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A B S T R A C T

We classify the local asymptotic behavior of positive singular solutions to a class of subcritical
sixth order equations on the punctured ball. First, using a version of the integral moving spheres
technique, we prove that solutions are asymptotically radially symmetric solutions with respect
to the origin. We divide our approach into some cases concerning the growth of nonlinearity.
In general, we use an Emden–Fowler change of variables to translate our problem to a cylinder.
In the lower critical regime, this is not enough, thus, we need to introduce a new notion of
change of variables. The main difficulty is that the cylindrical PDE in this coordinate system
is nonautonomous. Nonetheless, we define an associated nonautonomous Pohozaev functional,
which can be proved to be asymptotically monotone. In addition, we show a priori estimates for
these two functionals, from which we extract compactness properties. With these ingredients,
we can perform an asymptotic analysis technique to prove our main result.

. Introduction

We study (classical) positive singular solutions 𝑢 ∈ 𝐶6(𝐵∗
𝑅) with 𝑛 ⩾ 7 (which will always be assumed so forth) to the following

amily of subcritical sixth order PDEs

(−𝛥)3𝑢 = 𝑓𝑝(𝑢) in 𝐵∗
𝑅. (6,𝑝,𝑅)

ere 𝐵∗
𝑅 ∶= 𝐵𝑅 ⧵ {0} ⊂ R𝑛 is the punctured ball of radius 𝑅 > 0, (−𝛥)3 = (−𝛥)◦(−𝛥)◦(−𝛥) is the tri-Laplacian, and the nonlinearity

𝑝 ∈ 𝐶1(𝐵𝑅) is given by

𝑓𝑝(𝑢) ∶= 𝑢𝑝 wit h 𝑝 ∈ (1, 2#] ∪ (2#, 2# − 1),
here 2# ∶=

𝑛
𝑛−6 and 2# ∶= 2𝑛

𝑛−6 are, respectively, the lower and upper critical exponents related to the compact Sobolev embedding
f 𝐻3(R𝑛). We refer to [1,2] for more details on this terminology.

We say that a positive solution 𝑢 ∈ 𝐶6(𝐵∗
𝑅) has a removable singularity at the origin if lim𝑥→0 𝑢(𝑥) < +∞, that is, it can be

ontinuously extended to the origin; otherwise, we say that it is a non-removable singularity. These are called non-singular and
ingular solutions, respectively.
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Allowing 𝑅 → +∞ in (6,𝑝,𝑅), we obtain the following blow-up limit PDE

(−𝛥)3𝑢 = 𝑓𝑝(𝑢) in R𝑛 ⧵ {0}. (6,𝑝,∞)

We recall that a non-singular solution 𝑢 ∈ 𝐶6(R𝑛) to (6,𝑝,∞) is said to be stable if

∫R𝑛
|𝛥3𝜑|2d𝑥 ⩾ 𝑝∫R𝑛

|𝑢|𝑝−1𝜑2d𝑥 for any 𝜑 ∈ 𝐻6(R𝑛).

Let us mention that S. Luo et al. [3] and A. Harrabi and B. Rahal [4] proved entire stable solutions to (6,𝑝,∞) with removable
ingularities at the origin, which was later generalized by the former authors [5,6] for the case of polyharmonic equations; this

result can be stated as

Theorem A. If 𝑢 ∈ 𝐶6(R𝑛) is a stable positive non-singular solution to (6,𝑝,∞) with 𝑝 ∈ (1, 2# − 1), then 𝑢 ≡ 0.

It makes sense to divide our analysis into three cases, namely, the Serrin–Lions [1,2] case 𝑝 ∈ (1, 2#), Aviles [7] case 𝑝 = 2#,
and the Gidas–Spruck [8] case 𝑝 ∈ (2#, 2# − 1). Our main result classifies the local behavior of positive solutions to (6,𝑝,𝑅) in these
situations.

Theorem 1. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅). Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. Then, it follows

𝑢(𝑥) = (1 + (|𝑥|))𝑢(|𝑥|) as 𝑥→ 0,

where 𝑢(𝑟) = ∫−𝜕 𝐵1
𝑢(𝑟𝜃)d𝜃 is the spherical average of 𝑢. Moreover,

(a) if 𝑝 ∈ (1, 2#), then

𝑢(𝑥) ≃ |𝑥|6−𝑛 as 𝑥 → 0;

(b) if 𝑝 = 2#, then

𝑢(𝑥) = (1 + o(1))𝐾0(𝑛)
𝑛−6
6
|𝑥|6−𝑛(ln |𝑥|)

6−𝑛
6 as 𝑥→ 0,

where

𝐾0(𝑛) = 4
3
(𝑛 − 2)(𝑛 − 4)(𝑛 − 6)2; (1)

(c) if 𝑝 ∈ (2#, 2# − 1), then

𝑢(𝑥) = (1 + o(1))𝐾0(𝑛, 𝑝)
1
𝑝−1

|𝑥|−
6
𝑝−1 as 𝑥 → 0, (2)

where

𝐾0(𝑛, 𝑝) = 𝛾𝑝
(

𝛾𝑝 + 2) (𝛾𝑝 + 4) (𝑛 − 2 − 𝛾𝑝
) (
𝑛 − 4 − 𝛾𝑝

) (
𝑛 − 6 − 𝛾𝑝

)

.

Remark 2. In a recent paper, it was independently proved by X. Huang, Y. Li, and H. Yang [9] that the super poly-harmonic
condition can be removed. We also refer to Q. Ngô and D. Ye [10] for more details on the blow-up limit case 𝑅 = +∞. We keep this
ondition in our manuscript because of its natural relations with curvature sign conditions for the upper critical situation 𝑝 = 2#− 1.

They also provided some upper bound estimates that will be important in our methods.

When 𝑝 ∈ (1, 2#), we show that solutions behave like the fundamental solution, and so, the origin is a non-removable singularity.
hen 𝑝 ∈ (2#, 2# − 1), we prove that solutions to (6,𝑝,𝑅) behave near the isolated singularity like the homogeneous solutions to

he blow-up limit equation (6,𝑝,∞), which are classified by Theorem A. In the lower critical case 𝑝 = 2#, which is the so-called
sixth order Serrin exponent [1], we observe that since 𝐾0(𝑛, 2#) = 0, it follows that (6,𝑝,∞) does not have non-trivial homogeneous
solutions. This explains why this situation has a different blow-up rate near the singularity, which is given by a homogeneous term
times a log correction factor.

Now, let us compare our results to the ones in the fourth and second order cases. First, we consider positive solutions 𝑢 ∈
𝐶4(R𝑛 ⧵ {0}) with 𝑛 ⩾ 5 to the family of fourth order equations

(−𝛥)2𝑢 = 𝑓𝑝(𝑢) in 𝐵∗
𝑅, (4,𝑅,𝑝)

where 𝑅 < +∞, (−𝛥)2 = (−𝛥)◦(−𝛥) is the bi-Laplacian, and 𝑝 ∈ (1, 2∗∗] ∪ (2∗∗, 2∗∗ − 1), where 2∗∗ = 𝑛
𝑛−4 and 2∗∗ = 2𝑛

𝑛−4 . Notice that
(4,𝑅,𝑝) is subcritical in the sense of the compact Sobolev embedding of 𝐻2(R𝑛). On this subject, R. Soranzo [11] for 𝑝 ∈ (1, 2∗∗), H.
Yang [12] and Z. Guo et al. [13] for 𝑝 ∈ (2∗∗, 2∗∗ − 1), and the first-named author and J. M. do Ó [14] for 𝑝 = 2∗∗ study qualitative
properties for positive solutions to (4,𝑅,𝑝); we have the result below

Theorem B. Let 𝑢 ∈ 𝐶4(𝐵∗
𝑅) be a positive singular solution to (4,𝑅,𝑝) with 𝑅 < +∞. Assume that −𝛥𝑢 ⩾ 0. Then, it follows
𝑢(𝑥) = (1 + (|𝑥|))𝑢(𝑥) as 𝑥 → 0.

2 
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Moreover,

(a) if 𝑝 ∈ (1, 2∗∗), then

𝑢(𝑥) ≃ |𝑥|4−𝑛 as 𝑥 → 0;

(b) if 𝑝 = 2∗∗, then

𝑢(𝑥) = (1 + o(1))𝐾4,0(𝑛)
𝑛−4
4
|𝑥|4−𝑛(ln |𝑥|)

4−𝑛
4 as 𝑥 → 0,

where

𝐾4,0(𝑛) =
(𝑛 − 2)(𝑛 − 4)2

2
;

(c) if 𝑝 ∈ (2∗∗, 2∗∗ − 1), then

𝑢(𝑥) = (1 + o(1))𝐾4,0(𝑛, 𝑝)
1
𝑝−1

|𝑥|−
4
𝑝−1 as 𝑥 → 0.

where

𝐾4,0(𝑛, 𝑝) = 4
𝑝 − 1

(

4
𝑝 − 1 + 2

) (
𝑛 − 2 − 4

𝑝 − 1
) (

𝑛 − 4 − 4
𝑝 − 1

)

.

Second, we consider positive singular solutions 𝑢 ∈ 𝐶2(R𝑛 ⧵ {0}) with 𝑛 ⩾ 3 to the second order equation

− 𝛥𝑢 = 𝑓𝑝(𝑢) in 𝐵∗
𝑅, (2,𝑅,𝑝)

where 𝑅 < +∞, 𝛥 is the Laplacian, and 𝑝 ∈ (1, 2∗] ∪ (2∗, 2∗ − 1), where 2∗ = 𝑛
𝑛−2 and 2∗ = 2𝑛

𝑛−2 Notice that (2,𝑅,𝑝) is subcritical in the
sense of the compact Sobolev embedding of 𝐻1(R𝑛).

It is worth mentioning that all the aforementioned classification results were inspired by the classical theorems of J. Serrin [1]
and P.-L. Lions [2], B. Gidas and J. Spruck [8], and P. Aviles [7] on the study of positive singular solutions to the second order
semi-linear PDE (2,𝑅,𝑝)

Theorem C. Let 𝑢 ∈ 𝐶2(𝐵∗
𝑅) be a positive singular solution to (2,𝑅,𝑝) with 𝑅 < +∞. Then, it follows

𝑢(𝑥) = (1 + (|𝑥|))𝑢(𝑥) as 𝑥 → 0,

Moreover,

(a) if 𝑝 ∈ (1, 2∗), then

𝑢(𝑥) ≃ |𝑥|2−𝑛 as 𝑥 → 0;

(b) if 𝑝 = 2∗, then

𝑢(𝑥) = (1 + o(1))𝐾2,0(𝑛)
𝑛−2
2
|𝑥|2−𝑛(ln |𝑥|)

2−𝑛
2 as 𝑥 → 0,

where

𝐾2,0(𝑛) =
(𝑛 − 2)2

2
;

(c) if 𝑝 ∈ (2∗, 2∗ − 1), then

𝑢(𝑥) = (1 + o(1))𝐾2,0(𝑛, 𝑝)
1
𝑝−1

|𝑥|−
2
𝑝−1 as 𝑥 → 0,

where

𝐾2,0(𝑛, 𝑝) = 2
𝑝 − 1

(

𝑛 − 2 − 2
𝑝 − 1

)

.

This type of asymptotic analysis extends to a rich class of strongly coupled second order systems as studied in [15,16].
The main difference between the asymptotic analysis for the critical and subcritical regimes occurs because of the change in the

monotonicity properties of the Pohozaev functional, which classifies the type of stability for singular solutions to (6,𝑝,𝑅) around a
blow-up (shrink-down) limit solution. This method is inspired by Fleming’s tangent cone analysis for minimal hypersurfaces [17,18].
In the critical case, it can be shown that the Pohozaev functional becomes constant; that is, blow-up limit solutions are stable. In
contrast, in the subcritical case, they are asymptotically stable. This discrepancy is caused by the sign-changing behavior of the
coefficients of the tri-Laplacian in Emden–Fowler coordinates (or logarithmic cylindrical coordinates), which are suitable for this
problem (see Remark 3.1).

The proof of Theorem 1 is divided into two parts. First, we prove the asymptotic symmetry of singular solutions to (6,𝑝,𝑅)
in the punctured ball. Second, we use some ODE analysis and the monotonicity properties of the Pohozaev functional to study
the asymptotic behavior for solutions on the cylinder. The strategy strongly relies on the growth of the subcritical nonlinearity,
which, in the lower critical situation 𝑝 = 2 , turns out to be far different from the other regime. We should emphasize that the
#

3 
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superharmonicity conditions are not necessary in the range 𝑝 ∈ (2#, 2# − 1), which is not the case otherwise. Third, we define two
homological-type invariants that satisfy suitable monotonicity properties. This can be used to study the local asymptotic behavior
of positive singular solutions near the isolated singularity. We need to subdivide our approach with respect to the growth of the
nonlinearity into three cases; namely, Serrin–Lions case, Aviles case, and Gidas–Spruck case.

We remark that in a companion paper, the same authors study the asymptotics for positive singular solutions in the other limit
ituation 𝑝 = 2# − 1. Indeed, together with [19] and Theorems 1 and A, this would provide a holistic picture of the qualitative

behavior of solutions to (6,𝑝,𝑅) in the broader range 𝑝 ∈ (1, 2# − 1].
These results are inspired by the classical literature for semi-linear second order equations due to J. Serrin [1], P.-L. Lions [2],

P. Aviles [7], B. Gidas and J. Spruck [8], and L. A. Caffarelli et al. [20] with an improvement given by N. Korevaar et al. [21]. For
more results on asymptotic analysis, we refer the interested reader to [22].

We should observe that (6,𝑝,𝑅), (4,𝑅,𝑝), and (2,𝑅,𝑝) are particular cases of a more general class of equations, which we describe
as follows. More precisely, for any 𝑁 ∈ N even number, we consider (classical) positive singular solutions 𝑢 ∈ 𝐶𝑁 (R𝑛 ⧵ {0}) to the
following family of subcritical even order poly-harmonic PDEs

(−𝛥)𝑁∕2𝑢 = 𝑓𝑝(𝑢) in 𝐵∗
𝑅, (𝑁 ,𝑝,𝑅)

where 0 < 𝑅 <∞, (−𝛥)𝑁∕2 = (−𝛥)◦… ◦(−𝛥) is the poly-Laplacian, and the nonlinearity 𝑓𝑝 ∈ 𝐶1(𝐵𝑅) is given by

𝑓𝑝(𝑢) ∶= |𝑢|𝑝−1𝑢 wit h 𝑝 ∈
[ 𝑛
𝑛 −𝑁

, 𝑛 +𝑁
𝑛 −𝑁

)

∶= [2𝑁 ,∗, 2∗𝑁 ),

where 2𝑁 ,∗ ∶= 𝑛
𝑛−𝑁 and 2∗𝑁 ∶= 2𝑛

𝑛−𝑁 are, respectively, the lower and upper critical exponents with respect to the compact Sobolev
mbedding of 𝐻𝑁∕2(R𝑛).

We observe that most of our arguments can be extended to this higher order setting. In this regard, it is natural to expect a
ull classification result for the local asymptotic behavior of singular solutions to (𝑁 ,𝑝,𝑅) near isolated singularities in the sense of

Theorem 1. Namely, there exist three possibilities for this local behavior depending on the growth of the nonlinearity. To summarize
this discussion, let us state the following conjecture

Conjecture 3. Let 𝑁 ∈ N be an even number and 𝑢 ∈ 𝐶𝑁 (𝐵∗
𝑅) be a positive singular solution to (𝑁 ,𝑝,𝑅) with 𝑅 < +∞ and 𝑝 ∈ (1, 2∗𝑁 − 1).

ssume that (−𝛥)𝑗𝑢 ⩾ 0 for any 𝑗 ∈ {1,… , 𝑁∕2 − 1}. Then, it follows

𝑢(𝑥) = (1 + (|𝑥|))𝑢(𝑥) as 𝑥 → 0,

Moreover,

(a) if 𝑝 ∈ (1, 2∗𝑁 ), then

𝑢(𝑥) ≃ |𝑥|𝑁−𝑛 as 𝑥 → 0;

(b) if 𝑝 = 2𝑁 ,∗, then

𝑢(𝑥) = (1 + o(1))𝐾𝑁 ,0(𝑛)
𝑛−𝑁
𝑁

|𝑥|𝑁−𝑛(ln |𝑥|)
𝑁−𝑛
𝑁 as 𝑥→ 0,

where

𝐾𝑁 ,0(𝑛) =
2
𝑁
2 (𝑁2 − 1)!
𝑁

𝑁
2 −1
∏

𝑗=0
(𝑛 − 2𝑗) (𝑛 −𝑁)2.

(c) if 𝑝 ∈ (2𝑁 ,∗, 2∗𝑁 − 1), then

𝑢(𝑥) = (1 + o(1))𝐾𝑁 ,0(𝑛, 𝑝)
1
𝑝−1

|𝑥|−
𝑁
𝑝−1 as 𝑥 → 0.

Here is our plan for the rest of the paper. In Section 2, we introduce both the autonomous and nonautonomous Emden–Fowler
coordinates. In Section 3, we define the associated Pohozaev functionals, and we prove their (asymptotic) monotonicity properties.
In Section 4, we prove some a priori upper bound estimates. In Section 5, we perform a variant of the integral moving spheres method
nd prove that solutions are asymptotically radially symmetric. In Section 6, we study the limit values of the Pohozaev functional

under blow-up and shrink-down sequences. In Section 7, we use the monotonicity formulas and some asymptotic analysis to prove
the classification of the local asymptotic behavior in Theorem 1.

2. Emden–Fowler coordinates

In this section, we define the Emden–Fowler change of variables.

2.1. Autonomous case

We define a classical change of variables, which we have already seen transforms ( ) into an ODE with constant coefficients.
6,𝑝,𝑅

4 
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Definition 2.1. Let us define the sixth order autonomous Emden–Fowler change of variables (or logarithmic cylindrical coordinates)
given by

𝑣(𝑡, 𝜃) = 𝑟𝛾𝑝𝑢(𝑟, 𝜎), where 𝑡 = ln 𝑟, 𝜎 = 𝜃 = 𝑥|𝑥|−1.

Let us consider the autonomous Emden–Fowler transformation as follows

F ∶ 𝐶∞
𝑐 (𝐵∗

𝑅) → 𝐶∞
𝑐 (𝑇 ) given by F(𝑢) = 𝑒𝛾𝑝𝑡𝑢(𝑒𝑡, 𝜃) ∶= 𝑣. (2.1)

Using this coordinate system and performing a lengthy computation, we arrive at the following sixth order nonlinear PDE on
the cylinder 𝑇 ∶= (−∞, 𝑇 ) × S𝑛−1 with 𝑇 = ln𝑅 < +∞,

− 𝑃cy l𝑣 = 𝑓𝑝(𝑣) on 𝑇 . (𝑝,𝑇 )

Here 𝑃cy l is the tri-Laplacian written in cylindrical coordinates given by

𝑃cy l = 𝜕(6)𝑡 +𝐾5(𝑛, 𝑝)𝜕(5)𝑡 +𝐾4(𝑛, 𝑝)𝜕(4)𝑡 +𝐾3(𝑛, 𝑝)𝜕(3)𝑡 +𝐾2(𝑛, 𝑝)𝜕(2)𝑡 +𝐾1(𝑛, 𝑝)𝜕𝑡 +𝐾0(𝑛, 𝑝)
+ 2𝜕(4)𝑡 𝛥𝜃 + 𝐽3(𝑛, 𝑝)𝜕(3)𝑡 𝛥𝜃 + 𝐽2(𝑛, 𝑝)𝜕(2)𝑡 𝛥𝜃 + 𝐽1(𝑛, 𝑝)𝜕𝑡𝛥𝜃 + 𝐽0(𝑛, 𝑝)𝛥𝜃 (2.2)

+ 3𝜕(2)𝑡 𝛥2𝜃 + 𝐿1(𝑛, 𝑝)𝜕𝑡𝛥2𝜃 + 𝐿0(𝑛, 𝑝)𝛥2𝜃 + 𝛥3𝜃 ,

where 𝐾𝑗 (𝑛, 𝑝), 𝐽𝑗 (𝑛, 𝑝), 𝐿𝑗 (𝑛, 𝑝) for 𝑗 ∈ {0, 1, 2, 3, 4, 5} are constants given by (A.4) and (A.5).

Remark 2.2. The computation to obtain the coefficients in (2.2) and (2.5) is tedious and lengthy. To deal with this, we used
athematica 13.2. In Appendix, we provide some hints to perform this computation. For more details on this subject for the fourth

order setting, we refer the reader to [13,14,23] and the references therein; this is inspired by the pioneering results of [7,20].

2.2. Nonautonomous case

In the lower critical case, because of the vanishing of the coefficient 𝐾0(𝑛, 2#), we already that the situation changes dramatically.
We define the so-called nonautonomous Emden–Fowler change of variables [7,15,24,25].

