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1. Introduction
In this paper, we shall study the following singularly perturbed elliptic problem

(1.1) gAu—u+uP =0 inQ,
) u>0 in Q@ andu=0 ondQ,

R * - .
where A = ) :7 is the Laplace operator, €2 is a bounded smooth domain in

R", € > 0 is a constant, and the exponent p satisfies 1 < p < ;—‘-}% forn =z 3
and 1 < p < oo for n = 2. We are especially interested in the properties of
solutions of (1.1) as ¢ tends to 0. In particular, we shall establish the existence
of a “spike-layer” solution, and determine the location of the peak as well as the
profile of the spike.

The corresponding Neumann problem

12) {szAu—u-i-up =0 inQ,

u>0 in @ and $*=0 ondQ,

where v denotes the unit outer normal to 952, has been studied extensively; see
[12]), [14]}, [15], and, [16]. We also refer to [12] and the references therein for
some background of the model (1.2). In [14] and [15], Ni and Takagi showed that
for every ¢ sufficiently small, (1.2) has a least-energy solution which possesses a
single spike-layer with its unique peak locating on the boundary 95). Moreover,
this unique peak must be situated near the “most curved” part of 01, i.e., where
the boundary mean curvature assumes its maximum, if ¢ is sufficiently small.

The existence of a least-energy solution of (1.1) can be handled in exactly the
same way as in [14]. More precisely, we first define the energy as follows:

+1
ul

1 1
1. ) == [ (| Vul +u?) - —
(1.3) Je(u) 2/9(8 |Vul® + u?) o+ 1/
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where u, = max{u, 0}, for u € IH](‘,(Q). The well-known Mountain-Pass Lemma
implies that

(1.4) ¢, = inf max J.(h(1))
heT 0=r=1

is a positive critical value of J,., where I" is the set of all continuous paths joining
the origin and a fixed nonzero element e in H}(€2) with e = 0 and J.(e) = 0.
Similarly as in [14] we shall see that ¢, is the least positive critical value and any
corresponding critical point u, (i.e., J,(u;) = 0 and J.(u,) = c;) is a solution of
(1.1) and is called a least-energy solution.

The purpose of this paper is to study the properties of the solution u,., especially
when ¢ is small. Among other things we shall prove that u. has only one (local)
maximum over S, and it is achieved at exactly one point P, € . Furthermore,
we shall show that u, tends to 0 as € — 0 except at its peak P, thereby exhibiting
a single spike-layer, and d(P, 0QY) — maxpcq d(P, Q) as € — 0 where d denotes
the distance function. Finally, the asymptotic profile (in &) of u. is obtained which
gives a detailed description of u. for e sufficiently small. It seems interesting to
note that, in contrast to the Neumann problem, our result here implies that the
peak of the spike-layer for the Dirichlet problem (1.1) must be situated near the
“most-centered” part of the domain 2.

Problems (1.1) and (1.2) can of course be viewed as singular perturbation prob-
lems. Due to the exponentially small error terms in the expansions of the solution
u., however, traditional techniques in singular perturbations do not seem to apply.
Our approach is based on an asymptotic formula for the smallest energy c.. To
obtain such an expansion, we need to combine the methods developed earlier in
[14], [15] and [17]. It seems very interesting to note that while in the Neumann
problem (1.2) the boundary mean curvature appears in the second term, i.e., the
dominating correction term, of the expansion and is of the algebraic order &"*!,
the dominating correction term in the expansion for ¢ in the Dirichlet case (1.1)
involves the quantity d(P,, 8Q) and is of transcendental order exp(—1/&) which
makes the Dirichlet case (1.1) even more delicate. We should also remark that the
distance function involved here is actually obtained through a limiting process,
namely, the so-called vanishing viscosity method.

As a historical remark, we note that in treating nonlinear “autonomous” equa-
tions (i.e., no space dependence appears in the coefficients of the equations) in
singular perturbations, although there has been some work on (1.1), e.g., [4], it
seems that there had been little progress in locating the peaks of the spike-layers
until the recent papers [12], [14], and [15]. In those papers, the “energy” method
was devised to handle singularly perturbed semilinear “autonomous” Neumann
problems as described above. Developing the ideas in [12], [14], and [15] further,
our present paper seems to be the first one that succeeds in locating the spike-
layers for singularly perturbed semilinear “autonomous” Dirichlet problems. It is
perhaps expected that somehow the geometry of the domain would play a decisive
role in locating the peaks; it seems extremely interesting, however, to see exactly
how the geometry determines the locations of the spike-layers.
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This paper is organized as follows. We state our main results — Theorems 2.2
and 2.3 — in the next section. The proof of part (i) of Theorem 2.2 and some
preliminaries are given in Section 3. In Section 4 we discuss the viscosity limit
of projections and then in Section 5 we derive an upper bound for c¢,. Section
6 contains the asymptotic expansion for ¢, and the proofs of our main results.
Finally, the proofs of three important but technical lemmas are included in Section
7.

In closing this section, we remark that throughout this entire paper, unless
otherwise stated, the letter C will always denote various generic constants which
are independent of ¢, for ¢ sufficiently small.

2. Statements of Main Results

Let §2 be a bounded domain in R” with smooth boundary 2. We consider the
following semilinear Dirichlet problem

2.1

ezAu—u+f(u)=0 in Q,
u>0 mQ andu=0 ondQ,

wheree > 0, A = Y7, 6%2; is the Laplace operator in R”. The function f : R - R
is of class C!'*?(R) with 0 < ¢ < 1 and satisfies the following conditions:

(f1) f(z) =0 for t = 0 and f(r) — +00 as t — oo.
(f2) For ¢t = 0, f admits the decomposition in C!*?(R)

@ = f1() - f2@)

where (i) f1(r) = 0 and f»(r) = 0 with f,(0) = £,(0) = 0, whence it follows
that £2(0) = f,(0) = 0 by (f1); and (ii) there is a ¢ = 1 such that f(¢)/¢ is
nondecreasing in ¢t > 0, whereas f,(#)/¢7 is nonincreasing in ¢ > 0, and in case
g = 1 we require further that the above monotonicity condition for f(z)/¢ is strict.

(f3) f(t) = O(tP) as t — +oo where | < p< ™2 ifpz3and 1 < p < o0 if
n=2

(f4) There exists a constant 8 € (0, %) such that F(¢) = 6tf(t) for r = 0, in
which

(2.2) F() = /0 fls)ds .

To state the next (and last) condition, we need some preparations. Consider the
problem in the whole space

2.3) {Aw—-w+f(w)=0 andw>0 in R,
: w(0) = max,ep w(z) and w(z) = 0 as |z] — +o0 .

It is known that (see [9]) any solution to (2.3) needs to be spherically symmetric
about the origin and strictly decreasing in r = |z|. A solution w to (2.3) is said to
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be nondegenerate if the linearized operator
2.4) L=A-1+f(w)

on L2(R") with domain W22(R") has a bounded inverse when it is restricted to the
subspace L2(R™) := {u € L*(R")|u(z) = u(|z])} .

Now condition (f5) is stated as follows:

(f5) Problem (2.3) has a unique solution w, and it is nondegenerate. The
unique solution in (f5) will be denoted by w in the rest of this paper.

We note that the function
f@e)=¢t"—at? forr=0

with a constant a = O satisfies all the assumptions (f1)«f4) if 1 < ¢ < p < =5 "+2
Furthermore, there is a unique solution w to problem (2.3); see [6] and [11]. The
nondegeneracy condition (f5) can be derived from the uniqueness argument; see
Appendix C in [15].

Associated with (2.1) is the functional J, : H}(Q) — R defined by

1
(2.5) J:(v) = ~/(82|Vv|2 +v2)—/F(v)dx.
2Ja Q
We call J.(v) the energy of v. Let
(2.6) ¢. = inf max J.(h(z))
heT 0=r=1
where

= {h € C([0, 1, WY hO) = 0,h(1) = e}
and ¢ # 0 is a nonnegative function in HY () with J,(e) = 0. We also define

Mlv] ;= supJ.(+v) for v € HY(Q) .

120

Then we have

ProposiTioN 2.1. (1) ¢; is a positive critical value of J ..
(i) ¢, = inf {M[v]lv € HY(Q),v # 0,and v = 0 in Q} In particular, c, is
independent of the choice of e.

Proof: (i) is a direct application of the well-known Mountain-Pass Lemma
due to Ambrosetti and Rabinowitz; see [3]. The proof of (ii) is identical to that of
Lemma 3.1 in [14]; see Appendix B in [15].

From the above proposition, we see that ¢, is the least positive critical value
of J,. Therefore, we call a critical point u, of J, with J.(u.) = ¢, a least-energy
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solution to (2.1) (or mountain-pass solution). Note that, by standard elliptic reg-
ularity estimates and the Maximum Principle, critical points of J, are classical
solutions to (2.1); see, e.g., page 9 in [12].

We now come to the shape of u, and the location of the peak.

