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ABSTRACT. In this paper, we consider the following nonlinear Schréodinger
equations with mixed nonlinearities:

— Au = Au+ plu|? %0+ \u|2*_2u in RY,
u e HYRY), / u? =a?,
RN

where N >3, u >0, A€ Rand 2 < ¢g<2* = 2N We prove in this paper

N-2"
(1) Existence of solutions of mountain-pass type for N = 3 and 2 < ¢ <
2+ 7
(2)  Existence and nonexistence of ground states for 2 + % < g < 2* with
© > 0 large;

(3) Precisely asymptotic behaviors of ground states and mountain-pass
solutions as p — 0 and p goes to its upper bound.
Our studies answer some questions proposed by Soave in [19, Remarks 1.1, 1.2
and 8.1].
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1. INTRODUCTION

In this paper, we consider the following nonlinear scalar field equation:

— Au=u+ plul"2u+ [u* "2u in RY,
uwe HY(RY), (1)
WhereN23,,u>0,)\GRand2<q<2*:%.
(1.1) is a special case of the following model,
—Au= M u+ f(u) inRY,
ue HY(RY), (12)

which is related to finding the stationary waves of nonlinear Schrodinger equations:
ithy + A+ g(|[)p =0 in RY. (1.3)

Indeed, a stationary wave of (1.3) is of the form (¢, z) = e"**u(x) where A € R

is a constant and u(x) is a time-independent function, then it is well-known that

1 is a solution of (1.3) if and only if u is a solution of (1.2) with f(u) = g(|u|?)u.

As pointed out in [49,50], in general, the function w is complex valued and thus,
1
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(1.2) can be regarded as a complex valued system coupled by the nonlinearities

fw) = g(lul?)u.

As pointed out in [29, 36], the studies on (1.2) can be traced back to the semi-
classical papers [12,13,42,43,52]. In these studies, there are two different methods
to study (1.2). The first one is to fix the number A < 0 in (1.2) and restrict the
unknown u to be real valued. In this case, (1.2) is a single equation and under some
mild assumptions on f(u), the solutions of (1.2) are critical points of the functional

J(u) = %/}RNUVM2 — AMu|?)dz — /RN F(u)dx

in the usual Sobolev space H'(R™), where F(u) = [ f(t)dt. In this case, particular
attention is devoted to least action solutions, namely solutions minimizing 7 (u)
among all non-trivial solutions. We also refer the readers to [2—5] and the references
therein for the recent results on the special case (1.1) in this direction. Another
one is to fix the L? norm of the unknown u, that is, to find solutions of (1.2) with
prescribed mass. In this case, (1.2) is always rewritten as follows

—Au= M u+ f(u) inRY,
u e HY(RY), / u? = a?,
RN

where fRN u? = a? is the prescribed mass, and in this case, A € R is a part of the
unknown which appears in (1.4) as a Lagrange multiplier. In particular, (1.1) is
rewritten as

(1.4)

— Au=u+ plul2u+ [ul* 20 in RV,
u € HY(RY), / u? = a’.
RN

Similar to the first case, under some mild assumptions on f(u), the solutions of
(1.4) are critical points of the functional

1
Fulu) = /RN (5IVul? = F(u))dz
on the smooth manifold
So ={uec H'RY) | |lull3 = a®}.

In particular, the solutions of (1.5) are critical points of the C2-functional

(1.5)

1 7 1 N
Eulu) = §||VU||§—gHUHZ—;HUH%

on S,, where we denote the usual norm in LP(RY) by || - ||,. In this case, solutions
of (1.4) are always called normalized solutions which are particularly relevant for
the nonlinear Schrodinger equation (1.3) since the mass is preserved along the time
evolution in (1.3). Thus, normalized solutions of (1.4) seems to be particularly
meaningful from the physical viewpoint, moreover, these solutions often offer a
good insight of the dynamical properties of the stationary solutions for the nonlinear
Schrodinger equation (1.3), such as stability or instability (cf. [11,18]). In this case,
particular attention is also devoted to least action solutions which are also called
ground states for normalized solutions, namely solutions minimizing F,,(u) among
all non-trivial solutions. The studies on normalized solutions of (1.4) is a hot
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topic in the community of nonlinear PDEs nowadays, thus, it is impossible for us
to prov1de a complete references. We just refer the readers to [1,8-10, 15,17,

, ,40,46-51] and the references therein. In these references, we would hke
to highlight [36,49,50] to the readers for their detail introductions and references
on normalized solutions of (1.4) and new directions on the study of normalized
solutions of autonomous problems. We also would like to point out [26-32] and the
references therein for the studies on normalized solutions of problems with trapping
potentials.

It is well-known that the number p = 2 + % plays an important role in studying
normalized solutions which is called the L? critical exponent or mass critical expo-
nent in the literature. Since 2* = % > 24 %, the nonlinearity of (1.5) grows
faster than |u[P~2u at infinity and thus, it is well-known that &, (u) is unbounded
from below on S,, which makes one to find new constraints to prove the existence of
ground states of £,(u) on S,. The new constraint, which is introduced by Bartsch

and Soave in [9] for the general problem (1.4) and is widely used nowadays in
studying normalized solutions, is the following L2-Pohozaev manifold:
Pau = {u € Sa | [Vull3 = pygllulld + [[ul3-},
where
N(g—2)
= . 1.

By the Pohozaev identity of (1.5), P,,, contains all nontrivial solutions of (1.5).
Thus, we have the following definition of ground states of (1.5).

Definition 1.1. We say (ug, Ao) is a ground state of (1.5) if ug is a critical point
of Euls, (w) with E,|s, (uo) = infuep, , Eulu).

The L2-Pohozaev manifold P, , is quite related to the fibering maps
2%s

625 ueqvqs e
Wu,5) = IVl - 2l - Sl
which is introduced by Jeanjean in [33] for the general problem (1.4) and is well
studied by Soave in [49]. According to the fibering maps ¥(u,s), P, can be

naturally divided into the following three parts:
Pt ={u € SaNPay | 2|Vull3 > ngvglulll 5}
Pot = {u € SaNPay | 20Vull3 = pavg llullf + 27 |ul3:},

P = {u € Sa N Pay | 2[Vull3 < pgrg|lullg 5}
Let
mai’#:uelg(fwé' (u), (1.7)
then Soave proved the following results in [19, Theorems 1.1 and 1.4]:
(1) For 2 < g < 2+ =, there exists ay, > 0 such that if pa? 9 <
an,g then mf = inf,epen Eu(u) = infyep, , Eu(u) < 0 and it can be

attained by some u, , + which is real valued, positive, radially symmetric
and radially decreasing. Moreover, (1.5) has a ground state (uq,u +; Aa,u,+)
with Ag 1+ <0, and mf , — 0 and ||[Vug 1|2 — 0 as u — 0.
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(2) For 2+ % < g < 2%, there exists an,g > 0 such that if ua?= < apy 4
then m, , = inf,cpan €,(u) = infuep, , E.(u) € (0, %S%) and it can be
attained by some g, ,,— which is real valued, positive, radially symmetric
and radially decreasing, where S is the optimal constant in the Sobolev
embedding, that is,

2. < S7Y | Vul2 for all u € DV2(RY). (1.8)

Moreover, (1.5) has a ground state (uq,u,—;Aq,u,—) With Aq ,— < 0, and

my , — ﬁS% and ||Vug . —|l2 = ST as pu— 0.

[l

In the L%-subcritical case 2 < ¢ < 2+ +, since &,(u)|s, is unbounded from
below, it could be naturally to expect that £,(u)|s, has a second critical point
of mountain-pass type, which is also positive, real valued and radially symmetric.
This natural expectation has been pointed out by Soave in [19, Remark 1.1] which
can be summarized to be the following question:

(Q1) Does £,(u)|s, has a critical point of mountain-pass type in the
L?-subcritical case 2 < g < 2+ %?

Remark 1.1. In preparing this paper, we notice that in the very recent work [3/],
the question (Q1) has been solved for N > 4. Thus, it only need to consider the
case N = 3 for the question (Q1).

Besides, since Soave only considered the case that pa? 9% > 0 small in [49,
Theorem 1.1], it is also natural to ask what will happen if © > 0 and pa?= 9 > 0 is
large. This natural question has been proposed by Soave in [19] as an open problem,
which can be summarized to be the following one:

(Q2) Does &,(u)|s, have a ground state if 1 > 0 and pa? 9 > 0 large?

In [49], Soave conjectures that the answer of (Q2) is negative in general.

Finally, in these results, the asymptotic behavior is only for ||Vu, ,,—|l2 in the
cases of 2 + % < q < 2*. Thus, it is also natural to ask if it is possible to
characterize the asymptotic behavior of u, , —, and not only of [|Vug,,, —||2. In [49,
Remark 8.1], Soave pointed out that in dimensions N = 3,4, it could be proved
that ||Vug,,,—|l2 — S%, but Uqu,— — 0 in H' while, in dimensions H > 5, both
Ug,u,— — 0 and ug,,,— — w # 0 could happen. He also conjectures that the weak
limit of {uq,,,— } will be the Aubin-Talanti babbles in the higher dimensions N > 5.
Soave’s conjecture can be slightly generalized to the following question:

(Q3) Can we capture the precisely asymptotic behavior of u,, _ as

uw—07?

In this paper, we are interested in these questions and we shall give some answers
to them, which will give more information on the ground states of (1.5). Our first
result, which is devoted to the existence and nonexistence of ground states, can be
stated as follows.

Theorem 1.1. Let N > 3,2 < q < 2* and a,pu > 0.
(1) IfN =3and2 < q <2+ 5, then for pa? " < ayn,4, m,, can be
attained by some g ,,— which is real valued, positive, radially symmetric

and radially decreasing, and thus, (1.5) has a second solution ug,, _ with
some Ag pu,— < 0.
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(2) Ifg=2+ %, then m, ,, can not be attained for pa?™"* > ay,q and thus,
(1.5) has no ground states for pa?= 1% > ay 4.

3) If2+ % < q < 2%, then for all p > 0, and m,, can be attained by
some Uq,,,— which is real valued, positive, radially symmetric and radially
decreasing, and thus, (1.5) has a ground state uq ,,— with some Ag ,— <0

for all > 0.

Remark 1.2. (a) (1) of Theorem 1.1, which together the results of [7/],
gives a completely positive answer to the question (Q1).