Definition 2.3. Let us define the sixth order nonautonomous Emden–Fowler change of variables (or logarithmic cylindrical
coordinates) given by

𝑤(𝑡, 𝜃) = 𝑟6−𝑛(ln 𝑟)
6−𝑛
6 𝑢(𝑟, 𝜎), wher e 𝑡 = ln 𝑟 and 𝜎 = 𝜃 = 𝑥|𝑥|−1. (2.3)

Let us consider the nonautonomous Emden–Fowler transformation as follows

F̃ ∶ 𝐶∞
𝑐 (𝐵∗

𝑅) → 𝐶∞
𝑐 (𝑇 ) given by F̃(𝑢) = 𝑒(6−𝑛)𝑡𝑡

6−𝑛
6 𝑢(𝑒𝑡, 𝜃) ∶= 𝑤. (2.4)

Using this coordinate system and performing a lengthy computation, we arrive at

− 𝑃cy l𝑤 = 𝑡−1|𝑤|2#−1𝑤 on 𝑇 . (̃𝑇 )

Here 𝑃cy l is the tri-Laplacian written in nonautonomous Emden–Fowler coordinates given by

𝑃cy l = 𝜕(6)𝑡 +𝐾5(𝑛, 𝑡)𝜕(5)𝑡 +𝐾4(𝑛, 𝑡)𝜕(4)𝑡 +𝐾3(𝑛, 𝑡)𝜕(3)𝑡 +𝐾2(𝑛, 𝑡)𝜕(2)𝑡 +𝐾1(𝑛, 𝑡)𝜕𝑡 +𝐾0(𝑛, 𝑡)
+ 𝐽4(𝑛, 𝑡)𝜕(4)𝑡 𝛥𝜃 + 𝐽3(𝑛, 𝑡)𝜕(3)𝑡 𝛥𝜃 + 𝐽2(𝑛, 𝑡)𝜕(2)𝑡 𝛥𝜃 + 𝐽1(𝑛, 𝑡)𝜕𝑡𝛥𝜃 + 𝐽0(𝑛, 𝑡)𝛥𝜃 (2.5)

+ �̃�2(𝑛, 𝑡)𝜕(2)𝑡 𝛥2𝜃 + �̃�1(𝑛, 𝑡)𝜕𝑡𝛥2𝜃 + �̃�0(𝑛, 𝑡)𝛥2𝜃 + 𝛥3𝜃 .

Here 𝐾𝑗 (𝑛, 𝑡), 𝐽𝑗 (𝑛, 𝑡), �̃�𝑗 (𝑛, 𝑡) for 𝑗 ∈ {0, 1, 2, 3, 4, 5} are functions given by (A.8) and (A.9). Analogously to the standard autonomous
case, we also consider a transformation that sends a singular solution to (6,𝑝,𝑅) with 𝑝 = 2# into solutions to a nonautonomous ODE
n the cylinder.

3. Pohozaev functionals

Next, we define two central characters in our studies, the so-called autonomous and nonautonomous Pohozaev functionals. The
euristics are that these Pohozaev functionals classify whether or not the blow-up limit solutions in cylindrical coordinates are
asymptotically) stable equilibrium points of the associated sixth order ODE. More precisely, from the dynamical systems point of
iew, it works as a Lyapunov functional. Let us remark that to prove the Pohozaev invariant to be well-defined, one needs to use
ome upper estimates and asymptotic symmetry that will be proved independently in Section 4 (see Lemmas 4.5 and 4.6).
5 
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3.1. Autonomous case

Initially, let us define the Pohozaev functional associated to the PDE equation on the cylinder given by (𝑝,𝑇 ), which will play a
central role in our analysis (for more details on this class of invariants, we refer to [12,23,26,27]).

Remark 3.1. By direct computations, notice that when 𝑝 ∈ (2#, 2# − 1), one has the sign relations

𝐾5(𝑛, 𝑝), 𝐾1(𝑛, 𝑝), 𝐽3(𝑛, 𝑝), 𝐿1(𝑛, 𝑝) ⩾ 0, and 𝐾3(𝑛, 𝑝), 𝐽1(𝑛, 𝑝) ⩽ 0.

In addition, we can explicitly compute these coefficients in the limiting situations 𝑝 = 2# and 𝑝 = 2# − 1 (see (A.6) and (A.7)). This
change in sign behavior explains why one needs to use distinct methods when the power parameter 𝑝 ∈ (1,+∞) changes.

With respect to Conjecture 3, we speculate that a relationship like this should hold for the coefficients of the poly-Laplacian
ritten in Emden–Fowler coordinates.

We introduce a functional that will be used to classify the local behavior near the isolated singularity. We emphasize that an
xplicit formula for this functional can be obtained by multiplying (𝑝,𝑇 ) by 𝜕𝑡𝑣 and integrating by parts.

Definition 3.2. For any 𝑣 ∈ 𝐶6(R) positive solution to (𝑝,𝑇 ) with 𝑝 ∈ (2#, 2# − 1), let us define its cylindrical Pohozaev functional by

cy l(𝑡, 𝑣) = ∫S𝑛−1𝑡

(𝑡, 𝜃 , 𝑣)d𝜃 .

Here S𝑛−1𝑡 = {𝑡} ×S𝑛−1 is the cylindrical ball with volume element given by d𝜃 = 𝑒−2𝑡d𝜎, where d𝜎𝑟 is the volume element of the ball
f radius 𝑟 > 0 in R𝑛. In addition, we set

(𝑡, 𝜃 , 𝑣) ∶= r ad(𝑡, 𝜃 , 𝑣) +ang(𝑡, 𝜃 , 𝑣),
where

r ad(𝑡, 𝜃 , 𝑣) ∶=
(

𝑣(5)𝑣(1) − 𝑣(4)𝑣(2) + 1
2
𝑣(3)2

)

+𝐾5
(

𝑣(4)𝑣(1) − 𝑣(3)𝑣(2)
)

+ 𝐾4

(

𝑣(3)𝑣(1) − 1
2
𝑣(2)2

)

+𝐾3𝑣
(2)𝑣(1) +

𝐾2
2
𝑣(1)2 +

𝐾0
2
𝑣2 −

|𝑣|𝑝+1

𝑝 + 1
and

ang(𝑡, 𝜃 , 𝑣) ∶= −𝐽4
(

𝜕(3)𝑡 ∇𝜃𝑣𝜕𝑡∇𝜃𝑣 − |𝜕(2)𝑡 ∇𝜃𝑣|
2)

−
𝐽2
2
|𝜕(2)𝑡 ∇𝜃𝑣|

2
−
𝐽1
2
|𝜕(2)𝑡 ∇𝜃𝑣|

2
−
𝐽0
2
|∇𝜃𝑣|

2

+
𝐿2
2
|𝜕(2)𝑡 𝛥𝜃𝑣|

2
+
𝐿0
2
|𝜕(2)𝑡 𝛥𝜃𝑣|

2
+ 1

2
|𝛥𝜃𝑣|

2.

Remark 3.3. Using the inverse of the Emden–Fowler transformation, one can also construct the spherical Pohozaev functional given
by sph(𝑟, 𝑢) ∶=

(

cy l◦F−1) (𝑡, 𝑣). From [22, Proposition A.1], it follows that sph also satisfies a monotonicity property.

We deduce a monotonicity formula for the logarithmic cylindrical Pohozaev functional cy l(𝑡, 𝑣), which will be essential to show
that the limit Pohozaev invariant is well-defined as 𝑡 → −∞.

Proposition 3.4. Let 𝑣 ∈ 𝐶6(R) be a positive solution to (𝑝,𝑇 ) with 𝑝 ∈ (2#, 2# − 1). If −∞ < 𝑡1 ⩽ 𝑡2 < 𝑇 , then cy l(𝑡2, 𝑣) −cy l(𝑡1, 𝑣) ⩽ 0.
ore precisely, we have the monotonicity formula

𝜕𝑡cy l(𝑡, 𝑣) = ∫S𝑛−1𝑡

(

−𝐾5|𝜕
(3)
𝑡 𝑣|

2
+𝐾3|𝜕

(2)
𝑡 𝑣|

2
−𝐾1|𝜕𝑡𝑣|

2 − 𝐽3|𝜕
(2)
𝑡 ∇𝜃𝑣|

2
− 𝐿1|𝜕𝑡𝛥𝜃𝑣|

2
)

d𝜃 < 0. (3.1)

In particular, cy l(𝑡, 𝑣) is nonincreasing, and so cy l(−∞, 𝑣) ∶= lim𝑡→−∞ cy l(𝑡, 𝑣) exists.

Proof. Initially, observe that (3.1) follows by a direct computation, which consists of multiplying (𝑝,𝑇 ) by 𝑣(1), and integrating
by parts. Hence, using Remark 3.1, we find 𝜕𝑡cy l(𝑡, 𝑣) ⩽ 0, which proves that the cylindrical Pohozaev functional is nonincreasing.
Finally, since by Lemma 4.2, the Pohozaev functional is bounded above, the full existence of limit follows.

Remark 3.5. Using the inverse of cylindrical transform, that is, sph = cy l◦F−1, it follows that sph(0, 𝑢) = lim𝑟→0 sph(𝑟, 𝑢) =
lim𝑡→−∞ cy l(𝑡, 𝑣). The last equality implies that the Pohozaev invariant is well-defined in the punctured ball when 𝑅→ 0.

3.2. Nonautonomous case

In the lower critical case 𝑝 = 2#, since 𝐾0,# ∶= 𝐾0(𝑛, 2#) = 0 and 𝛾2# = 𝑛 − 6, a new cylindrical transformation was defined.
Concerning this nonautonomous cylindrical transformation, we compute its associated Pohozaev functional, which in this situation
has some time-dependent terms.

Again, let us observe that an explicit formula for this functional can be obtained by multiplying (̃𝑇 ) by 𝜕𝑡𝑤 and integrating by
parts. In this case, a more complicated computation is required due to the appearance of nonautonomous terms.
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Definition 3.6. For any 𝑤 ∈ 𝐶6(R) be a positive solution to (̃𝑇 ), let us define its cylindrical nonautonomous Pohozaev functional by

̃cy l(𝑡, 𝑤) = ∫S𝑛−1𝑡

̃(𝑡, 𝜃 , 𝑤)d𝜃 .

Here

̃(𝑡, 𝜃 , 𝑤) ∶= ̃r ad(𝑡, 𝜃 , 𝑤) + ̃ang(𝑡, 𝜃 , 𝑤), (3.2)

where

̃r ad(𝑡, 𝜃 , 𝑤) ∶= 𝑡
(

𝑤(5)𝑤(1) −𝑤(4)𝑤(2) + 1
2
𝑤(3)2

)

+ 𝑡𝐾5
(

𝑤(4)𝑤(1) −𝑤(3)𝑤(2))

+ 𝑡𝐾4

(

𝑤(3)𝑤(1) − 1
2
𝑤(2)2

)

+ 𝑡𝐾3𝑤
(2)𝑤(1) +

𝑡𝐾2
2
𝑤(1)2 +

𝑡𝐾0
2
𝑤2 − 𝑛 − 6

2(𝑛 − 3) |𝑤|
2#+1

and

̃ang(𝑡, 𝜃 , 𝑤) ∶= −𝑡𝐽4
(

𝜕(3)𝑡 ∇𝜃𝑤𝜕𝑡∇𝜃𝑤 − |𝜕(2)𝑡 ∇𝜃𝑤|
2)

−
𝑡𝐽2
2

|𝜕(2)𝑡 ∇𝜃𝑤|
2
−
𝑡𝐽1
2

|𝜕(2)𝑡 ∇𝜃𝑤|
2

−
𝑡𝐽0
2

|∇𝜃𝑤|
2 +

𝑡�̃�2
2

|𝜕(2)𝑡 𝛥𝜃𝑤|
2
+
𝑡�̃�0
2

|𝜕(2)𝑡 𝛥𝜃𝑤|
2
+ 𝑡

2
|𝛥𝜃𝑤|

2.

Remark 3.7. Initially, notice that the nonautonomous Pohozaev invariant is well-defined for any 𝑡 ∈ (−∞, 𝑇 ) since 𝑢 ∈ 𝐶6(R𝑛 ⧵{0})
s smooth away from the origin. In addition, due to Proposition 5.5, for 𝑅 < ∞, we get that |𝑤(𝑡, 𝜃) −𝑤(𝑡)| = (𝑒𝛽 𝑡) as 𝑡 → −∞, for
ome 𝛽 > 0, where 𝑤(𝑡) is the average of 𝑤(𝑡, 𝜃) over 𝜃 ∈ S𝑛−1𝑡 with 𝑤 = F̃(𝑢) given by (2.4).

In particular, one can find some large 𝑇0 ≫ 1 and 𝐶 > 0 (independent of 𝑡) satisfying
|

|

∇𝜃𝑤(𝑡, 𝜃)|| + |

|

𝛥𝜃𝑤(𝑡, 𝜃)|| + |

|

∇𝜃𝛥𝜃𝑤(𝑡, 𝜃)|| + |

|

|

𝛥2𝜃𝑤(𝑡, 𝜃)
|

|

|

⩽ 𝐶 𝑒𝛽 𝑡 in 𝑇0 . (3.3)

Moreover, from the sharp estimate in Proposition 3.4 and the gradient estimate in Lemma 4.5, it follows
5
∑

𝑗=0
|𝜕(𝑗)𝑡 𝑤(𝑡, 𝜃)| ⩽ 𝐶 in 𝑇0 . (3.4)

Before we prove the monotonicity formula, we need to show an auxiliary result. Our strategy follows the same as in [28,
Lemmas 4.8 and 4.10]. This argument is inspired in [23, Lemmas 2.1 and 2.2]. As usual, we set 𝑤(𝑡) = ∫−S𝑛−1𝑡

|𝑤(𝑡, 𝜃)|d𝜃 denoting
he spherical average of 𝑤.

From now on, we also denote by 𝐾𝑗 (𝑛) ∈ R for 𝑗 ∈ {0, 1, 2, 3, 4, 5} the dimensional constants given by (A.10). With this notation,
e have the auxiliary result below

Lemma 3.8. Let 𝑤 ∈ 𝐶6(𝑇 ) be a positive solution to (̃𝑇 ). Then, one has

𝓁∗ ∶= lim
𝑡→−∞

𝑤(𝑡, 𝜃) = lim
𝑡→−∞

𝑤(𝑡) ∈ {0, 𝐾0(𝑛)
𝑛−6
6 },

and

lim
𝑡→−∞

𝑤(𝑗)(𝑡, 𝜃) = lim
𝑡→−∞

𝑤(𝑗)(𝑡) = 0 f or all 𝑗 ∈ {1, 2, 3, 4, 5}. (3.5)

Proof. Indeed, using Remark 3.7, it is straightforward to check that

𝑤(𝑡, 𝜃) = 𝑤(𝑡)(1 + (𝑤(𝑡)𝑒𝑡)) as 𝑡 → −∞.

Furthermore, the cylindrical transformation of spherical average 𝑤 = F̃(𝑢) satisfies,

− 𝑃r ad𝑤 = 𝑓#(𝑤) + (𝑤(𝑡)𝑒𝑡) as 𝑡 → −∞, (3.6)

where

𝑃r ad = 𝜕(6)𝑡 +𝐾5(𝑛)𝜕
(5)
𝑡 +𝐾4(𝑛)𝜕

(4)
𝑡 +𝐾3(𝑛)𝜕

(3)
𝑡 +𝐾2(𝑛)𝜕

(2)
𝑡 +𝐾1(𝑛)𝜕𝑡 +𝐾0(𝑛). (3.7)

and

𝑓#(𝑤) = |𝑤|2#−1𝑤

We split the rest of the proof into three claims:
Claim 1: Either 𝑤(𝑡) = o(1) or 𝑤(𝑡) = 𝐾 (𝑛)

𝑛−6
6 + o(1) as 𝑡 → −∞.
0

7 
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Indeed, we define the following Hamiltonian energy associated with (3.6) as follows where

̂r ad(𝑡, 𝑤) ∶=
[

𝑤(5)𝑤(1) −𝑤(4)𝑤(2) + 1
2
𝑤(3)2 +𝐾5

(

𝑤(4)𝑤(1) −𝑤(3)𝑤(2)
)

+𝐾4

(

𝑤(3)𝑤(1) − 1
2
𝑤(2)2

)

+𝐾3𝑤
(2)𝑤(1) +

𝐾2
2
𝑤(1)2 +

𝐾0
2
𝑤2 − 𝑛 − 6

2(𝑛 − 3) |𝑤|
2(𝑛−3)
𝑛−6

]

(𝑡) + (𝑤(𝑡)𝑒𝑡).

Now, we observe that the coefficients 𝐾1(𝑛), 𝐾2(𝑛), 𝐾3(𝑛), 𝐾4(𝑛), 𝐾5(𝑛) ∈ R are given by (A.10) We also define the associated Pohozaev
unctional as

̂r ad(𝑡, 𝑤) ∶= ∫S𝑛−1𝑡

̂r ad(𝑡, 𝑤)d𝜃

In addition, observe that 𝐾1(𝑛), 𝐾5(𝑛) ⩾ 0 and 𝐾3(𝑛) ⩽ 0, which by a direct computation shows that

𝜕𝑡̂r ad(𝑡, 𝑤) = ∫S𝑛−1𝑡

(

−𝐾5|𝑤
(3)(𝑡)|

2
+𝐾3|𝑤

(2)(𝑡)|
2
−𝐾1|𝑤

(1)(𝑡)|
2
)

d𝜃 < 0. (3.8)

This implies that ̂r ad(𝑡, 𝑤) is monotonically nonincreasing on variable 𝑡, from which combined with the uniform estimates in
Remark 3.7, we conclude that the limit lim𝑡→−∞ ̂r ad(𝑡, 𝑤) < +∞ exists.

Let 𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}) be a nonnegative solution to (6,𝑝,∞) with 𝑝 = 2#. such that 𝑢 = F̃−1(𝑤), and define

̂r ad(𝑟, 𝑢) ∶= ∫S𝑛−1𝑡

̂r ad(𝑡, 𝑤)d𝜃

Notice that we have

̂r ad(0, 𝑢) ∶= lim
𝑟→0+

̂r ad(𝑟, 𝑢) = lim
𝑡→−∞

̂r ad(𝑡, 𝑤).

For any 𝜆 > 0 and 𝜏 = ln 𝜆, define the rescaled solution

𝑢𝜆(𝑥) ∶= (ln 𝜆) 𝑛−66 𝜆𝑛−6𝑢(𝜆𝑥)
or using nonautonomous Emden–Fowler change of variables

𝑤𝜏 (𝑡) ∶= 𝜏
𝑛−6
6 𝑒(𝑛−6)𝜏𝑤(𝑡 + 𝜏).

It is not hard to verify that 𝑢𝜆 ∈ 𝐶6(𝐵∗
1∕𝜆) is also a nonnegative solution to (6,𝑝,𝑅) with 𝑅 = 𝜆−1 and 𝑝 = 2#. Moreover, we have

̂r ad(𝑟, 𝑢𝜆) = ̂r ad(𝑡, 𝑤𝜏 ) = ̂r ad(𝑡 + 𝜏 , 𝑤) = ̂r ad(𝜆𝑟, 𝑢),
from which we derive the following scaling invariance

̂r ad(𝑟, 𝑢𝜆) = ̂r ad(𝜆𝑟, 𝑢𝜆).
Now, let us compute the possible asymptotic values of ̂r ad(0, 𝑢). Using Lemma 4.6, it follows that the family {𝑢𝜆}𝜆>0 ⊂ 𝐶6,𝛼(𝐵1∕2𝜆)

is uniformly bounded in 𝐶6,𝛼(𝐾) on every compact set 𝐾 ⊂ 𝐵1∕2𝜆 and for some 𝛼 ∈ (0, 1). Hence, one can find a nonnegative function
𝑢0 ∈ 𝐶6(R𝑛 ⧵ {0}) solving (6,𝑝,∞) with 𝑝 = 2# and subfamily, still denoted the same, satisfying

lim
𝜆→0

‖𝑢𝜆 − 𝑢0‖𝐶6
loc(R

𝑛⧵{0}) = 0.

Moreover, by [9, Theorem 1.2], we know that 𝑢0 ∈ 𝐶6(R𝑛⧵{0}) satisfies −𝛥𝑢0 ⩾ 0 and 𝛥2𝑢0 ⩾ 0 in R𝑛⧵{0}, which, by the maximum
rinciple, yields that either 𝑢0 ≡ 0 or 𝑢0 > 0 in R𝑛∖{0}. Therefore, it is not hard to check that this blow-up limit 𝑢0 ∈ 𝐶6(R𝑛 ⧵ {0}) is

radially symmetric with respect to the origin. Moreover, by the scaling invariance of the Pohozaev functional, we find

̂r ad(𝑟, 𝑢0) = lim
𝜆→0

̂r ad(𝑟, 𝑢𝜆) = lim
𝜆→0

̂r ad(𝜆𝑟, 𝑢) = ̂r ad(0, 𝑢) f or any 𝑟 > 0. (3.9)

Finally, we set 𝑤0 = F̃(𝑢0) and notice that it solves

−𝑃r ad𝑤0 = 𝑓#(𝑤0) in R.

In addition, from (3.9) it follows that ̂r ad(𝑡, 𝑤0) = ̂r ad(𝑟, 𝑢0) is a constant, which combined with (3.8) implies

𝜕𝑡̂r ad(𝑡, 𝑤0) = ∫S𝑛−1𝑡

(

−𝐾5|𝑤
(3)
0 (𝑡)|

2
+𝐾3|𝑤

(2)
0 (𝑡)|

2
−𝐾1|𝑤

(1)
0 (𝑡)|

2
)

d𝜃 ≡ 0.

