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Abstract. Under appropriate positivity hypotheses, we prove quantitative estimates for the total
k-th order Q-curvature functional near minimizing metrics on any smooth, closed n-dimensional
Riemannian manifold for every integer 1 ≤ k < n

2
. More precisely, we show that on a generic closed

Riemannian manifold the distance to the minimizing set of metrics is controlled quadratically by
the Q-curvature energy deficit, extending recent work by Engelstein, Neumayer and Spolaor [17]
in the case k = 1. Next we prove, for any integer 1 ≤ k < n

2
, the existence of an n-dimensional

Riemannian manifold such that the k-th order Q-curvature deficit controls a higher power of the
distance to the minimizing set. We believe that these degenerate examples are of independent
interest and can be used for further development in the field.
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1. Introduction and main results

1.1. The k-th order Q-curvature problem. We consider a compact Riemannian manifold
(M, g) of dimension n without boundary. In 1992, Graham, Jenne, Mason and Sparling [26]
constructed a conformally invariant operator Pg,k whose leading term is (−∆g)

k for each integer
1 ≤ k < n

2 , where ∆g is the Laplace–Beltrami operator of g (see Appendix A for more details).
The operator Pg,k is now known as the GJMS operator of order 2k. It is naturally constructed

from curvature quantities of g and satisfies the transformation law

Pg̃,k(φ) = u−
n+2k
n−2kPg,k(φu) when g̃ = u

4
n−2k g. (1.1)

Subsequently, the authors defined the (scalar-valued) curvature quantity Qg,k = 2
n−2kPg,k(1).

Substituting φ = 1 into (1.1), we see

Qg̃,k =
2

n− 2k
u−

n+2k
n−2kPg,k(u) when g̃ = u

4
n−2k g. (1.2)

Motivated by this conformal invariance and the analysis of the classical Yamabe problem, one
poses the kth–order Yamabe problem: given a compact Riemannian manifold (M, g) of dimension

n and an integer 1 ≤ k < n
2 , we seek a conformal metric g̃ = u4/(n−2k)g such that Qg̃,k is constant.

(Here and below we fix the background metric g and identify the conformal metric g̃ = u4/(n−2k)g
with its conformal factor u.) By (1.2) this is equivalent to solving the PDE

Pg,k(u) = cu
n+2k
n−2k on M, (1.3)

where c is a constant. We denote the set of solutions by

CQCg,k =
{
g̃ ∈ [g] : Qg̃,k is constant

}
=

{
u ∈W k,2(M) : u > 0 a.e. and Pg,k(u) = λu

n+2k
n−2k for some λ ∈ R

}
.

Since 2∗k := 2n
n−2k , Eq. (1.3) has critical growth in the sense of the embedding W k,2(M) ↪→ L2∗k(M).

To establish a variational setting, we introduce the functional

Qg,k(u) =

∫
M Qg̃,k dµg̃

volg̃(M)
n−2k
n

=
2

n− 2k

∫
M uPg,k(u)dµg(∫
M u

2n
n−2k dµg

)n−2k
n

. (1.4)

We show below in Lemma 3.2 that Qg,k is a C2-functional on W k,2(M). Furthermore, it follows
from this proof that g̃ is a critical point of Qg,k if and only if Qg̃,k is constant, which is in turn
equivalent to u solving (1.3) with

c = Qg,k(u)
(
‖u‖

L
2∗
k (M)

) 4k
n−2k

.

Observe that Qg,k is scale-invariant, so we will often restrict our attention to unit-volume metrics
in the conformal class [g], or equivalently

B =
{
u ∈W k,2(M) : u > 0 a.e. and ‖u‖

L
2∗
k (M)

= 1
}
.

We denote this restricted solution set by CQC∗g,k = CQCg,k ∩ B.
The variational setting suggests that we seek solutions in CQCg,k by studying a sequence

minimizing the quotient Qg,k, and so we naturally define the k-order Yamabe invariant

Yk,+(M, [g]) = inf
{
Qg,k(u) : u ∈W k,2(M) and u > 0 a.e.

}
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and the minimizing set

Mg,k =
{
u ∈W k,2(M) : u > 0 a.e. and Qg,k(u) = Yk,+(M, [g])

}
.

Observe that Mg,k ⊂ CQCg,k. Once again, we often restrict to minimizing solutions with unit
volume, i.e. ‖u‖

L
2∗
k (M)

= 1 and denote this restricted set by M∗g,k.
The plus sign in the definition of Yk,+ signifies it is the infimum over functions in W k,2(M)

that are positive almost everywhere. If k = 1, one can use the maximum principle to show the
minimizer over all functions in W k,2(M) is automatically positive almost everywhere. So we may
examine the infimum over all functions in W k,2(M). If k ≥ 2, we lack the maximum principle.
Hence, in general, there is no guarantee a minimizing function is an admissible conformal factor.

To place these curvature quantities in a more familiar setting, we remind the reader that Qg,1
is (up to multiplication by a constant depending only on n) the scalar curvature Rg and Pg,1 is
the usual conformal Laplacian

Pg,1 = −∆g +
n− 2

4(n− 1)
Rg.

In addition, we have

Qg,2 = − 1

2(n− 1)
∆gRg −

2

(n− 2)2
|Ricg |2 +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
R2
g (1.5)

is Branson’s (fourth-order) Q-curvature and Pg,2 is the Paneitz operator, given by

Pg,2(u) = (−∆g)
2u+ div

(
4

n− 2
Ricg(∇u, ·)−

(n− 2)2 + 4

2(n− 1)(n− 2)
Rg∇u

)
+
n− 4

2
Qg,2, (1.6)

where Ricg is the Ricci tensor. Thus (1.3) reduces to

Pg,1(u) = −∆g(u) +
4(n− 1)

n− 2
Rgu =

n(n− 2)

4
u
n+2
n−2

in the second order case, which is one of the most well-studied partial differential equations in
geometric analysis, and

Pg,2(u) =
n(n− 4)(n2 − 16)

16
u
n+4
n−4

in the fourth order case.
The existence of solutions in general and minimizing solutions in particular is often a delicate

question. In the classical case of the Yamabe problem (i.e. k = 1), the search started with
Yamabe’s work [54] and continued with the important contributions of Trudinger [52] and Aubin
[5]. Schoen [48] finally resolved the Yamabe problem, showing that any Riemannian metric on a
compact manifold without boundary is conformal to a constant scalar curvature metric. Schoen’s
solution uses the Green’s function of the conformal Laplacian in a fundamental way, highlighting
the important connection between the Green’s function and scalar curvature. Since then, a sizeable
community has sought to understand the solution and minimizing sets in all possible scenarios;
we do not attempt to summarize the extensive literature here. We only mention some results
characterizing the solution set in various situations. Combining the work of Trudinger and Aubin,
one sees that if Y1,+(M, [g]) < 0 then there exists a unique solution, whereas in the positive case the
existence of many solutions is possible. Schoen conjectured for many years the set of solutions is
compact unless (M, g) is conformally equivalent to the round sphere. Eventually, Khuri, Marques
and Schoen [31] verified this conjecture under positive mass theorem in the case that n ≤ 24, while
Marques and Brendle [40] demonstrated noncompactness in higher dimensions.

The search for solutions and/or minimizers is, as expected, more complicated in the higher order
case. Here we highlight only some relatively recent results. Gursky and Malchiodi [27] showed that
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if Rg ≥ 0 and Qg,2 ≥ 0 but not identically zero, then the Green’s function of Pg,2 is positive and the
solution set CQCg,2 is nonempty. Later Hang and Yang [28] weakened the hypotheses of Gursky
and Malchiodi, showing that it suffices to assume Yg,1(M, [g]) > 0. Most recently, Mazumdar and
Vétois [42] showed the minimizing set Mg,k is non-empty under the following conditions. First
they assume Yk,+(M, [g]) > 0. Next they assume that for every ξ ∈M the Green’s function Gg,k,ξ
(which is the unique function such that distributionally Pg,k(Gg,k,ξ)(x) = δξ, for δξ the Dirac delta
function at ξ) is positive everywhere on M .

Assuming Gg,k,ξ > 0, one can apply the analysis of Gursky and Malchiodi [27] (see also [28]
and, for the general case 2 ≤ k < n

2 , [43]) to see that

Gg,k,ξ(x) = bn,k(distg(x, ξ))
2k−n +m(ξ) + o(1). (1.7)

The quantity m(ξ) = mg(ξ) is usually called the mass of the GJMS operator Pg,k at the point ξ.
The final hypothesis of [42] is that if either 2k + 1 ≤ n ≤ 2k + 3 or (M, g) is locally conformally
flat, then m(ξ) > 0 for some ξ ∈M .

Following the existence result of [42], we define the following space of admissible metrics. Let
k ∈ N with n > 2k and let α ∈ (0, 1). Observe that the space of Ck,α-Riemannian metrics on M ,
denoted by Metk,α(M), is a convex cone in the space of all symmetric, rank-two covariant tensor
fields over M whose coefficients are Ck,α functions, and we equip all these spaces of tensor fields
with the topology induced by convergence in the Ck,α norm. We say a metric g ∈ Metk,α(M) is
admissible if it satisfies all the existence hypotheses of Mazumdar and Vétois [42], as described
in the previous two paragraphs. We denote the space of admissible metrics on M by Ak,α(M).
That is, we let

Ak,α(M) :=
{
g ∈ Metk,α(M) : Yk,+(M, [g]) > 0, Gg,k,ξ > 0 for every ξ ∈M,

mg(ξ) > 0 for some ξ ∈M
}
.

1.2. Quantitative stability estimates near minimizing metrics. We are primarily interested
in the stability of the minimizing set and in estimating the difference between Qg,k(u) and its
infimum in terms of the distance between u and the minimizing set Mg,k. We define

d(u,Mg,k) =
inf{‖u− v‖Wk,2(M) : v ∈Mg,k}

‖u‖Wk,2(M)

. (1.8)

Notice that this distance is well-defined whenever the minimizing set Mg,k is non-empty, which
in turn implies the solution set CQCg,k is non-empty, because Mg,k ⊂ CQCg,k. We also interpret

(1.3) weakly. In other words, we say that u ∈W k,2(M) satisfies (1.3) in the weak sense if∫
M
uPg,k(φ)dµg = 0 for all φ ∈ C∞(M).

Our first theorem in this manuscript is the following general stability estimate.

Theorem 1. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. If g ∈ Ak,α(M) for some α ∈ (0, 1), then there exists γ = γ(g) ≥ 0
such that

d(u,Mg,k)
2+γ . Qg,k(u)− Yk,+(M, [g]) for all u ∈W k,2(M). (1.9)

Furthermore, there exists a subset G ⊂ Ak,α(M) of the space of admissible Riemannian metrics on

M which is open and dense with respect to the Ck,α-topology such that if g ∈ G, then (1.9) holds
with γ(g) = 0.
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We interpret (1.9) as saying there exists a constant c depending only on g such that

cd(u,Mg,k)
2+γ ≤ Qg,k(u)− Yk,+(M, [g]).

When γ = 0 we refer to (1.9) as quadratic stability, and when γ > 0 we call (1.9) degenerate
stability or higher-order stability. The last part of the statement of Theorem 1 may be phrased
as saying that quadratic stability happens generically.

Remark 2. The ideas used to prove the genericity part of our main theorem for 2 6 k 6 n
2 are in

contrast with the ones in the case k = 1. On the one hand, our techniques rely on some results of
Case, Lin and Yuan [12] combined with the transversality method inspired by [15, 22, 44]. On the
other hand, the argument for the scalar curvature inspired by the ones given by Anderson [3] relies
on some facts that are far from being known for higher-order curvatures such as a classification
result by Obata [46].

Previous work, which we summarize in this paragraph, proved quadratic stability in the case

that (M, g) is conformally equivalent to the round sphere (Sn, ◦g). Bianchi and Egnell [9] proved
this in the case k = 1, then Lu and Wei [39] proved it in the case k = 2, Bartsch, Weth and
Willem [6] for integers 1 ≤ k < n

2 , and finally Chen, Frank and Weth [14] for each k ∈ (0, n/2),
including non-integers. Notice that when the background manifold is conformally equivalent to

the round sphere (Sn, ◦g), through the stereographic projection Eq. (1.9) is a refined version of the
classical Sobolev inequality on the standard Euclidean space (Rn, δ), namely

‖u‖Wk,2(Rn) . ‖u‖L2∗
k (Rn)

.

In the setting of generic manifolds, Engelstein, Neumayer, and Spolaor [17] proved the stability
estimate (1.9) in the case k = 1.

From a geometric point of view, one drawback of our first main result is that the distance
d(u,Mg,k) may depend on the choice of background metric g ∈ [g]. This is because the W k,2-
norm, with which d(u,Mg.k) is defined, is not conformally invariant. However, we can modify our
distance function to obtain the following conformally invariant stability estimate.

We define the following conformally invariant norm for metrics h = u4/(n−2k)g:

‖h‖ :=

(∫
M
|u|

2n
n−2k dµg

)n−2k
2n

. (1.10)

The definition appears to depend on the choice of the background metric g, but the following
computation shows ‖ · ‖ depends only on the conformal class [g]. If ĝ = φ4/(n−2k)g is a conformal

metric, then h = u4/(n−2k)g = û4/(n−2k)ĝ where u = ûφ, and so

‖h‖ =

∫
M
|u|

2n
n−2k dµg =

∫
M
|û|

2n
n−2kφ

2n
n−2k dµg =

∫
M
|û|

2n
n−2k dµĝ.

Similarly, in the case when Yk,+(M, [g]) ≥ 0, for h = u4/(n−2k)g we define

‖h‖∗ =

(∫
M
uPg,k(u)dµg

)1/2

(1.11)

for any g ∈ Met∞(M) with volg(M) = 1. Again, although ‖ · ‖∗ is defined with respect to a fixed
conformal representative, it turns out that the definition is independent of this choice. Namely
that for any ĝ ∈ [g] and h = u4/(n−2k)g = û4/(n−2k)ĝ ∈ [g], one has

‖h‖∗ =

(∫
M
uPg,k(u)dµg

)1/2

=

(∫
M
ûPĝ,k(û)dµĝ

)1/2

.
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Corollary 3. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. If g ∈ Ak,α(M) for some α ∈ (0, 1) is an admissible Riemannian metric,
then there exists γ(g) ≥ 0 such that(

inf{‖h− g̃‖ : g̃ ∈Mg,k}
volh(M)

n−2k
2n

)2+γ

. Qg,k(u)− Yk,+(M, [g]).

When Qg,k(u)−Yk,+(M, [g]) 6 δ0 for some 0 < δ0 � 1 small enough, there exists γ ≥ 0 depending
on (M, g) such that(

inf {‖h− g̃‖∗ : g̃ ∈Mg,k}
volh(M)1/2∗

)2+γ

. Qg,k(u)− Yk,+(M, [g]) for all h ∈ [g].

Moreover, for an open dense subset in the C2 topology on the space of conformal classes of
Met∞(M), the above inequalities hold with γ = 0.

Before going on, let us quickly sketch some heuristic ideas for the proof of Theorem 1. In a sense
we make precise in our proofs below, quadratic stability is closely related to the nondegeneracy

of u0 as a minimizer of Qg,k. Indeed, if g0 = u
4/(n−2k)
0 g is an element of the minimizing set Mg,k

and we write a nearby metric in the conformal class as gv = (u0 + v)4/(n−2k)g, we can write out a
formal Taylor expansion

Qg,k(u0 + v) = Qg,k(u0) +DQg,k(u0)(v) +D2Qg,k(u0)(v, v) +O(‖v‖3)

= Yk,+(M, [g]) +D2Qg,k(u0)(v, v) +O(‖v‖3).

