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1. Introduction 

In this paper, we shall study the following singularly perturbed elliptic problem 

~ ~ A u - u + u * = O  i n R ,  
(1.1) ( 0 0  in R a n d u = O  o n d R ,  

where A = cy=, 5 is the Laplace operator, R is a bounded smooth domain in 

R”, E > 0 is a constant, and the exponent p satisfies 1 < p < 2 for n 2 3 
and 1 < p < 0;) for n = 2. We are especially interested in the properties of 
solutions of (1.1) as E tends to 0. In particular, we shall establish the existence 
of a “spike-layer’’ solution, and determine the location of the peak as well as the 
profile of the spike. 

(lO2) (. > 0 in R a n d g = O  OndR,  

where v denotes the unit outer normal to dR, has been studied extensively; see 
[12], 1141, 1151, and, [16]. We also refer to [12] and the references therein for 
some background of the model (1.2). In [14] and [15], Ni and Takagi showed that 
for every E sufficiently small, (1 -2) has a least-energy solution which possesses a 
single spike-layer with its unique peak locating on the boundary dR. Moreover, 
this unique peak must be situated near the “most curved” part of do, i.e., where 
the boundary mean curvature assumes its maximum, if E is sufficiently small. 

The existence of a least-energy solution of (1.1) can be handled in exactly the 
same way as in [14]. More precisely, we first define the energy as follows: 

The corresponding Neumann problem 

s 2 A u - u + u P = 0  i n R ,  

(1.3) J,(u) = - (&21VU(2 + u2) - - JU:+l l/r, p + l  (1 
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where u+ = max {u,  0}, for u E WA(R2). The well-known Mountain-Pass Lemma 
implies that 

is a positive critical value of J , ,  where r is the set of ail continuous paths joining 
the origin and a fixed nonzero element e in Wh(R) with e 2 0 and J,(e) = 0. 
Similarly as in [14] we shall see that c, is the least positive critical value and any 
corresponding critical point u, (i.e., Jb(u,) = 0 and J,(u,) = c,) is a solution of 
( 1 . 1 )  and is called a least-energy solution. 

The purpose of this paper is to study the properties of the solution uE, especially 
when E is small. Among other things we shall prove that u, has only one (local) 
maximum over n, and it is achieved at exactly one point P, E 0. Furthermore, 
we shall show that u, tends to 0 as E - 0 except at its peak P,, thereby exhibiting 
a single spike-layer, and d(P,, dR) - maxpE12 d(P, Xl) as E - 0 where d denotes 
the distance function. Finally, the asymptotic projle (in E )  of u, is obtained which 
gives a detailed description of u, for E suficiently small. It seems interesting to 
note that, in contrast to the Neumann problem, our result here implies that the 
peak of the spike-layer for the Dirichlet problem (1 .1)  must be situated near the 
“most-centered’’ part of the domain R. 

Problems (1.1) and (1.2) can of course be viewed as singular perturbation prob- 
lems. Due to the exponentially small error terms in the expansions of the solution 
u,, however, traditional techniques in singular perturbations do not seem to apply. 
Our approach is based on an asymptotic formula for the smallest energy c,. To 
obtain such an expansion, we need to combine the methods developed earlier in 
[14], [15] and [17]. It seems very interesting to note that while in the Neumann 
problem (1.2) the boundary mean curvature appears in the second term, i.e., the 
dominating correction term, of the expansion and is of the algebraic order E””,  

the dominating correction term in the expansion for c, in the Dirichlet case (1.1) 
involves the quantity d(P,, 8R)  and is of transcendental order exp(- 1 / ~ )  which 
makes the Dirichlet case ( 1 . 1 )  even more delicate. We should also remark that the 
distance function involved here is actually obtained through a limiting process, 
namely, the so-called vanishing viscosity method. 

As a historical remark, we note that in treating nonlinear “autonomous” equa- 
tions (i.e., no space dependence appears in the coefficients of the equations) in 
singular perturbations, although there has been some work on ( l . l ) ,  e.g., [4], it 
seems that there had been little progress in locating the peaks of the spike-layers 
until the recent papers [12], [14], and [15]. In those papers, the “energy” method 
was devised to handle singularly perturbed semilinear “autonomous” Neumann 
problems as described above. Developing the ideas in [ 121, [ 141, and [ 151 further, 
our present paper seems to be the first one that succeeds in locating the spike- 
layers for singularly perturbed semilinear “autonomous” Dirichlet problems. It is 
perhaps expected that somehow the geometry of the domain would play a decisive 
role in locating the peaks; it seems extremely interesting, however, to see exactly 
how the geometry determines the locations of the spike-layers. 
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This paper is organized as follows. We state our main results - Theorems 2.2 
and 2.3 - in the next section. The proof of part (i) of Theorem 2.2 and some 
preliminaries are given in Section 3. In Section 4 we discuss the viscosity limit 
of projections and then in Section 5 we derive an upper bound for c,. Section 
6 contains the asymptotic expansion for c, and the proofs of our main results. 
Finally, the proofs of three important but technical lemmas are included in Section 
7. 

In closing this section, we remark that throughout this entire paper, unless 
otherwise stated, the letter C will always denote various generic constants which 
are independent of E ,  for E sufficiently small. 

2. Statements of Main Results 

Let R be a bounded domain in 08" with smooth boundary dR. We consider the 
following semilinear Dirichlet problem 

E'AU - u + f ( u )  = 0 in R , 
(2.1) { U > O  in R andu = 0 on d o ,  

where E > 0, A = c:=, $ is the Laplace operator in R". The function f : R - R 
is of class CI+O(Iw) with O'< CT < 1 and satisfies the following conditions: 

(fl) f ( t )  = 0 for t 5 0 and f ( t )  - +00 as t - 00. 

(f2) For t 2 0, f admits the decomposition in C1+O(R) 

f(t) = fib) - f 2 W  

where (i) f l ( t ) , 2  0 and f d t )  2 0 with fl(0) = f;(O) = 0, whence it follows 
that f2(0) = f2(0) = 0 by (fl); and (ii) there is a q 2 1 such that fl(t)/t4 is 
nondecreasing in t > 0, whereas f 2 ( t ) / t 4  is nonincreasing in t > 0, and in case 
q = 1 we require further that the above monotonicity condition for f l ( t ) / t  is strict. 

(f3) f ( t )  = OW) as t - +00 where 1 < p < n-2 if n h 3 and 1 < p < 00 if 
n = 2. 

(f4) There exists a constant B E (0, $) such that F( t )  d Otf ( t )  for c 2 0, in 
which 

n+2 . 

To state the next (and last) condition, we need some preparations. Consider the 
problem in the whole space 

(2.3) { 
It is known that (see [9]) any solution to (2.3) needs to be spherically symmetric 

about the origin and strictly decreasing in r = JzJ.  A solution w to (2.3) is said to 

Aw - w + f ( w )  = 0 and w > 0 in R" , 
w(0) = maxZEIw~~ w(z) and w(z) - 0 as IzI - +00 . 
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be nondegenerate if the linearized operator 

(2.4) L = A - 1 + f ' ( w )  

on L2(Rn) with domain W2*2(Rn) has a bounded inverse when it is restricted to the 
subspace L?(R") := { u  E L2(Rn)lu(z) = u ( l z l ) } .  

Now condition (f5) is stated as follows: 
(f5) 

We note that the function 

Problem (2.3) has a unique solution w, and it is nondegenerate. The 
unique solution in (f5) will be denoted by w in the rest of this paper. 

f ( t )  = t P  - at4 for t 2 0 

with a constant a Z 0 satisfies all the assumptions (fl)-(f4) if 1 < q < p < 2. 
Furthermore, there is a unique solution w to problem (2.3); see [6] and [ 111. The 
nondegeneracy condition (f5) can be derived from the uniqueness argument; see 
Appendix C in [ 151. 

