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1. INTRODUCTION

The aim of this paper is to construct a family of single-peaked solutions
to the singularly elliptic problem

{=22u&u+u p=0 in 0,
(1.1)

u>0 in 0 and u=0 on �0,

where 2=�n
i=1 (�2��x2

i ) is the Laplace operator, 0 is a bounded smooth
domain in Rn, =>0 is a constant, and the exponent p satisfies 1< p<
(n+2)�(n&2) for n�3 and 1< p<� for n=2.

Problem (1.1) arises in various applications, such as chemotaxis, popula-
tion genetics, and chemical reactor theory, and it has been studied by a
number of authors. During the past few years, the question whether the
geometry or the topology of 0 was responsible for the solvabity and�or the
multiplicity of solutions of problems like (1.1) has been extensively studied;
see [6�10]. Especially, in [6] and [7], Benci and Cerami have studied the
multiplicity of solutions of (1.1) when = is sufficiently small, using Category
and Morse theory. However, they do not give explicit construction of solu-
tions, nor do they study the properties of the solutions. The first result on
spiky solutions of (1.1) is due to Ni and Wei. In [18], we have studied the
shape and peak location of ``least-energy'' solutions. More precisely, we
first define the energy as

J= (u)=
1
2 |

0
(=2 |{u| 2+u2)&

1
p+1 |

0
u p+1

+ , (1.2)
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where u+=max[u, 0], for u # H 1
0(0). The well known Mountain-Pass

Lemma implies that

c== inf
h # 1

max
0�t�1

J= (h(t)) (1.3)

is a positive critical value of J= , i.e., c==J= (u=) and u= is a solution of (1.1),
where 1 is the set of all continuous paths joining the origin and a fixed
nonzero element e in H 1

0(0) with e�0 and J= (e)=0. It is showed in [18]
that J= is independent of the choice of e and u= is called a ``least-energy''
solution. We then proved the following:

Theorem A. Let u= be a least-energy solution to (1.1). Then, for =
sufficiently small, we have

(i) u= has at most one local maximum and it is achieved at exactly one
point P= in 0. Moreover, u= ( }+P=) � 0 in C 1

loc(0&P="[0]) where
0&P= :=[x&P= | x # 0] and u= (P=) � w(0), where w is the unique solution
of

2w&w+w p=0 in Rn,

{w>0, w(0)=maxz # Rn w(z), (1.4)

w(z) � 0 as |z| � �.

(ii) d(P= , �0) � maxP # 0 d(P, �0) as = � 0.

In this paper, we show that a kind of converse of Theorem A is true. We
shall construct a family of single-peaked solutions to problem (1.1) for =
sufficiently small at any strictly local maximum point of d(P, �0). The
precise statement is:

Theorem 1.1. Let P0 # 0� be a strictly local maximum point of the dis-
tance function d(P, �0), i.e., there exists a neighborhood B$(P0)/0 such
that d(X, �0)<d(P0 , �0) for all X # B$(P0), X{P0 . Then there is an =0>0
such that for =<=0 , problem (1.1) has a solution u= with the property that u=

has exactly one local maximum point P= in 0, u= (P=) � w(0) and
u= ( }+P=) � 0 in C 1

loc(0� &P="[0]), where w is the unique solution of (1.4).
Moreover, P= � P0 as = � 0.

A particular example is a domain with k-handles (see Fig. 1). In this
case, Theorem 1.1 asserts that there are at least k solutions to problem
(1.1) and each handle contributes a single-peaked solution. Note that in
this case, the domain has trivial topology. In [11], Dancer studied
problem (1.1) in the case of domains with two handles (dumbbell-shaped)
and constructed two solutions. However, in [11], it is assumed that the
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Fig. 1. Domains with handles.

domain is symmetric and the ``neck'' is sufficiently small. In our theorem,
we do not assume any symmetry and the length of the ``neck'' can be
arbitrary. It seems extremely interesting to see how the geometry of the
domain plays a role in the existence of ``spiky solutions.'' Partial progress
has been done in [27].