THEOREM 2.2.  Let u, be a least-energy solution to (2.1). Then, for & sufficiently
small, we have

(1) u. has at most one local maximum and it is achieved at exactly one point P,
in Q0. Moreover, u,(-+P,) — 0 in CL.(Q—P\{0}) where Q—P, = {x—P,|x € Q}.

(ii) d(P;, 0) — maxpcq d(P,0) as € — 0.

Next, we state a theorem about the asymptotic profile of u,. First, we introduce
some notation.
Let w be the unique solution of (2.3) and

1 22y
2.7) Iw) = 2/W(IVWI + w*) /R"F(w).

Let Q be a point such that d{Q, Q) = maxpcq d(P,IS2) and P, be the peak of u,
defined in Theorem 2.2. We let

(2.8) Q={zERQ+ez€}, Q. ={yeR P, +eyeEN} .

For any smooth bounded domain U in R", we define Zyw to be the unique solution
of

Au—u+fw=0 inU,
29) {u =0 on oU .

Then by the Maximum Principle, Zyw(y) < w(y) for all y € U.
Set

e = w—Pow, e = w—Paw
Ye(x) = —elogp(x—0Q)e), Yolx) = —elogp.(lx —P;)/¢)
V. = MOy 7, = PPy

where 8 = 1/e. It will be proved in Lemma 4.6~below Ehat for every sequence
ex — 0, there is a subsequence &, — 0 such that V. — V, on every compact set

of R”, where V is a solution of

{Au—u=0 in R",

(2.10) u>0 in R” andu(0)=1.

We are now ready to state our second main result.

TueoreM 2.3. (i) For € sufficiently small, we have

c, = & { I(W) + ye PP 4 o (e—ﬂ-/i"(m)}
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where 7 is the constant defined in (4.30) below and .(P,) — 2d(Q,09) as € — 0.
(ii) For every sequence g, — 0, there is a subsequence g, — 0 such that

ey 3) = Pa, wiy) + ¢ b (P g, (3

where x = P,, +exy, By, = /e, e ¥ (s, — o)l ~ (2,,) — O o is a solution

of
2.11) Lpg— fwlWo=0 in R”

and1 —oc < u<1l.

3. Proof of Theorem 2.2 (i) and Preliminaries

Let u. be a least-energy solution to (2.1), i.e., J.(u;) = c.. In this section, we
shall prove part (i) of Theorem 2.2 and derive some properties of u. which will
be used later.

We begin with some lemmas.

Lemma 3.1.  For e sufficiently small, ¢, = &"(I(w) + o(1)), where w is the
unique solution of (2.3) and 1(w) is defined by (2.7).

LemMMA 3.2.  The following statements hold:

(i) sup,qu.lx) =C,
(i) me" = foul =Mye", ifl=g<oo,

where C,m,, M, are positive constants and are independent of € for e < \.

LEMMA 3.3. There is a u > 0 such that if u, artains a local maximum at
xo € Q, then u(xg) = u. Moreover, there exist constants 1y, ro independent of xg
and & such that for ¢ < gy and B, .(xy) C Q, then

3.1 u(x) = ng , for x € B%(x()) .

Proofs of Lemmas 3.1-3.3: By using Proposition 2.1 and a test function
xC)w((x — Q)/e) where x(x) € Cg°(£2) is a positive cut-off function at a neigh-
borhood of O, we obtain Lemma 3.1. Lemma 3.2 follows from exactly the same
arguments used in the proof of Lemma 2.3 and Corollary 2.1 in [12]. Finally,
u:(xg) = ¥ is an easy consequence of the equation (2.1), see Appendix B (c) in
[15], and (3.1) is a standard interior Harnack inequality; see Theorem 8.20 in [10].

We now prove part (i) of Theorem 2.2. We shall follow the strategy used in
the proof of Theorem 2.1 in [14].
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Let P, be a point at which u, achieves a local maximum. Then u.(P.) = u

Step 1. We first prove that
(3.2) pe = d(Ps,00)/e — +0 ase— 0.

Suppose on the contrary that there exists a sequence of & — 0 and positive
constant C* such that

(3.3) dP,,00) =C"¢, fore = g .

By passing to a subsequence, we may assume that P, — Py € 9. Following
the idea in [14], we introduce a diffeomorphism which straightens the boundary
portion near the point Py € 9Q. Through translation and rotation of the coordinate
system, we may assume that Py is the origin and the inner normal to 9 at Py
is pointing in the direction of the positive x,-axis. Then there exists a smooth
function wp,(x'),x" = (xy,...,x,_) defined for |x'| sufficiently small such that (i)
wp,(0) = 0 and Vwp,(0) = 0; and (i) I NN = {(x',x4)|x, = wp,(x')} and
QNN = {x',x,)|x, > wp,(x')}, where A is a neighborhood of Py. For y € R"
near 0, we define a mapping x = 9p,(y) = (9p, 1), ..., 9p,n(¥)) by

%ryy, forj=1,....n—1
3‘4 g() }’n ()X y ’ ,] 9y ’
(3.4) P j(}’) {)’n " wp(,(y ), for j=n.

Since Vwp,(0) = 0, the differential map DYp, of ¥p, satisfies DGp,(0) = I, the
identity map. Thus %p, has the inverse mapping y = 95 (x) for |x| < &. We write
Gpl(x) as Fp,(x) = (Fp, (%),..., Fp,a(x). We assume now that ¥p, is defined
in an open set including the closed ball Bs,, where k > 0 is a small constant. For
simplicity, we shall suppress the indices Py and k in the rest of the proof.

Set 0, = #(P,) € B} := {x € B|x, > 0} and v,(y) := u,(4(»)) for y € Bs..
If we write Q, = (¢.,a.&) with ¢, € R"! and &, > 0, then (3.3) implies that a;
is bounded. We now define w,(z) := v.(Q. + &z) for z = (z,...,2,) € By/s N{z, =
—a,} and wy(z) := 0 for z € B/, N {z, < —a,}.

It is easily seen that

w, € C? (B, e N {zy Z —ae}) .

Moreover, w, satisfies

n 02w .
(35) Z lja 8Zj ija _w£+f(ws)“

1=

in B/, N{z, > —a.}, where

@) = S GO, + )G, +e2)),  1=i, j=n,

ax;
bi(z) (AF N4(Q; + £7)) Jj=L...,n
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By Lemma 3.2 (ii), we see that

/ W)z = C,
Byss

with C, independent of €.
Therefore, we may argue as Step 1 of Theorem 2.1 in [14] to obtain a conver-
gent subsequence, which we denote again by w,, such that

W, — Wp in CIZOC(RZ,»,)

where ¢, — @ 2 0, RL4 = {yly, > —a} and wy € CL.(RE+) N WHS(RE ).
The limit wy satisfies

< (92W0
. > a0 =0
(3.6) 2 ai;( )azii?zj wo + f(wo)

in R% + since Q, — 0 as k — oo. In view of DF(0) = [DE(0)]~! = I, one obtains
that w satisfies

(3.7) Au—u+fw)=0 inR+,
: u>0 in Ry, andu=0 on ORL..

Note that wy € W>*(R} ;); see Step 1 in the proof of Theorem 2.1 in [14]
for details. Then, by Theorem 1.1 in [7], we conclude that wy = 0. But w.(0) =
u{P.) = % and w.(0) — wg(0) = 0, a contradiction.

Step 2. We now prove that u, has at most one local maximum point. By Step
1, we can use Harnack inequality near P.. By making some minor modifications,
we see that our assertion follows from the arguments in Step 3 of the proof of
Theorem 2.1 in [14].

Step 3. Finally the fact that u.(- + P;) — 0 in Cl,o(Q — P,\{0}) follows from
Proposition 3.4 (ii) below and standard elliptic regularity estimates.

Next, we begin to study the profile of u«,.

ProrosiTion 3.4.  Let v,(y) = u.(P. + &y), then the following statements hold.

(i) For any n > 0, there exist positive constants &, and ky, such that, for all
0 < & < &y, we have By (P.) C Q and ||V, — wllcxg, ) < n where w is the
unique solution of (2.3).

(ii) For any 0 < 6 < 1 there is a constant C such that

(3.8) Ualy) = Ce O forye Q, .

(i) |V —wllp@,) = 0 forall 1l =s=o0case—0.
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Proof: Repeating the arguments in Step 1 of the proof of Theorem 2.1 in
[14], we see that v, — w in CL.(R") as £ — 0, where w is the unique solution of
(2.3). This proves (i).

We now prove (ii). By a result in [9],
(3.9) w(r) = Coe ", forr=0.
For any n > 0, set
(3.10) R :=10g(Co/7)

so that n = Cpexp(—R). Then by part (i) there is a &9 > 0 such that
(3.11) Ve = wllc2@oeon =1

if 0 < £ < g;. Thus

(3.12) Pe(y) = wl(y) +n = Coe ® +1n =21

for |y| = R. Now, setting QF = Bg,(P,), 0 = O\, 0¥ = B(0) and Y =
(2. \Bg(0), we have u.(x) = 2y for x € QY for & = 9. By Theorem 2.2 (i), the
set {x € Qfu,(x) > 21} has only one connected component. Consequently

(3.13) u)=2n inQY.