Associated with (2.1) is the functional J ,  : W:,(R) - R defined by 

(2.5) 

We call f , ( v )  the energy of v. Let 

c, = inf max J,(h(t)) 
h a -  osrsi 

(2.6) 

where 
r = { h E C([O, 11; W , $ l ) ) l h ( O )  = 0, h( 1) = e }  

and e f 0 is a nonnegative function in W&) with J,(e) = 0. We also define 

~ [ v ]  := supJ,(tv) for v E U-II~(~) . 
f 20 

Then we have 

PROPOSITION 2.1. 
(ii) c, = inf { M[v] I v E H&), v # 0, and v L 0 in 0). In particulat c, is 

(i) c, is a positive critical value of J, .  

independent of the choice of e. 

Proof: (i) is a direct application of the well-known Mountain-Pass Lemma 
due to Ambrosetti and Rabinowitz; see [3]. The proof of (ii) is identical to that of 
Lemma 3.1 in [14]; see Appendix B in [15]. 

From the above proposition, we see that c, is the least positive critical value 
of J , .  Therefore, we call a critical point u, of J ,  with J,(u,) = c, a least-energy 
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solution to (2.1) (or mountain-puss solution). Note that, by standard elliptic reg- 
ularity estimates and the Maximum Principle, critical points of J ,  are classical 
solutions to (2.1); see, e.g., page 9 in [12]. 

We now come to the shape of u, and the location of the peak. 

THEOREM 2.2. Let U ,  be a least-energy solution to (2.1). Then, for E suficiently 
small, we have 

(i) u, has at most one local maximum and it is achieved at exactly one point P, 
in R. Moreovec u,(- + P,) - 0 in C:,(R - P,\{O}) where R - P, = {x - P, Ix E a}. 

(ii) d(P,, dR) - maxpEn d(P, an) as E - 0. 

Next, we state a theorem about the asymptotic profile of u,. First, we introduce 

Let w be the unique solution of (2.3) and 
some notation. 

(2.7) 

Let Q be a point such that d(Q, an) = maxpEa d(P, 8R) and P, be the peak of u, 
defined in Theorem 2.2. We let 

(2.8) R , = { Z € R " ~ Q + E Z E R ) ,  f i 2 , = { y € R " I P , + ~ y E R }  . 

For any smooth bounded domain U in R", we define 9 u w  to be the unique solution 
of 

(2.9) Au - u + f ( w )  = 0 in U ,  
on dU . 

Then by the Maximum Principle, 9 ~ w ( y )  < w(y) for all y E U. 
Set 

( P E  = w - Y n , w ,  @& = W - P ' h , W  

8, = ePJ,::(Px) ( P E  - 
Iclh) = --E log (P,((x - Q) /E)  , $AX) = - E  log @J(x - P,)/E) 

( P E  9 
V ,  = eP@x(Q) 

where P = 1 / ~ .  It will be proved in Lemma 4.6 below that for every sequence 
Ek - 0, there is a subsequence ~ k ,  - 0 such that v,,, - VO on every compact set 
of Rn, where VO is a solution of 

{f;;u = 0 in R" , 
in R" and u(0) = 1 (2.10) 

We are now ready to state our second main result. 

THEOREM 2.3. (i) For E sufficiently small, we have 
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where y is the constant defined in (4.30) below and &,(P,) - 2d(Q, dR) as E - 0. 
(ii) For every sequence Ek - 0, there is a subsequence ~ k ,  - 0 such that 

and 1 - 0  < p < 1. 

3. Proof of Theorem 2.2 (i) and Preliminaries 

Let u, be a least-energy solution to (2.1), i.e., J,(u,) = c,. In this section, we 
shall prove part (i) of Theorem 2.2 and derive some properties of U ,  which will 
be used later. 

We begin with some lemmas. 

LEMMA 3.1. For E suflciently small, c, 5 E"(I(w) + o(l)), where w is the 
unique solution of (2.3) and I(w) is de$ned by (2.7). 

LEMMA 3.2. The following statements hold: 

(8 sup,,i;iu,(x) 5 C , 
4 (ii) mqE" 5 S,, uE 5 M ~ E "  , if 1 s q < 00 , 

where C,  my, M ,  are positive constants and are independent of E for E < 1. 

LEMMA 3.3. There is a U > 0 such that if u, attains a local maximum at 
xg E n, then U,(XO) 2 U. Moreover, there exist constants qg, ro independent of xg 

and E such that for E < EO and BrOE(xg) C R, then 

(3.1) u,(x) 2 r ] ~  , f o r  x E B y ( x o )  . 

Proofs of Lemmas 3.1-3.3: By using Proposition 2.1 and a test function 
x(x)w((x - Q ) / E )  where x(x) E Cr(Q) is a positive cut-off function at a neigh- 
borhood of Q, we obtain Lemma 3.1. Lemma 3.2 follows from exactly the same 
arguments used in the proof of Lemma 2.3 and Corollary 2.1 in [12]. Finally, 
U,(XO) 2 2 is an easy consequence of the equation (2.1), see Appendix B (c) in 
[ 151, and (3.1) is a standard interior Harnack inequality; see Theorem 8.20 in [lo]. 

We now prove part (i) of Theorem 2.2. We shall follow the strategy used in 
the proof of Theorem 2.1 in [14]. 
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Let P, be a point at which u, achieves a local maximum. Then u,(P,) 2 U. 

Step 1 .  We first prove that 

(3.2) pe := d(P,,aO)/E - +CC as E + 0 .  

Suppose on the contrary that there exists a sequence of Ek - 0 and positive 
constant C* such that 

(3.3) d(P,, an) 5 c* & , for E = Ek . 

By passing to a subsequence, we may assume that P,, - PO E aO. Following 
the idea in [14], we introduce a diffeomorphism which straightens the boundary 
portion near the point PO E dR. Through translation and rotation of the coordinate 
system, we may assume that PO is the origin and the inner normal to 80 at PO 
is pointing in the direction of the positive x,-axis. Then there exists a smooth 
function wp, , (x ’ ) ,  x’ = (XI, .  . . , x,- 1 ) defined for Ix’ I sufficiently small such that (i) 
wp,,(O) = 0 and V w p , , ( O )  = 0; and (ii) dR n X = {(x’,x,)Jx, = wp,,(x’)} and 
R n N = {(x’,x,)lx, > wp, , (x ’ )} ,  where X is a neighborhood of PO. For y E R” 
near 0, we define a mapping x = ~ P ~ , ( Y )  = ( ~ P ( , , I  (Y). . . . , g P 0 , , ( y ) )  by 

Since V w p , , ( O )  = 0, the differential map Dgp,, of 9 p l l  satisfies D % p l , ( 0 )  = I ,  the 
identity map. Thus %p,, has the inverse mapping y = 9&:(x) for 1x1 < 6’. We write 
9&: (x )  as Spll(x) = ( S p , , , ~ ( x ) ,  . . . ,9p l , , , (x ) ) .  We assume now that g p l l  is defined 
in an open set including the closed ball B3K, where K > 0 is a small constant. For 
simplicity, we shall suppress the indices PO and k in the rest of the proof. 

Set Q, = F(P , )  f B: := {x E BKlxn > 0) and v , ( y )  := u , ( ~ ( Y ) )  for y E 81K. 
If we write Q, = (qk,a,~) with qk E R”-’ and a, > 0, then (3.3) implies that a, 
is bounded. We now define w,(z) := v,(Q, + EZ) for z = ( z l ,  . . . , z,) E EK/,  n { z ,  Z 
-a,) and w,(z) := 0 for z E EKle n {z, < -a,). 

It is easily seen that 

W, E c2 (BK/, n {z,  2 -a,}) .  

Moreover, w, satisfies 

(3.5) 
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By Lemma 3.2 (ii), we see that 

wt(z>dz 5 C ,  

with C,, independent of E .  

gent subsequence, which we denote again by w,, such that 
Therefore, we may argue as Step 1 of Theorem 2.1 in [ 141 to obtain a conver- 

w, - wo in c~JR;,+) 

where a, - a 2 0, Rg,+ = {ylyn > -a}  and wg E C;”,(Rg,+) n W*,’(R;,+). 
The limit wg satisfies 

(3.6) 

in IRE,+ since Qe - 0 as k - 00. In view of D g ( 0 )  = [D9(0)]-’  = I ,  one obtains 
that wg satisfies 

Au - u + f (u)  = 0 in R;,+ , 
in R;,+ and u = 0 on dG.+ . (3.7) { u  > 0 

Note that wo E W2-’(IW;,+); see Step 1 in the proof of Theorem 2.1 in [14] 
for details. Then, by Theorem 1.1 in [7], we conclude that wg = 0. But w,(O) = 
u,(P,) h ii and w,(O) - wo(0) = 0, a contradiction. 

