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Abstract. In this paper, we consider the following nonlinear Schrödinger
equations with mixed nonlinearities:

−∆u = λu+ µ|u|q−2u+ |u|2
∗−2u in RN ,

u ∈ H1(RN ),

∫
RN

u2 = a2,

where N ≥ 3, µ > 0, λ ∈ R and 2 < q < 2∗ = 2N
N−2

. We prove in this paper

(1) Existence of solutions of mountain-pass type for N = 3 and 2 < q <

2 + 4
N

;

(2) Existence and nonexistence of ground states for 2 + 4
N
≤ q < 2∗ with

µ > 0 large;
(3) Precisely asymptotic behaviors of ground states and mountain-pass

solutions as µ→ 0 and µ goes to its upper bound.

Our studies answer some questions proposed by Soave in [49, Remarks 1.1, 1.2
and 8.1].
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1. Introduction

In this paper, we consider the following nonlinear scalar field equation:{
−∆u = λu+ µ|u|q−2u+ |u|2

∗−2u in RN ,

u ∈ H1(RN ),
(1.1)

where N ≥ 3, µ > 0, λ ∈ R and 2 < q < 2∗ = 2N
N−2 .

(1.1) is a special case of the following model,{
−∆u = λu+ f(u) in RN ,

u ∈ H1(RN ),
(1.2)

which is related to finding the stationary waves of nonlinear Schrödinger equations:

iψt + ∆ψ + g(|ψ|2)ψ = 0 in RN . (1.3)

Indeed, a stationary wave of (1.3) is of the form ψ(t, x) = eiλtu(x) where λ ∈ R
is a constant and u(x) is a time-independent function, then it is well-known that
ψ is a solution of (1.3) if and only if u is a solution of (1.2) with f(u) = g(|u|2)u.
As pointed out in [49, 50], in general, the function u is complex valued and thus,

1



2 J. WEI AND Y.WU

(1.2) can be regarded as a complex valued system coupled by the nonlinearities
f(u) = g(|u|2)u.

As pointed out in [29, 36], the studies on (1.2) can be traced back to the semi-
classical papers [12,13,42,43,52]. In these studies, there are two different methods
to study (1.2). The first one is to fix the number λ < 0 in (1.2) and restrict the
unknown u to be real valued. In this case, (1.2) is a single equation and under some
mild assumptions on f(u), the solutions of (1.2) are critical points of the functional

J (u) =
1

2

∫
RN

(|∇u|2 − λ|u|2)dx−
∫
RN

F (u)dx

in the usual Sobolev spaceH1(RN ), where F (u) =
∫ u
0
f(t)dt. In this case, particular

attention is devoted to least action solutions, namely solutions minimizing J (u)
among all non-trivial solutions. We also refer the readers to [2–5] and the references
therein for the recent results on the special case (1.1) in this direction. Another
one is to fix the L2 norm of the unknown u, that is, to find solutions of (1.2) with
prescribed mass. In this case, (1.2) is always rewritten as follows

−∆u = λu+ f(u) in RN ,

u ∈ H1(RN ),

∫
RN

u2 = a2,
(1.4)

where
∫
RN u

2 = a2 is the prescribed mass, and in this case, λ ∈ R is a part of the
unknown which appears in (1.4) as a Lagrange multiplier. In particular, (1.1) is
rewritten as 

−∆u = λu+ µ|u|q−2u+ |u|2
∗−2u in RN ,

u ∈ H1(RN ),

∫
RN

u2 = a2.
(1.5)

Similar to the first case, under some mild assumptions on f(u), the solutions of
(1.4) are critical points of the functional

Fµ(u) =

∫
RN

(1

2
|∇u|2 − F (u)

)
dx

on the smooth manifold

Sa = {u ∈ H1(RN ) | ‖u‖22 = a2}.
In particular, the solutions of (1.5) are critical points of the C2-functional

Eµ(u) =
1

2
‖∇u‖22 −

µ

q
‖u‖qq −

1

2∗
‖u‖2

∗

2∗

on Sa, where we denote the usual norm in Lp(RN ) by ‖ · ‖p. In this case, solutions
of (1.4) are always called normalized solutions which are particularly relevant for
the nonlinear Schrödinger equation (1.3) since the mass is preserved along the time
evolution in (1.3). Thus, normalized solutions of (1.4) seems to be particularly
meaningful from the physical viewpoint, moreover, these solutions often offer a
good insight of the dynamical properties of the stationary solutions for the nonlinear
Schrödinger equation (1.3), such as stability or instability (cf. [11,18]). In this case,
particular attention is also devoted to least action solutions which are also called
ground states for normalized solutions, namely solutions minimizing Fµ(u) among
all non-trivial solutions. The studies on normalized solutions of (1.4) is a hot
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topic in the community of nonlinear PDEs nowadays, thus, it is impossible for us
to provide a complete references. We just refer the readers to [1, 8–10, 15, 17, 23,
33, 35–37, 40, 46–51] and the references therein. In these references, we would like
to highlight [36, 49, 50] to the readers for their detail introductions and references
on normalized solutions of (1.4) and new directions on the study of normalized
solutions of autonomous problems. We also would like to point out [26–32] and the
references therein for the studies on normalized solutions of problems with trapping
potentials.

It is well-known that the number p = 2 + 4
N plays an important role in studying

normalized solutions which is called the L2 critical exponent or mass critical expo-
nent in the literature. Since 2∗ = 2N

N−2 > 2 + 4
N , the nonlinearity of (1.5) grows

faster than |u|p−2u at infinity and thus, it is well-known that Eµ(u) is unbounded
from below on Sa, which makes one to find new constraints to prove the existence of
ground states of Eµ(u) on Sa. The new constraint, which is introduced by Bartsch
and Soave in [9] for the general problem (1.4) and is widely used nowadays in
studying normalized solutions, is the following L2-Pohozaev manifold:

Pa,µ = {u ∈ Sa | ‖∇u‖22 = µγq‖u‖qq + ‖u‖2
∗

2∗},
where

γq =
N(q − 2)

2q
. (1.6)

By the Pohozaev identity of (1.5), Pa,µ contains all nontrivial solutions of (1.5).
Thus, we have the following definition of ground states of (1.5).

Definition 1.1. We say (u0, λ0) is a ground state of (1.5) if u0 is a critical point
of Eµ|Sa(u) with Eµ|Sa(u0) = infu∈Pa,µ Eµ(u).

The L2-Pohozaev manifold Pa,µ is quite related to the fibering maps

Ψ(u, s) =
e2s

2
‖∇u‖22 −

µeqγqs

q
‖u‖qq −

e2
∗s

2∗
‖u‖2

∗

2∗ ,

which is introduced by Jeanjean in [33] for the general problem (1.4) and is well
studied by Soave in [49]. According to the fibering maps Ψ(u, s), Pa,µ can be
naturally divided into the following three parts:

Pa,µ+ = {u ∈ Sa ∩ Pa,µ | 2‖∇u‖22 > µqγ2q‖u‖qq + 2∗‖u‖2
∗

2∗},

Pa,µ0 = {u ∈ Sa ∩ Pa,µ | 2‖∇u‖22 = µqγ2q‖u‖qq + 2∗‖u‖2
∗

2∗},

Pa,µ− = {u ∈ Sa ∩ Pa,µ | 2‖∇u‖22 < µqγ2q‖u‖qq + 2∗‖u‖2
∗

2∗}.
Let

m±a,µ = inf
u∈Pa,µ±

Eµ(u), (1.7)

then Soave proved the following results in [49, Theorems 1.1 and 1.4]:

(1) For 2 < q < 2 + 4
N , there exists αN,q > 0 such that if µaq−qγq <

αN,q then m+
a,µ = infu∈Pa,µ+

Eµ(u) = infu∈Pa,µ Eµ(u) < 0 and it can be

attained by some ua,µ,+ which is real valued, positive, radially symmetric
and radially decreasing. Moreover, (1.5) has a ground state (ua,µ,+, λa,µ,+)
with λa,µ,+ < 0, and m+

a,µ → 0 and ‖∇ua,µ,+‖2 → 0 as µ→ 0.
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(2) For 2 + 4
N ≤ q < 2∗, there exists αN,q > 0 such that if µaq−qγq < αN,q

then m−a,µ = infu∈Pa,µ− Eµ(u) = infu∈Pa,µ Eµ(u) ∈ (0, 1
N S

N
2 ) and it can be

attained by some ua,µ,− which is real valued, positive, radially symmetric
and radially decreasing, where S is the optimal constant in the Sobolev
embedding, that is,

‖u‖22∗ ≤ S−1‖∇u‖22 for all u ∈ D1,2(RN ). (1.8)

Moreover, (1.5) has a ground state (ua,µ,−, λa,µ,−) with λa,µ,− < 0, and

m−a,µ → 1
N S

N
2 and ‖∇ua,µ,−‖2 → S

N
2 as µ→ 0.

In the L2-subcritical case 2 < q < 2 + 4
N , since Eµ(u)|Sa is unbounded from

below, it could be naturally to expect that Eµ(u)|Sa has a second critical point
of mountain-pass type, which is also positive, real valued and radially symmetric.
This natural expectation has been pointed out by Soave in [49, Remark 1.1] which
can be summarized to be the following question:

(Q1) Does Eµ(u)|Sa has a critical point of mountain-pass type in the
L2-subcritical case 2 < q < 2 + 4

N ?

Remark 1.1. In preparing this paper, we notice that in the very recent work [34],
the question (Q1) has been solved for N ≥ 4. Thus, it only need to consider the
case N = 3 for the question (Q1).

Besides, since Soave only considered the case that µaq−qγq > 0 small in [49,
Theorem 1.1], it is also natural to ask what will happen if µ > 0 and µaq−qγq > 0 is
large. This natural question has been proposed by Soave in [49] as an open problem,
which can be summarized to be the following one:

(Q2) Does Eµ(u)|Sa have a ground state if µ > 0 and µaq−qγq > 0 large?

In [49], Soave conjectures that the answer of (Q2) is negative in general.

Finally, in these results, the asymptotic behavior is only for ‖∇ua,µ,−‖2 in the
cases of 2 + 4

N ≤ q < 2∗. Thus, it is also natural to ask if it is possible to
characterize the asymptotic behavior of ua,µ,−, and not only of ‖∇ua,µ,−‖2. In [49,
Remark 8.1], Soave pointed out that in dimensions N = 3, 4, it could be proved

that ‖∇ua,µ,−‖2 → S
N
2 , but ua,µ,− ⇀ 0 in H1 while, in dimensions H ≥ 5, both

ua,µ,− ⇀ 0 and ua,µ,− ⇀ ũ 6= 0 could happen. He also conjectures that the weak
limit of {ua,µ,−} will be the Aubin-Talanti babbles in the higher dimensions N ≥ 5.
Soave’s conjecture can be slightly generalized to the following question:

(Q3) Can we capture the precisely asymptotic behavior of ua,µ,− as
µ→ 0?

In this paper, we are interested in these questions and we shall give some answers
to them, which will give more information on the ground states of (1.5). Our first
result, which is devoted to the existence and nonexistence of ground states, can be
stated as follows.

Theorem 1.1. Let N ≥ 3, 2 < q < 2∗ and a, µ > 0.

(1) If N = 3 and 2 < q < 2 + 4
N , then for µaq−qγq < αN,q, m

−
a,µ can be

attained by some ua,µ,− which is real valued, positive, radially symmetric
and radially decreasing, and thus, (1.5) has a second solution ua,µ,− with
some λa,µ,− < 0.
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(2) If q = 2+ 4
N , then m−a,µ can not be attained for µaq−qγq ≥ αN,q and thus,

(1.5) has no ground states for µaq−qγq ≥ αN,q.
(3) If 2 + 4

N < q < 2∗, then for all µ > 0, and m−a,µ can be attained by
some ua,µ,− which is real valued, positive, radially symmetric and radially
decreasing, and thus, (1.5) has a ground state ua,µ,− with some λa,µ,− < 0
for all µ > 0.

Remark 1.2. (a) (1) of Theorem 1.1, which together the results of [34],
gives a completely positive answer to the question (Q1).

(b) As pointed out in the very recent work [34], the crucial point in studying
(Q1) is to obtain a good energy estimate of m−a,µ for 2 < q < 2 + 4

N such
that the compactness of minimizing sequence or (PS) sequence at the energy
level m−a,µ still holds. As for other concave-convex problems (cf. [6]) and

observed in [34], the threshold of such compactness should be m+
a,µ+ 1

N S
N
2 .

Since m−a,µ is a mountain-pass level, the classical idea, which can be traced
back to [16], is to use the ground state ua,µ,+ and the Aubin-Talanti babbles
to construct a good path, whose energy can be well controlled from above to

make sure that it is smaller than the threshold m+
a,µ + 1

N S
N
2 . This strategy

is already used in [34] to prove the existence of critical points of Eµ(u)|Sa
of mountain-pass type for N ≥ 4 and 2 < q < 2 + 4

N . Unlike [34] in
which nonradial test function composing of ua,µ,+ and a bubble at ∞ is
used, here we directly use the radial superposition of ua,µ,+ and the Aubin-
Talenti bubble. This test function seems to be more natural and it works
for all dimensions.