Now we choose 7 such that 1 — @ > 1 -6 for A < 2n. Then v, satisfies

A\}_e_ (l—fg"))‘;s=0 in Q(SO)’
(3.14) Velose) = 27, .
Vv, =0 on 0f), .

Observe that 1 — £%2 > 1 — 5 in 0.

Vi,

Let G(y,z) be the Green’s function for —~A + 1 on R, i.e.,
(3.15) G(y,2) = Culy — 2| " 2Ky 2(ly — 2I)

where C, is a positive constant depending only on n and K, (z) is the modified
Bessel function of order m; see, e.g., Appendix C in [9]. Let Go(]y|) = G(y,0) and
Gy(VIZ0by])

W(y) = 2 =% - Then W(y) satisfies
{AV—(I -6 =0,

(3.16) v = 2n on 9B(0) .

By the Maximum Principle on Y, we have

v.)) =9y on Y.
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But on Y, v,(y) = C. Hence
Vo(y) = Ce 1001 | forall ye Q. .

Finally we prove (iii). For any n > 0, by the exponential decay of v, and w,
there is an R large such that ||V, — w{|1s@,\8z0) = 17/2. On the other hand, since
Vv, — win Ci(R") as € — 0, there is gg > 0 such that for all £ < &g, ||V, —
wlle@,neqon = n/2. Therefore ||V, — wllzvq,) = 7.

4. Viscosity Limit of Projections

In this section, we shall use the so-called vanishing viscosity method to derive
some properties of Po w and Pg w defined in Section 2. We first study Pq,w.
Recall that o, = w — P w, (x) = —elogp((x — Q)/e),V, = ™ @y, . Thus
. satisfies

(4.1) {sAl/’s" Vel +1=0 inQ,
’ Pe(x) = —glogw((x — Q)/e) on 00,

and V, satisfies

42) {AVE -V, =0 in . ,

V() =1.

We need the following results about w from Theorem 2 in [9].

LemMa 4.1.  The following results hold:

4.3) Il|im Iy]*T eMw(ly)) = no >0,
yl=o0
. w(lyD

4.4 wAYU

(44 oy =

It is immediately seen that on 912,

lx ; al _ elog(hy + o(1)) .

@S plo=lx-0l+ " telog

In order to study the properties of ., we first investigate a closely related problem
which is slightly simpler.

LemMa 4.2, For ¢ sufficiently small, there is a unigue solution y° of equation

_ 2 = ;
@) {sAt[/ Vg2 +1=0 inQ,

Px) = |x ~ Q| on 99 .
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Moreover, there exist two positive constants C| and C»,, such that

4.7) el = C VYol = Ca .

Proof: First, we observe that O is a subsolution of (4.6) in £2. On the other
hand, it is easy to see from (4.5) that for £ sufficiently small ¢,, the solution of
(4.1), is a supersolution to (4.6) and . > 0 in 2 by the Maximum Principle.
From Theorem 1 in [2], we conclude that there is a solution ¢* to (4.6) such that
0 < ¢* < ¢.. To obtain an upper bound of ¢, we first choose a vector Xy such
that {Xo| > 1 and a number b large such that g(x) = (x,X¢) + b > |x — Q| on Q.
Then by computation,

38) {sAg—IVgl2+1=1—|X0|2<O in Q,
' g(x) > |x - Q| on 09 .

By comparison, we have
gl) > ¢°(x) onoN,

which proves that ||¢°|| @) = C;.

The uniqueness of ¢ follows from the usual Maximum Principle.

We next prove that || Vi®|| > = C,. We first show that || V|| xp0) = Co.
We prove this by a barrier method.

In fact, we choose § small and p large such that the distance function d(x) :=
d(x,00) is C? in s := {x € Q|d(x) < 6} and pé > C,. Then, considering the
functions

4.9) g =1lx—-Ql, ¢i=I[x—-0l+pdx),
we observe that
(4.10) eAYS ~ VYo > + 1 = (eln — 1))/|x — Q|

for x # Q and that ¢ = C(e) > 0. Hence if we take ¢ = g; and 6(¢) small it is
easy to see that ¢° is a subsolution on Q\Bs)(Q). Therefore it is a subsolution
on €5 and © = ¢ on §). In fact, C(e) here can be chosen independent of &£ > 0,
since Q is fixed. The above argument, however, works even when Q depends on
£ which will be the case in the proof of part (iii) of Lemma 4.6.

On the other hand, we have

sAYS — | VY2 + 1
(4.11) = &(AY® + pAd) - | Ve +pVd|* + 1
= —p?|Vd|* = 2oVt -Vd + (e(n — 1))/|x — Q| + epAd .

Note that
|[Vd| =1 ondQ, |IAd| =C inQs.
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Hence, if we choose p large, we have,

4.12) {sA¢i—|V¢i|2+l<0 in Qs ,

Y > on 9 .
By comparison, we conclude
Yi > on )5 .

Therefore, Y& < ° < /% on €. Thus, |¢° — = | < pd(x) on Q5. Since ¢* = P
on 99, it follows that ||Ve|| ~@on) = Ca.

Finally, simple computation shows
AV ) - 20y V(IVge) 20 inQ.
Hence by the Maximum Principle, |V¢?®|? = C in Q.

Next, we need to analyze the limit of ¢ as ¢ — 0. It turns out that the limit is
a viscosity solution.

Lemma 4.3.  Let §° be the solution of (4.6), then ° converges, as ¢ — 0,
uniformly to a function gy € WH(Q) which can be explicitly written as

(4.13) Yolx) = inf (I[P — Q| + L(P,x))

where L(x,y) denotes the infimum of T such that there exists £(s) € C*Y([0,T], Q)
with £00) = x,£(T) = y, and I%I = 1 almost everywhere in [0, T).

Note that ¥ is a viscosity solution of the Hamilton-Jacobi equation: |Vu| = 1
in ; see, e.g., [13]. In order to continue our presentation of the main ideas in this
section, we postpone the proof of Lemma 4.3 to Appendix A in Section 7.

Lemma 4.4, (i) ¢, — Yo uniformly in Q as € — 0 where g is given by (4.13)
above. In particular, $o(Q) = 2d(Q, O1)).

(ii) For every sequence &, — 0, there is a subsequence g, — 0 such that
Ve, — Vo uniformly on every compact set of R", where V is a positive solution

of

(4.14) {Au—u=0 in R,

u>0 inR" andu(0)=1.

Moreover, for any o1 > 0,sup,c5, e" oy, (2) = V(@] — 0 as &, — 0.

Remark. We have partial results on the uniqueness of V which we will report
elsewhere.
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Proof: (i) Let ¢° be the unique solution of (4.6). It follows from (4.5) and
the Maximum Principle that

4.15) e ~ 4l L@ = e — ¥°llL>@e) = Cleloge] .

Therefore by Lemma 4.3, we see that i, — o uniformly in £ as £ — 0. Note that
Q is a point in 2 such that d(Q, Q) = maxpg d(P, 09), hence, L(Q, P) = d(Q, 69)
and |P — Q| = d(Q,89) for all P € 9. So, ¥p(Q) = 2d(Q, 6%).

(i1) Note that for £ = g, V, satisfies

(4.16) {AVS—V€=O in Q. ,

Ve0) =1.

Now, for any given g, > 0, we let §; = 7} and x, be a cut-off function such that
x1(ry=1forr =1-6, and x,(r) = 0 for r > 1 — 6,/2. Setting 7L(x) = Ay, (x)
and 7.(x) = A¢(x)x,(|]x — Q|/d(Q, 8%)), we claim that

4.17) max () = 75,60

where C may depend on 6, but is independent of &.
Once (4.17) is proved, it implies that

C
As(x) = 40.09 for x € By1-s,)d0,00)(Q) .
Hence e o)
2 _ -« < -
|V A0)* =1 + eAyx) =1 +Cd(Q,BQ) =1+ >

for x € B(1-s,)d(0.00)(Q) and & < &g. It then follows that

Voz) = POlO-00) = p~BViD-0)
e~V < 1+ 3zl

for z € B(i-s,)a0.00)/:(0). On the other hand, if (1 — 6,)d(Q,0)/e = |z, ie.,
[x = Q] = (1 — 6))d(Q,00), we observe that by (4.5) y.(x) = |x — Q| on
60 for ¢ sufficiently small and thus the function |x — Q| is a subsolution of
(4.1) on \Bs,()a0.00)(Q) for some 8;(e) > O sufficiently small, by (4.10) and
the arguments immediately following it in the proof of Lemma 4.2. Hence, we
have ¢.(x) = |x — Q| for x € ﬁ\B(l_gl)d(Q_aQ)(Q). Therefore, p.(z) = e~ % for
7 € Q:\B(1-5,)d0.09)/:(0). By part (i) above, it follows that

eﬂwh(Q)‘ps(z) = o 2tedt
2H60dQIN/e= 2] < H1+61+6))8d(Q.59)
+260/(1=80]]z] = Ce(l+%)lzl .