Step 2. We now prove that u, has at most one local maximum point. By Step 
1, we can use Harnack inequality near P, .  By making some minor modifications, 
we see that our assertion follows from the arguments in Step 3 of the proof of 
Theorem 2.1 in [14]. 

Step 3. Finally the fact that uE(.  + P,)  - 0 in C:,(R - P,\{O}) follows from 
Proposition 3.4 (ii) below and standard elliptic regularity estimates. 

Next, we begin to study the profile of u,. 

PROPOSITION 3.4. Let f , (y )  = u,(P, + ry) ,  then the following statements hold. 
(i) For any 77 > 0, there exist positive constants E ( )  and kg, such that, for all 

0 < E < EO, we have Bz~ , , JPJ  C 0 and llf, - w l l ~ 2 ( ~ ~ , , ( 0 ) )  < 7, where w is the 
unique solution of (2.3). 

( i i )  For any 0 < 6 < 1 there is a constant C such that 

(3.8) ij,(y) Ce-(’-’)lvl for y E a, . 
(iii) JIGc - wllL>(il,) - 0 for all 1 5 s 5 00 as E - 0 . 
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Proof Repeating the arguments in Step 1 of the proof of Theorem 2.1 in 
[141, we see that f& - w in C k ( R n )  as E - 0, where w is the unique solution of 
(2.3). This proves (i). 

We now prove (ii). By a result in [9], 

(3.9) w(r) S Coe-' , for r 2 0 .  

For any 71 > 0, set 

(3.10) R := lOg(CO/q) 

so that 77 = Coexp(-R). Then by part (i) there is a EO > 0 such that 

(3.1 1) 

if 0 < E < EO. Thus 

(3.12) i jJy) s w(y) + 77 s C@ + 77 = 277 

for l y J  = R. Now, setting 02) = B&&), s2?) = s2\d', fit) = BR(0) and fit) = 
fiZ,\B~(0), we have u,(x) S 277 for n E do!' for E 5 EO. By Theorem 2.2 (i), the 
set {n E sZlu,(n) > 277) has only one connected component. Consequently 

(3.13) u,(x) 5 277 in o?) . 
Now we choose 11 such that 1 - > 1 - S for A < 277. Then f' satisfies 

AF& - (1 - m) v;: = 0 
VF 

fe l a E ~ ( 0 )  5 27 9 

in fizlp) , 

{ f& = 0 on ail& . 
(3.14) 

Observe that 1 - > 1 - 6 in a?). 
Let G(y,z) be the Green's function for -A + 1 on R", i.e., 

(3.15) G(y,z) = C,IY - ~l-("-~)'~K(,-2)/2((Y - zl) 
where C,, is a positive constant depending only on n and K,(z )  is the modified 
Bessel function of order m; see, e.g., Appendix C in 191. Let Gdly l )  = G(y,O) and 
V ( y )  = 2gG1i(m'y0. G,, ( GR) Then S(y) satisfies 

(3.16) v = 277 on dBR(0) . 

By the Maximum Principle on a?', we have 
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But on a!), F,(y) 5 C. Hence 

F E Y  ( ) 5 - Ce-"-6)lyl , for all y E a, . 
Finally we prove (iii). For any 77 > 0, by the exponential decay of fE and w, 

there is an R large such that IlF, - w/(Lycl,\\LIR(o)) 9 7/2. On the other hand, since 
f, - w in Ck(R") as E - 0, there is ER > 0 such that for all E < ER, )I i j ,  - 

~ I I L Y ~ ~ , ~ \ L I ~ ( O ) )  S 7d2. Therefore 11% - w l l ~ ~ c ~ , . )  S rl. 

4. Viscosity Limit of Projections 

In this section, we shall use the so-called vanishing viscosity method to derive 
some properties of 9 0 , w  and 9~1,~ defined in Section 2. We first study 9 0 , ~ .  
Recall that pe = w - %I, w, @,(x) = - E  log p,((x - Q ) / E ) ,  V ,  = efl+*@)p,. Thus 
@, satisfies 

(4.1) 

and V, satisfies 

&A@, - IV@,(* + 1 = 0 in a, 
@&(x)  = -~logw((x - Q ) / E )  on afi , 

(4.2) 
AV, - V, = 0 in 0, , 
V,(0) = 1 . 

We need the following results about w from Theorem 2 in [9]. 

LEMMA 4.1. The following results hold: 

(4.4) - -1 .  lim - - w'( I Y 1) 
lYl---Oo W ( l Y 0  

It is immediately seen that on 82, 

In order to study the properties of @,, we first investigate a closely related problem 
which is slightly simpler. 

LEMMA 4.2. For E sufficiently small, there is a unique solution @" of equation 

(4.6) 
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Moreover; there exist two positive constants CI and C2, such that 

Proof First, we observe that 0 is a subsolution of (4.6) in R. On the other 
hand, it is easy to see from (4.5) that for E sufficiently small JIE,  the solution of 
(4.1), is a supersolution to (4.6) and JI, > 0 in R by the Maximum Principle. 
From Theorem 1 in [2], we conclude that there is a solution $" to (4.6) such that 
0 < JI" < JIE. To obtain an upper bound of JI', we first choose a vector XO such 
that 1x01 > 1 and a number b large such that g(x)  = ( x , X o )  + b > Ix - Ql on dR. 
Then by computation, 

(4.8) 
EAg - IVgI2 + 1 = 1 - 1x01~ < 0 in R , 
g(x)  > b - Q l  on aa . 

By comparison, we have 

g(x)  > V ( x )  on d o ,  

which proves that JJ I+VJJL=(~)  S CI.  
The uniqueness of JI" follows from the usual Maximum Principle. 
We next prove that IJVI+VIJL-U(Q) 5 C2. We first show that IIV+&IIL~(~O) 5 C2. 

We prove this by a barrier method. 
In fact, we choose 6 small and p large such that the distance function d(x) := 

d(x,aR) is C2 in 026 := { x  E R(d(x) < 6 )  and p6 > CI.  Then, considering the 
functions 

(4.9) 

we observe that 

(4.10) &A@ - IVi,Kl2 + 1 = (E(n - l))/lx - Ql 

for x # Q and that JI" 2 C(E) > 0. Hence if we take E 5 €0 and 6 ( ~ )  small it is 
easy to see that +&- is a subsolution on R\Bs(&,(Q). Therefore it is a subsolution 
on Rs and I+V- S I(IE on z. In fact, C(E) here can be chosen independent of E > 0, 
since Q is fixed. The above argument, however, works even when Q depends on 
E which will be the case in the proof of part (iii) of Lemma 4.6. 

4% = IX - Ql , JI: = ( X  - Ql + ~ 4 x 1 ,  

On the other hand, we have 

- IVJI"+2 + 1 
E(A@ + pAd) - IV@ + pVdI2 + 1 (4.11) = 

= -p2IVdI2 - 2pV@ .Vd + (E(n - l))/lx - Q l  + & p a d .  

Note that 
lVdl = 1 o n a R ,  lAdl S C  in R s .  
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Hence, if we choose p large, we have, 

(4.12) 

By comparison, we conclude 

- IVt,h",* + 1 < 0 in Rb , 
on a06 . 

t,ht > t,V o n R 6 .  

Therefore, v- < ijP < $? on a h .  Thus, I$' - v- 1 < pd(x) on Ra. Since I,V = $5 
on ast, it follows that 1 lV$f J ) ~ = ( i ) f l )  S C2. 

Finally, simple computation shows 

~ ( l ~ t , h ~ 1 ~ )  - :v~,v. v ( I v ~ ~ * )  2 o 
Hence by the Maximum Principle, 1 V y  1 * 5 C in 0. 

in R . 