(b)  As pointed out in the very recent work [7/], the crucial point in studying
(Q1) is to obtain a good energy estimate of mg, for2 <q<2+ % such
that the compactness of minimizing sequence or (PS) sequence at the energy
level mg,, still holds. As for other concave-convex problems (cf. [0]) and

observed in [7/], the threshold of such compactness should be mI# + %S%.
Since m, , is a mountain-pass level, the classical idea, which can be traced
back to [10], is to use the ground state uq , 4 and the Aubin-Talanti babbles
to construct a good path, whose energy can be well controlled from above to
make sure that it is smaller than the threshold mf{’u + %S%. This strategy
is already used in [3/] to prove the existence of critical points of &, (u)|s,
of mountain-pass type for N > 4 and 2 < ¢ < 2 + %. Unlike [3/] in
which nonradial test function composing of a4+ and a bubble at oo is
used, here we directly use the radial superposition of uq .+ and the Aubin-
Talenti bubble. This test function seems to be more natural and it works
for all dimensions.
(¢) (2) and (3) of Theorem 1.1 give partial answers to (Q2) and they are
proved by observing the non-increasing of m, ,, and suitable choices of test
functions. These two conclusions imply that the L?-critical and supercritical
perturbations have quite different influence on (1.5). Moreover, it seems
that the critical mass of ground states also exists for (1.5) in the L?-critical
case.

Our next result will be devoted to the precisely asymptotic behaviors of the
solutions found in [49, Theorem 1.1], [34, Theorem 1.6] and Theorem 1.1 as u —
0. To state this result, let us first introduce some necessary notations. By [55,
Theorem B|, the Gagliardo-Nirenberg inequality,

lullg < Crvgllully™ " [Vull3® for all u e H'(RY), (1.9)

has a minimizer ¢, which satisfies

— Ago + oo = oodf ' in RY,

O =

¢0(0) = max go (),

do(z) >0 inRY,

do(z) =0 as|z| = +oo,

_ __4 _ (@=2)(N=-2) _ __ 4 . . . ;

where 1y = N—D) (1 7] ), 0p = N9 and C 4 is the best constant in

the Gagliardo-Nirenberg inequality. On the other hand, the Aubin-Talanti babbles,

N—2

Uuta) = VOV =27 () (111)

2 + [zf?

(1.10)




6 J. WEI AND Y.WU

is the only solutions to the following equation:
—Au=u>"1 in RY,
u(0) = max u(z),
u(z) >0 in RV,
u(z) = 0 as |z| = +oo.
Now, our second result can be stated as follows.

Theorem 1.2. Let N > 3, 2 < q < 2* and a,u > 0 such that p > 0 is sufficiently
small. Let 1, be the minimizer of £,(u)|s, in PL" and u, be the minimizer of
Eu(u)ls, in PL*. Then
N 1
(1) For2<q<2+ 4, Wou(®) =872 Uu(suz) = vd > do(\/Vaz) strongly in
HY(RY) as u — 0, where ¢q is the unique solution of (1.10),

2(q—2)

( a? )41\1@2) ( )
Vg= | —5 1.12
‘ [¢0ll3

1
and s, ~ p2-4 is the unique solution of the following system:

{SiHV%aJHg - Wq||¢ua,1||38,(i% - H"/)uml %:5,2: =0, (1.13)
257 | Vw115 — g 19w, 11587 = 2|y, 11327, >0,

1

where ), 1(x) = vd* po(\/Vax). Moreover, up to translations and rota-
tions, u, is the unique ground state of (1.5) for > 0 sufficiently small.

(2)  For N >5, @, — U., strongly in H(RY) as p — 0, where U,, is the
Aubin-Talanti babble satisfying ||Ue,||3 = a®. Moreover, up to translations
and rotations, U, is the unique minimizer of €,(u)|s, in P®" for p > 0
sufficiently small. -

(3)  For N = 3,4, W,,(z) = €,% Uu(euz) — Ue, strongly in DV2(RY) for
some g9 > 0 as t — 0 up to a subsequence, where €, satisfies

81", N=4,2<q<A4,

q_

27!, N=33<q<6,
1

o~ 55

b—, N=3,q9=3,

534

epn >, N=3,2<¢g<3.

Remark 1.3. (1)  The precise asymptotic behaviors of u,, and u, stated in

(1) and (2) of Theorem 1.2 are captured by comparing the energy values and
norms by full using the variational formulas of 4, and U, and minimizers
of the Gagliardo-Nirenberg inequality and the Aubin-Talanti bubbles. In
this argument, the unique determination of minimizers of the Gagliardo—
Nirenberg inequality (1.9) for 2 < g < 2+ % and Aubin-Talanti bubbles for
N > 5 in 8,, respectively, is crucial. Moreover, (2) of Theorem 1.2 also
gives a positive answer to Soave’s conjecture on (Qs).
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For the local uniqueness, the standard strategy is to assume the contrary
and obtain a contradiction by full using the non-degeneracy of minimizers
of the Gagliardo—Nirenberg inequality and Aubin-Talanti bubbles in passing
to the limit (cf. [21,27]), which is powerful in studying problems with poten-
tials. Since (1.5) is autonomous, we can use a different method, based on
the precisely asymptotic behaviors of u, and the implicit function theorem,
to prove the local uniqueness of u, in a more direct way. It is worth point-
ing out that our method is also based on the non-degenerate of minimizers
of the Gagliardo—Nirenberg inequality. For u,, we remark that since the
linear operator of the limit equation is different from that of (1.5), our di-
rect methods, based on tmplicit function theorem, is invalid. Thus, we will
still use the standard method, that is to assume the contrary and obtain a
contradiction by full using the non-degeneracy of Aubin-Talanti bubbles.

Since we loss the L*-integrability of the Aubin-Talanti babbles {U.} for
N = 3,4, the asymptotic behavior of U, as p — 0 for N = 3,4 is much
weaker than that of N > 5 in the sense that, the convergence is only for
subsequences, which also leads us to loss the local uniqueness of u, for
w > 0 sufficiently small in these two cases. We also remark that since we
loss the L*-integrability of the Aubin-Talanti babbles {U.} for N = 3,4,
the asymptotic behavior of W, can not be obtained by merely using varia-
tional arguments to compare the energy values and norms as that for (2) of
Theorem 1.2. Thus, to capture the precisely asymptotic behavior of u,,, we
drive some uniformly pointwise estimates of U, by the mazimum principle
(cf. [20]) and some ODE technique used in [7] (see also [24, 55]). With
these additional estimates, we obtain the precisely asymptotic behavior of
u, for N = 3,4. It is worth pointing out that, in the case N = 3 and
2 < q < 3, since the nonlinearity decays too slow at infinity, we need to
further employ the bootstrapping argument to drive the desired estimates.

final result is devoted to the asymptotic behavior of the minimizers of

Eu(u)]s, in PU* as p close to its upper-bound in the cases of 2 + 4 < ¢ < 2%,
It can be stated as follows.

Theorem 1.3. Assume N > 3, 2 + % < q <2 and p,a > 0. Let u, be the
minimizer of €,(u)|s, in P, found in [/9, Theorem 1.1] for ¢ = 2+ + with
0 < pa? 1 < ayn, and found in Theorem 1.1 for 2 4+ % < q < 2* with all p > 0.

Then
(1)

(2)

~ N2 B 1
Forq =2+ 7, U = (505) % i Uiy su) — (V)72 dol(y/vj2)

strongly in HY(RN) as u — ON,q.a Up to a subsequence, where anga =
N-—-2

aP =y g for some v, >0 and s, = (1 — ;H—)7 71
1q,a

N 1
For 2+ 4+ < q < 2%, 0, = sz Uu(sux) = vi °¢o(y/Vax) strongly in
1
HY(RY) as yu — +o0, where s, = pa=2. Moreover, up to translations and

rotations, U, is also the unique ground state of (1.5) for u > 0 sufficiently
large.

Remark 1.4. (1) The ideas in proving Theorem 1.3 are similar to that of The-

orem 1.2. However, in the L?-critical case ¢ = 2 + %, the convergence of
u,, is much weaker than that in the L?-supcritical case 2 + % < q<2F
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in the sense that, it only holds for subsequences. The main reason is that
in the L*-critical case ¢ = 2+ +, we have ||¢||3 = const. for all ¢ being
a minimizer of the Gagliardo—Nirenberg inequality (1.9). Thus, the pre-
cise mass ||u,||3 = a® is invalid in determining a unique minimizer of the
Gagliardo—Nirenberg inequality (1.9) in the case ¢ = 2+ %. Moreover, un-
like the studies for problems with homogeneous nonlinearities (cf. [20,27]),
combining nonlinearities (L*-critical and L*-supercritical) of (1.5) makes
the asymptotic behavior of u, to be more complicated, which also make us
loss the local uniqueness of u, for p > 0 close to its upper bound in this
case. Indeed, as | goes to its upper bound in the L?-critical case, com-
paring with the studies for problems with homogeneous nonlinearities, the
Sobolev critical term of (1.5) is an additionally inhomogenous perturbation
in passing to the limit, which makes the oscillations occurring.

Notations. Throughout this paper, C and C’ are indiscriminately used to denote
various absolutely positive constants. a ~ b means that C'b < a < Cband a <)
means that a < Cb.

2. ASYMPTOTIC BEHAVIOR OF g +

By [49, Theorem 1.1], m;ﬁ# can always be attained by some uq ;4 for 2 < ¢ <
2+ = and pa? % < ay,q, where mg , is given by (1.7) and ug, 1 is real valued,
positive, radially symmetric and radially decreasing. Our goal in this section is to
give an asymptotic behavior of u, , + as u — 0, which is more precisely than that
in [19, Theorem 1.4], and capture the precisely decaying rate of uq,,, 4+ as p — 0.
We recall that by [19, Theorem 1.1}, uq , + is a solution of (1.5) for some A, 4 < 0.
To simplify the notation, we shall denote u, + = uq,,,+ and A\, 4 = Aq 4, since
we will fix a > 0 in what follows. Let us begin with

2
Lemma 2.1. Let 2 < q <2+ 5. Then =X\, 4 ~ [|[Vuy, 1||3 ~ p>=9% as p — 0.
Proof. Since u,, € P{", we have
Va3 = vl 18 + llwp,+ 113 (2.1)
and
2V 13 > pgy w18+ 2* w1 13-
It follows from the Gagliardo—Nirenberg inequality that
V13 S pllu+ 118 S sl Va3,

which together with ¢y, <2 for 2 < ¢ <2+ %, implies

Va3 < p==s. (2.2)
Thus, by (2.1) and (2.2), we also have
2
pllup 1§ S w2 (2.3)
Let us define
Ve(2) = Ue(2)p(R: @) (2.4)

where U.(x) is the Aubin-Talanti babbles given by (1.11) and ¢ € C§°(RY) is a
radial cut-off function with ¢ =1 in By, ¢ =0 in BS, and R, is chosen such that
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Ve € §,. More precisely, for N > 5, we choose € = ¢ and R., = 400 such that
Voo = Ug, € S, while for N = 3,4, we choose € > 0 sufficiently small and then in
the later two cases, we have

Ree™ e?In(R.e™t), for N =4
2 _ U R1))2 ~ 2/ 3-N € ) (95
o= [ ez~ [ ey @9

which implies R.e™! — +o00 as ¢ — 0. Then it is well-known (cf. [14, (4.2)—(4.5)]
or [53, Chapter I1I]) that

IVVell3 = 8% + O((Ree™)* ™M), IVell3: = 5% +O((Ree™) ™) (26)
for € > 0 sufficiently small, which implies
IVVe[l3 ~ S ~ [IVell3: (2.7)

for € > 0 sufficiently small. Now, we fix ¢ = ¢p and R., = +oo for N = 5, and
fix & > 0 sufficiently small and choose R. as that in (2.5) for N = 3,4 such that
(2.7) holds for all N > 3. By [19, Lemma 4.2], there exists t(u) > 0 such that
(Ve)e(uy € PL* for p > 0 sufficiently small, where

(Ve)ey = [#(1)] % Va(t(p)).