V(@)

A 1A
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In summary, we have, for all z € Q,,
(4.18) Vo(2) = Cell*

Hence taking a diagonal process and passing to a subsequence g;, — 0, we have
that, for & = g, V.(z) — Vo(z) uniformly on any compact set of R” and V(z) is a
solution of (4.14). Moreover, sup,eq, e” I llY, (z) - Vo(z)| — 0 as &, — 0.

So it remains to prove (4.17). In fact, 7} satisfies

4.19) —eAT 42V, -Vl +2|V¥, =0 inQ.
. 2012 — § o, \? 12
Since |V |* = 37/, (dx—dx,) = C,|7}|* for some constant Cy, we see that

(4.20) Ci|ri)? —eaArl +2Vy, - VTl 0.
Multiplying (4.20) by x3(|x — Q|/d(Q, 5%)), we compute

Cilm.l? —ex1Ars + 21V - V1, + 2eV7,. -V
(4.21)

2
AV V). + ey — 22X <
Xt

Note that in (4.21) and the rest of the proof of (4.17), for simplicity, we always
write x| for x;(|x — Q[/d(Q, 8S1)) while the argument in all other functions is x
and the differentiations are taken with respect to x.

Now, let 7.(xg) = maxyeq7:(x). If 7,(x0) = 0, (4.17) certainly holds. If
Te{xo) > 0, then we have

2
C1|T€|2§2(V¢6-VX|)T€—3(AX1-—ZIV—XI'—)TE at xg .
X1

Observe that

(V! [Vxi] = V2V, 2
2
\/(1 + SAlps)lel '2 = \/lVXl|2 + S%TS
1

CVl +er./d(Q,00) = C( + er.)/d(Q, 0Q)
C/d(Q,00) + Cer./d(Q,00) .

v‘t&s " VXI

A

A 1IA

Note that |Ay, — Z%LEI = C/d*(Q, ). Therefore, by (4.21), we have at x,

Cit? = (Ce/dHQ, 007, + (C/d(Q,dM)T, + (Ce/d(Q, IN)T?

(4.22)
= (C/d(Q,80)7. + (Ce/d(Q,0M)Ts .
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Hence if we choose & < g such that Ce/d(Q, 0}) = %C 1, then we have
75(x0) = C/d(Q, 09 ,
and (4.17) is established.
We now study Pg w. Recall that
Be = w— Paw,Pe(x) = —glog gellx — P.)/e),V, = P4, .
Similarly as before, . satisfies

(4.23) {SAJ‘S — |V +1=0 in§,

Pex) = —slogw((x — P.)/e) on 89,

and V., satisfies

(4.24) V.0)=1.

{AVE—VS =0 inQ,,
LemMA 4.5. It holds that

. Pex)
(4.25) £1_I:% = P.]

=1 uniformly for x € 95 .

Proof: Note that on 8%, |x—P,| = d(P,,09), ie., =2l = p,. Since by (3.2)
ps — 00 as ¢ — 0, (4.3) implies that

- P,
Yo x) = |x — Pe| + e > elog - | — elog(ho + o(1))

uniformly for x € 051. Hence

Fe) _, om—1logM g +o1))
lx — P, =i+ 2 =Pt x—P,|

uniformly for x € 02 as € — 0.
We now have an estimate for i (x).

LemMa 4.6. (i) There exists a positive constant C such that ||§is||1~q) = C.
(ii) For any g¢ > 0, there is an gy such that for any € < &,

(4.26) Js(Ps) = (2 + 0g)d(P,,09) .
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(iii) For every sequence ey — 0, there is a subsequence g, — 0 such that
V.., — Vo uniformly on every compact set of R", where V is a positive solution

of

Au—u=90 in R*,
(4.27) {u >0 inR* andu(0)=1.
Moreover, for any o, > 0,sup 5 e D7, (y) — Vi(y)| — 0 as &, — 0.

yeE (.l,. ”

Proof: (i) The proof of (i} is almost identical to that of its counterpart in
Lemma 4.2 and is thus omitted.

(ii) Assume that d(P,,0%) = |P, — P,| where P, € 0f2. Let y, be the point on
the ray I;TITS such that |P, — y,| = (1 + n)|P, — P,|, where n < min{1, ¢/ 10} is
so small that B,,(y.) C Q¢ and B,,(y.) N 2 = {P.} for ro = n|P. — P|.

Setting w,.(x) = (1 + 2n)(|P, — P.| + |y. — x|), we see that, on O

Jex) = (1 +n/2)x—P,|
< (1 +n/2(|Pe = yel + |ye — x])
(1 +n/2)(|P. = P} + |y. — x| +7|P. = P.|)
welx)

A

for ¢ sufficiently small, since (1 + 2)(1 + ) < 1 + 2. Moreover, w.(x) € C*(Q)
and

Uwelr) = (1 +2p)2—2
|x_y£'
Aw)] = —C =€

!ys —Xl = (W‘Ps _P—el) )

Thus for ¢ sufficiently small,

AW, — |Vwe|? + 1 = —-(1+n?+1<0

Ce
anE - ITBI
since &/|P, — P.| = 1/p; — 0 as € — 0. Therefore by the Maximum Principle,

we conclude that )
Px) = w,lx) forxeQ.

Hence

JeP) = (1+20)|P; — P, + |y — Pcl)
(1 + 292 + nX|P; — P.|)
< 2+ a)|P.—Pc]).

I

(iii) To prove part (iii), we just need to show that

(4.28) V(y) = cel+
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for £ < gy. We note that the proof of Lemma 4.4 (ii) also works in this case with

minor modifications. (Indeed, we just need to change d(Q, 9Q) to d(P., d1) and
observe that &/d(P,,9Y) — 0 as ¢ — 0 ). We omit the proof.

Finally we conclude this section by proving a property of V, and Vo which is
important in the asymptotic expansion of c,.

Lemma 4.7.  Let w be defined in Section 2 and V be an arbitrary solution of

{Au——u=0 in R" |

4.29) u>0 inR" andu0) = 1.

Then we have

(4.30) 2y = / FlwlV . =/ fowv >0
R" RI]

where V .(r) is the unique positive radial solution of (4.29).

Proof: First, we prove that fg. f(w)V is independent of the choice of V and
is equal to fg. fF(W)V .. In fact, by Theorem 1 of [5], we have

— A-x =_l_ [ZON
4.31) Vix) /le=le du(\) , V.(r) lS"’l]/|>\|=1e dA(\)

where {S7~ ! is the surface area of the unit sphere §*~! in R”, du(\) is a positive
measure on S"!, u(S"') = 1, dA(\) denotes the usual element of the surface area
on $*!, and { € $""'. Observe that the second integral in (4.31) is independent
of {. Writing x = r{ with r = |x| and §{ € §"!, we see that

/W fwyv
/Ooo /|>~|—l /|CI—1 e’Q)\ d}L(C) dA()\)f(W(r))r"—l dr
/0‘” /'u—n /m-l & dAN) dpQ) f W) dr

n—1 * n—1
[§ I/O /Kl:ld,u(g)f(w(r))v*(r)r dr

It

Il

I

n—1 * n—1 _
|S I/O FWWV . (r)r dr—A"f(w)V*

since V(0) = [ du(@) = 1.

Now, we prove that fg. f(W)V. > 0. Letting R be a fixed positive number and
w be the unique solution of the equation

{Aw—w+w”=0 andw>0 inR",

4.32) w(0) = max,er w(z) and w(z) = 0 as |z|] — +00,
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we observe that

SV = /B =By = /B AV = (@]

8V* 8W
( ) o8g0) L Ov v ov

[WRWV.(R) —w (RWV.(R)] R |S™ 1] .

I

Similarly,
(4.34) / WV, = [WRWV(R) — % RV . (R)] RS .
Bg(0)

By Lemma 4.1, we see that there is a constant C > 0 such that

. wR) w(R) =
TR
Hence, for R large we have
C_ . C_
(4.35) w(R) > EW(R) , ~w (R) > —5W (R) .

From (4.33), (4.34), and (4.35) it follows that

faw. > € / WV,
Br(0) 2 JByio)

for R large since V'« = 0. Letting R — oo, we obtain

/ FoOWV, = 9/ V. >0
Rﬂ 2 R/{

5. An Upper Bound for ¢,

The purpose of this section is to obtain the following upper bound for ¢, which
improves Lemma 3.1. Recall first that d(Q, 9€)) = maxpeq d(P,0Q) and § = é

ProPOSITION 5.1, For & sufficiently small, we have
(5.1) e =" {l(w) + ye P 4 o (e“ﬂ"’"(@) } ,

where c is given by (2.6) and v is defined by (4.30).
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We shall establish (5.1) by choosing an appropriate test function in the vari-

ational characterization of c,. First, setting u; (x) = Py w(z),x = Q + £z and
hy(t) := J.(tu}) for t = 0, we have the following two lemmas.

LeMma 5.2.  For e sufficiently small and 0 <t < oo, we have

) /Q (2 Va2 + (ul )

(5.2) - { /R ) = 2ye D . g (e B00) }
(i) /Q Fu?)dx

(53) = & { / F(w) = 2ye 800 4 o (e7H0() }
i ué )

(5.4 = o { [ wion - e @ 1 o (es0i0) |

where y(t) = [e(twf (tw) + fFtw))V . and vy is defined in (4.30).