Next, we need to analyze the limit of t,!F as E - 0. It turns out that the limit is 
a viscosity solution. 

LEMMA 4.3. Let $" be the solution of (4.6), then $& converges, as E - 0, 
uniformly to afinction t,ho E W'x"(R) which can be explicitly written as 

where L(x, y )  denotes the injimum of T such that there exists <(s) E Co*'([O, TI, n) 
with E(0) = x ,  [ ( T )  = y ,  and 1 %  1 d 1 almost everywhere in [0, TI. 

Note that is a viscosity solution of the Hamilton-Jacobi equation: IVul = 1 
in 0; see, e.g., [ 131. In order to continue our presentation of the main ideas in this 
section, we postpone the proof of Lemma 4.3 to Appendix A in Section 7. 

LEMMA 4.4. as E - 0 where $0 is given by (4.13) 
above. In particular, $o(Q) = 2d(Q, 8R). 

(ii) For every sequence &k - 0, there is a subsequence Ek, - 0 such that 
V,,, - VO uniformly on every compact set of R", where VO is a positive solution 
of 

(i) 4, - $0 uniformly in 

A u - u = O  inIW", 
(4.14) { U > O  in R" and u(0) = 1 

Moreovel; for any 0 1  > 0, s u p z t ~  e-('+"1)lzl IV,,, (z) - VO(Z)l - 0 as &&, - 0. 
' k l  

Remark. We have partial results on the uniqueness of Vo which we will report 
elsewhere. 
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Proof (i) Let 4' be the unique solution of (4.6). It follows from (4.5) and 
the Maximum Principle that 

(4.15) 

Therefore by Lemma 4.3, we see that +, - $0 uniformly in s2 as E - 0. Note that 
Q is a point in R such that d(Q, an) = maxpE1 d(P, dR), hence, L(Q, P )  2 d(Q, dR) 
and IP - Q 1  2 d(Q, dR) for all P E dR. So, +o(Q) = 2d(Q, 80). 

I I + &  - +EIILyl)  5 ll+& - vlIL=(an) 5 CIElogEI . 

(ii) Note that for E = Ek,  V, satisfies 

(4.16) AV, - V, = 0 
V,(O) = 1 . 

in R, , 

Now, for any given 01 > 0, we let 61 = and X I  be a cut-off function such that 
 XI^) = 1 for r 5 1 - 61 and xl(r) = 0 for r > 1 - 61/2. Setting T;(X) = A+&) 
and T,(x)  = A+,(x)xl(lx - Ql/d(Q,dR)),  we claim that 

(4.17) 

where C may depend on 61 but is independent of E .  

Once (4.17) is proved, it implies that 

for x E B(l-b,)d(~,an)(Q) and E < EO. It then follows that 

for z E B(1-bl)d(~.ar2)/,(O). On the other hand, if (1 - 61)d(Q,dfi)/~ 5 lz l ,  i.e., 
Ix - Ql 2 (1 - 61)d(Q,dR), we observe that by (4.5) +,(x) 2 Ix - Ql on 
dR for E sufficiently small and thus the function Ix - Q l  is a subsolution of 
(4.1) on R\Ba,(,)d(~,an)(Q> for some & ( E )  > 0 sufficiently small, by (4.10) and 
the arguments immediately following it in the proof of Lemma 4.2. Hence, we 
have +,(x) 2 Ix - Ql for x E n\B(I-6,)d(Q,an)(Q). Therefore, cp,(z) 5 e-Izl for 
z E s2,\B(1-6,)d(~,an),,(O). By part (i) above, it follows that 

v,(Z) = eP+p(Q)q,(z) 5 eP+r(Q)-lzl 

5 e(2+6~)d(Q.8R)/~-I~l 5 - e(1+6~+6~)Pd(Q,8n) 

5 e [ ( 1 + 2 6 ~ ) / ( l - 6 ~ ) l l ~ l  5 - C ~ ( ~ + ~ ) I Z I  . 
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In summary, we have, for all z E fl,, 

(4.18) v,(z) 2 ce(1+Y)lzl . 

Hence taking a diagonal process and passing to a subsequence E&/ - 0, we have 
that, for E = ~ k , ,  V,(z) - VO(Z)  uniformly on any compact set of R" and V&) is a 
solution of (4.14). Moreover, S U P ~ ~ ~ , ~ ,  e-(I + O l ) l Z I  lVErnl(z) - VO(Z)I - 0 as Ek, - 0. 

So it remains to prove (4.17). In fact, T: satisfies 

(4.19) - EAT: + 2 0 9 , .  VT: + 21v2+,12 = o in . 

Since IV2$,12 = ~ ~ , = ,  (&) 2 CI 1.:12 for some constant CI, we see that 
2 

(4.20) C 1 1 ~ ~ 1 2 - E A T : + 2 V ~ , . v T ~  s o .  
Multiplying (4.20) by x:(lx - Ql/d(Q,  an)), we compute 

Note that in (4.21) and the rest of the proof of (4.171, for simplicity, we always 
write X I  for XI( ( x  - Ql/d(Q, an)) while the argument in all other functions is x 
and the differentiations are taken with respect to x .  

Now, let T, (XO)  = maxxE~~r,(x) .  If T, (XO)  5 0, (4.17) certainly holds. If 
T, (XO)  > 0, then we have 

Observe that 
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Hence if we choose E < EO such that C&/d(Q, an) d $ I ,  then we have 

T & ( X O )  S C/d(Q,  80) , 

and (4.17) is established. 

745 

We now study Yfi,w. Recall that 

gE = w - 96,  W ,  $&(XI = --E log +,((x - P,)/&), dE = @+JP*) ( P E  . 

Similarly as before, $& satisfies 

(4.23) 

and d& satisfies 

&A$& - lV$c12 + I = 0 
$AX)  = --E log w((x - P , ) / E )  on , 

in R , 

(4.24) Ad& - d,  = 0 in 0, , 
d&(O) = 1 . 

LEMMA 4.5. It holds that 

$&(XI lim ~ = 1 uniformlyfor x E dC2 . 
E - 0  Ix - P,I 

(4.25) 

Proof Note that on dR, Ix - P, 1 2 d(P,, dR), i.e., 2’ p , .  Since by (3.2) 
p E  - 00 as E - 0, (4.3) implies that 

n - 1  Ix-P,I 
$&(X)  = lx - P&I + 2 &log ~ - Elog(A0 + o(1)) 

& 

uniformly for x E ds2. Hence 

uniformly for x E dR as E - 0. 

We now have an estimate for $,(x). 

LEMMA 4.6. 
(ii) For any CTO > 0, there is an EO such that for any E < SO, 

(i) There exists a positive constant C such that Il$, I l ~ y n )  5 C. 

(4.26) $JPJ 5 (2 + uo)dP&, 80) . 
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(iii) For every sequence &k - 0, there is a subsequence &kl - 0 such that 
vek/ - vo uniformly on every compact set of R", where VO is a positive solution 
of 

(4.27) { u > O  in R" andu(0) = 1 . 

Moreovel; for any 02 > 0,  sup,,^ e-(('+g2)lvl) I Q,,/ ( y )  - Vo(y) I - o as Ek, - 0. 

AM - u = 0 in R" , 

' k i  

Proof (i) The proof of (i) is almost identical to that of its counterpart in 
Lemma 4.2 and is thus omitted. 

(ii) Assume that d(P,, 80)  = IP, - El where E E Be. Let y ,  be the point on 
the ray PEP, such that IP, - y,I = (1 + ~,-)if', -El, where 77 < min{l,ao/lO} is 
so small that Brl,(yE) C 0" and Brl,(21_.) n 2 = {K} for ro = VIP, - El. 