(c) (2) and (3) of Theorem 1.1 give partial answers to (Q2) and they are
proved by observing the non-increasing of m−a,µ and suitable choices of test

functions. These two conclusions imply that the L2-critical and supercritical
perturbations have quite different influence on (1.5). Moreover, it seems
that the critical mass of ground states also exists for (1.5) in the L2-critical
case.

Our next result will be devoted to the precisely asymptotic behaviors of the
solutions found in [49, Theorem 1.1], [34, Theorem 1.6] and Theorem 1.1 as µ →
0. To state this result, let us first introduce some necessary notations. By [55,
Theorem B], the Gagliardo-Nirenberg inequality,

‖u‖q ≤ CN,q‖u‖
1−γq
2 ‖∇u‖γq2 for all u ∈ H1(RN ), (1.9)

has a minimizer φ0, which satisfies

−∆φ0 + ν0φ0 = σ0φ
q−1
0 in RN ,

φ0(0) = max
x∈RN

φ0(x),

φ0(x) > 0 in RN ,
φ0(x)→ 0 as |x| → +∞,

(1.10)

where ν0 = 4
N(q−2) (1 −

(q−2)(N−2)
4 ), σ0 = 4

N(q−2) and CN,q is the best constant in

the Gagliardo-Nirenberg inequality. On the other hand, the Aubin-Talanti babbles,

Uε(x) = [N(N − 2)]
N−2

4

(
ε

ε2 + |x|2

)N−2
2

, (1.11)
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is the only solutions to the following equation:

−∆u = u2
∗−1 in RN ,

u(0) = max
x∈RN

u(x),

u(x) > 0 in RN ,
u(x)→ 0 as |x| → +∞.

Now, our second result can be stated as follows.

Theorem 1.2. Let N ≥ 3, 2 < q < 2∗ and a, µ > 0 such that µ > 0 is sufficiently
small. Let ũµ be the minimizer of Eµ(u)|Sa in Pa,µ+ and ûµ be the minimizer of
Eµ(u)|Sa in Pa,µ− . Then

(1) For 2 < q < 2 + 4
N , w̃a,µ(x) = s

N
2
µ ũµ(sµx) → ν

1
q−2
a φ0(

√
νax) strongly in

H1(RN ) as µ→ 0, where φ0 is the unique solution of (1.10),

νa =

(
a2

‖φ0‖22

) 2(q−2)
4−N(q−2)

(1.12)

and sµ ∼ µ
1

2−qγq is the unique solution of the following system:{
s2µ‖∇ψνa,1‖22 − µγq‖ψνa,1‖qqsqγqµ − ‖ψνa,1‖2

∗

2∗s
2∗

µ = 0,

2s2µ‖∇ψνa,1‖22 − µqγ2q‖ψνa,1‖qqsqγqµ − 2∗‖ψνa,1‖2
∗

2∗s
2∗

µ > 0,
(1.13)

where ψνa,1(x) = ν
1
q−2
a φ0(

√
νax). Moreover, up to translations and rota-

tions, ũµ is the unique ground state of (1.5) for µ > 0 sufficiently small.
(2) For N ≥ 5, ûµ → Uε0 strongly in H1(RN ) as µ → 0, where Uε0 is the

Aubin-Talanti babble satisfying ‖Uε0‖22 = a2. Moreover, up to translations
and rotations, ûµ is the unique minimizer of Eµ(u)|Sa in Pa,µ− for µ > 0
sufficiently small.

(3) For N = 3, 4, ŵa,µ(x) = ε
N−2

2
µ ûµ(εµx) → Uε0 strongly in D1,2(RN ) for

some ε0 > 0 as µ→ 0 up to a subsequence, where εµ satisfies

µ ∼



ε6−qµ e−2ε
−2
µ , N = 4, 2 < q < 4,

ε
q
2−1
µ , N = 3, 3 < q < 6,

ε
1
2
µ

ln( 1
εµ

)
, N = 3, q = 3,

ε
5− 3q

2
µ , N = 3, 2 < q < 3.

Remark 1.3. (1) The precise asymptotic behaviors of ũµ and ûµ stated in
(1) and (2) of Theorem 1.2 are captured by comparing the energy values and
norms by full using the variational formulas of ũµ and ûµ, and minimizers
of the Gagliardo-Nirenberg inequality and the Aubin-Talanti bubbles. In
this argument, the unique determination of minimizers of the Gagliardo–
Nirenberg inequality (1.9) for 2 < q < 2 + 4

N and Aubin-Talanti bubbles for
N ≥ 5 in Sa, respectively, is crucial. Moreover, (2) of Theorem 1.2 also
gives a positive answer to Soave’s conjecture on (Q3).
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(2) For the local uniqueness, the standard strategy is to assume the contrary
and obtain a contradiction by full using the non-degeneracy of minimizers
of the Gagliardo–Nirenberg inequality and Aubin-Talanti bubbles in passing
to the limit (cf. [21,27]), which is powerful in studying problems with poten-
tials. Since (1.5) is autonomous, we can use a different method, based on
the precisely asymptotic behaviors of ũµ and the implicit function theorem,
to prove the local uniqueness of ũµ in a more direct way. It is worth point-
ing out that our method is also based on the non-degenerate of minimizers
of the Gagliardo–Nirenberg inequality. For ûµ, we remark that since the
linear operator of the limit equation is different from that of (1.5), our di-
rect methods, based on implicit function theorem, is invalid. Thus, we will
still use the standard method, that is to assume the contrary and obtain a
contradiction by full using the non-degeneracy of Aubin-Talanti bubbles.

(3) Since we loss the L2-integrability of the Aubin-Talanti babbles {Uε} for
N = 3, 4, the asymptotic behavior of ûµ as µ → 0 for N = 3, 4 is much
weaker than that of N ≥ 5 in the sense that, the convergence is only for
subsequences, which also leads us to loss the local uniqueness of ûµ for
µ > 0 sufficiently small in these two cases. We also remark that since we
loss the L2-integrability of the Aubin-Talanti babbles {Uε} for N = 3, 4,
the asymptotic behavior of ûµ can not be obtained by merely using varia-
tional arguments to compare the energy values and norms as that for (2) of
Theorem 1.2. Thus, to capture the precisely asymptotic behavior of ûµ, we
drive some uniformly pointwise estimates of ûµ by the maximum principle
(cf. [20]) and some ODE technique used in [7] (see also [24, 38]). With
these additional estimates, we obtain the precisely asymptotic behavior of
ûµ for N = 3, 4. It is worth pointing out that, in the case N = 3 and
2 < q < 3, since the nonlinearity decays too slow at infinity, we need to
further employ the bootstrapping argument to drive the desired estimates.

Our final result is devoted to the asymptotic behavior of the minimizers of
Eµ(u)|Sa in Pa,µ− as µ close to its upper-bound in the cases of 2 + 4

N ≤ q < 2∗.
It can be stated as follows.

Theorem 1.3. Assume N ≥ 3, 2 + 4
N ≤ q < 2∗ and µ, a > 0. Let ûµ be the

minimizer of Eµ(u)|Sa in Pa,µ− , found in [49, Theorem 1.1] for q = 2 + 4
N with

0 < µaq−qγq < αN,q and found in Theorem 1.1 for 2 + 4
N < q < 2∗ with all µ > 0.

Then

(1) For q = 2 + 4
N , v̂µ = ( a

‖φ0‖2 )
N−2

2 s
N
2
µ ûµ( a

‖φ0‖2 sµx) → (ν′a)
1
q−2φ0(

√
ν′ax)

strongly in H1(RN ) as µ → αN,q,a up to a subsequence, where αN,q,a =

aqγq−qαN,q for some ν′a > 0 and sµ = (1− µ
αN,q,a

)−
N−2

4 .

(2) For 2 + 4
N < q < 2∗, v̂µ = s

N
2
µ ûµ(sµx) → ν

1
q−2
a φ0(

√
νax) strongly in

H1(RN ) as µ→ +∞, where sµ = µ
1

qγq−2 . Moreover, up to translations and
rotations, ûµ is also the unique ground state of (1.5) for µ > 0 sufficiently
large.

Remark 1.4. (1) The ideas in proving Theorem 1.3 are similar to that of The-
orem 1.2. However, in the L2-critical case q = 2 + 4

N , the convergence of

ûµ is much weaker than that in the L2-supcritical case 2 + 4
N < q < 2∗
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in the sense that, it only holds for subsequences. The main reason is that
in the L2-critical case q = 2 + 4

N , we have ‖ϕ‖22 = const. for all ϕ being
a minimizer of the Gagliardo–Nirenberg inequality (1.9). Thus, the pre-
cise mass ‖ûµ‖22 = a2 is invalid in determining a unique minimizer of the
Gagliardo–Nirenberg inequality (1.9) in the case q = 2 + 4

N . Moreover, un-
like the studies for problems with homogeneous nonlinearities (cf. [26,27]),
combining nonlinearities (L2-critical and L2-supercritical) of (1.5) makes
the asymptotic behavior of ûµ to be more complicated, which also make us
loss the local uniqueness of ûµ for µ > 0 close to its upper bound in this
case. Indeed, as µ goes to its upper bound in the L2-critical case, com-
paring with the studies for problems with homogeneous nonlinearities, the
Sobolev critical term of (1.5) is an additionally inhomogenous perturbation
in passing to the limit, which makes the oscillations occurring.

Notations. Throughout this paper, C and C ′ are indiscriminately used to denote
various absolutely positive constants. a ∼ b means that C ′b ≤ a ≤ Cb and a . b
means that a ≤ Cb.

2. Asymptotic behavior of ua,µ,+

By [49, Theorem 1.1], m+
a,µ can always be attained by some ua,µ,+ for 2 < q <

2 + 4
N and µaq−qγq < αN,q, where m+

a,µ is given by (1.7) and ua,µ,+ is real valued,
positive, radially symmetric and radially decreasing. Our goal in this section is to
give an asymptotic behavior of ua,µ,+ as µ→ 0, which is more precisely than that
in [49, Theorem 1.4], and capture the precisely decaying rate of ua,µ,+ as µ → 0.
We recall that by [49, Theorem 1.1], ua,µ,+ is a solution of (1.5) for some λa,µ,+ < 0.
To simplify the notation, we shall denote uµ,+ = ua,µ,+ and λµ,+ = λa,µ,+, since
we will fix a > 0 in what follows. Let us begin with

Lemma 2.1. Let 2 < q < 2 + 4
N . Then −λµ,+ ∼ ‖∇uµ,+‖22 ∼ µ

2
2−qγq as µ→ 0.

Proof. Since uµ,+ ∈ Pa,µ+ , we have

‖∇uµ,+‖22 = µγq‖uµ,+‖qq + ‖uµ,+‖2
∗

2∗ (2.1)

and

2‖∇uµ,+‖22 > µqγ2q‖uµ,+‖qq + 2∗‖uµ,+‖2
∗

2∗ .

It follows from the Gagliardo–Nirenberg inequality that

‖∇uµ,+‖22 . µ‖uµ,+‖qq . µ‖∇uµ,+‖
qγq
2 ,

which together with qγq < 2 for 2 < q < 2 + 4
N , implies

‖∇uµ,+‖22 . µ
2

2−qγq . (2.2)

Thus, by (2.1) and (2.2), we also have

µ‖uµ,+‖qq . µ
2

2−qγq . (2.3)

Let us define

Vε(x) = Uε(x)ϕ(R−1ε x) (2.4)

where Uε(x) is the Aubin-Talanti babbles given by (1.11) and ϕ ∈ C∞0 (RN ) is a
radial cut-off function with ϕ ≡ 1 in B1, ϕ ≡ 0 in Bc2, and Rε is chosen such that
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Vε ∈ Sa. More precisely, for N ≥ 5, we choose ε = ε0 and Rε0 = +∞ such that
Vε0 = Uε0 ∈ Sa while for N = 3, 4, we choose ε > 0 sufficiently small and then in
the later two cases, we have

a2 =

∫
RN

(Uε(x)ϕ(R−1ε x))2 ∼ ε2
∫ Rεε

−1

1

r3−N ∼

{
ε2 ln(Rεε

−1), for N = 4,

εRε, for N = 3,
(2.5)

which implies Rεε
−1 → +∞ as ε → 0. Then it is well-known (cf. [44, (4.2)–(4.5)]

or [53, Chapter III]) that

‖∇Vε‖22 = S
N
2 +O((Rεε

−1)2−N ), ‖Vε‖2
∗

2∗ = S
N
2 +O((Rεε

−1)−N ) (2.6)

for ε > 0 sufficiently small, which implies

‖∇Vε‖22 ∼ S
N
2 ∼ ‖Vε‖2

∗

2∗ (2.7)

for ε > 0 sufficiently small. Now, we fix ε = ε0 and Rε0 = +∞ for N = 5, and
fix ε > 0 sufficiently small and choose Rε as that in (2.5) for N = 3, 4 such that
(2.7) holds for all N ≥ 3. By [49, Lemma 4.2], there exists t(µ) > 0 such that
(Vε)t(µ) ∈ Pa,µ+ for µ > 0 sufficiently small, where

(Vε)t(µ) = [t(µ)]
N
2 Vε(t(µ)x).

Then

[t(µ)]2‖∇Vε‖22 = µγq‖Vε‖qq[t(µ)]qγq + ‖Vε‖2
∗

2∗ [t(µ)]2
∗

and

2[t(µ)]2‖∇Vε‖22 > µqγ2q‖Vε‖qq[t(µ)]qγq + 2∗‖Vε‖2
∗

2∗ [t(µ)]2
∗
.

