™ — cd — c(e® — e“"NYF
> (ana® +bia)F > (a®A + bja)F > F
by choosing « large such that @2 + by (x')oz > 1 for any x € Q. Hence w satisfies
(1) and (ii). By Corollary 2.8 (the comparison principle) we conclude —w<u<w
in €, in particular :
SUp Ju| < & + (e — 1)F

where « is a positive constant depending only on A and A O
PROPOSITION 2.16. Suppose u e C%2(Q) N Cl(Q) satisfies

Lu = f in §2
gﬁf +aXu=¢9 ond
- Where n is the outward normal direction to 9%Q. Ifc(x) <0in Q and a(x) > oy >
0 on 0Q, then there holds
[u(x)| < C{II(;’I?ZX lo| + mélx lfl} Jorany x € Q

where C is a positive constant depending only on ), A, oo, and diam(S2).

PROOF. SPECIAL CASE, c(x) < —cp < 0.
We will show

1 1 :

lux)| < —F + — forany x € 2.

y
Co (64
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Define v = E%F + &%CD + u. Then we have
1 1 )
Lv = c(x) (—F+———<I>>:i:f§——Fj:f§O in €2
Co (044

1 1
a—‘i+av=a<—F+—®>ﬂ:¢z®:&¢20 on 9§2.
an Co (044}

If v has a negative minimum in Q, then v attains it on d$2 by Theorem 2.5, say, at
xo € 0K2. This implies %(xo) < 0 for n = n(xp), the outward normal direction at
xo. Therefore we get

(—aE +av) (x0) < av(xg) <O
on

which is a contradiction. Hence we have v > 0 in Q, in particular,
1 1
lu(x)| < —F 4+ —® foranyx € 2.
Co (0.4y)

Note that for this special case ¢o and « are independent of A and A.

GENERAL CASE. c(x) < 0 for any x € 2.
Consider the auxiliary function u(x) = z(x)w(x) where z is a positive function in
Q to be determined. Direct calculation shows that w satisfies

D b; D; ‘
aijDijw+BiDi'LU+<C+a'lj 42t Z) =—Ji in 2
Z Z
d 10
—w—i— a+——§- 'w=£ on J£2
on z on 2

where B; = %(ai i +a;;)D;jz 4+ b;. We need to choose the function z > 0 in Q such
that there hold in
4 a;j DijZ +b;D;z

< —co(A, A,d,0p) <0 1in 2

Z
_ +18z>1 90
o+ —-—— > -« n ,
zon =20 ©
or
ij Dij b; D; .
il ”z;_ »Zs—co<0 n 2
10z <1 56
U _._a .
zon| 2 ¢ on

Suppose the domain 2 lies in {0 < x; < d}. Choose z(x) = A + ef? — eP* for
x € Q for some positive A and 8 to be determined. Direct calculation shows

1 (B%ai1 + BbeP*r _ B*ay + Bby 1
~5 ey Dyz+biDi) = = e 2 e Z a7 O
if B is chosen such that 8%a;; + Bb; > 1. Then we have '
1 0z B pa 1
= - < _
zon| — A° =2™
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if A is chosen large. This reduces to the special case we just discussed. The new

extra first-order term does not change the result. We may apply the special case to
w. _ ]

REMARK 2.17. The result fails if we just assume «(x) > 0 on 9€2. In fact, we
cannot even get the uniqueness.

2.4. Gradient Estimates

The basic idea in the treatment of gradient estimates, due to Bernstein, involves

~ differentiation of the equation with respect to xx, kK ='1, ..., n, followed by multi-
plication by D;u and summation over k. The maximum principle is then applied to
the resulting equation in the function v = | Du/|?, possibly with some modification.
There are two kinds of gradient estimates, global gradient estimates and interior -
gradient estimates. We will use semi-linear equations to illustrate the idea.
Suppose 2 is a bounded and connected domain in R". Consider the equation

aij(x)Diju—i—bi(x)Diu = f(x,u) n §2

foru € C*(Q) and f € C(2xR). We always assume that a;; and b; are continuous
and hence bounded in © and that the equation is uniformly elliptic in £2 in the
following sense

a;; (x)§:& > A|E]? forany x € Q and any £ € R”

for some positive constant A. o

PROPOSITION 2.18. Suppose u € C*(2) N CI(Q) satisfies
(2.1) ai; (x)Dijit + b (x)Dyu = f(x,u) inQ
fora;;, b; € CY(Q) and f € CI(K_Z X R). Then there holds

| sup |Du| < sup |Du|+ C
Q IR

where C is a positive constant depending only on A, diam(£2), |a;;, bilci(q)y, M =
[l Leo(), and | [ et @xi—m,m)-