Here we used the fact that u0 ∈ Mg,k and that g0 is a constant Q-curvature metric, which,
as we mentioned above, means u0 is a critical point of Qg,k. If u0 is a nondegenerate critical
point, then the Hessian D2Qg,k(u0) does not vanish on any v, implying in turn that the difference
Qg,k(u0 + v) − Yk,+(M, [g]) is indeed quadratic in ‖v‖. Furthermore, by a generalized version of
Sard–Smale’s theorem (see Lemma D), we expect nondegeneracy to happen generically. All of this
is carried out in a rigorous way in Section 4.

1.3. Examples for higher-order stability. Given the description in the previous subsection, it
is of great interest to produce examples of minimizing metrics satisfying a superquadratic stability
estimate, i.e., manifolds (M, g) such that Theorem 1 holds for some γ > 0, but not for γ = 0.
Motivated by a classical example of Schoen [50] and a newer one by Carlotto, Chodosh and
Rubinstein [11] (based on work by Caffarelli, Gidas and Spruck [10] and by Schoen [49]) we
produce two different families of constant curvature metrics, each of which satisfies a higher-order
stability estimate. The degree of degeneracy of the metrics as minimizers, or more generally as
critical points, is made precise by the Adams-Simon positivity condition (ASp condition for short),
for which, we refer to Definition 4.3 below.

Theorem 4. Let m, ` ∈ N with ` ≥ 2, let λ ∈ R, and let (M, g, λ) be an m-dimensional Einstein
manifold with Einstein constant λ. If m� 1 is sufficiently large, the function u ≡ 1 is a degenerate

critical point of Qh,2 for certain values of λ, where (X,h) = (M × S`, g ⊕ ◦g). Moreover, one can

replace (S`, ◦g) by (CP`, gFS), where gFS is the Fubini-Study metric, in this example.

Please see the statements of Propositions 5.1 and 5.2 below for more detailed statements. The
reader will see that our proof of Theorem 4 is quite flexible. In particular, one should be able to
prove a similar result for k ≥ 3, but the computations quickly become unwieldy. While our proof is
inspired by the example given in [11, Section 5.1], our techniques end up being somewhat different.
Carlotto et al are able to choose the individual manifolds such that the product h = g ⊕ gFS is
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Einstein on M ×CP`, whereas we cannot. This complicates our verification of the AS3 condition,
which in turn explains the requirement that the dimension of M is large enough. This is in contrast
with the case k = 1, where no restrictions are imposed on dim(M).

We can also exhibit an explicit example of a manifold for which Theorem 1 holds with γ = 2.
Our analysis covers every integer order 1 ≤ k < n

2 , thus extending the corresponding example for
k = 1 discussed in [11], whose degenerate stability was recently analyzed in detail in [19]. We fix
n > 2k and consider the manifold

M = S1(τ0)× Sn−1 (1.12)

with the standard (non-normalized) product metric h. Here Sn−1 denotes the unit sphere in Rn
and S1(τ0) denotes the unit sphere in R2 of an appropriately chosen radius τ0 > 0, see (6.14) below.

Theorem 5. Let n, k ∈ N with n > 2k. There exists a specific τ0 > 0, defined below as the
unique number satisfying (6.13), such that for (S1(τ0) × Sn−1, h) the constant function u ≡ 1 is
a degenerate minimizer of the functional Qh,k which satisfies the AS4 condition. Moreover, the
function u ≡ 1 satisfies (1.9) with γ = 2, and does not satisfy (1.9) for any γ < 2.

We point out some complications we encounter in the proof of Theorem 5, as compared to its
second-order counterparts in [11,49]. First, in the case that k = 1 one only encounters polynomials
of degree at most two, whose roots are relatively easy to find. In our analysis, we must find roots
of higher-order polynomials, which we can do only through extremely careful and systematic
accounting. More significantly, a fundamental ingredient in [11, 49] is the phase-plane analysis of
the second-order ODE arising from (1.3) when k = 1. This phase-plane analysis allows one to
quickly show that all ODE solutions are, up to translations, uniquely characterized by their period
and thus occur in a one-parameter family. More refined arguments (see [11, Appendix B] and
references therein) show that the period length is actually a monotone function of the parameter.
Using this, the authors of [11, 49] are able to conclude the crucial fact that the only minimizers
of Qh,1 are the constants for k = 1. However, for integers k ≥ 2 the classification of solutions to
the corresponding higher-order ODE is only known for k = 2, 3 [4,20] and even in those cases the
monotonicity of the period length is an open problem. To overcome this difficulty, inspired by a
remark in [19, p. 1463], we succeed in adapting an argument due to Beckner [7, Theorem 4]: see
Lemma 6.6 and Step 3 in the proof of Lemma 6.7.

Remark 6. The examples we describe in Theorems 4 and 5 are not only interesting for their
novelty. Additionally, they could also provide important examples illustrating the slow convergence
of the geometric flow towards a constant Q-curvature metric. We plan to address the convergence
of this flow in a future paper.

We close this introduction with a brief outline of the rest of the paper. We begin with some
preliminaries in Section 3, proving that the total Q-curvature functional is regular in Section
3.1 and listing some auxiliary lemmas from elsewhere in Section 3.2. We prove Theorem 1 and
Corollary 3 in Section 4. In Section 5 we prove Theorem 4, specifically discussing products with
spheres in Section 5.1 and products with complex projective space in Section 5.2. Finally we prove
Theorem 5 in Section 6. We include Juhl’s general recursion formulas for the GJMS operators in
Appendix A for the reader’s reference, even though we do not use them in the main text.

2. Notation

Let us establish some standard terminology and definitions. In what follows, we will always be
using Einstein’s summation convention. Furthermore, we omit the subscript g, in the section the
metric is fixed.

• N = {1, 2, 3, · · · } and N0 = N ∪ {0};
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• k ∈ N and n > 2k
• (M, g) is a smooth closed n-dimensional Riemannian manifold;
• δ = gRn denotes the standard Euclidean metric;

• ◦g = gSn denotes the standard round metric;
• ωn denotes the volume of the Euclidean n-sphere;
• Metk,α(M) denotes the space of Ck,α-metrics in M , when α = 0, we simply denote

Metk(M);
• Met∞(M) = ∪j∈NMetj(M) denotes the space of smooth metrics in M ;
• (ei)

n
i=1 denotes a local coordinate frame;

• Trs(M) denotes the set of (r, s)-type tensor over M with T0
0(M) = C∞(M);

• Rmg ∈ T4
0(M) (or Rmg ∈ T3

1(M)) denotes the (or covariant) Riemannian curvature tensor,

• Ricg = trg Rmg ∈ T2
0(M), traced over the first and last indices, i.e. (Ricg)ij = gk`Rmkij`;

• Rg = trgRicg ∈ T0
0(M) denotes the scalar curvature given by Rg = gijRicij ;

• ∆g = gij∇i∇j denotes the Laplace–Beltrami operator;
• δg = divg denotes the metric divergence;
• ∇g denotes the Levi–Civita connection;
• trg : Trs(M)→ Tr−2

s (M) denotes a trace operator;
• a1 . a2 if a1 6 Ca2, a1 & a2 if a1 > Ca2, and a1 ' a2 if a1 . a2 and a1 & a2;
• u = O(f) as x→ x0 for x0 ∈ R∪{±∞}, if lim supx→x0(u/f)(x) <∞ is the Big-O notation;
• u = o(f) as x→ x0 for x0 ∈ R ∪ {±∞}, if limx→x0(u/f)(x) = 0 is the little-o notation;
• u ' ũ, if u = O(ũ) and ũ = O(u) as x→ x0 for x0 ∈ R ∪ {±∞};
• Cj,α(M), where j ∈ N and α ∈ (0, 1), is the classical Hölder space over M ; we simply

denote Cj(M) when α = 0;

• W j,q
g (M) is the Sobolev space over M , where j ∈ N and q ∈ [1,∞]; when j = 0 we simply

denote Lqg(M);

• 2∗k = 2n
n−2k is the critical exponent of the Sobolev embedding W k,2

g (M) ↪→ L
2∗k
g (M);

• Qg,k is the 2k-th order Q-curvature of g;
• Pg,k is the 2k-th order GJMS operator of g;
• Qg,k is the total 2k-th order Q-curvature functional of g;
• Mg,k is the set of minimizers for Qg,k;
• Gg,k,ξ is the Green’s function of Pg,k with pole at ξ.

3. Preliminaries

In this section we first establish the regularity of the total Q-curvature functional and compute
its first two derivatives. Then we list some auxiliary lemmas from other papers which we will need.

3.1. Regularity of the total Q-curvature functional. We fix a background metric g and recall
that the normalized total Q-curvature functional on the conformal class [g] is given by

Qg,k(u) =
2

n− 2k

∫
M uPg,k(u)dµg(∫
M u

2n
n−2k dµg

)n−2k
n

.

Since Qg,k(cu) = Qg,k(u) for any c > 0, it will often be easier to work with functions having

L
2n

n−2k -norm equal to 1. To that end, we introduce the following Banach manifold

B =

{
u ∈W k,2

+ (M) :

∫
M
u

2n
n−2k dµg = 1

}
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and observe that if u ∈ B ∩ C∞(M) then g̃ = u4/(n−2k)g is a smooth metric in the conformal class
[g] with unit volume.

Lemma 3.1. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. The tangent space of B at u is given by

TuB =

{
v ∈W k,2(M) :

∫
M
u
n+2k
n−2k vdµg = 0

}
.

Moreover, for each v ∈ TuB the mappings

v 7→ πTuB : TuB → L(W k,2(M),W k,2(M))

and

v 7→ πTuB : TuB → L(C2k,α(M), C2k,α(M))

are both continuous.

Proof. By density, it suffices to take v ∈ C∞(M). Indeed, v ∈ TuB precisely when

0 =
d

dε

∣∣∣∣
ε=0

∫
M

(u+ εv)
2n

n−2k dµg =
2n

n− 2k

∫
M
u
n+2k
n−2k vdµg.

The proof of continuity of πB is the same as the one at the end of the proof of [17, Lemma 2.1]. �

Lemma 3.2. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. The mapping u 7→ Qg,k(u) is C2. If u ∈ B and v, w ∈ TuB then

DQg,k(u)(v) =
2

n− 2k

∫
M

[uPg,k(v) + vPg,k(u)]dµg (3.1)

D2Qg,k(u)(v, w) =
2

n− 2k

∫
M

[vPg,k(w) + wPg,k(v)]dµg − 2

(
n+ 2k

n− 2k

)
Qg,k(u)

∫
M
u

4k
n−2k vwdµg.

Proof. We begin with the expansion(∫
M

(u+ εv)
2n

n−2k dµg

) 2k−n
n

=

(∫
M
u

2n
n−2k dµg

) 2k−n
n

(3.2)

−2ε

(∫
M
u

2n
n−2k dµg

) 2k−2n
n
∫
M
u
n+2k
n−2k vdµg

+ε2

(
2n− 2k

n

)(∫
M
u

2n
n−2k dµg

) 2k−3n
n
(∫

M
u
n+2k
n−2k vdµg

)2

−ε2

(
n+ 2k

n− 2k

)(∫
M
u

2n
n−2k dµg

) 2k−2n
n
∫
M
u

4k
n−2k v2 dµg +O(ε3).

Combining this expansion with∫
M

(u+εv)Pg,k(u+εv)dµg =

∫
M
uPg,k(u)dµg+ε

∫
M

[uPg,k(v)+vPg,k(u)]dµg+ε2

∫
M
vPg,k(v)dµg,
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we obtain

Qg,k(u+ εv) =
2

n− 2k

(∫
M

(u+ εv)
2n

n−2k dµg

) 2k−n
n
∫
M

(u+ εv)Pg,k(u+ εv)dµg

= Qg,k(u) +
2ε

n− 2k

(∫
M
u

2n
n−2k dµg

) 2k−n
n
∫
M

[vPg,k(u) + uPg,k(v)]dµg

− 4ε

n− 2k

(∫
M
u

2n
n−2k dµg

) 2k−2n
n
∫
M
u
n+2k
n−2k vdµg

∫
M
uPg,k(u)dµg

− 2ε2

n− 2k

(
n+ 2k

n− 2k

)(∫
M
u

2n
n−2k dµg

) 2k−2n
n
∫
M
u

4k
n−2k v2 dµg

∫
M
uPg,k(u)dµg

+
2ε2(2n− 2k)

n− 2k

(∫
M
u

2n
n−2k dµg

) 2k−3n
n
(∫

M
u
n+2k
n−2k vdµg

)2 ∫
M
uPg,k(u)dµg

+
2ε2

n− 2k

(∫
M
u

2k−n
n dµg

) 2k−n
n
∫
M
vPg,k(v)dµg

− 4ε2

n− 2k

(∫
M
u

2n
n−2k dµg

) 2k−2n
n
∫
M
u
n+2k
n−2k vdµg

∫
M

[vPg,k(u) + uPg,k(v)]dµg +O(ε3)

= Qg,k(u) + εDQg,k(u)(v) +
1

2
ε2D2Qg,k(u)(v, v) +O(ε3),

which implies Qg,k is a C2 functional.
We can read off from this last expansion that

DQg,k(u)(v) =
2

n− 2k

(∫
M
u

2n
n−2k dµg

) 2k−n
n
(∫

M
[vPg,k(u) + uPg,k(v)] dµg

)
(3.3)

− 4

n− 2k

(∫
M
u

2n
n−2k dµg

) 2k−2n
n
∫
M
u
n+2k
n−2k vdµg

∫
M
uPg,k(u)dµg

and

n− 2k

2
D2Qg,k(u)(v, w) (3.4)

=

∫
M

[vPg,k(w) + wPg,k(v)]dµg

(∫
M
u

2n
n−2k dµg

) 2k−n
n

−2

(∫
M
u

2n
n−2k dµg

) 2k−2n
n

×
(∫

M
u
n+2k
n−2k vdµg

∫
M

[wPg,k(u) + uPg,k(w)]dµg +

∫
M
u
n+2k
n−2kwdµg

∫
M

[vPg,k(u) + uPg,k(v)]dµg

)
−2

(
n+ 2k

n− 2k

)(∫
M
u

2n
n−2k dµg

) 2k−2n
n
∫
M
u

4k
n−2k vwdµg

∫
M
uPg,k(u)dµg

+

(
2n− 2k

n

)(∫
M
u

2n
n−2k dµg

) 2k−3n
n
∫
M
uPg,k(u)dµg

×

((∫
M
u
n+2k
n−2k (v + w)dµg

)2

−
(∫

M
u
n+2k
n−2k vdµg

)2

−
(∫

M
u
n+2k
n−2kwdµg

)2
)
.
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In this last expression, we have used the polarization identity

D2Qg,k(u)(v, w) =
1

2

(
D2Qg,k(u)(v + w, v + w)−D2Qg,k(u)(v, v)−D2Qg,k(u)(w,w)

)
.

Restricting to the case u ∈ B and v, w ∈ TuB, we impose the constraints∫
M
u

2n
n−2k dµg = 1 and

∫
M
u
n+2k
n−2k vdµg = 0 =

∫
M
u
n+2k
n−2kwdµg, (3.5)

we see that for u ∈ B and v, w ∈ TuB the expressions (3.3) and (3.4) reduce to

DQg,k(u)(v) =
2

n− 2k

∫
M

[vPg,k(u) + uPg,k(v)] dµg

and

D2Qg,k(u)(v, v) =
2

n− 2k

∫
M

[vPg,k(w) + wPg,k(v)] dµg

− 4

n− 2k

(
n+ 2k

n− 2k

)∫
M
u

4k
n−2k vwdµg

∫
M
uPg,k(u)dµg.

The first of these formulas is exactly the first derivative as listed in (3.1). We obtain the listed
formula for the second derivative after using the identity

Qg,k(u) =
2

n− 2k

∫
M
uPg,k(u)dµg.

�

We obtain modulus of continuity estimates from the structure of the linearized operator. For a
given u ∈ B we consider the linearization of (1.3) about u, which is the operator

Lu = Pg,k −
(
n+ 2k

n− 2k

)
Qg,k(u)u

4k
n−2k .