Since qγq < 2 for 2 < q < 2 + 4
N , by

(2∗ − 2)[t(µ)]2‖∇Vε‖22 < µ(2∗ − qγq)γq‖Vε‖qq[t(µ)]qγq ,

it is easy to see that t(µ)→ 0 as µ→ 0 for all N ≥ 3. It follows that

[t(µ)]2 ∼ µ[t(µ)]qγq as µ→ 0,

which implies t(µ) ∼ µ
1

2−qγq as µ → 0. Thus, by qγq < 2 for 2 < q < 2 + 4
N once

more,

Eµ((Vε)t(µ)) = (
1

2
− 1

qγq
)‖∇Vε‖22[t(µ)]2 + (

1

qγq
− 1

2∗
)‖Vε‖2

∗

2∗ [t(µ)]2
∗
∼ −µ

2
2−qγq .

Therefore, by Eµ((Vε)t(µ)) ≥ m+
a,µ and m+

a,µ & −µ‖uµ,+‖qq, we have

µ‖uµ,+‖qq & µ
2

2−qγq ,

which together with (2.3), implies

µ‖uµ,+‖qq ∼ µ
2

2−qγq .

By the regularity of uµ,+ and the Pohozaev identity, λµ,+ ∼ −µ‖uµ,+‖qq, and by

(2.2) and uµ,+ ∈ Pa,µ+ , ‖∇uµ,+‖22 ∼ µ‖uµ,+‖qq. Therefore,

−λµ,+ ∼ ‖∇uµ,+‖22 ∼ µ
2

2−qγq

as µ→ 0. It completes the proof. �
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By the well-known uniqueness result (cf. [39]) and the scaling invariance of (1.10),

φ0(x) =

(
ν0
σ0

) 1
q−2

w(
√
ν0x),

where w is the unique solution of the following equation:

−∆u+ u = uq−1 in RN ,
u(0) = max

x∈RN
u(x),

u(x) > 0 in RN ,
u(x)→ 0 as |x| → +∞,

(2.8)

A direct calculation also shows that

ψν,σ(x) = (
ν

σ
)

1
q−2φ0(

√
ν

σ
x) (2.9)

for ν, σ > 0 are all minimizers of the Gagliardo-Nirenberg inequality (1.9). Let νa
be given by (1.12), then for q 6= 2 + 4

N , ψνa,1 ∈ Sa and ψνa,1 is a minimizer of the
Gagliardo–Nirenberg inequality, that is,

‖ψνa,1‖qq = CqN,qa
q−qγq‖∇ψνa,1‖

qγq
2 . (2.10)

For the sake of simplicity, we re-denote ψa = ψνa,1.

Proposition 2.1. Let 2 < q < 2 + 4
N . Then wµ,+ → ψa strongly in H1(RN ) as

µ → 0, where wµ,+ = s
−N2
µ uµ,+(s−1µ x) with sµ being the unique solution of (1.13).

Moreover, up to translations and rotations, uµ,+ is the unique ground state of (1.5)
for µ > 0 sufficiently small.

Proof. Since ψa ∈ Sa, by [49, Lemma 4.2], there exists a unique sµ > 0 such that

(ψa)sµ ∈ P
a,µ
+ for µ > 0 sufficiently small where (ψa)sµ = s

N
2
µ ψa(sµx). That is,

s2µ‖∇ψa‖22 = µγq‖ψa‖qqsqγqµ + ‖ψa‖2
∗

2∗s
2∗

µ (2.11)

and

2s2µ‖∇ψa‖22 > µqγ2q‖ψa‖qqsqγqµ + 2∗‖ψa‖2
∗

2∗s
2∗

µ . (2.12)

As that in the proof of Lemma 2.1, we have

‖∇(ψa)sµ‖
2−qγq
2 < CqN,qγqµa

q−qγq 2∗ − qγq
2∗ − 2

. (2.13)

Since uµ,+ ∈ Pa,µ+ , we also have

‖∇uµ,+‖
2−qγq
2 < CqN,qγqµa

q−qγq 2∗ − qγq
2∗ − 2

. (2.14)

Now, using (ψa)sµ as a test function of m+
a,µ and by (2.10),

m+
a,µ ≤ Eµ((ψa)sµ) =

1

N
‖∇(ψa)sµ‖22 −

µaq−qγqCqN,q
q

(1− qγq
2∗

)‖∇(ψa)sµ‖
qγq
2 .

By the Gagliardo–Nirenberg inequality (1.9),

m+
a,µ = Eµ(uµ,+) ≥ 1

N
‖∇uµ,+‖22 −

µaq−qγqCqN,q
q

(1− qγq
2∗

)‖∇uµ,+‖
qγq
2 .
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Let us consider the function

f(t) =
1

N
t2 −

µaq−qγqCqN,q
q

(1− qγq
2∗

)tqγq .

A direct calculation shows that f(t) is strictly decreasing in (0, t0), where

t0 =

(
CqN,qγqµa

q−qγq 2∗ − qγq
2∗ − 2

) 1
2−qγq

.

Thus, by (2.13) and (2.14),

‖∇uµ,+‖22 ≥ ‖∇(ψa)sµ‖22. (2.15)

By (2.11) and (2.12), we can use similar arguments as that used in the proof of

Lemma 2.1 to show that sµ ∼ µ
1

2−qγq as µ → 0. It then follows from (2.9) and
(2.11) that

sµ = (1 + oµ(1))

(
µγq‖ψa‖qq
‖∇ψa‖22

) 1
2−qγq

= (1 + oµ(1))

(
µγq‖φ0‖qq
‖∇φ0‖22

) 1
2−qγq

.

Since by the Pohozaev identity satisfied by φ, we have 1
N ‖∇φ0‖

2
2 = (q−2)σ0

2q ‖φ0‖qq.

By (1.6), sµ = [( 1
σ0

+ oµ(1))µ]
1

2−qγq . Let

wµ,+ = s
−N2
µ uµ,+(s−1µ x).

Since uµ,+ satisfies (1.5), wµ,+ satisfies the following equation:

−∆wµ,+ = λµ,+s
−2
µ wµ,+ + µs

−2+N
2 (q−2)

µ wq−1µ,+ + s
−2+N

2 (2∗−2)
µ w2∗−1

µ,+ . (2.16)

By Lemma 2.1 and ∫
RN

w2
µ,+ =

∫
RN

u2µ,+ ≡ a2,

we have

‖∇wµ,+‖22 + ‖wµ,+‖22 = s−2µ ‖∇uµ,+‖22 + a2 ∼ 1.

Therefore, {wµ,+} is bounded in H1(RN ). It follows that wµ,+ ⇀ w∗ weakly in
H1(RN ) as µ→ 0 up to a subsequence. Note that wµ,+ is radial, by Struss’s radial
lemma (cf. [12, Lemma A.IV, Theorem A.I’] or [44, Lemma 3.1]) and the Sobolev
embedding theorem, wµ,+ → w∗ strongly in Lq(RN ) as µ→ 0 up to a subsequence.

By Lemma 2.1 once more, {λµ,+µ
−2

2−qγq } is bounded. Thus, λµ,+µ
−2

2−qγq → α∗ as
µ→ 0 up to a subsequence. On the other hand, by qγq < 2 for 2 < q < 2 + 4

N ,

s
−2+N

2 (2∗−2)
µ ∼ µ

2∗−2
2−qγq → 0

as µ → 0. Now, using (2.15) and (2.16), it is standard to show that wµ,+ → w∗
strongly in H1(RN ) as µ→ 0 up to a subsequence, where w∗ is the unique solution
of the following equation:

−∆u+ α∗u = σ0u
q−1 in RN ,

u(0) = max
x∈RN

u(x),

u(x) > 0 in RN ,
u(x)→ 0 as |x| → +∞,

(2.17)
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by the well-known uniqueness result (cf. [39]) and the scaling invariance of (1.10),

w∗(x) = (α∗σ0
)

1
q−2w(

√
α∗x), where w is the unique solution of (2.8). It follows from

‖wµ,+‖22 = a2 and the strong convergence of {wµ,+} in H1(RN ) that ‖w∗‖22 = a2,
which implies α∗ = νaν0 where νa is given by (1.12). Thus, w∗ = ψa. Since ψa
is unique, wµ,+ → ψa strongly in H1(RN ) as µ → 0. The system (1.13) directly
comes from (2.11) and (2.12). It remains to prove the local uniqueness of uµ,+ for
µ > 0 sufficiently small. Let us consider the following system:{

F(w,α, β, γ) = ∆w − αν0w + βwq−1 + γw2∗−1,

G(w,α, β, γ) = ‖w‖22 − a2,
(2.18)

where α, β, γ > 0 are parameters. It is easy to see that F(ψa, νa, σ0, 0) = 0 and
G(ψa, νa, σ0, 0) = 0. Let

L(ψa, νa, σ0, 0) =

(
∂wF(ψa, νa, σ0, 0) ∂αF(ψa, νa, σ0, 0)

∂wG(ψa, νa, σ0, 0) ∂αG(ψa, νa, σ0, 0)

)
be the linearization of the system (2.18) at (ψa, νa, σ0, 0) in H1(RN )× R, that is,

∂wF(ψa, νa, σ0, 0) = ∆− νaν0 + (q − 1)σ0ψ
q−2
a , ∂αF(ψa, νa, σ0, 0) = −ν0ψa

and

∂wG(ψa, νa, σ0, 0) = 2ψa, ∂αG(ψa, νa, σ0, 0) = 0.

Then L(ψa, νa, σ0, 0)[(φ, τ)] = 0 if and only if
∆φ− νaν0φ+ (q − 1)σ0ψ

q−2
a φ− τν0ψa = 0,∫

RN
ψaφ = 0.

Let us consider the following system:
∆φ− νaν0φ+ (q − 1)σ0ψ

q−2
a φ− τν0ψa = g,∫

RN
ψaφ = b,

(2.19)

where (g, b) ∈ H1
rad(RN )× R with

H1
rad(RN ) = {u ∈ H1(RN ) | u is radial}.

Then φ = φg + τν0φa, where φg and φa satisfies

∆φg − νaν0φg + (q − 1)σ0ψ
q−2
a φg = g (2.20)

and

∆φa − νaν0φa + (q − 1)σ0ψ
q−2
a φa = ψa, (2.21)

respectively. By [54, (5.2) and (5.3)], φa = 1
q−2ψa + 1

2 (x · ∇ψa) and∫
RN

φaψa = (
1

q − 2
− 4

N
)‖ψa‖22 6= 0

since q 6= 2+ 4
N . Thus, the unique solution of (2.19) is given by (φg +τb,gν0φa, τb,g)

where

τb,g =
b−

∫
RN φgψa

ν0
∫
RN φaψa

.
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Since q < 2∗, it is well-known that ψa is nondegenerate (cf. [41, Theorem 2.12]
and [45, Lemma 4.2]). Thus, by q < 2∗, (2.20) only has zero solution in H1

rad(RN )
for g = 0, which implies the linear operator L(ψa, νa, σ0, 0) : H1

rad(RN ) × R →
H1
rad(RN )× R is bijective. Moreover, it is standard to show that

|τb,g|+ ‖φg + τb,gφa‖H1 . |b|+ ‖g‖H1 .

Now, by the implicit function theorem, there exists a unique C1-curve (wβ,γ , αβ,γ)
in H1

rad(RN )×R3 for |β−σ0| << 1 and |γ| << 1 such that (wσ0,0, ασ0,0) = (ψa, νa),
and

F(wβ,γ , αβ,γ , β, γ) ≡ 0, G(wβ,γ , αβ,γ , β, γ) ≡ 0.

We recall that wµ,+ is radial and satisfies (2.16), and wµ,+ → ψa strongly inH1(RN )
as µ→ 0 with ‖wσ,+‖22 = a2, thus, by the uniqueness of sµ determined by (1.13), we

must have wµ,+ = wβ(µ),γ(µ) for β(µ) = µs
−2+N

2 (q−2)
µ and γ(µ) = s

−2+N
2 (2∗−2)

µ with
µ > 0 sufficiently small. On the other hand, if ũµ,+ is another ground state of (1.5)

with some λ̃µ,+ ∈ R for µ > 0 sufficiently small, then by [49, Theorem 1.3], ũµ,+ =
eiθûµ,+ where θ is a constant and ûµ,+ is real valued and positive. Since by the

Pohozaev identity, we always have λ̃µ,+ < 0. By applying the well-known Gidas-Ni-
Nirenberg theorem (cf. [25]), ũµ,+ must be radially symmetric. Now, by running the

arguments as used above once more, we know that ŵµ,+ = s
−N2
µ ûµ,+(s−1µ x) → ψa

strongly in H1(RN ) as µ→ 0+ with ‖wσ,+‖22 = a2. It follows from the uniqueness

of wβ(µ),γ(µ) that ûµ,+ = uµ,+ for µ > 0 sufficiently small. Thus, uµ,+ is the
unique ground state of (1.5) for µ > 0 sufficiently small up to translations and
rotations. �

3. Existence and nonexistence of ua,µ,−

In this section, we shall mainly study the question (Q1). Since in the very recent
work [34], the question (Q1) has been solved for N ≥ 4. we only consider the case
N = 3 and prove that m−a,µ can also be attained by some ua,µ,− for 2 < q < 2 + 4

N

in the case N = 3 under some additional assumptions, where m−a,µ is also given
by (1.7) and ua,µ,− is also real valued, positive, radially symmetric and radially
decreasing. The crucial point in this study is the following energy estimates.