Proof: Since u}(x) = Py w(z) = w(z) — e P4 QV (z), we see that

[ @ 1va P+ )

sn/ (IVPow|? + |Po,w|?) dz
Q.

(5.5) g" /Q (Pow)fw)dz

" /Q [wf(W) — e PQy, f(w)] dz .
Note that by (4.18),
/Q Velfw)ldz = c/Q M| f(w)| dz = CA" D fw)ldz = C,
if we ;hoose 0| < o. By Lemma 4.4, for any sequence g; — 0, there is a subse-

quence g, — 0 such that V,, — V) for some solution Vo of (4.14). By Lebesgue’s
Dominated Convergence Theorem and Lemma 4.7,

/Q Vi F) /R Vofn =27

It follows that

(5.6) ./n Vefw) -2y ase—0.
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We also observe that

(5.7) /R MUCE CemPRoMQI _ o (1)

Substituting (5.6) and (5.7) into (5.5), we obtain (5.2).
To prove (5.3), we first note that by the mean-value theorem

(5.8) F(Pg,w) = F(w) — f(w))e @y,

where w = wy = P w. Thus

f [fwDIV, = c/ witv, =C
Q. Q,

and again Lemma 4.4, the Lebesgue Dominated Convergence Theorem, and Lemma
4.7 guarantee that

(5.9) / Sw )V, -2y ase— 0,
Q.

since wi(z) — w(z) (because Py w(z) — w(z)) for z € Q.. Now (5.3) follows
immediately from (5.8) and (5.9) as before.

It remains to prove (5.4). Note now that by the same argument in Lemma 4.7,
we see that for any solution V of (4.29), fR.,(tw f (tw) + f(ew))V is independent of
V and is equal to y(t). Then (5.4) can be proved in a similar way as before and
thus the proof is omitted.

LemMa 5.3.  For each £ > O sufficiently small, h, attains a unique positive
maximum at t = ty(e) > 0 and

(5.10) tole) = 1 + ae ™D 4 o (e—ﬁ-h.:(Q))

for some constant a.

Proof: This proof is essentially the same as that of (3.16) in [14]; for the sake
of completeness, however, we include a sketch here.

We first note that A.(r) has a unique positive maximum. This is clear when
q = 1. Indeed,

(5.11) hi(t) = t/Q(.c,‘zIVu:Iz +(u:)2)dx—/gu:f(tu:)dx

which implies that s.(zg) = O for some to > 0 if and only if

/Q (2| Vug 1> + (u2)?) dx = tal/Qu:f(tou:)dx }
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Since the right-hand side is equal to

/( )2f(t0ue

and since this is strictly increasing in ¢ty > 0 by virtue of (ii) of (f2), we find that
there exists exactly one 7o > 0 such that h;{#;) = 0. Hence ty(e) is unique. In the
case ¢ > 1, we can use the same arguments of Lemma B.1 in [15].

To derive the asymptotic behavior of #y(g) as £ — 0, we define a function

ofe, t) := e "hL(t)
for £ > 0,7 = 0. By Lemma 5.2, we have
ole,t) = / (H(|Vw]? + w?) — wf(w)]
Rﬂ

— 2ty - y(t)e P+ D 1 o (e~ﬂ¢x(Q))

as £ — 0, where the term o (e‘ﬁ"’”(Q)) is uniform in 7 on each compact interval.
Now let 5(6,1) = o(e, t) where 6 = ¢ #%©)_ Then

5(6,0) = / 2 (1VW]? + w?) — wftw)] — 2ty — ¥(2)) 6 + 0(5)
Rll
as 6 — 0, where the term o(6) is uniform in ¢ on each compact interval. From this
it follows that (8, t) can be extended up to § = O as a continuously differentiable

function on [0, 6.) X [0, c0) with 6. > 0 sufficiently small. Note that 5(0,1) = 0
Next we compute 5,(0, ):

7,(0,);=1

[ vl +92) = w2r o]
fow Lo =wron] .

By Lemma B.1 in Appendix B of [15] we have .(0,#)|,=1 < 0. The Implicit
Function Theorem now yields the existence of a C' function #(5) defined for
6 €10,6..) with 6.. > 0 sufficiently small such that (6, #(6)) = 0 and #0) = 1.
Letting #(6) = to(e), we finish our proof.

I

Proof of Proposition 5.1: By Proposition 2.1, we have
e = Jultoleul)
= %’3(8)L (21Vur ? + (ul)?) dx —/QF(to(s)u:)dx
_ e {%t%(e) [ 1920w + 120wt dz ~ [ oo, w2 dz}
= &l - I}
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where I, and I, are defined by the last equality. Using (5.2) and (5.10), we have

1
= el =ByQ) R ()]
I, = (2+ae Q+o(e ))
(5.12) X (/ wfw) — 2ye P4 1 o (e”ﬁ"’"(Q)))
R’l

1
= / —wf(w) — /ye—ﬁll/:»(Q) + ae—ﬂ'l’r:(Q)/ Wf(W) + 0 (e"B'l’r,(Q)) B
Rn 2 R"

On the other hand, we have

F(to(e)Pa,w) — F(w)
= fwy) [to(e)Pa,w — w)
= flwa) [(1 +ae P9 1 (e'ﬂ“’"(g))) Po,w — w]

= flwp) [..J/)QKW —w+ae PrOP, w+o (e'ﬂ"‘"(Q)) @QﬂW]
= —e PDf(wy)V, + ae "D fwy)Pow + 0 (e—ﬂm(@) Fw)Pow

for some w; lying between w and #o(e)Pq, w. Then, the same argument as in the
proof of Lemma 5.2 shows that as e — 0

/ FwaVe — 2y
Q.

and

S, 1000200~ [ wit.

Hence it follows that
513 I, =/ F(w) + ae'ﬁ"’"(Q)/ wflw) = 2ye P @ 4 o (e“""’ﬂ(Q)) .
R R

Putting (5.12) and (5.13) together, we obtain (5.1).

6. Asymptotic Formula for ¢, and
the Proofs of Theorem 2.2 (ii) and Theorem 2.3

In this section, we shall derive an asymptotic formula for ¢, and prove Theorem
2.2 (ii) and Theorem 2.3. To this end, we define ¢, by

V(y) = Po,wl(y) + e PP (3)

where y € (1,. Recall that v.(y) = u,(P. + €y), then ¢, satisfies

{Ld’s + F€(¢e) =0 in Qe s

(6.1) ¢, =0 on 99, ,
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where

Fu(go) = e { £(5,) = fw) — e #5P) £/ (w), | .
Observe that

Folde) + [ WV, = 298 { £(7,) = fw) + e P fw)V, = ¢,) } .

Since v, = w — e‘ﬁ‘i’*’(””)(Vs — ;) and | f'(¢) — f'(s)] = C|t — s|° for bounded s
and ¢, the following estimate is an easy consequence of the mean-value theorem.

LemMma 6.1.  For ¢ sufficiently small, we have

(6.2) |Fe(@:) + f'WWVe| = Clve = wl|° IV, — ¢l -

Our next result is crucial in deriving the asymptotic expansion for c.. For given
1-0 < p <1, weshall fix 0 < g = 0, < ;0 (in Lemmas 4.4 and 4.6) such that
1 —o+ 0 +02 < p<1in the rest of this section unless otherwise specified.

ProposiTION 6.2. (i) For s > n, we have ”e_”lyltb,;”wh(()s) = C(s). ;
(ii) For every sequence g, — 0, there is a subsequence &, and a solution V, of
(4.27) such that ||e™*P\(¢,, — B L2811y, ) — O 05 &k — O where &, = 72/10

and ¢y is a solution of
6.3) Lo — fwlVy =0 in R*.

Furthermore, e "¢ € W2S(R™) for s > 1.

Assuming Proposition 6.2, we proceed to obtain an asymptotic expansion for
¢., which improves our upper bound in Proposition 5.1.

ProrosiTION 6.3.  For € sufficiently small, we have
6.4) c.=¢" {I(w) + ye PIP) 4 g (e‘ﬁ"-’"(”")) }

where c, is given by (2.6) and v is defined by (4.30).

Proof: Since u, satisfies equation (2.1), we have

o = 3 [@Vul 4~ [ Fu)
= %/Qusf(us)-—/nF(ua)
= s"{%/ﬂ”ﬁef(ﬁs)—/mf‘"(%)}

= I3 - 14},
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where /3 and /4 are defined by the last equality.