Lemma 3.3. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. The mappings

u 7→
D2(Qg,k)(u)(v, w)

‖v‖Wk,2(M)‖w‖Wk,2(M)

and

u 7→
D2(Qg,k)(u)(v, ·)
‖v‖C2k,α(M)

are both continuous with moduli of continuity that are uniformly bounded with respect to v and w.

Proof. Let u0, u1 ∈ B. Using the fundamental theorem of calculus we see

Lu1(v)− Lu0(v) = −n+ 2k

n− 2k

∫ 1

0
D(Q2

g)(tu1 + (1− t))(u1 − u0)((1− t)u0 + tu1)
4k

n−2k vdt

−4k(n+ 2k)

(n− 2k)2

∫ 1

0
Qg,k((1− t)u0 + tu1)((1− t)u0 + tu1)

6k−n
n−2k (u1 − u0)vdt,

which we can in turn integrate to obtain the following estimate

‖(Lu1 − Lu0)(v)‖Wk,2(M) . ‖u1 − u0‖Wk,2(M)‖v‖Wk,2(M),

uniformly on u and v. It follows from the second formula in (3.1) that

u 7→
D2(Qg,k)(u)(v, w)

‖v‖Wk,2(M)‖w‖Wk,2(M)
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is a continuous map whose modulus of continuity is uniform over v, w ∈ W k,2(M). One can
similarly show

u 7→
D2(Qg,k)(u)(v, ·)
‖v‖C2k,α(M)

∈ C2k,α(M)

is also a continuous map. �

3.2. Some auxiliary results. In this section, we present some auxiliary results that will be used
in the proofs of our main results.

First, we establish the variational setting we will use for the remainder of our analysis. This is a
version of the Lyapunov-Schmidt reduction, which appears in many applications. Heuristically, it
divides a variation of our functional into a component that changes the functional by an amount
we can estimate and an orthogonal component that lies in a finite-dimensional space.

Let (M, g) be a closed Riemannian manifold with n > 2k and k ∈ N such that g ∈ Met3(M).
Let u ∈ M∗g,k = B ∩Mg,k correspond to a minimizing metric in the conformal class [g] with unit
volume and let

K = ker(D2Qg,k(u)(·, ·)) = {v ∈W k,2(M) ∩ TuB : D2Qg,k(u)(v, v) = 0}.
This second variation operator is elliptic, so K is finite-dimensional (see, for instance, [45, Section
10.4]). We let ` = dim(K) and denote by K⊥ the orthogonal complement of K inside W k,2(M)
with respect to the L2 inner product.

One can find proof of the following lemma [17, Appendix A].

Lemma A. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. Assume that u ∈ CQC∗g,k. Then there is an open neighborhood U ⊂ K

of 0 in K and a map F : U → K⊥ with F (0) = 0 and ∇F (0) = 0 satisfying the following
properties:

(i) Firstly
L := {u+ ϕ+ F (ϕ) : ϕ ∈ U} ⊂ B.

(ii) If we define q : U → R by q(ϕ) = Qg,k(u+ ϕ+ F (ϕ)) then we have

∇BQk,g(v + ϕ+ F (ϕ)) = πK∇BQg,k(v + ϕ+ F (ϕ)) = ∇q(ϕ).

Furthermore, ϕ 7→ q(ϕ) is real analytic.
(iii) There exists δ > 0 depending on u such that for any ũ ∈ B with ‖u − ũ‖Wk,2(M) ≤ δ we

have πK(u − ũ) ∈ U . Furthermore, if ũ ∈ CQC∗g,k = CQCg,k ∩ B with ‖u − ũ‖Wk,2(M) ≤ δ
then

ũ = u+ πK(ũ− u) + F (πK(ũ− u)) .

(iv) For all ϕ ∈ U and η ∈ K, we have

‖∇F (ϕ)[η]‖C2k,α(M) . ‖η‖C0,α(M).

Proof. See [17, Appendix A] �

Second, we need the following compactness result for minimizing sequences.

Lemma B. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. If g ∈ Ak is admissible and {um}m∈N ⊂ B is a sequence such that
limm→∞Qg,k(um) = Yk,+(M, [g]), then there exists v ∈ Mg,k ∩ B such that limm→∞ ‖um −
v‖Wk,2(M) = 0 up to a subsequence.

Proof. For k = 1, this is a classical result due to Aubin [5]. For k ≥ 1, the lemma follows from [41,
Theorem 3] and its proof is in the spirit of Lions’ concentration-compactness [38, Theorem 4.1].
For the analogous statement in a dual formulation when k = 2, see also [28, Proposition 2.6]. �
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We remark that the statement of [41, Theorem 3] allows for singular limits, but the additional
hypotheses we’ve listed here preclude the development of singularities.

Third, we introduce the so-called finite-dimensional ”distance”  Lojasiewicz inequality.

Lemma C. Let q : R` → R with ` ∈ N be a real analytic function and assume that ∇q(ϕ0) = 0.

There exist δ̃ > 0 and γ ≥ 0, depending on q and ϕ0 such that

|q(ϕ)− q(ϕ0)| & inf{|ϕ− ϕ̄| : ϕ̄ ∈ B(ϕ0, δ̃) and q(ϕ̄) = q(ϕ0)}2+γ for all ϕ ∈ B(ϕ0, δ̃).

Proof. See [35, Théorème 2]. �

Finally, we state a generalized version by Henry [30] of Smale’s version of Sard’s theorem [51],
which we use to prove the genericity part of our main results.

Lemma D. Let X,Y and Z be Banach spaces, let U ⊂ X and V ⊂ Y be open subsets and let
F : V × U → Z be a map of class C1 with z0 ∈ Im(F). Suppose that

(i) For each y ∈ V the map x 7→ F(y, x) =: Fy(x) is Fredholm of index ` < 1, i.e. we have
∂xFy : X → Z is Fredholm of index ` < 1 for any x ∈ U ;

(ii) z0 is a regular value of F ;
(iii) Let ι : F−1(z0)→ Y ×X be the canonical embedding and let π1 : Y ×X → Y be projection

onto the first factor. Then, π1◦ι is σ-proper, i.e., F−1(z0) =
⋃∞
j=1Cj, where Cj is a closed

subset of F−1(z0) and π1 ◦ ι|Cj is proper for all j ∈ N.

Then, the set {y ∈ V : z0 is a regular value of F(y, ·)} is an open and dense subset of V .

Proof. See [30, Theorem 5.4] �

4. Generic stability estimates (proofs of Theorem 1 and Corollary 3)

We prove Theorem 1 in stages. Like in [9, 17] the main point is to prove a local version of
the quantitative stability (Proposition 4.5 below), which can then be extended to the global case.
Finally we prove the genericity statement, the arguments for which go beyond those in [17].

4.1. Local stability estimate. In this section, we prove that if u lies in a small neighborhood
of the minimizing set M∗g,k then it satisfies (1.9). As a first step, we introduce the notion of
integrability and prove that the function q defined in Lemma A is constant in the integrable case,
which we will see implies stability.

Definition 4.1. Let k ∈ N and let (M, g) be a smooth, closed, n-dimensional Riemannian manifold
with n > 2k. A function v ∈ CQC∗g,k is said to be integrable if for all ϕ ∈ K there exists a one-

parameter family of functions {vt}t∈(−δ,δ), with v0 = v, ∂t|t=0 vt = ϕ, and vt ∈ CQC∗g,k for all
0 < t� 1 sufficiently small.

With this definition in mind, we have the following auxiliary result.

Lemma 4.2. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. If v ∈ M∗g,k, then v is integrable if and only if q is constant in a
neighborhood of 0 ∈ K. In particular, if v ∈ M∗g,k is an integrable minimizer, then there is
δ > 0 such that

M∗g,k ∩ B(v, δ) = L ∩ B(v, δ), (4.1)

where L is as described in Lemma A (i).
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Proof. In this proof, we identify K with R`. We may assume that ` ≥ 1, for otherwise there is
nothing to show.

First, suppose that q ≡ q(0) in a neighborhood V ⊂ R` of 0, and let ϕ ∈ K. Let s ∈ R be small
enough so that sϕ ∈ U and consider

vs = v + sϕ+ F (sϕ)

where U and F are as in Lemma A. Then

d

ds

∣∣∣∣
s=0

vs = ϕ

because ∇F (0) = 0 by Lemma A. Still by that lemma, we have vs ∈ B and

∇BQg,k(vs) = ∇q(sϕ) = 0

for s small enough, because ∇q ≡ 0 on V by assumption. Hence vs ∈ CQC∗g,k. Since ϕ ∈ K was
arbitrary, v is integrable.

Conversely, assume now that v is integrable. By contradiction, suppose that q is non-constant
on every neighborhood of 0 in R`. Since q is analytic, we then have, for ϕ in some neighborhood
V of 0,

q(ϕ) = q(0) + qk0(ϕ) + qR(ϕ).

Here qk0 is a non-trivial homogeneous polynomial of some degree k0 ∈ N and the remainder term
qR is a sum of homogeneous polynomials of degree greater than k0.

We fix a ϕ ∈ U such that ∇qk0(ϕ) 6= 0. Since v is integrable, there exists (vs)s∈(−δ,δ) ⊂ CQC∗g,k
such that v0 = v and d

ds

∣∣
s=0

vs = ϕ for all s ∈ (−δ, δ). By Lemma A.(ii), after possibly choosing δ
and U to be smaller, there are ϕs ∈ U such that

vs = v + ϕs + F (ϕs) for every s ∈ (−δ, δ), (4.2)

where F is the map from Lemma A. By that lemma, we have

0 = ∇BQg,k(vs) = ∇q(ϕs) = ∇qk0(ϕs) +∇qR(ϕs) (4.3)

= |ϕs|k0−1

(
∇qk0

(
ϕs
|ϕs|

)
+ |ϕs|−k0+1∇qR(ϕs)

)
.

Here we used that the vector ∇qk0(ϕ) consists of homogeneous polynomials of degree k0 − 1.
Moreover, since qR is a sum of homogeneous polynomials of degree strictly greater than k0, we
have |ϕs|−k0+1∇qR(ϕs) as s → 0. On the other hand, d

ds

∣∣
s=0

vs = ϕ and (4.2) combined with

∇F (0) = 0 imply ϕs
|ϕs| →

ϕ
|ϕ| as s → 0. Thus the sum inside the parentheses on the right side

of (4.3) is non-zero for s small enough. This contradiction finishes the proof of the converse
implication.

It remains to prove that (4.1) holds provided v is integrable. The inclusion ⊂ is given by Lemma
A.(ii), becauseM∗g,k ⊂ CQC

∗
g,k. For the reverse inclusion, we have already proved that q is locally

constant on K near 0 if v ∈ M∗g,k is integrable. By the definition of q, this is the same thing as

saying that Qg,k is constant on L ∩ B(v, δ) for some δ > 0. Hence, for u ∈ L ∩ B(v, δ) it follows
Qg,k(u) = Qg,k(v) and hence u ∈M∗g,k. Thus (4.1) is proved. �

We recall the notion of the Adams-Simon positivity condition as in [2] (see also [11]).

Definition 4.3. Let k ∈ N and let (M, g) be a smooth, closed, n-dimensional Riemannian
manifold with n > 2k. Suppose that u0 ∈ CQC∗g,k is nonintegrable and that q : U → R, where
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U ⊂ ker∇2
BQg,k(u0) ∼= R`, is the function defined in Lemma A. Since q is analytic, we can expand

it in a power series

q(v) = q(0) +
∑
j≥p

qj(v),

where each qj is a homogeneous polynomial of degree j and p is chosen so that qp 6≡ 0. We call
p the order of integrability of u0. We say that u0 satisfies the Adams-Simon positivity condition
of order p, denoted by ASp, if p is the order of integrability of u0 and qp|S`−1 attains a positive

maximum at some v ∈ S`−1.

Remark 4.4. When the order of integrability p is odd, then qp 6≡ 0 is an odd function, and hence
the Adams–Simon positivity condition is automatically satisfied in this case. Moreover, by arguing
as in [11, Appendix A] one finds that the order of integrability always satisfies p > 3, and that
q3(v) can be explicitly expressed

q3(v) = Cn,kQg,k(u0)

∫
M
v3 dµg (4.4)

for some dimensional constant Cn,k > 0.

We establish the local version of Theorem 1. We need a localized measure of how far u is from
being a minimizer close to some given minimizer v. Given δ > 0 and v ∈M∗g,k, we let

dv,δ
(
u,M∗g,k

)
=

inf
{
‖u− ṽ‖Wk,2(M) : ṽ ∈M∗g,k ∩ B(v, δ)

}
‖u‖Wk,2(M)

. (4.5)

Proposition 4.5. Let n, k ∈ N with n > 2k and let (M, g) be a smooth, closed, n-dimensional
Riemannian manifold. For any v ∈ M∗g,k, there exist constants c > 0, γ ≥ 0 and δ > 0 depending
on v such that

Qg,k(u)− Yk,+(M, [g]) ≥ cdv,δ
(
u,M∗g,k

)2+γ
for all u ∈ B(v, δ).

Proof. Let v ∈M∗g,k. We will use the notation of Lemma A without further comment throughout

this proof. Also, we will abbreviate Y := Yk,+(M, [g]) to make notation lighter. To start with, let
u ∈ B(v, δ).

We divide the proof into some steps as follows:
Step 1. Decomposing u.

We now decompose u according to the Lyapunov-Schmidt reduction from Lemma A by letting

uL := v + πK(u− v) + F (πK(u− v))

and setting u⊥ := u− uL. Note that, since F maps into K⊥, we have

u⊥ = (u− v)− πK(u− v)− F (πK(u− v)) ∈ K⊥.

It will be convenient to write

Qg,k(u)− Y = (Qg,k(u)−Qg,k(uL)) + (Qg,k(uL)− Y) (4.6)

and bound the two brackets on the right side separately.
Step 2. The non-degenerate and the integrable case.

We first bound the first term of (4.6). Here is where we crucially use the decomposition
u = uL + u⊥. Using Taylor’s theorem with the mean-value formula for the remainder term,
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we can express

Qg,k(u)−Qg,k(uL) = DBQg,k(uL)(u⊥) +
1

2
D2
BQg,k(ζ)(u⊥, u⊥) (4.7)

=
1

2
D2
BQg,k(v)(u⊥, u⊥) + o(1)‖u⊥‖2Wk,2(M),

where ζ lies on a geodesic in B between u and uL. For the second equality we used that u⊥ ∈ K⊥
implies DBQg,k(uL)(u⊥) = 0 by Lemma A, as well as the fact that D2

BQg,k(·) is continuous.
To estimate the right-hand-side of (4.7) we use the fact that v minimizes Qg,k, and so

D2Qg,k(v) ≥ 0. Since u⊥ ∈ K⊥, we have the lower bound

D2
BQg,k(v)[u⊥, u⊥] ≥ λ1‖u⊥‖L2(M) ≥ c

∫
M
v

4k
n−2k (u⊥)2 dµg, (4.8)

where λ1 > 0 is the smallest positive eigenvalue of D2
BQg,k(v). Since v > 0 on the compact

manifold M , we may choose c = λ1(maxM v)−4k/(n−2k) in the second inequality. Recalling from
Lemma 3.2 that

D2Qg,k(v)(w,w) =
4

n− 2k

(∫
M
wPg,k(w)dµg +

n+ 2k

n− 2k
Y
∫
M
v

4k
n−2kw2 dµg

)
some elementary manipulations give us

D2
BQg,k(v)[u⊥, u⊥] ≥ c1

∫
M
u⊥Pg,k(u

⊥)dµg ≥ c2‖u‖2Wk,2(M),

where c1 = c
(
n+2k
n−2kY − c

)−1
> 0, c > 0 is given in (4.8), and c2 > 0 exists since Pg,k is coercive.