Lemma 3.1. Let N = 3, 2 < q < 2 + 4
N and µ, a > 0. Then for µaq−qγq < αN,q,

m−a,µ = inf
u∈Pa,µ−

Eµ(u) < m+
a,µ +

1

3
S

3
2 . (3.1)

Proof. Since N = 3, we have Uε = 3
1
4 ( ε
ε2+|x|2 )

1
2 . Let Wε = χ(x)Uε where χ(x) is a

cut-off function such that χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| > 2. By simple
computations, we have that

‖∇Wε‖22 = S
3
2 +O(ε), ‖Wε‖66 = S

3
2 +O(ε3) (3.2)

and

‖Wε‖pp ∼


ε3−

p
2 , 3 < p < 6;

ε
3
2 ln

1

ε
, p = 3;

ε
p
2 , 2 ≤ p < 3.

(3.3)
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Now, we define Ŵε,t = uµ,+ + tWε and W ε,t = s
1
2 Ŵε,t(sx). Then it is well-known

that

‖∇W ε,t‖22 = ‖∇Ŵε,t‖22, ‖W ε,t‖66 = ‖Ŵε,t‖66, (3.4)

and

‖W ε,t‖22 = s−2‖Ŵε,t‖22, ‖W ε,t‖qq = sqγq−q‖Ŵε,t‖qq. (3.5)

We choose s =
‖Ŵε,t‖2

a , then W ε,t ∈ Sa. By [49, Lemma 4.2], there exist τε,t > 0

such that (W ε,t)τε,t ∈ P
a,µ
− , where (W ε,t)τε,t = τ

3
2
ε,tW ε,t(τε,tx). Thus,

‖∇W ε,t‖22τ
2−qγq
ε,t = µγq‖W ε,t‖qq + ‖W ε,t‖2

∗

2∗τ
2∗−qγq
ε,t . (3.6)

Since uµ,+ ∈ Pa,µ+ , by [49, Lemma 4.2], τε,0 > 1. By (3.2) and (3.6), we also know
that τε,t → 0 as t→ +∞ uniformly for ε > 0 sufficiently small. Since τε,t is unique
by [49, Lemma 4.2], it is standard to show that τε,t is continuous for t, which implies
that there exists tε > 0 such that τε,tε = 1. It follows that

m−µ,a ≤ sup
t≥0
Eµ(W ε,t). (3.7)

Recall that uµ,+ ∈ Sa and Wε are positive, by (3.2), (3.4) and (3.5), there exists
t0 > 0 such that

Eµ(W ε,t) = (
1

2
‖∇Ŵε,t‖22 −

µ

q
sqγq−q‖Ŵε,t‖qq −

1

6
‖Ŵε,t‖66) < m+

µ,a +
1

3
S

3
2 − σ′ (3.8)

for t < 1
t0

and t > t0 with σ′ > 0. Since uµ,+ is radial solution of (1.5) and
exponentially decays to zero as r → +∞,∫

R3

uµ,+Wε ∼ ε
5
2

∫ 1
ε

1

(
1

1 + r2
)

1
2 r2 ∼ ε 1

2

and ∫
R3

uµ,+W
5
ε ∼ ε

1
2

∫ 1
ε

1

(
1

1 + r2
)

5
2 r2 ∼ ε 1

2 . (3.9)

Thus, by (3.3),

s2 =
‖Ŵε,t‖22
a2

= 1 +
2t

a2

∫
R3

uµ,+Wε + t2‖Wε‖22 = 1 +O(ε
1
2 )

for t−10 ≤ t ≤ t0. Since it is easy to see that f(t) = (1 + t)q − 1− tq − qt− qtq−1 ≥ 0
for all t ≥ 0 in the case of q ≥ 3, by (3.4), (3.5) and the fact that uµ,+ is a solution
of (1.5) for some λµ,+ < 0,

Eµ(W ε,t) =
1

2
‖∇Ŵε,t‖22 −

µ

q
sqγq−q‖Ŵε,t‖qq −

1

6
‖Ŵε,t‖66

≤ m+
µ,a + Eµ(tWε)−

∫
R3

(tWε)
5uµ,+

+t(λµ,+

∫
R3

uµ,+Wε +
µ

a2
(γq − 1)‖Ŵε,t‖qq

∫
R3

uµ,+Wε) +O(ε)

= m+
µ,a + Eµ(tWε)−

∫
R3

(tWε)
5uµ,+ +O(ε)
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for t−10 ≤ t ≤ t0, where we have used the fact that λµ,+a
2 = λµ,+‖uµ,+‖22 =

µ(γq − 1)‖uµ,+‖qq which comes from the Pohozaev identity satisfied by uµ,+. Now,

for t−10 ≤ t ≤ t0, by (3.2), (3.3) and (3.9),

Eµ(W ε,t) ≤ m+
µ,a +

1

3
S

3
2 +O(ε)− Cε 1

2 < m+
µ,a +

1

3
S

3
2

by taking ε > 0 sufficiently small. It follows from (3.8) that

sup
t≥0
Eµ(W ε,t) < m+

µ,a +
1

3
S

3
2 . (3.10)

The conclusion then follows from (3.7). �

Remark 3.1. It is worth pointing our that the above argument also works for
N ≥ 4. In these cases, we have

‖∇Wε‖22 = S
N
2 +O(εN−2), ‖Wε‖66 = S

N
2 +O(εN )

and

‖Wε‖qq ∼ εN−
(N−2)q

2 , ‖Wε‖22 ∼

ε2 ln
1

ε
, N = 4,

ε2, N ≥ 5.

Moreover, similar to (3.9),∫
RN

upµ,+Wε ∼ ε
N−2

2 for all p ≥ 1.

It follows that

Eµ(W ε,t) =
1

2
‖∇Ŵε,t‖22 −

µ

q
sqγq−q‖Ŵε,t‖qq −

1

6
‖Ŵε,t‖66

≤ m+
µ,a + Eµ(tWε)

+t(λµ,+

∫
RN

uµ,+Wε +
µ

a2
(γq − 1)‖Ŵε,t‖qq

∫
RN

uµ,+Wε) +O(ε2 ln
1

ε
)

= m+
µ,a + Eµ(tWε) +O(εN−2)

≤ m+
µ,a +

1

N
S
N
2 − CεN−

(N−2)q
2 +O(ε2 ln

1

ε
)

< m+
µ,a +

1

N
S
N
2

for t−10 ≤ t ≤ t0 by taking ε > 0 sufficiently small since N ≥ 4 and q > 2. Our
proof is slightly simpler than that of [34] since our test function is radial and we do
not need other variational formulas of m−µ,a.

For every c > 0 such that µcq−qγq < αN,q, let u ∈ Pc,µ± , then vb = b
cu ∈ Sb for

all b > 0. By [49, Lemma 4.2], there exists τ±(b) > 0 such that

(vb)τ±(b) = (τ±(b))
N
2 vb(τ±(b)x) ∈ Pb,µ± ,

where b > 0 such that µbq−qγq < αN,q. Clearly, τ±(c) = 1.

Lemma 3.2. Let 2 < q < 2 + 4
N . For every c > 0 such that µcq−qγq < αN,q, τ

′
±(c)

exist and

τ ′±(c) =
µqγq‖u‖qq + 2∗‖u‖2∗2∗ − 2‖∇u‖22
c(2‖∇u‖22 − µqγ2q‖u‖

q
q − 2∗‖u‖2∗2∗)

. (3.11)
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Moreover, Eµ((vb)τ±(b)) < Eµ(u) for all b > c such that µbq−qγq < αN,q.

Proof. The proof is mainly inspired by [19]. Since (vb)τ±(b) ∈ P
b,µ
± , we have

(
b

c
τ(b))2‖∇u‖22 = (

b

c
)q(τ(b))qγqµγq‖u‖qq + (

b

c
τ(b))2

∗
‖u‖2

∗

2∗ .

Now, if we define the function

Φ(b, τ) = (
bτ

c
)2‖∇u‖22 − (

b

c
)qτ qγqµγq‖u‖qq − (

bτ

c
)2
∗
‖u‖2

∗

2∗ ,

then Φ(b, τ(b)) ≡ 0 for b > 0 such that µbq−qγq < αN,q. Since u ∈ Pc,µ± ,

∂τΦ(c, 1) = 2‖∇u‖22 − µqγ2q‖u‖qq − 2∗‖u‖2
∗

2∗ 6= 0.

It follows from the implicit function theorem that τ ′±(c) exist and (3.11) holds. By
(1.6) and q < 2∗, 1− γq > 0. Thus, by u ∈ Pc,µ± ,

1 + cτ ′(c) = 1 +
µqγq‖u‖qq + 2∗‖u‖2∗2∗ − 2‖∇u‖22
2‖∇u‖22 − µqγ2q‖u‖

q
q − 2∗‖u‖2∗2∗

=
µqγq(1− γq)‖u‖qq

2‖∇u‖22 − µqγ2q‖u‖
q
q − 2∗‖u‖2∗2∗

.

Since (vb)τ±(b) ∈ P
b,µ
± and u ∈ Pc,µ± ,

Eµ((vb)τ±(b)) = (
1

2
− 1

qγq
)‖∇(vb)τ(b)‖22 + (

1

qγq
− 1

2∗
)‖(vb)τ(b)‖2

∗

2∗

= (
b

c
τ(b))2(

1

2
− 1

qγq
)‖∇u‖22 + (

b

c
τ(b))2

∗
(

1

qγq
− 1

2∗
)‖u‖2

∗

2∗

= (
1

2
− 1

qγq
)‖∇u‖22 + (

1

qγq
− 1

2∗
)‖u‖2

∗

2∗ + o(b− c)

+
1 + cτ ′(c)

c
(2(

1

2
− 1

qγq
)‖∇u‖22 + 2∗(

1

qγq
− 1

2∗
)‖u‖2

∗

2∗)(b− c)

= Eµ(u)−
µ(1− γq)‖u‖qq

c
(b− c)

+o(b− c).
Therefore,

dEµ((vb)τ±(b))

db
|b=c = −

µ(1− γq)‖u‖qq
c

< 0.

Since c > 0, which satisfies µcq−qγq < αN,q, is arbitrary and (vb)τ±(b) ∈ P
b,µ
± , we

have Eµ((vb)τ±(b)) < Eµ(u) for all b > c such that µbq−qγq < αN,q. �

With Lemma 3.2 in hands, we can obtain the following.

Proposition 3.1. Let 2 < q < 2+ 4
N and µaq−qγq < αN,q. If m−a,µ < m+

a,µ+ 1
N S

N
2

then

m−a,µ = inf
u∈Pa,µ−

Eµ(u)

can be attained by some ua,µ,− which is real valued, positive, radially symmetric
and decreasing in r = |x|. Moreover, (1.5) has a second solution ua,µ,− with some
λa,µ,− < 0 which is real valued, positive, radially symmetric and radially decreasing.
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Proof. Let {un} ⊂ Pa,µ− be a minimizing sequence. Then by taking |un| and adapt-
ing the Schwarz symmetrization to |un| if necessary, we can obtain a new minimizing
sequence, say {un} again, such that un are all real valued, nonnegative, radially
symmetric and decreasing in r = |x|. Since {un} ⊂ Pa,µ− , we have

Eµ(un) =
µ

q
(
qγq
2
− 1)‖un‖qq +

1

N
‖un‖2

∗

2∗ . (3.12)

Thus, by the Hölder and Young inequalities and {un} ⊂ Pa,µ− again, we known that

{un} is bounded in H1(RN ) and thus, un ⇀ u0 weakly in H1(RN ) as n → ∞ up
to a subsequence. Since un are all radial, by Struss’s radial lemma (cf. [12, Lemma
A.IV, Theorem A.I’] or [44, Lemma 3.1]) and the Sobolev embedding theorem,
un → u0 strongly in Lq(RN ) as n → ∞ up to a subsequence. Without loss of
generality, we assume that un ⇀ u0 weakly in H1(RN ) and un → u0 strongly in
Lq(RN ) as n→∞. We claim that u0 6= 0. If not, then un → 0 strongly in Lq(RN )
as n→∞. It follows from {un} ⊂ Pa,µ− that

‖∇un‖22 = ‖un‖2
∗

2∗ + on(1),

which together with the Sobolev inequality (1.8), implies that either un → 0

strongly in D1,2(RN ) as n → ∞ or ‖∇un‖22 = ‖un‖2
∗

2∗ + on(1) ≥ S
N
2 + on(1).

Hence, by (3.12), either m−a,µ = 0 or m−a,µ ≥ 1
N S

N
2 , which contradicts Eµ(u) & 1

for u ∈ Pc,µ− and Lemma 3.1. We remark that Eµ(u) & 1 for u ∈ Pc,µ− comes from
similar arguments as used for [50, Lemma 5.7]. Therefore, we must have u0 6= 0.
Let vn = un − u0. Then there are two cases:

(i) vn → 0 strongly in H1(RN ) as n→∞ up to a subsequence.
(ii) ‖∇vn‖22 + ‖vn‖22 & 1.