Then

[NV VENZ = pvg I VElgle ()] + ([ VelI3 [E()]>

and
2t (P IVVEl3 > pavg IVelglt(m)] ™ + 2° Ve 15 ()
Since q’yq<2for2<q<2+%,by
(2" = RWPIVVEIE < (2" = qr)vall Vel 2 )],
it is easy to see that t(u) — 0 as u — 0 for all N > 3. It follows that
[t ~ plt(w)]* as p— 0,

1
which implies ¢(p) ~ p?=9 as p — 0. Thus, by ¢y, <2 for 2 < g <2+ % once
more,

1 1 1 1 * * 2
(V. = (= — IV + (— — ) IVE|3:[t(w)]* ~ —pZ 7.
w(Ve)uw) = (5 qvq)w =20t ()] +(q,yq o IVellz [E(w)] p
Therefore, by £, ((V2)i(wy) = md, and mf , 2 —pllu,, 1 [|2, we have

2
pllup 1§ 2 w2,
which together with (2.3), implies

2
plleg 4 1§ ~ p2ma

By the regularity of u, 4 and the Pohozaev identity, A, 4 ~ —plluy 4|4, and by
(2.2) and w4 € PP, Va4 (13 ~ pllug +

2. Therefore,

—2
|5 ~ pT

At ~ [V, +

as i — 0. It completes the proof. [
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By the well-known uniqueness result (cf. [39]) and the scaling invariance of (1.10),

Vo

po(z) = (

1
=2
) w(\/vor),
0o
where w is the unique solution of the following equation:
—Au+u=u?"t inRY,
u(0) = max u(z),
z€RN (28)
u(z) >0 inRY,

u(z) = 0 as |z| = +oo,

A direct calculation also shows that

o) = ()00, 2) 29)

for v, > 0 are all minimizers of the Gagliardo-Nirenberg inequality (1.9). Let v,
be given by (1.12), then for ¢ # 2 + %, Yy, 1 € S, and Y, 1 is a minimizer of the
Gagliardo—Nirenberg inequality, that is,

[vaallf = C a1V by, all3™ (2.10)
For the sake of simplicity, we re-denote 1, = v, 1.

Proposition 2.1. Let 2 < ¢ < 2 + %, Then wy, + — g strongly in H'(RY) as
N

p— 0, where wy, = s, > w4 (s, 'x) with s, being the unique solution of (1.13).

Moreover, up to translations and rotations, u, 1 is the unique ground state of (1.5)

for p > 0 sufficiently small.

Proof. Since ¢, € S,, by [19, Lemma 4.2], there exists a unique s, > 0 such that

(¥a)s, € P{* for p > 0 sufficiently small where (¢,),, = sg ta(s,x). That is,

Spu
splVeball3 = pvgllvall 2t + [t 13- 2 (2.11)

and
252 | Vbal3 > nay2llvall2sie + 2% 4bal|3. 52 - (2.12)

As that in the proof of Lemma 2.1, we have

[V 0a)s, 377 < O a2 =0 (213)
a)sull2 N,q VM or _9 .
Since u, 4 € P}", we also have
2 g, 25—y
IV +ll3 < C?\/,ﬂqﬂaq qwqﬁ- (2.14)
Now, using (1a)s, as a test function of m , and by (2.10),

1 /.L(lqiquchqv qy
miu < 8}t((¢a>s“) = NHV(@[}a)sMH% - fﬂ(l - 2*q)||v(1/}a)su||q7q'

By the Gagliardo—Nirenberg inequality (1.9),

an*‘I’Yq

q
N 1- q')’q

NV ]l57

+
Tfla7

w = Eulupt) > IIVuu 3 -
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Let us consider the function
1 ad—9va (1
7)== BN g Ty
N q 2%
A direct calculation shows that f(¢) is strictly decreasing in (0, tg), where
N oA S
to = (C?V,q'yq,uaq 1 o _ 2q> :
Thus, by (2.13) and (2.14),
IV 413 > 1V (%a)s, 13- (2.15)

By (2.11) and (2.12), we can use similar arguments as that used in the proof of

Lemma 2.1 to show that s, ~ ;ﬂ*{”q as p — 0. It then follows from (2.9) and
(2.11) that

1yl alld = yllgoll2 7=
s :(1+0(1))< = (1+o04(1)) :
N A O\ waly
Since by the Pohozaev identity satisﬁed by ¢, we have +||[V¢o|3 = %H%Hg.

By (1.6), s = (& + 0, (1)) =777 . Tet

N 1
— 2 -
Wyt = Sp > Uy 4 (8, 7).
Since u,, 4 satisfies (1.5), w,, 1 satisfies the following equation:

_ —24X(q-2) 1 24+ N (25 —2) ox_
— AWy = Nt S), Wyt + sy T s, w7t (2.16)

2 _ 2 _ 2

IV, 113 + w13 = 5521 Vet 13 + a® ~ 1.

By Lemma 2.1 and

we have

Therefore, {w,, +} is bounded in H'(RY). It follows that w, + — w, weakly in
H'(RY) as it — 0 up to a subsequence. Note that w,, ; is radial, by Struss’s radial
lemma (cf. [12, Lemma A.IV, Theorem A.I'] or [141, Lemma 3.1]) and the Sobolev
embedding theorem, w, 1 — w, strongly in L9 (RM) as 1 — 0 up to a subsequence.

g —2
By Lemma 2.1 once more, {\, p? 4} is bounded. Thus, A\, {p? 7 — a, as
i — 0 up to a subsequence. On the other hand, by ¢y, <2 for 2 < ¢ <2+ %,

o N (g 2* 2
SM2+2(2 Q)Nﬂzfqvq —0

as ¢t — 0. Now, using (2.15) and (2.16), it is standard to show that w,  — wx
strongly in H'(RY) as u — 0 up to a subsequence, where w, is the unique solution
of the following equation:
—Au+ ayu=oou? ! in RN,
u(0) = max u(z),
oERN (2.17)
u(z) >0 inRY,

u(z) -0 as |z] = +oo,
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by the well-known uniqueness result (cf. [39]) and the scaling invariance of (1.10),
wy(z) = (i—o)q—%w( a,x), where w is the unique solution of (2.8). It follows from
wu 43 = a® and the strong convergence of {w,, +} in H'(RY) that [w.]]3 = a2,
which implies o, = v,1p where v, is given by (1.12). Thus, w, = 1),. Since ¥,
is unique, wy, + — ¥, strongly in H*(RY) as p — 0. The system (1.13) directly
comes from (2.11) and (2.12). It remains to prove the local uniqueness of u, 4 for
> 0 sufficiently small. Let us consider the following system:

{F(m 0, B,7) = Aw — avgw + u ™! + yw? 71,

2.18
g(waaaﬂ77): ||w||§—a2, ( )

where «, 3,7 > 0 are parameters. It is easy to see that F(wg,v,,00,0) = 0 and
G(Ya, Va,00,0) = 0. Let

L(tuva00,0) — <3w]:( as Va, 70, 0) 3a]:(1/)a,l/a,00,0)>

0wG(Ya,a;,00,0)  9aG(Ya;Va,00,0)
be the linearization of the system (2.18) at (4, V4, 09,0) in HY(RY) x R, that is,
OwF (YasVar, 30,0) = A = v + (¢ = Vool ™, 9aF (Ya;Va, 00,0) = —1ota
and
0wG (VasVas 00,0) = 290, 900G (Ya; Va, 00,0) = 0.

Then L(tq, Va,00,0)[(¢, 7)] = 0 if and only if

Ad) - Val/0¢ + (q - 1)00@0372(15 - TV(ﬂ/)a = 07

¢a¢ =0.

RN
Let us consider the following system:

A¢ — vevod + (q — L)oo ?¢ — v, = g,

(2.19)
/ ud = b,
RN

where (g,b) € H! ,(RY) x R with
H! (RN = {u € H' (RY) | u is radial}.
Then ¢ = ¢4 + T19¢q, Where ¢, and ¢, satisfies

Adg — vatody + (¢ — 1)oodi ¢y =g (2.20)
and
Ada — Varopa + (q — 1)ootd ¢a = v, (2.21)
respectively. By [54, (5.2) and (5.3)], ¢ = q—izdia + 1 (z - Vib,) and
L AT
[ bt = (25 = Wl 0

since q # 2+ %. Thus, the unique solution of (2.19) is given by (¢4 + T, g¥0Pa;s To.g)
where

7 _ b* fRN ¢g¢a
9 Yo f]RN batha .
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Since ¢ < 2%, it is well-known that v, is nondegenerate (cf. [11, Theorem 2.12]
and [15, Lemma 4.2]). Thus, by ¢ < 2*, (2.20) only has zero solution in H}!_ ,(RY)
for ¢ = 0, which implies the linear operator L(¢g,vq,00,0) : H! ;(RY) x R —
H! (RY) x R is bijective. Moreover, it is standard to show that

rad
To,9] + 169 + To.90all i S 101 + [l a2

Now, by the implicit function theorem, there exists a unique C'-curve (w®7,a”7)
in H! ;(RN)xR3 for |[3—0¢| << 1 and |y| << 1 such that (w70, a700) = (¢, 1),
and

f(wﬂ”y’ aﬁ)W? B? ’Y) = 07 g(wﬁ”yﬁ aﬁ”y7 B? P)/) = O'

We recall that w,, ; is radial and satisfies (2.16), and wy, 1 — 1, strongly in H!(RY)

as u — 0 with ||w,, +||3 = a?, thus, by the uniqueness of s,, determined by (1.13), we

oy N o4 N (g
must have wy, + = w70 for B(u) = us, 22072 ang v(p) = sy 21272 Gigh

p > 0 sufficiently small. On the other hand, if @,  is another ground state of (1.5)

with some X;L,Jr € R for pu > 0 sufficiently small, then by [19, Theorem 1.3], u,, + =

ewﬂu,Jr where 6 is a constant and %, 4 is real valued and positive. Since by the

Pohozaev identity, we always have Py u,+ < 0. By applying the well-known Gidas-Ni-

Nirenberg theorem (cf. [25]), @, 4+ must be radially symmetric. Now, by running the
N

arguments as used above once more, we know that @, ; = slfﬂ#&(sglx) — g
strongly in H*(RY) as p — 0% with |jw, 1 ||3 = a®. Tt follows from the uniqueness
of w7 (#) that Uy 4+ = uy4 for p > 0 sufficiently small. Thus, u, 4 is the
unique ground state of (1.5) for p > 0 sufficiently small up to translations and
rotations. 0

3. EXISTENCE AND NONEXISTENCE OF g, —

In this section, we shall mainly study the question (@1). Since in the very recent
work [34], the question (Q1) has been solved for N > 4. we only consider the case
N =3 and prove that m, , can also be attained by some ug,,,— for 2 <q <2+ %
in the case N = 3 under some additional assumptions, where m, , is also given
by (1.7) and ug,,, — is also real valued, positive, radially symmetric and radially

decreasing. The crucial point in this study is the following energy estimates.