Inserting this last expression into (4.7), we obtain

Qg,k(u)−Qg,k(uL) ≥ 1

4
c2‖u⊥‖2Wk,2(M) (4.9)

whenever 0 < ‖u⊥‖Wk,2(M) � 1 is sufficiently small.

On the other hand, the second term in (4.6) trivially satisfies

Qg,k(uL)− Y ≥ 0 (4.10)

by the definition of Y.
If K = 0 (i.e., if v is non-degenerate), then it follows directly from the definitions that uL = v,

and hence

‖u⊥‖2Wk,2(M) = ‖u− v‖2Wk,2(M) ≥ inf{‖u− ṽ‖2Wk,2(M) : ṽ ∈M∗g,k ∩ B(v, δ)} ≥ cdv,δ(u,M∗g,k)2,

(4.11)
where in the last inequality, we used

‖u‖2Wk,2(M) ≥
1

2
‖v‖2Wk,2(M) &

∫
M
vPg,k(v)dµg = Y > 0.

Thus the assertion in case K = 0 follows by putting together (4.6), (4.9), (4.10) and (4.11).
More generally, if v is integrable, then by Lemma 4.2 we have uL ∈ M∗g,k ∩ B(v, δ) if u is close

enough to v. Thus, similarly to the above,

‖u⊥‖2Wk,2(M) = ‖u− uL‖2Wk,2(M) ≥ inf{‖u− ṽ‖2Wk,2(M) : ṽ ∈M∗g,k ∩ B(v, δ)} ≥ cdv,δ(u,M∗g,k)2.

(4.12)
Thus the assertion in case v is integrable follows by putting together (4.6), (4.9), (4.10) and (4.12).

We emphasize that in both of these cases (v non-degenerate or v integrable) the inequality (1.9)
restricted to B(v, δ) holds with γ = 0.
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Step 3. The non-integrable case.
It remains to discuss the third and hardest case, namely the case when v is non-integrable.

The complication is that the estimates (4.11) resp. (4.12) are not applicable because uL is not
necessarily in M∗g,k. Consequently we require a better lower bound on Qg,k(uL) − Y. To obtain
it, we invoke the  Lojasiewicz inequality from Lemma C, which applies because q is analytic by
Lemma A. We conclude that there exist γ > 0 such that

Qg,k(uL)− Y = q(ϕ)− q(0) & inf{|ϕ− ϕ̄| : ϕ̄ ∈ K ∩B(0, δ) and q(ϕ̄) = 0}2+γ , (4.13)

where ϕ = πK(u− v). (Note that we could drop the absolute value of |q(ϕ)− q(0)| because 0 is a
local minimum of q.) To turn this into the desired bound, we observe that for any ϕ̄ ∈ K ∩B(0, δ)
with q(ϕ̄) = q(0), the function v̄ = v+ ϕ̄+F (ϕ̄) satisfies Qg,k(v̄) = q(ϕ̄) = 0 by Lemma A. Hence,
v̄ ∈M∗g,k. Moreover, for such v̄, we have (still writing ϕ = πK(u− v))

‖uL − v̄‖Wk,2(M) = ‖ϕ+ F (ϕ)− ϕ̄− F (ϕ̄)‖Wk,2(M)

≤ ‖ϕ− ϕ̄‖Wk,2(M) + ‖F (ϕ)− F (ϕ̄)‖Wk,2(M)

. ‖ϕ− ϕ̄‖Wk,2(M) + ‖ϕ− ϕ̄‖C0,α(M)

. ‖ϕ− ϕ̄‖Wk,2(M).

Here, the C0,α estimate follows from the corresponding one in Lemma A. The last inequality
simply uses the equivalence of any two norms on the finite-dimensional space K. From this chain
of inequalities we get

inf{|ϕ− ϕ̄| : ϕ̄ ∈ K ∩B(0, δ),∇q(ϕ̄) = 0}2+γ & inf
{
‖uL − ṽ‖Wk,2(M) : ṽ ∈M∗g,k ∩ B(v, δ)

}2+γ

Together with (4.13) and (4.9), since u⊥ = u− uL satisfies ‖u⊥‖Wk,2 ≤ 1, we thus get

Qg,k(u)− Y & 1

4
‖u− uL‖2Wk,2(M) + inf

{
‖uL − ṽ‖Wk,2(M) : ṽ ∈M∗g,k ∩ B(v, δ)

}2+γ

& inf
{
λ1‖u− uL‖2+γ

Wk,2(M)
+ ‖uL − ṽ‖2+γ

Wk,2(M)
: ṽ ∈M∗g,k ∩ B(v, δ)

}
& inf

{
‖u− ṽ‖2+γ

Wk,2(M)
: ṽ ∈M∗g,k ∩ B(v, δ)

}
and the proof is complete. �

If v is integrable or non-degenerate (i.e. the kernel K = ker(D2
BQg,k(v)(·, ·)) is trivial) then we

may take γ = 0.

4.2. Global stability estimate. In the following, we again abbreviate Y = Yk,+(M, [g]).

Proof of Theorem 1. Since both sides of inequality (1.9) are zero-homogeneous, it suffices to prove
(1.9) for every u ∈ B. By contradiction, suppose that for every η ≥ 0 there exists a sequence
{um}m∈N ⊂ B such that

Qg,k(um)− Y
d(um,Mg,k)2+η

→ 0 as m→∞. (4.14)

By diagonal extraction of a subsequence, we may actually assume that (4.14) holds for every η ≥ 0
with the same sequence (um).

Since d(um,Mg,k) ≤ 1, (4.14) implies that Qg,k(um)− Y → 0 as m→∞. By Lemma B, there
exists v ∈ M∗g,k such that, up to extracting a further subsequence, one has um → v strongly in

W k,2(M).
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Now, let δ = δ(v) > 0 and γ = γ(v) ≥ 0 be as in Proposition 4.5. Since M∗g,k ∩ B(v, δ) ⊂Mg,k,

the definitions (1.8) and (4.5) of d and dv,δ directly imply dv,δ(um,M∗g,k) ≥ d(um,Mg,k). Hence,

by (4.14) applied with η = γ, it follows

Qg,k(um)− Y
dv,δ(um,M∗g,k)2+γ

≤
Qg,k(um)− Y
d(um,Mg,k)2+γ

→ 0 as m→∞.

But since um ∈ B(v, δ) for every m � 1 large enough, this contradicts Proposition 4.5. Hence
(4.14) is false, and the theorem is proven. �

Proof of Corollary 3. By Theorem 1 and the definition (1.10) of ‖ · ‖ we have

Qg,k(u)− Y ≥ c

(
infv∈Mg,k

‖u− v‖Wk,2(M)

‖u‖Wk,2(M)

)2+γ

≥ c̃

 infv∈Mg,k
‖u− v‖

L
2n

n−2k (M)

‖u‖
L
2∗
k (M)

2+γ

=

(
inf{‖h− g̃‖ : g̃ ∈Mg,k}

volh(M)
n−2k
2n

)2+γ

.

For the second inequality, note that if d(u,Mg,k) ≤ δ0 (for some appropriately small δ0 > 0), then
‖u‖Wk,2(M) ' ‖u‖L2∗

k
(M) , so the inequality follows from Sobolev’s inequality. If d(u,Mg,k) > δ0 on

the other hand, it suffices to take c̃ sufficiently small because

inf
v∈Mg,k

‖u− v‖
L
2∗
k (M)
‖u‖−1

L
2∗
k (M)

≤ 1.

Similarly, by Theorem 1 and the definition of ‖ · ‖∗ in (1.11) we have

Qg,k(u)− Y ≥ c

(
infv∈Mg,k

‖u− v‖Wk,2(M)

‖u‖Wk,2(M)

)2+γ

&

(
infv∈Mg,k

(
∫
M (u− v)Pg,k(u− v) dµg)

1/2

‖u‖
L
2∗
k (M)

)2+γ

=

(
inf{‖h− g̃‖∗ : g̃ ∈Mg,k}

volh(M)
n−2k
2n

)2+γ

.

Here we have used
∫
M (u− v)Pg,k(u− v)dµg . ‖u− v‖2Wk,2(M)

, which holds because Pg,k is a k-th

order elliptic differential operator. Moreover, since by assumption Qg,k(u) − Y ≤ δ0, Theorem 1
yields

d(u,Mg,k) . δ
1

2+γ

0 .

Thus, for 0 < δ0 � 1, one has ‖u‖Wk,2(M) ' ‖u‖L2∗
k (M)

, which proves that the inequality above

holds. �

4.3. Generic nondegeneracy. Now, let us prove the genericity part of our main result. Following
ideas in [15, 22, 44, 47], our strategy is to verify hypotheses (i), (ii), and (iii) of the abstract
transversality result in Lemma D. To apply Lemma D we must examine the second variation of
the functional Qg,k among all admissible metrics, not just those conformal to a fixed metric g0. To
this end, we recall the machinery developed by Case, Lin and Yuan in [12]. In their language, the
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k-th-order Q-curvature is an example of a conformal variational Riemannian invariant of weight
−2k.

Lemma 4.6. Let n ∈ N with n > 2k. Let M be a smooth, closed, n-dimensional manifold. The
set

G := {g ∈ Ak,α(M) : γ(g) = 0} ⊂ Ak,α(M)

is open and dense with respect to the Ck,α−topology for some α ∈ (0, 1).

Proof. In Step 2 of the proof of Proposition 4.5, we have seen that γ(g) = 0 if kerD2Qg,k(v) = {0}
for every v ∈M∗g,k. Thus it suffices to show that the (potentially) smaller set

{g ∈ Ak,α(M) : kerD2Qg,k(v) = {0} for every v ∈M∗g,k} ⊂ G

is open and dense.
We recall that Gg,k,ξ is the Green’s function of the GJMS operator Pg,k with its pole at ξ ∈M ,

and that Gg,k,ξ > 0 if g is an admissible metric. Now we fix g0 ∈ Ak,α(M) and define

F : Ak,α(M)×W k,2
g0 (M)→W k,2

g0 (M),

by

F(g, u)(ξ) = u(ξ)−
∫
M
Gg,k,ξ(y)fn,k(u(y))dµg(y),

where fn,k(u) = cn,ku
n+2k
n−2k . Observe that the zero set of F consists of the pairs (g, u) such that

g̃ = u4/(n−2k)g has constant k-th-order Q-curvature, i.e. u solves the PDE

Pg,k(u)− fn,k(u) = 0 on M. (Pg,k)

These solutions are also critical points of the functional

Eg,k(u) =
1

2

∫
M
uPg,k(u)dµg − Fn,k(u),

where Fn,k(u) =
∫ u

0 fn,k(s)ds. Furthermore, the set of metrics such that kerD2Qg,k = {0} are

those admissible metrics such that every conformal constant Q-curvature metric g̃ = u4/(n−2k)g is

nondegenerate in the sense that if F(g, u) = 0, then any v ∈W k,2
g0 (M) such that

Lg,k,u(v) = Pg,k(v)− f ′n,k(u)v = 0 on M. (L′g,k,u)

must be the zero function itself.
We have now reduced our problem to showing that the set

G̃ = {g ∈ Ak,α(M) : F(g, u) = 0 and ker(Lg,k,u) = {0}}

is open and dense. It is helpful now to discuss the regularity of F and describe some of its partial
derivatives. We’ve already shown that for each g ∈ Ak,α(M) the mapping u 7→ F(g, u) is C2, and
we computed the second derivative explicitly in Lemma 3.2. Case, Lin and Yuan [12] proved that
for each u > 0 the mapping g 7→ F(g, u) is also C2. In their language, the map

g 7→ Qg,k =
2

n− 2k
Pg,k(1)

is a conformally variational Riemannian invariant of weight −2k with a conformal primitive Eg,k(1).
Furthermore, they denote the linearization of g 7→ Qg,k by

Γg(h) =
d

dt

∣∣∣∣
t=0

2

n− 2k
Pg+th,k(1). (4.15)
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This operator has a formal adjoint Γ∗g, determined by∫
M
〈Γ∗g(f), h〉dµg =

∫
M
fΓg(h)dµg;

it is this formal adjoint that is the (Frechet) derivative of F with respect to g, namely

Γ∗g = ∂gF .

In [12, Section 8.1] they show this functional is variationally stable, which in the notation
established above means

ker(D2(g 7→ Eg,k(1)) =: TgK =
{
Y ∈ C∞(M) : Y =

n

2
div(X) for some X ∈ K(g)

}
. (4.16)

Here LXg is the Lie derivative of the metric tensor g in the direction of X and K(g) is the space of
conformal Killing fields on (M, g), i.e. the space of vector fields whose flows act as one-parameter
families of global conformal diffeomorphisms. Recall that X ∈ K(g) if and only if LXg = ψg
for some function ψ. Evaluating the trace of both sides of this equation shows that multiple ψ
must be 2

n div(X). In summary, the only variations of F with respect to the metric preserving
the functional Eg,k(1) at a critical point are those arising from global conformal diffeomorphisms.
Given that solution space of the PDE (Pg,k) is conformally invariant this is the smallest one asks
for the kernel to be. In any case, this kernel is always finite-dimensional and by [8, Theorem 7.4]
it is generically trivial.

We complete our proof by verifying the hypotheses of Lemma D. It follows from the analysis

in [25, Section 2.1] that the transversality map F : Ak,α(M)×W k,2
g0 (M)→W k,2

g0 (M) is of class C1.
We must work slightly more to show F(g, ·) is Fredholm and has index zero for each g ∈ Ak,α(M).

Let Hk
g (M) be the completion of C∞(M) with respect to the inner product

((u, v))g =

∫
M
uPg,k(v)dµg. (4.17)

Standard computations show that the Hilbert subspaces Hk
g (M) and W k,2

g (M) of C∞(M) are

equivalent, and so the canonical inclusion W k,2
g (M) ↪→ Hk

g (M) is an isomorphism of Banach spaces.

The same holds for the inclusion W k,2
g′ (M) ↪→ Hk

g (M) for any g′ ∈ Ak,α(M) (see [29, Proposition

2.2]). By the Kondrakov theorem, the canonical inclusion ig : Hk
g (M) → L

2∗k
g (M) is compact,

and we let i∗g be its adjoint with respect to the canonical isomorphism (Lpg(M))′ ' Lp
′
g (M) with

p′ = p
p−1 . In fact, we can specify i∗g by the relation

((i∗gu, v))g =

∫
M
uvdµg for each v ∈ L2∗k

g (M).

Now define the Nemytskii operator

Nn,k : W k,2
g (M)→ L

2n
n+2k
g (M),

by

Nn,k(u) = fn,k(u) = cn,ku
n+2k
n−2k ,

which is a compact operator because g ∈ Ak,α(M) is an admissible metric. The inclusion

W k,2
g (M) ↪→ L

2n
n+2k
g (M) given by the Sobolev embedding shows Nn,k is C1 and its Frechet derivative

is

dNn,k[u](v) =
n+ 2k

n− 2k
cn,ku

4k
n−2k v.
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In addition, direct computation now yields

∂uF(v) = v −
(
i∗g ◦ dNn,k[u]

)
(v).

Since the composition i∗g ◦ dNn,k[u] is compact, we have just demonstrated that F(g, ·) is Fredholm
and has index zero. We now conclude that the following four conditions are equivalent:

(i) 0 is a regular value of F(g, ·);
(ii) ∂uF(g, u) = id− (i∗g ◦ f ′n,k)(u) is injective for every solution u to (Pg,k);

(iii) v ≡ 0 is the only solution to (L′g,k,u) for every solution u to (Pg,k);
(iv) every solution u ∈W k,2

g0 (M) to (Pg,k) is non-degenerate.

We now verify that 0 is a regular value of F , which is one of the assumptions of Lemma D. To

do so, let (g, u) ∈ Ak,α(M) ×W k,2
g0 (M) such that F(g, u) = 0 and let v ∈ W k,2

g0 (M). We need to

find a symmetric 2-tensor h ∈ Σ2(TM) and a function w ∈W k,2
g0 (M) such that

∂gF|(g,u) (h) + ∂uF|(g,u) (w) = v. (4.18)

Since ∂uF(g, u) is a self-adjoint compact perturbation of the identity, we have the orthogonal
decomposition

W k,2
g0 (M) = ker ∂uF|(g,u) ⊕ Im ∂uF|(g,u) ,

and that dim ker ∂uF|(g,u) <∞.