In the case (i), u0 ∈ Pa,µ− and m−a,µ is attained by u0 which is real valued, radially
symmetric, nonnegative and decreasing in r = |x|. By [49, Proposition 1.5], u0 is
a solution of (1.5) with some λ0 ∈ R which appears as a Lagrange multiplier. By
multiplying (1.5) with u0 and integrating by parts, and using u0 ∈ Pa,µ− , we have

λ0a
2 = µ(γq − 1)‖u0‖qq < 0,

which implies λ0 < 0. Now, by the maximum principle and classical elliptic es-
timates, we know that u0 is positive. It remains to consider the case (ii). Let
‖u0‖22 = t20, then by the Fatou lemma, 0 < t0 ≤ a. There are two subcases:

(ii1) ‖vn‖2∗ → 0 as n→∞ up to a subsequence.
(ii2) ‖vn‖2

∗

2∗ & 1.

In the subcase (ii1), by [49, Lemma 4.2], there exists s0 > 0 such that (u0)s0 ∈
Pt0,µ− . By [49, Lemma 4.2] once more, {un} ⊂ Pa,µ− and un → u0 strongly in

L2∗(RN ) ∩ Lq(RN ) as n→∞ up to a subsequence,

m−a,µ + on(1) = Eµ(un) ≥ Eµ((un)s0) ≥ Eµ((u0)s0) + on(1).

By Lemma 3.2, we have m−t0,µ ≥ m
−
a,µ. Thus, Eµ((u0)s0) = m−t0,µ and m−t0,µ = m−a,µ.

If t0 < a then by taking (u0)s0 as the test function in the proof of Lemma 3.2, we
know that m−t0,µ > m−a,µ, which is a contradiction. Thus, in the subcase (ii1),

we must have t0 = a and so that m−a,µ is attained by (u0)s0 which is real valued,
radially symmetric, nonnegative and decreasing in r = |x|. As above, we can show
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that (u0)s0 is positive and (u0)s0 is a solution of (1.5) with some λ′0 < 0. It remains
to consider the subcase (ii2). Let

sn =

(
‖∇vn‖22
‖vn‖2

∗
2∗

) 1
2∗−2

.

Then in the subcase (ii2), sn . 1 and by the Sobolev inequality (1.8),

‖∇(vn)sn‖22 = ‖(vn)sn‖2
∗

2∗ ≥
1

N
S
N
2 .

Since 0 < t0 ≤ a, by [49, Lemma 4.2], there exists τ0 > 0 such that (u0)τ0 ∈ P
t0,µ
− .

We claim that sn ≥ τ0 up to a subsequence. Suppose the contrary that sn < τ0
for all n. Then by [49, Lemma 4.2] once more, the Brezis-Lieb lemma (cf. [56,
Lemma 1.32]), Lemma 3.2, the fact that un → u0 strongly in Lq(RN ) as n → ∞
and the boundedness of {sn},

m−a,µ + on(1) = Eµ(un)

≥ Eµ((un)sn)

= Eµ((u0)sn) + E0((vn)sn) + on(1)

≥ m+
t0,µ +

1

N
S
N
2 + on(1)

≥ m+
a,µ +

1

N
S
N
2 + on(1),

which is impossible. Thus, we must have sn ≥ τ0 up to a subsequence. Without loss
of generality, we may assume that sn ≥ τ0 for all n ∈ N. Again, by [49, Lemma 4.2],
the Brezis-Lieb lemma (cf. [56, Lemma 1.32]) and the fact that un → u0 strongly
in Lq(RN ) as n→∞,

m−a,µ + on(1) = Eµ(un) ≥ Eµ((un)τ0) = Eµ((u0)τ0) + E0((vn)τ0) + on(1).

Since sn ≥ τ0, by [49, Proposition 2.2], E0((vn)τ0) ≥ 0, which, together with
Lemma 3.2, implies that t0 = a and m−a,µ is attained by (u0)τ0 . Clearly, (u0)τ0
is real valued, radially symmetric, nonnegative and decreasing in r = |x|. As
above, we can show that (u0)τ0 is positive and (u0)τ0 is a solution of (1.5) with
some λ′′0 < 0. Therefore, we have proved that m−a,µ can always be attained by some
ua,µ,− which is real valued, radially symmetric, positive and decreasing in r = |x|.
By [49, Proposition 1.5], (1.5) has a second solution ua,µ,− which is real valued,
radially symmetric, positive and decreasing in r = |x|. �

Our next goal in this section is to prove the existence and nonexistence of ground
states for µaq−qγq ≥ αN,q in the L2-critical and supercritical cases, which gives
partial answers to the question (Q2). In these two cases, 2 + 4

N ≤ q < 2∗, which
implies

qγq ≥ 2.

We recall that the constant αN,q is given by [49, Theorem 1.1]. For q = 2 + 4
N ,

by [49, (5,1)],

αN,q = C−qN,q(1 +
2

N
) =

1

CqN,qγq
, (3.13)

where CN,q is the optimal constant in the Gagliardo–Nirenberg inequality (1.9).
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Lemma 3.3. Let N ≥ 3 and 2 + 4
N ≤ q < 2∗. Then m−a,µ is strictly decreasing for

0 < µ < aqγq−qαN,q and is nonincreasing for µ ≥ aqγq−qαN,q, where m−a,µ is given

by (1.7). Moreover, 0 < m−a,µ <
1
N S

N
2 for all µ > 0 in the case of 2 + 4

N < q < 2∗

while, m−a,µ = 0 for µ ≥ aqγq−qαN,q in the case of q = 2 + 4
N .

Proof. Modified the proof of [49, Lemma 8.2] in a trivial way (or by Lemma 3.2
and [49, Theorem 1.1]), we can show that m−a,µ is strictly decreasing for 0 < µ <

aqγq−qαN,q. For µ ≥ aqγq−qαN,q, let us consider the fibering map

Ψu(t) =
t2

2
‖∇u‖22 −

µtqγq

q
‖u‖qq −

t2
∗

2∗
‖u‖2

∗

2∗ ,

as that in [49]. For 2 + 4
N < q < 2∗, it has been proved in [49, Lemma 6.1] that for

every u ∈ Sa, there exists tu > 0 such that Ψu(t) is strictly increasing in (0, tu), is
strictly decreasing in (tu,+∞) and

(u)tu = t
N
2
u u(tux) ∈ Pa,µ− .

Moreover, by [49, Lemma 6.2], we have m−a,µ > 0 for all µ > 0 in the L2-supercritical

case 2 + 4
N < q < 2∗. It follows that we can always choose vε ∈ Pa,µ− such that

Eµ(vε) < m−a,µ + ε in the L2-supercritical case 2 + 4
N < q < 2∗. Then by similar

arguments as used for [49, Lemma 8.2] (or by Lemma 3.2), we have

m−a,µ′ < m−a,µ + ε for all µ′ > µ.

Since ε > 0 and µ ≥ aqγq−qαN,q are arbitrary, m−a,µ is nonincreasing for µ ≥
aqγq−qαN,q in the L2-supercritical case 2 + 4

N < q < 2∗. It follows from [49,

Lemma 6.4] that m−a,µ <
1
N S

N
2 for all µ > 0.

In the L2-critical case q = 2 + 4
N , since

sup
u∈Sa

‖∇u‖2
‖u‖q

= +∞.

For all µ > 0, we can always choose u ∈ Sa such that ‖∇u‖2‖u‖q > µγq. Indeed, if

supu∈Sa
‖∇u‖2
‖u‖q . 1, then by the Gagliardo-Nirenberg inequality,

‖∇u‖2 . ‖u‖q . ‖∇u‖
γq
2 for all u ∈ Sa,

which implies

sup
u∈Sa

‖∇u‖2 . 1.

It is impossible since in any ball BR(0), the eigenvalue problem −∆u = λu, with
Dirichlet boundary conditions, has a sequence of eigenvalues λj → +∞ as j →∞.
We note that qγq = 2 in the L2-critical case q = 2 + 4

N . Thus,

Ψ′u(t) = (‖∇u‖22 − µγq‖u‖qq)t− t2
∗−1‖u‖2

∗

2∗ = 0

has a unique solution tu > 0 for u ∈ Sa such that ‖∇u‖2‖u‖q > µγq. Moreover, Ψu(t) is

strictly increasing in (0, tu), is strictly decreasing in (tu,+∞) and

(u)tu = t
N
2
u u(tux) ∈ Pa,µ = Pa,µ− .

Thus, Pa,µ = Pa,µ− 6= ∅ and Ψu(tu) = maxt≥0 Ψu(t) for all µ > 0 and all u ∈
Sa such that ‖∇u‖2‖u‖q > µγq. Now, as in the L2-supercritical case 2 + 4

N < q <
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2∗, by similar arguments as used for [49, Lemma 8.2], we can show that m−a,µ is

nonincreasing for µ ≥ aqγq−qαN,q in the L2-critical case q = 2 + 4
N . It remains

to prove that m−a,µ = 0 for µ ≥ aqγq−qαN,q in the case of q = 2 + 4
N . Let {ϕn}

be the minimizing sequence of the Gagliardo-Nirenberg inequality (1.9). Then by

scaling at
N
2
n

‖ϕn‖2ϕn(tnx) if necessary, we may assume that ‖ϕn‖22 = a2, ‖ϕn‖qq = 1 and

‖∇ϕn‖22 = C
− 2
γq

N,q a
2(γq−1)

γq + on(1). Let us consider the following function:

hϕn(µ, t) = t2(‖∇ϕn‖22 − µγq‖ϕn‖qq)− t2
∗
‖ϕn‖2

∗

2∗

= (C
− 2
γq

N,q a
2(γq−1)

γq + on(1)− µγq)t2 − t2
∗
‖ψ‖2

∗

2∗

= γq(αN,qa
qγq−q + on(1)− µ)t2 − t2

∗
‖ψ‖2

∗

2∗ ,

where we have used (3.13). By [49, Lemma 5.1], there exists a unique tn(µ) > 0
such that hϕn(µ, tn(µ)) = 0 for 0 < µ < aqγq−qαN,q. Thus, (ϕn)tn(µ) ∈ Pa,µ
for 0 < µ < aqγq−qαN,q, where (ϕn)tn(µ) = [tn(µ)]

N
2 ϕn(tn(µ)x). Moreover, since

‖ϕn‖qq = 1, by the Hölder inequality, ‖ϕn‖2∗ & 1. It follows that t(µ) → 0 as

µ→ aqγq−qαN,q, which implies

Eµ((ψ)t(µ)) =
1

N
‖ϕn‖2

∗

2∗ [tn(µ)]2
∗

= on(1)

as µ→ aqγq−qαN,q in the L2-critical case q = 2 + 4
N . Thus, we must have m−a,µ ≤ 0

for µ = aqγq−qαN,q. By the monotone property of m−a,µ stated in Lemma 3.2,

m−a,µ ≤ 0 for µ ≥ aqγq−qαN,q. Recall that we always have

Eµ(u) =
1

N
‖u‖2

∗

2∗ ≥ 0 for all u ∈ Pa,µ, (3.14)

thus, we must have m−a,µ = 0 for µ ≥ aqγq−qαN,q. �

With Lemma 3.3 in hands, we can obtain the following.

Proposition 3.2. Let N ≥ 3 and 2 + 4
N ≤ q < 2∗.

(1) If 2 + 4
N < q < 2∗, then m−a,µ is attained by same ua,µ,− which is real

valued, positive, radially symmetric and decreasing in r = |x| for all µ > 0,
and thus, ua,µ,− is a solution of (1.5) for all µ > 0 with some λa,µ,− < 0.

(2) If q = 2 + 4
N , then m−a,µ can not be attained and (1.5) has no ground

states for all µ ≥ aqγq−qαN,q.

Proof. (1) By Lemma 3.3, 0 < m−a,µ <
1
N S

N
2 for all µ > 0 in the case of 2 + 4

N <
q < 2∗. Now, by following the arguments in [49, Section 6] step by step, we can
show that m−a,µ is attained by some ua,µ,− which is real valued, nonnegative, radially

symmetric and decreasing in r = |x| for all µ > 0 in the case of 2 + 4
N < q < 2∗. By

similar arguments as used for [50, Lemma 6.2], we know that Pa,µ = Pa,µ− 6= ∅ is a

natural constraint in Sa for all µ > 0 in the case of 2 + 4
N < q < 2∗. Thus, ua,µ,−

is a solution of (1.5) for all µ > 0 with some λa,µ,− in the case of 2 + 4
N < q < 2∗.

As that in the proof of Proposition 3.1, we can show that λa,µ,− < 0 and ua,µ,− is
positive.

(2) Suppose the contrary thatm−a,µ is attained by some ua,µ,− for µ ≥ aqγq−qαN,q,
then by Lemma 3.3 and (3.14), ‖ua,µ,−‖2

∗

2∗ = 0. It is impossible since ua,µ,− ∈ Sa.
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Thus, m−a,µ can not be attained for µ ≥ aqγq−qαN,q. It follows that (1.5) has no

ground state for all µ ≥ aqγq−qαN,q. �

4. The asymptotic behavior of ua,µ,−

In this section, we shall mainly study the question (Q3) and give a precisely
description of the asymptotic behavior of ua,µ,− as µ→ 0+. Since we consider µ→
0+ now, the assumptions of [49, Theorem 1.1], [34, Theorem 1.6] and Proposition 3.1
always hold and thus, ua,µ,−, which is a minimizer of E|Sa(u) on Pa,µ− , exists for all
N ≥ 3, 2 < q < 2∗ for µ > 0 sufficiently small.