Our method in proving Theorem 1.1 is a combination of the ``vanishing
viscosity method'' and the ``energy method'' developed in [16, 17]. It
should be remarked that, in [2, 4], they proved a similar result for the
single-peaked boundary spike solutions to a singularly perturbed semi-
linear Neumann problem. In their case, the mean curvature on the bound-
ary plays an important role. However, in our case, the major difficulty
comes from the exponentially smallness in the corrector term of the energy
expansion. Traditional techniques such as matched asymptotics do not
work here. We believe that this is the first result in constructing ``spiky''
solutions to problem (1.1).

Remark. (1) By Theorem 1.1, if the function d(P, �0) has k strictly
local maximum point, then for = sufficiently small, problem (1.1) has at
least k solutions. This, in some cases, is an improvement of the multiplicity
results obtained in [6�8] and also answers some questions raised in
[6�11].

(2) We note that in [16, 17], Ni and Takagi studied a related
problem,

{
=22u&u+u p=0, 1<p<

n+2
n&2

in 0,

u>0 in 0, (1.5)

�u
�v

=0 on �0,

and obtained results similar to Theorem A. When p=(n+2)�(n&2),
similar concentration results have been obtained in [1�3, 15]. More
general results have been obtained by [19�23]. Multiplicity of solutions to
(1.5) have been studied in [26, 28].

317SPIKE LAYER SOLUTIONS



File: 505J 313604 . By:BV . Date:27:08:96 . Time:15:27 LOP8M. V8.0. Page 01:01
Codes: 2086 Signs: 1060 . Length: 45 pic 0 pts, 190 mm

Other kinds of concentrations for other problems are studied in [4, 5,
13, 24�26].

This paper is organized as follows. In Section 2, we state some notation
and preliminaries. Section 3 provides a proof of Theorem 1.1. The proofs of
some technical lemmas are postponed to Section 4.

Throughout this paper, unless otherwise stated, the letter C will always
denote various generic constants which are independent of =, for = suf-
ficiently small.

2. NOTATION AND PRELIMINARIES

We shall follow the notation in [12]. Let P # 0. We now define 0=, P=
[ y | =y+P # 0]. Let U be a bounded smooth domain in Rn. We then set
PUw to be the unique solution of

{2u&u+w p=0, in U,
(2.1)

u=0 on �U,

where w is the unique solution of (1.4).
By the Maximum Principle, 0�PUw<w.
Let

x==y+P, .= , P( y)=w( y)&P0= , P w( y)

�=, P(x)=&= log .=,P( y), ;=
1
=

V=, P( y)=e;.= , P(P).=,P( y), �= (P)=�=,P(P).

It is easy to see that �=, P(x) is the unique solution of

{
=22u&|{u| 2+1=0, in 0,

(2.2)
u(x)= &= log w \x&P

= + , on �0.

The following properties are proved in [18].

Proposition 2.1. (i) There exists a constant C1 such that

&�=, P(x)&L�(0)�C1.
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(ii) �=, P(x) � �P(x) uniformly on 0 as = � 0, where �P(x) in the
unique viscosity solution of the Hamilton�Jacobi equation

{ |{u| 2=1 in 0,
(2.3)

u(x)=|x&P| on �0.

Indeed, �P(x)=infz # �0( |z&P|+L(x, z)), where L(x, z) is the infimum of
T such that there exists !(s) # C 0, 1([0, T ], 0� ) with !(0)=x, !(T )=z and
|d!�ds|�1 a.e., in [0, T ]. Furthermore �P(P)=2d(P, 0).

(iii) For every sequence =k � 0, there is a subsequence =kl � 0, such
that V=kl , P

� VP uniformly on every compact set of Rn, where VP is a positive
solution of

{2u&u=0 in Rn,
(2.4)

u(0)=1, u>0 in Rn.

Furthermore, for any _1>0,

sup
y # 0� =kl

, P
e&(1+_1)| y| |V=kl , P

( y)&VP( y)| � 0 as =kl � 0. (2.5)

(iv) Let V be an arbitrary solution of (2.4). Then we have

2# :=|
Rn

w pV
*

=|
Rn

w pV>0, (2.6)

where V
*

(r) is the unique positive radial solution of (2.4).

Remark. It is easy to see that

|�=, P(x)&�=,Q(x)|�C= |log =|+C |P&Q|, (2.7)

where P, Q # 0. Hence if P= � P # 0, then

|�= (P=)&�= (P)| � 0 as = � 0.