Let Π : W k,2
g0 (M) → ker ∂uF|(g,u) be the projection onto ker ∂uF|(g,u). We first claim that

Π ∂gF|(g,u) is surjective onto ker ∂uF|(g,u). Indeed, if this is not the case, there is 0 6≡ ψ ∈
ker ∂uF|(g,u) such that

0 = ((∂gF(·, u)[h]), ψ))g = ((Γ∗g(h), ψ))g for all h ∈ Symk,α(M). (4.19)

where ((, ))g is the inner product given by (4.17). A direct computation shows that (4.19) can be
reformulated as ∫

M

[
Γ∗g(h)(∇u,∇ψ)− 1

2
(trg h) fn,k(u)ψ

]
dµg = 0,

where Γ∗g(h) is given by (4.15).
Following [22, Lemma 12] and using normal coordinates centered at arbitrary x ∈M and specific

perturbations of g, one can prove that this last displayed equation implies

〈∇u,∇ψ〉g = 0 µg-a.e. for each h ∈ Symk,α(M). (4.20)

By taking h = ϕg for arbitrary ϕ ∈ C∞(M) we find that (4.19) and (4.20) imply fn,k(u)ψ = 0

almost everywhere on M with respect to µg. However, since fn,k(u) = cn,ku
n+2k
n−2k > 0 on M ,

this implies that ψ ≡ 0 on M , which is a contradiction. Thus we have shown that Π ∂gF|(g,u) is

surjective onto ker ∂uF|(g,u). Consequently, there is h ∈ Σ2(TM) such that ∂gF|(g,u) (h) = v1 + z,

for some z ∈ Im ∂uF|(g,u). Moreover, since v2 − z ∈ Im ∂uF|(g,u), there is w ∈W k,2
g0 (M) such that

∂uF|(g,u) (w) = v2 − z. Thus, h and w satisfy (4.18). We conclude that 0 is a regular value of F .

Moreover, the same argument as in [22, Lemma 11] and [44, Lemma 4.2] shows that the map

π1 ◦ ι : F−1(0) → W k,2
g0 (M) is σ-proper. Here ι : F−1(0) → W k,2

g0 (M) × Ak,α(M) is the canonical

embedding and π1 : W k,2
g0 (M)× Ak,α(M)→W k,2

g0 (M) is the projection onto the first factor.
Finally, putting all this information together, we see the hypotheses of Lemma D all hold, and

so

{g ∈ Ak,α(M) : 0 is a regular value of F(g, ·)} = G
is an open, dense set subset Ak,α(M) with respect to the Ck,α-topology. �
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5. Cubic degenerate stability for k = 2 (proof of Theorem 4)

In this section, we construct examples of manifolds satisfying the Adams–Simon integrability
condition in Definition 4.3. Our approach follows closely the ones in [11, Section 5].

5.1. Products with spheres. In this section we prove that certain products of Einstein manifolds
with a standard round sphere are degenerate critical points of Qh,2 satisfying the AS3 condition.

Proposition 5.1. Let `,m ∈ N with ` ≥ 2, let λ ∈ R, let (M, g) be an m-dimensional λ-Einstein

manifold, and let (X,h) = (M × S`, g⊕ ◦g). If m� 1 is sufficiently large, then there exist two real
numbers λ− < λ+ such that the function u ≡ 1 is a degenerate critical point of the functional Qh,2
satisfying the AS3 condition. If ` ∈ {2, 3, 4, 5} then λ− < 0 < λ+, but if ` ≥ 6 then λ− < λ+ < 0.

Proof. Following (4.4) and the analysis in [11, Section 5], our goal now is to produce a nontrivial

test function v ∈W 2,2
h (X) such that

v ∈ Λ0 = ker

(
Ph,2 −

m+ `+ 4

2
Qh,2

)
. (5.1)

Recall that the round metric on the sphere is an Einstein metric with Einstein constant of the

round sphere `− 1. Direct computation shows that since Rich = λg ⊕ (`− 1)
◦
g, one has

Rh = mλ+ `(`− 1), and |Rich |2 = mλ2 + `(`− 1)2,

which we substitute into (1.5) to see

Qh,2 = − 2

(m+ `− 2)2
|Rich |2 +

(m+ `)3 − 4(m+ `)2 + 16(m+ `)− 16

8(m+ `− 1)2(m+ `− 2)2
R2
h (5.2)

= −2(mλ2 + `(`− 1)2)

(m+ `− 2)2
+

((m+ `)3 − 4(m+ `)2 + 16(m+ `)− 16)(mλ+ `(`− 1))2

8(m+ `− 1)2(m+ `− 2)2

=

(
m

8
− 1

2

)
λ2 +

`(`− 1)

4
λ+O

(
1

m

)
.

Using these expressions for Rich, Rh and Qh,2 in (1.6) we find(
Ph,2 −

n+ 4

2
Qh,2

)
= ∆2

h +
4

m+ `− 2
(λ∆g + (`− 1)∆◦

g
) (5.3)

−((m+ `− 2)2 + 4)(mλ+ `(`− 1))

2(m+ `− 1)(m+ `− 2)
(∆g + ∆◦

g
)

−
((m

2
− 2
)
λ2 + `(`− 1)λ+O

(
1

m

))
= ∆2

g + ∆g ◦∆◦
g

+ ∆◦
g
◦∆g + ∆2

◦
g

+

(
−mλ

2
+ 2λ− `(`− 1)

2
+O

(
1

m

))
(∆g + ∆◦

g
)

−
((m

2
− 2
)
λ2 + `(`− 1)λ+O

(
1

m

))
.

For our test function we choose v = 1⊗ ṽ, where

ṽ = x1x2 + x2x3 + x3x1
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is a homogeneous, harmonic polynomial of degree two restricted to the sphere. This is an
eigenfunction of −∆◦

g
with eigenvalue 2(`+ 1). As in [33, p.5], observe that∫

X
v3 dµh = volg(M)

∫
Sn
ṽ3 dµ◦

g
6= 0.

Substituting this choice of v into (5.3) we obtain(
Ph,2 −

n+ 4

2
Qh,2

)
v = (a(m, `)λ2 + b(m, `)λ+ c(m, `))v,

where

a(m, `) = −m
2

+ 2 +O
(

1

m

)
(5.4)

b(m, `) = −m(`+ 1)− `2 + 5`+ 4 +O
(

1

m

)
c(m, `) = −`(`2 − 1) + 4(`+ 1)2 +O

(
1

m

)
= −`3 + 4`2 + 9`+ 4 +O

(
1

m

)
.

Thus we complete our proof by showing that, provided m � 1 is sufficiently large, the quadratic
polynomial p(λ) = aλ2 + bλ+ c has two real roots. The discriminant is

discλ(p) = b2 − 4ac = m2(`+ 1)2 +O(m),

which is indeed positive for m sufficiently large, proving the existence of the two real roots. To see
that one root is positive and the other is negative when ` ∈ {2, 3, 4, 5}, observe that a(m, `) < 0
for m sufficiently large, whereas c(m, `) > 0 for m sufficiently large and ` ∈ {2, 3, 4, 5}. This in
turn implies the quadratic is positive when λ = 0 and negative when |λ| � 1 is sufficiently large,
giving us one positive root and one negative root by the intermediate value theorem. �

5.2. Products with complex projective space. We repeat the analysis of the previous section
using complex projective space instead of a sphere.

Proposition 5.2. Let `,m ∈ N with ` ≥ 2, let λ ∈ R, let (M, g) be an m-dimensional λ-Einstein

manifold, and let (X̃, h̃) = (M × CP`, g ⊕ gFS), where gFS is the Fubini-Study metric. If m � 1
is sufficiently large, then there exist two real numbers λ− < λ+ such that the function u ≡ 1 is
a degenerate critical point of the functional Qh,2 satisfying the AS3 condition. If ` ∈ {2, 3} then
λ− < 0 < λ+, but if ` ≥ 4 then λ− < λ+ < 0.

We recall that the Fubini-Study metric is the unique metric on CP` making the natural quotient
S2`+1 → CP` a Riemannian submersion.

Proof. In this setting, we use (4.4) to see that our goal is to produce a nontrivial test function v
with

v ∈ ker

(
P
h̃,2
− m+ 2`+ 4

2
Q
h̃,2

)
. (5.5)

The Fubini-Study metric on CP` is an Einstein metric with Einstein constant λ = 2(`+ 1). Once
again, since Ric

h̃
= λg ⊕ 2(`+ 1)gFS, direct computations implies

R
h̃

= mλ+ 4`(`+ 1) and |Ric
h̃
|2 = mλ2 + 8`(`+ 1)2,
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and so (1.5) yields

Q
h̃,2

= − 2

(m+ 2`− 2)2
|Ric

h̃
|2 +

(m+ 2`)3 − 4(m+ 2`)2 + 16(m+ 2`)− 16)

8(m+ 2`− 1)2(m+ 2`− 2)2
R2
h̃

=
−2mλ2 − 16`(`+ 1)2

(m+ 2`− 2)2
+

((m+ 2`)3 − 4(m+ 2`)2 + 16(m+ 2`)− 16)(mλ+ 4`(`+ 1))2

8(m+ 2`− 1)2(m+ 2`− 2)2

=

(
m

8
− 1

2

)
λ2 + `(`+ 1)λ+O

(
1

m

)
.

Substituting this into (1.6) we then obtain

P
h̃,2
− n+ 4

2
Q
h̃,2

= ∆2
h̃

+
4

m+ 2`− 2
(λ∆g + 2(`+ 1)∆gFS) (5.6)

−((m+ 2`− 2)2 + 4)(mλ+ 4`(`+ 1))

2(m+ 2`− 1)(m+ 2`− 2)
(∆g + ∆g)− 4Q

h̃,2

= ∆2
g + ∆g ◦∆gFS + ∆gFS ◦∆g + ∆2

gFS

+

(
−mλ

2
+ 2λ− 2`(`+ 1) +O

(
1

m

))
(∆g + ∆gFS)

+
(
−m

2
+ 2
)
λ2 − 4`(`+ 1)λ+O

(
1

m

)
.

Once again we choose a test function of the form v = 1⊗ ṽ, where ṽ is an eigenfunction of ∆gFS .
In this case we choose

ṽ(z, z) = z1z2 + z2z1 + z2z3 + z3z2 + z3z1 + z1z3,

which satisfies the equation −∆gFS ṽ = (8`+ 16)ṽ. Furthermore, by [34, page 25] we have∫
X̃
v3 dµ

h̃
= volg(M)

∫
CP`

ṽ3 dµgFS 6= 0,

so v is indeed nontrivial. Substituting this choice of v into (5.6) we obtain(
P
h̃,2
− n+ 4

2
Q
h̃,2

)
v = (ã(m, `)λ2 + b̃(m, `)λ+ c̃(m, `))v =: p(λ),

where

ã(m, `) = −m
2

+ 2 +O
(

1

m

)
(5.7)

b̃(m, `) = −4m(`+ 2)− 4(`2 − 3`− 8) +O
(

1

m

)
c̃(m, `) = −16`3 + 16`2 + 224`+ 256 +O

(
1

m

)
.

We see directly that the discriminant is

disc(p) = b̃2 − 4ãc̃ = 16m2 +O(m),

which is once again positive so long as m is sufficiently large. This once more proves that the

quadratic polynomial p(λ) = ãλ2 + b̃λ+ c̃ has two real roots. We also see directly from (5.7) that
ã < 0 provided m is sufficiently large, and that c̃ > 0 for ` = 2, 3. By the same argument as in the
previous case, we see that when ` = 2, 3 we obtain one positive and one negative root, while when
` ≥ 4 we have two negative roots. �
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6. Quartic degenerate stability for arbitrary integer 1 ≤ k < n
2 (proof of

Theorem 5)

In this section, we give the proof of Theorem 5. Before we start with the main argument, several
preparations are needed.

6.1. Preliminaries: Explicit formulas for Pg,k and τ0. It is crucial for our purpose to provide
and expression for the operator Pg,k efficiently and explicitly for arbitrary order k ≥ 1. This is
done in the following lemma when Mτ := S1(τ) × Sn−1 with τ > 0 is furnished with the product
metric g ∈ Metk(M) defined as

g = gS1(τ) ⊕ gSn−1 . (6.1)

Notice that the radius τ > 0 of the circle S1(τ) is allowed to be arbitrary and the resulting formulas
(6.3) and (6.5) do not depend on τ .

Lemma 6.1. Let n, k ∈ N with n > 2k and let u ∈ Ck(Mτ ) be of the form u(t, ω) = f(t)Yj(ω).
Then, one has

Pg,ku(t, ω) = (Lk,jf)(t)Yj(ω) on Mτ , (6.2)

where

Lk,j =
k∏
`=1

(
−∂2

t +
(
j +

n

2
+ k − 2`

)2
)
. (6.3)

Here (t, ω) ∈ S1(τ) × Sn−1 and Yj is a spherical harmonic of Sn−1, i.e. it is an eigenfunction of
the Laplace-Beltrami operator (−∆)Sn−1 with eigenvalue µj = j(j + n − 2). Moreover, for any

u ∈ C2k(Mτ ), let ũ ∈ C2k(R × Sn−1) be its 2πτ -periodic extension and let û ∈ C2k(Rn \ {0}) be
defined by

û(x) = |x|−
n−2k

2 ũ (ln |x|, ω) with ω =
x

|x|
. (6.4)

Then, it holds

Pg,ku(t, ω) = e
n+2k

2
t((−∆)kû)(etω) for (t, ω) ∈Mτ . (6.5)

Finally, the Green’s function Gτ : Mτ ×Mτ → R is given by

Gτ (t, ω, s, η) = cn,k
∑
m∈Z
| cosh(t− s− 2πmτ)− 〈ω, η〉|−

n−2k
2 , (6.6)

where cn,k > 0 is a normalizing dimensional constant and 〈·, ·〉 denotes the scalar product in Rn.

Since L2(Mτ ) is spanned by functions of the form u(t, ω) = f(t)Yj(ω), (6.2) completely describes
the action of Pg,k on L2(Mτ ). Indeed, fix an orthonormal basis (Yj,l)l∈{1,...,Nj} of theNj-dimensional

space of spherical harmonics of degree j on Sn−1, namely

Nj =
(2j + n− 2)(j + n− 3)!

(n− 2)!j!
.

Then, the functions am,j,l(t) = cos(mtτ )Yj,l(ω) and bm,j,l sin(mtτ )Yj,l(ω) form an orthogonal basis

(am,j,l, bm,j,l)(m,j,l)∈N0×N0×∈{1,...,Nj} (6.7)

of L2(Mτ ). Through Lemma 6.1, we can express the action of Pg,k on this basis.

Corollary 6.2. Let n, k ∈ N with n > 2k. For every τ > 0 and m, j ∈ N0, one has

Pg,k(am,j) = αm,j(τ)am,j and Pg,k(bm,j) = αm,j(τ)bm,j on Mτ
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for the eigenvalues

αm,j(τ) =
k∏
`=1

(
m2τ−2 + (j +

n

2
+ k − 2`)2

)
. (6.8)

Proof. This is an immediate consequence of (6.2) and (6.3) together with the fact that
−∂2

t cos(mtτ ) = m2τ−2 cos(mtτ ) and −∂2
t sin(mtτ ) = m2τ−2 sin(mtτ ). �

Proof of Lemma 6.1. We let u(t, ω) = f(t)Yj(ω) and write µj = j(j+n−2) for the j-th eigenvalue
of the Laplace-Beltrami operator (−∆)Sn−1 .

