
L4 Waves on the finite interval

In the ia,st lectLue we rised the Leflection method to solve the boundar)rvalue problem for the wave equation on the

half-line. We would like to apply thg same method to the boundarl, r,alue problems on the finite interval, rvhich

correspond to the physicaily realistic ca^se of a finite string. Corrsider the Dirichlet rverve problem ou the finitc linc

(25)

The homogeneous Dirichlei conditions correspond to the vibrating string having fixed ends, as is the case for

musical instrumcnts. Using our intuition from the half-line problems, where the wave reflects from the fixcd
end, we can irnagine that in the case of the finite interval the wave bounces back and forth infinitely many times

between the endpoints. In spite of this, we can still use the reflection method to find the value of the solution
to problem (25) at any point (r,t).

Recall ihat the idea of the reflection method is to extend the initial data to the whole line in such a waY,

that the boundary conditions are automatically satisfied. For the homogeneous Dirichlet data the appropriate
choice is the odd extension. In this case, we need to extend the initial data $,ry', lvhich are defined only on
theinterval 0<r<l,insuchawaythattheresultingextensionsareoddwithrespecttobothr:0,and
r : L. That is, the extensions must satisfy

f (-t): -f (r) and f (t - *): -f (t + r). (26)

Notice that for such a function /(0) : -/(0) from the first condition, and f (l) : -f 0 from the second condition,
hcnce, /(0) : f (L):0. Subsequently, the solution to the IVP with such datawill be odd with respect to both
r : O and r : l, and the boundary conditions will be automatically satisfied. Notice that the conditions (26)

implythatfunctionsthat areoddwithrespect toboth r:0 andr: I satisfy f (21+r): -f (-r): f (r), which
means tlrat such functions must be 2l-periodic, Using this we can define the extensions of the initial data $, tl-t as

(d@) for0<n11, (r!@) for0<r{l,
d*,@):1 -d?*) for -l<r<0, ,!*,(r):1 -rb?*) for -l<n<0, (27)

I extended to be 2l * periodic, I extended to be 2l - periodic.

Now, consider the IVP on the whole line with the extended initial data

luu-c2't1"r*:g, -oo< r<@i0<f <oo,
\ ,(r, 0) : d"**.(r),ut(r,0) :T/"-,(r).

tr'or the solution of this IVP we automatically have u(O,t) : u(l,f) : 0, and the restriction

u(t:, t) : u(n,l) loa,a,,

wili solve the boundary value problem (25), By d'Alambert's formula, the sohrtion will be given a^s

tf.t"*,(s) d,s (28)

for 0 < r .--1, Although formula (28) contains all the information about our solution, we would like to have an
expression in terms of the original initial data, so that the values of the solution can be directly computed using
the given functions rt'@) and 1.,@). For this, we need to "bring" the points r - ct and r * ct into the interval
(0,1) using the periodicity and oddity of the extended data. To illustrate how this is done, let us fix a point
(r,l) and try to find the vaiue of the solution at this point by tracing it back in time along the characteristics
to the initial data. The sketch of the backwards characteristics from this point appears in Figure 5 above.
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( utt-c2'u*,-0, 0<r <1,0<l(oo,
1 ,@,0) : @(r), u1(r,O) : r!@), n ) 0,

[ ,(0, t) : u(L,l) : 0, , > 0.

u(r,t):lrld.-,t +cf) * Q"*,(r-cf)] **l,-_:'



Figure 5: The backwards characteristics from the point (*,t),

In gencral, the points r* ct and r - cl will end np either in the interval (0,1) or (-1,0) aftcr finitely many
translations by the period 21, If the point ends up in (0,1) (even number of reflections), then the value of the
initial data picked up b1, the reflected characteristic will be taken with a positive sign. If, ltorvever, the point
ends up in thc interval (-1,0) (odd number of reflections), then we need to rcflect this point with respect to
tr : 0, and the corresponding value of the initial data will be ta]<en with a negative sign.