Therefore �= (P=) � 2d(P, �0) as = � 0.

We also note that in the proof of (2.5) in [18], we actually proved the
following fact: for any _1>0, there exists C>0, such that

V=, P( y)�Ce(1+_1)| y|, for all P # B� $(P0) and y in 0� =, P . (2.8)

We now introduce some other notations.
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For u�0, u # W 1, 2
0 (0), we define

K= (u)=
=2 �0 |{u| 2+�0 u2

(�0 up+1)2�( p+1) , ;(u)=
�0 xu p+1

�0 u p+1 , l(u)=
=2 �0 |{u| 2+�0 u2

�0 u p+1 ,

(u, v) W0
1, 2(0)=|

0
{u } {v+|

0
u } v, (2.9)

Lu=2u&u+pw p&1u.

Let P0 be a fixed strictly local maximum point of the distance function
d(P, �0). Let $>0 be such that B2$ (P0)/0� . We set

B=[u # W 1,2
0 (0) : ;(u) # B$ (P0)] (2.10)

(we can choose $>0 small such that d(P, �0)<d(P0 , �0) for all P{P0 ,
P # B2$ (P0)) and

A==inf[K= (u) | u # B]. (2.11)

Let w be the unique solution of (1.4). We set

I(w)=
�Rn |{w| 2+�R n w2

(�R n w p+1)2�( p+1) =\|R n
w p+1+

( p+1)�( p&1)

. (2.12)

Lemma 2.2. Suppose that the domain of L is W 2, r(Rn)(r>1), then
ker(L)=span[�w��yj ; j=1, ..., n].

See [Lemma 4.2, [17]].

Lemma 2.3. For = sufficiently small, we have

A=�=( p&1)�( p+1)n[I(w)+:1e&;�=(P0)+o(e&;�=(P0))], (2.13)

where :1=2(�R n w p+1)&2�( p+1)# and # is defined at (2.6).

Proof. Let u(x)=P0= , P0
w((x&P0)�=) # W 1, 2

0 (0); then

=2 |
0

|{u| 2+|
0

u2==n _|0= , P0

|{P0= , P0w| 2+|
0= , P0

|P0= , P0w| 2]

==n |
0= , P0

w pP0= , P0w
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==n |
0= , P0

w p[w&e&;�= (P0)V= , P0
]

==n _|0= , P0

w p+1&e&;�= (P0) |
0= , P0

w pV= ,P0& .

For every sequence =k � 0, there exists a subsequence =kl � 0 such that
(2.5) holds. By Lebesgue's Dominated Convergence Theorem

|
0= , P0

w pV=kl ,P0
� |

Rn
w pVP0

=2#.

Since # is independent of the choices of =k , we have

|
0= , P0

w pV= ,P0
� 2# as = � 0.

It follows that

=2 |
0

|{u| 2+|
0

u2==n _|Rn
w p+1&2#e&;�= (P0)+o(e&;�= (P0))& . (2.14)

On the other hand,

|
0

u p+1==n |
0= , P0

(P0= , P0w) p+1 dy

==n |
0= , P0

(w p+1&( p+1) w p
1 e&;�= (P0)V= , P0

)

where w�w1�P0= , P0
w. Similarly, Lebesgue's Dominated Convergence

Theorem ensures that

|
0

u p+1==n _|R n
w p+1&2( p+1) #e&;�= (P0)+o(e&;�= (P0))& . (2.15)

Combining (2.14) and (2.15), we obtain

A=�K= (u)==n( p&1)�( p+1)[I(w)+:1 e&;�= (P0)+o(e&;�= (P0))]

since u # B for = sufficiently small.
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Lemma 2.4. Let l0=dist(B� 2$(P0), �0)>0. Then there exists a positive
constant C>0 such that

} �
�Pi

e&(�= , P(x))�= }�C
=

e&(l0 �=) for all x # 0, P # B� 2$(P0). (2.16)

Proof. We oberve that .= , P( y)=e&(�= , P(x)�=) satisfies the following
equation

{2u&u=0
u=w

in 0= ,P ,
on �0= , P ,

(2.17)

and ���Pi .= , P( y) satisfies

{
2u&u=0 in 0= , P ,

(2.18)
u=&

w$
=

yi

| y|
on �0= , P .