Lemma 3.1. Let N =3,2<g<2+ % and p,a > 0. Then for pa? 9 < an g4,

- . 1 s
Mo, = uelgg' Eulu) <mf, + 552. (3.1)

Proof. Since N = 3, we have U, = 3i(m)%. Let W, = x(z)U. where x(z) is a
cut-off function such that x(x) =1 for |2| < 1 and x(z) = 0 for |z| > 2. By simple
computations, we have that

IVW.|3 = 52 +0(e), [[W.]S=5%+0(@) (3.2)
and
53_§7 3 <p<6;
1
IWellp ~ {e¥ o=, p=3; (3:3)

5%, 2<p<3.
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Now, we define /V[Z,t =uu+ +tW. and W, = S%W\Eﬂg(s.’ﬁ). Then it is well-known
that

IVWeel3 = VWerld,  [Wedll§ = WIS, (3.4)

and

75,t 5=5 e,tll2y 75,t =gl etllq- .
IWell3 AIWeillz,  IWeilld = sTa= W, (3.5)

We choose s = %, then W.; € S,. By [19, Lemma 4.2], there exist 7., > 0

3
such that (W), , € PY*, where (We 1), = 72, We (7 ¢x). Thus,

_ . _ e g
IVW e all3m2 ™ = 1y W tllg + [ We 372, (3.6)

Since w4+ € Py, by [19, Lemma 4.2], 7.0 > 1. By (3.2) and (3.6), we also know
that 7. — 0 as t = 400 uniformly for ¢ > 0 sufficiently small. Since 7. is unique

by [19, Lemma 4.2], it is standard to show that 7. ; is continuous for ¢, which implies
that there exists ¢t. > 0 such that 7. ;. = 1. It follows that
m/:,a < sup 6/1. (Ws,t)- (37)
>0

Recall that u, + € S, and W, are positive, by (3.2), (3.4) and (3.5), there exists
to > 0 such that

— 1, — o~ 1~ 1.3
EWeyp) = (§||VWe,t||§ - gs(”‘l Wenlld — EHWE,tIIS) <My t+35% -0’ (38)

for t < % and t > to with ¢/ > 0. Since u, 4 is radial solution of (1.5) and

exponentially decays to zero as r — 400,

1
5 € 1 1 1
5 1l 9 1
Uy 4+ We ~e2 2r° ~ g2
/IRS p,+VVe /1(1+7“2)

and
/ Uy W2 ~e? /2(1)37"2 ~el. (3.9
R3 " € 1 1+ r2
Thus, by (3.3),
W12 2t
# = Wl 1 2w g =14 06

a2

for t;! <t < to. Since it is easy to see that f(t) = (1+¢)9 —1—t7—qt —qt9~' >0
for all ¢ > 0 in the case of ¢ > 3, by (3.4), (3.5) and the fact that u, ; is a solution
of (1.5) for some X, 4 <0,

1~
o) = IV

p— fegm) 1 57
2 _ gs% UWeallf = 51 Weut

IN

w4 Eu (W) - / AT

R3

0 [ Wet B0y = DIl [ W) +0C)
R3 a R3

= mf,+ & (W) — /Rs(tWE)%“’* + 0(e)
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for t5' < t < t, where we have used the fact that A, a® = A\, 4 |lu. 1|3 =
(v — Dy, + || which comes from the Pohozaev identity satisfied by u, ;. Now,

for t; ' <t < to, by (3.2), (3.3) and (3.9),

_ 1 1
E(Wey) <mit, + gs% +0(e) — Ce? <mf , + gs%

by taking e > 0 sufficiently small. It follows from (3.8) that

— 1
sup £, (W) <mf , + -8%. (3.10)
t>0 ’ 3
The conclusion then follows from (3.7). d

Remark 3.1. It is worth pointing our that the above argument also works for
N > 4. In these cases, we have

VW3 = S= +0(™7?), [Welg =57 +O(Y)

and

_(N—2)q
[Wellg ~ M2, [[W]l3 ~

1
e2ln-, N =4,

€
g2, N >5.
Moreover, similar to (3.9),

N-—2
/ uﬁ Wer~e = forallp>1.
RV

It follows that

_ 1~ . 1 —~
EuTWes) = GIVWellf = s Weally = 61l

IN

m:,a + &L (tWe)
— 1
O [ s Wet Gu = DITeally [ s W) + 00 2)
RN a RN g

= mf,+EW:) + 0N ?)

1 (N—2)q 1

< miat ST 0N 40 )
1 ~
+ AN
< m'ma -+ NS 2

for tal < t < tg by taking € > 0 sufficiently small since N > 4 and q > 2. Our
proof is slightly simpler than that of [7/] since our test function is radial and we do
not need other variational formulas of m,, .

For every ¢ > 0 such that pc?=? < ay,gq, let u € P, then v, = 2u € S, for
all b > 0. By [19, Lemma 4.2], there exists 74 (b) > 0 such that

(00)rs 0 = (72(0)) F va(r2 (b)) € PLY,
where b > 0 such that ub? 9 < ay 4. Clearly, 74 (c) = 1.

Lemma 3.2. Let2 < g <2+ %, For every ¢ > 0 such that pc?~ % < an 4, T4 (c)
exist and

pavqllulld + 2*|ull3s — 2[|Vul3

T (e) = . (3.11)
- c(2|Vull3 = ngygllullg — 2*[|ull3)
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Moreover, £,,((vb)r, (b)) < Eu(u) for all b > c such that pb?~" < ay 4.

Proof. The proof is mainly inspired by [19]. Since (vp),, () € PLE we have

Cr@)Ivull = () gl + Crd)? u

Now, if we define the function

o*
AR

bt b bt o« N

w(b.7) = (2vul - (rrromgulg - 07 ul:,

then ®(b,7(b)) =0 for b > 0 such that ub? 9% < ay 4. Since u € PLH,
0-®(c, 1) = 2||Vull3 — payg||ulld — 2*[|ull3- # 0.
It follows from the implicit function theorem that 7/, (¢) exist and (3.11) holds. By
(1.6) and ¢ < 2*, 1 — 74 > 0. Thus, by u € PL",
pavqllullg + 2% [[ull3: — 2(Vull3
2Vl — pgrillullg — 2+ ul3:
1qYq(1 = 7q)|ulld

2Vulld — navgllullg — 2+ [lull3:

l+er'(e) = 1+

Since (vp)r, (b) € PiH and u € PSF,
1 1 1

1 x
£ = (z—— 2 (— - — 2
1 (Vo) v) (3 mq)HV(Ub)T(b)ller(q% STLICORGLE
b 1 1 b w1 1 «
= (=7(0)*(z — —)IVul3 + (=7(0))* (— — =) ||ul3-
()5 = IVl (Cro™ (- = 5ol
1 1 1 1 x
= (z— —)IVullz + (— — =) |ull3- +o(b—c
(5 q%)ll 112 (qvq o llull2- +o(b—c)
1+c¢r'(e),, 1 1 9 1 1 9
+—02(= — —)[|[Vul|s + 2" (— — =) ||u|lz:)(b— ¢
TG~ IV 2 (- ol 6o
1_ q
L MOl
c
+o(b— ¢).
Therefore,
d€u((w)ray) 11— g)lulld
— @ =T <0
Since ¢ > 0, which satisfies puc?™%% < ay g, is arbitrary and (vy),, ) € Pbi’”, we
have &, ((vp)r, ) < Eu(u) for all b > ¢ such that pb?~ 9% < ay 4. O

With Lemma 3.2 in hands, we can obtain the following.
Proposition 3.1. Let 2 < ¢ < 2+ + and pa?~ 7 < ay 4. Ifm, , <mf + %S%
then
inf &,(u)

uepsH

M, =
can be attained by some g, ,,— which is real valued, positive, radially symmetric
and decreasing in r = |x|. Moreover, (1.5) has a second solution u,_,, — with some
Aa,pu,— < 0 which is real valued, positive, radially symmetric and radially decreasing.
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Proof. Let {u,} C P»" be a minimizing sequence. Then by taking |u,,| and adapt-
ing the Schwarz symmetrization to |u,| if necessary, we can obtain a new minimizing
sequence, say {u,} again, such that wu, are all real valued, nonnegative, radially
symmetric and decreasing in r = |z|. Since {u,} C P*", we have

. (3.12)

1

Eulun) = (51 = Dlunllf + 5 lun

Thus, by the Holder and Young inequalities and {u,, } C P®" again, we known that

{u,} is bounded in H'(RY) and thus, u, — ug weakly in H*(R) as n — oo up

to a subsequence. Since u,, are all radial, by Struss’s radial lemma (cf. [12, Lemma

ATV, Theorem A.T'] or [44, Lemma 3.1]) and the Sobolev embedding theorem,

un, — ug strongly in LI(RY) as n — oo up to a subsequence. Without loss of

generality, we assume that u, — ug weakly in H'(R") and u, — ug strongly in

LI(RYN) as n — oo. We claim that ug # 0. If not, then u,, — 0 strongly in LI(RY)
as n — oo. It follows from {u,} C P*" that

IVanll3 = Junll3- + o0n(1),

which together with the Sobolev inequality (1.8), implies that either w, — 0
strongly in DM2(RN) as n — 00 or |[Vun|3 = [uallZ + on(1) > 52 + 0,(1).
Hence, by (3.12), either m_, , = 0 or m_, > %S%, which contradicts £, (u) 2 1
for u € P&" and Lemma 3.1. We remark that &,(u) 2 1 for u € P>* comes from
similar arguments as used for [50, Lemma 5.7]. Therefore, we must have uy # 0.