From this, we conclude that either 𝑤0 ≡ 0 or 𝑤0 ≡ 𝐾0(𝑛)
𝑛−6
6 , which together with (3.8) yields

̂r ad(0, 𝑢) ∈
{

0,
(

1
2
− 𝑛 − 6

2(𝑛 − 3)
)

𝐾0(𝑛)
𝑛−3
3
|S𝑛−1|

}

.

At last, we have two cases to analyze:
Case 1: If ̂r ad(0, 𝑢) = 0, then 𝑢0 ≡ 0.
Since the blow-up limit 𝑢0 ∈ 𝐶6(R𝑛 ⧵ {0}) is unique, we conclude

lim ‖𝑢 ‖ = 0.

𝜆→0 𝜆 𝐶6

loc(R
𝑛⧵{0})

8 
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Therefore, we easily get

lim
|𝑥|→0

(ln |𝑥|)
𝑛−6
6
|𝑥|𝑛−6𝑢(𝑥) = 0,

which finished the first case.
Case 2: If ̂r ad(0, 𝑢) = 3|S𝑛−1|

2(𝑛−3) 𝐾0(𝑛)
𝑛−3
3 , then 𝑢0(𝑥) ≡ 𝐾0(𝑛)

𝑛−6
6 (ln |𝑥|)

6−𝑛
6
|𝑥|6−𝑛.

In this case, we also have uniqueness of 𝑢0 ∈ 𝐶6(R𝑛 ⧵ {0}), so we find

lim
𝜆→0

‖𝑢𝜆 −𝐾0(𝑛)
𝑛−6
6 (ln |𝑥|)

6−𝑛
6
|𝑥|6−𝑛‖𝐶6

loc(R
𝑛⧵{0}) = 0.

In particular, we have

‖𝑢𝜆 −𝐾0(𝑛)
𝑛−6
6
‖𝐶6(S𝑛−1) as 𝜆 → 0,

from which we quickly get

lim
|𝑥|→0

(ln |𝑥|)
𝑛−6
6
|𝑥|𝑛−6𝑢(𝑥) = 𝐾0(𝑛)

𝑛−6
6 ,

and so the second case is proved
The proof of the first claim is concluded.
Claim 2:𝑤(𝑗)(𝑡) = o(1) as 𝑡 → −∞ for all 𝑗 ⩾ 1.
Indeed, let us prove the following claim that lim𝑡→−∞𝑤(4)(𝑡) = 0 and lim𝑡→−∞𝑤(2)(𝑡) = 0.
Let us define the function 𝛶1(𝑤) = 𝑤(5) + 𝐾5𝑤

(4) + 𝐾4𝑤
(3) + 𝐾3𝑤

(2) + 𝐾2𝑤
(1), which satisfies 𝛶 (2)

1 (𝑤) = 𝑤(1)𝑔#(𝑤), where
𝑔#(𝑤) = 𝑓#(𝑤) −𝐾0𝑤. Now, we have to consider two cases:

Case 1: 𝑔(1)# (𝓁0) ≠ 0
In this case, 𝑔(1)# (𝑤(𝑡)) has a sign for −𝑡 ≫ 1 large enough, that is, either 𝑔(1)# (𝑤(𝑡)) ⩾ 0 or 𝑔(1)# (𝑤(𝑡)) ⩽ 0 for large −𝑡 ≫ 1. Also,

ince 𝑤(1) ⩾ 0, it follows lim𝑡→−∞ sign(𝛶 (2)
1 (𝑤(𝑡))) ≠ 0, which implies that 𝛶 (2)

1 (𝑤(𝑡)) has a sign for −𝑡 ≫ 1 large enough; thus by a
comparison principle 𝛶1(𝑤(𝑡)) also does. Furthermore, because 𝛶1(𝑤(𝑡)) has a sign for −𝑡 ≫ 1 large enough, we find the following
limit exists:

lim
𝑡→−∞

(

𝑤(4)(𝑡) +𝐾5𝑤
(3)(𝑡) +𝐾4𝑤

(2)(𝑡) +𝐾3𝑤
(1)(𝑡) +𝐾2𝑤(𝑡)

)

∶= 𝓁1.

Consequently, we get

lim
𝑡→−∞

(

𝑤(4)(𝑡) +𝐾5𝑤
(3)(𝑡) +𝐾4𝑤

(2)(𝑡) +𝐾3𝑤
(1)(𝑡)

)

∶= 𝓁1 −𝐾2𝓁0. (3.10)

In addition, it is not hard to check that there exists 𝜇1, 𝜇2 > 0 such that the following decomposition holds
(

𝑤(4)(𝑡) +𝐾5𝑤
(3)(𝑡) +𝐾4𝑤

(2)(𝑡) +𝐾3𝑤
(1)(𝑡)

)

= (𝐿𝜇1◦𝐿𝜇2 )𝑤(𝑡),
where

𝐿𝜇1 = −𝜕(2)𝑡 + 𝜇1 and 𝐿𝜇2 = −𝜕(2)𝑡 + 𝜇2.

Now defining

𝛶2(𝑤) ∶= 𝐿𝜇2 (𝑤),

we get lim𝑡→−∞ 𝐿𝜇1 (𝛶2(𝑤)) ≠ 0, that is, 𝛶2(𝑤(𝑡)) has a sign for −𝑡 ≫ 1 large enough. Hence, by a comparison principle 𝛶2(𝑤(𝑡)) also
does. Moreover, since 𝛶2(𝑤(𝑡)) has a sign for −𝑡 ≫ 1 large enough, we get that the following limit exists

lim
𝑡→−∞

𝛶2(𝑤(𝑡)) ∶= 𝓁2.

Therefore, we conclude

lim
𝑡→−∞

𝑤(2)(𝑡) = 𝓁2 + 𝜇2𝓁0,

which by the boundedness of 𝑤, proves that 𝑤(2)(𝑡) → 0 as 𝑡→ −∞. Finally, going back to (3.10), we find 𝑤(4)(𝑡) → 0 as 𝑡 → −∞.
Case 2: 𝑔(1)# (𝓁0) = 0
In this case, we can define

𝛶1(𝑤) = 𝑤(5) +𝐾5𝑤
(4) +𝐾4𝑤

(3) +𝐾3𝑤
(2) +

𝐾2
2
𝑤(1)

and proceed as before to conclude the proof.
At last, using that 𝑤(2)(𝑡) → 0 and 𝑤(4)(𝑡) → 0 as 𝑡 → −∞, one can prove that 𝑤(1)(𝑡) → 0, 𝑤(3)(𝑡) → 0, and 𝑤(5)(𝑡) → 0 as 𝑡 → −∞.

ince, we can write (3.6) as

𝑤(6) = −𝐾5𝑤
(5) −𝐾4𝑤

(4) −𝐾3𝑤
(3) −𝐾2𝑤

(2) −𝐾1𝑤
(1) − 𝑔#(𝑤) + (𝑤(𝑡)𝑒𝑡) in R,

it holds lim𝑡→−∞𝑤(6)(𝑡) ∶= 𝓁3 = 𝑔#(𝓁0). Therefore, 𝑤 is bounded, we find 𝓁3 = 0, and thus 𝓁0 ∈ {0, 𝐾0(𝑛)
𝑛−6
6 }. By this discussion, it is

asy now to see that (3.5) holds; this concludes the proof of this case.
At last, Claims 1 and 2 combined gives the proof of the lemma.
9 
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To prove the full existence of ̃cy l(−∞, 𝑤), we shall verify the estimates in the next lemma, which is a sixth order version of [7,
Lemma 3.2]. Due to the appearance of higher order derivative terms, we give different proof to the ones in the lemma quoted above.

amely, our proof is based on Lemma 3.8 combined with a simple L’Hôpital rule. Initially, by differentiating ̃(𝑡, 𝜃 , 𝑤) with respect
o 𝑡, integrating by parts over S𝑛−1𝑡 (using differentiation under the integral sign one can even omit the dependence on 𝑡), and using
̃𝑇 ), we find

𝜕𝑡̃cy l(𝑡, 𝑤) = 𝛯r ad(𝑡, 𝑤) + 𝛯ang(𝑡, 𝑤).

Here, by direct differentiating (3.2) with respect to 𝑡, one has

𝛯r ad(𝑡, 𝑤) ∶= ∫S𝑛−1
𝜕𝑡̃r ad(𝑡, 𝜃 , 𝑤)d𝜃 and 𝛯ang(𝑡, 𝑤) ∶= −∫S𝑛−1

𝜕𝑡̃ang(𝑡, 𝜃 , 𝑤)d𝜃 . (3.11)

Although we do not use the angular part of the Pohozaev functional we introduced above, we need to study its radial part.
We observe that it is only necessary to compute the asymptotic behavior of this functional for 𝑡 → −∞. This is inspired by the
computations in [7, Section 3] and [14, Section 4].

Lemma 3.9. Let 𝑤 ∈ 𝐶6(R) be a positive solution to (̃𝑇 ). Then, one has

𝜕𝑡̃r ad(𝑡, 𝜃 , 𝑤) = 𝑤(5)𝑤(1) −𝑤(4)𝑤(2) + p5𝑤
(4)𝑤(1) − p5𝑤

(3)𝑤(2) + p2𝑤
(3)𝑤(1) + p4𝑤

(2)𝑤(1)

+ p3(𝑤
(3))2 − p2(𝑤

(2))2 + p1(𝑤
(1))2 + p0𝑤

2 + (𝑤(𝑡)𝑒𝑡) as 𝑡→ −∞,

where the real-valued functions p𝑗 (𝑛, ⋅) ∶ (−∞, ln𝑅) → R for 𝑗 ∈ {0, 1, 2, 3, 4, 5} satisfy

p0(𝑛, 𝑡) ∶= 1
36
𝑛(𝑛 − 6)(3𝑛3 − 48𝑛2 + 228𝑛 − 320)𝑡−2 + (𝑡−4), (3.12)

p1(𝑛, 𝑡) ∶= 8(𝑛 − 2)(𝑛 − 4)(𝑛 − 6)𝑡 + (𝑛 − 6)2𝑛(𝑛2 − 24𝑛 + 68)
12𝑡

+ (𝑡−2), (3.13)

p2(𝑛, 𝑡) ∶= −1
2
(3𝑛2 − 42𝑛 + 124) + (𝑡−2), (3.14)

p3(𝑛, 𝑡) ∶= 1
2
(6𝑛 − 35) + (𝑡−1), (3.15)

p4(𝑛, 𝑡) ∶= −1
2
(𝑛3 − 30𝑛2 + 212𝑛 − 408) + (𝑡−2), (3.16)

p5(𝑛, 𝑡) ∶= −3
2
(𝑛 − 6). (3.17)

as 𝑡→ −∞.

Proof. On one hand, a direct computation shows

𝜕𝑡̃r ad(𝑡, 𝜃 , 𝑤) = 𝑤(5)𝑤(1) −𝑤(4)𝑤(2) + 1
2
(𝐾5 + 𝑡𝐾

(1)
5 )(𝑤(4)𝑤(1) −𝑤(3)𝑤(2))

+ 1
2
(𝐾4 + 𝑡𝐾

(1)
4 )(𝑤(3)𝑤(1) −𝑤(2)2) + 1

2
(𝐾3 + 𝑡𝐾

(1)
3 )𝑤(2)𝑤(1)

+ 1
2
(1 − 2𝑡𝐾5)(𝑤

(3))2 + 1
2
(𝐾2 + 𝑡𝐾

(1)
2 )(𝑤(1))2 + 1

2
(𝐾0 + 𝑡𝐾

(1)
0 )𝑤2

+
(

𝑡𝑤(6) + 𝑡𝐾5𝑤
(5) + 𝑡𝐾4𝑤

(4) + 𝑡𝐾3𝑤
(3) + 𝑡𝐾2𝑤

(2) + 𝑡𝐾0𝑤 − 𝑓#(𝑤)
)

𝑤(1).

On the other hand, since 𝑤 ∈ 𝐶6(R) is a positive solution to (̃𝑇 ), we get

𝑡𝑤(6) + 𝑡𝐾5𝑤
(5) + 𝑡𝐾4𝑤

(4) + 𝑡𝐾3𝑤
(3) + 𝑡𝐾2𝑤

(2) + 𝑡𝐾0𝑤 − 𝑓#(𝑤) = −𝑡𝐾1𝑤
(1) + (𝑤(𝑡)𝑒𝑡) as 𝑡→ −∞.

From this, we conclude that the coefficient functions p𝑗 (𝑛, ⋅) ∶ (−∞, ln𝑅) → R for 𝑗 ∈ {0, 1, 2, 3, 4, 5} are given in terms of
nonautonomous coefficients and their derivatives. More precisely, we find

p5(𝑛, 𝑡) ∶= 1
2
[𝐾5(𝑛, 𝑡) + 𝑡𝐾 (1)

5 (𝑛, 𝑡)],

p4(𝑛, 𝑡) ∶= 1
2
[𝐾3(𝑛, 𝑡) + 𝑡𝐾 (1)

3 (𝑛, 𝑡)],

p3(𝑛, 𝑡) ∶= 1
2
[1 − 2𝑡𝐾5(𝑛, 𝑡)],

p2(𝑛, 𝑡) ∶= 1
2
[𝐾4(𝑛, 𝑡) + 𝑡𝐾 (1)

4 (𝑛, 𝑡)],

p1(𝑛, 𝑡) ∶= 1
2
[𝐾2(𝑛, 𝑡) + 𝑡𝐾 (1)

2 (𝑛, 𝑡) − 2𝑡𝐾1(𝑛, 𝑡)],

p0(𝑛, 𝑡) ∶= 1
2
[𝐾0(𝑛, 𝑡) + 𝑡𝐾 (1)

0 (𝑛, 𝑡)].

A direct computation using the formulas above finishes the proof.

Now we use the asymptotic estimate proved in Lemma 3.8 to prove the result below
10 
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Lemma 3.10. Let 𝑤 ∈ 𝐶6(R) be a positive solution to (̃𝑇 ). Then, lim𝑡→−∞ 𝛯r ad(𝑡, 𝑤) = 0.

Proof. Notice that

𝛯r ad(𝑡, 𝑤) =∶ 𝐼10 + 𝐼9 + 𝐼8 + 𝐼7 + 𝐼6 + 𝐼5 + 𝐼4 + 𝐼3 + 𝐼2 + 𝐼1 + 𝐼0 + (�̄�(𝑡)𝑒𝑡).

Next, we estimate each term of the last identity separately by steps.
Step 1: 𝐼0 ∶= lim𝑡→−∞ ∫S𝑛−1 p0(𝑛, 𝑡)𝑤(𝑡, 𝜃)2d𝜃 = 0.
Using (3.12), we find that lim𝑡→−∞ p0(𝑛, 𝑡) = 0, which by means of (3.4) yields

lim
𝑡→−∞∫S𝑛−1

p0(𝑛, 𝑡)𝑤(𝑡, 𝜃)2d𝜃 =
(

lim
𝑡→−∞

p0(𝑛, 𝑡)
)

(

lim
𝑡→−∞∫S𝑛−1

𝑤(𝑡, 𝜃)2d𝜃
)

= 0.

This gives us the desired conclusion.
Step 2: 𝐼1 ∶= lim𝑡→−∞ ∫S𝑛−1 p1(𝑛, 𝑡)𝑤(1)(𝑡, 𝜃)2d𝜃 = 0.
It holds lim𝑡→−∞ p1(𝑛, 𝑡) = −∞. However, by (3.13), one has p1(𝑛, 𝑡) = p̃1(𝑛, 𝑡) + p̂1(𝑛, 𝑡), where

p̃1(𝑛, 𝑡) =
(𝑛 − 6)2𝑛(𝑛2 − 24𝑛 + 68)

12
𝑡−1 + (𝑡−2) and p̂1(𝑛, 𝑡) = 8(𝑛 − 2)(𝑛 − 4)(𝑛 − 6)𝑡.

With this notation, we set

lim
𝑡→−∞∫S𝑛−1

p1(𝑛, 𝑡)𝑤(1)(𝑡, 𝜃)2 d𝜃 = lim
𝑡→−∞

[

p̃1(𝑛, 𝑡)∫S𝑛−1
𝑤(1)(𝑡, 𝜃)2 d𝜃

]

+ lim
𝑡→−∞

[

p̂1(𝑛, 𝑡)∫S𝑛−1
𝑤(1)(𝑡, 𝜃)2 d𝜃

]

∶= 𝐼1 + 𝐼1.

Since lim𝑡→∞ p̃1(𝑛, 𝑡) = 0, we see that 𝐼1 = 0. Moreover, to estimate 𝐼1, we use the L’Hôpital rule as follows

𝐼1 = lim
𝑡→−∞∫S𝑛−1

p̂1(𝑛, 𝑡)𝑤(1)(𝑡, 𝜃)2 d𝜃

= lim
𝑡→−∞

8(𝑛 − 2)(𝑛 − 4)(𝑛 − 6)
𝜕𝑡
[

(

∫S𝑛−1 𝑤(1)(𝑡, 𝜃)2d𝜃)−1
]

= −4(𝑛 − 2)(𝑛 − 4)(𝑛 − 6) lim
𝑡→−∞

(

∫S𝑛−1 𝑤
(1)(𝑡, 𝜃)2d𝜃)2

∫S𝑛−1 𝑤(1)(𝑡, 𝜃)𝑤(2)(𝑡, 𝜃)d𝜃

⩽ lim
𝑡→−∞

𝑤(1)(𝑡, 𝜃)2
𝑤(2)(𝑡, 𝜃)

= lim
𝑡→−∞

6𝑤(3)(𝑡)2 + 8𝑤(2)(𝑡)𝑤(4)(𝑡) + 2𝑤(1)(𝑡)𝑤(5)(𝑡)

𝑤(6)(𝑡)

= lim
𝑡→−∞

6𝑤(3)(𝑡)2 + 8𝑤(2)(𝑡)𝑤(4)(𝑡) + 2𝑤(1)(𝑡)𝑤(5)(𝑡)

−𝐾5(𝑛)𝑤
(5)(𝑡) −𝐾4(𝑛)𝑤

(4)(𝑡) −𝐾3(𝑛)𝑤
(3)(𝑡) −𝐾2(𝑛)𝑤

(2)(𝑡) −𝐾1(𝑛)𝑤
(1)(𝑡) −𝐾0(𝑛) − 𝑓#(𝑤(𝑡))

= 0
where we used (3.6), (3.7), and (3.5) in the last three steps. Since 𝐼1 ⩾ 0, the proof is concluded.

Step 3: 𝐼2 ∶= lim𝑡→−∞ ∫S𝑛−1 p2(𝑛, 𝑡)𝑤(2)(𝑡, 𝜃)2d𝜃 = 0.
As before, by (3.14), it holds that lim𝑡→−∞ p2(𝑛, 𝑡) < ∞ and using

lim
𝑡→∞∫S𝑛−1

p2(𝑛, 𝑡)𝑤(2)(𝑡, 𝜃)2d𝜃 =
(

lim
𝑡→−∞

p2(𝑛, 𝑡)
)

(

lim
𝑡→−∞∫S𝑛−1

𝑤(2)(𝑡, 𝜃)2d𝜃
)

= 0,

the proof of this step follows promptly.
Step 4: 𝐼3 ∶= lim𝑡→−∞ ∫S𝑛−1 p3(𝑛, 𝑡)𝑤(2)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃 = 0.
In fact, using (3.15), one has that lim𝑡→−∞ p3(𝑛, 𝑡) < +∞. Thus,

lim
𝑡→−∞∫S𝑛−1

p3(𝑛, 𝑡)𝑤(2)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃 =
(

lim
𝑡→−∞

p3(𝑛, 𝑡)
)

(

lim
𝑡→−∞∫S𝑛−1

𝑤(2)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃
)

= 0,

where we used Lemma 3.8. This concludes the argument.
Step 5: 𝐼4 ∶= − lim𝑡→−∞ ∫S𝑛−1 p4(𝑛, 𝑡)𝑤(2)(𝑡, 𝜃)2d𝜃 = 0.
Indeed, by (3.16), we obtain that lim𝑡→−∞ p4(𝑛, 𝑡) < +∞. Thus,

− lim
𝑡→−∞∫S𝑛−1

p4(𝑛, 𝑡)𝑤(2)(𝑡, 𝜃)2d𝜃 = −
(

lim
𝑡→−∞

p4(𝑛, 𝑡)
)

(

lim
𝑡→−∞∫S𝑛−1

𝑤(2)(𝑡, 𝜃)2d𝜃
)

= 0,

where we used Lemma 3.8. This concludes the argument.
Step 6: 𝐼5 ∶= lim𝑡→−∞ ∫S𝑛−1 p4(𝑛, 𝑡)𝑤(3)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃 = 0.
Using the same argument as before, we find

lim
𝑡→−∞∫S𝑛−1

p4(𝑛, 𝑡)𝑤(3)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃 =
(

lim
𝑡→−∞

p4(𝑛, 𝑡)
)

(

lim
𝑡→−∞∫S𝑛−1

𝑤(3)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃
)

= 0,

which finishes this step.
Step 7: 𝐼 ∶= − lim ∫ p (𝑛, 𝑡)𝑤(3)(𝑡, 𝜃)𝑤(2)(𝑡, 𝜃)d𝜃 = 0.
6 𝑡→−∞ S𝑛−1 5
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Indeed, by (3.17), we obtain that lim𝑡→−∞ p4(𝑛, 𝑡) < +∞. Thus,

− lim
𝑡→−∞∫S𝑛−1

p5(𝑛, 𝑡)𝑤(3)(𝑡, 𝜃)𝑤(2)(𝑡, 𝜃)d𝜃 = −
(

lim
𝑡→−∞

p5(𝑛, 𝑡)
)

(

lim
𝑡→−∞∫S𝑛−1

𝑤(3)(𝑡, 𝜃)𝑤(2)(𝑡, 𝜃)d𝜃
)

= 0,

where we used Lemma 3.8. This concludes the argument.
Step 8: 𝐼7 ∶= lim𝑡→−∞ ∫S𝑛−1 p5(𝑛, 𝑡)𝑤(4)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃 = 0.
Using the same argument as before, we find

lim
𝑡→−∞∫S𝑛−1

p5(𝑛, 𝑡)𝑤(4)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃 =
(

lim
𝑡→−∞

p5(𝑛, 𝑡)
)

(

lim
𝑡→−∞∫S𝑛−1

𝑤(4)(𝑡, 𝜃)𝑤(1)(𝑡, 𝜃)d𝜃
)

= 0,

which finishes this step.
Step 9: 𝐼8 ∶= lim𝑡→−∞ ∫S𝑛−1 𝑤

(3)(𝑡, 𝜃)2d𝜃 = 0.
It follows directly by Lemma 3.8.
Step 10: 𝐼9 ∶= lim𝑡→−∞ ∫S𝑛−1 𝑤

(4)(𝑡, 𝜃)𝑤(2)(𝑡, 𝜃)d𝜃 = 0.
It follows directly by Lemma 3.8.
Step 11: 𝐼10 ∶= lim𝑡→−∞ ∫S𝑛−1 𝑤

(5)(𝑡, 𝜃), 𝑤(1)(𝑡, 𝜃)d𝜃 = 0.
It follows directly by Lemma 3.8.
Finally, putting together all the steps the proof is concluded.
The next proposition is the monotonicity of this new Pohozaev functional.