We begin with the estimate of I5. Since ||e #"¢,||w2s@,) = C(s) for s > n by
Proposition 6.2, by the Sobolev Imbedding Theorem (see p. 107, Lemma 5.15, in
[1]), we have

b.(y) = CerV

for ¢ sufficiently small (note that the constant C is still independent of £ = &g).
Observe that by mean-value theorem,

(6.5 Ve f(7) = wfw) + e PP (Fws) + waf' (w3))bs — V)

where wjs lies between w and ¥,. Thus by (3.8) with the choice 6 = %

[ 1560 + s ws) e = V)
= cf wrw.-a
2
= C/ e—(l—&)(l+a)|y| (e(l+02)|y| +eu|y|)
Q.
= C
for ¢ = g. By Lemma 4.6, for any sequence g — 0, there is a subsequence

g, — 0 and a solution Vo of (4.27) such that Vk, — V. Then by Proposition 6.2
and Lebesgue’s Dominated Convergence Theorem,

o G )+ SN, = Ty = [ o700 + SO0 — Vo)
as g, — 0. We note also that by Lemma 4.6 (ii) with ¢y < o,

/ ~ wlf(w)|dy
R\,
6.6)

= Ce~ﬂ(2+m,)d(P,,,(')Q)/

e~o=obl gy = o (e—/id"f.;(P,;)) )
R\,

Observing that ¢ satisfies equation (6.3), we have

[ (80— g0+ F g
[ s o) = s

/" wf' (w)Vo

since e *l¢py € W2S(R"). Hence

I, = %‘/ﬁw {Wf(W) _ e—ﬂklli’»:k, (P,:kl ) (f(wsz) + waf'(ws3)) (ngl - d’ek, ) }
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= 5 [ wr

67 —e P () /R %[f(w) +wf W7o — do) + 0 (e‘ﬂkz% (P, ))

= % /R wflw)
w e C) [ oy = 3 p000 | + 0 (¢ Pt (P ).

[4 may be handled in a similar fashion and we have

68 1s= [ Fon+ e ) [ o Vi) + o (e (7)),

From (6.7), (6.8), and (4.30), we see that (6.4) holds for € = &,,. Since the sequence
gy is arbitrary, it is easy to see that (6.4) is true for ¢ sufficiently small.

Proof of Theorem 2.2 (ii) and Theorem 2.3: By Theorem 2.2 (i) and (3.2),
u. has at most one local maximum P, and p, = d(P,,9)/e — oc. Since Lemma
4.7 guarantees that v > 0, from Propositions 5.1 and 6.3 we deduce easily that

Fo(P) Z Y:(Q) + 0(1) .
Then, by Lemma 4.6 (ii), for any o there is g such that
(6.9) (2 + 00)d(Pe, 00) = §(P:) = ¢(Q) + o(1)

for all £ < gg. Since ¥.(Q) — 2d(Q, 6) as £ — 0, we see that
(2 + op)lim, _od(P,, 00) = 2d(Q, )

which in turn implies that d(P,, 9Q)) — d{(Q, 9Q) by the choice of Q. This estab-
lishes part (ii) of Theorem 2.2.

Theorem 2.3 follows from Proposition 6.3, (6.9), part (ii) of Theorem 2.2, and
Proposition 6.2.

The rest of this section is devoted to the proof of Proposition 6.2. We need
some preparations before we go into the proof.
Letting U be a bounded smooth domain in R", we define, for 0 = u < 1,

lullwrsy = Nle =" ullwesw)

where < y >= (1 + |y|?)2. As usual, when k = 0, we denote W)’ (U) as L(U).
The following two lemmas play a basic role in our estimates.

LEmMMA 6.4. (i) Let s > 1, 0 = u < 1 and u be the solution of

{Au—u+7=0 in Q,,

(6.10) u=20 on 89, .
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Then
(6.11) il 2oy = € (1N + 1Tz ) -

where C is a constant independent of & = &.
(ii) Let u be a solution of

Au—u+f=0 in R"
with ”f"z,;‘;(R") < oo and llfllLﬁ(Rn) < 00, Then
©.12) ez = € (1Pl + 1 Fllizan ) -
(iil) For every function Ke Cz(ﬁs), there exists an extension K € C%(IR") with

K w2 = CliKlwaa,)

where s > 1 and C is independent of K and & = 1.

LemMa 6.5. If the domain of L is Wi.'(R") where s > n/2,0 = u < 1, then
ker(L) = X = Span{ey,...,e,} where ¢; = g—z,i =1,2,...,n

The proofs of Lemmas 6.4 and 6.5 are included in Appendix B and Appendix C.

We now explain the plan of the proof of Proposition 6.2. Our proof will follow
the idea in [15] and [17]. We first prove that ||¢.|].:(q,) is bounded for s > n.
Then by Lemma 4.6, for every sequence g, — 0, there is a subsequence g, — 0
and a solution V of (4.27) such that ¥, — V. Letting $s“ = x(Iyl/ pe,, Jbo(y)
where x{(r) = 1 when r = 1 — &, and x(r) = 0 when r > 1 — §;/2, we show that
s, — 3% IIW;‘.»-(Q%) = o(1), which, by the Sobolev Imbedding Theorem, proves
Proposition 6.2.

We begin with the following useful estimates.

LemMa 6.6.  For every sequence g, — 0, there is a subsequence g, — 0 and
a solution Vy of (4.27) such that for 2 < s = o©

6.13)  lIF.,@u)+ FOollzm,) = C (oDlls, llm, ) +olD).
614)  [IFe,(@u) + F0WVollza, ) = C (oDl 1m,) +olD).

Proof: By Lemma 4.6, for every sequence & — O, there is a subsequence
gr, — 0 and a solution V of (4.27) such that Ve, — Vo. By Lemma 6.1, we have

eH I IF,, (o) + F Vol = Ce | fw)[[Vg — T, |

+Ce (B, =Wl — Vi | -
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Since |V,, — Vol = o(1)e!!**9»! by Lemma 4.6 (iii), it follows that
e Y7 |Fy, (ds,,) + WV
= 0(1)8(—u—6+(1+02))<}’> + Ce—u<)’>we“ — w\"\d)m’ - Va,‘ .

6.15)

Therefore, from Proposition 3.4 we conclude, for 2 < s < oo,
“FB"I (¢Ek, ) + f’(W)VO "L“‘ (QH"I )

o(1) + Cllde, 113 (0, YNPey, = Whix (a,, ) + ClV e, Gay =Wl (a,)
o(1) + 0(1)| |¢ak, I |L‘,‘; (Qak') ’

A

since |V, (7, ~w)7 Il (0,) = o(1) by Lebesgue’s Dominated Convergence The-

orem. Similarly,

I|F,, (dn,-k,) + f' ol e, )

= oD +Cllgey Iy (0, ) 1Fe, =WV ll 22, )
+ ClV,, (7, —w) |l L2 ()
o(1) +0(1)||d>sk,||m(fzkk,) .

The case s = oo can be handled in a similar manner.
Lemma 6.7. Let n < s < oo. Then |1¢:|l13@,) = Cls).

Proof: We prove this lemma by contradiction. Suppose on the contrary that
there exists a sequence of £; — 0 such that ||¢, || 1(a,) ~ %
.

Let M; = ||| (0,)°8 = é.,/M . For simplicity, we denote {2, as 2, ¢,
as ¢;, etc. Then g; satisfies

(6.16) {Agf — g+ fO0lg +HES)/M; =0 indly,

gi=0 on 8% .
We divide our proof into the following steps:

Step 1. 'We show that ||g;]|y2- () is bounded.

Step 2. We extend g; to R" and prove that g; — 0 weakly in Wi (R).

Step 3. We prove that ||g;]ly2gs) = o(1), which gives a contradiction (be-
cause ||g;llz;@,) = 1)-
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Now we begin to prove Step 1. In fact, by Lemma 6.4 (i),

lgilweay = € (IFwglla, + I Mgl

(6.17)
+ \Filo )/ Ml @) + ”Fj(¢j)/Mj”L5(s'z,)) .
Since
IfwWeilliay = Clgilla
Nfweillizg) = Clwllza2aylgilne) = Cllgiling)
and
Fi(&)) £ WWoll sy
- = C—— = toDllgillzay +oll) = ol1)
Iy J
Fi(¢) I Vol iz,
L = C——F—F +olgillza, + ofl) = o(1)
M; L) M;

by Lemma 6.6, we obtain
gy =C -
Now, from Lemma 6.4 (iii), we can extend g; to a C 2 function with compact

support in R” (still denoted by g;) in such a way that ||g;||y2: g = C, where the
constant C is independent of j. Thus we conclude that, first,

(6.18) lgillzmn =C

by the Sobolev Imbedding Theorem, and that there exists a function gy € W2 (R")
such that (by passing to a subsequence if necessary) g; — go weakly in Wi (R")
and g; — go in Cjoc(R").

To finish the second step, we just need to show that go = 0. To this end,
we estimate ||F(¢;)/M;| |Lj<((2,). Note that in Lemma 6.6, we now take s = oo.
Then, as before, we have ||F {(;)/M;||,>@,) — O as j — oo by (6.18). Therefore
Fi{¢,;)/M; — 0 on every compact set of R". Hence gg is a weak (thus classical)
solution of the following equation

Lg() = Ag() — g0+ f’(W)g() =0 in R",
(619) 2,8 sipnt
g € Wi (R"), n<s.

By Lemma 6.5, go € X. That is,

n
8o = Zaiei
i=1

for some constants a;,i = 1,2,...,n.