Let v,, = u,, — ug. Then there are two cases:

(i) v, — 0 strongly in H*(RY) as n — oo up to a subsequence.

(i) IVonll3 + llvall3 2 1.
In the case (i), up € P2* and m,, is attained by uo which is real valued, radially
symmetric, nonnegative and decreasing in r = |x|. By [19, Proposition 1.5], ug is
a solution of (1.5) with some Ao € R which appears as a Lagrange multiplier. By
multiplying (1.5) with ug and integrating by parts, and using ug € P**, we have

Xoa® = pi(vq — 1) Juolld < 0,

which implies Ay < 0. Now, by the maximum principle and classical elliptic es-
timates, we know that ug is positive. It remains to consider the case (ii). Let
|luo||3 = t3, then by the Fatou lemma, 0 < t5 < a. There are two subcases:

(#i1)  |lvn]l2 — 0 as n — oo up to a subsequence.

(ii2)  Joall3- 2 1.
In the subcase (ii1), by [19, Lemma 4.2], there exists sg > 0 such that (ug)s, €
Plo#. By [49, Lemma 4.2] once more, {u,} C P“* and u, — ug strongly in

L¥ RY)N L9(RY) as n — oo up to a subsequence,

Mg+ 0n(1) = Eulun) = Eul(un)sy) = Eul(uo)so) + 0n(1).

By Lemma 3.2, we have m,;  , > mg . Thus, £,((uo)s,) = my, , and my, , =mg .
If ty < a then by taking (ug)s, as the test function in the proof of Lemma 3.2, we
know that m,  , > mg ,, which is a contradiction. Thus, in the subcase (i41),
we must have tg = a and so that m, , is attained by (ug)s, which is real valued,
radially symmetric, nonnegative and decreasing in r = |z|. As above, we can show
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that (ug)s, is positive and (ug)s, is a solution of (1.5) with some A{ < 0. It remains
to consider the subcase (ii2). Let

2\ 77
o (19ml3\ T
" (|, gi .

Then in the subcase (ii3), s, < 1 and by the Sobolev inequality (1.8),

R
2 = 20> G872,
IV (vn)s, Iz = [(vn)s, |I2 =i

Since 0 < to < a, by [19, Lemma 4.2], there exists 7 > 0 such that (ug),, € P".
We claim that s,, > 79 up to a subsequence. Suppose the contrary that s, < 7
for all n. Then by [19, Lemma 4.2] once more, the Brezis-Lieb lemma (cf. [56,
Lemma 1.32]), Lemma 3.2, the fact that u,, — ug strongly in LI(RY) as n — oo
and the boundedness of {s,},

Me et on(l) = Eulun)
(

v
t(‘q t(‘q
—

—~
£ &
o S
-
» »

I
<

S

S
=

%
3

N
= ttu—i_ﬁsz +0n(1)>

which is impossible. Thus, we must have s,, > 75 up to a subsequence. Without loss
of generality, we may assume that s,, > 7 for all n € N. Again, by [19, Lemma 4.2,
the Brezis-Lieb lemma (cf. [56, Lemma 1.32]) and the fact that w, — ug strongly
in LYRYN) as n — oo,

Mg, + 0n(1) = Eu(un) = Eul(un)ry) = Eul(w0)ry) + Eo((vn)ry) + 0n(1).

Since s, > 70, by [19, Proposition 2.2], & ((vn)r,) > 0, which, together with
Lemma 3.2, implies that ¢y = a and m, , is attained by (ug)-,. Clearly, (uo)x,
is real valued, radially symmetric, nonnegative and decreasing in r = |z|. As
above, we can show that (ug),, is positive and (ug), is a solution of (1.5) with
some Aj < 0. Therefore, we have proved that m, , can always be attained by some

ap
Uq,u,— Which is real valued, radially symmetric, positive and decreasing in r = |z|.
By [19, Proposition 1.5], (1.5) has a second solution u,,, — which is real valued,
radially symmetric, positive and decreasing in r = |z|. O

Our next goal in this section is to prove the existence and nonexistence of ground
states for pa?=% > ayq in the L2critical and supercritical cases, which gives
partial answers to the question (@Q2). In these two cases, 2 + % < g < 2%, which
implies

Qg = 2.

We recall that the constant apy 4 is given by [19, Theorem 1.1]. For ¢ = 2 + %,
by [ ) (571)]’
2 1

O (14 =)= =
QN,q N,q( + N) C?\[q’}/q7

(3.13)

where Cy 4 is the optimal constant in the Gagliardo-Nirenberg inequality (1.9).
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Lemma 3.3. Let N > 3 and 2+ % <q<2". Thenm,, is strictly decreasing for
0 <p<a?%ay, and is nonincreasing for p > a® " lay 4, where m, , is given
by (1.7). Moreover, 0 <m, , < %S% for all > 0 in the case of 2 + % <g<2F

while, m, , =0 for p > a®* " %ay , in the case of ¢ =2+ %,

Proof. Modified the proof of [19, Lemma 8.2] in a trivial way (or by Lemma 3.2
and [19, Theorem 1.1]), we can show that m, , 1s strictly decreasing for 0 < p <
a1 lap . For pp > a?1 9ay g, let us consider the fibering map

o*

+2 it
W (t) = 5[ Vull3 - g lellz = -

o
as that in [19]. For 2+ 4+ < ¢ < 2%, it has been proved in [19, Lemma 6.1] that for
every u € S, there exists ¢, > 0 such that ¥, (¢) is strictly increasing in (0,t,), is
strictly decreasing in (t,,+00) and

N
(W), = t& u(ty,z) € PE.
Moreover, by [19, Lemma 6.2], we have myg , > 0 forall 1 > 0in the L2-supercritical
case 2+ + < g < 2*. It follows that we can always choose v. € P" such that
Eu(ve) < my , + ¢ in the L*-supercritical case 2 + 4 < ¢ < 2*. Then by similar
arguments as used for [19, Lemma 8.2] (or by Lemma 3.2), we have
my o <mg, +e forally >pu.

Since ¢ > 0 and p > a9 9ay,, are arbitrary, m, , is nonincreasing for p >

a,u
a® a4 in the L2-supercritical case 2 + % < ¢ < 2*. Tt follows from [19,
Lemma 6.4] that m, , < %S% for all p > 0.

In the L?-critical case ¢ = 2 + +, since

IVullz = +00
ueS, Hu”q

For all © > 0, we can always choose u € S, such that IVel,

llullq
SUP,cs, ”“Vu TI!z < 1, then by the Gagliardo-Nirenberg inequality,

> wyq. Indeed, if

IVullz < ullq S [IVull3 for all u € S,
which implies

sup [|Vulls 1.
UES,

It is impossible since in any ball Br(0), the eigenvalue problem —Au = Au, with

Dirichlet boundary conditions, has a sequence of eigenvalues A\; — 400 as j — 0.

We note that ¢y, = 2 in the L?-critical case ¢ = 2 + %. Thus,

U, (1) = (IVull3 = pygllullft — ¢~ lull3. =

[Vull2
llullq
strictly increasing in (0,t,,), is strictly decreasing in (¢, +00) and

has a unique solution ¢,, > 0 for v € S, such that > wyq. Moreover, U, () is
> a,
(u)e, = td u(tyx) € Py, = PUH.
Thus, P,, = P # 0 and U, (t,) = maxs>o ¥, (t) for all g > 0 and all u €
S, such that [Vullz - Now, as in the L?-supercritical case 2 + % <q<
q

[
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2%, by similar arguments as used for [19, Lemma 8.2], we can show that m, , is
nonincreasing for p > a? " %ay, in the L?-critical case ¢ = 2 + %. It remains
to prove that m, , = 0 for p > a?7* 9ay 4 in the case of ¢ = 2 + 4. Let {¢,}

be the minimizing sequence of the Gagliardo-Nirenberg inequality (1.9). Then by

N
scaling %(pn(tnx) if necessary, we may assume that |¢,[|3 = a?, [|on |7 = 1 and
_2 2 —1)
IVenl3 = Cnga T+ on(1). Let us consider the following function:

he,, (1:t) 2(IVenll3 — mvgllenlld) =t llenll-

— 2 2(vg—1)

= (Cyy'a 7 +on(1) = pyg)t® — & |13

= vg(ana™ 1+ on (1) — w)t® — ¥ [y ]3:,
where we have used (3.13). By [19, Lemma 5.1], there exists a unique ¢,(u) > 0
such that hy, (p,t,(p)) = 0 for 0 < p < a®* 9an,. Thus, (n)e,(u) € Panu

for 0 < p < a® 9y 4, where (o), () = [tn (1)) ©n (tn(1)x). Moreover, since
lonlld = 1, by the Holder inequality, [|¢yn[[2« 2 1. It follows that ¢(u) — 0 as
i — a9 9ay 4, which implies

Eu(W)e) = 5 lenl 3 a0 = 00 (1)

as i — a?’ 9oy 4 in the L2-critical case q=2+ %. Thus, we must have My, <0
for p = a?"%ay 4. By the monotone property of m, , stated in Lemma 3.2,
My, < 0 for pp > a? 9oy 4. Recall that we always have

1 .
Eu(u) = NHUH%* >0 foralueP,,, (3.14)
thus, we must have My, = 0 for pp > a®  9an 4. O

With Lemma 3.3 in hands, we can obtain the following.

Proposition 3.2. Let N > 3 and 2 + % <g<2*.

(1) If2+ % < g < 2%, then mg , is attained by same uq,,,— which is real
valued, positive, radially symmetric and decreasing in r = |x| for all p > 0,
and thus, g, — is a solution of (1.5) for all p > 0 with some Aq ,,— < 0.

(2) Ifq=2+ 4, then mg,, can not be attained and (1.5) has no ground
states for all p > a9 oy 4.