Proposition 3.11. Let 𝑤 ∈ 𝐶6(R) be a positive solution to (̃𝑇 ). Then, one has

(i) if 𝑛 = 7, 8, then there exists 𝑇∗ ≫ 1 such that ̃cy l(𝑡, 𝑤) is non-decreasing for 𝑡 > 𝑇∗.
(ii) if 𝑛 ⩾ 9, then there exists 𝑇 ∗ ≫ 1 such that ̃cy l(𝑡, 𝑤) is nonincreasing for 𝑡 > 𝑇 ∗.

Moreover, ̃cy l(−∞, 𝑤) ∶= lim𝑡→−∞ ̃cy l(𝑡, 𝑤) exists.

Proof. Initially, using Remark 3.7 and Lemma 3.8 one can find −𝑡0 ≫ 1 such that sign(𝜕𝑡̃r ad(𝑡, 𝑤)) = sign(p0(𝑛, 𝑡)|𝑤|2) for |𝑡| > |𝑡0|.
et us denote by p0(𝑛, 𝑡) = p̂0(𝑛)𝑡−2, where p̂0(𝑛) ∈ Z[𝑛] as p̂0(𝑛) = 3𝑛3 − 48𝑛2 + 228𝑛 − 320.

On one hand, by (3.12) since p̂0(𝑛) < 0 for 𝑛 ⩾ 9, we directly verify that there exists −𝑡1 ≫ 1 sufficiently large such that
p0(𝑛, 𝑡) < 0 for 𝑡| > |𝑡1|, which, by taking 𝑇 ∗ ∶= max{𝑡1, 𝑡0}, implies that ̃cy l(𝑡, 𝑤) is nonincreasing for |𝑡| > 𝑇 ∗. On the other hand,
ince p̂0(𝑛) > 0 for 𝑛 = 7, 8, there exists −𝑡1 ≫ 1 sufficiently large such that p0(𝑛, 𝑡) > 0 for |𝑡| > 𝑡2; thus, setting 𝑇∗ ∶= max{𝑡0, 𝑡2}, we
et that ̃cy l(𝑡, 𝑤) is nondecreasing for |𝑡| > 𝑇∗. Since lim𝑡→−∞ 𝛯ang(𝑡, 𝑤) = 0 exists and ̃cy l(𝑡, 𝑤) is uniformly bounded as 𝑡→ −∞, we
educe that ̃cy l(−∞, 𝑤) exists. The proof is concluded.

4. A priori upper bounds

This subsection is devoted to providing a priori upper bounds for positive singular solutions to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2# − 1). Our
strategy relies on the classification of the limit solutions to (6,𝑝,𝑅) combined with a blow-up argument. When 𝑝 ∈ (2#, 2# − 1), most
of our arguments in this section are similar in spirit to the ones in [9], so we omit them here. Nevertheless, for 𝑝 = 2#, our proof
is completely new and based on [11]. Notice that by scaling invariance, we may assume 𝑅 = 1 without loss of generality. Also, all
onstants in this section depend only on 𝑛 and 𝑝.

Lemma 4.1. Let 𝑢 ∈ 𝐶6(𝐵1)∩ 𝐶(�̄�1) be a positive non-singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2#− 1) and 𝑅 = 1. Then, there exists 𝐶 > 0
(depending only on 𝑛 and 𝑝) such that

𝑢(𝑥) ⩽ 𝐶(1 − |𝑥|)−𝛾𝑝 in 𝐵1. (4.1)

Proof. See [9, Lemma 3.1].
Using the last lemma, we can prove the auxiliary result below

Lemma 4.2. Let 𝑢 ∈ 𝐶6(𝐵∗
1 ) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2# − 1) and 𝑅 = 1. Then, there exists 𝐶 > 0 (depending

nly on 𝑛 and 𝑝) such that

|𝑢(𝑥)| ⩽ 𝐶|𝑥|−𝛾𝑝 in 𝐵∗
1∕2.

Proof. Fixing 𝑥0 ∈ 𝐵∗
1∕2, let us define 𝑟 = 1

2 |𝑥0|. Since �̄�𝑟
(

𝑥0
)

⊂ 𝐵∗
1 , the rescaled function given by

�̃�𝑟(𝑥) = 𝑟𝛾𝑝𝑢
(

𝑟𝑥 + 𝑥0
)

in �̄�1.

is well-defined. Furthermore, since 𝑢 is a positive singular solution to (6,𝑝,𝑅), we obtain that �̃�𝑟 is a positive non-singular solution
to

3
(−𝛥) �̃�𝑟 = 𝑓𝑝(�̃�𝑟) in 𝐵1,
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which is continuous up to the boundary. Therefore, we can apply Lemma 4.1 to �̃�𝑟, which, by taking 𝑥 = 0 in (4.1), provides
|�̃�𝑟(0)| ⩽ 𝐶. Hence, by rewriting in terms of 𝑢, we get |𝑢(𝑥0)| ⩽ 𝐶 𝑟−𝛾𝑝 . At last, since 𝑥0 ∈ 𝐵∗

1∕2 is arbitrary and 𝑟 = 1
2 |𝑥0|, the proof is

inished.

As a consequence, we have the following Harnack-type estimate

Corollary 4.3. Let 𝑢 ∈ 𝐶6(𝐵∗
1 ) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2#− 1) and 𝑅 = 1. Then, there exists 𝐶 > 0 (depending

only on 𝑛 and 𝑝) such that
5
∑

𝑗=0
|𝑥|𝛾𝑝+𝑗 |𝐷(𝑗)𝑢(𝑥)| ⩽ 𝐶 in 𝐵∗

1∕2.

Proof. See [9, Theorem 1.1].

The last lemma is a Harnack-type inequality

Lemma 4.4. Let 𝑢 ∈ 𝐶6(𝐵∗
1 ) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2# − 1) and 𝑅 = 1. Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0.

Then, there exist 𝐶 > 0 and 𝑟 ∈ (0, 1∕16) (depending only on 𝑛 and 𝑝) such that

sup
𝐵𝑟∕2⧵�̄�3𝑟∕2

𝑢 ⩽ 𝐶 inf
𝐵𝑟∕2⧵�̄�3𝑟∕2

𝑢 in 𝐵∗
1∕16.

Proof. See [9, Proposition 4.2].

We also establish some auxiliary results about upper bounds near the isolated singularity.

Lemma 4.5. Let 𝑢 ∈ 𝐶6(𝐵∗
1 ) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (2#, 2# − 1) and 𝑅 = 1, and 𝑣 = F−1(𝑢) be its autonomous

Emden–Fowler transformation given by (2.1). Then, there exists 𝐶 > 0 (depending only on 𝑛 and 𝑝) such that

|𝑣| + |𝑣(1)| + |𝑣(2)| + |𝑣(3)| + |𝑣(4)| + |𝑣(5)| + |∇𝜃𝑣| + |𝛥𝜃𝑣| + |∇𝜃𝛥𝜃𝑣| + |𝛥2𝜃𝑣| ⩽ 𝐶 in ln 2.

Proof. First, by Lemma 4.2, we know that 𝑣 ∈ 𝐶6(𝑇 ) is uniformly bounded. Moreover, using Corollary 4.3, one can find 𝐶 > 0
such that

|𝑣(1)| + |∇𝜃𝑣| ⩽ 𝐶
1
∑

𝑗=0
|𝑥|𝛾𝑝 |𝐷(𝑗)𝑢(𝑥)| ⩽ 𝐶 ,

|𝑣(2)| + |𝛥𝜃𝑣| ⩽ 𝐶
2
∑

𝑗=0
|𝑥|𝛾𝑝+𝑗 |𝐷(𝑗)𝑢(𝑥)| ⩽ 𝐶 ,

|𝑣(3)| + |∇𝜃𝛥𝜃𝑣| ⩽ 𝐶
4
∑

𝑗=0
|𝑥|𝛾𝑝+𝑗 |𝐷(𝑗)𝑢(𝑥)| ⩽ 𝐶 ,

|𝑣(4)| + |𝛥2𝜃𝑣| ⩽ 𝐶
4
∑

𝑗=0
|𝑥|𝛾𝑝+𝑗 |𝐷(𝑗)𝑢(𝑥)| ⩽ 𝐶 ,

|𝑣(5)| ⩽ 𝐶
5
∑

𝑗=0
|𝑥|𝛾𝑝+𝑗 |𝐷(𝑗)𝑢(𝑥)| ⩽ 𝐶 ,

for 0 < |𝑥| < 1∕2, which by a direct rescaling argument proves the lemma.

When 𝑝 = 2#, we have the asymptotic upper bound below. Our approach here follows the same lines of [11, Theorem 5].
Nonetheless, we write a short proof for the convenience of the reader.

Lemma 4.6. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 = 2#. Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. Then, there exist

0(𝑛) > 0 and 0 < 𝑟0 < 𝑅 such that

|𝑢(𝑥)| ⩽ 𝐶0(𝑛)|𝑥|
6−𝑛(ln |𝑥|)

6−𝑛
6 f or 0 < |𝑥| < 𝑟0,

where 𝑢(𝑟) = ∫−𝜕 𝐵𝑅 |𝑢(𝑟𝜃)|d𝜃 denotes the spherical average of 𝑢.

Proof. Note that for each 0 < 𝑟 < 𝑅 with 𝑟 = |𝑥|, we get that the spherical average 𝑢 ∈ 𝐶6(R) satisfies the following nonautonomous
ODE

𝑟−6𝜕(6) +𝑀 (𝑛, 𝑟)𝜕(5) +𝑀 (𝑛, 𝑟)𝜕(4) +𝑀 (𝑛, 𝑟)𝜕(3) +𝑀 (𝑛, 𝑟)𝜕(2) +𝑀 (𝑛, 𝑟)𝜕 − 𝑓 (𝑢) ⩾ 0, (4.2)
𝑟 5 𝑟 4 𝑟 3 𝑟 2 𝑟 1 𝑟 #
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where the coefficients 𝑀𝑗 (𝑛, ⋅) ∶ (0, 𝑅) → R are given by (A.2) and (A.3). Next, setting

𝜓0 = 𝑢, 𝜓1 = −𝛥𝑢, and 𝜓2 = 𝛥2𝑢,

we can reformulate (6,𝑝,𝑅) as the following system
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
(

𝑟𝑛−1𝜓 (1)
0 (𝑟)

)(1)
= 𝑟𝑛−1𝜓0(𝑟)

−
(

𝑟𝑛−1𝜓 (1)
1 (𝑟)

)(1)
= 𝑟𝑛−1𝜓1(𝑟) for 𝑟 ∈ (0, 𝑅)

−
(

𝑟𝑛−1𝜓 (1)
2 (𝑟)

)(1)
= 𝑟𝑛−1𝑓#(𝑢(𝑟)).

(4.3)

In what follows, the proof will be divided into some steps
Step 1: Either 𝑢 ∈ 𝐶(𝐵1)∩𝐻3(𝐵1) is a continuous weak solution to (6,𝑝,𝑅) with 𝑝 = 2#, or lim𝑟→0 𝑢(𝑟) = lim𝑟→0 −𝛥𝑢(𝑟) lim𝑟→0 𝛥2𝑢(𝑟) =

+∞. In particular,

𝑢(1)(𝑟) ⩽ 0, (−𝛥𝑢)(1)(𝑟) ⩽ 0, and (𝛥2𝑢)(1)(𝑟) ⩽ 0 f or 𝑟 ∈ (0, 𝑅).
Suppose that 𝑢 ∈ 𝐶1(𝐵∗

1 ) does not have a removable singularity at the origin. Then 𝑢 must be unbounded in 𝐵1, and, in this case,
also a distribution solution to (6,𝑝,𝑅) in the entire 𝐵1. Since 𝑓𝑝(𝑢) ∈ 𝐿𝑛∕(6−𝛿)(𝐵1) for some 𝛿 ∈ (0, 6), by bootstrap argument, 𝑢 may
be extended to a continuous weak solution to (6,𝑝,𝑅), which is a contradiction.

First, we claim that 𝑢(𝑟) → +∞ as 𝑟 → 0. In fact, suppose by contradiction that lim inf 𝑟→0 𝑢(𝑟) < +∞. Then there exist two real
sequences {𝑚𝑘}𝑘∈N, {𝑚𝑘}𝑘∈N such that 𝑀𝑘 > 𝑚𝑘 → 0 as 𝑘 → ∞ and 𝑢 assumes local maxima at 𝑀𝑘, local minima at 𝑚𝑘 for all 𝑘 ∈ N.
Moreover 𝑢(𝑀𝑘) → +∞ as 𝑘 → ∞ while {𝑢(𝑚𝑘)}𝑘∈N ⊂ R remains bounded. Since −𝛥𝑢 ⩾ 0, by the maximum principle, we get

𝑢(𝑀𝑘) ⩾ min{𝑢(𝑚𝑘), 𝑢(𝑚𝑘+1)} f or all 𝑘 ∈ N,

which contradicts the boundedness of {𝑢(𝑚𝑘)}𝑘∈N ⊂ R. Using the same argument, it is also clear that −𝛥𝑢(𝑟) → +∞ and 𝛥2𝑢(𝑟) → +∞
as 𝑟 → 0.

By integrating (4.3) on (𝜌, 𝑟), where 0 < 𝜌 ≪ 𝑅 small enough, we find

𝑟𝑛−1𝜓 (1)
𝑗 (𝑟) ⩽ 𝜌𝑛−1𝜓 (1)

𝑗 (𝜌) < 0 f or 𝑗 ∈ {0, 1, 2}.
This completes the proof of Step 1.

To continue with the proof, we need to introduce some auxiliary functions. Namely, we define the functions 𝛹0, 𝛹1, 𝛹2 ∶ (0, 𝑅) → R
given by

𝛹0(𝑟) = 𝑟𝜓0(𝑟), 𝛹1(𝑟) = 𝑟𝜓1(𝑟) + (𝑛 − 2)𝜓 (1)
1 , 𝛹2(𝑟) = 𝑟𝜓2 + (𝑛 − 2)𝜓 (1)

2 ,

which satisfy
⎧

⎪

⎨

⎪

⎩

−𝛥𝛹0 = 𝛹1

−𝑟−1𝛹 (1)
1 = 𝛹2

−𝑟−1𝛹 (1)
2 = (−𝛥)3𝛹0.

(4.4)

Step 2. There exists 0 < 𝑟0 ≪ 1 and 0 < 𝜌 < 𝑟0, it follows lim𝑟→0 𝑟𝑛−2(2−𝑗)𝜓𝑗 (𝑟) = 0 and 𝛹𝑗 (𝑟) ⩾ 0 in 𝑟 ∈ (0, 𝜌) for 𝑗 ∈ {0, 1, 2}.
Since 𝑢 ∈ 𝐿1

loc(𝐵𝑅) is a distribution solution to (6,𝑝,𝑅) with 𝑝 = 2#, it follows that lim inf 𝑟→0 𝑟𝑛−2(2−𝑗)𝜓𝑗 (𝑟) = 0 for 𝑗 ∈ {0, 1, 2}.
We start with the case 𝑗 = 2. Indeed, let us denote by 𝜓∗

0 (𝑟
−1) = 𝑟𝑛−6𝜓0(𝑟) the sixth order Kelvin transform 𝜓0 = 𝑢 with respect

to 𝜕 𝐵1. Hence, by [11, Lemma 3], we find that −𝛥3𝜓∗
0 ⩾ 0 in ∗(𝐵𝑅) ∶= R𝑛 ⧵ 𝐵∗

1 . Then, by Step 1, 𝜓∗
0 is monotone near +∞, which

implies that 𝑟𝑛−6𝜓0(𝑟) is monotone near the origin. Hence lim𝑟→0 𝑟𝑛−6𝜓0(𝑟) > 0 exists and is positive for small 0 < 𝑟 ≪ 1.
To verify the case 𝑗 = 1, let us denote by 𝜓∗

1 (𝑟
−1)(𝑟−1) = 𝑟𝑛−4𝑢(𝑟) the fourth order Kelvin transform of 𝜓1 = 𝛥𝑢 with respect to

𝜕 𝐵1. Hence, by [11, Lemma 3], we find that 𝛥2𝜓∗
1 ⩾ 0 in ∗(𝐵𝑅). Then, from Step 1, we conclude that 𝜓∗

1 is monotone near +∞,
hich implies that 𝑟𝑛−4𝜓1(𝑟) is monotone near the origin. Hence lim𝑟→0 𝑟𝑛−4𝜓1(𝑟) > 0 exists and is positive for small 0 < 𝑟 ≪ 1.

Finally, for the case 𝑗 = 0, let us denote by 𝜓∗
2 (𝑟

−1) = 𝑟𝑛−2𝑢(𝑟) the second order Kelvin transform of 𝜓2 = 𝛥2𝑢 with respect to 𝜕 𝐵1.
Hence, by [11, Lemma 3], we find that −𝛥𝜓∗

2 ⩾ 0 in ∗(𝐵𝑅). Then, from Step 1, we conclude that 𝜓∗
2 is monotone near +∞, which

implies that 𝑟𝑛−2𝜓2(𝑟) is monotone near the origin. Hence lim𝑟→0 𝑟𝑛−2𝜓2(𝑟) > 0 exists and is positive for small 0 < 𝑟 ≪ 1.
The proof of Step 2 is concluded.
Step 3. lim𝑟→0 𝑟𝑛−2𝛹0(𝑟) = 0 and 𝛹 (1)

0 (𝑟) + (𝑛 − 2)𝛹0(𝑟) ⩾ 0.
Finally, from the case 𝑗 = 2, it holds that 0 ⩽ −𝑟𝑢(1)(𝑟) ⩽ (𝑛 − 6)𝑢(𝑟) in (0, 𝜌). Thus, multiplying the last inequality by 𝑟𝑛−2 and

letting 𝑟 → 0, we get that lim𝑟→0 𝑟𝑛−1𝑢
(1)(𝑟) = 0, and so

lim
𝑟→0

𝑟𝑛−2𝛹0(𝑟) = lim
𝑟→0

(

𝑟𝑛−1𝑢(1)(𝑟) + (𝑛 − 6)𝑟𝑛−2𝑢(𝑟)
)

= 0.

Next, for 0 < 𝑟0 ≪ 1 small given by Step 2, it follows from (4.4) that −𝛥𝛹0 ⩾ 0 and 𝛹0 ⩾ 0 in 𝐵∗
𝑟0

. Therefore, by considering
∗
0 (𝑟

−1) = 𝑟𝑛−2𝛹0(𝑟), we obtain −𝛥𝛹∗
0 ⩾ 0 and 𝛹∗

0 ⩾ 0 in ∗(𝐵𝑅). In addition, 𝛹∗
0 (𝑟

−1) → 0. Consequently, a direct application of the
aximum principle, yields 𝛹∗

0 (𝑟
−1) ⩽ 0 for all 𝑟−1 > 𝑟−10 , which in turn proves completes the proof of Step 3.

Step 4. 𝛹 (1)
0 (𝑟) ⩽ 0 for 0 < 𝑟 ≪ 1, then 𝛹0(𝑟) → +∞ as 𝑟 → 0.