Setting w,(x) = (1 + 277)(IP, - P,I + Jy, - X I ) ,  we see that, on BR 

-- 

$&M 5 (1 + 77/2)1x - P&I 
< (1 + 77/2)(IP& - Y E 1  + I Y E  -4) 

(1 + 77/2)(IPE -El + IY& - X I  + VIP& -El) = 

< w,(x) 

for E sufficiently small, since (1 + ;)(1 + 77) < 1 + 277. Moreover, w,(x) E C2@) 
and 

Thus for E sufficiently small, 

C& 
SAW, - IVw,I2 + 1 5  - ( 1  + $2 + 1 < 0 

VIP& -El 
since E/IP,  - El = l/p, - 0 as E - 0. Therefore by the Maximum Principle, 
we conclude that 

$&(x)  s w,(x) for x E . 
Hence 

$&(P,) 5 (1 + 277)(IP& -El + I Y E  - P&O 
(1 + 277m + 77MIP& -El) 
(2  + ao)(lP, -Kl) . 

= 

< 

(iii) To prove part (iii), we just need to show that 

(4.28) v&(y) 5 ce('+?i')lvl 
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for E < e0. We note that the proof of Lemma 4.4 (ii) also works in this case with 
minor modifications. (Indeed, we just need to change d(Q, an) to d(P,, 80) and 
observe that &/d(P,,dR) - 0 as E - 0 ). We omit the proof. 

Finally we conclude this section by proving a property of V O  and VO which is 
important in the asymptotic expansion of c,. 

LEMMA 4.7. Let w be dejined in Section 2 and V be an arbitrary solution of 

{u,;u = 0 in R" , 
(4.29) in [w" andu(0) = 1 . 
Then we have 

(4.30) 

where V ,  ( r )  is the unique positive radial solution of (4.29). 

Proof: First, we prove that JRn f (w)V is independent of the choice of V and 
is equal to Jwr f (w)V, .  In fact, by Theorem 1 of [5],  we have 

where (Sn-' is the surface area of the unit sphere S"-' in BB", dp(A) is a positive 
measure on S"-', p(Sn-') = 1, dA(A) denotes the usual element of the surface area 
on and 5 E S"-l. Observe that the second integral in (4.31) is independent 
of 5. Writing x = r< with r = 1x1 and 5 E S"-', we see that 

since V(0)  = J;51=l dp(<)  = 1. 

W be the unique solution of the equation 

(4.32) 

Now, we prove that f ( w ) V ,  > 0. Letting R be a fixed positive number and 

A w - w + w P = O  a n d w > O  i n R " ,  
w(0) = m a x Z E ~ ~ ~  w(z) and w(z) - 0 as IzI - +oo , 
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we observe that 
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(4.33) 

= [w(R)V'*(R) - w'(R)V*(R)]  R"-' Is"-' I . 

Similarly, 

(4.34) wpv* = J BR(O) 

By Lemma 4.1, we see that 

[i?(R)V:(R) - w'(R)V, (R) ]  R"-' Is"-' 1 - 

there is a constant > 0 such that 

Hence, for R large we have 

(4.35) 
- - 
C 
2 

-w'(R) > --iV'(R) . C 
2 

w(R) > - F ( R ) ,  

From (4.33), (4.34), and (4.35) it follows that 

for R large since V *  2 0. Letting R - cm, we obtain 

5. An Upper Bound for c, 

The purpose of this section is to obtain the following upper bound for c, which 
improves Lemma 3.1. Recall first that d(Q, 80) = maxpE:Il d(P ,  80) and p = k. 

PROPOSITION 5.1. For E sufficiently small, we  have 
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We shall establish (5.1) by choosing an appropriate testfunction in the vari- 
ational characterization of c,. First, setting u,*(x) = 9[2,,w(z),x = Q + EZ and 
h&) := JE(tu,*) for t 2 0, we have the following two lemmas. 

Note that by (4.181, 

kp v,lf(w)l dz 5 c J e ( l + ~ ) ~ z ~ ~ ~ ( w ) ~  dz s c e(l+~)lzllf(w)I dz 5 c , 
0, J, 

if we choose oI < o. By Lemma 4.4, for any sequence Ek - 0, there is a subse- 
quence Ek,  -., 0 such that V,,, - VO for some solution V O  of (4.14). By Lebesgue's 
Dominated Convergence Theorem and Lemma 4.7, 

It follows that 
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We also observe that 

(5.7) 

Substituting (5.6) and (5.7) into ( 5 3 ,  we obtain (5.2). 
To prove (5.3), we first note that by the mean-value theorem 

(5.8) 

where w 2 WI L 9cl, w. Thus 

~ ( Y [ l , . w )  = ~ ( w )  - f(wl)e-P+>(Q)V, 

and again Lemma 4.4, the Lebesgue Dominated Convergence Theorem, and Lemma 
4.7 guarantee that 

,- 

since W I ( Z )  - w(z) (because Ycl,w(z) - w(z)) for z E a,. Now (5.3) follows 
immediately from (5.8) and (5.9) as before. 

It remains to prove (5.4). Note now that by the same argument in Lemma 4.7, 
we see that for any solution V of (4.29), S,,,(twf'(tw) + f ( tw))V is independent of 
V and is equal to y( t ) .  Then (5.4) can be proved in a similar way as before and 
thus the proof is omitted. 

LEMMA 5.3. Fur each E > 0 suficiently small, h, attains a unique positive 
maximum at t = to(&) > 0 and 

) (5.10) to(&) = 1 + ae-pll.*(Q) + 0 (e-P+>(Q) 

fur sume constant a. 

Proof This proof is essentially the same as that of (3.16) in [ 141; for the sake 

We first note that h,(t) has a unique positive maximum. This is clear when 
of completeness, however, we include a sketch here. 

q = 1. Indeed, 

(5.1 1) 

which implies that &(to) = 0 for some to > 0 if and only if 
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Since the right-hand side is equal to 

and since this is strictly increasing in to > 0 by virtue of (ii) of (f2), we find that 
there exists exactly one to > 0 such that &(to) = 0. Hence t&) is unique. In the 
case q > 1, we can use the same arguments of Lemma B.l in [15]. 

To derive the asymptotic behavior of ~ o ( E )  as E - 0, we define a function 

O(E,  t )  := E-"h;(t) 

for E > O,t 2 0. By Lemma 5.2, we have 

as E - 0, where the term o (e-fi+e@)) is uniform in t on each compact interval. 
Now let e(6,t) = a ( ~ , t )  where 6 = e-b*v@). Then 

as 6 - 0, where the term o(6) is uniform in t on each compact interval. From this 
it follows that C(6, t) can be extended up to S = 0 as a continuously differentiable 
function on [0,6,) x [O ,co )  with 6, > 0 sufficiently small. Note that C(0,l) = 0. 
Next we compute CI(O, t): 

By Lemma B.l in Appendix B of [15] we have 5.,(0,t)ll=l < 0. The Implicit 
Function Theorem now yields the existence of a C' function t(6) defined for 
6 E [0,6,,) with 6,, > 0 sufficiently small such that C(6, t (6))  = 0 and t(0) = 1. 
Letting t ( S )  = ~ o ( E ) ,  we finish our proof. 

Proof of Proposition 5.1: By Proposition 2.1, we have 

c, 5 f , ( t O ( E ) U , * )  

= - - t : ' (e) /n(~~IVu: 1 l2 + ( u : ) ~ )  dx - 
2 
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6. Asymptotic Formula for c, and 
the Proofs of Theorem 2.2 (ii) and Theorem 2.3 

In this section, we shall derive an asymptotic formula for cE and prove Theorem 
2.2 (ii) and Theorem 2.3. To this end, we define & by 

fe (y )  = ~C?,w(y) + e-P&*('F)+ E Y  ( ) 

where y E he. Recall that fJy) = uJP,  + EY) ,  then & satisfies 
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Our next result is crucial in deriving the asymptotic expansion for c,. For given 
1 - 0 < p < 1, we shall fix 0 < 0 1  = 0 2  < : D  (in Lemmas 4.4 and 4.6) such that 
1 - 0 + cI + 0 2  < p < 1 in the rest of this section unless otherwise specified. 