PROOF. Set L = a;; D;; + b; D;. We calculate L(|Dul|?) first. Note

D;(|Du|*) = 2DyxuDy;u

and

(22) D,](]DL{|2) = 2Dki iju -+ 2DkuDk,-ju 5

Differentiating (2.1) with respect to x;, multiplying by Dyu, and summing over &,
we have by (2.2)

a;; D,-j(lDulz) + b,’ Dl(|Du|2) = 2a,~j Dkiuiju — 2Dka,-j DkuDiju
| — 2Dyb; DyuDiu + 2D, f|Du|* + 2Dy f Dyu .



34 ‘ 2. MAXIMUM PRINCIPLES

Ellipticity assumption implies
ZaijDkiuiju > A|D?ul*.

| byl

By Cauchy inequality, we have
L(|Du|?) > A|D*u|* — C|Dul|* - C
where C is a positive constant depending only on
Ay ags bilevgy s and | fler@x-m,m) -
We need to add another term 1?2, We have by ellipticity assumption
L(u?*) = 2a;; D;uDju + 2u{a;; Diju + b; D;u} > 27| Du|* + 2uf .
Therefore we obtain
L(|Du|?® + au®) > A D%u|* + 2ra — C)|Dul* — C > A|D*ul|* + |Dul* = C

if we choose a > 0 large, with C depending in addition on M. In order to control
the constant term we may consider another function e#*! for B > 0. Hence we get

L(IDul? + au® + e#1) > A|D*ul® + | Dul* + {B*an ™ + pb1ef — C} .

If we put the domain  C {x; > 0}, then ¢#*! > 1 for any x € Q. By choosing f
large, we may make the last term positive. Therefore, if we set w = |Du|*-+or|u|*+
eP*1 for large o, B depending only on A, diam(S2), |a;;, b; lc1@y, M = |u|Leo(qy and
| flct@xi—m,mp» then we obtain

Lw>0 1n Q.
By the maximum principle we have

supw < supw.
Q aQ

~ This finishes the proof. ' [

Similarly, we can discuss the interior gradient bound. In this case, we just
require the bound of supg, |u|.

PROPOSITION 2.19. Suppose u € C3(2) satisfies
a,-j(x)Diju—i—bi(x)Diu = f(x,u) in

foraj, b; € CH(Q), and f € CY(2 x R). Then there holds for any compact subset
Qe

sup |Du| < C
Q/

where C is a positive constant depending only on A, diam(£2), dist(2, 982), |a;j,
bilcl(ﬁ), M = |u|peq), and lf|c1(§2x[—M,M])-



PROOF. We need to take a cut-off function y € Cy°(2) with y > 0.and
consider the auxiliary function with the following form:

w =y |Dul* + a|u|? + f*1
Set v = y|Du|?. Then we have for operator L defined as before
Lv = (Ly)|Dul* + y L(|Du[® + 2a;; D;y D;| Du]?.
Recall an inequality in the proof of Proposition 2.18,
L(|Du)*) > A|D*u|* — C|Dul* — C .

Hence we have .

Lv = Ay |D*ul® 4 2a;; DauD;y Dyju — C|Dul? + (Ly)|Dul* — C .
Cauchy inequality implies for any & > 0

|2a;; DeuDiy Dyju| < e| Dy [*|D*uf* + c(e)| Dul?.
For the cut-off function y, we require that
IDy|>?<Cy inQ.

Therefore we have by taking ¢ > 0 small

| Dy |?

1
Lv > Ay|D%u|? (1 —¢ ) — C|Duf* - C > Eklezulz — C|Dul)* ~ C.

Now we may proceed as before. [

In the rest of this section we use barrier functions to derive the boundary gradi-
ent estimates. We need to assume that the domain  satisfies the uniform exterior
sphere property.