Furthermore, by [13, Theorem 1.1], we have

Pg,ku(t, ω) = (Lk,jf)(t)Yj(ω),

where the operator Lk,j is given by

Lk,j =


∏ k−2

2
s=0 Dk−1−2s,j if k is even,

(−∂2
t + µj + (n−2)2

4 )
∏m−3

2
s=0 Dk−1−2s,j if k is odd.

(6.9)

Here, for any L ∈ N0, the operator DL,j is given by

DL,j := (∂2
t − µj)2 − (n− 2)2

2
(∂2
t − µj)− 2L2(∂2

t + µj)−
(

(n− 2)2

4
− L2

)2

.

Recalling µj = j(j + n− 2), we can check by direct computation that

DL,j =

(
−∂2

t + (j +
n− 2

2
− L)2

)(
−∂2

t + (j +
n− 2

2
+ L)2

)
. (6.10)

Let k ∈ N be an even number. Then, as the number L = k − 1 − 2s in (6.9) runs through
{k−1, k−3, . . . , 3, 1}, the number n−2

2 −L in (6.10) runs through {n2−k,
n
2−k+2, . . . , n2−4, n2−2},

and the number n−2
2 + L in (6.10) runs through {n2 + k − 2, n2 + k − 4, . . . , n2 + 2, n2 }. Thus,

for k ∈ N0 even, (6.3) follows from (6.9). An analogous reasoning, together with the fact that

µj + (n−2)2

4 = (j + n
2 − 1)2, gives the conclusion if k ∈ N0 is odd.

The claimed transformation formula (6.5) is now a direct consequence of (6.2) and (6.3)
combined with [16, Lemma 2]. Indeed, the cited result shows that the transformation of (−∆)k

through (6.4) coincides exactly with the action of Pg,k given by (6.2) and (6.3).
Using (6.5), we can also derive the expression (6.6) of the Green’s function Gτ . To do so, suppose

that u ∈ C2k(Mτ ) and f ∈ C(Mτ ) are such that Pg,ku = f on Mτ . By (6.5), the functions

û(x) := |x|−
n−2k

2 ũ(ln |x|, ω) and f̂(x) := |x|−
n+2k

2 f̃(ln |x|, ω)

(where ũ and f̃ again denote the τ -periodic extensions of u and f to R × Sn−1) then satisfy

(−∆)kû = f̂ in Rn \ {0}. Since the Green’s function on Rn of (−∆)k is c̃n,k|x − y|−n+2k (for a
certain constant c̃n,k > 0), this implies

û(x) = c̃n,k

∫
Rn
|x− y|−n+2kf̂(y)dy.
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Using this, for any (t, ω) ∈Mτ , we compute

u(t, ω) = ũ(t, ω) = e
n−2k

2
tû(etω)

= c̃n,ke
n−2k

2
t

∫
Rn
|etω − y|−n+2kf̂(y)dy

= c̃n,ke
n−2k

2
t

∫ ∞
0

dr

∫
Sn−1

dη rn−1|etω − rη|−n+2kr−
n+2k

2 f̃(ln r, η)

= c̃n,k

∫
R

ds

∫
Sn−1

dη e(t−s)n−2k
2 |et−sω − η|−n+2kf̃(s, η)

= c̃n,k2
−n−2k

2

∫
R

ds

∫
Sn−1

dη | cosh(t− s)− 〈ω, η〉|−
n−2k

2 f̃(s, η)

=

∫ 2πτ

0
ds

∫
Sn−1

dη

(
cn,k

∑
m∈Z
| cosh(t− s− 2πmτ)− 〈ω, η〉|−

n−2k
2

)
f(s, η),

where in the last step we have set cn,k := c̃n,k2
−n−2k

2 and used the τ -periodicity of f̃ . Since u was
arbitrary, it follows that

(t, ω, s, η) 7→ cn,k
∑
m∈Z
| cosh(t− s− 2πmτ)− 〈ω, η〉|−

n−2k
2

is the Green’s function of Pg,k on Mτ . �

We now turn to the proper choice of the radius τ0 in (1.12). For this purpose, by (6.3), let us
write

Pk(X) := X2k + pk,k−1X
2k−2 + ...+ pk,1X

2 + pk,0 :=

k∏
`=1

(
X2 + (

n

2
+ k − 2`)2

)
(6.11)

for the polynomial such that Pk(−∂2
t ) = Lk,0. Notice that the coefficients pk,m are positive for all

m = 0, ..., k − 1 because n
2 + k − 2` > 0 for all ` ∈ {1, . . . , k} (as a consequence of n > 2k). For

completeness, we define pk,k := 1.
We choose τ0 > 0 such that ϕ(t, ω) = sin(t/τ0) is in the kernel of the linearization of the equation

Pg,ku = pk,0u
n+2k
n−2k on Mτ0

about the constant solution u = 1. In other words, we require ϕ(t, ω) = sin(t/τ0) to solve the
linear equation

Pg,kϕ = pk,0
n+ 2k

n− 2k
ϕ on Mτ0 . (6.12)

This will lead to the desired degeneracy, as we check in Lemma 6.8. Let us check that this
requirement determines τ0 > 0 uniquely. Indeed, using that Lk,0 = Pk(−∂2

t ), we have, for every
τ > 0,

Pg,k sin

(
t

τ

)
= Pk(τ

−2) sin

(
t

τ

)
on Mτ . (6.13)

Since all the pk,m are positive, Pk(τ
−2) is strictly decreasing as a function of τ ∈ (0,∞), with

lim
τ→0

Pk(τ
−2) = ∞ and lim

τ→∞
Pk(τ

−2) = pk,0. Since n+2k
n−2k > 1, we can pick τ0 > 0 as the unique

number satisfying

Pk(τ
−2
0 ) = pk,0

n+ 2k

n− 2k
. (6.14)

Thus, by (6.13), ϕ(t, ω) = sin(t/τ0) solves (6.12) as desired.
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Remark 6.3. By a similar argument one can check more generally that for every m ∈ N, there is

precisely one τ
(m)
0 > 0 such that αm,0(τ

(m)
0 ) = n+2k

n−2kpk,0. Consequently, the functions

ϕ(t, ω) = sin

(
mt

τ
(m)
0

)
or ϕ(t, ω) = cos

(
mt

τ
(m)
0

)
solve (6.12) on S1(τ

(m)
0 ) × Sn−1. On the other hand, if j ≥ 1, then for every m ∈ N0 and τ > 0

we have

αm,j(τ) ≥ α0,1(τ) = α0,1(τ0) > α1,0(τ0) =
n+ 2k

n− 2k
pk,0,

by the inequality (6.36) below.
Since the αm,j(τ) are decreasing functions of τ , the value τ = τ0 from (6.14) is actually the

smallest value of τ such that the linearized equation (6.12) has a non-zero solution.

6.2. Bounding Pk and τ0. We will find the following bounds regarding τ0 useful in later
computations.

Lemma 6.4. Let n, k ∈ N with n > 2k and let τ0 = τ0(n, k) be defined by (6.14). Then, one has

1√
n+ 2k − 4

≤ τ0(n, k) ≤ 1√
n− 2k

.

Notice that for k = 1 the upper and lower bounds coincide and we recover τ0(n, 1) = 1√
n−2

.

Proof. Since Pk is strictly increasing on [0,∞), in view of (6.14), the inequality τ0 ≤ 1√
n−2k

follows

if we can show that Pk(n− 2k) ≤ n+2k
n−2kpk,0.

By writing

n+ 2k

n− 2k
pk,0 =

k∏
`=1

(n
2

+ k − 2`+ 2
)(n

2
+ k − 2`

)
and

Pk(n− 2k) =
k∏
`=1

(
n− 2k +

(n
2

+ k − 2`
)2
)

the desired inequality Pk(n− 2k) ≤ n+2k
n−2kpk,0 follows from the fact that(n

2
+ k − 2`+ 2

)(n
2

+ k − 2`
)
−
(
n− 2k +

(n
2

+ k − 2`
)2
)

= 2
(n

2
+ k − 2`

)
− (n− 2k)

= 4k − 4` ≥ 0

for every ` ∈ {1, . . . , k}.
Analogously, from the fact that(n

2
+ k − 2`+ 2

)(n
2

+ k − 2`
)
−
(
n+ 2k − 4 +

(n
2

+ k − 2`
)2
)

= 2
(n

2
+ k − 2`

)
− (n+ 2k − 4)

= −4`+ 4 ≤ 0

for every ` ∈ {1, . . . , k}, we deduce Pk(n+ 2k − 4) ≥ n+2k
n−2kpk,0, and hence τ0(n, k) ≥ 1√

n+2k−4
. �

Lemma 6.5. Let n, k ∈ N with n > 2k and let M = S1(τ0) × Sn−1 with τ0 defined by (6.14)
furnished with the product metric g ∈ Metk(M) given by (6.1). Then, one has

Qg,k(1) < Sn,k, (6.15)
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where Sn,k := ω
2k/n
n Γ(n+2k

2 )Γ(n−2k
2 )

−1
is the best constant for the k-th order Sobolev inequality on

Sn with ωn = 2π
n+1
2 Γ(n+1

2 )−1 its volume measure.

Proof. We have Qg,k(1) = volg(M)
2
n pk,0, with

pk,0 =
k∏
`=1

(n
2

+ k − 2`
)2

the 0-th order coefficient of the polynomial Pk(X) =
∏k
`=1(X + (n2 + k − 2`)2) defined in (6.11).

Using that volg(M) = 2πτ0ωn−1 and since ωn = 2π
n+1
2 Γ(n+1

2 )
−1

, inequality (6.15) is equivalent to

pk,0
Γ(n2 − k)

Γ(n2 + k)
<

(
1

2
√
πτ0

Γ(n2 )

Γ(n+1
2 )

) 2
n

. (6.16)

By Lemma 6.4, we know that τ0 = τ0(n, k) ≤ 1√
n−2k

.

Consequently, in view of (6.16), it suffices to prove

Ψk(n) :=

(
pk,0

Γ(n2 − k)

Γ(n2 + k)

)n
2

<

√
n− 2k

2
√
π

Γ(n2 )

Γ(n+1
2 )

=: Φk(n). (6.17)

By Stirling’s formula, Γ(z) =
√

2π
z

(
z
e

)z
(1 + o(1)) as z →∞. It follows

Γ(n2 )

Γ(n+1
2 )

=

√
2

n
(1 + o(1)), and so Φk(n)→ 1√

2π
as n→∞.

Moreover, we have

Ψk(n) =

(
pk,0

Γ(n2 − k)

Γ(n2 + k)

)n
2

=
k∏
`=1

( n
2 + k − 2`

n
2 + k − 2`+ 1

)n
2

k∏
`=1

(
1− 1

n
2 + k − 2`+ 1

)n
2

+k−2`+1(
1− 1

n
2 + k − 2`+ 1

)−k+2`−1

→ e−k

as n→∞. Since e−k < 1√
2π

for every k ≥ 1, we can conclude the proof of (6.17), by showing that

(treating n as a real variable)

(log Ψk)
′(n) ≥ (log Φk)

′(n) for all n > 2k. (6.18)

On the one hand, we have

(log Φk)
′(n) =

1

2

(
1

n− 2k
+ ψ

(n
2

)
− ψ

(
n+ 1

2

))
≤ 1

2

(
1

n− 2k
− 1

n

)
=

k

n(n− 2k)
, (6.19)

where ψ(z) = Γ′(z)/Γ(z) is the Digamma function. The claimed inequality follows from the
concavity of ψ together with the functional equation ψ(z + 1) = ψ(z) + 1

z (used with z = n/2).
On the other hand,

log Ψk(n) =
k∑
`=1

(n
2

+ k − 2`+ 1
)

log

(
1− 1

n
2 + k − 2`+ 1

)
(6.20)

+

k∑
`=1

(−k + 2`− 1) log

(
1− 1

n
2 + k − 2`+ 1

)
.
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To treat the first summand of (6.20), we estimate, for every m > 1,

log

(
1− 1

m

)
= −

∞∑
j=1

1

jmj
≥ − 1

m
−1

2

∞∑
j=2

1

mj
= − 1

m
−1

2

(
−1− 1

m
+

1

1− 1
m

)
=

1

2
− 1

2m
− m

2(m− 1)
,

using the series expansion of log(1 + z) and the geometric series. As a consequence,

d

dm

(
m log

(
1− 1

m

))
= log

(
1− 1

m

)
+

1

m− 1
≥ 1

2
− 1

2m
− m

2(m− 1)
+

1

m− 1
=

1

2m(m− 1)

Applying this with m = mk,` = n
2 + k − 2`+ 1 (note that m > 1 because ` ≤ k < n

2 ) gives

d

dn

(
k∑
`=1

(
n

2
+ k − 2`+ 1) log

(
1− 1

n
2 + k − 2`+ 1

))
≥ 1

4

k∑
`=1

1

mk,`(mk,` − 1)
(6.21)

=
k∑
`=1

1

(n+ 2k − 4`)(n+ 2k − 4`+ 2)
.

Next, direct computation gives that the derivative of the second summand in (6.20) is

d

dn

(
k∑
`=1

(−k + 2`− 1) log

(
1− 1

n
2 + k − 2`+ 1

))
= −

k∑
`=1

2k − 4`+ 2

(n+ 2k − 4`+ 2)(n+ 2k − 4`)
.

(6.22)
By combining (6.19), (6.21) and (6.22) we obtain

(log Ψk − log Φk)
′(n) ≥

k∑
`=1

−2k + 4`− 1

(n+ 2k − 4`)(n+ 2k − 4`+ 2)
− k

n(n− 2k)

=
k−1∑
`=1

−2k + 4`− 1

(n+ 2k − 4`)(n+ 2k − 4`+ 2)
+

(
2k − 1

(n− 2k)(n− 2k + 2)
− k

n(n− 2k)

)

≥
k−1∑
`=1

−2k + 4`− 1

(n+ 2k − 4`)(n+ 2k − 4`+ 2)
+

k − 1

(n− 2k)(n− 2k + 2)
.

In the k summands on the right side, the denominators form a decreasing sequence of positive
numbers. Moreover, the numerators form an increasing sequence of numbers which sum to zero:

k−1∑
`=1

(−2k + 4`− 1) + (k − 1) =

(
−2k(k − 1) + 4

(k − 1)k

2
− (k − 1)

)
+ (k − 1) = 0.

From these facts it is elementary to conclude that the right side is non-negative. Thus, (6.18)
follows, and the proof is complete. �

Lemma 6.6. Let n, k ∈ N and n > 2k and let τ0 be defined by (6.14). For any ` ≥ 0, one has

Γ
(
n−2k

2n

)
Γ
(
n+2k

2n + `
)

Γ
(
n+2k

2n

)
Γ
(
n−2k

2n + `
) ≤ p−1

k,0Pk(τ
−2
0 `2).

Furthermore, equality holds if and only if ` = 0 or ` = 1.

Proof. Let us denote

Φn,k(`) :=
Γ
(
n−2k

2n

)
Γ
(
n+2k

2n + `
)

Γ
(
n+2k

2n

)
Γ
(
n−2k

2n + `
) and Λn,k(`) := p−1

k,0Pk(τ
−2
0 `2).
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The equality Φn,k(0) = Λn,k(0) is immediate. Using the definition (6.14) we moreover have

Pk(τ
−2
0 `2) = n+2k

n−2kpk,0, so that

Λn,k(1) = p−1
k,0Pk(τ

−2
0 ) =

n+ 2k

n− 2k
= Φn,k(1).