We observe that from Step 3 it follows that −(𝑟𝑛−1𝛹 (1)
0 )(1) ⩾ 0 for 𝑟 ∈ (0, 𝜌1), which by integrating on (𝜀, 𝑟), with 𝑟 ∈ (0, 𝜌1), yields

𝑛−1 (1) 𝑛−1 (1)
−𝑟 𝛹0 (𝑟) + 𝜀 𝛹0 (𝜀) ⩾ 0.
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Hence, by letting 𝜀 → 0 in the last inequality we find that 𝛹 (1)
0 (𝑟) ⩽ 0 for 𝑟 ∈ (0, 𝜌1). At last, suppose by contradiction that there

xists 𝐶 > 0 such that 𝛹0(𝑟) ⩽ 𝐶 for all 𝑟 > 0, which imply

𝛹0(𝑟) = 𝑟7−𝑛(𝑟𝑛−6𝑢(𝑟))(1) ⩽ 𝐶 .

On the other hand, integrating the last inequality on (0, 𝑟), we would obtain 𝑢(𝑟) ⩽ 𝐶(𝑛 − 6)−1, which is a contradiction of the
origin is a non-removable singularity and proves Step 4.

Step 5. |𝑢(𝑥)| ⩽ 𝐶0(𝑛)|𝑥|
6−𝑛(ln |𝑥|)

6−𝑛
6 for 0 < |𝑥| < 𝑟0.

Let us set

𝜑0(𝑟) = 𝑟𝑛−6𝑢(𝑟), 𝜑1(𝑟) = 𝑟𝑛−4𝜑0(𝑟), and 𝜑2(𝑟) = 𝑟𝑛−2𝜑1(𝑟).

Whence, using Step 1, we get that 6𝜑(1)
0 (𝑟) ⩾ 0, 𝜑(1)

1 (𝑟) and 𝜑(2)
2 (𝑟) ⩾ 0 in (0, 𝑟0). Now, since 𝛹1(𝑟) = 𝑟4−𝑛𝜑(1)

1 (𝑟), one has from Step 2
the following holds

−
(

𝑟𝛹 (1)
0 (𝑟) + (𝑛 − 2)𝛹0(𝑟)

)(1)
= 𝑟4−𝑛𝜑(1)

1 (𝑟),

which, by integrating on (𝑟, 𝑟0), yields

−
(

𝑟𝛹 (1)
0 (𝑟0) + (𝑛 − 2)𝛹0(𝑟0)

)

+ 𝑟𝛹 (1)
0 (𝑟) + (𝑛 − 2)𝛹0(𝑟) ⩾ 𝜑1(𝑟)

(

𝑟4−𝑛 − 𝑟4−𝑛0
)

.

Now, since 𝜑0(𝑟) → 0 as 𝑟 → 0, one can find 𝑟1 ∈ (0, 𝑟0) such that
(

𝑟𝛹 (1)
0 (𝑟0) + (𝑛 − 2)𝛹0(𝑟0)

)

− 𝜑1(𝑟)𝑟4−𝑛0 ⩾ 0, in (0, 𝑟1),

which, since from Step 5 implies 𝛹 (1)
0 (𝑟) ⩽ 0 for 𝑟 small, one can find 𝐶 > 0 such that

𝛹0(𝑟) ⩾ 𝐶 𝑟4−𝑛𝜑0(𝑟) in (0, 𝑟1),

and so 𝜑(1)
0 (𝑟) ⩾ 𝐶 𝑟−1𝜑1(𝑟). Hence, since 𝜓1(𝑟) ⩾ 𝐶 𝑓#(𝑢(𝑟)), we get 𝜑1(𝑟) ⩾ 𝐶 𝑓#(𝜑0(𝑟)), which yields

𝜑(1)
0 (𝑟) ⩾ 𝐶 𝑟−1𝑓#(𝜑0(𝑟)) in 𝑟 ∈ (0, 𝑟1).

Up to a rescaling, we may assume that the last inequality holds for 𝑟 ∈ (0, 1). Thus, by a direct integration, we obtain 𝜑0(𝑟)
− 6
𝑛−6 ⩾ 𝐶 ln 𝑟

as 𝑟 → 0, which in turn leads to
𝑢(𝑟)𝑟𝑛−6(ln 𝑟)

𝑛−6
6 ⩽ 𝐶 as 𝑟 → 0.

This completes the proof of the lemma.

5. Asymptotic radial symmetry

We prove the first part of Theorem 1 asserting that solutions to (6,𝑝,𝑅) are radially symmetric about the origin. This symmetry
will later be used to convert the singular PDE into a non-singular ODE on the cylinder.

Before that, we need to establish some preliminaries.

5.1. Kelvin transform

Later we will employ the moving spheres technique, which is based on the sixth order Kelvin transform of a real valued
function. To define the Kelvin transform, we need to establish the concept of inversion about a sphere 𝜕 𝐵𝜇(𝑥0), which is a map
𝑥0 ,𝜇 ∶ R𝑛 → R𝑛 ⧵ {𝑥0} given by 𝑥0 ,𝜇(𝑥) = 𝑥0 +𝐾𝑥0 ,𝜇(𝑥)

2(𝑥 − 𝑥0), where 𝐾𝑥0 ,𝜇(𝑥) = 𝜇∕|𝑥 − 𝑥0|.

Definition 5.1. For any 𝑢 ∈ 𝐶6(𝐵∗
𝑅), let us consider the sixth order Kelvin transform about the sphere with center at 𝑥0 ∈ R𝑛 and

radius 𝜇 > 0 defined by

𝑢𝑥0 ,𝜇(𝑥) = 𝐾𝑥0 ,𝜇(𝑥)
𝑛−6𝑢

(

𝑥0 ,𝜇(𝑥)
)

.

Lemma 5.2. If 𝑢 ∈ 𝐶6(𝐵∗
𝑅) is a solution to (6,𝑝,𝑅), then 𝑢𝑥0 ,𝜇 ∈ 𝐶6(𝐵∗

𝑅 ⧵ {𝑥0}) is a solution to
(−𝛥)3𝑢𝑥0 ,𝜇 = 𝐾𝑥0 ,𝜇(𝑥)

(𝑛−6)𝑝−(𝑛+6)𝑓𝑝(𝑢𝑥0 ,𝜇) in 𝐵∗
𝑅 ⧵ {𝑥0}.

Proof. It directly follows from the facts that the tri-Laplacian is conformally covariant and the Kelvin transform is a conformal
diffeomorphism.
15 
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5.2. Integral representation

Now we use a Green identity to transform the sixth order differential system (6,𝑝,𝑅) into an integral system. In this way, we can
avoid using the classical form of the maximum principle, and a sliding method is available [29,30], which will be used to classify
solutions. In this setting is also possible to prove regularity through a barrier construction.

We start with the following result

Lemma 5.3. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive solution to (6,𝑝,𝑅) with 𝑝 ∈ (1,+∞). Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. Then, 𝑢 ∈ 𝐿𝑝(𝐵1). In

articular, if 𝑝 ∈ (2#,+∞), then 𝑢 ∈ 𝐿1(𝐵1) is a distribution solution to (6,𝑝,𝑅), that is, for all positive 𝜙 ∈ 𝐶∞
𝑐 (𝐵1), one has

∫𝐵1

𝑢(−𝛥)3𝜙d𝑥 = ∫𝐵1

𝑓𝑝(𝑢)𝜙d𝑥.

Proof. See the proof of [12, Lemma 3.1] (see also [31, Theorem 3.7]).
The next result uses the Green identity to convert (6,𝑝,𝑅) into an integral system. We divide this results in two cases, namely

 < +∞ and 𝑅 = +∞.

Lemma 5.4. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive solution to (6,𝑝,𝑅) with 𝑝 ∈ (1,+∞). Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0.

(i) If 𝑅 < +∞, then (up to constant) there exists 𝑟0 > 0 such that

𝑢(𝑥) = ∫𝐵𝑟0
|𝑥 − 𝑦|6−𝑛𝑓𝑝(𝑢)d𝑦 + 𝜓(𝑥), (5.1)

where 𝜓 > 0 satisfies (−𝛥)3𝜓 = 0 in 𝐵𝑟0 . Moreover, one can find a constant 𝐶(�̃�) > 0 such that ‖∇ ln𝜓‖𝐶0(𝐵�̃�) ⩽ 𝐶(�̃�) for all 0 < ̃𝑟 < 𝑟0.
(ii) If 𝑅 = +∞, then (up to constant), it follows

𝑢(𝑥) = ∫R𝑛
|𝑥 − 𝑦|6−𝑛𝑓𝑝(𝑢)d𝑦.

Proof. For (i), the proof is a simple adaptation of [22, Lemma 2.3]. For (ii) see [32, Theorem 4.3] (see also [33]).

5.3. Sliding technique

Now we use the preliminary results to run an integral moving spheres technique. We use an asymptotic moving spheres technique
in the same spirit of [15]. Although our proofs are almost the same we include it here for the sake of completeness.

Proposition 5.5. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2# − 1). Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. Then,

𝑢(𝑥) = (1 + (|𝑥|))𝑢(𝑥) as 𝑥 → 0.

Proof. Initially, if the origin is a removable singularity, then the conclusion is clear. Hence, we suppose that the origin is a
non-removable singularity.

We divide the proof into some claims.
Claim 1: There exists small 0 < 𝜀 ≪ 1 such that for any 𝑧 ∈ 𝐵∗

𝜀∕2, it holds

𝑢𝑧,𝑟 ⩽ 𝑢 in 𝐵1 ⧵
(

𝐵𝑟(𝑧) ∪ {0}) for 0 < 𝑟 ⩽ |𝑧|. (5.2)

Indeed, the proof follows almost the same lines as the one in [22, Lemma 3.2], so we omit it.
In the next claim, we provide some estimates to be used later in the proof.
Claim 2: There exists 𝑧 ∈ 𝐵∗

𝜀∕2, 0 < 𝑟 < |𝑧| and 𝜇∗ ≫ 1 large such that

𝑦𝜇
|𝑦𝜇|

2
− 𝑧 =

⎛

⎜

⎜

⎝

𝑟
|

|

|

𝑦∕|𝑦|2 − 𝑧||
|

⎞

⎟

⎟

⎠

2
(

𝑦
|𝑦|2

− 𝑧
)

and
|𝑦𝜇|
|𝑦|

⩽ 1
𝑟

|

|

|

|

|

𝑦
|𝑦|2

− 𝑧
|

|

|

|

|

f or any 𝜇 > 𝜇∗. (5.3)

Here 𝑦𝜇 = 𝑦 + 2(𝜇 − 𝑦 ⋅ 𝐞)𝐞 is the reflection of 𝑦 about the hyperplane 𝜕 𝐻𝜇(𝐞), where 𝐻𝜇(𝐞) = {𝑥 ∶ ⟨𝑥, 𝐞⟩ > 𝜇} and 𝐞 ∈ S𝑛−1. In other
ords, 𝑦𝜇|𝑦𝜇|−2 is the reflection point of 𝑦|𝑦|−2 about 𝜕 𝐵𝑟(𝑧).

As matter of fact, choosing 𝑟 = |𝑧|, it involves an elementary computation, as follows

𝑧 =
𝑦

|𝑦|2
+

|

|

|

𝑦𝜇
|

|

|

2

|𝑦|2 − |

|

|

𝑦𝜇
|

|

|

2

⎛

⎜

⎜

⎜

⎝

𝑦
|𝑦|2

−
𝑦𝜇

|

|

|

𝑦𝜇
|

|

|

2

⎞

⎟

⎟

⎟

⎠

=

(

𝑦 − 𝑦𝜇
)

|𝑦|2 − |

|

|

𝑦𝜇
|

|

|

2
.

Next, we establish a comparison involving the Kelvin transform of a component solution with itself.
Claim 3: For any 𝜇 > 1

𝜀 and 𝐞 ∈ 𝜕 𝐵1, if ⟨𝑥, 𝐞⟩ > 𝜇 and |𝑦𝜇| > 1, it holds 𝑢0,1(𝑦) ⩽ 𝑢0,1
(

𝑦𝜇
)

.
In fact, to prove the last inequality, let us note first that 𝑦 ∈ 𝐵1∕𝜀, if and only if, 𝑦|𝑦|−2 ∈ 𝐵𝜀. Now given 𝑦 ∈ R𝑛 such that

⟨𝑦, 𝐞⟩ > 𝜇, |𝑦 | > 1 and 0 < 𝑟 < |𝑧| < 𝜀∕2 satisfying (5.3). Let us define 𝑥 = 𝑦|𝑦|−2 and 𝑥 = 𝑦 |𝑦 |

−2. Then, since ⟨𝑦, 𝐞⟩ > 𝜇 > 𝜀−1
𝜇 𝑧,𝑟 𝜇 𝜇
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and ∥ 𝑦𝜇| > 1, we have 𝑥 ∈ 𝐵𝑟(𝑧) and 𝑥𝑧,𝑟 ∈ 𝐵1 ⧵ 𝐵𝑟(𝑧). Hence, using (5.2) and (5.3), we find

𝑢0,1(𝑦) ⩽ 𝑢0,1(𝑦𝜇),

which proves the claim.
Ultimately, using Claim 3, we invoke [20, Theorem 6.1 and Corollary 6.2] to find 𝐶 > 0, independent of 𝜀 > 0, such that if

𝑦| ⩾ |𝑥|+𝐶 𝜀−1, it follows 𝑢0,1(𝑦) ⩽ 𝑢0,1(𝑥). Therefore, since 𝑢0,1 is positive and satisfies −𝛥𝑢0,1 ⩾ 0 and 𝛥2𝑢0,1 ⩾ 0, the last inequality
mplies

𝑢0,1(|𝑥|) =
(

1 + 
( 1
𝑅

))

(

inf
𝜕 𝐵𝑅 𝑢0,1

)

as 𝑅 → +∞,

uniformly on 𝜕 𝐵𝑅, which in terms of 𝑢 implies the desired asymptotic radial symmetry with respect to the origin, and the proof is
concluded.

6. The limiting Pohozaev levels

After proving the radial symmetry of singular solutions to (6,𝑝,𝑅), we shall classify them in the blow-up and shrink-down limit.
he idea is to use a blow-up/shrink-down analysis, which comes from tangent cone techniques from minimal hypersurface theory,
nd will be described in the sequel.

For any 𝑢 ∈ 𝐶6(𝐵∗
𝑅) solution to (6,𝑝,𝑅) and 𝜆 > 0, let us define the following 𝜆-rescaling solution given by

�̂�𝜆(𝑥) ∶= 𝜆𝛾𝑝𝑢(𝜆𝑥), (6.1)

where we recall that 𝛾𝑝 = 6(𝑝 − 1)−1. Notice that the 𝜆-rescaled solution is still a positive solution to (6,𝑝,𝑅) with 𝑅 = 𝜆−1. Moreover,
we get the following scaling invariance

sph(𝑟, ̂𝑢𝜆) = sph(𝜆𝑟, 𝑢). (6.2)

This follows by directly using the inverse cylindrical transform as in Remark 3.5. Besides, by a blow-up (resp. shrink-down) solution
𝑢0 (resp. 𝑢∞) to (6,𝑝,𝑅), we mean the limit 𝑢0 ∶= lim𝜆→0 �̂�𝜆 (resp. 𝑢∞ ∶= lim𝜆→+∞ �̂�𝜆). In fact, utilizing some a priori estimates and
he compactness of the family {�̂�𝜆}𝜆>0 ⊂ 𝐶6,𝛼

loc (R
𝑛) for some 𝛼 ∈ (0, 1), these limits will be proven to exist. Next, we study the limit

Pohozaev functional both as 𝑟→ 0 (blow-up) and 𝑟→ +∞ (shrink-down), this will give the desired information about the asymptotic
ehavior for solutions to (6,𝑝,𝑅).

Here is our main result of this section:

Proposition 6.1. Let 𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}) be a positive solution to (6,𝑝,∞) with 𝑝 ∈ (1, 2# − 1). Assume that 𝑢 is homogeneous of degree −𝛾𝑝.

(a) If 𝑝 ∈ (1, 2#], then 𝑢 ≡ 0;
(b) If 𝑝 ∈ (2#, 2# − 1), then cy l(𝑟, 𝑢) converges both as 𝑟→ 0 and 𝑟 → +∞, namely

{sph(0, 𝑢),sph(+∞, 𝑢)} = {−𝜔𝑛−1𝓁∗
𝑝 , 0}, where 𝓁∗

𝑝 =
𝑝 − 1

2(𝑝 + 1)𝐾0(𝑛, 𝑝)
𝑝+1
𝑝−1 . (6.3)

First, we prove that the invariance of the Pohozaev invariant is equivalent to the homogeneity of the blow-up limit solutions to
(6,𝑝,∞). A similar result can also be found in [18], where a different type of functional is considered.

Lemma 6.2. Let 𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}) be a positive solution to (6,𝑝,∞) with 𝑝 ∈ (2#, 2# − 1). Then, sph(𝑟, ) is constant, if and only if, for
any 𝑟 ∈ (𝑟1, 𝑟2) with 0 < 𝑟1 ⩽ 𝑟2 < +∞, 𝑢 is homogeneous of degree −𝛾𝑝 > 0 in 𝐵𝑟2 ⧵ �̄�𝑟1 , that is, it holds

𝑢(𝑥) = |𝑥|−𝛾𝑝𝑢
(

𝑥
|𝑥|

)

in 𝐵𝑟2 ⧵ �̄�𝑟1 .

Proof. Notice that if 𝑝 ≠ 2# − 1, then 𝐾0(𝑛, 𝑝) ≠ 0. Thus, supposing that sph(𝑟, 𝑢) is constant for 𝑟1 < 𝑟 < 𝑟2, together with
Remark 3.3 yields that 𝜕𝜈𝑢 = 𝛾𝑝𝑟−1𝑢 on 𝜕 𝐵𝑟 for any 𝑟1 < 𝑟 < 𝑟2, where 𝜈 is the unit normal pointing towards the origin. Therefore, 𝑢
is homogeneous of degree −𝛾𝑝 in 𝐵𝑟2 ⧵ �̄�𝑟1 , which concludes the proof.

The following lemma provides an upper bound estimate for singular solutions to (6,𝑝,𝑅).

Lemma 6.3. Let 𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}) be a positive singular solution to (6,𝑝,∞) with 𝑝 ∈ (1, 2# − 1). Then, it follows

𝑢(𝑥) ⩽
(

𝑝 − 1
2𝑛

)− 1
𝑝−1

|𝑥|−𝛾𝑝 in R𝑛 ⧵ {0}.

Proof. By [10, Theorem 6.1], we know that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0 in R𝑛 ⧵{0}, which, by using the extended maximum principle [34,
Theorem 1], gives us

lim inf 𝑢(𝑥) > 0.

𝑥→0
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Considering 𝜑 = 𝑢1−𝑝, a direct computation, provides

𝛥𝜑 ⩾ 𝑝
𝑝 − 1

|∇𝜑|2

𝜑
+ 𝑝 − 1 in R𝑛 ⧵ {0}.

Thus, for any 𝑟 > 0, let us consider the auxiliary function �̃�(𝑥) = 𝜑(𝑥) − 𝑝−1
2𝑛 |𝑥|2, which satisfies −𝛥 ̃𝜑 ⩽ 0 in 𝐵∗

𝑟 . Furthermore, 6.3
implies that �̃� is bounded close to the origin, and thus, again, by the extended maximum principle, we find

0 ⩽ lim sup
𝑥→0

�̃�(𝑥) ⩽ sup
𝜕 𝐵𝑟

�̃� = sup
𝜕 𝐵𝑟

𝜑 −
𝑝 − 1
2𝑛

𝑟2,

which yields

inf
𝜕 𝐵𝑟 𝑢 ⩽

(

𝑝 − 1
2𝑛

)− 1
𝑝−1

𝑟−𝛾𝑝 .

Finally, a direct application of Proposition 5.5 finishes this proof.

As a consequence of this uniform upper bound, we prove the compactness of the family {�̂�𝜆}𝜆>0 ⊂ 𝐶6,𝛼
loc (R

𝑛), for some 𝛼 ∈ (0, 1),
which provides the existence of both blow-up and shrink-down limits for the scaling family defined by (6.1).

Lemma 6.4. Let 𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}) be a positive singular solution to (6,𝑝,∞) with 𝑝 ∈ (1, 2# − 1). Then, {�̂�𝜆}𝜆>0 ⊂ 𝐶6,𝛼
loc (R

𝑛) is locally
niformly bounded for some 𝛼 ∈ (0, 1).

Proof. If the origin is a removable singularity of �̂�𝜆 for all 𝜆 > 0, according to Theorem A, 𝑢 is trivial and the conclusion follows.
On the other hand, assuming that the origin is a removable singularity, Lemma 6.3 provides that {�̂�𝜆}𝜆>0 is globally bounded

in R𝑛 ⧵ {0}. Thus, we know that {�̂�𝜆}𝜆>0 is uniformly bounded in each compact subset of 𝐾 ⊂ R𝑛 ⧵ {0}. Moreover, since for each
𝜆 > 0, the scaling �̂�𝜆 also satisfies (6,𝑝,∞), it follows from standard elliptic estimates that {�̂�𝜆}𝜆>0 is uniformly bounded in 𝐶6,𝛼(𝐾),
for some 𝛼 ∈ (0, 1), which concludes the proof.

Recall that sph(𝑟, 𝑢) is the Pohozaev functional introduced in Remark 3.3, which by Proposition 3.4 is monotonically nonincreas-
ing in 𝑟 > 0 when 𝑝 ∈ (1, 2# − 1).