PROPOSITION 2.20. Suppose u € C2(Q) N C(Q) satisfies
a;j (X)Diju + b;(x)Diu = f(x,u) inQ
fora;;, b; € C(Q) and f € C(Q x R). Then there holds
lu(x) — u(xg)| < Clx — xo|l forany x € Q and xo € 952

where C is a positive constant depending only on A, 2, laij, bilpeo(y, M =
1] ooy, | f Lo @x -, m7) and l@lc2 @y for some ¢ € C?(Q) with @ =u on dQ.

PROOF. For simplicity we assume u# = 0 on 952. As before set [, — a;jDi; +
b; D;. Then we have

LEw) =+f>—F inQ

where we denote F = supg | (-, u)|. Now fix x; € 9. We will construct a
function w such that

Lw§~Fin§2, w(xg) =0, Wlag > 0.
Then by the maximum principle we have

—w=<u<w inQ.
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Taking normal derivative at xg, we have

du

a—,;(xo)

Jw
< —_— .
=< (x0)

So we need to bound %“f(xo) independently of xo.
Consider the exterior ball Bz (y) with Bg(y) N € = {x}. Define d(x) as the
distance from x to d Bg(y). Then we have

0<d(x) <D= diam(£2) forany x € 2.

In fact, d(x) = |[x — y| — R for any x € 2. Consider w = ¥ (d) for some function
Y defined in [0, c0). Then we need

¥ (0) =0 (= w(xp) =0)
Y(d) >0 ford>0 (= wlsg >0)
¥’(0) is controlled .

From the first two inequalities, it is natural to require that ¥'(d) > 0. Note
L= W”aij DldDJd -+ K/f’d,’j Dij d —+ W’b,‘ Dld .

Direct-calculation yields

D () = Xi — Vi
|x — ¥
T (xi — yi)(xi = yi)
Dijd(X) = J - 3
|x — ¥ |x — ¥l
which imply |Dd| = 1 and with A = sup |a;; |
aijDijd = i - iy DldDJd = " == .
Ix =yl |x =yl x =yl |x—=y
nA — A nA — A
= = .
lx — I R
- Therefore we obtain by ellipticity
nA — A A — A

if we require ¢ < 0. Hence in order to have Lw < —F we need

A — A
c - —+|b|)+F§O.

To this end, we study the equation for some positive constants a and b

w_//_i_aw/_’_b:o

A’w// + w! (

whose solution is given by
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for some constants C; and C,. For ¥ (0) = 0, we need C; = C,. Hence we-have
for some constant C

b c
Yd) =—=d+—(~-e*)
a a
which implies
I/I/(d) - Ce—ad _ é = e—ad (C _ éead>
o .
Y"(d) = —Cae .

In order to have /'(d) > 0, we need C > 2¢%P. Since ¢'(d) > 0 ford > 0, so
Y (d) > ¥ (0) = 0 for any d > 0. Therefore we take

b b b (1 Al
d :——d _._aD]__ —ad —— _aDl__ —ad "‘d .
V@) =2 d+ S (1 - ) a{ae (1= o)
Such yr satisfies all the requirements we imposed. This finishes the proof. ]

2.5. Alexandroff Maximum Principle

Suppose €2 is a bounded domain in R” and consider a second-order elliptic
operator L in 2

L = a;;(x)Djj + b;(x)D; + c(x)
where coefficients a;;, b;, ¢ are at least continuous in . Ellipticity ‘means that
the coefficient matrix A = (a;j) is positive definite everywhere in 2. We set
D = det(A) and D* = D7 so that D* is the geometric mean of the eigenvalues of
A. Throughout this section we assume
O<A<D"<A

where A and A are two positive constants, which denote, respectively, the minimal
and maximal eigenvalues of A.

Before stating the main theorem we first introduce the concept of contact sets.
For u € C%(2) we define '

M ={y e Qu) <uly)+ Du®y) - (x — y) for any x € 2} .

The set I'* is called the upper contact set of # and Hessian matrix D%y = (Djju) is
nonpositive on I'". In fact, the upper contact set can also be defined for continuous
function u by the following:

rt =
{y € Q;ux) <u(y)+p-(x —y)forany x € 2 and some p = p(y) € R"}.

Clearly, u is concave if and only if 't = Q. If u € C}(2), then p(y) = Du(y)
and any support hyperplane must then be a tangent plane to the graph.
Now we consider the equation of the following form

Lu=f inQ
for some f € C(2).