Proposition 4.1. Let N ≥ 3, 2 < q < 2∗ and ua,µ,− is a critical point of E|Sa(u)
of mountain pass type. If N ≥ 5 then ua,µ,− → Uε0 strongly in H1(RN ) as µ→ 0+,
where Uε0 is the Aubin-Talanti babble such that Uε0 ∈ Sa. Moreover, if N ≥ 9, then
up to translations and rotations, ua,µ,− is the unique minimizer of E|Sa(u) on Pa,µ−
for µ > 0 sufficiently small.

Proof. By [49, Theorem 1.4], m+
a,µ → 0 as µ→ 0+. Moreover, by [49, Theorem 1.4]

again, we know that m−a,µ → 1
N S

N
2 as µ→ 0+, and

‖∇ua,µ,−‖22, ‖ua,µ,−‖2
∗

2∗ → S
N
2 as µ→ 0+

for 2 + 4
N ≤ q < 2∗. On the other hand, by [49, Lemma 4.2] and similar arguments

as used for [50, Lemma 5.7], we also have m−a,µ & 1 for µ > 0 sufficiently small in

the case of 2 < q < 2+ 4
N . Thus, by adapting similar arguments as used in the proof

of [49, Theorem 1.1] for the case of 2 + 4
N ≤ q < 2∗ to the case of 2 < q < 2 + 4

N ,

we can also show that m−a,µ → 1
N S

N
2 as µ→ 0+, and

‖∇ua,µ,−‖22, ‖ua,µ,−‖2
∗

2∗ → S
N
2 as µ→ 0+

for 2 < q < 2+ 4
N (see also [34, Theorem 1.7]). It follows that, up to a subsequence,

{ua,µ,−} is a minimizing sequence of the following minimizing problem:

S = inf
u∈D1,2(RN )\{0}

‖∇u‖22
‖u‖22∗

. (4.1)

Since N ≥ 5, Uε ∈ L2(RN ) for all ε > 0. We then choose ε0 > 0 such that
Uε0 ∈ Sa. By [49, Lemma 4.2], there exists t(µ) > 0 such that (Uε0)t(µ) ∈ Pa,µ− for
µ > 0 sufficiently small, that is,

[t(µ)]2S
N
2 = µγq‖Uε0‖qq[t(µ)]qγq + [t(µ)]2

∗
S
N
2 .

Clearly, by the implicit function theorem, t(µ) is of class C1 for |µ| << 1 such that

t(0) = 1. It follows from S
N
2 (1− [t(µ)]2

∗−2) = µγq‖Uε0‖qq[t(µ)]qγq−2 that

t(µ) = 1−
γq‖Uε0‖qq

(2∗ − 2)S
N
2

µ+ o(µ), (4.2)

which implies

m−a,µ ≤ Eµ((Uε0)t(µ))

=
1

N
S
N
2 −

µγq‖Uε0‖qq
2∗

− µ

q
(1− qγq

2∗
)‖Uε0‖qq + o(µ)

=
1

N
S
N
2 −

µ‖Uε0‖qq
q

+ o(µ) (4.3)
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for N ≥ 5. Since we have m−a,µ = 1
N ‖∇ua,µ,−‖

2
2 −

µ
q (1− qγq

2∗ )‖ua,µ,−‖qq, by (4.3),

1

N
‖∇ua,µ,−‖22 −

µ

q
(1− qγq

2∗
)‖ua,µ,−‖qq ≤

1

N
S
N
2 −

µ‖Uε0‖qq
q

+ o(µ). (4.4)

On the other hand, by (4.1) and ua,µ,− ∈ Pa,µ− ,

S ≤ ‖∇ua,µ,−‖22
‖ua,µ,−‖22∗

=
‖∇ua,µ,−‖22

(‖∇ua,µ,−‖22 − µγq‖ua,µ,−‖
q
q)

2
2∗

= (‖∇ua,µ,−‖22 − µγq‖ua,µ,−‖qq)
2
N +

µγq‖ua,µ,−‖qq
S
N−2

2

+ o(µ‖ua,µ,−‖qq).

It follows that

‖∇ua,µ,−‖22 ≥ S
N
2 − N − 2

2
µγq‖ua,µ,−‖qq + o(µ‖ua,µ,−‖qq). (4.5)

Combining (4.4) and (4.5), we have

‖ua,µ,−‖qq ≥ ‖Uε0‖qq + o(1). (4.6)

Since {ua,µ,−} is bounded in H1(RN ), ua,µ,− ⇀ u0,− weakly in H1(RN ) as µ→ 0+

up to a subsequence. Since ua,µ,− is radial and decreasing for r = |x|,

sup
y∈RN

∫
B1(y)

|ua,µ,−|2dx =

∫
B1(0)

|ua,µ,−|2dx.

Thus, by (4.6), Lions’ lemma [56, Lemma 1.21] and the Sobolev embedding theorem,
u0,− 6= 0. Note that it is standard to show that u0,− is a weak solution of the
following equation,

−∆U = U2∗−1, in RN ,

thus, we must have ‖∇u0,−‖22 ≥ S
N
2 . It follows from ‖∇ua,µ,−‖22 → S

N
2 as µ→ 0+

that ua,µ,− → u0,− strongly in D1,2(RN ) as µ → 0+ up to a subsequence, which
implies u0,− = Uε for some ε > 0. Since ‖Uε0‖22 = a2, by the Fatou lemma and
(4.6),

‖Uε‖qq ≥ ‖Uε0‖qq and ‖Uε‖2 ≤ ‖Uε0‖22.

Hence, we must have ε = ε0 and thus, ‖u0,−‖2 = ‖Uε0‖22 = a2, which implies
ua,µ,− → Uε0 strongly in H1(RN ) as µ → 0+ up to a subsequence. Since Uε0 is
the unique Aubin-Talanti babble in Sa, we have ua,µ,− → Uε0 strongly in H1(RN )
as µ→ 0+. Moreover, since ua,µ,− is a solution of (1.5), by the Pohozaev identity
and ua,µ,− ∈ Pa,µ, we have

−λa,µ,−‖ua,µ,−‖22 = (1− γq)µ‖ua,µ,−‖qq, (4.7)

which implies λa,µ,− → 0 as µ→ 0+. It remains to prove that ua,µ,− is the unique
minimizer of E|Sa(u) on Pa,µ− for µ > 0 sufficiently small up to translations and
rotations. For this, let us first claim that

ua,µ,− .

(
1

1 + r2

)N−2
2

(4.8)

for all r ≥ 0 in the case of µ > 0 sufficiently small. Indeed, since ua,µ,− is a positive
and radially decreasing solution of (1.5), by Struss’s radial lemma (cf. [12, Lemma
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A.IV, Theorem A.I’] or [44, Lemma 3.1]), ua,µ,− . r−
N−1

2 for r ≥ 1. Thus, by
(4.7), ua,µ,− satisfies

−u′′a,µ,− −
N − 1

r
u′a,µ,− . u

4
N−2

a,µ,−ua,µ,− . r
−(2+δ)ua,µ,− for r & 1 (4.9)

for some δ > 0. By bootstrapping we obtain the desired decaying estimate (4.8).
Now, let us consider the following system:{

F(w,α, µ) = ∆w − αw + µwq−1 + w2∗−1,

G(w,α, µ) = ‖w‖22 − a2,
(4.10)

where α, µ > 0 are parameters. It is easy to see that F(Uε0 , 0, 0) = 0 and
G(Uε0 , 0, 0) = 0. Let

L(Uε0 , 0, 0) =

(
∂wF(Uε0 , 0, 0) ∂αF(Uε0 , 0, 0)

∂wG(Uε0 , 0, 0) ∂αG(Uε0 , 0, 0)

)
be the linearization of the system (4.10) at (Uε0 , 0, 0) in H1(RN )× R, that is,

∂wF(Uε0 , 0, 0) = ∆ + (2∗ − 1)U2∗−2
ε0 , ∂αF(Uε0 , 0, 0) = −Uε0

and

∂wG(Uε0 , 0, 0) = 2Uε0 , ∂αG(Uε0 , 0, 0) = 0.

Then L(Uε0 , 0, 0)[(φ, τ)] = 0 if and only if
∆φ+ (2∗ − 1)U2∗−2

ε0 φ− τUε0 = 0,∫
RN

Uε0φ = 0.
(4.11)

We claim that in H1
rad(RN )×R, L(Uε0 , 0, 0)[(φ, τ)] = 0 if and only if (φ, τ) = (0, 0).

Let L(Uε0 , 0, 0)[(φ, τ)] = 0 for some (φ, τ) ∈ H1
rad(RN )× R. Since it is well-known

(cf. [14]) that W = N−2
2 Uε0 + U ′ε0r is the unique radial solution of the following

equation

∆φ+ (2∗ − 1)U2∗−2
ε0 φ = 0

in H1
rad(RN ), by multiplying the first equation of (4.11) with W and integrating

by parts, we have

0 = τ

∫
RN

WUε0 = −τ
∫
RN

U2
ε0 .

It follows that τ = 0 and thus, φ = CW for some constant C ∈ R. By the second
equation of (4.11),

0 =

∫
RN

Uε0φ = −C
∫
RN

U2
ε0 ,

which implies that φ = 0. Thus, the kernel of the linearization of the system (4.10)
at (Uε0 , 0, 0) in H1

rad(RN ) × R is trivial, which implies that the linear operator
L(Uε0 , 0, 0) : H1

rad(RN ) × R → H1
rad(RN ) × R is injective. On the other hand,

by similar arguments as used for Proposition 2.1, we know that all minimizers of
Eµ(u)|Sa on Pa,µ− are real valued, positive, radially symmetric and radially decreas-
ing up to translations and rotations. Now, suppose that there are at least two
minimizers of Eµ(u)|Sa on Pa,µ− , say u∗µ and u∗∗µ , then without loss of generality, we
may assume that they are all real valued, positive, radially symmetric and radially
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decreasing. The corresponding Lagrange multipliers are λ∗µ and λ∗∗µ , respectively.
Let

wµ =
u∗µ − u∗∗µ

‖u∗µ − u∗∗µ ‖H1 + |λ∗µ − λ∗∗µ |
and ςµ =

λ∗µ − λ∗∗µ
‖u∗µ − u∗∗µ ‖H1 + |λ∗µ − λ∗∗µ |

,

where ‖ · ‖H1 is the usual norm in H1(RN ). It is easy to see that {wµ} is bounded
in H1(RN ) and {ςµ} is bounded. Moreover, by (1.5), we also have

−∆wµ − λ∗µwµ − ςµu∗∗µ = µ(q − 1)

(
u∗µ + θµ(u∗µ − u∗∗µ )

)q−2
wµ

+(2∗ − 1)

(
u∗µ + θ′µ(u∗µ − u∗∗µ )

)2∗−2

wµ, (4.12)

where θµ, θ
′
µ ∈ (0, 1). Since u∗µ and u∗∗µ belong to Sa, we also have

2

∫
RN

u∗µwµ = −‖u∗µ − u∗∗µ ‖2‖wµ‖2.

Since the linear operator L(Uε0 , 0, 0) : H1
rad(RN )×R→ H1

rad(RN )×R is injective,
it is standard to prove that (wµ, ςµ) ⇀ (0, 0) weakly in D1,2(RN ) × R as µ → 0+.
Now, by multiplying (4.12) with wµ and integrating by parts, we can use fact that
u∗∗µ , u

∗
µ → Uε0 strongly in H1(RN ) as µ → +∞ to show that (wµ, ςµ) → (0, 0)

strongly in D1,2(RN )× R as µ→ 0+. Moreover, by (4.7), we also have

ςµ ∼ µ
∫
RN

(
u∗µ + θµ(u∗µ − u∗∗µ )

)q−1
wµ = o(µ).

By (4.7), (4.8) and (4.12),

−∆wµ −
1

2
λ∗µwµ .

µ

rN−2
for r &

1

|λ∗µ|
1
4

.

By (4.7), we also have

−∆(r2−N )− 1

2
λ∗µr

2−N = −1

2
λ∗µr

2−N &
µ

rN−2
for r &

1

|λ∗µ|
1
4

.