Proof. (1) By Lemma 3.3, 0 <mg, , < %S’% for all 4 > 0 in the case of 2 + % <
q < 2*. Now, by following the arguments in [19, Section 6] step by step, we can
show that m, , is attained by some u,,,,— which is real valued, nonnegative, radially
symmetric and decreasing in r = |z| for all > 0 in the case of 2+ % < q<2*. By
similar arguments as used for [50, Lemma 6.2], we know that P, , = P*" £ 0 is a
natural constraint in S, for all 4 > 0 in the case of 2+ 4 < ¢ < 2*. Thus, uq,,,
is a solution of (1.5) for all 4 > 0 with some A, , — in the case of 2+ + < g < 2*.
As that in the proof of Proposition 3.1, we can show that A, , - <0 and ugq,, — is
positive.
(2) Suppose the contrary that my, , is attained by some ug,,,— for p > a? " lay g,

then by Lemma 3.3 and (3.14), |jug . — |3« = 0. Tt is impossible since u, ,— € S,.
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Thus, m, , can not be attained for u > a?”*~ay 4. It follows that (1.5) has no
ground state for all > a? Ty 4. O

4. THE ASYMPTOTIC BEHAVIOR OF Uq,,, —

In this section, we shall mainly study the question (Q3) and give a precisely
description of the asymptotic behavior of u, ,, — as u — 07. Since we consider p —
0" now, the assumptions of [19, Theorem 1.1], [34, Theorem 1.6] and Proposition 3.1
always hold and thus, u,,,—, which is a minimizer of &|s, (u) on P**, exists for all
N > 3,2 < q<2* for p > 0 sufficiently small.

Proposition 4.1. Let N > 3, 2 < ¢ < 2* and uq,,,— is a critical point of £|s, (u)
of mountain pass type. If N > 5 then uq ,,— — U, strongly in HY(RN) as yu— 07,
where U, is the Aubin-Talanti babble such that U, € S,. Moreover, if N > 9, then
up to translations and rotations, u, , — is the unique minimizer of £|s, (u) on P
for p > 0 sufficiently small.

Proof. By [49, Theorem 1.4], mf , — 0 as u — 0*. Moreover, by [19, Theorem 1.4]

again, we know that m, , — %S% as i — 07, and

n
* N
IVttau,— 13 [tay—l3 = S asp— 0%

for 2+ % < ¢ < 2*. On the other hand, by [49, Lemma 4.2] and similar arguments
as used for [50, Lemma 5.7], we also have m_ , 2 1 for p > 0 sufficiently small in
the case of 2 < ¢ < 2+ %. Thus, by adapting similar arguments as used in the proof
of [49, Theorem 1.1] for the case of 2 + % <g<2*tothecaseof 2 < qg<2+ %,

we can also show that m, , — %S% as u— 07, and

a, i
* N
IVtau 13 [uay—lI3- = S asp— 0%
for 2 < ¢ < 2+ 4 (see also [31, Theorem 1.7]). It follows that, up to a subsequence,
{ta,u,—} is a minimizing sequence of the following minimizing problem:
[Vull3
ueDt2@M\(0} [lul3.

Since N > 5, U. € L?*(RY) for all ¢ > 0. We then choose g9 > 0 such that
Uey € Sa- By [19, Lemma 4.2], there exists t(p) > 0 such that (U, )y, € PZ* for
w1 > 0 sufficiently small, that is,

N s N

[t = pygl|U, 12 [E()] ™ + [E()]* S= .
Clearly, by the implicit function theorem, t(u) is of class C*! for |u| << 1 such that
£(0) = 1. It follows from S= (1 — [t(u)]2 ~2) = 1Yl Ueo 18]t (1)]972 =2 that

S = (4.1)

VqllUeo I3
) =1— —aZ=lld_ 0 h0)y 4.2
() @ _2)s%" () (4.2)
which implies
Mo, < Eul(Usg)i(w)
1 .n  WllUsllE u q
= §°° - Tq - =(1- Q*q)IIUEOIIE + o(p)

1 Us,|1¢
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for N > 5. Since we have m;,, = 5 | Vta -3 — 5 (1 — G)[[ua,pu,-[lg, by (4.3),

ap
q
IVt 13 = 20 = D g < 8% = M o, 0
On the other hand, by (4.1) and u,, — € P**,
o o [ Vuay 13
T a3
|Vt |I3

2
(Vg p, - ”% — 1Yql[Uap,— 13)=F

2 gllva,—[I7
= (IVtau-l13 = mrgllua- I~ + wa + o(pllua,u,~1g)-
It follows that
2 g _N-2 q q
Ve 13 > 5% = X2t 15 + 00l 2): (45
Combining (4.4) and (4.5), we have
[ta,u,~11G = [Ueollg + o(1)- (4.6)

Since {uq,,,— } is bounded in H'(RY), u, , - — ug — weakly in H'(RY) as p — 0"
up to a subsequence. Since u, ,, — is radial and decreasing for r = |z|,

sup/ |ua7#7,\2dx:/ g, |2dz.
yeRN J By (y) B1(0)

Thus, by (4.6), Lions’ lemma [56, Lemma 1.21] and the Sobolev embedding theorem,
uo,— # 0. Note that it is standard to show that ug _ is a weak solution of the
following equation,

—AU=U%"1, inRY,

thus, we must have ||Vug, |3 > S% . It follows from Vg, -3 — ST asp— 0F
that ug,,,— — ug,— strongly in DY2(RN) as u — 0% up to a subsequence, which
implies ug _ = U, for some ¢ > 0. Since |U,,||3 = a?, by the Fatou lemma and
(4.6),

Ul = Ul and  [[Uell2 < |Us,I3.

Hence, we must have e = g¢ and thus, ||ug_||2 = ||U, |3 = a?, which implies
Ugu,— — Ue, strongly in HY(RY) as yu — 0% up to a subsequence. Since U, is
the unique Aubin-Talanti babble in S,, we have u, , - — U., strongly in H!(R")
as p — 0F. Moreover, since u,, — is a solution of (1.5), by the Pohozaev identity
and uq,u,— € Pq , we have

~Aau— e~ 113 = (1 = vq)ull a1, (4.7)

which implies A, ,,,— — 0 as p — 01, It remains to prove that u,, — is the unique
minimizer of &|s, (u) on P** for u > 0 sufficiently small up to translations and
rotations. For this, let us first claim that

N-—2

1 2
Ugp— S (1 +T2> (4.8)

for all » > 0 in the case of > 0 sufficiently small. Indeed, since u,,,,— is a positive
and radially decreasing solution of (1.5), by Struss’s radial lemma (cf. [12, Lemma
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< =" for r > 1. Thus, by

~

A1V, Theorem A.I'] or [14, Lemma 3.1]), g, —
(4.7), uq,p,— satisfies
i N-1 / < b=}

U, — Ug,p,— ~ Ya,p,—a,p,—

Sy, forr 21 (4.9)
,

for some 6 > 0. By bootstrapping we obtain the desired decaying estimate (4.8).
Now, let us consider the following system:

{}'(w, o, i) = Aw — aw + pwd™t +w? 71

4.10
Glw, o ) = [w]2 — a2, (4.10)

where a,pu > 0 are parameters. It is easy to see that F(U,,,0,0) = 0 and
G(U,,,0,0) =0. Let

0wG(Us,,0,0) 0,G(Us,,0,0)
be the linearization of the system (4.10) at (U,,,0,0) in H*(RY) x R, that is,
8w]:(U50’ 0’ O) =A + (2* - 1)U€2;_2) aa«/r(UaoaOyO) = _UED

OwF (Uey,0,0) 0o F(Ug,,0,0
E(Umm):( (U20:0.0) 0aF(UL, >>

and
0wG(Us,,0,0) =2U,,, 0,6(Us,,0,0)=0.
Then L(U,,0,0)[(¢,7)] = 0 if and only if
A¢+ (2° —1)UZ 2¢ — 7U., =0,

/ A (4.11)
RN O
We claim that in H}!

rad(RN) x R’ E(Uan 0, O)[((ba T)] = 0 ifand Only if (¢a T) = (07 0)
Let £(U.,,0,0)[(¢,7)] = 0 for some (¢,7) € H} ;(RY) x R. Since it is well-known
(cf. [11]) that W = &=2U, + U/ r is the unique radial solution of the following
equation

Ap+ (20 —1)UZ 26 =0
in H! ,(RY), by multiplying the first equation of (4.11) with W and integrating
by parts, we have

0=r WUEOZ—T/ Uz.
RN RN

It follows that 7 = 0 and thus, ¢ = CW for some constant C € R. By the second

equation of (4.11),
o:/ U50¢=—C/ Uz,
RN RN

which implies that ¢ = 0. Thus, the kernel of the linearization of the system (4.10)
at (Usy,0,0) in HY ,(RY) x R is trivial, which implies that the linear operator
L(U,,,0,0) : H' ,(RY) xR — H! ,(RY) x R is injective. On the other hand,
by similar arguments as used for Proposition 2.1, we know that all minimizers of
Eu(u)|s, on PY" are real valued, positive, radially symmetric and radially decreas-
ing up to translations and rotations. Now, suppose that there are at least two
minimizers of £, (u)|s, on P“*, say u, and ", then without loss of generality, we

may assume that they are all real valued, positive, radially symmetric and radially
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decreasing. The corresponding Lagrange multipliers are Aj, and A}*, respectively.
Let
ko kck k) ok
Wy = * *ibu u# * *% and Su = * *j\# )\# * sk |7
||up,_up, ||H1+|)‘;J,_)‘u | ||uu_uu HH1+|AM_)‘M |
where || - ||z is the usual norm in H(RY). It is easy to see that {w,} is bounded
in HY(RY) and {s,} is bounded. Moreover, by (1.5), we also have
q—2
—Awy, — Njwy, —quuy” = ulg—1) (“Z + Gu(uz — u,ﬁ*)) wy,

2% -2
(2 — 1)<u; + 0, (u, —u;;*)> w,, (4.12)

where 0,,,0,, € (0,1). Since u}, and u};* belong to S,, we also have

" p
Y A s A
RN
Since the linear operator £(U,,,0,0) : H: ,(RV) x R — H! ,(RY) x R is injective,

it is standard to prove that (w,,s,) — (0,0) weakly in DM2(RY) x R as y — 0%,
Now, by multiplying (4.12) with w,, and integrating by parts, we can use fact that
wr,uy, — Ue, strongly in H'(RN) as u — +oo to show that (wy,s,) — (0,0)
strongly in DV2(RM) x R as p — 0. Moreover, by (4.7), we also have

qg—1
o [ (w0 =) ) = ol
RN
By (4.7), (4.8) and (4.12),

L. o
_AU_)M — 5)\#10# 5 m fOI‘ T z W
By (4.7), we also have
1 1 "
2—N * 2—N __ *,.2—N
—A(r ) — 5)\”7“ = —5)\M7“ e N2 for r 2 |>\Z|%-

Since w), is radial and {w,} is bounded in H'(R"), by [12, Lemma A.2],
lw,| <r "2 forr > 1. (4.13)