SPIKE-LAYER SOLUTIONS 759
But note that by definition, #;(y) = w(y) + e #%/®)(¢; — V). Hence,
0 = Vi,(0) = Yw(0) + e P¥iP)(V(0) — YV (0))

which implies that V¢ ;(0) = VV (0). Thus

v

J

Vgi(0) = 0

as j — oo since V; is bounded in C%.(R") by (4.28) and standard elliptic regularity
estimates. Therefore,

n
Vgol0) = Y _a;Ve(0)=0.
i=1
Observing that Ve (0),...,Ve,(0) are linearly independent, we conclude that
ai = 0,i = 1,2,...,n. Hence go = 0 and g; — 0 weakly in WZ*(R"), which

completes Step 2.
We now show that ||g;| lwf,""((z,) = o(1). Similarly to Step 1, we have (6.17) and

WFio)/ Mgy = ofl),
WFid)/ Mllzwy = ofl).

For the other two terms in (6.17), we estimate as follows:

A

”f'(w)gj”i;(gj) C/ﬂ . e Wi +C [ eI gl
j1\Bg

,NBg

(6.20)

A

Ce—soR”gj”L;‘;(ﬁj) +CL) e—su<y>wsug~;

iNBr

liA

Ce—saR +C i g;‘ ,
QjﬂBR

C/: .e—2y<y>w20g§ +C/ e—2u<y>w2ag§
Q,ﬂB} QjﬁBR
Clw gy +€ [ &
k L) ,1Bg !
2

n(s—2)
CR™ e‘2”R+C/ g,
anBR

where R = 1 is an arbitrary number and C is independent of R. Since g; — 0 in
CL.(R") by Step 2, we obtain

1A

”fl(w)gj”iﬁ((]j)

(6.21)

A

1A

IA

E“f’(w)gj”u‘;(fz,-) Ce |

n(y—2)
CRT ek .

liA

lim || f'(W)g; |l 2,)
J—~OO
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Letting R — oo, we conclude from (6.17) that

"gj”wf;"(ﬁi) =o(l).

CoroLLARY 6.8. ||| |w§*“(s’1,:) =C(s) for s>n.

Proof: Noting that ||¢.||1:,) = C(s), we simply observe that our conclusion
follows from the arguments in Step 1 of the proof of Lemma 6.7.

By Lemma 6.4 (iii), we can extend ¢, to a C* function on R" (still denoted
by ¢.) such that ”‘f’ellwﬁ""(ﬂ") = C(s) for n < § < 0. Now we fix s > n. For
any subsequence &;, we can take a further sequence, still denoted by ¢, such that
$e, — ¢o weakly in W2 (R") and ¢, . — ¢ in Clo(R"). As before, we denote .,
as ¢;,.... We are now ready to prove Proposition 6.2.

Proof of Proposition 6.2:  Part (i) is just Corollary 6.8. We next show that ¢ is
a solution of equation (6.3). To this end, we need to show that F(¢;) — —f' (w)V,
in L (R"). But this can be easily deduced from (6.15). Hence ¢, is a weak (thus
classical) solution of equation (6.3).

Now we derive a property of ¢g. We claim that

”d’o”wﬁ--*'(m < 00 forall s>1.
In fact by (6.3), ¢ satisfies
Ado— o+ fo =0
where fo = f (W) — f (W)V, and we have

| fo

Ce ey 4 Ce oWl ll+azdiyl
Cell-o+alyl

A~ 1A

Hence
Nfollpmy < oo  foralls>1.

Therefore, by Lemma 6.4 (ii), our assertion above is established.

It remains to prove that ¢; — ¢y in the sense described in part (ii). Let x(r) = 1
for r = 1-65,x(r) = 0 for r = 1-6,/2 where 6, = 3. Setting x;(y) = x(|y|/p;)
and ¢; = x;(y)bo, we see that ¢; — ¢; satisfies the following equation

Al — ) — (b5~ $) + f' W), — &)

(622) = —(Fj(@;)+ FWWVo) + (1 = x)f (WWVo —2Vx,;Vy — (Ax ;o
= JIs+Ig+17+1g
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where Is, Is, 17, I3 are defined by the last equality and can be estimated as follows.
First, from Lemma 6.6 it follows that

(6.23) sy + Msllz@,y = o) .
Then

Mellz@, + Mol 2@y

(6.24) = Cllf'wVoll +C|If' wVoll 2(

L;\; (anBEvlsz)pj) JnBEI bz)pj)

< ij’?e((l—a)wz—u)pj =o(1),

W7 llz@y + M7z + Wslle@y + Isllz@y
(6.25)
= (/o) (Ibollyz + dollyzz@n) = o(1).
The same argument leading to (6.20) and (6.21) yields

ceric [
L#(Q/) Q;NBg

n(s—2)
C i
L#(Qj) anBR

HA

626 |0 (8- ¢; = &;

’

A

621 ||Fo (¢,-3)|] b - B;1°

where R = 1 is an arbitrary number and C is independent of R. By part (i) of
Lemma 6.4

Ié; = billwray = € “f (W), = $ﬂ“£‘;‘#@>
+Cllf s — Bz

8
+C3 (Millzzay + el zay) -
=5

Putting (6.23)(6.27) together, we have

}im]]¢, ¢,HW @y = Ce ~oR 4 CR"5" e~k

since we have already proved ¢; — ¢ in Cho(R"). Our assertion now follows
easily by letting R — oo.
7. Appendices
7.1. Appendix A: Proof of Lemma 4.3

In this appendix, we prove Lemma 4.3; some of the proof will overlap that of
Theorem 5.2 and Theorem 6.1 of [13].
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We will give a self-contained proof, and it is divided into two steps:

Step 1. We prove that ¢(x) = infpeya(|P — Q| + L(P,x)) is the maximum
element of ¥ which is the set of all functions v € W>(Q) satisfying v(x) =
|x — Q| on 9Q and |Vv| = 1 almost everywhere in ().

Step 2. We prove that for any sequence g, — 0, there is a subsequence
g, — 0 such that y* — ¢ uniformly in € as &, — 0. Then it follows that
¥° — o uniformly in Q2 as ¢ — 0.

We first prove Step 1. To begin we show that ¢y € . In fact, since L(x, y) is the
length of the shortest path in Q connecting x and y, we see that |L(x, y)—LX, y)| =
L{x,x). Therefore |yo(x) — Yo(X)| = L(x,x). Moreover, when x € §2 and ¥ € 2
are close, it is easy to see that L(x,¥) = |x — X| and |¢o(x) — ¢o(x)| = |x — X|.
Hence yp € WH>(Q) and |Viy| = 1 almost everywhere in . It is easy to see
that ¢o(x) = |x — Q] on 8Q since {x — Q| — |y — Q] = L{x, y) for x,y € 0. We
next show that s is the maximum element of .#. In fact, let v € &. Since Q is
smooth, we can extend v in the following way: for hy small enough, there exists
7 € Wh(Q") such that ¥ = v in  and |V#¥| = k, almost everywhere in Q,
where Q™ := QU{x € R"\Q | d(x,09) < ho}, k € C(2*) and k = 1 on Q. Indeed,
if hg is small enough, each point x in Q*\Q is uniquely determined by the equation:
x =z + hv(2) where z € 9§, h > 0 and v(z) is the unit outer normal to 02 at the
point z. In addition, the map x — (z,h) is C' diffeomorphism on Q%\Q. Then, we
set #(x) = v(z) and k(x) = 1 + Ch for some large constant C > 0 (independent of
h). Next we regularize v in the following way: for a small enough, we may define
Ve = ¥ * pe,where p, = a "p(-/a),p € CF(R"), supp p C By, [ p(y)dy = 1.
Then we have

(7.1) Vv |2 = (IVP|?) * po = k% % py = 1+ Ca

on Q and v, — v in C(Q) as « — 0. Let now x, y € 0 and for every n > 0, let &,
To be such that £(0) = x, &(T) =y, B o £| = 1 almost everywhere in [0, Tol, £(7) €
Qfor allt € [0,Toland Ty = L(x, y)+n. Since Q is smooth, it is clear that there ex-
I8t Xgy Voo Ea T SUCh that £4(0) = xoy £(Ta) = Yao |%2] = 14Cain[0,T,], &4 €

c'(Jo, Ta],m) and £, — £, T, — Ty as a — 0. (For instance, we can take &, to
be the regularization of £.) Now we have

T
|Va(ya) - va(xa)l ‘A vva(ga(t)) 601 (t) dt

Ty
= / (1 + Ca)*dt
0

Letting « — O and then n — 0, we obtain |v(y) — v(x)| = L(x,y). Hence v(x) =
v(y) + L(x,y) = |y — Q| + L(x,y) for all y € 3. So v = .