Since wµ is radial and {wµ} is bounded in H1(RN ), by [12, Lemma A.2],

|wµ| . r−
N−1

2 for r & 1. (4.13)

Thus, by the maximum principle,

|wµ| . r2−N for r &
1

|λ∗µ|
1
4

. (4.14)

For 1 . r . 1

|λ∗µ|
1
4

, by (4.8), (4.12) and (4.13),

−∆wµ .
1

r4
(

1

r
N−1

2

+
1

rN−2
) . r−

7+N
2 . r−

α+N
2

in the case of N ≥ 5, where α = 9
2 . Recall that for N ≥ 5, r2−

α+N
2 is also a

superharmornic function. Thus, by the maximum principle,

|wµ| . r2−
α+N

2 for 1 . r .
1

|λ∗µ|
1
4

. (4.15)
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Note that by wµ → 0 strongly in D1,2(RN ) as µ → 0+ and ‖wµ‖2H1 = 1, we know

that ‖wµ‖22 = 1 + oµ(1). Thus, by wµ → 0 strongly in D1,2(RN ) as µ → 0+, the
Sobolev embedding theorem and (4.14) and (4.15),

1 ∼
∫
RN
|wµ|2 . oµ(1) +

∫ 1

|λ∗µ|
1
4

r0

r3−α +

∫ +∞

1

|λ∗µ|
1
4

r3−N = oµ(1) +
1

2
r
− 1

2
0 ,

which is a contradiction by taking r0 > 0 sufficiently large. It follows that ua,µ,−
is the unique minimizer of E|Sa(u) on Pa,µ− for µ > 0 sufficiently small up to
translations and rotations if N ≥ 5. �

For N = 3, 4, The Aubin-Talanti babbles Uε 6∈ L2(RN ). Thus, we need to
modify the arguments for Proposition 4.1 to give a precise description of ua,µ,− as
µ → 0+ in these two cases. As in the proof of Proposition 4.1, {ua,µ,−} is also a
minimizing sequence of the minimizing problem (4.1) in the cases N = 3, 4. Since
ua,µ,− is radially symmetric for r = |x|, by Lions’ result (cf. [56, Theorem 1.41]),
up to subsequence, there exists σµ > 0 such that for some ε∗ > 0,

va,µ,−(x) = σ
N−2

2
µ ua,µ,−(σµx)→ Uε∗ strongly in D1,2(RN ) as µ→ 0+. (4.16)

We also remark that since Uε∗ 6∈ L2(RN ) for N = 3, 4 and ‖va,µ,−‖22 = a2

σ2
µ

, by the

Fatou lemma, we have σµ → 0 as µ→ 0+.

Lemma 4.1. Let N = 3, 4 and 2 < q < 2∗. Then

1 ∼



µσ
N−N−2

2 q
µ

−λa,µ,−
,

N

N − 2
< q < 2∗,

µσ
3
2
µ

−λa,µ,−
ln

(
1√

−λa,µ,−σµ

)
, N = 3, q = 3,

µσ
3− q2
µ

(√
−λa,µ,−σµ

)q−3
−λa,µ,−

, N = 3, 2 < q < 3.

Proof. By the equation (1.5), we know that va,µ,− satisfies

−∆va,µ,− − λa,µ,−σ2
µva,µ,− = µσ

N−N−2
2 q

µ vq−1a,µ,− + v2
∗−1
a,µ,− in RN . (4.17)

It follows from (4.7) that

−λa,µ,−σ2
µ‖va,µ,−‖22 = (1− γq)µσ

N−N−2
2 q

µ ‖va,µ,−‖qq. (4.18)

Recall that ‖ua,µ,−‖22 = σ2
µ‖va,µ,−‖22 = a2 and ‖∇ua,µ,−‖22 → S

N
2 as µ → 0+, by

(4.7) and the Hölder inequality, λa,µ,− → 0 as µ→ 0+. Clearly,

µσ
N−N−2

2 q
µ → 0 as µ→ 0+. (4.19)

By the Hölder inequality once more,

|λa,µ,−|σ2
µ‖va,µ,−‖22 . µσ

N−N−2
2 q

µ ‖va,µ,−‖
N−N−2

2 q
2 .

Since q > 2, N − N−2
2 q < 2. It follows from ‖va,µ,−‖22 ∼ σ−2µ → +∞ as µ → 0+

that

|λa,µ,−|σ2
µ = o(µσ

N−N−2
2 q

µ ) as µ→ 0+. (4.20)
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Recall that va,µ,− → Uε∗ strongly in D1,2(RN ) as µ→ 0+ up to a subsequence, by
(4.19)-(4.20), adapting the Moser iteration (cf. [53, B.3 Lemma]) and the Lp theory
of elliptic equations to (4.17) and the Sobolev embedding theorem,

va,µ,− → Uε∗ strongly in L∞(RN ) as µ→ 0+ up to a subsequence (4.21)

In what follows, we follow the ideas in [7] (see also [24, 38]) to drive a uniformly
upper bound of va,µ,−. We define

ṽa,µ,− =
1

va,µ,−(0)
va,µ,−(

√
va,µ,−(0)x).

Since ṽa,µ,− is radial, ṽa,µ,− satisfies

−ṽ′′a,µ,− −
N − 1

r
ṽ′a,µ,− = f(ṽa,µ,−) in RN . (4.22)

where

f(ṽa,µ,−) = λa,µ,−σ
2
µva,µ,−(0)ṽa,µ,− + µσ

N−N−2
2 q

µ [va,µ,−(0)]q−1ṽq−1a,µ,−

+[va,µ,−(0)]2
∗−1ṽ2

∗−1
a,µ,−.

Let

H(r) = rN (ṽ′a,µ,−)2 + (N − 2)rN−1ṽa,µ,−ṽ
′
a,µ,− +

N − 2

N
rN ṽa,µ,−f(ṽa,µ,−).

Then by direct calculations and using (4.20)-(4.22),

H ′(r) =
rN ṽ′a,µ,−

N
(4|λa,µ,−|σ2

µ − (N − 2)(2∗ − q)µσN−
N−2

2 q
µ vq−2a,µ,−)va,µ,−

= µσ
N−N−2

2 q
µ

rN ṽ′a,µ,−
N

(oµ(1)− (N − 2)(2∗ − q)Uq−2ε∗ )va,µ,−.

Since va,µ,− > 0, ṽ′a,µ,− < 0 and va,µ,− exponentially decays to zero as r → +∞,
there exists rµ > 0, H ′(r) > 0 for 0 < r < rµ and H ′(r) < 0 for r > rµ. Thus,
H(r) > H(0) = 0 for all r > 0. Let

Ψ(r) =
−ṽ′a,µ,−
rṽ

N
N−2

a,µ,−

.

Then by direct calculations and using (4.22),

Ψ′(r) =
N

N − 2
r−(1+N)ṽ

− 2N−2
N−2

a,µ,− H(r) > 0

for all r > 0. It follows from (4.22) once more that

Ψ(r) > Ψ(0) = −ṽ′′a,µ,−(0) =
dµ
N

where

dµ = λa,µ,−σ
2
µva,µ,−(0) + µσ

N−N−2
2 q

µ [va,µ,−(0)]q−1 + [va,µ,−(0)]2
∗−1.

Let

Zµ(r) =
1

(1 +
dµ

N(N−2)r
2)

N−2
2

.
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Then it is easy to check that
−Z′µ(r)

[Zµ(r)]
N
N−2

=
dµ
N r. It follows that

ṽ′a,µ,−

ṽ
N
N−2

a,µ,−

≤
Z ′µ(r)

[Zµ(r)]
N
N−2

for all r > 0,

which together with (4.21), implies

va,µ,− .
1

(1 + r2)
N−2

2

for all r > 0 (4.23)

uniformly for µ > 0 sufficiently small. Now, for the cases N
N−2 < q < 2∗,

‖va,µ,−‖qq .
∫ +∞

0

1

(1 + r2)
(N−2)q

2

rN−1dr . 1.

By the Fatou lemma, ‖va,µ,−‖qq ≥ ‖Uε∗‖qq + oµ(1) & 1. Thus, by (4.18),

µσ
N−N−2

2 q
µ

−λa,µ,−
∼ 1 for

N

N − 2
< q < 2∗.

For N = 3 and q = 3, we need to drive the uniformly exponential decay of va,µ,−
at infinitely both from below and above to obtain the conclusions. Let

Φ = r−1e−
√
|λa,µ,−|σµr.

Then it is easy to check (cf. [44]) that −∆Φ− λa,µ,−σ2
µΦ ≤ 0 for r ≥ 1 in the case

of N = 3. Since va,µ,− → Uε∗ strongly in L∞(RN ) as µ→ 0+ up to a subsequence,
by the maximum principle,

va,µ,− & r
−1e−

√
|λa,µ,−|σµr for r ≥ 1 (4.24)

in the case of N = 3. On the other hand, let

Υ = r−1e−
1
2

√
|λa,µ,−|σµr.

Then it is also easy to check that −∆Υ − 1
2λa,µ,−σ

2
µΥ ≥ 0 for r ≥ 1. Since

µσ
3− q2
µ → 0 as µ→ 0+, by (4.23), for

r &
1

|λa,µ,−|σ2
µ

,

we have −∆va,µ,− − 1
2λa,µ,−σ

2
µva,µ,− ≤ 0 in the case of N = 3. Thus, by the

maximum principle and (4.21) once more,

va,µ,− . r
−1e−

1
2

√
|λa,µ,−|σµr for r &

1

|λa,µ,−|σ2
µ

. (4.25)

For q = 3 and N = 3, by (4.23) and (4.25),

‖va,µ,−‖33 .
∫ 1
|λa,µ,−|σ2µ

1

r−1 +

∫ +∞

1
|λa,µ,−|σ2µ

e−
√
|λa,µ,−|σµr

. ln

(
1√

|λa,µ,−|σµ

)
.
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By (4.24), for q = 3 and N = 3, we also have

‖va,µ,−‖33 &
∫ 1√

|λa,µ,−|σµ

1

r−1 & ln

(
1√

|λa,µ,−|σµ

)
.

Thus, the conclusion for q = 3 and N = 3 then follows (4.18). For N = 3 and
2 < q < 3, we need to construct a newly upper bound of va,µ,− by adapting ideas
in [20]. By (4.23), we have

−∆va,µ,− −
1

2
λa,µ,−σ

2
µva,µ,− . µσ

3− q2
µ r1−q for r &

1√
|λa,µ,−|σµ

.

On the other hand, let φµ ∼ µσ
3− q

2
µ

|λa,µ,−|σ2
µ
r1−q, then by direct calculations,

−∆φµ −
1

2
λa,µ,−σ

2
µφµ & µσ

3− q2
µ r1−q for r &

1√
|λa,µ,−|σµ

.

By (4.23) and the maximum principle,

va,µ,− .
µσ

3− q2
µ

|λa,µ,−|σ2
µ

r1−q for r &
1√

|λa,µ,−|σµ
. (4.26)

Now, using (4.26) as a new barrier and by (4.23), we know that

−∆va,µ,− −
1

2
λa,µ,−σ

2
µva,µ,− . µσ

3− q2
µ

(
µσ

3− q2
µ

|λa,µ,−|σ2
µ

r1−q
)q−1

for r & 1√
|λa,µ,−|σµ

. Thus, by similar comparisons, we have

va,µ,− .

(
µσ

3− q2
µ

|λa,µ,−|σ2
µ

)q
r−(q−1)

2

for r &
1√

|λa,µ,−|σµ
.

By iterating the above arguments n times for a sufficiently large n such that q(q −
1)n − 3 > 0, we have

va,µ,− .

(
µσ

3− q2
µ

|λa,µ,−|σ2
µ

)sn
r−(q−1)

n

for r &
1√

|λa,µ,−|σµ
, (4.27)

where sn = sn−1(q − 1) + 1 which implies

sn =
(q − 1)n+1 − 1

q − 2
.

By (4.24), we have

‖va,µ,−‖qq &
∫ 1√

|λa,µ,−|σµ

1

r2−qe−q
√
|λa,µ,−|σµr &

(
1

|λa,µ,−|σ2
µ

) 3−q
2

(4.28)

and

‖va,µ,−‖22 &
∫ 1√

|λa,µ,−|σµ

1

e−2
√
|λa,µ,−|σµr &

(
1

|λa,µ,−|σ2
µ

) 1
2

.

It follows from (4.18) that

|λa,µ,−| & µσ
3− q2
µ

(
1

|λa,µ,−|σ2
µ

) 3−q
2

and

(
1

|λa,µ,−|σ2
µ

) 1
2

|λa,µ,−| . µ (4.29)
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which implies

µσ
3− q2
µ

|λa,µ,−|σ2
µ

. |λa,µ,−|
3−q
2 σ1−q

µ . σ2(2−q)
µ .

Now, by (4.27) and (4.29),

‖va,µ,−‖qq .
∫ 1√

|λa,µ,−|σµ

1

r2−q + (σµ)−2((q−1)
n+1−1)

∫ +∞

1√
|λa,µ,−|σµ

r2−q(q−1)
n

.

(
1

|λa,µ,−|σ2
µ

) 3−q
2

+ σ2(q(q−1)n−3)−2((q−1)n+1−1)
µ

.

(
1

|λa,µ,−|σ2
µ

) 3−q
2

+ σ(q−1)n(2+on(1))
µ

=

(
1

|λa,µ,−|σ2
µ

) 3−q
2

. (4.30)

The conclusion for N = 3 and 2 < q < 3 follows from (4.18), (4.28) and (4.30). �

With Lemma 4.1 in hands, we can obtain the following.

Proposition 4.2. Let N = 3, 4 and 2 < q < 2∗. Then

wµ,− = ε
N−2

2
µ ua,µ,−(εµx)→ Uε∗ strongly in D1,2(RN ) as µ→ 0+

up to a subsequence for some ε∗ > 0, where εµ > 0 satisfies

µ ∼



ε6−qµ e−2ε
−2
µ , N = 4, 2 < q < 2∗,

ε
q
2−1
µ , N = 3, 3 < q < 2∗,

ε
1
2
µ

ln( 1
εµ

)
, N = 3, q = 3,

ε
5− 3q

2
µ , N = 3, 2 < q < 3.