FYom Figure 5 we see that n * ct goes into the inten,al (0, l) (2 reflections) afber translating it to the left by one
perlod 21, but the point r - ct goes into the interval (-1, 0) (3 reflections) afier a right translation by 21, so we need
toreflecttheresultingpointn-ct*2ltoarriveatthepointct-r-2lintheinterval(0,1), Thesolntionwillthenbe

1

u(r,t) : rlbt" * ct - 2l) - $(ct - r - 2l)) +

For the integral term, we can break it into trvo integrals as follows

* l.'.: t!"*'(s) d's'

t nr*ct-2|

* J",-,-,, l''(s) d's

* |,..:d*,(s) 
o,: * l.:. ,a*,(s) ds + * l:: $".,(s)d,s

Notice that from the odditl, of th.*,, the integral over the interval lr - ct,ct - r) will be zero, rvhile by periodicity,
we can bring the interval lct - r,r * ct) into the interval (O,Z) Uy subtracting one period 21. Thus, the solution
can be written as

u(r,t) : 
f,fOC 

t ct - 2t) - S@t - n - 2t)) +

Clearly, the derivation of the above expression for the solution depends on the chosen point, which in turn deter-
miues horv many reflections the bacl<rvarcl characteristics undergo before arriving at the r axis. Flence, the soiution
rvili be given by different expressions, clepencling on the region from lvhich the point is taken. These cliffereni regiorrs
ale depicted in Figure 6, where the labels (*,n) show how many times each of the two backward characteristics
gets reflected before reaching the r axis. Expression (29) will be valid for all the points in the region (3,2).

The method used to arrive at the expression (29) can be used to find the value of the solution at any point
(r,t), althottgh it is quite impractical to derive the expression for each of the regions ciepicted in Figure 6.
Fltrthermore, it does uot generalize to higher dimensions, nor does it apply to the heat eqriation (no characteristics
to tracc back). Latcl ou rve i,vill siudy another method, called separati,on of uarr,ables, which allows for a morc
general way of approaching boundary value problemsrgn finite intervals.

(2e)



Figure 6: Regions of (r,t) € (0,,) x (0, oo) with the different number of reflections.

Example l-4.1. Consider the Dirichlet wave problem on the finite interval

( utt - ur, :0, for 0 < fr 11,
{ u(r'}) : r(l - r)'u1(r'0) : *''
l. ,(0, t) : tt(\,f) : 0.

Find the value of the solution at the point (f , f ).
Noticethatinthisproblem c:7,andl:-1,-sotheperiodof theextendeddatawillbe2l:2. Thesketch

of the backwarcl characteristics from the point (r,t): (1,8) ,pp.ars in the figure below.
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Figure 7: The backwards characteristics from the point (i,B)

The characteristics intersect the r axis at the points

n-t:1-Z:-tZ and r*t:1+Z:zl
The point -1t goes to the point ] after a right translation by one period, while the point 3| goes to the point

1] after a left translation by one period, After a reflection with respecl to r: 1, this point will end up at. t,
thus, the value of the initial O*:;*, be taken with a 
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interval [i,1i] of 11.*, rviil be zero dlle to its oddity with respect to rc:1, The value of the solution is then

"(1,r):

tr

L4.L The parallelogram rule

Recall from a homervork problem, that for the vertices of a characteristic parallelogram A, B, C and D as for
example in Figure 8, the valnes of the solr-ition of the wave equation are related as foliows

u(A)+u(C):u(B)+u(D).

Hence, we can find the valtie at the vertex ,4 from the rralues at the three other vertices,

u(A):u(B)+u(D)-u(C).

Notice that the values at the vertices B and C in Figure B can be found from the expression of the solution
for the region (0,0), while the value at D comes from the boundary data. Thus we reduced finding the value
at a point in the region (1,0) to finding values in the region (0,0), One can always follow this procedure to
evalttate the solution in the regions (m*1,n) and (m,nl1) via the values in the region (m,,n), provided the
boundary condition is in the Dirichlet form.

Figure 8: The parallelogram rule.

!4.2 Conclusion

We applied the reflection method to derive expressions for the solution to the Dirichlet wave problem on the finite
interval. However, the method yields infinitely many expressions for different regions in (z,t) e (0,1) x (0,oo),
depending on the number of times the bacl<ward characteristics from a point get reflected before reaching the r
axis, where the iuitial data is defined, This makes the method impractical in applications, and is not generalizable
to higher dimensions and other PDEs, An alternative method (separation of variables) of solving boundary
value problems on the finite interval will be described later in the course,
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