PROPOSITION 6.2. 
(ii) For every sequence Ek - 0, there is a subsequence Ekl and a solution Vo of 

(4.27) such that Ile-pIYI(+Ekl - ~ o ) I I L ~ ( B , , ~ ~ ~ ~ ~ , ~ ~ )  - 0 as Ek, - 0 where 6 2  = 02/10 
and +Q is a solution of 

(6.3) L ~ O  - f'(w)Qo = o in R" . 

Furthermore, e-plYl+o E W2Ts(Rn)for s > 1. 

(i) For s > n , we have Ile-'lY'+Ellw2d(fi,) 5 c(s). 

Assuming Proposition 6.2, we proceed to obtain an asymptotic expansion for 
c,, which improves our upper bound in Proposition 5.1. 

PROPOSITION 6.3. For E suflciently small, we have 

(6.4) 

where c, is given by (2.6) and y is deJned by (4.30). 

c, = En { I (w)  + ye-BO,(PJ + 0 ( e- /30m) } 

Proof Since u, satisfies equation (2.1), we have 

= E"(Z3 -I&$}, 
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where 1 3  and 1 4  are defined by the last equality. 
We begin with the estimate of 13. Since I le-I1IY14& 1 I ~ z . $ ( f i , )  S C(s) for s > n by 

Proposition 6.2, by the Sobolev Imbedding Theorem (see p. 107, Lemma 5.15, in 
[l]), we have 

+,(y)  5 CeplYI 

for E sufficiently small (note that the constant C is still independent of E 5 80). 

Observe that by mean-value theorem, 

(6.5) V ( F A  = w f ( w )  + e-P$h(Pt)(f(w3) + w3ff(w3))(+, - V&)  
where w3 lies between w and B E .  Thus by (3.8) with the choice S = 5 

for E 5 EO. By Lemma 4.6, for any sequence &k - 0, there is a subsequence 
Ek, - 0 and a solution V O  of (4.27) such that Vk, - Vo. Then by Proposition 6.2 
and Lebesgue’s Dominated Convergence Theorem, 

as Ek, - 0. We note also that by Lemma 4.6 (ii) with (TO < (T, 

Observing that 40 satisfies equation (6.3), we have 
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14 may be handled in a similar fashion and we have 

From (6.7), (6.81, and (4.30), we see that (6.4) holds for E = Ek,.  Since the sequence 
Ek is arbitrary, it is easy to see that (6.4) is true for E sufficiently small. 

Proof of Theorem 2.2 (ii) and Theorem 2.3: By Theorem 2.2 (i) and (3.2), 
U, has at most one local maximum P, and pE = d(P,, an)/& - w. Since Lemma 
4.7 guarantees that y > 0, from Propositions 5.1 and 6.3 we deduce easily that 

k ( P A  L +dQ) + o(1) . 
Then, by Lemma 4.6 (ii), for any (TO there is EO such that 

(6.9) (2 OO)~(PE, afl) 2 $E(PE) 2 ~ E ( Q )  O(1) 

for all E < EO. Since GE(Q) - 2d(Q, 190) as E - 0, we see that 

(2 + (~o)lim,,od(P,, an) 2 2d(Q, dR) 

which in turn implies that d(PE,8R)  - d(Q,dR) by the choice of Q. This estab- 
lishes part (ii) of Theorem 2.2. 

Theorem 2.3 follows from Proposition 6.3, (6.9), part (ii) of Theorem 2.2, and 
Proposition 6.2. 

The rest of this section is devoted to the proof of Proposition 6.2. We need 

Letting U be a bounded smooth domain in R”, we define, for 0 5 p < 1, 
some preparations before we go into the proof. 

1l~lIw;yu) = l l ~ - ~ ~ ~ ’ ~ l l w ~ w )  

where < y >= (1 + l y I 2 ) f .  As usual, when k = 0, we denote Wo,.”(U) as L;(U). 
The following two lemmas play a basic role in our estimates. 

LEMMA 6.4. (i) Let s > 1, 0 5 p < 1 and u be the solution of 

(6.10) 
A u - u + Y = O  in a&,  

on ailZ, . 
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Then 

(6.11) 

where C is a constant independent of E 5 EO. 

I lul Iw:yfi,, 5 c (I I71 lL;(fir) + I I71 IL?(fi,.)) 9 

(ii) Let u be a solution of 

A M - u + f = O  inR" 

with I l f l I ~ ; ( ~ n )  < 00 and l l f l l ~ ; ( ~ n )  < 00. Then 

(6.12) I I ~ I I ~ ~ ~ ( ~ n )  5 c ( II.FIIL;(R~) + I I ~ I I L ~ ( ~ ~ ) )  - 

IlKIIW2.'(R") Cll~lIW~+Yfir) t 

(iii) For every function K E C2(E,), there exists an extension K E Ci(Rn) with 

where s > 1 and C is independent of a and E S 1. 

LEMMA 6.5. If the domain of L is W?(Rn) where s > n/2,0 5 p < 1, then 
8 W  ker(L) = X = Span {el,.  . . , en}  where ei = G. i = 1,2,. . . ,n. 

The proofs of Lemmas 6.4 and 6.5 are included in Appendix B and Appendix C. 
We now explain the plan of the proof of Proposition 6.2. Our proof will follow 

the idea in 1151 and [171. We first prove that IJ&IIL;(~~,) is bounded for s > n. 
Then by Lemma 4.6, for every sequence Ek - 0, there is a subsequence Ek, - 0 
and a solution VO of (4.27) such that V,,, - VO.  Letting $,,/ = x(lyl/p&,,)4o(y) 
where X(r) = 1 when r S 1 - 62 and ~ ( r )  = 0 when r > 1 - &/2, we show that 
)I &, - 11 w~(fi,:,, ) = o( 11, which, by the Sobolev Imbedding Theorem, proves 
Proposition 6.2. 

We begin with the following useful estimates. 

LEMMA 6.6. For every sequence Ek - 0, there is a subsequence &k, - 0 and 
a solution Vo of (4.27) such that for 2 < s 5 M 

Proof By Lemma 4.6, for every sequence Ek - 0, there is a subsequence 
Ek, - 0 and a solution VO of (4.27) such that v,,, - 60. By Lemma 6.1, we have 

e-p<Y> IF,,, (&) + f '(w)Vo 1 S Ce-pL'Y> I f  ' (w )  I IVo - V,,, I 
+Ce-C"'Y' I v E t ,  - - w l u 1 4 E & ~  - V E k /  1 ' 
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Since IV&,, - Vol = o(l)e('+'2)lyl by Lemma 4.6 (iii), it follows that 

The case s = 00 can be handled in a similar manner. 

LEMMA 6.7. Let n < s < 00. Then 1 I+&\ )L;c~2,. 5 C(s). 

Proof 

Let M, = I I&, 1 I L ;  (".,I, g, = + & , / M j .  For simplicity, we denote QEJ as Q j ,  

We prove this lemma by contradiction. Suppose on the contrary that 
there exists a sequence of E j  - 0 such that I I+&, I I L L  (a,) - 00. 

as +,, etc. Then gj satisfies 

We divide our proof into the following steps: 

Step 1. We show that llgjl lw;s (G,,.,) is bounded. 

Step 2. We extend g j  to R" and prove that gj - 0 weakly in W?(R"). 

Step 3. We prove that 1 lgj l I w ~ c w n ,  = o( l), which gives a contradiction (be- 
cause I lgjl IL;(Q,) = 1). 
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Now we begin to prove Step 1. In fact, by Lemma 6.4 (i), 

Since 

and 

by Lemma 6.6, we obtain 

Now, from Lemma 6.4 (iii), we can extend g, to a C2 function with compact 
support in R" (still denoted by g,) in such a way that I lg, 1 I w;'(Rn) S C, where the 
constant C is independent of j. Thus we conclude that, first, 

(6.18) 

ll&llw;yfi,) c * 

I lg, I IL;"(R") zs c 
by the Sobolev Imbedding Theorem, and that there exists a function go E W?(Rn) 
such that (by passing to a subsequence if necessary) g, - go weakly in W?(Rn) 
and g, - go in C,!JrW"). 