(4.31)

Proof. Let {Vε} be the family given by (2.4). Since 2 ≥ N
N−2 for N ≥ 4, By [44,

(4.2)–(4.5)],

‖Vε‖qq ∼


εN−

N−2
2 q, N = 3, 4,

N

N − 2
< q < 2∗,

ε
3
2 ln(Rεε

−1), N = 3, q = 3,

ε3−
q
2 (Rεε

−1)3−q, N = 3, 2 < q < 3

(4.32)

for ε > 0 sufficiently small. By [49, Lemmas 4.2, 5.1 and 6.1], there exist tµ,ε > 0
such that

‖∇Vε‖22 = µγq‖Vε‖qqtqγq−2µ,ε + ‖Vε‖2
∗

2∗t
2∗−2
µ,ε

and

2‖∇Vε‖22 < µqγ2q‖Vε‖qqtqγq−2µ,ε + 2∗‖Vε‖2
∗

2∗t
2∗−2
µ,ε .
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Thus, {tµ,ε} is uniformly bounded and bounded from below away from 0 for all
ε, µ > 0 sufficiently small. By (2.5) and (2.6),

S
N
2 (1− t2

∗−2
µ,εµ ) = µγq‖Vε‖qqtqγq−2µ,ε +O((Rεε

−1)2−N )).

Then we can use similar arguments as used for (4.2) to show that

tµ,ε = 1− (1 + o(1))
µγq‖Vε‖qq +O((Rεε

−1)2−N ))

(2∗ − 2)S
N
2

and thus by similar arguments as used for (4.6),

‖ua,µ,−‖qq ≥ (1 + o(1))(‖Vε‖qq − Cµ−1(Rεε
−1)2−N ))),

which together with (2.5) and (4.32), implies

‖ua,µ,−‖qq &



ε4−q − Cµ−1e−2ε
−2

, N = 4, 2 < q < 2∗,

ε3−
q
2 − Cµ−1ε2, N = 3, 3 < q < 2∗,

ε
3
2 ln(

1

ε
)− Cµ−1ε2, N = 3, q = 3,

ε
3q
2 −3 − Cµ−1ε2, N = 3, 2 < q < 3.

By choosing εµ such that the right hand sides of the above estimate take the
maximum, we have (4.31) and

‖ua,µ,−‖qq &


ε
N−N−2

2 q
µ , N = 3, 4,

N

N − 2
< q < 2∗,

ε
3
2
µ ln(

1

εµ
), N = 3, q = 3,

ε
3q
2 −3
µ , N = 3, 2 < q < 3.

(4.33)

We define wµ,− = ε
N−2

2
µ ua,µ,−(εµx), then ‖wµ,−‖2

∗

2∗ , ‖∇wµ,−‖22 ∼ 1 and by (4.33),

‖wµ,−‖qq &


1, N = 3, 4,

N

N − 2
< q < 2∗,

ln(
1

εµ
), N = 3, q = 3,

ε2q−6µ , N = 3, 2 < q < 3.

(4.34)

It is easy to see that

σ
N−N−2

2 q
µ ‖va,µ,−‖qq = ‖ua,µ,−‖qq = ε

N−N−2
2 q

µ ‖wµ,−‖qq. (4.35)

Then by Lemma 4.1, (4.18) and (4.34), we have

σ
N−N−2

2 q
µ & ε

N−N−2
2 q

µ (4.36)

for N
N−2 < q < 2∗ and N = 3, 4. On the other hand, we know that

wµ,−(x) =

(
εµ
σµ

)N−2
2

va,µ,−

(
εµ
σµ
x

)
(4.37)

and w̃µ,− satisfies

−∆w̃µ,− = g(w̃µ,−) in RN .
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where

w̃µ,− =
1

wµ,−(0)
wµ,−([wµ,−(0)]sx)

with s ∈ R and

g(w̃µ,−) = λa,µ,−ε
2
µ[wµ,−(0)]2sw̃µ,− + µε

N−N−2
2 q

µ [wµ,−(0)]2s+q−2w̃q−1µ,−

+[wµ,−(0)]2s+2∗−2w̃2∗−1
µ,− .

By similar arguments as used for (4.23), we have

wµ,− .
wµ,−(0)

(1 + bµr2)
N−2

2

for all r > 0, (4.38)

where

bµ = [wµ,−(0)]2s−1(λa,µ,−ε
2
µwµ,−(0) + µε

N−N−2
2 q

µ [wµ,−(0)]q−1

+[wµ,−(0)]2
∗−1).

We recall that µ, σµ, λa,µ,− → 0 as µ → 0+, and by (4.7), we have λa,µ,− . µ.
Thus, by Lemma 4.1, (4.21) and (4.37),

bµ ∼
(
εµ
σµ

)(N−2)s+2

. (4.39)

Now, take s = −1 and by (4.38), we can use similar arguments in the proof of
Lemma 4.1 to show that

‖wµ,−‖qq .
(
εµ
σµ

)N−2
2 q−N2 (4−N)

for N
N−2 < q < 2∗ and N = 3, 4, which together with (4.35), implies that σµ . εµ for

N
N−2 < q < 2∗ and N = 3, 4. It follows from (4.36) that σµ ∼ εµ for N

N−2 < q < 2∗

and N = 3, 4. For the case N = 3 and q = 3, by ‖wµ,−‖22 ∼ ε−2µ , Struss’s
radial lemma (cf. [12, Lemma A.IV, Theorem A.I’] or [44, Lemma 3.1]) and similar
arguments as used for (4.25),

wµ,− . ε
−2
µ r−1e−

1
2

√
|λa,µ,−|εµr for r &

1√
|λa,µ,−|εµ

. (4.40)

It follows from (4.38) and (4.39) that

‖wµ,−‖qq .
(
εµ
σµ

) 3
2−

3
2 (s+2)

ln(
1√

|λa,µ,−|σµ
).

By Lemma 4.1, taking s = −1 and (4.35), we have εµ & σµ. By Lemma 4.1, taking
s = 2 and (4.35), we have εµ . σµ. Thus, for N = 3 and q = 3, we also have
εµ ∼ σµ. For the case N = 3 and 2 < q < 3, by (4.7), (4.33), Lemma 4.1 and

µ ∼ ε5−
3q
2

µ ,

σ
q

5−q
µ & ε

q
5−q
µ

(
µ

ε
5− 3q

2
µ

) 3−q
5−q

∼ ε
q

5−q
µ
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which implies σµ & εµ. Thus, by (4.21), we can adapt the maximum principle as
that in the proof of Proposition 4.2 to show that

wa,µ,− & r
−1e−

√
|λa,µ,−|εµr for r ≥ 1. (4.41)

By (4.41), we can see that the estimates for (4.29) works for εµ and thus, we have

|λa,µ,−| & µε
3− q2
µ

(
1

|λa,µ,−|ε2µ

) 3−q
2

,

(
1

|λa,µ,−|ε2µ

) 1
2

|λa,µ,−| . µ

and

µε
3− q2
µ

|λa,µ,−|ε2µ
. |λa,µ,−|

3−q
2 ε1−qµ . ε2(2−q)µ .

Now, we can follow similar arguments as used in the proof of Lemma 4.1 to show
that

‖wµ,−‖qq .

(
1

|λa,µ,−|ε2µ

) 3−q
2

,

which, together with Lemma 4.1 and (4.35), implies that σµ . εµ. Thus, we also
have σµ ∼ εµ as µ→ 0+ in the case of N = 3 and 2 < q < 3. �

We are ready to give the proofs of Theorem 1.1 and 1.2.

Proof of Theorem 1.1: It follows immediately from Lemma 3.1, Propositions 3.1
and 3.2. 2

Proof of Theorem 1.2: It follows immediately from Propositions 2.1, 4.1 and
4.2. 2

We close this section by

Proof of Theorem 1.3: (1) Since the proof is similar to that of Proposition 2.1,
we only sketch it. In the case of q = 2+ 4

N , we have ‖ϕ‖22 = ‖φ0‖22 for all minimizers
of the Gagliardo–Nirenberg inequality (1.9), where φ is the unique solution of (1.10).
Thus, we choose ϕ = a

‖φ0‖2φ ∈ Sa as a test function of m−a,µ. By using similar

arguments as used in the proof of Proposition 2.1 and direct calculations,

m−a,µ ≤
1

N
(1− µ

αN,q,a
)

2∗
2∗−2

(
‖∇φ0‖2
‖φ0‖2∗

)N
.

It follows from ua,µ,− ∈ Pa,µ, the Gagliardo–Nirenberg and Sobolev inequalities
that

S
N
2 ≤ ‖∇ua,µ,−‖22

(1− µ
αN,q,a

)
2

2∗−2

≤
(
‖∇φ0‖2
‖φ0‖2∗

)N
, (4.42)

which, together with ua,µ,− ∈ Pa,µ once more and the Pohozaev identity satisfied
by ua,µ,−, implies that

−λµ,− =
1− γq
a2

µ‖ua,µ,−‖qq ≥ (1 + oµ(1))
1− γq
a2γq

S
N
2 (1− µ

αN,q,a
)

2
2∗−2

and

−λµ,− =
1− γq
a2

µ‖ua,µ,−‖qq ≤ (1− µ

αN,q,a
)

2
2∗−2

(
‖∇φ0‖2
‖φ0‖2∗

)N
.



NORMALIZED SOLUTIONS 33

Thus, {va,µ,−} is bounded in H1(RN ), where

va,µ,− = (
a

‖φ0‖2
)
N−2

2 s
N
2
µ ua,µ,−(

a

‖φ0‖2
sµx)

and sµ = (1− µ
αN,q,a

)−
N−2

4 . Clearly, va,µ,− satisfies

−∆va,µ,− = λµ,−
a2

‖φ0‖22
s2µva,µ,− + µ(

a

‖φ0‖2
)

4
N vq−1a,µ,− + s

2−N2 (2∗−2)
µ v2

∗−1
a,µ,−

By (3.13) and [55, (I.3)], we know that αN,q,a( a
‖φ0‖2 )

4
N = 1 for q = 2 + 4

N . On

the other hand, since va,µ,− is radial, it is standard to show that va,µ,− → ψν′a,1
strongly in H1(RN ) as µ→ α−N,q,a up to a subsequence for some ν′a > 0.

(2) In the cases of 2 + 4
N < q < 2∗, 2

q−2 −
N
2 6= 0. Thus, we can choose

νa > 0, as that in (2.10), such that ‖ψνa,1‖22 = a2. Again, we use ψνa,1 ∈ Sa
as a test function of m−a,µ. By using similar arguments as used in the proof of

Proposition 2.1 and direct calculations, m−a,µ . µ
− 2
qγq−2 as µ → +∞. It follows

that ua,µ,− → 0 strongly in D1,2(RN ) ∩ Lq(RN ) as µ → +∞. This, together with
ua,µ,− ∈ Pa,µ and the Gagliardo–Nirenberg and Sobolev inequalities, implies

‖∇ua,µ,−‖22 ≥ (1 + oµ(1))(µγqa
q−qγqCqN,q)

− 2
qγq−2 .

On the other hand, for the test function ψνa,1, it satisfies

‖∇ψνa,1‖22 = µγq‖ψνa,1‖qqtqγq−2µ + ‖ψνa,1‖2
∗

2∗t
2∗−2
µ ,

where (ψνa,1)tµ ∈ Pa,µ. It follows that

tµ‖∇ψνa,1‖2 ≤
(

1

µaq−qγqγqC
q
N,q

) 1
qγq−2

.

Thus,

Eµ((ψνa,1)tµ) = (1 + oµ(1))(
1

2
− 1

qγq
)‖∇(ψνa,1)tµ‖22

≤ (1 + oµ(1))(
1

2
− 1

qγq
)

(
1

µaq−qγqγqC
q
N,q

) 2
qγq−2

.

Note that Eµ((ψνa,1)tµ) ≥ m−a,µ and

m−a,µ = Eµ(ua,µ,−) = (1 + oµ(1))(
1

2
− 1

qγq
)‖∇ua,µ,−‖22

as µ→ +∞, we must have

‖∇ua,µ,−‖22 = (1 + oµ(1))(µγqa
q−qγqCqN,q)

− 2
qγq−2 . (4.43)

As in (1), {va,µ,−} is bounded in H1(RN ), where va,µ,− = s
N
2
µ ua,µ,−(sµx) and

sµ = µ
1

qγq−2 . Again, va,µ,− satisfies

−∆va,µ,− = λµ,−s
2
µva,µ,− + vq−1a,µ,− + s

2−N2 (2∗−2)
µ v2

∗−1
a,µ,−.

Using (4.43), the Pohozaev identity satisfied by ua,µ,− and ua,µ,− ∈ Pa,µ once more,
we have

−λµ,− = (1 + oµ(1))
1− γq
a2

(µγqa
q−qγqCqN,q)

− 2
qγq−2 .
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Now, by similar arguments as used in (1), va,µ,− → ψν′a,1 strongly in H1(RN ) as

µ→ +∞ up to a subsequence for some ν′a > 0. Since in the cases of 2+ 4
N < q < 2∗,

2
q−2−

N
2 6= 0. By ‖va,µ,−‖22 = a2, we must have ν′a = νa. By the uniqueness of ψνa,1

in Sa, we know that va,µ,− → ψνa,1 strongly in H1(RN ) as µ → +∞. Using the
uniqueness of ψνa,1 in Sa and the nondegenerate of ψνa,1, we can prove the local
uniqueness of ua,µ,− for µ > 0 sufficiently large by adapting similar arguments as
used for ua,µ,+ in the proof of Proposition 2.1. 2
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