(7.2)
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We next prove Step 2. By Lemma 4.2 and the Arzela-Ascoli theorem, for any
sequence &, — 0, there is a subsequence &, — O such that ¢* — ¢ uniformly in
2 as &, — 0. We next show that ¢* = y. First we observe that ¢° € . In fact,
by taking limits in the sense of distributions we obtain |V¢°|> = 1 in @' (Q).
Thus ¢° € WH(9), [V¢°] = 1 almost everywhere in 2 and ¢°(x) = |x — Q] on
09. Hence ¢° = 5. On the other hand, let v € &. Similarly to Step 1, we extend
v to ¥ in 2 and regularize ¥ to v, in such a way that we have ||v—v,|| @ = Ca

and |V¥| = k. Hence as before we have
(7.3) IVv|> = (VP % py = k2 % p, = 1+ Ca

and v, — vin C(Q?) as a« — 0.
In addition we have

{eAva—- [Vve|? +1+Ca+Aye =0 inQ,

(7.4) valx) = |x - 0] + Ca on 9,

where A, = 0. Let now

va
Yo A TCatAes

Then by comparison we deduce that

(7.5) v, = (I,E/(\/1+Ca+A,,e) +Ca.
Choosing & = g, in (7.5) such that
& = 8;"
we see that
Vo 0
TG =

as g;, — 0. Then, letting & — 0, we obtain v = ¢°. In particular, we have g = y°.
Hence ¢°(x) = yg(x).

7.2. Appendix B: Proof of Lemma 6.4

In this appendix, we prove Lemma 6.4.

In fact, part (ii) follows easily from part (i) by truncation. A proof of (iii) can
be found in Lemma 4.2 (2) of [17]. So we just need to prove (i). Our proof will
follow closely to that of Lemma 1.1 in [8]. Therefore, for the convenience of the
reader, we will try to use the same notation as that of [8), and, it should be noted
that to a large extent our notation in this appendix is independent of that of the rest
of this paper. The point here is to find out the restrictions on . More precisely,
we will show that zg = 1 in our case where yo is defined in Lemma 1.1 of [8]. We
will use slightly different norms, but equivalent to those of [8]. We now replace
Q. by Q. and change f to f. We will also use W>?((2,) instead of W>*(£2,).
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First we claim that: there exist constants &y and C* (independent of £ = &),
such that for each y € 94, the set Q. N {x : |x — y| < &} can be represented
in the form

Xi— Vi = PO, X0, 0.0y X 1, Xik Ly e e e Xn)

for some i,1 =i = n and

(7.6) 2+ 3 ‘-Z‘j—fi
J

In fact, at each point y € 92, we can just use the transformation given in Sec-
tion 3. Then we introduce a mesh in R” made up of cubes with sides parallel to
the coordinate axes and having length n = &/(3./n). Denote by I, ..., T}, those
cubes whose closure intersects 9§2. Denote the center of I'; by y;. Let I'},T"j be
cubes with center y; and with sides parallel to the coordinate axes, having length
2n and 3n repectively. Then I'},..., T, form an open covering of 92,. Further,
for any y € 99, there is a cube I'; such that y € T'; and dist. (y, 6T"}) = 6,/2.
Let ¥ be a C™ function such that

e
Ox;0x

=C*

¥x) = 1 if (x| <n forall i=1,2,...,n
Ux) = 0 if |x;{ > %n for some 1,
0 = Vv =1 elsewhere ,

and set ¥;(x) = ¥(y; +x). Then ¥; = 1 in ' and ¥; = 0 in a small neighborhood
of T and outside I'}.

Denote by 2., the set of all points in {2, whose distance to 95, is = 1/2.
We now introduce a mesh made up of cubes with sides parallel to the coordinate
axes and having length ng = 60/(8/n). Denote by Ay, ..., Ay, those cubes whoses
closure intersects €2,. Let A;, A; be the cubes with the same center z, as A; and
with sides parallel to the coordmate axes, having length 27y and 3no repectlvely
The cubes Al,..., A, form an open covering of (2, and the cubes A[,..., A}
lie entirely in (,.

Let x be the C* function

x(x) =¥ (-n—x) .
7o
and let x;(x) = x(z; + x). Let
0 = S if 1=j=sh,
Ojvhy = m ifl=j=h,
G, = I'},G;=T; ifl=j=h,
Gishy = A, Gy =4 ifl=j=h,

and let & = hy + h;. Then Gy, ..., G, form an open covering of Q, and ¢y, ..., ¢y
form a partition of unity subordinate to this covering, such that
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(a) Gy,...,Gy, intersects 9, and Gpy+1, ..., Gy lie entirely in Q;

(b) i € C5°(Ga;

(c) each x € (), belongs to at most N sets Gy, where N is a positive integer
independent of £ = &o;

(d) px = 1/N, on the set G}, the sets G,.. ., G}, form an open covering of ;

(e) there is a constant N, independent of k, &, such that

(7.7) |D*¢oi| =N, if |la| =2, x€Gy, 1=k=h.
Let

Gie =G, NN,
and

Au=—-Au+u.

Note that o, has compact support in G;. By standard regularity theorem, we
have

(7.8) lugillwee,) = € (I1A@e G, + lupelirG,. )

where C is a constant independent of k, & = £p. But we note that
Alupr) = for — 2VuVp, — ulypy .

Hence

(7.9) |Alupr)|? = CIf1? + C|Dul? + Clul”? .

By (7.8), we have

A

/ (Dulpds = C / (|Dul Doy |)? dx + € [ (ul | Dy ) dx
Gk,ﬂ Gk.n Gk.»:

+C (A(up))? dx + C/G (lupe|)P dx .

Gre

Multiplying both sides by exp (—pu|zx|), where z; is the center of the cube Gy,
and noting that

Ce Pl = gmprlul < Copulxl if x € Gy ,

we obtain, by using (7.8) and (7.9),
(e M D2ulp )P dx = C/ (e | f1)P dx
G, G

+ (e **!| Du|)? dx + / (e ul)? dx .
Gk.n Glr,r:
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Summing for & = 1,..., h, we obtain

/ (e Dtlydx = C / (e #1411 £1)P dx
0. Q.
(7.10)
+/ (e”“lx||Du|)pdx+/ (e ¥ ul)P dx .
, Q,

Now we derive the so-called Garding’s inequality in €,. The space Lz(G) isa
real Hilbert space with the scalar product

(U, V) = / e 9 u(xv(x) dx where (x) = (1 + |x|2)'5 )
G
When G = ., we write (4, V), = (4, V)¢ Then,
(Au, u)p,s = / 8_2“(x>(—Au + u)u dx
0,

= /e'2“<">(—Au)udx+(u,u)p,e
Q,

. (Ou Ou
] =2} X + ( , __..) + (i, .
m /Q e uVu = Z ox; oxi ) . (u,u),,

i=1

“\ (Ou Ou
(1-p [Z (B_x, éx_i)u,e + (u,u)ﬂ.s]

i=1

Il

v

when 0 < p < 1.
We have thus proved that

—2u(x) 2
(7.11) /Q”e 0 Au(x)ulx)dx = C”u”WL‘z(Q,;) .
Therefore,
(7.12) lullyrzgy = Cllifllz, »

and for p = 2, (i) follows from (7.10) and (7.12).
By using (7.12) and a variant of Sobolev’s inequalities (see [8]), the rest of the
proof is exactly the same as that of Lemma 1.1 in [8].

7.3. Appendix C: Proof of Lemma 6.5

In this appendix, we prove Lemma 6.5.
Let p € Ker (L) N W,ZJ‘Y(IR{"), then ||<p||w‘2‘,»~ = C. Hence

(7.13) ply) = Ce# =~ .
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Moreover, by elliptic regularity theorems, ¢ € C*(R"). By part (ii) of Lemma
6.4, we have

(7.14) o) = [ GO - D el dz

where G(y — z) is the Green’s function for —A + 1 and 0 < G(y —z) < —,,_f(l +

|y = z])t=3/2e~Iy=2l Setting p; = p — 0, we see that g < pu < 1. If p; = 0, then
we have

(1+ fy— 2o
R ly—z|"?
Substituting this into (7.14) we obtain

o) =C e r—de=oleuldl gz < C

eallyl‘p(y)
— 5 |}(n=3)/2
= C 1+ 1y ZL)—Z e~ 1Yl g=0lzl g1yl dz
R ly—2
_ S1\n=3)/2
< C (+]y—z))*"" e~ =0 Ny=zl go'yl=lzl=ly=2D plo"-o)lz| 4,
R ly—z|"?
= C

fory € R" and 0 < 0’ < o, i.e., ¢ decays exponentially.
In case u; = 0, we observe that

e—mlyl(p(y)
= a +||y _ le)—(r;—s)/z e~ vl golal gulzl gyl 4,
R y—2
C (1+ |y = z)*7372 e~ U-wdly=zl gui(zl=lyl=ly=zl) g,
R" ly —z|"2
Therefore
(7.15) o(y) = Ce#'!

Now let k be the largest integer such that u; := g — ko > 0. Then iterating the
above argument leading to (7.15), we arrive at

(7.16) o(y) = CertlY!

for y € R”. Substituting (7.16) into (7.14), we obtain ¢(y) = C for all y € R",
which implies as before that ¢ decays exponentially.

Once ¢ decays exponentially, standard elliptic regularity estimates guarantee
that o(x) € W>(R"), for all s > 1. By Lemma 4.2 in [15], we finish the proof.
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ence Foundation.
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