Lemma 6.5. Let 𝑢0 ∈ 𝐶6(R𝑛 ⧵ {0}) (or 𝑢∞ ∈ 𝐶6(R𝑛 ⧵ {0})) be a positive singular blow-up (or shrink-down) solution to (6,𝑝,𝑅) under the
family of scalings {�̂�𝜆}𝜆>0 ⊂ 𝐶6(R𝑛 ⧵ {0}). Then, sph(𝑟, 𝑢0) ≡ sph(0, 𝑢) (or sph(𝑟, 𝑢∞) ≡ sph(∞, 𝑢)) is constant for all 𝑟 > 0. In particular,
both 𝑢0 and 𝑢∞ are homogeneous of degree −𝛾𝑝.

Proof. Let {𝜆𝑘}𝑘∈N ⊂ (0,+∞) be a blow-up sequence such that 𝜆𝑘 → 0, and 𝑢0 ∈ 𝐶6,𝛼(R𝑛 ⧵ {0}) be its blow-up limit, that is, �̂�𝜆𝑘 → 𝑢0
in 𝐶6,𝛼

loc (R
𝑛 ⧵ {0}) as 𝑘 → +∞, for some 𝛼 ∈ (0, 1). Now, using Proposition 3.4 and Lemma 6.4, one concludes that there exists the

limiting level sph(0, 𝑢) ∶= lim𝑟→0 sph(𝑟, 𝑢). Moreover, due to the scaling invariance of the Pohozaev functional in (6.2), for any 𝑟 > 0,
t follows

sph(𝑟, 𝑢0) = lim
𝑘→+∞

sph(𝑟, ̂𝑢𝜆𝑘 ) = lim
𝑘→+∞

sph(𝑟𝜆𝑘, 𝑢) = sph(0, 𝑢),

which finishes the proof of the first assertion. Now, we can check that the homogeneity follows from Lemma 6.2. Finally, notice
hat the same argument can readily be employed, replacing the blow-up limit by the shrink-down limit, so we omit it here.

Lemma 6.6. Let 𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}) be a positive solution to (6,𝑝,∞) with 𝑝 ∈ (1, 2# − 1). Assume that 𝑢 is homogeneous of degree −𝛾𝑝.

(a) If 𝑝 ∈ (1, 2#], then 𝑢 ≡ 0.
(b) If 𝑝 ∈ (2#, 2# − 1), then either 𝑢 ≡ 0, or 𝑢 ≡ 𝐾0(𝑛, 𝑝)

1
𝑝−1

|𝑥|−𝛾𝑝 .

Proof. Since 𝑢 is homogeneous of degree −𝛾𝑝, the Emden–Fowler transformation 𝑣 = F(𝑢) given by (2.1) satisfies

−ℒ𝜃𝑣 + 𝑓𝑝(𝑣) = 0 on S𝑛−1𝑡 , (6.4)

where ℒ𝜃 ∶= 𝛥3𝜃 + 𝐿0(𝑛, 𝑝)𝛥2𝜃 + 𝐽0(𝑛, 𝑝)𝛥𝜃𝑣 +𝐾0(𝑛, 𝑝). Now we divide the proof into two cases:
Case 1: 𝑝 ∈ (1, 2#].
Initially, one can verify that ℒ𝜃(𝑣) ⩽ 0 on S𝑛−1𝑡 . Next, observe that ℒ𝜃 is the composition of three elliptic operators. This,

together with [9, Theorem 1.2], implies that 𝑣 ∈ 𝐶6(𝑇 ) does not attain any strict local minimum on S𝑛−1𝑡 . Therefore, since S𝑛−1𝑡 is
a compact manifold, it follows that 𝑣 is constant, which yields 𝑣 ≡ 𝑣0. Nevertheless, using that 𝐾0(𝑛, 𝑝) ⩽ 0, any positive constant
solution to (6.4) is trivial. By using the inverse of the Emden–Fowler transformation, it holds that 𝑢 is trivial on 𝜕 𝐵1, which by the
superharmonicity property, implies that 𝑢 is trivial in the whole domain. This conclusion finishes the proof of the first case, and so
part (a) of the lemma follows.

Case 2: 𝑝 ∈ (2#, 2# − 1).
Assume that 𝑢 is a nontrivial limit solution in the punctured space. Hence, since each component of 𝑢 is positive and satisfies

−𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0, it quickly follows that 𝑢 > 0 in R𝑛 ⧵ {0}. By homogeneity, the origin is a non-removable singularity of
𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}). Hence, by Proposition 5.5, 𝑢 is radially symmetric; thus, 𝑢 ≡ 𝑢0 is a positive constant. Moreover, by (6.4), it holds

0 = 𝐾0(𝑛, 𝑝)
1
𝑝−1 , which, by using the homogeneity of 𝑢 and Lemma 6.2, finishes the proof of the second case, and so (b) holds.
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At last, we can prove the main result of this part.

Proof of Proposition 6.1. Let 𝑢0 ∈ 𝐶6(R𝑛 ⧵ {0}) and 𝑢∞ ∈ 𝐶6(R𝑛 ⧵ {0}) be, respectively, a blow-up and a shrink-down limit of 𝑢.
According to Lemma 7.5 both 𝑢0 and 𝑢∞ are homogeneous of degree 𝛾𝑝. In what follows, we divide the rest of the proof into two
cases:

Case 1: 𝑝 ∈ (1, 2#].
Here, it follows from Lemma 6.6(a) that both 𝑢0 and 𝑢∞ are trivial, which, by Lemma 6.5, provides sph(0, 𝑢) = sph(+∞, 𝑢) = 0.

In addition, using the monotonicity property of the Pohozaev functional, we find sph(𝑟, 𝑢) = 0 for all 𝑟 > 0. Hence, by Lemma 6.2,
𝑢 is homogeneous of degree −𝛾𝑝. Therefore, the proof of (a) of Proposition 6.1 is now an immediate consequence of Lemma 6.6(a).

Case 2: 𝑝 ∈ (2#, 2# − 1).
Initially, by Lemmas 6.5 and 6.6(b), any blow-up 𝑢0 is either trivial or has the form (2). If 𝑢0 is trivial, then clearly sph(𝑟, 𝑢0) = 0

for all 𝑟 > 0, which combined with Lemma 6.5 implies that sph(0, 𝑢) = 0. Otherwise, a simple computation shows sph(𝑟, 𝑢0) = −𝜔𝑛𝓁∗
𝑝

for all 𝑟 > 0. Therefore, using again Lemma 6.5, we have sph(0, 𝑢) = −𝓁∗
𝑝 . Since the converse trivially follows, we obtain that

sph(0, 𝑢) ∈ {−𝜔𝑛𝓁∗
𝑝 , 0}. Moreover, sph(0, 𝑢) = 0, if and only if, all the blow-ups are trivial, whereas sph(0, 𝑢) = −𝜔𝑛𝓁∗

𝑝 , if and only if,
all the blow-ups are of the form (2). In the case of shrink-down 𝑢∞ solution, the strategy is similar, so we omit it. These conclusions
finish the proof of Case 2, and therefore the proposition holds.

7. Local asymptotic behavior

In this section, we present the proof of Theorem 1. First, the asymptotic symmetry result from Proposition 5.5 allows us to
migrate to an ODE setup. Second, we prove some universal upper bound estimates, not depending on the superharmonic assumption.
However, we should emphasize that in the rest of the argument, there is a significant change of behavior of radial solutions (𝑝,𝑇 )
for distinct values of the power 𝑝 ∈ (1, 2#− 1]. This difference occurs due to the change of sign of the coefficients in the tri-Laplacian

ritten in cylindrical coordinates. These signs control the Lyapunov stability of the solutions to the linearized operator around a
imit blow-up solution, and so the asymptotic behavior of the local solutions near the isolated singularity.

We divide our argument into three subsections, where we prove, respectively, the local behavior near the isolated singularity
for the situations: 𝑝 ∈ (1, 2# − 1) in Section 7.1, 𝑝 = 2# in Section 7.3, and 𝑝 ∈ (2#, 2# − 1) in Section 7.2.

7.1. Serrin–Lions case

We prove Theorem 1(a). The asymptotic analysis for this case is straightforward. We are based on the approach given by [15].
In the sequel, we aim to prove the following proposition:

Proposition 7.1. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2#). Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. Then,

here exist 𝐶1, 𝐶2 > 0 (depending on 𝑢) such that 𝐶1|𝑥|
6−𝑛 ⩽ 𝑢(𝑥) ⩽ 𝐶2|𝑥|

6−𝑛 for 0 < |𝑥|≪ 1, or equivalently, 𝑢(𝑥) ≃ |𝑥|6−𝑛 as 𝑥→ 0.
First, we prove an upper bound estimate based on a Green identity from Lemma 5.4(i).

Lemma 7.2. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive solution to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2#). Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. Then, there exists

𝐶2 > 0, depending only on 𝑢, such that 𝑢(𝑥) ⩽ 𝐶2|𝑥|
4−𝑛 as 𝑥→ 0.

Proof. Initially, by Lemma 5.3, we have that 𝑢 ∈ 𝐿𝑝(𝐵1). Moreover, since 𝑝 ∈ (1, 2#), and 𝑢 ∈ 𝐶6(𝐵∗
𝑅) satisfies the Harnack inequality

in Lemma 4.4, it follows

𝑢(𝑥) = o (|𝑥|−𝛾𝑝) as 𝑥→ 0,

which by 𝑛 − 6 < 𝛾𝑝, implies that for any 𝑛 − 6 < 𝑞 < 𝛾𝑝, there exists 0 < 𝑟𝑞 < 1 depending only on 𝑛 𝑝, and 𝑞 such that

𝑢(𝑥) < |𝑥|−𝑞 in 𝐵∗
𝑟𝑞
,

where in the last claim we have used a blow-up argument. Now taking 𝑟𝑞 > 0 as before, and using Lemma 5.3 again, we get that
(−𝛥)3𝑢 = 𝑓𝑝(𝑢) ∈ 𝐿1(𝐵1). Thus, using (5.1), we decompose

𝑢(𝑥) = |𝑥|6−𝑛 − ∫𝐵𝑟𝑞
|𝑥 − 𝑦|6−𝑛(−𝛥)3𝑢(𝑦)d𝑦 + 𝜓(𝑥) in 𝐵∗

𝑟𝑞
, (7.1)

where 𝜓 ∈ 𝐶∞(𝐵1) is such that (−𝛥)3𝜓 = 0 in 𝐵𝑟𝑞 . Nevertheless, using (5.1) that there exists 𝐶𝑞 > 0, depending only on 𝑛, 𝑝, and 𝑞
such that

|

|

|

|

|

|

∫𝐵𝑟𝑞
|𝑥 − 𝑦|6−𝑛(−𝛥)3𝑢(𝑦)d𝑦

|

|

|

|

|

|

⩽ ∫𝐵𝑟𝑞
|𝑥 − 𝑦|6−𝑛|𝑦|−𝑝𝑞d𝑦 ⩽ 𝐶𝑞|𝑥|

6−𝑛.

Hence, fixing 𝑛 − 6 < 𝑞 < 𝛾𝑝 and choosing suitable 𝑟𝑞 > 0 and 𝐶𝑞 > 0 on the last inequality, the proof follows directly from (7.1).

Second, we give a sufficient condition to classify whether the origin is a removable singularity or non-removable singularity.
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Lemma 7.3. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive solution to (6,𝑝,𝑅) with 𝑝 ∈ (1, 2#). Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. If

𝑢(𝑥) = o (|𝑥|6−𝑛) as 𝑥→ 0, (7.2)

then, the origin is a removable singularity.

Proof. By (7.2), we get 𝑢 ∈ 𝐿𝑞(𝐵1) for any 𝑞 ∈ [1, 2#). Moreover, since 𝑝 ∈ (1, 2#) and |(−𝛥)3𝑢| ⩽ |𝑢|𝑝, it follows (−𝛥)3𝑢 ∈ 𝐿𝑞∕𝑝(𝐵1)
for any 𝑞 ∈ [1, 2#). Whence, we can use standard elliptic theory combined with a bootstrap argument to find 𝑢 ∈ 𝑊 5,𝑄(𝐵1) for any
𝑄 ∈ (1,+∞). In particular, it holds from Morrey’s embedding that 𝑢 ∈ 𝐶4,𝛼(𝐵1) for any 𝛼 ∈ (0, 1). Therefore, 𝑢 ∈ 𝐶6(𝐵𝑅), that is, it
must have a removable singularity at the origin.

Now we are in a position to prove our main result of this part.

Proof of Proposition 7.1. Suppose by contradiction that 𝑢 ∈ 𝐶6(𝐵∗
𝑅) has a non-removable singularity at the origin, that is,

∈ 𝐶6(𝐵𝑅). Then, using Lemma 7.3, we get that 𝑢 does not satisfy (7.2), that is, there exists 𝜌 > 0 and {𝑟𝑘}𝑘∈N such that 𝑟𝑘 → 0 as
𝑘→ +∞ satisfying

sup
𝜕 𝐵𝑟𝑘

𝑢 ⩾ 𝜌𝑟6−𝑛𝑘 .

On the other hand, by the Harnack inequality in Lemma 4.4, there exists 𝑐1 > 0 satisfying inf𝜕 𝐵𝑟𝑘 𝑢 ⩾ 𝑐1𝜌𝑟6−𝑛𝑘 , where 𝑐1 > 0 depends
only on 𝑛, and 𝑝. Taking 0 < 𝜌 ≪ 1 smaller to ensure that there exists 𝑐2𝜌 ⩽ inf𝜕 𝐵1∕2

𝑢, it follows from the maximum principle that

𝑢(𝑥) ⩾ 𝑐2𝜌|𝑥|
6−𝑛 in 𝐵∗

1∕2,

which proves the asymptotic lower bound estimate in this case, and together with Lemma 7.2, the proof of the proposition is
oncluded.

7.2. Gidas–Spruck case

The objective of this subsection is to prove Theorem 1(c). Our strategy is based on the monotonicity formula for the Pohozaev
functional in cylindrical coordinates (see Proposition 3.4), which relies on the strategy given in [6,9,12]. More precisely, we show
hat the local models near the origin are the limit blow-up solutions, whose limits are provided by its image under the action of
he spherical Pohozaev functional. Finally, to prove the removability of the singularity theorem, we use a technique relying on the
egularity lifting method from [35].

We will prove the result below

Proposition 7.4. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (2#, 2# − 1). Then,

𝑢(𝑥) = (1 + o(1))𝐾0(𝑛, 𝑝)
1
𝑝−1

|𝑥|−𝛾𝑝 .

Now we use this rescaled family {�̂�𝜆}𝜆>0 ⊂ 𝐶6,𝛼(𝐵∗
1 ), for some 𝛼 ∈ (0, 1), to obtain the blow-up limit for (6,𝑝,𝑅). This allows us

to study the limiting values for the Pohozaev functional, by using the classification results from Theorem A.

Lemma 7.5. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (2#, 2# − 1) and 𝑣 = F(𝑢) be its autonomous Emden–Fowler

transformation given by (2.3). Then, cy l(−∞, 𝑣) ∈ {−𝓁∗
𝑝 , 0}, where 𝓁∗

𝑝 is given by (6.3). Moreover, it follows

(i) cy l(−∞, 𝑣) = 0, if and only if,
𝑢(𝑥) = o (|𝑥|−𝛾𝑝) as 𝑥→ 0. (7.3)

(ii) cy l(−∞, 𝑣) = −𝓁∗
𝑝 , if and only if,

𝑢(𝑥) = (1 + o(1))𝐾0(𝑛, 𝑝)
1
𝑝−1

|𝑥|−𝛾𝑝 as 𝑥→ 0.

Proof. Initially, by Lemma 4.2, for any 𝐾 ⊂ 𝐵1∕2𝜆 compact subset, the family {�̂�𝜆}𝜆>0 ⊂ 𝐶6,𝛼(𝐵∗
1 ) is uniformly bounded, for some

𝛼 ∈ (0, 1). Then, by standard elliptic theory, there exists a positive function 𝑢0 ∈ 𝐶6,𝛼(R𝑛 ⧵ {0}), such that, up to a subsequence, we
ave that ‖�̂�− 𝑢0‖𝐶6,𝛼

loc (R
𝑛⧵{0}) as 𝜆 → 0, where 𝑢0 satisfies the blow-up limit system (6,𝑝,𝑅). Moreover, by [9, Theorem 1.2], we know

hat 𝑢0 ∈ 𝐶6(R𝑛 ⧵ {0}) satisfies −𝛥𝑢0 ⩾ 0 and 𝛥2𝑢0 ⩾ 0 in R𝑛 ⧵ {0}, which, by the maximum principle, yields that either 𝑢0 ≡ 0 or
0 > 0 in R𝑛∖{0}. Therefore, by Theorem A, the blow-up limit 𝑢0 is radially symmetric with respect to the origin. Furthermore, by

the scaling invariance of the Pohozaev functional, we get

sph(𝑟, 𝑢0) = lim
𝜆→0

sph(𝑟, ̂𝑢𝜆) = lim
𝜆→0

sph(𝜆𝑟, 𝑢0) = sph(0, 𝑢0). (7.4)

In addition, since 𝑣0 = F(𝑢0) satisfies (𝑝,𝑇 ), by (7.4), we get that cy l(𝑡, 𝑣0) = sph(𝑟, 𝑢0) is a constant. Consequently, by the
monotonicity formula in Proposition 3.4, we get

d [

(3)2 (2)2 (1)2
]

d𝑡
cy l(𝑡, 𝑣0) = −𝐾5(𝑛, 𝑝)𝑣0 +𝐾3(𝑛, 𝑝)𝑣0 −𝐾1(𝑛, 𝑝)𝑣0 ≡ 0.
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Moreover, since 𝐾5(𝑛, 𝑝), 𝐾1(𝑛, 𝑝) > 0 and 𝐾3(𝑛, 𝑝) < 0, we find that 𝑣(1)0 ≡ 0 in R, and so 𝑣0 is constant, which can be directly computed,

namely either 𝑣0 = 0 or 𝑣0 = 𝐾0(𝑛, 𝑝)
1
𝑝−1 . Moreover, by (7.4), it follows cy l(0, 𝑣0) ∈ {−𝓁∗

𝑝 , 0} and sph(0, 𝑢0) ∈ {−𝜔𝑛−1𝓁∗
𝑝 , 0}.

Finally, if sph(0, 𝑢0) = 0, then, by uniqueness of the limit 𝑢0 ≡ 0. Whence, we conclude that ‖�̂�𝜆‖𝐶6,𝛼 (𝐾) → 0 for any sequence of
𝜆 → 0, for some 𝛼 ∈ (0, 1), which straightforwardly provides (7.3). Otherwise, we have

𝑢0 ≡ 𝐾0(𝑛, 𝑝)
1
𝑝−1

|𝑥|−𝛾𝑝 ,

which proves (ii) of this lemma and finishes the proof.

Next, we use the last lemma to prove the removable singularity theorem. Our proof is based on regularity lifting methods
ombined with the De Giorgi–Nash–Moser iteration technique.

Lemma 7.6. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 ∈ (2#, 2# − 1). If

𝑢(𝑥) = o (|𝑥|−𝛾𝑝) as 𝑥→ 0,

then the origin is a removable singularity.

Proof. Without loss of generality, let us consider 𝑅 = 1. The proof will be divided into some claims.
Claim 1: If 𝑢(𝑥) = o(|𝑥|−𝛾𝑝 ) as 𝑥→ 0, then

∫𝐵1∕2

𝑢𝑛𝛾
−1
𝑝 d𝑥 < +∞. (7.5)

In fact, let us consider 𝜙(|𝑥|) = |𝑥|𝜁𝑝 , where 𝜁𝑝 = −2𝛾𝑝(2# − 1)(𝑛 − 2#)(𝑝 − 1)−1. Then, a direct computation, provides

𝛥3𝜙(𝑥) = 𝜁𝑝(𝜁𝑝 − 2)(𝜁𝑝 − 3)(𝜁𝑝 + 𝑛 − 2)(𝜁𝑝 + 𝑛 − 4)(𝜁𝑝 + 𝑛 − 6)|𝑥|𝜁𝑝−6 in R𝑛 ⧵ {0},

which, since 𝜁𝑝 + 𝑛 − 6 = 𝛾𝑝 > 0, it follows that

𝐴𝑝 ∶= 𝜁𝑝(𝜁𝑝 − 2)(𝜁𝑝 − 3)(𝜁𝑝 + 𝑛 − 2)(𝜁𝑝 + 𝑛 − 4)(𝜁𝑝 + 𝑛 − 6) > 0.

Thus, we can write
(−𝛥)3𝜙
𝜙

=
𝐴𝑝
|𝑥|6

in R𝑛 ⧵ {0}. (7.6)

For any 0 < 𝜀 ≪ 1, let us consider 𝜂𝜀 ∈ 𝐶∞ (R𝑛) with 0 ⩽ 𝜂𝜀 ⩽ 1 a cut-off function satisfying

𝜂𝜀(𝑥) =
{

0, for 𝜀 ⩽ |𝑥| ⩽ 1∕2
1, for |𝑥| ⩽ 𝜀∕2 or |𝑥| ⩾ 3∕4,

(7.7)

and |𝐷(𝑗)𝜂𝜀(𝑥)| ⩽ 𝐶 𝜀−𝑗 for 𝑗 ∈ {0, 1, 2, 3, 4, 5, 6}. Defining 𝜉𝜀 = 𝜂𝜀𝜙, multiplying (6,𝑝,𝑅) by 𝜉𝜀 and integrating by parts in 𝐵1, we obtain

∫𝐵1

𝜂𝜀𝑢𝜙
(

(−𝛥)3𝜙
𝜙

− 𝑓𝑝(𝑢)
)

d𝑥 = −∫𝐵1

𝑢T
(

𝜂𝜀, 𝜙
)

d𝑥, (7.8)

where T𝜀 ∶ 𝐶∞
𝑐 (𝐵1) → 𝐶∞

𝑐 (𝐵1) is defined by

T𝜀(𝜙) = T
(

𝜂𝜀, 𝜙
)

= 6∇𝜂𝜀∇𝛥2𝜙 − 15𝛥𝜂𝜀𝛥2𝜙 + 20∇𝛥𝜂𝜀∇𝛥𝜙 − 15𝛥2𝜂𝜀𝛥𝜙 + 6∇𝛥2𝜂𝜀∇𝜙 − 𝜙𝛥3𝜂𝜀.