Since |w$|�Ce&(l0 �=) on �0= , P , our assertion follows easily by the Maxi-
mum Principle.

Remark. If u is a critical point of K= , u satisfies on 0 the equation

=22u&u+l(u)u p=0.

By a scaling and elliptic regularity theorem, (l(u))1�( p&1) u is a solution
of problem (1.1).

3. PROOF OF THEOREM 1.1

The goal of this section is to obtain a lower bound for A= and therefore
to prove Theorem 1.1.

We begin with a series of lemmas.

Lemma 3.2. A=�=( p&1)�( p+1)nI(w).

Proof. It is well known that w is the unique solution of (1.4) and

I(w)=inf {&u&2
W 1 , 2(Rn)

&u&2
L p+1(Rn) } u # W 1, 2(Rn), u�0= .
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Since p<(n+2)�(n&2), A= is obtained by a function u= # W 1, 2
0 (0) and

A==
=2 �0 |{u| 2+�0 u2

(�0 u p+1)2�( p+1)

==( p&1)�( p+1)n
�0= , P0

|{v= | 2+�0= , P0
v 2

=

(�0= , P0
v p+1

= )2( p+1) �=( p&1)�( p+1)nI(w),

where v= ( y)=u= (x) # W 1, 2
0 (0= , P0

)/W 1, 2(Rn) and y=(x&P0 �=) # 0=,P0
.

Since A= and B� = are scale invariant and A= is obtained by a function u= ,
we may assume that u= is a function in W 1, 2

0 (0) such that

(1) K= (u=)=A= , u= # B� , (3.1)

(2) = 2 |
0

|{u=|
2+|

0
|u=|

2=|
0

u p+1
= . (3.2)

Then we have

Lemma 3.2. For any sequence =k � 0, there exists a subsequence =kl � 0
and P=kl

# B� $(P0) such that &u=kl
(=kl } +P=kl

)&w&W0
1, 2(0=kl , P=kl

) � 0 as =kl � 0.

Proof. We define v= ( y)=u= (x)=u= (=y+P0) for y # 0= ,P0
and v= ( y)=0

for y # 0c
= , P0

. Then �Rn v p+1
= =�0= , P0

v p+1
= ==&n �0 u p+1

= .
But by (3.1) and (3.2),

A==\|0
u p+1

= +
( p&1)�( p+1)

==n( p&1)�( p+1) \|0= , P0

v p+1
= +

( p+1)�( p&1)

.

By Lemma 3.1 and 2.3, we have

|
Rn

w p+1�|
0=

v p+1
= �[I(w)+:1e&;�= (P0)+o(e&;�= (P0))]( p+1)�( p&1).

Hence, lim= � 0 �Rn v p+1
= =�Rn w p+1.

Similarly, lim= � 0 �R n |{v= | 2+v2
= =�R n w p+1.

By standard concentration compactness argument (see [14] or
Appendix in [12]), there exists =k l � 0, z= k l

# Rn, such that

&v=k l
&w( }&z= k l

)&H1(R n) � 0 as =kl � 0. (3.3)
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Note that

;(u=)=
�0 xu p+1

=

�0 u p+1
=

=
�Rn =yv p+1

=

�Rn v p+1
=

+P0

We have �Rn =yv p+1
= # B� $ � Rn v =

p+1 (P0).
On the other hand,

|
R n

=yw p+1( y&z= k l
) dy=|

Rn
=y$w p+1( y$) dy$+=z=k l |Rn

w p+1

==z=k l |Rn
w p+1.

But &v=k l
&w( }&z= k l

)&L p+1(0= k l , P 0 ) � 0 as =kl � 0. We then have
P=k l

:==z=k l
+P0 � P1 # B� $(P0) by taking a further subsequence and

&u=k l
(=kl } +P= k l

)&w&W0
1, 2 (0= k l

, P = k l
) � 0 as =k l � 0.

Corollary 3.3. For any sequence =k � 0, there exists a subsequence
=k l � 0 such that there exists P$=k l

# B� $(P0) and

&u=k l
(=kl } +P$= k l

)&P0= k l
, P $= k l

w&W0
1, 2 (0 = k l , P $= k l

) � 0 as =k l � 0.