To prove the strict inequality Φn,k(`) < Λn,k(`) for every n > 2k and ` ≥ 2, we argue similarly to
Beckner [7, proof of Theorem 4]. Since Φn,k(1) = Λn,k(1), it is enough to show

d

d`
ln Φn,k(`) <

d

d`
ln Λn,k(`) for every ` > 1 (6.23)

(where we treat ` as a real variable). To prove (6.23), we write p = 2n
n−2k = 2

1−2s with s = m
n ∈ (0, 1

2)

thanks to n > 2m. The left side of (6.23) then is

d

d`
ln Φn,k(`) = ψ

(
1

p′
+ `

)
− ψ

(
1

p
+ `

)
= ψ

(
1

2
+ s+ `

)
− ψ

(
1

2
− s+ `

)
=

∞∑
m=0

1
1
2 − s+ `+m

− 1
1
2 + s+ `+m

= 2s

∞∑
m=0

1

(1
2 + `+m)2 − s2

< 2s
∞∑
m=0

1

(1
2 + `+m)2 − (1

2)2
.

Here ψ = Γ′

Γ denotes the Digamma function. The claimed series expansion follows, e.g., from
integrating the expansion [1, eq. (6.4.10)]

ψ′(z) =
∞∑
m=0

1

(z +m)2
.

But now it is easy to directly evaluate
∞∑
m=0

1

(1
2 + `+m)2 − (1

2)2
=
∞∑
m=0

1

`+m
− 1

1 + `+m
=

1

`

as a telescopic sum. Recalling s = m
n , in conclusion we have shown

d

d`
ln Φn,k(`) <

2m

n`
. (6.24)

In view of (6.24) it remains to show that

2m

n`
≤ d

d`
ln Λn,k(`) =

d
d`Λn,k(`)

Λn,k(`)

Since Λn,k(`) = p−1
k,0Pk(τ

−2
0 `2) = p−1

k,0

∑k
k=0 pk,mτ

−2m
0 `2m, some elementary manipulations show

that this is equivalent to

mpk,0 ≤
k∑

m=1

pk,m(nk −m)τ−2m
0 `2m. (6.25)

Since ` > 1 and pk,m > 0 for all k ∈ {1, . . . ,m}, the right side of (6.25) is estimated by

k∑
m=1

pk,m(nk−m)τ−2m
0 `2m ≥ (n−m)

k∑
m=1

pk,mτ
−2m
0 = (n−m)(Pk(τ

−2
0 )−pk,0) = (n−m)

4m

n− 2k
pk,0.

Since (n −m) 4m
n−2k > m, the proof of (6.25) is complete. As explained above, this concludes the

proof of the lemma. �
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6.3. The minimizers of Yk,+(M, [g]) and their degeneracy. From now on, the value τ = τ0

from (6.14) and the manifold M = Mτ0 = S1(τ0) × Sn−1 (furnished with the product metric
g ∈ Metk(M) defined as (6.1)) are fixed. We will write αm,j := αm,j(τ0) for the eigenvalues of Pg,k
from (6.8).

Lemma 6.7. Let n, k ∈ N with 2k < n and let M = S1(τ0) × Sn−1 with τ0 defined by (6.14)
furnished with the product metric g ∈ Metk(M) given by (6.1). Then Yk,+(M, g) is uniquely
minimized by the constant functions.

Proof. The proof will be divided into three steps.
Step 1: Existence of minimizers.

Once we prove coercivity of Pg,k, the existence of a minimizer u > 0 follows directly from [41,
Theorem 3] combined with Lemma 6.5 and Lemma 6.1 (which guarantees the needed positivity of
the Green’s function). It only remains to show that there exists c > 0 such that∫

M
uPg,k(u)dµg ≥ c‖u‖2Wk,2(M)

Write

u =
∑

(m,j,l)∈I

um,j,lam,j,l + ũm,j,lbm,j,l

for certain coefficients um,j,l, ũm,j,l ∈ R, where am,j,l and bm,j,l are the basis functions from (6.7)
and I := N0 ×N0 × {1, . . . , Nj}. Then it can be deduced from the orthogonality properties of the
am,j,l, bm,j,l that

‖u‖2Wk,2(M) .
∑

(m,j,l)∈I

(u2
m,j,l + ũ2

m,j,l)(1 +m2k + j2k).

On the other hand, the expression (6.8) of the eigenvalues αm,j of Pg,k implies the estimate

αm,j & 1 +m2k + j2k,

Hence, the estimate below holds∫
M
uPg,k(u)dµg =

∑
(m,j,l)∈I

(u2
m,j,l + ũ2

m,j,l)αm,j &
∑

(m,j,l)∈I

(u2
m,j,l + ũ2

m,j,l)(1 +m2k + j2k),

which proves coercivity.
Step 2: Minimizers are radial.

Let 0 < u ∈ C2k(M) be a minimizer of Yk,+(M, [g]) on M , which exists by Step 1. Then, up to
multiplying it by a suitable scalar factor,u satisfies the Euler-Lagrange equation

Pg,ku = cn,ku
n+2k
n−2k on M, (6.26)

where cn,k > 0 is a normalizing dimensional constant. Let ũ ∈ C2k(R× Sn−1) be the 2πτ0-periodic

extension of u to R×Sn−1 and v(x) = |x|−
n−2k

2 ũ(ln |x|, ω) be its logarithmic transform on Rn \{0}.
By (6.26) and (6.5), v satisfies

(−∆)kv = cn,kv
n+2k
n−2k on Rn \ {0}.

Since v > 0, by applying the moving planes method as in [37,53] it follows that v(x) only depends
on |x|. Equivalently, ṽ(t, ω), and hence v(t, ω), only depends on t.
Step 3: Constants are the unique minimizers.

While Steps 1 and 2 still are valid for arbitrary τ > 0, in this step we will make crucial use of
the expression (6.14) for τ0.
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By Steps 1 and 2, we only need to prove that constant functions uniquely minimize Qg,k among
functions u only depending on t ∈ S1(τ0). By Lemma 6.1, the inequality we need to show is thus∫ 2πτ0

0
uPk(−∂2

t )udt ≥ pk,0(2πτ0)
2k
n

(∫ 2πτ0

0
|u|

2n
n−2k dt

)n−2k
n

(6.27)

(where pk,0 is defined through (6.11)) with equality if and only if u is constant.
For the following argument, it will be convenient to rescale S1(τ0) back to the unit sphere

S1 ' (0, 2π). For v(t) = u(tτ0) the inequality we need to show then reads as∫
S1
vPk(−τ−2

0 ∂2
t )vdσ ≥ pk,0(2π)

2k
n

(∫
S1
|v|

2n
n−2k dσ

)n−2k
n

. (6.28)

where dσ denotes the standard measure on the unit circle S1. We will now prove that (6.28) holds,
with equality if and only if v is constant, through an argument inspired by Beckner [7, proof of
Theorem 4]. For this purpose, we decompose a given v ∈W k,2(S1) into its Fourier eigenmodes

v(t) =
∞∑
`=0

Y`(t),

where, for every ` ≥ 0, Y`(t) = c` cos(`t) + d` sin(`t) for some c`, d` ∈ R.
Then the left side of (6.28) reads as∫

S1
uPk(−τ−2

0 ∂2
t )udt =

∞∑
`=0

Pk(τ
−2
0 `2)

∫
S1
|Y`|2 dσ.

By the ’dual-spectral’ version of the Hardy–Littlewood–Sobolev inequality [7, eq. (19)] we can
estimate the right side of (6.28) as

(2π)1−n−2k
n

(∫
S1
|v|

2n
n−2k dσ

)n−2k
n

≤
∞∑
`=0

Γ
(
n−2k

2n

)
Γ
(
n+2k

2n + `
)

Γ
(
n+2k

2n

)
Γ
(
n−2k

2n + `
) ∫

S1
|Y`|2 dσ, (6.29)

In Lemma 6.6 we have proved that

Γ
(
n−2k

2n

)
Γ
(
n+2k

2n + `
)

Γ
(
n+2k

2n

)
Γ
(
n−2k

2n + `
) ≤ p−1

k,0Pk(τ
−2
0 `2). (6.30)

for every n > 2k, ` ≥ 0, and so (6.30) follows.
Moreover, still by Lemma 6.6, equality in (6.30) occurs precisely for ` = 0, 1.
On the other hand, by the classification of HLS optimizers [36], equality in (6.29) holds if and

only if v is a conformal factor, i.e.,

v(s) = c(1 + a cos s+ b sin s)
n−2k
2n (6.31)

for some c ∈ R \ {0}, a, b ∈ R with a2 + b2 < 1.
Hence, if equality holds in (6.28) for some v, then by the equality conditions for (6.29) and

(6.30) we must have

v(s) = C(1 +A cos s+B sin s) = c(1 + a cos s+ b sin s)
n−2k
2n .

It is easy to see that this implies that v must be constant. This ends the proof. �
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In what follows, it will be convenient to write ‖u‖2∗k = ‖u‖
L
2∗
k (M)

with 2∗k = 2n
n−2k , as well

as ‖u‖k,2 = ‖u‖Wk,2(M) and Y := Yk,+(M, [g]). Here, M is given by (1.12) furnished with the
standard product metric, denoted by g. Moreover, we abbreviate

E(u) :=
2

n− 2k

∫
M
uPg,k(u)dµg, (6.32)

so that

Qg,k(u) =
E(u)

‖u‖22∗k
.

Lemma 6.7 yields that

F(u) := E(u)− Y‖u‖22∗k (6.33)

is uniquely minimized by constant functions (with minimal value 0).
We now check that, by our special choice of τ0, the kernel of D2F(1) contains a non-constant

function.

Lemma 6.8. Let n, k ∈ N with n > 2k and let M = S1(τ0) × Sn−1 with τ0 defined by (6.14)
furnished with the product metric g ∈ Metk(M) given by (6.1). The kernel of D2F(1) is spanned
by 1, cos(t/τ0) and sin(t/τ0).

Proof. Clearly, 1 is in the kernel of D2F(1) because F(c) = 0 for all c ∈ R.
On the other hand, for any ρ ∈W k,2(M) with

∫
M ρdµg = 0, we have

E(1 + ερ) = E(1) + ε2E(ρ)

and

‖1 + ερ‖22∗k =

[∫
M

(
1 + ε2 2∗k(2

∗
k − 1)

2
ρ2 + o(ε2)

)
dµg

]2/2∗k

= volg(M)2/2∗k + ε2(2∗k − 1)volg(M)2/2∗k−1

∫
M
ρ2 dµg + o(ε2).

Thus, we find

D2F(1)[ρ, ρ] = E(ρ)− (2∗k − 1)volg(M)2/2∗k−1Y
∫
M
ρ2 dµg

= E(ρ)− n+ 2k

n− 2k
· 2

n− 2k
pk,0

∫
M
ρ2 dµg, (6.34)

For the last equality, we used that by Lemma 6.7, it holds Y = Qg,k(1) = 2
n−2kvolg(M)1−2/2∗kpk,0.

Thus, recalling (6.32), ϕ ∈W k,2(M) with
∫
M ϕdµg = 0 is in the kernel of D2F(1) if and only if

Pg,k(ϕ) =
n+ 2k

n− 2k
pk,0ϕ. (6.35)

We have already checked in (6.13) that the definition (6.14) of τ0 ensures that ϕ(t) = sin(t/τ0)
solves (6.35). By exactly the same argument, ϕ(t) = cos(t/τ0) solves (6.35).

It remains to justify that there can be no functions in the kernel of D2F(1) which are linearly
independent of 1, sin(t/τ0) and cos(t/τ0). In view of (6.35), it therefore remains to check that
αm,j 6= α1,0 for all (m, j) 6= (1, 0). Since, by (6.8), the eigenvalues αm,j are strictly increasing in
m and j, this follows if we can show

α0,1 > α1,0. (6.36)
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But since

α1,0 =
n+ 2k

n− 2k
pk,0 = 2−2kn+ 2k

n− 2k

k∏
`=1

(n+ 2k− 4`)2 = (n− 2k)(n− 2k+ 4)2 · · · (n+ 2k− 4)2(n+ 2k)

and

α0,1 = 2−2k
k∏
`=1

(2 + n+ 2k − 4`)2,

we obtain

α0,1

α1,0
=

(n− 2k + 2)2

(n− 2k)(n− 2k + 4)
· (n− 2k + 6)2

(n− 2k + 4)(n− 2k + 8)
· · · · · (n+ 2k − 2)2

(n+ 2k − 4)(n+ 2k)

=
k∏
`=1

(n+ 2k + 2− 2`)2

(n+ 2k − 4`)(n+ 2k − 4`+ 4)
> 1,

because of the inequality N2

(N+2)(N−2) = N2

N2−4
> 1, applied with N := n + 2k + 2 − 2` for every

` ∈ {1, . . . , k}. Thus (6.36) is shown, and the proof is complete. �

6.4. The secondary non-degeneracy condition. We can now start to give the core argument
for the proof of Theorem 5.

As in [19], our goal is to verify a ’secondary nondegeneracy condition’ using an iterative
refinement of Bianchi and Egnell’s classical strategy. This strategy consists in decomposing a
candidate sequence into a main part and a remainder part orthogonal to it. The orthogonality
then implies an improved spectral estimate which can be used to conclude in the classical (i.e.,
non-degenerate) setting. Because of the degeneracy given by Lemma 6.8, in our setting, we need
to further decompose the remainder into a main part which turns out to be in kerD2F(1), and
a secondary remainder. At this point only, one has precise enough information to conclude by
spectral estimates.

The first and more standard step of this strategy is contained in the following lemma.

Lemma 6.9. Let n, k ∈ N with n > 2k and let M = S1(τ0) × Sn−1 with τ0 defined by (6.14)
furnished with the product metric g ∈ Metk(M) given by (6.1). Assume that {um}m∈N ⊂W k,2(M)

is a sequence such that Qg,k(um) → Y and ‖um‖2∗k = volg(M)1/2∗k . Then, there are sequences

{λm}m∈N ⊂ R and {ρm}m∈N ⊂ W k,2(M) such that λm → ±1,
∫
M ρm = 0, E(ρm) → 0, and up to

extracting a subsequence, one has
um = λm(1 + ρm).

Proof. By Lemma 6.7, the only minimizers of Y are the constants. By Lemma B, up to the
extraction of a subsequence every minimizing sequence converges to a minimizer of Y, strongly in
W k,2(M). Notice that M satisfies the assumptions of Lemma B, as we have checked in the proof
of the first step of Lemma 6.7.

In view of the normalization of um, we thus must have um → ±1 in W k,2(M). Setting
λm := um := volg(M)−1

∫
M um dµg and ρm := um

um
− 1, the assertion of the lemma follows. �

Now we derive a more precise expansion. For sequences {um}m∈N such that E(um)− Y‖um‖22∗k
goes to zero superquadratically in E(um − um), we show that the subleading term is necessarily
proportional to the function

φ(t, ω) := cos

(
t

τ0

)
∈ kerD2F(1), (6.37)

up to a rotation in the t-coordinate.
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Lemma 6.10. Let n, k ∈ N with n > 2k and let M = S1(τ0) × Sn−1 with τ0 defined by (6.14)
furnished with the product metric g ∈ Metk(M) given by (6.1). Let {um}m∈N, {ρm}m∈N ⊂W k,2(M)
be sequences such that um = 1 + ρm, where

∫
M ρm dµg = 0 and E(ρm) → 0 as m → ∞. Suppose

that
E(um)− Y‖um‖22∗k

E(ρm)
→ 0.

Then, up to extracting a subsequence and a rotation in the t-coordinate, one has

um = 1 + ρm = 1 + ξm(φ+Rm), (6.38)

where ξm → 0, φ ∈ kerD2F(1) is defined by (6.37), and {Rm}m∈N ⊂ W k,2(M) satisfies∫
M Rm dµg =

∫
M Rm sin(t/τ0)dµg =

∫
M Rm cos(t/τ0)dµg = 0, and E(Rm)→ 0 as m→∞.

Proof. By
∫
M ρm dµg = 0, we clearly have

E(um) = E(1) + E(ρm).

Moreover, for any a ∈ R and ν > 2 the pointwise expansion below holds

|1 + a|ν = 1 + νa+
ν(ν − 1)

2
a2 +O(|a|min{3,ν}),

which yields ∫
M
|um|2

∗
k dµg =

∫
M

dµg +
2∗k(2

∗
k − 1)

2

∫
M
ρ2
m dµg + o(E(ρm)),

and hence

‖um‖22∗k =

(∫
M

dµg

)2/2∗k
+ (2∗k − 1)

(∫
M

dµg

)2/2∗k−1 ∫
M
ρ2
m dµg + o(E(ρm)).