Using Lemma 4.2 combined with the estimates on the cut-off function (7.7) and its derivatives, there exist 𝑐1, 𝑐2 > 0, independent
of 𝜀, satisfying the following estimates,

|

|

|

|

|

∫𝐵1

𝑢T𝜀(𝜙)d𝑥
|

|

|

|

|

⩽ 𝑐1 + 𝑐2𝜀𝑛𝜀
𝜁𝑝−6𝜀−𝛾𝑝 < +∞,

which implies that the right-hand side of (7.8) is uniformly bounded. In addition, assumption (7.5) yields that 𝑢𝑝−1(𝑥) = o(1)|𝑥|−6
as 𝑥 → 0, which together with (7.6) and (7.9) provides that there exists 𝐶 > 0 satisfying

∫𝐵1

𝜂𝜀𝑢(𝑥)|𝑥|
𝜁𝑝−6d𝑥 ⩽ 𝐶 . (7.9)

Therefore, by Lemma 4.2, it holds

∫{𝜀⩽|𝑥|⩽1∕2}
𝑢(𝑥)𝑛𝛾

−1
𝑝 d𝑥 ⩽ 𝐶 ∫{𝜀⩽|𝑥|⩽1∕2}

𝑢(𝑥)|𝑥|𝜁𝑝−6d𝑥 ⩽ 𝐶 ∫𝐵1

𝜂𝜀𝑢(𝑥)|𝑥|
𝜁𝑝−6d𝑥 < +∞, (7.10)
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where the last inequality comes from (7.9). Finally, passing to the limit as 𝜀→ 0 in (7.10), the proof of Claim 1 follows by applying
he dominated convergence theorem.

Claim 2: If (7.5) holds, then 𝑢 ∈ 𝐿𝑞(𝐵1) for all 𝑞 > 2#.
Indeed, by Lemma 5.4(i), there exist a Green function with homogeneous Dirichlet boundary conditions 𝐺3(𝑥, 𝑦) and 𝜓 ∈

∞
loc(𝐵1∕2) with 𝛥2𝜓 = 0 and 𝛥𝜓 = 0 such that

𝑢(𝑥) = ∫𝐵1

𝐺2(𝑥, 𝑦)(−𝛥)3𝑢d𝑥 + 𝜓(𝑥) in 𝐵1∕2.

More precisely, 𝐺3(𝑥, 𝑦) is a distributional solution to the Dirichlet problem
{

𝛥3𝐺2(𝑥, 𝑦) = 𝛿𝑥(𝑦) in 𝐵1∕2

𝐺3(𝑥, 𝑦) = 𝜕𝜈𝐺3(𝑥, 𝑦) = 𝛥𝐺3(𝑥, 𝑦) = 0 on 𝜕 𝐵1∕2,

and there exists positive constant 𝐶𝑛 > 0 such that

0 < 𝐺3(𝑥, 𝑦) ⩽ 𝐺3(|𝑥 − 𝑦|) ∶= 𝐶𝑛|𝑥 − 𝑦|
6−𝑛 for 𝑥, 𝑦 ∈ 𝐵1∕2 and |𝑥 − 𝑦| > 0,

where 𝐺3(𝑥, 𝑦) = 𝐶𝑛|𝑥 − 𝑦|
6−𝑛 is the fundamental solution to 𝛥3 in R𝑛. Recall that 𝑢 ∈ 𝐶6(𝐵∗

1 ) satisfies

(−𝛥)3𝑢 = 𝑉 (𝑥)𝑢 in 𝐵∗
1 , (7.11)

where 𝑉 (𝑥) = 𝑢(𝑥)𝑝−1. Moreover, using (7.5), we find that 𝑉 ∈ 𝐿𝑛∕6(𝐵1∕2).
Let us consider 𝑍 = 𝐶∞

𝑐 (𝐵1∕4), 𝑋 = 𝐿2∗∗ (𝐵1∕4) and 𝑌 = 𝐿𝑝(𝐵1∕4) for 𝑞 ∈ (2#,+∞) as in [35, Theorem 3.3.1]. Hence, it is
well-defined the following inverse operator

(𝑇 𝑢)(𝑥) = ∫𝐵1∕4

𝐺3(𝑥, 𝑦)𝑢(𝑦)d𝑦.

We also consider the operator 𝑇𝑀 ∶= 𝐺3 ∗ 𝑉𝑀 , which applied in both sides of (7.11), provides 𝑢 = 𝑇𝑀𝑢 + 𝑇𝑀𝑢, where

(𝑇𝑀𝑢)(𝑥) = ∫𝐵1∕4

𝐺3(𝑥, 𝑦)𝑉𝑀 (𝑦)𝑢(𝑦)d𝑦 and (𝑇𝑀𝑢)(𝑥) = ∫𝐵1∕4

𝐺3(𝑥, 𝑦)𝑉𝑀 (𝑦)𝑢(𝑦)d𝑦.

Here, for 𝑀 > 0, we define 𝑉𝑀 (𝑥) = 𝑉 (𝑥) − 𝑉𝑀 (𝑥), where

𝑉𝑀 (𝑥) =
{

𝑉 (𝑥), if |𝑉 (𝑥)| ⩾𝑀 ,
0, ot her wise.

Now we can run the regularity lifting method, which is divided into two steps.
Step 1: For 𝑞 ∈ (2#,+∞), there exists 𝑀 ≫ 1 large such that 𝑇𝑀 ∶ 𝐿𝑞(𝐵1∕4) → 𝐿𝑞(𝐵1∕4) is a contraction.
In fact, for any 𝑞 ∈ (2#,+∞), there exists 𝑚 ∈ (1, 𝑛∕6) such that 𝑞 = 𝑛𝑚∕(𝑛 − 6 𝑚). Then, by the Hardy–Littlewood–Sobolev and

Hölder inequalities [36], for any 𝑢 ∈ 𝐿𝑞(R𝑛), we get

‖𝑇𝑀𝑢‖𝐿𝑞 (𝐵1∕4) ⩽ ‖𝐺3 ∗ 𝑉𝑀𝑢‖𝐿𝑞 (𝐵1∕4) ⩽ 𝐶‖𝑉𝑀‖𝐿𝑛∕6(𝐵1∕4)‖𝑢‖𝐿𝑞 (𝐵1∕4).

Since 𝑉𝑀 ∈ 𝐿𝑛∕6(𝐵1∕4) it is possible to choose a large 𝑀 ≫ 1 satisfying ‖𝑉𝑀‖𝐿𝑛∕6(𝐵1∕4) < 1∕2𝐶. Therefore, we arrive at

‖𝑇𝑀𝑢‖𝐿𝑞 (𝐵1∕4) ⩽ 1∕2‖𝑢‖𝐿𝑞 (𝐵1∕4),

which implies that 𝑇𝑀 is a contraction.
Step 2: For any 𝑞 ∈ (2#,+∞), it follows that 𝑇𝑀𝑢 ∈ 𝐿𝑞(𝐵1∕4).
Indeed, for any 𝑞 ∈ (2#,+∞), we pick 1 < 𝑚 < 𝑛∕6 satisfying 𝑞 = 𝑛𝑚∕(𝑛 − 6 𝑚). Since 𝑉𝑀 is bounded, we get

‖𝑇𝑀‖𝐿𝑞 (𝐵1∕4) = ‖𝐺3 ∗ 𝑉𝑀𝑢‖𝐿𝑞 (𝐵1∕4) ⩽ 𝐶‖𝑉𝑀𝑢‖𝐿𝑚(𝐵1∕4) ⩽ 𝐶‖𝑢‖𝐿𝑚(𝐵1∕4).

However, using (7.5), we have that 𝑢 ∈ 𝐿𝑞(𝐵1∕4) for 𝑞 ∈ (1, 𝑛𝛾−1𝑝 ). Besides, 𝑞 = (𝑝 − 2)𝑛𝛾−1𝑝 when 𝑚 = 𝑛𝛾−1𝑝 . Thus, we obtain that
𝑢 ∈ 𝐿𝑞(𝐵1∕4) for

{

1 < 𝑞 < ∞, if 𝑝 ⩾ 2,
1 < 𝑞 ⩽ (2 − 𝑝)−1𝑛𝛾−1𝑝 , if 1 < 𝑝 < 2.

Now we can repeat the argument for 𝑚 = (𝑝 − 2)𝑛𝛾−1𝑝 to get that 𝑢 ∈ 𝐿𝑞(𝐵1∕4) for
{

1 < 𝑞 < ∞, if 𝑝 ⩾ 2,
1 < 𝑞 ⩽ (2 − 𝑝)−1𝑛𝛾−1𝑝 , if 1 < 𝑝 < 2.

Therefore, by proceeding inductively as in [12, Lemma 3.8], the proof of the claim follows. Ultimately, combining Steps 1 and 2,
we can apply [35, Theorem 3.3.1] to show that 𝑢 ∈ 𝐿𝑝(𝐵1∕4) for all 𝑝 > 2#. In particular, the proof of the claim is finished.

Now, by the Morrey’s embedding theorem, it follows that 𝑢 ∈ 𝐶0,𝛼(𝐵1∕4), for some 𝛼 ∈ (0, 1). Finally using Schauder estimates,
one gets that 𝑢 ∈ 𝐶6,𝛼(𝐵1∕4). In particular, the singularity at the origin is removable, which concludes the proof of the lemma.

Proof of Proposition 7.4. Suppose by contradiction that 𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}) has a non-removable singularity at the origin, then by
Lemma 7.6, 𝑢 does not satisfy (7.3). Therefore, the proof follows as a consequence of Lemma 7.5.
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7.3. Aviles case

Finally, we prove Theorem 1(b). The asymptotic analysis for the lower critical exponent, 𝑝 = 2# exhibits its subtlety. First, since
𝛾(2#) = 𝑛 − 6, one would expect the singular solutions to (6,𝑝,𝑅) to have the same behavior as the fundamental solution to the
tri-Laplacian near the origin; thus, the isolated singularity would be removable.

Our objective is to prove the proposition below

Proposition 7.7. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 = 2#. Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. Then,

𝑢(𝑥) = (1 + o(1))𝐾0(𝑛)
𝑛−6
6
|𝑥|6−𝑛(ln |𝑥|)

6−𝑛
6 ,

where 𝐾0(𝑛) ∶= − lim𝑡→−∞ 𝑡𝐾0(𝑛, 𝑡) is given by (1).

As in the autonomous case, we use the limiting energy levels ̃cy l(−∞, 𝑤) to classify the local behavior near the isolated
singularity.

Lemma 7.8. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive singular solution to (6,𝑝,𝑅) with 𝑝 = 2# and 𝑤 = F̃(𝑣) be its nonautonomous Emden–Fowler

ransformation given by (2.3). Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. Then, ̃cy l(−∞, 𝑤) ∈ {−𝓁∗
# , 0}, where −𝓁∗

# = 3
2(𝑛−3)𝐾0(𝑛)

𝑛−3
3 . Moreover,

t follows

(i) ̃cy l(−∞, 𝑤) = 0 if and only if,
𝑢(𝑥) = o

(

|𝑥|6−𝑛(ln |𝑥|)
6−𝑛
6
)

as 𝑥→ 0. (7.12)

(ii) ̃cy l(−∞, 𝑤) = 𝓁∗
# if and only if,

𝑢(𝑥) = (1 + o(1))𝐾0(𝑛)
𝑛−6
6
|𝑥|6−𝑛(ln |𝑥|)

6−𝑛
6 as 𝑥→ 0.

Proof. First, combining (3.3) with Proposition 3.11 and Lemma 3.10, we find

̃cy l(−∞, 𝑤) = lim
𝑡→−∞∫S𝑛−1𝑡

(

𝑛 − 6
2(𝑛 − 3) |𝑤(𝑡, 𝜃)|

2#+1 +𝐾0(𝑛)|𝑤(𝑡, 𝜃)|2
)

d𝜃 .

Furthermore, by (3.3), we see that for any {𝑡𝑘}𝑘∈N such that 𝑡𝑘 → +∞ as 𝑘 → −∞, it follows that {𝑤(𝑡𝑘, 𝜃)}𝑘∈N converges to a limit,
hich is independent of 𝜃 ∈ S𝑛−1𝑡 . Hence, up to subsequence, there exists 𝑤0 ∈ R such that 𝑤(𝑡𝑘, 𝜃) → 𝑤0 uniformly on 𝜃 ∈ S𝑛−1𝑡 ,

which gives us

̃cy l(−∞, 𝑤0) = 𝑛 − 6
2(𝑛 − 3) |𝑤0|

2#+1 +𝐾0(𝑛)|𝑤0|
2. (7.13)

Thus, since the right-hand side of the last equation has at most three nonnegative roots, the limit 𝑤0 ∈ R, under the uniform
convergence of 𝑤(𝑡, 𝜃) on S𝑛−1𝑡 as 𝑡 → −∞, is unique. Finally, multiplying (̃𝑇 ) by 𝑤, integrating both sides over (−∞, 𝑡0, ) ×S𝑛−1, and
using (3.3),(3.4) and Lemma 3.10, it follows

|

|

|

|

|

∫

𝑡0

−∞

1
𝑡 ∫S𝑛−1𝑡

(

𝐾0(𝑛) − |𝑤(𝑡, 𝜃)|2#−1
)

|𝑤(𝑡, 𝜃)|2d𝜃d𝑡
|

|

|

|

|

< +∞.

Now since lim𝑡→−∞𝑤(𝑡, 𝜃) = 𝑤0 uniformly on S𝑛−1𝑡 , we get either 𝑤0 = 0 or 𝑤0 = 𝐾0(𝑛)
𝑛−6
6 , which by substituting into (7.13), implies

that either ̃cy l(−∞, 𝑤) = 0 if and only if, 𝑤0 = 0, or ̃cy l(−∞, 𝑤) = 𝓁∗
# , otherwise. The proof trivially follows by applying the inverse

F̃−1 of the nonautonomous cylindrical transform.

Now we are left to show that, if Lemma 7.8(i) holds, then the singularity at the origin is removable. Here, we are based on the
barriers construction in [30] (see also [22]), which is available due to the integral representation (5.1).

Lemma 7.9. Let 𝑢 ∈ 𝐶6(𝐵∗
𝑅) be a positive solution to (6,𝑝,𝑅) with 𝑝 = 2#. Assume that −𝛥𝑢 ⩾ 0 and 𝛥2𝑢 ⩾ 0. If

𝑢(𝑥) = o
(

|𝑥|6−𝑛(ln |𝑥|)
6−𝑛
6
)

as 𝑥 → 0,

then, the origin is a removable singularity.

Proof. For any 𝛿 > 0, we choose 0 < 𝜌 ≪ 1 such that 𝑢(𝑥) ⩽ 𝛿|𝑥|−𝛾𝑝 in 𝐵∗
𝜌 . Fixing 𝜀 > 0, 𝜅 ∈

(

0, 𝛾𝑝
)

and 𝑀 ≫ 1 to be chosen later,
we define

𝜍(𝑥) =
{

𝑀|𝑥|−𝜅 + 𝜀|𝑥|6−𝑛−𝜅 , if 0 < |𝑥| < 𝜌,
𝑢(𝑥), if 𝜌 < |𝑥| < 2.

Notice that for every 0 < 𝜅 < 𝑛 − 6 and 0 < |𝑥| < 2, there exists 𝐶 > 0 such that

|𝑥 − 𝑦|6−𝑛|𝑦|−6−𝜅d𝑦 = |𝑥|6−𝑛 |

||𝑥|−1𝑥 − |𝑥|−1𝑦||
6−𝑛

|𝑦|𝜅−6d𝑦 ⩽ 𝐶
( 1 + 1 + 1

)

|𝑥|−𝜅 ,
∫R𝑛 ∫R𝑛 | | 𝑛 − 6 − 𝜅 𝜅
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which, for 0 < |𝑥| < 2 and 0 < 𝛿 ≪ 1, yields

∫𝐵𝜌
𝑢2#−1(𝑦)𝜍(𝑦)|𝑥 − 𝑦|6−𝑛d𝑦 ⩽ 𝛿2#−1 ∫R𝑛

𝜍(𝑦)|𝑥 − 𝑦|𝑛−6|𝑦|−6d𝑦 ⩽ 𝐶 𝛿2#−1𝜍(𝑥) < 1
2
𝜍(𝑥).

Moreover, for 0 < |𝑥| < 𝜌 and �̄� = 𝜌𝑥|𝑥|−1, we get

∫𝐵2⧵𝐵𝜌
𝑢2#−1(𝑦)𝜍(𝑦)|𝑥 − 𝑦|6−𝑛d𝑦 = ∫𝐵2⧵𝐵𝜌

|�̄� − 𝑦|𝑛−6

|𝑥 − 𝑦|𝑛−6
𝑢2# (𝑦)

|�̄� − 𝑦|𝑛−6
d𝑦 ⩽ 2𝑛−6 max

𝜕 𝐵𝜌 𝑢.

The last inequality implies that for 0 < |𝑥| < 𝜏 and 𝑀 ⩾ max𝜕 𝐵𝜌 𝑢,
𝜓(𝑥) + ∫𝐵2

𝑢2#−1(𝑦)𝜍(𝑦)
|𝑥 − 𝑦|6−𝑛

d𝑦 ⩽ 𝜓(𝑥) + 2𝑛−6 max
𝜕 𝐵𝜌 𝑢 +

1
2
𝜍(𝑥) < 𝜍(𝑥).

We show that 𝜍 can be taken as a barrier for any 𝑢. Namely, we claim that 𝑢(𝑥) ⩽ 𝜍(𝑥) in 𝐵∗
𝜌 . In fact, suppose by contradiction

hat the conclusion is not true. Then, since 𝑢(𝑥) ⩽ 𝛿|𝑥|−𝛾𝑝 in 𝐵∗
𝜌 , by the definition of 𝜍, there exists 𝜏 ∈ (0, 𝜌), depending on 𝜀, such

hat 𝜍 ⩾ 𝑢 in 𝐵∗
𝜌 and 𝜍 > 𝑢 close to the boundary 𝜕 𝐵𝜌. Let us consider 𝜏 ∶= inf {𝜏 > 1 ∶ 𝜏 𝜓 > 𝑢 in 𝐵∗

𝜌}. Then, we have that 𝜏 ∈ (1,+∞)
nd there exists �̄� ∈ 𝐵𝜌 ⧵ �̄�𝜏 such that 𝜏 𝜍(�̄�) = 𝑢(�̄�) and, for 0 < |𝑥| < 𝜏, it follows

𝜏 𝜍(𝑥) ⩾ ∫𝐵2

𝑢2#−1(𝑦)𝜏 𝜍(𝑦)|𝑥 − 𝑦|6−𝑛d𝑦 + 𝜏 𝜓(𝑥) ⩾ ∫𝐵2

𝑢2#−1(𝑦)𝜏 𝜍(𝑦)|𝑥 − 𝑦|6−𝑛d𝑦 + 𝜓(𝑥),

which gives us

𝜏 𝜍(𝑥) − 𝑢(𝑥) ⩾ ∫𝐵2

𝑢2#−1(𝑦)(𝜏 𝜍(𝑦) − 𝑢(𝑦))|𝑥 − 𝑦|6−𝑛d𝑦.

Finally, by evaluating the last inequality at �̄� ∈ 𝐵𝜌 ⧵ �̄�𝜏 , we get a contradiction.
At last, we find 𝑢(𝑥) ⩽ 𝜍(𝑥) ⩽ 𝑀|𝑥|−𝜅 + 𝜀|𝑥|6−𝑛−𝜅 in 𝐵∗

𝜌 , which yields that 𝑢2#−1 ∈ 𝐿𝑝(𝐵∗
𝜌 ) for some 𝑝 > 𝑛∕6. Hence, standard

elliptic regularity concludes the proof of the lemma.
Ultimately, the proof of the main result in this section is merely a consequence of the last results.