To finish the second step, we just need to show that go = 0. To this end, 
we estimate I ~F,($J , ) /M,  I IL;(Q. Note that in Lemma 6.6, we now take s = co. 
Then, as before, we have 1 \F,(+,) /M, 1 JL;(fi,, - 0 as j - 00 by (6.18). Therefore 
F,(+ , ) /M,  - 0 on every compact set of R". Hence is a weak (thus classical) 
solution of the following equation 

Lgo = Ago -go + f'(w)go = 0 in Rn , c go E W ? ( W ) ,  n < s .  (6.19) 

By Lemma 6.5, go E X. That is, 

for some constants ai,i = 1,2,. . . , n .  
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But note that by definition, Fj(y) = w(y) + e-'l$J(pl)(+j - V j ) .  Hence, 

o = VO,(O) = VW(O)  + e-ol$l('~)(V+,(O) - vQ,(o)) 
which implies that V+j(0) = Vvj(0). Thus 

VQj(0) 

M j  
Vgj(0) = - - 0 

as j - 00 since vj is bounded in C k ( R n )  by (4.28) and standard elliptic regularity 
estimates. Therefore, 

Vgo(0) = C a i v e i ( 0 )  = o . 

Observing that Vel(O), . . . , Ven(0) are linearly independent, we conclude that 
ai = 0,i = 1,2,. ..,n. Hence go = 0 and gj  - 0 weakly in Wp(Rn) ,  which 
completes Step 2. 

We now show that 1 lgjl Iw;\(fi,) = ~ ( 1 ) .  Similarly to Step 1, we have (6.17) and 

n 

i= I 

l lFj(#j)/MjllL~(fi l)  = 41)  7 

llFj(+j)/MjllL~(fil) = d l )  . 
For the other two terms in (6.17), we estimate as follows: 

where R 2 1 is an arbitrary number and C is independent of R. Since g j  - 0 in 
C;,(R") by Step 2, we obtain 

K ~ ~ ~ ( w ) ~ j ~ ~ ~ ~ ( f i l )  5 Ce-OR 

=IIY(w)gj IIL;(fi,) 5 CR- 2% e -OR . 
j - rn  

j -  oil 
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Letting R - 00, we conclude from (6.17) that 

COROLLARY 6.8. I IWpu(hi,) 5 C(s) for s > n 

Proof Noting that 1 I l L ; ( f i , , )  5 C(s), we simply observe that our conclusion 
follows from the arguments in Step 1 of the proof of Lemma 6.7. 

By Lemma 6.4 (iii), we can extend +e to a C2 function on R" (still denoted 
by 4A such that ~ ~ & ~ ~ w ~ ( R n )  5 C(s) for n < s < 00. Now we fix s > n. For 
any subsequence E,, we can take a further sequence, still denoted by E,, such that 
&, - 40 weakly in WP(R") and &, - 40 in C:w(R"). As before, we denote &, 
as 4j7.. . . We are now ready to prove Proposition 6.2. 

Proof of Proposition 6.2: Part (i) is just Corollary 6.8. We next show that 40 is 
a solution of equation (6.3). To this end, we need to show that F j ( 4 j )  - - f ' (w)vo 
in L&(R"). But this can be easily deduced from (6.15). Hence 40 is a weak (thus 
classical) solution of equation (6.3). 

Now we derive a property of 40. We claim that 

for all s > 1 . Il+ollWpu(Rn) < 00 

In fact by (6.31, 40 satisfies 

a40 - 40 + f o  = 0 

where fo = f'(w)& - f'(w)vo and we have 

I f o ( y ) I  5 c e - " I Y l e P I Y I  + c e - o l Y l e ( ~ + ~ 2 ) l Y l  

5 ce(l-o+u2)lYl . 

Hence 

Therefore, by Lemma 6.4 (ii), our assertion above is established. 
I l f o l l q ( ~ n )  < 00 for all s > 1 . 

It remains to prove that 4j - 40 in the sense described in part (ii). Let ~ ( r )  = 1 
for r 4 1 - 62, ~ ( r )  = 0 for r L 1 - 62/2 where 62 = z. Setting xj(y) = x(  Iy I /p, )  
and Sj = x,(y)40, we see that 4j - 6, satisfies the following equation 

A(4j - 4,) - (4j - 6,) + f'(w)(+j - j )  

(6.22) = - (Fj (+j )  + f'(w)Vo) + (1 - xj ) f ' (w)vo  - 2VxjV40 - (AxjMo 
I s  + 16 + 17 + 1 8  = 
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where Z 5 ,  16,17,  Is are defined by the last equality and can be estimated as follows. 
First, from Lemma 6.6 it follows that 

(6.23) 

Then 

since we have already proved 4, - 40 in C:,(BB”). Our assertion now follows 
easily by letting R - 00. 

7. Appendices 

7.1. Appendix A: Proof of Lemma 4.3 

In this appendix, we prove Lemma 4.3; some of the proof will overlap that of 
Theorem 5.2 and Theorem 6.1 of [13]. 
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We will give a self-contained proof, and it is divided into two steps: 

Step 1. We prove that $o(x) = i n f p E d I P  - Q l  + L ( P , x ) )  is the maximum 
element of Y which is the set of all functions v E W1*"(R) satisfying v(x) 5 
(x  - Ql on dR and lVvl 5 1 almost everywhere in R. 

Step 2. We prove that for any sequence &k - 0, there is a subsequence 
&kc - 0 such that t+hEk/ - $0 uniformly in a as &kc - 0. Then it follows that 
$ E  - t+ho uniformly in s2 as E - 0. 

We first prove Step 1. To begin we show that $0 E Y. In fact, since L(x, y )  is the 
length of the shortest path in a connecting x and y ,  we see that 1L(x, y )  -L(X, y ) (  d 
L(x,X). Therefore It+ho(x) - I,!&)( d L(x,X). Moreover, when x E R and X E R 
are close, it is easy to see that L(x,X) = Ix - XI and 1$0(x) - t+ho(X)l 5 Ix - XI. 
Hence t+ho E W'."(R) and lVt+h~( 5 1 almost everywhere in R. It is easy to see 
that $o(x) = Jx - QI on dR since Ix - Ql - Iy - QI 5 L ( x , y )  for x , y  E do. We 
next show that $0 is the maximum element of Y .  In fact, let v E Y.  Since R is 
smooth, we can extend v in the following way: for ho small enough, there exists 
ij E W'9"(flh1) such that B = v in R and lVBl 5 i ,  almost everywhere in akJ, 
where Rho : = R U {x E R"\n I d(x,  d o )  < ho}, k E C ( 3 )  and = 1 on 2. Indeed, 
if ho is small enough, each point x in nho\fi is uniquely determined by the equation: 
x = z + hv(z) where z E dR, h > 0 and v(z) is the unit outer normal to dR at the 
point z. In addition, the map x - ( z ,  h)  is C1 diffeomorphism on *\a. Then, we 
set B(x) = v(z) and l (x)  = 1 + Ch for some large constant C > 0 (independent of 
h). Next we regularize v in the following way: for a small enough, we may define 
v, = i j  * p,,where pu = a-"p( . /a ) ,p  E C,"(Rfl), supp p c B1,JR, p ( y ) d y  = 1. 
Then we have 

(7.1) 

on and v, - v in C ( 2 )  as (Y - 0. Let now x, y E fi and for every 17 > 0, let <, 
To be such that <(O) = x, ((To) = y ,  1 %  I 5 1 almost everywhere in [0, To], <(t) E 
Q for all t E [0, To] and To 5 L(x, y ) + q .  Since R is smooth, it is clear that there ex- 
ist x,, y,, <,, T ,  such that (JO) = xu,  <(T,) = ya,  I % I 5 1 +Ca in [0, T,], [, € 

C'([O,T,],Rho) and <, - <,T, - To as a - 0. (For instance, we can take <, to 
be the regularization of E . )  Now we have 

- 

)Vv,12 d (1VB12) * p a  5 i2 * pa  5 1 +Ca 

- 

- 

Il" Vv,(Ea(t)) . d t (d  dt 
d5a I IV,(Y,)  - v,(xo)l = 

(7.2) 

s l T " ( l  + CaYdt . 