Thus, by the maximum principle,

lw,| Sr2N forr > e (4.14)
i
For 1 <r < \A*lﬁ , by (4.8), (4.12) and (4.13),
N
1 1 1 _TN _atN
_Awugﬁ(ﬂ?—f'm)sr 2 Sr 2

a+N

in the case of N > 5, where a = %. Recall that for N > 5, r2~ "z is also a
superharmornic function. Thus, by the maximum principle,

lw,| S P27 for 1 <Sr S . (4.15)
RWE
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Note that by w,, — 0 strongly in DV2(RY) as g — 07 and |jw,[|%: = 1, we know
that ||w,|3 = 1+ 0,(1). Thus, by w, — 0 strongly in DV2(RY) as p — 0%, the
Sobolev embedding theorem and (4.14) and (4.15),

T +oo 1 1
1 ~/ wl? < 0u(1) +/‘*3'4 i +/ N =0, (1) + 51 %,
RN T0 2

1

1
K
which is a contradiction by taking ro > 0 sufficiently large. It follows that u, ,,—

is the unique minimizer of &|s,(u) on P®* for u > 0 sufficiently small up to
translations and rotations if N > 5. ([l

For N = 3,4, The Aubin-Talanti babbles U. ¢ L*(RY). Thus, we need to
modify the arguments for Proposition 4.1 to give a precise description of 14, — as
p — 07 in these two cases. As in the proof of Proposition 4.1, {ug,,, —} is also a
minimizing sequence of the minimizing problem (4.1) in the cases N = 3,4. Since
Uq,pu,— 1s radially symmetric for » = |z|, by Lions’ result (cf. [56, Theorem 1.41]),
up to subsequence, there exists o, > 0 such that for some €, > 0,

N2
Va () = 047 g —(0u2) = Ue, strongly in DM?(RY) as p— 01, (4.16)

We also remark that since U, & L*(RY) for N = 3,4 and ||vg, |3 = o’ by the

2
Ol

Fatou lemma, we have o, — 0 as pp — 0F.

Lemma 4.1. Let N = 3,4 and 2 < ¢ < 2*. Then

N—N=2,
pop  °
- " N-2

a,p,—

3
oz 1
1~ _i”“ 111( )7 N:3’q:3a

a,p,— V= Aau,—0p
q—3
3_4g
pou (\/ _)‘mm—gu)
N

-\ ’

a,ph,—

<q<2%,

=3,2<q<3.

Proof. By the equation (1.5), we know that v, ,, — satisfies

N_N=2, .
—Avg - — )\a)u),aiva)u), =po, 2 I 4027t in RV, (4.17)

a,p, a,p,—
It follows from (4.7) that

2 2 N-I=2q q
“Aau,~0plva -3 = (1= vg)uoy lva,u,— 13- (4.18)

Recall that [[ug,, |5 = 07 |vau |3 = @ and [|[Vua,, |13 — S% as u — 0F, by
(4.7) and the Holder inequality, A, ,,— — 0 as p — 07, Clearly,

N,uq
po, 2 =0 asp— 0" (4.19)
By the Holder inequality once more,
N_IN=2 N—IN=2
M= l0allva -3 Spop = Mvap-llz = "

Since ¢ > 2, N — £5:2¢ < 2. It follows from ||vg,,,—[|3 ~ 0,2 — +o0 as . — 0T
that

N— N2—2q)

|)‘a,u7—|0;2t = o(uoy as u — 0. (4.20)
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Recall that v, — — U., strongly in DM2(RY) as u — 0 up to a subsequence, by
(4.19)-(4.20), adapting the Moser iteration (cf. [53, B.3 Lemma]) and the L? theory
of elliptic equations to (4.17) and the Sobolev embedding theorem,

Vap— — Ue, strongly in L®(RY) as  — 0" up to a subsequence  (4.21)

In what follows, we follow the ideas in [7] (see also [24, 38]) to drive a uniformly
upper bound of v, , . We define
1
Vap— = —————Va pu—(1/Va,u,— (0)).
H va#’_(o) H H

Since Vq,,,— is radial, v, ,,— satisfies

N-1_

vy, - — Ve = [ o) in RV, (4.22)
where
~ ~ N-N=2 —1~g—
f@ap-) = )‘a,ufgiwa,uﬁ(o)”a,uﬁ +poy T vau,-(0)] lvg,ul,f
[va,— (02107, L
Let
N (1 2 N—-1z ~ N -2 N~ ~
H(r) =1r" (Vg -)" + (N =2)r" " 04 0, — + N7 Vap,— f (Va,p,—)-
Then by direct calculations and using (4.20)-(4.22),
Nt N_N=2 _
H'(r) = —2P=ap-lof = (N =2)2" —q)uou = "0} 2 Joay,-

N
N1
N_—N=2,T ’Ua7 - « _
= o (0, (1) = (N = 2)(2° — @)U )

Since vq,,— > 0, '17;1“_7 < 0 and v ,,— exponentially decays to zero as r — 400,

there exists 7, > 0, H'(r) > 0 for 0 < 7 < r,, and H'(r) < 0 for > r,. Thus,
H(r)> H(0) =0 for all » > 0. Let

~
-
U(r) = 7~i}€; .
"a,p,—

Then by direct calculations and using (4.22),

W (r) = N iR
r) = N—QT Vg ppe H(r)>0

for all » > 0. It follows from (4.22) once more that

U(r)>v(0)=-2,,_(0)=

a,p,—

where

N—_N=-2 _ .
d, = Aa,u,—aiva,#,—(o) tuoy 7 e u— (0] 4 [va - (0))* L

Let
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—Z,(r)

Then it is easy to check that = ey Tt follows that

Zu 2 N
vl Z! (r
L ul )N for all » > 0,

Vgl (Zu(r)] ¥ =

which together with (4.21), implies
1
Vap— S ———x forallr>0 (4.23)
H (1 + 7“2) N2 2
uniformly for p > 0 sufficiently small. Now, for the cases % < q < 2%,
oo 1 N-1
oanl S [ S 1
“ a 0 (1—|—T‘2)(N22)

By the Fatou lemma, [[vg,, || > ||Ue, ||+ 0,(1) 2 1. Thus, by (4.18),

N-2
2 q

~1 for

1O
—A

N <g<2F
q .

g — N -2
For N = 3 and q = 3, we need to drive the uniformly exponential decay of v, ,,,—

at infinitely both from below and above to obtain the conclusions. Let
& = p=le—v/PanJur,

Then it is easy to check (cf. [44]) that —A® — A, , —0-® < 0 for 7 > 1 in the case
of N = 3. Since v, ,,— — U., strongly in L=(R™) as . — 0" up to a subsequence,
by the maximum principle,

> plemVIRaw—lowr for > 1 (4.24)

Va,pu,—
in the case of N = 3. On the other hand, let
T = te sV Ranlowr,

Then it is also easy to check that —AYT — %/\a%_azT > (0 for » > 1. Since

q

uaﬁii — 0 as u— 07, by (4.23), for

rz %,
‘)‘a;l»h*|a’/1
we have —Avg,— — $Xapu,—0ntau— < 0 in the case of N = 3. Thus, by the

maximum principle and (4.21) once more,

<l 3P gy L (4.25)

rUaJM— ~ |>\a,/t,f |U;2L .

For ¢ =3 and N = 3, by (4.23) and (4.25),

FORT oo
/ T 7«—1 + eV Na,p,—lour
1 1

i
Pa,p,—log

(=)
In| —m——— ).
|>‘a,u,—“7u

AP ERS

A
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By (4.24), for ¢ = 3 and N = 3, we also have

\)‘a,;,—\"’p —1 ].
ol 2 [T 2 (),
1 VIAau~lou
Thus, the conclusion for ¢ = 3 and N = 3 then follows (4.18). For N = 3 and
2 < g < 3, we need to construct a newly upper bound of v, , — by adapting ideas

in [20]. By (4.23), we have

1 3-4 1
2 1—
—Avgy, — — 5)\&7#,_0#%,#,_ Spop 2r—% forr 2 7”\ B .
ViAa,p,— 10w

34

- 2
On the other hand, let ¢, ~ M’”ﬁrl_q, then by direct calculations,
a,p,— 19
1

vV |/\a,u,—|0u

1 _a
—Ag, — ika,u,,oitbﬂ > ,UO'Z 2pl=4 for r >
By (4.23) and the maximum principle,

q

-3
< Mo — ri=9 forr > 71 (4.26)

Vap— S .
o |)‘a,uﬁ‘0;2¢ VIAau,—low
Now, using (4.26) as a new barrier and by (4.23), we know that

3—1 -1
2 q
HOop 1—q)

2 3-%
—Avg - — 7/\a,u,—auva,u,— S Moy 5
2 ‘)‘G,N1*|J;L

for r > ——L——_ Thus, by similar comparisons, we have
~ ll)\aquflo'H ) y )
3-3 \¢
o 2 1
Vap— S (%) rm@ forp > ——
| a,u,f|‘7u Vg, loy

By iterating the above arguments n times for a sufficiently large n such that ¢(q —
1)™ —3 >0, we have

37% Sn
Hop —(g-1)" > 1
Vap— S <|)\2> r forr 2 ———, (4.27)
a,/»"77|0'lt V1 Aau,—low
where s,, = s,—1(¢ — 1) + 1 which implies
(g1 -1
Sp = — .
q—2
By (4.24), we have
S SR 3-¢
[P / T R 2 (L) (429)
R A —log,
and
1
2 \/"\“v*l‘»*la“ 72\/|/\ _|our 1 2
lva,u—112 2 e ol 2 | -
1 ‘)‘U«»M,—|Uu

It follows from (4.18) that

3—q

3=q 1
Map—| = ,ucriig (12> ’ and (12) ’ Aap— S (4.29)
|>‘a’lb*|0,u |)‘aall«,*|ap,
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which implies

[SIS)

3—
AT T [Tl < g2
|)\a,u,7|0ﬁ ~ sk 1 ~
Now, by (4.27) and (4.29),

1 +oo
g o [T gy ety [T ey
1
! VIa,u,—lon

[Va,p,

3—aq
< (IA 1 | 2) T a2
[y, — Uu
(1 N e
~ \ap-lof g
1 =
I — (4.30)
(|/\a7u,|03)

The conclusion for N = 3 and 2 < ¢ < 3 follows from (4.18), (4.28) and (4.30). O

With Lemma 4.1 in hands, we can obtain the following.

Proposition 4.2. Let N = 3,4 and 2 < g < 2*. Then

Wy~ =ep? Ugp—(,7) = Ue, strongly in D¥*(RY) as pu — 0T

up to a subsequence for some e, > 0, where €, > 0 satisfies

ehae2" ) N=4,2<q<2",
eéfl, N =3,3<q< 2%,
1
oo~ 2 (4.31)
571117 N:37q:3a
ln(g)
534
en 2, N=3,2<¢g<3.