Proof of Proposition 7.7. Suppose that 𝑢 ∈ 𝐶6(R𝑛 ⧵ {0}) is a positive singular solution to (6,𝑝,𝑅) with 𝑝 = 2#, then by Lemma 7.9,
𝑢 does not satisfy (7.12). Therefore, the proof follows as a consequence of Lemma 7.8.
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Appendix. The general Emden–Fowler change of coordinates

In this appendix, using the software Mathematica 13.2, we compute the coefficients of the bi-Laplacian written in cylindrical
coordinates (see also [12,23]). More generally, let us consider the following change of coordinates

𝑢(𝑟) = 𝜌(𝑟)𝑣(𝑡) with 𝑡 = 𝜓(𝑟), (A.1)

where 𝜌, 𝜓 ∶ R → R are smooth functions, and 𝜓 is a smooth diffeomorphism. Here we adopt the notations 𝜓𝑟 = d𝜓∕d𝑟, 𝜌𝑟 = d𝜌∕d𝑟,
(𝑗)
𝑟 = d𝑗𝜓∕d𝑟𝑗 , and 𝜌(𝑗)𝑟 = d𝑗𝜌∕d𝑟𝑗 𝜕(𝑗)𝑡 = 𝜕𝑗∕𝜕 𝑡𝑗 (resp. 𝜕(𝑗)𝑟 = 𝜕𝑗∕𝜕 𝑟𝑗) with the convention 𝜕(0)𝑡 equals the identity operator on 𝐶∞(R),

and we omit 𝑢, 𝑣 when it is convenient. Now the idea is to express the operator 𝜕(𝑗)𝑟 for 𝑗 ∈ N in terms of 𝜕(𝓁)𝑡 for 𝓁 ∈ {1,… , 𝑗}, that
is,

𝜕(𝑗)𝑟 =
𝑗
∑

𝓁=0
𝑐𝑗𝓁(𝜌, 𝜓)𝜕(𝓁)𝑡 ,

where 𝑐𝑗𝓁 ∶ R2(𝓁+1)+1 → R are the coefficient functions, depending on 𝜌, 𝜓 and all theirs derivative until 𝓁-th order. Notice that
𝐶 = (𝑐𝑗𝓁)𝑗𝓁 is a lower triangular matrix, i.e., 𝑐𝑗𝓁 ≡ 0 when 𝑗 < 𝓁. For this manuscript, we always choose 𝜓(𝑟) = − ln 𝑟. The choice of
the other function depends on the growth of the nonlinearity, namely we either choose

𝜌(𝑟) = 𝑟6∕(𝑝−1) when 𝑝 ∈ (2#, 2# − 1)
or

𝜌(𝑟) = (ln 𝑟)6−𝑛𝑟 6−𝑛
6 when 𝑝 = 2#

for the autonomous and nonautonomous cases, respectively. This turns (A.1) into the classical logarithm cylindrical change of
coordinates.

Now let us derive the explicit formula for the coefficients of the tri-Laplacian in autonomous and nonautonomous Emden–Fowler
oordinates, respectively. We consider the cylinder  ∶= (0, 𝑅) × S𝑛−1 and (−𝛥)3 the tri-Laplacian written in spherical (polar)
𝑅 sph
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coordinates given by

𝛥3sph = 𝑟−6𝜕(6)𝑟 +𝑀5(𝑛, 𝑟)𝜕(5)𝑟 +𝑀4(𝑛, 𝑟)𝜕(4)𝑟 +𝑀3(𝑛, 𝑟)𝜕(3)𝑟 +𝑀2(𝑛, 𝑟)𝜕(2)𝑟 +𝑀1(𝑛, 𝑟)𝜕𝑟
+ 2𝑟−2𝜕(4)𝑟 𝛥𝜎 +𝑁3(𝑛, 𝑟)𝜕(3)𝑟 𝛥𝜎 +𝑁2(𝑛, 𝑟)𝜕(2)𝑟 𝛥𝜎 +𝑁1(𝑛, 𝑟)𝜕𝑟𝛥𝜎 +𝑁0(𝑛, 𝑟)𝛥𝜎
+ 3𝑟−4𝜕(2)𝑟 𝛥2𝜎 + 𝑂1(𝑛, 𝑟)𝜕𝑟𝛥2𝜎 + 𝑂0(𝑛, 𝑟)𝛥2𝜎 + 𝑟−6𝛥3𝜎 ,

where 𝛥𝜎 denotes the Laplace–Beltrami operator in S𝑛−1 and

𝑀5(𝑛, 𝑟) = 3(𝑛 − 1)𝑟−1
𝑀4(𝑛, 𝑟) = 3(𝑛 − 1)(𝑛 − 3)𝑟−2

𝑀3(𝑛, 𝑟) = (𝑛 − 1)(𝑛 − 3)(𝑛 − 8)𝑟−3 (A.2)
𝑀2(𝑛, 𝑟) = −3(𝑛 − 1)(𝑛 − 3)(𝑛 − 5)𝑟−4
𝑀1(𝑛, 𝑟) = 3(𝑛 − 1)(𝑛 − 3)(𝑛 − 5)𝑟−5

and

𝑁3(𝑛, 𝑟) = 2(𝑛 − 7)𝑟−3
𝑁2(𝑛, 𝑟) = 2(𝑛2 − 𝑛 − 3)𝑟−4
𝑁1(𝑛, 𝑟) = 6(7𝑛 − 23)𝑟−5

𝑁0(𝑛, 𝑟) = 8(𝑛 − 1)(𝑛 − 5)𝑟−6 (A.3)
𝑂1(𝑛, 𝑟) = 3(𝑛 − 5)𝑟−5
𝑂0(𝑛, 𝑟) = −2(3𝑛 − 16)𝑟−6

are its coefficients in this coordinate system. Notice that they can be computed recursively in terms of the derivatives of the
oefficients of bi-Laplacian written in polar coordinates.

A.1. Autonomous case

Let us recall the sixth order autonomous Emden–Fowler change of variables (or logarithmic cylindrical coordinates) given by

𝑣(𝑡, 𝜃) = 𝑟𝛾𝑝𝑢(𝑟, 𝜎), where 𝑡 = ln 𝑟 and 𝜎 = 𝜃 = 𝑥|𝑥|−1.

Using this change of variables and performing a lengthy computation, we arrive at the following sixth order operator on the cylinder,

𝑃 6
cy l = 𝜕(6)𝑡 +𝐾5(𝑛, 𝑝)𝜕(5)𝑡 +𝐾4(𝑛, 𝑝)𝜕(4)𝑡 +𝐾3(𝑛, 𝑝)𝜕(3)𝑡 +𝐾2(𝑛, 𝑝)𝜕(2)𝑡 +𝐾1(𝑛, 𝑝)𝜕𝑡 +𝐾0(𝑛, 𝑝)

+ 2𝜕(4)𝑡 𝛥𝜃 + 𝐽3(𝑛, 𝑝)𝜕(3)𝑡 𝛥𝜃 + 𝐽2(𝑛, 𝑝)𝜕(2)𝑡 𝛥𝜃 + 𝐽1(𝑛, 𝑝)𝜕𝑡𝛥𝜃 + 𝐽0(𝑛, 𝑝)𝛥𝜃
+ 3𝜕(2)𝑡 𝛥2𝜃 + 𝐿1(𝑛, 𝑝)𝜕𝑡𝛥2𝜃 + 𝐿0(𝑛, 𝑝)𝛥2𝜃 + 𝛥3𝜃 ,

where

𝐾𝓁(𝑛, 𝑝) =
6
∑

𝑗=0
𝑁𝓁(𝑛)𝑐𝑗𝓁(𝑛, 𝑝) f or 𝓁 ∈ {0, 1, 2, 3, 4, 5},

𝐽𝓁(𝑛, 𝑝) =
4
∑

𝑗=0
𝑀𝓁(𝑛)𝑐𝑗𝓁(𝑛, 𝑝) f or 𝓁 ∈ {0, 1, 2, 3, 4},

and

𝐿𝓁(𝑛, 𝑝) =
2
∑

𝑗=0
𝑂𝓁(𝑛)𝑐𝑗𝓁(𝑛, 𝑝) f or 𝓁 ∈ {0, 1}.

More explicitly, we can use Mathematica 13 to obtain

𝐾0(𝑛, 𝑝) = −24(𝑝 − 1)−6(𝑝 + 2)(2𝑝 + 1)(𝑛𝑝 − 6𝑝 − 𝑛)(𝑛𝑝 − 4𝑝 − 2 − 𝑛)(𝑛𝑝 − 2𝑝 − 𝑛 − 4)
𝐾1(𝑛, 𝑝) = 4(𝑝 − 1)−5(𝑛𝑝 − 6𝑝 − 𝑛 − 6)(2𝑛2𝑝4 − 12𝑛𝑝4 + 16𝑝4 + 10𝑛2𝑝3 − 108𝑛𝑝3 + 224𝑝3

− 15𝑛2𝑝2 − 36𝑛𝑝2 + 492𝑝2 − 8𝑛2𝑝 + 120𝑛𝑝 + 224𝑝 + 11𝑛2 + 36𝑛 + 16) (A.4)
𝐾2(𝑛, 𝑝) = −2(𝑝 − 1)−4(3𝑛3𝑝4 − 48𝑛2𝑝4 + 228𝑛𝑝4 − 320𝑝4 − 3𝑛3𝑝3 − 78𝑛2𝑝3 + 996𝑛𝑝3 − 2392𝑝3 − 9𝑛3𝑝2

+ 198𝑛2𝑝2 + 180𝑛𝑝2 − 4296𝑝2 + 15𝑛3𝑝 + 30𝑛2𝑝 − 1020𝑛𝑝 − 2392𝑝 − 6𝑛3 − 102𝑛2 − 384𝑛 − 320)
𝐾3(𝑛, 𝑝) = −(𝑝 − 1)−3(𝑛𝑝 − 6𝑝 − 6 − 𝑛)(𝑛2𝑝2 − 24𝑛𝑝2 + 68𝑝2 − 2𝑛2𝑝 − 12𝑛𝑝 + 224𝑝 + 𝑛2 + 36𝑛 + 68)
𝐾4(𝑛, 𝑝) = (𝑝 − 1)−2(3𝑛2𝑝2 − 42𝑛𝑝2 + 124𝑝2 − 6𝑛2𝑝 − 6𝑛𝑝 + 292𝑝 + 3𝑛2 + 48𝑛 + 124)
𝐾5(𝑛, 𝑝) = 3(𝑝 − 1)−1(𝑛𝑝 − 6𝑝 − 6 − 𝑛)

and
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𝐽0(𝑛, 𝑝) = 4(𝑝 − 1)−4(2𝑛2𝑝4 − 12𝑛𝑝4 + 10𝑝4 − 5𝑛2𝑝3 − 24𝑛𝑝3 + 218𝑝3 + 21𝑛2𝑝2 + 72𝑛𝑝2 − 192𝑝2
− 35𝑛2𝑝 − 132𝑛𝑝 + 1094𝑝 + 17𝑛2 + 96𝑛 − 482)

𝐽1(𝑛, 𝑝) = −2(𝑝 − 1)−3(𝑛2𝑝3 − 24𝑛𝑝3 + 86𝑝3 + 9𝑛2𝑝2 + 24𝑛𝑝2 + 90𝑝2 − 21𝑛2𝑝 − 84𝑛𝑝 + 966𝑝
+ 11𝑛2 + 84𝑛 − 278)

𝐽2(𝑛, 𝑝) = 2(𝑝 − 1)−2(𝑛2𝑝2 − 4𝑛𝑝2 + 29𝑝2 − 2𝑛2𝑝 − 10𝑛𝑝 + 176𝑝 + 𝑛2 + 14𝑛 + 11) (A.5)
𝐽3(𝑛, 𝑝) = 2(𝑝 − 1)−1(𝑛𝑝 − 13𝑝 − 𝑛 − 11)
𝐿0(𝑛, 𝑝) = −(𝑝 − 1)−2(3𝑛𝑝216𝑝2 − 3𝑛𝑝 + 22𝑝 + 6𝑛 + 16)
𝐿1(𝑛, 𝑝) = 3(𝑝 − 1)−1(𝑛𝑝 − 6𝑝 − 6 − 𝑛).

A.2. Upper critical case

When 𝑝 = 2# − 1, it follows

𝐾#
0 (𝑛) = −2−8(𝑛 − 6)2(𝑛 − 2)2(𝑛 + 2)2

𝐾#
1 (𝑛) = 0

𝐾#
2 (𝑛) = 2−4(3𝑛4 − 24𝑛3 + 72𝑛2 − 96𝑛 + 304)

𝐾#
3 (𝑛) = 0

𝐾#
4 (𝑛) = −2−2(3𝑛2 − 12𝑛 + 44)

𝐾#
5 (𝑛) = 0

𝐽 #
0 (𝑛) = 2−3(3𝑛4 − 18𝑛3 − 192𝑛2 + 1864𝑛 − 3952) (A.6)
𝐽 #
1 (𝑛) = −2−1(3𝑛3 + 3𝑛2 − 244𝑛 + 620)
𝐽 #
2 (𝑛) = 2𝑛2 + 13𝑛 − 68
𝐽 #
3 (𝑛) = −2(𝑛 + 1)
𝐿#
0(𝑛) = −2−2(3𝑛2 − 12𝑛 − 20)

𝐿#
1(𝑛) = 0.

A.3. Lower critical case

When 𝑝 = 2#, it follows

𝐾0,#(𝑛) = 0
𝐾1,#(𝑛) = −8(𝑛 − 6)(𝑛 − 4)(𝑛 − 2)
𝐾2,#(𝑛) = −2(3𝑛3 − 48𝑛2 + 228𝑛 − 320)
𝐾3,#(𝑛) = −(𝑛 − 6)(𝑛2 − 24𝑛 + 68)
𝐾4,#(𝑛) = 3𝑛2 − 42𝑛 + 124
𝐾5,#(𝑛) = −3(𝑛 − 6)
𝐽0,#(𝑛) = 2(𝑛4 − 8𝑛3 − 39𝑛2 + 470𝑛 − 964) (A.7)
𝐽1,#(𝑛) = −2(3𝑛3 − 16𝑛2 − 62𝑛 + 278)
𝐽2,#(𝑛) = 2(4𝑛2 − 19𝑛 + 11)
𝐽3,#(𝑛) = −2(3𝑛 − 11)
𝐿0,#(𝑛) = −2(3𝑛 − 16)
𝐿1,#(𝑛) = −3(𝑛 − 6).

A.4. Nonautonomous case

Let us recall the sixth order nonautonomous Emden–Fowler change of variables (or logarithmic cylindrical coordinates) given
y

𝑤(𝑡, 𝜃) = 𝑟6−𝑛(ln 𝑟)
6−𝑛
6 𝑢(𝑟, 𝜎), wher e 𝑡 = ln 𝑟 and 𝜎 = 𝜃 = 𝑥|𝑥|−1.

Using this coordinate system and performing a lengthy computation, we arrive at the following sixth order nonautonomous operator
DE on the cylinder

𝑃cy l = 𝜕(6)𝑡 +𝐾5(𝑛, 𝑡)𝜕(5)𝑡 +𝐾4(𝑛, 𝑡)𝜕(4)𝑡 +𝐾3(𝑛, 𝑡)𝜕(3)𝑡 +𝐾2(𝑛, 𝑡)𝜕(2)𝑡 +𝐾1(𝑛, 𝑝)𝜕𝑡 +𝐾0(𝑛, 𝑡)
+ 2𝜕(4)𝛥 + 𝐽 (𝑛, 𝑡)𝜕(3)𝛥 + 𝐽 (𝑛, 𝑡)𝜕(2)𝛥 + 𝐽 (𝑛, 𝑡)𝜕 𝛥 + 𝐽 (𝑛, 𝑡)𝛥
𝑡 𝜃 3 𝑡 𝜃 2 𝑡 𝜃 1 𝑡 𝜃 0 𝜃
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+ 3𝜕(2)𝑡 𝛥2𝜃 + �̃�1(𝑛, 𝑡)𝜕𝑡𝛥2𝜃 + �̃�0(𝑛, 𝑡)𝛥2𝜃 + 𝛥3𝜃 ,

where

𝐾𝓁(𝑛, 𝑡) =
6
∑

𝑗=0
𝑁𝓁(𝑛)𝑐𝑗𝓁(𝑛, 𝑡) f or 𝓁 ∈ {0,… , 5}

𝐽𝓁(𝑛, 𝑡) =
4
∑

𝑗=0
𝑀𝓁(𝑛)𝑐𝑗𝓁(𝑛, 𝑡) f or 𝓁 ∈ {0,… , 4}

and

�̃�𝓁(𝑛, 𝑡) =
2
∑

𝑗=0
𝑂𝓁(𝑛)𝑐𝑗𝓁(𝑛, 𝑡) f or 𝓁 ∈ {0, 1}.

More explicitly, we have

𝐾0(𝑛, 𝑡) =
4(𝑛 − 6)(𝑛3 − 12𝑛2 + 44𝑛 − 48)

3𝑡
−

(𝑛 − 6)𝑛(3𝑛3 − 48𝑛2 + 228𝑛 − 320)
18𝑡2

+
(𝑛 − 6)𝑛(𝑛4 − 24𝑛3 + 32𝑛2 + 864𝑛 − 2448)

216𝑡3
+

(𝑛 − 6)𝑛(3𝑛4 + 12𝑛3 − 416𝑛2 − 792𝑛 + 8928)
1296𝑡4

+
(𝑛 − 6)𝑛(𝑛4 + 30𝑛3 + 180𝑛2 − 1080𝑛 − 7776)

2592𝑡5
+

(𝑛 − 6)𝑛(𝑛4 + 60𝑛3 + 1260𝑛2 + 10800𝑛 + 31104)
46656𝑡6

𝐾1(𝑛, 𝑡) = −8(𝑛3 − 12𝑛2 + 44𝑛 − 48) + 2(𝑛4 − 66𝑛3 + 516𝑛2 − 1688𝑛3 + 1920)
3𝑡

−
(𝑛 − 6)2𝑛(𝑛2 − 24𝑛 + 68)

12𝑡2
−
𝑛(3𝑛4 − 42𝑛3 + 16𝑛2 + 1512𝑛 − 4464)

54𝑡3
(A.8)

−
5(𝑛 − 6)2𝑛(𝑛2 + 18𝑛 + 72)

432𝑡4
−
𝑛(𝑛4 + 30𝑛3 + 180𝑛2 − 1080𝑛 − 7776)

1296𝑡5

𝐾2(𝑛, 𝑡) = −(6𝑛3 − 96𝑛2 + 456𝑛 − 640) + (𝑛 − 6)2(𝑛2 − 24𝑛 + 68)
2𝑡

+
𝑛(3𝑛3 − 60𝑛2 + 376𝑛 − 744)

6𝑡2
+

5(𝑛 − 6)2𝑛(𝑛 + 6)
36𝑡3

+
5𝑛(𝑛3 + 12𝑛2 − 36𝑛 − 432)

432𝑡4

𝐾3(𝑛, 𝑡) = −(𝑛3 − 30𝑛2 + 212𝑛 − 408) − (6𝑛3 − 120𝑛2 + 752𝑛 − 3496)
3𝑡

−
5(𝑛 − 6)2𝑛

6𝑡2
−

5𝑛(𝑛2 − 36)
54𝑡3

𝐾4(𝑛, 𝑡) = (3𝑛2 − 42𝑛 + 124) + 5(𝑛 − 6)2
2𝑡

+
5𝑛(𝑛 − 6)

12𝑡2

𝐾5(𝑛, 𝑡) = −3(𝑛 − 6) + 𝑛 − 6
𝑡

and

𝐽0(𝑛, 𝑡) = 2(𝑛4 − 8𝑛3 − 39𝑛2 + 470𝑛 − 964) + (3𝑛4 − 34𝑛3 + 34𝑛2 + 650𝑛 − 1668)
3𝑡

+
𝑛(4𝑛3 − 43𝑛2 + 125𝑛 − 66)

18𝑡2
+
𝑛(𝑛3 − 11𝑛2 − 108𝑛 + 396)

108𝑡3

+
𝑛(𝑛3 + 12𝑛2 − 36𝑛 − 432)

648𝑡4

𝐽1(𝑛, 𝑡) = −(6𝑛3 − 32𝑛2 − 124𝑛 + 556) + 2(4𝑛3 − 43𝑛2 + 125𝑛 − 66)
3𝑡

−
𝑛(3𝑛2 − 29𝑛 + 66)

6𝑡2
−
𝑛(𝑛2 − 36)

27𝑡3

𝐽2(𝑛, 𝑡) = (8𝑛2 − 38𝑛 + 22) + (3𝑛2 − 29𝑛 + 66)
𝑡

+
𝑛(𝑛 − 6)

3𝑡2
(A.9)

𝐽3(𝑛, 𝑡) = −4(𝑛 − 6)
3

− (6𝑛 − 22)𝑡

�̃�0(𝑛, 𝑡) = −(72𝑛 − 384)
12

+
(𝑛 − 6)2

2𝑡
+
𝑛(𝑛 − 6)
12𝑡2

�̃�1(𝑛, 𝑡) = −3(𝑛 − 6) − 𝑛 − 6
𝑡

.

Finally, we set

𝐾0(𝑛) =
4(𝑛 − 6)(𝑛3 − 12𝑛2 + 44𝑛 − 48)

3

𝐾 (𝑛) = 2(𝑛4 − 66𝑛3 + 516𝑛2 − 1688𝑛3 + 1920)

1 3
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𝐾2(𝑛) =
(𝑛 − 6)2(𝑛2 − 24𝑛 + 68)

2
(A.10)

𝐾3(𝑛) = −(6𝑛3 − 120𝑛2 + 752𝑛 − 3496)
3

𝐾4(𝑛) =
5(𝑛 − 6)2

2
𝐾5(𝑛) = 𝑛 − 6

to be the coefficients of the so-called asymptotic nonautonomous cylindrical Paneitz operator given by (3.7).
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