Since

Y =
2

n− 2k
E(1)

(∫
M

dµg

)−2/2∗k
=

(∫
M

dµg

)1−2/2∗k
α0,0

and α1,0 = (2∗k − 1)α0,0, it follows

o(1) =
E(um)− Y‖um‖22∗k

E(ρm)
=
E(ρm)− 2

n−2kα1,0

∫
M ρ2

m dµg

E(ρm)
. (6.39)

The quadratic form ρ 7→ E(ρ)− 2
n−2kα1,0

∫
M ρ2 dµg vanishes on the subspace spanned by cos(t/τ0)

and sin(t/τ0). Since αm,j > α1,0 for m ≥ 2 or j ≥ 1, it is positive definite and equivalent to E on
the orthogonal complement of 1, cos(t/τ0) and sin(t/τ0). Together with

∫
M ρm dµg = 0, it is easy

to deduce (6.38) from (6.39) by arguing as in [19, proof of Lemmas 5 and 9]. �

With the refined expansion from Lemma 6.10 at hand, we can now expand E(um) up to fourth
order and derive the following ’second-order’ stability inequality:

Lemma 6.11. Let n, k ∈ N with n > 2k and let M = S1(τ0) × Sn−1 with τ0 defined by (6.14)
furnished with the product metric g ∈ Metk(M) given by (6.1). Let {um}m∈N, {ρm}m∈N ⊂W k,2(M)
be sequences such that um = 1 + ρm, where

∫
M ρm dµg = 0 and E(ρm)→ 0 as m→∞. Then, one

has

E(um)− Y‖um‖22∗k ≥ (c+ o(1))E(ρm)2,

where

c :=
n− 2k

2
·

(2∗k − 2)

8 volg(M)
α−1

1,0

(
(2∗k + 1)− α1,0

α2,0 − α1,0
(2∗k − 2)

)
> 0.
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Proof. By Lemma 6.10, we can write um = 1 +ρm = 1 + ξm(φ+Rm) with ξm → 0 and E(Rm)→ 0
as m→∞.

Again we follow the strategy of [19], but we apply a technical simplification of the argument
from [32] (see also [21]) to deal with the set where Rm has pointwise large values.

Let Mm ⊂ M be the subset of points x ∈ M such that |ρm(x)| < 1
2 . In particular, on Mm, the

function 1 + ρm takes values in (1/2, 3/2), where t 7→ |t|2∗k is smooth. In particular, by Taylor’s
theorem, we can expand to fourth order to get∫
Mm

|1 + ρm|2
∗
k dµg =

∫
Mm

dµg + 2∗k

∫
Mk

ρm dµg +
2∗k(2

∗
k − 1)

2

∫
Mm

ρ2
m dµg

+
2∗k(2

∗
k − 1)(2∗k − 2)

6

∫
Mm

ρ3
m dµg +

2∗k(2
∗
k − 1)(2∗k − 2)(2∗k − 3)

24

∫
Mm

ρ4
m dµg + o(ξ4

m).

For the complementary set, we directly have∫
M\Mm

(
1

2

)2∗k
dµg ≤

∫
M\Mm

|ρm|2
∗
k dµg . E(ξmφ)2∗k/2 + o(ξ

2∗k
m ) = ξ

2∗k
m (E(φ)2∗k/2 + o(1)),

and hence volg(M \Mm) . ξ
2∗k
m . Thus we can use a second-order Taylor expansion to deduce, by

estimates analogous to those in [32, p.11], that∫
Cm

|1 + ρm|2
∗
k dµg

=

∫
M\Mm

dµg + 2∗k

∫
M\Mm

ρm dµg +
2∗k(2

∗
k − 1)

2

∫
M\Mm

ρ2
m dµg +

2∗k(2
∗
k − 1)(2∗k − 2)

6

∫
M\Mm

ρ3
m dµg

+
2∗k(2

∗
k − 1)(2∗k − 2)(2∗k − 3)

24

∫
M\Mm

ρ4
m dµg + o(ξ4

m + ξ2
mE(Rm)).

Adding up the two expansions above, we obtain

‖um‖22∗k = volg(M)2/2∗k

+ volg(M)2/2∗k−1(2∗k − 1)

(∫
M
ρ2
m dµg +

2∗k − 2

3

∫
M
ρ3
m dµg +

(2∗k − 2)(v − 3)

12

∫
M
ρ4
m dµg

)
− volg(M)2/2∗k−2 (q − 2)(2∗k − 1)2

4

(∫
M
ρ2
m

)2

+ o
(
(ξ4
m + ξ2

mE(Rm)
)
,

which with E(um) = E(1) + E(ρm), and again recalling

Y volg(M)2/2∗k−1(2∗k − 1) =
2

n− 2k
α0,0(2∗k − 1) =

2

n− 2k
α1,0,

gives us

E(um)− Y‖um‖22∗k = E(ρm)− 2

n− 2k
α1,0

(∫
M
ρ2
m dµg +

2∗k − 2

3

∫
M
ρ3
m dµg +

(2∗k − 2)(2∗k − 3)

12

∫
M
ρ4
m dµg

)
+

2

n− 2k
α1,0volg(M)−1 (2∗k − 1)(2∗k − 2)

4

(∫
M
ρ2
m dµg

)2

+ o
(
(ξ4
m + ξ2

mE(Rm)
)
.

(6.40)

Now we expand the terms on the right more precisely, according to the refined decomposition
ρm = ξm(φ+Rm) from Lemma 6.10. Clearly, by orthogonality,

E(ρm)− 2

n− 2k
α1,0

∫
M
ρ2
m dµg = ξ2

mE(Rm)− 2

n− 2k
α1,0ξ

2
m

∫
M
R2
m dµg
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because φ ∈W k,2(M) is in the kernel of this quadratic form. Moreover, since
∫
M φ3 dµg = 0,∫

M
ρ3
m dµg = 3ξ3

m

∫
M
φ2Rm dµg + o

(
(ξ4
m + ξ2

mE(Rm)
)
.

Finally, in the power-four terms, only the leading term ξmφ is relevant in the sense that∫
M
ρ4
m dµg = ξ4

m

∫
M
φ4 dµg + o(ξ4

m) and

(∫
M
ρ2
m dµg

)2

= ξ4
m

(∫
M
φ2 dµg

)2

+ o(ξ4
m).

In view of

φ2(s) =
1

2
+

1

2
cos

(
2s

τ0

)
,

we further decompose

Rm = bm cos

(
2s

τ0

)
+ Sk with

∫
M
Sk cos

(
2s

τ0

)
dµg = 0.

Then, one has ∫
M
φ2Rm dµg =

1

2
bm

∫
M

cos2

(
2s

τ0

)
dµg = bm

volg(M)

4
.

Moreover, we can estimate

E(ξmRm)− 2

n− 2k
α1,0

∫
M

(ξmRm)2 dµg + o(ξ2
mE(Rm))

=
2

n− 2k
(α2,0 − α1,0 + o(1))ξ2

mb
2
m

volg(M)

2
+ (1 + o(1))ξ2

mE(Sk)−
2

n− 2k
α1,0ξ

2
m

∫
M
S2
k dµg

≥ 2

n− 2k
(α2,0 − α1,0 + o(1))ξ2

mb
2
m

volg(M)

2
.

Finally, we can compute explicitly the numerical values of∫
M
φ4 dµg =

3

8
volg(M) and

(∫
M
φ2 dµg

)2

=
volg(M)2

4
.

Inserting all of this back into (6.40), we arrive at

n− 2k

2

(
E(um)− Y‖um‖22∗k

)
≥ (α2,0 − α1,0 + o(1))ξ2

mb
2
m

volg(M)

2
− α1,0

q − 2

4
volg(M)ξ3

mbm

+ α1,0volg(M)ξ4
m

(
(2∗k − 1)(2∗k − 2)

16
−

(2∗k − 2)(2∗k − 3)

32

)
+ o(ξ4

m)

=
volg(M)

8
ξ2
m

(√
4(α2,0 − α1,0 + o(1))bm −

α1,0(2∗k − 2)√
4(α2,0 − α1,0 + o(1))

ξm

)2

− volg(M)

8

α2
1,0(2∗k − 2)2

4(α2,0 − α1,0)
ξ4
m

+
α1,0volg(M)

32
(2∗k − 2)(2∗k + 1)ξ4

m + o(ξ4
m) (6.41)

≥ volg(M)

32
(2∗k − 2)α1,0 ξ

4
m

(
(2∗k + 1)− α1,0

α2,0 − α1,0
(2∗k − 2) + o(1)

)
.

Here we completed a square in bm and simplified the occurring terms. Since from (6.38), we have

ξ4
m = E(ρm)2(E(φ)−2 + o(1)) = E(ρm)2

((
n− 2k

2

)2 4

volg(M)2
α−2

1,0 + o(1)

)
,
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the proof of the lemma is complete if we can show that (2∗k + 1) − α1,0

α2,0−α1,0
(2∗k − 2) is strictly

positive, or equivalently,

α2,0 >
2 · 2∗k − 1

2∗k + 1
α1,0. (6.42)

Now recall that αk,0 = Pk(kτ
−1
0 ) for all k ∈ N0 and that α1,0 = (2∗k − 1)α0,0 by the choice of τ0.

Using that Pk(X) is a convex function of X (being a sum of even-degree monomials with positive
coefficients), we find

α2,0 = Pk(2τ
−1
0 ) ≥ 2Pk(τ

−1
0 )− Pk(0) = 2α1,0 − α0,0 =

(
2− 1

2∗k − 1

)
α1,0.

A direct computation shows 2 − 1
ν−1 >

2ν−1
ν+1 for any ν > 2. In particular taking ν = 2∗k > 2, we

conclude that (6.42) is proved. �

Proof of Theorem 5. Let us prove that there is c > 0 such that

(E(u)− Y‖u‖22∗k)E(u)

E(u− u)2
≥ c for all non-constantW k,2(M). (6.43)

We argue by contradiction and assume that there is a sequence {um}m∈N ⊂W k,2(M) such that

(E(um)− Y‖um‖22∗k)E(um)

E(um − um)2
→ 0 asm→∞. (6.44)

By zero homogeneity of the quotient in (6.44), we may assume without loss that ‖um‖2∗k =

volg(M)1/2∗k . Since E(um − um) ≤ E(um), from (6.44) it follows that

0 = lim
m→∞

(E(um)− Y‖um‖22∗k)E(um)

E(um)2
= 1− lim

m→∞

Y‖um‖22∗k
E(um)

.

Thus, {um}m∈N ⊂ W k,2(M) satisfies the assumptions of Lemma 6.9. As a consequence, we get
that λ−1

m um = 1 + ρm satisfies the assumptions of Lemmas 6.10 and 6.11 and we conclude

0 < c ≤
(E(1 + ρm)− Y‖1 + ρm‖22∗k)

E(ρm)2
= λ2

m

(E(um)− Y‖um‖22∗k)

E(um − um)2
.

(E(um)− Y‖um‖22∗k)E(um)

E(um − um)2
.

This is a contradiction to (6.44) and so the proof of (6.43) is complete.
From (6.43), it is straightforward to deduce the stability estimate (1.9). Indeed, by (6.43) we

can estimate

Qg,k(u)− Y =
(E(u)− Y‖u‖22∗k)E(u)

E(u− u)2

E(u− u)2

E(u)‖u‖22∗k
≥ c E(u− u)2

E(u)‖u‖22∗k
.

Using that ‖u‖22∗k ≤ Y
−1E(u), and that E(u) . ‖u‖2k,2 and E(u−u) & ‖u−u‖2k,2 by norm equivalence,

we get

Qg,k(u)− Y ≥ c̃
‖u− u‖4k,2
‖u‖4k,2

≥ c̃
infc>0 ‖u− c‖4k,2

‖u‖4k,2
= d(u,Mg,k)

4.

We recall that by Lemma 6.7 the minimizing setMg,k consists precisely of the constants and that
d(u,Mg,k) is defined in (1.8).

By considering specifically the sequence {um}m∈N ⊂W k,2(M) given by

um(s) = 1 +m−1

[
cos

(
s

τ0

)
+ bm cos

(
2s

τ0

)]
,
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with bm chosen so that the square in (6.41) vanishes, the inequalities in the above computations
become (asymptotic) equalities, and we find

Qg,k(um)− Y ∼ d(um,Mg,k)
4.

Since d(um,Mg,k)→ 0 as m→∞, we therefore cannot have Qg,k(um)− Y & d(um,Mg,k)
2+γ for

any γ < 2. This proves the sharpness of γ = 2 in the statement of Theorem 5. �

Appendix A. Recursive formulas for GJMS operators

Formulas for the GJMS operator are only known in a few cases, for instance when the background
manifold is Einstein [23], or more generally a special Einstein product [13, 24]. Nevertheless,
in [18] one can find a recursion formula for these operators. We follow the recent construction [42,
Proposition 2.1] and define this operator using the following recursion formula.

Let Ag be the Schouten tensor defined as

Ag :=
1

n− 2

(
Ric− Rg

2(n− 1)
g

)
and Bg be the Bach tensor whose coordinates are given by

Bj := Am`W
m`
i + Pmij;m − Pmim;j ,

where Wimj`, Am` and Aij;m` are the coordinates of Wg,Ag and ∇2
gAg, respectively. We let (·, ·)

be the multiple inner product induced by the metric g for the tensors of the type Tr,s(M).
For every k ∈ N such that n > 2k, we set

Pg,k =(−∆g)
k + k(−∆g)

k−1 (Jg,1·) + k(k − 1)(−∆g)
k−2

(
Jg,2 ·+ (Tg,1,∇) +

(
Tg,2,∇2

g

))
+ k(k − 1)(k − 2)(−∆g)

k−3
((

Tg,3,∇2
)

+
(
Tg,4,∇3

g

))
+ k(k − 1)(k − 2)(k − 3)(−∆g)k − 4

(
Tg,5,∇4

g

)
+ Z,

where Z is a smooth linear operator of order less than 2k − 4 if k ≥ 3 and Z := 0 if k ≤ 2, the
functions Jg,1, Jg,2 ∈ C∞(M) are defined as

Jg,1 :=
n− 2

4(n− 1)
Rg

and

Jg,2 :=
1

6

(
3n2 − 12n− 4k + 8

16(n− 1)2
R2
g − (k + 1)(n− 4)|Ag|2 −

3n+ 2k − 4

4(n− 1)
(−∆g)Rg

)
with the tensors Tg,1,Tg,2,Tg,3,Tg,4 and Tg,5 being defined as

Tg,1 :=
n− 2

4(n− 1)
∇Rg −

2

3
(k + 1)δgAg,

Tg,2 :=
2

3
(k + 1)Ag,

Tg,3 :=
n− 2

6(n− 1)
∇2
gRg +

(k + 1)(n− 2)

6(n− 1)
RgAg −

k + 1

3
(δ∇gAg + 2∇gδgAg + 2Rmg ·Ag)

− 2

15
(k + 1)(k + 2)

(
3A#

g Ag +
Bg

n− 4

)
,

Tg,4 :=
2

3
(k + 1)∇gAg,
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and

Tg,5 :=
2

5
(k + 1)

(
5k + 7

9
Ag ⊗Ag +∇2

gAg

)
.

Here # stands for the musical isomorphism with respect to g and δg∇gAg, ∇gδgAg and Rmg ·Ag

stand for the covariant tensors whose coordinates are given by

(δg∇gA)ij := −Am
ij;m, (∇gδgAg)ij := −Am

i;mj and (Rmg ·Ag)ij := Am
im`A

`
j + Rmi`jmAm`,

where Rmi`jm are the coordinates of the Riemann curvature tensor.
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