Letting a - 0 and then 17 - 0, we obtain Iv(y) - v(x)I 5 L ( x , y ) .  Hence v(x) 5 
v(y) + L(x, y )  S I y - Q l  + L(x, y) for all y E dR. So v 5 90. 
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We next prove Step 2. By Lemma 4.2 and the Arzela-Ascoli theorem, for any 
- sequence E k  - 0, there is a subsequence Ekl - 0 such that $'*! - $O uniformly in 
s1 as ~ k ,  - 0. We next show that JI0 = $0. First we observe that $O E 9. In fact, 
by taking limits in the sense of distributions we obtain IV$o(2 5 1 in 9' (a). 
Thus Go E W'."(fl), IV$OI 5 1 almost everywhere in R and $'(x) = In - Ql on 
dR. Hence ((1' 5 $0. On the other hand, let v E 9. Similarly to Step 1, we extend 
v to i j  in SlhO and regularize i j  to v, in such a way that we have II v - V a  (I L = ( ~ )  5 Ca 
and IVSI 5 i .  Hence as before we have 

(7.3) J V V J 2  5 (10012) * p a  5 K 2  * p a  5 1 +ca 
and v, - v in C@)  as a - 0. 

In addition we have 

EAV, - (Vv,I2 + 1 +Ca +A,& 2-0 in s1, 
on 80, { v,(x) S I X  - Ql + Ca (7.4) 

where A, 2 0. Let now 
I V a  va := 

J1+ Ca + A,& 
Then by comparison we deduce that 

Choosing E = E;, in (7.5) such that 

we see that 
V a  5 $ 0 + C a  Jm - 

as E;, - 0. Then, letting a - 0, we obtain v 5 $O. In particular, we have $0 S Go. 
Hence G o b )  = $o(x). 

7.2. Appendix B Proof of Lemma 6.4 

In this appendix, we prove Lemma 6.4. 
In fact, part (ii) follows easily from part (i) by truncation. A proof of (iii) can 

be found in Lemma 4.2 (2) of [17]. So we just need to prove (i). Our proof will 
follow closely to that of Lemma 1.1 in [S]. Therefore, for the convenience of the 
reader, we will try to use the same notation as that of [8], and, it should be noted 
that to a large extent our notation in this appendix is independent of that of the rest 
of this papel: The point here is to find out the restrictions on p .  More precisely, 
we will show that po = 1 in our case where po is defined in Lemma 1.1 of [8]. We 
will use slightly different norms, but equivalent to those of [8]. We now replace 
6, by RE and change 7 to f .  We will also use W2*P(f2,) instead of W2,'(s1,). 
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First we claim that: there exist constants SO and C* (independent of E 5 EO),  

such that for each y E dR,, the set dR, n {x : (x - yI < SO} can be represented 
in the form 

for some i, 1 5 i S n and 

x; - y; = @(q,x2,. . . ,x;-1,x;+1,. . . ,X") 

(7.6) 

In fact, at each point y E 8 R E ,  we can just use the transformation given in Sec- 
tion 3. Then we introduce a mesh in R" made up of cubes with sides parallel to 
the coordinate axes and having length 77 = 60/(3J;z). Denote by r,,. . . , r k ,  those 
cubes whose closure intersects dR,. Denote the center of by y j .  Let r;, ry be 
cubes with center y j  and with sides parallel to the coordinate axes, having length 
271 and 377 repectively. Then r;, . . . , ri,, form an open covering of d o E .  Further, 
for any y E 80, there is a cube r) such that y E rj and dist. (y, d r ) )  2 S0/2. 

Let \Tr be a C" function such that 

9 ( x )  = 1 if lxil < 77 for all i = 1,2 ,..., n , 
q(x) = 0 if lxil > 57) for some i , 5 

o s 9  5 1  elsewhere , 

and set Q j ( x )  = S(y j  +x). Then qj  = 1 in r) and qj = 0 in a small neighborhood 
of dry and outside ry. 

Denote by Re,, the set of all points in R, whose distance to do2, is 2 77/2. 
We now introduce a mesh made up of cubes with sides parallel to the coordinate 
axes and having length 770 = 50/(8J;E). Denote by Al, . . . , Ah, those cubes whoses 
closure intersects RE.  Let A), A; be the cubes with the same center z j  as Aj  and 
with sides parallel to the coordinate axes, having length 277" and 3770 repectively. 
The cubes A;, . . . , A;, form an open covering of a,, and the cubes A;, . . . , A;, 
lie entirely in R E .  

Let x be the C" function 

and let x j ( x )  = x(z, + x). Let 

and let h = ho + hl .  Then G I , .  . . ,GI, form an open covering of RE and (PI , .  . . , (PI, 
form a partition of unity subordinate to this covering, such that 
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(a) G I , .  . . , Ghll intersects dR,, and GhO+l,. . . , Gh lie entirely in RE; 
(b) 'Pk  E c,"(Gk); 
(c) each x E belongs to at most N1 sets Gk, where N ,  is a positive integer 

independent of E 5 EO; 

(d) $?k 2 1/N1 on the set G;, the sets G; , . . . , GL form an open covering of E, 
(e) there is a constant N2 independent of k, E ,  such that 

Let 

and 

Note that 'Pk has compact support in Gk. By standard regularity theorem, we 
have 

(7.8) IIWkIIW2.p(Gk,F)  5 c ( IIA(upk)IILr(Gk,,) + I I W k I I L p ( G k , , ) )  

where C is a constant independent of k , E  5 EO. But we note that 

Hence 

By (7.81, we have 

Multiplying both sides by exp(-pplzkl), where Zk is the center of the cube Gk, 
and noting that 

Ce-PpIxI e-PplzkI 5 - Ce-PPIXI i f x  E G~ , 

we obtain, by using (7.8) and (7.91, 
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Summing for k = 1,. . . , h, we obtain 

(7.10) 
+ l ? p ( e - f i l ~ l ~ ~ u l ) p d x  + 11- (e-filXllul)Pdx . 

Now we derive the so-called Garding’s inequality in Q,. The space Li(G) is a 
real Hilbert space with the scalar product 

e-2’”(X)u(x)v(x)dx , where ( x )  = (1  + Ix12)i . 

When G = i&, we write (u, v ) ~ , ~  = (u, v ) ~ , ~ .  Then, 

when 0 < p < 1. 
We have thus proved that 

(7.11) 

Therefore, 

and for p = 2, (i) follows from (7.10) and (7.12). 

proof is exactly the same as that of Lemma 1.1 in [8]. 
By using (7.12) and a variant of Sobolev’s inequalities (see [8]), the rest of the 

7.3. Appendix C: Proof of Lemma 6.5 

In this appendix, we prove Lemma 6.5. 
Let ‘p E Ker(L) n W?(Rn), then II’pl lw:s  S C. Hence 
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Moreover, by elliptic regularity theorems, cp E C"(Rn). By part (ii) of Lemma 
6.4, we have 

(7.14) ~ ( y )  = l,, G ( y  - z)f'(w)(z)cp(z) dz  

where G(y - z )  is the Green's function for -A + 1 and 0 < G(y - z) < ly-$~(l + 
Iy - ~ I ) ( " - ~ ) / ~ e - I y - ~ l .  Setting p~ = p - 0, we see that p~ < p < 1. If p~ S 0, then 
we have 

Substituting this into (7.14) we obtain 

e''lyl cp(y) 

s c  
for y E R" and 0 < CT' < 0, i.e., cp decays exponentially. 

In case pl 2 0, we observe that 

e-pl l~lcp(y) 

Therefore 

(7.15) cp(y) s CepIIyI . 
Now let k be the largest integer such that pk := p - kn > 0. Then iterating the 
above argument leading to (7.15), we arrive at 

(7.16) cp(y) 5 CefikIYl 

for y E R". Substituting (7.16) into (7.14), we obtain cp(y) 5 C for all y E R", 
which implies as before that cp decays exponentially. 

Once cp decays exponentially, standard elliptic regularity estimates guarantee 
that y(x) E W27s(Rn), for all s > 1. By Lemma 4.2 in 1151, we finish the proof. 
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