Proof. Let {V.} be the family given by (2.4). Since 2 > = for N > 4, By [14,

(4.2)-(4.5)],

N-Ngzg o gy N
E 9 7N72 q b

IVellg ~ 4 &2 In(R.e™'), N=3,q=3, (4.32)

for ¢ > 0 sufficiently small. By [49, Lemmas 4.2, 5.1 and 6.1], there exist ¢, . > 0
such that
IVVaI3 = pyallVellgege= + VeIl 22

q H,E

and

2A[VVLI3 < nagIVellgtina = + 2* || Vell3- 7.
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Thus, {t,.} is uniformly bounded and bounded from below away from 0 for all
g, > 0 sufficiently small. By (2.5) and (2.6),

ST (11752 = pg ||Vl §850272 + O((Ree™1>~)).

1Ep qpe
Then we can use similar arguments as used for (4.2) to show that
gl Velld + O((Ree™)*7Y))
(2* —2)S%
and thus by similar arguments as used for (4.6),
ltap~l1g = (1 + o) (IVe[lE = Cu" (Ree™)* ™)),
which together with (2.5) and (4.32), implies

tue=1—-(1+0(1))

- —C,u_le_kfz, N=42<q<?2",
£33 —Cp1le?, N=3,3<q<?2%,

”Ua,u,—Hg 2 3 1
13

)~ Cu'e?, N=3,q=3,

g2 3 _Cute?, N=3,2<qg<3.

By choosing ¢, such that the right hand sides of the above estimate take the
maximum, we have (4.31) and

N—Jq N "
N = 3,4, 27,
Eu ) 3, N3 <qg<
3 1
g, I§ 2 S eZIn(—), N=3,q=23, (4.33)
Eu
-3
e, N=32<g<3.
N-2
We define w,, — =&, g —(g,2), then |w, |3+, ||Vw, _||3 ~ 1 and by (4.33),
N
1, = 3,4, <q <2,
'N—2 "1
1
ku,—IIZ 2 In(—), N=3,q=23, (4.34)
Eu

% N=32<g<3.

It is easy to see that

N-N=2 N_N=2

on 7 v —l1E = luap-l1E =eu 7 w12 (4.35)
Then by Lemma 4.1, (4.18) and (4.34) we have
N _N-2

on ey 24 (4.36)

for % < q<2*and N = 3,4. On the other hand, we know that

N_2
€ 2 €
wy,—(x) = (J“) Va,p,— (U”x) (4.37)
1 o

and w, _ satisfies
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where
7 ! ([ - (O))"2)
_= w, —([w, x
Hy w#’i(o) 122 My
with s € R and
~ 2 26 ~ N-I24 254q—2~q—1
g(wy,—) = )‘a,#ﬁgu[wuﬁ(o)] Wy,— + ey [wy,,—(0)] wy, —
o (0P 22

By similar arguments as used for (4.23), we have

wy,~(0)
Wy, — 5 M—N—2

for all r > 0, (4.38)
(L+0b,r2)=

where

N-—2

by = [w/~%7(0)]28_1()\0‘7#775311}#’7(0)+NELV_ : q[wu,f(o)]q_l
+w,.,—(0)7 7).

We recall that p1,0,,Aq,,— — 0 as p — 07, and by (4.7), we have A\, ;- < p.
Thus, by Lemma 4.1, (4.21) and (4.37),

o\ (N=2)s+2
b, ~ (£ . 4.39
-~ (2) (4.39
Now, take s = —1 and by (4.38), we can use similar arguments in the proof of

Lemma 4.1 to show that

e A2q— 5 (4-N)
W%Azs(%)

for % < g < 2*and N = 3,4, which together with (4.35), implies that o, < ¢, for
- < ¢ <2 and N = 3,4. It follows from (4.36) that o, ~ ¢, for &5 < g < 2*
and N = 3,4. For the case N = 3 and ¢ = 3, by |lw,, _[|3 ~ &, Struss’s
radial lemma (cf. [12, Lemma A.IV, Theorem A.I'| or [14, Lemma 3.1]) and similar
arguments as used for (4.25),

SV 1
Wy~ S 6;27“_16_% Paw—lenr for p> ——— . (4.40)
vV [Aa,p,—l€u

It follows from (4.38) and (4.39) that

3-3(s+2)
ep)? 2 1
ol s () i,

JZ V |)‘a,u,—|‘7u

By Lemma 4.1, taking s = —1 and (4.35), we have ¢, 2 0,. By Lemma 4.1, taking
s = 2 and (4.35), we have ¢, < o,. Thus, for N = 3 and ¢ = 3, we also have
ey ~ o0,. For the case N = 3 and 2 < ¢ < 3, by (4.7), (4.33), Lemma 4.1 and

_3g
2
MNELL ’
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which implies o, 2 ¢,. Thus, by (4.21), we can adapt the maximum principle as

~

that in the proof of Proposition 4.2 to show that

> lemv o —lenm  for ¢ > 1. (4.41)

Wa,p,—

By (4.41), we can see that the estimates for (4.29) works for ¢,, and thus, we have

3—q 1
1 )2 ( 1 )2
E——s ) Pan-lSnw
<)‘a,u,—|fi |)‘a,u,—|5i g

5—4

HEp
Py feg = e
sHy— 1=

[NIIS)

3
[Aau,—| Z 1ew
and
3-q¢ q_ 2(2—
2 7 < 2(2—q)
e, 15¢, )

Now, we can follow similar arguments as used in the proof of Lemma 4.1 to show
that

3—4q

1 2
w, e < (-
e ”q ~ <)‘a,u,|5i) 7

which, together with Lemma 4.1 and (4.35), implies that o, < €,. Thus, we also

~

have o, ~ €, as u — 07 in the case of N =3 and 2 < ¢ < 3. O

We are ready to give the proofs of Theorem 1.1 and 1.2.

Proof of Theorem 1.1: It follows immediately from Lemma 3.1, Propositions 3.1
and 3.2. O

Proof of Theorem 1.2: It follows immediately from Propositions 2.1, 4.1 and
4.2. O
We close this section by

Proof of Theorem 1.3: (1) Since the proof is similar to that of Proposition 2.1,
we only sketch it. In the case of ¢ = 24 -, we have ||¢[|3 = ||¢o||3 for all minimizers
of the Gagliardo—Nirenberg inequality (1.9), where ¢ is the unique solution of (1.10).
Thus, we choose ¢ = m(b € &, as a test function of m, ,. By using similar
arguments as used in the proof of Proposition 2.1 and direct calculations,

N
m, <i(17 © )23*2<||V¢0||2> .

“HTN AN,ga [ @0 ll2-

It follows from ug, — € Pq,,, the Gagliardo-Nirenberg and Sobolev inequalities

that
N
2) , (4.42)

2%

sy < ||V“a,u,f||32 < <||V¢0|
(1— )7 Jfas

QnN,q
which, together with u, ,,— € P, once more and the Pohozaev identity satisfied
by q,u,—, implies that
1—7, 1= o 7
e = g pllua-l§ = (1+0,(1 152 (1 ==
e = gl 12 (14 0,(1) 5% (1 )

and

N
1-7 [ <||V¢0|2)
-\, _ = 9 ullu 9 < (1 = 2% —2 .
Ky a2 /LH a, i, ”q — ( aN,q,a) H(ZSOHZ*
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Thus, {v,,, -} is bounded in H(RY), where

N—2 N a
Va,pu, )T 8pE tap,— (T Su)
e = ) ™ o8 v
and s, = (1 — 35 )=, Clearly, Vq,u,— satisfies
1q,a
a2

-¥(2*-2) b2 -1

4 1 2
R O v Al T AR T A

2

By (3.13) and [55, (1.3)], we know that angq (H¢ Hz)i =1forg=2+4%. On
the other hand, since v, ,,— is radial, it is standard to show that vg , - — .1
strongly in H*(RV) as u — @y 4.q UP to a subsequence for some v, > 0.

(2) In the cases of 2 + % < q < 2%, q%Q — % # 0. Thus, we can choose
v, > 0, as that in (2.10), such that [[¢,, 1|3 = a®. Again, we use ¢,,1 € S,
as a test function of m, ,. By using similar arguments as used in the proof of

Proposition 2.1 and direct calculations, m, , < o e as u — +oo. It follows
that u,,,— — 0 strongly in DV2(RY) N L9(RY) as u — 4o00. This, together with
Uq,u,— € Pa,, and the Gagliardo-Nirenberg and Sobolev inequalities, implies
__2
IVtta,-1I3 = (1 + 0u(1)) (pryga® M4 C; )~ a2,
On the other hand, for the test function v, 1, it satisfies
IVWvaall3 = wvg v, |32 + b, 325 2,
where (1, 1)t, € Pa,u- It follows that
1 a2
<|l—— .
Wil = (e )
Thus,

2

Eu(()n) = (14 0u(D)(5 — )V, 1)

1 1 1 avq=2
1+ 0,(1 —() .
( N( ))(2 q/_yq) Naq_qnyq,,chqu,q

Note that &,((¢v,1)t,) > m,,, and

a,p

IN

1 1
my = Ep(tapu-)=1+0,()(5 — —)| Va3
= Eultap-) = 1 +0,(1)(5 q%)ll w2

as ( — +o00o, we must have

_ 2
IVtta,pu,- 13 = (1 + 0,(1)) (pyqa? T2 CF )~ 72, (4.43)

N
As in (1), {vq,,—} is bounded in H*(RYN), where vy, — = 87 g, —(s,z) and
1

= pe2. Again, v, ,, — satisfies

v *2)1}2*—1

2—
apb,— +su b, —

Using (4.43), the Pohozaev identity satisfied by w,,,,— and u,
we have

_ 2 q—1
—Avgp,— = /\m—suva,m— + v,

,— € Pa,, once more,

1= —av 9\ T3
*)\,u,— = (1 + O/L(]‘)) 2 (MFYQGJ qCN,q) e
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Now, by similar arguments as used in (1), va,u,— — ¥y 1 strongly in H'(RY) as
i — +00 up to a subsequence for some v/, > 0. Since in the cases of 2+ % < q < 2%,

qug — & #0. By ||va,u,—|13 = o, we must have v/, = v,. By the uniqueness of ¢, 1
in &, we know that v, , - — 1,1 strongly in HY(RY) as p — +o0. Using the
uniqueness of ¥, ; in S, and the nondegenerate of v, 1, we can prove the local
uniqueness of uq ,, — for p > 0 sufficiently large by adapting similar arguments as

used for g, + in the proof of Proposition 2.1. O
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