Proof. We use Lemma 3.2 and the properties of P0= k , P = k
w stated in

Section 2.
We now define

(v, P0= , Pw) W0
1, 2(0=, P )

E=, P={v # W 1, 2
0 (0=, P) } =�v,

�
�Pi

P0= , Pw�W 0
1, 2 (0 =, P)= . (3.4)

=0, 1�i�n

The following lemma will be proved in Section 4.

Lemma 3.4. For every sequence =k � 0, there exists a subsequence
=k l � 0, Ckl>0, Pkl # 0, |kl # E=k l , P k l

such that as kl � �, Ckl � 1,
Pk l � P� # B� $(P0) and

u= k l
(x)=Ck l P0= k l

, P k l
w((x&Pk l )�=kl )�=kl )+|k l . (3.5)
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Moreover, we have

A=k l
�= ( p&1�p+1)n

kl
[I(w)+e&;k l � k l (Pk l ) :2+o(e&; k l � k l (Pk l ))], (3.6)

where :2>0 is a positive constant.

Combining Lemmas 2.3 and 3.4, we can now prove Theorem 1.1 as
follows.

Proof of Theorem 1.1. To prove Theorem 1.1, we just need to show
that there exists =0>0 such that for all =<=0 , ;(u=) # B$(P0). Then we
deduce that for , # W 1, 2

0 (0), there exists *0=*0(=)>0 such that

;(u=+*,) # B$(P0)

for all |*|<*0 . This implies that

d
d*

K=(u=+*,)|*=0=0.

Hence u= is a critical point of K= and by (3.2), u= is a solution of problem
(1.1) in W 1, 2

0 (0) therefore u= is a classical solution of problem (1.1).
By the proofs in [18], u= has exactly one local maximum point P= .By the

fact that �0 xu p+1
= ��0 u p+1

= # B� $(P0), we have P= � P�� # B� $(P0). The same
proof in [18] shows that P�� =P0 . Theorem 1.1 follows then. It remains to
prove the claim.

Suppose that the claim is not true. That is, there exists =k � 0 such that
;(u=k) # �B$(P0).

From Corollary 3.3, there exists =k l � 0, P=k l
� P1 # �B$(P0) and

&u=kl
(=kl } +P= k l

)&P0= k l
, P =k l

w&W0
1, 2 (0 = k l , P = k l

) � 0 (3.7)

From Corollary 3.3, there exists =k l � 0, =k l
� P1 # �B$(P0) and

&u=k l
(=kl } +P= k l

)&P0= k l , P = k l
w&W0

1, 2 (0= k l , P = k l
) � 0 (3.7)

By Lemma 3.4, there exists a further subsequence =k $l
� 0, such that

u= k $
l
(x)=Ck $l

P0= k$
l
, Pk $l

w((x&Pk$
l
)�=k$

l
)+|k$l

. (3.8)

and

A=k$
l
�= ( p&1�p+1)n

k$
l

[I(w)+e&;k$
l
� = k$

l
(Pk$

l
) :2+o(e&; k$

l
� = k$

l
(Pk $

l
))]. (3.9)
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From (2.13) and (3.9), we have

�=k $
l
(Pk$

l
)��= k$

l
(P0)+o(1).

By (3.7) and (3.8), we must have |P=k $
l
&Pk $l

|=o(1). Letting k$l � �, we
have d (P1 , �0)�d (P0 , �0). That is a contradiction.

4. PROOF OF TECHNICAL LEMMAS

Recall that

(v, P0= , Pw) W0
1, 2 (0 = , P)

E=, P={v # W 1, 2
0 (0=, P) } =�v,

�
�Pi

P0 = , Pw�W0
1, 2 (0=, P)= . (4.1)

=0, 1�i�n

We first study the following eigenvalue problem.

Lemma 4.1. The eigenvalue problem

{2v&v++w p&1v=0
v # W 1, 2(Rn)

(4.2)

admits a discrete set of eigenvalues &1<&2�&3� } } } such that &1=1, &i=p,
2�i�n+1, and &n+2>p. The eigenspaces V1 and Vp corresponding to 1
and p are given by

V1=span [w] (4.3)

and

Vp=span {�w
�xi } 1�i�n= . (4.4)

Proof. Consider the map i: W 1, 2(Rn) � L2(w p&1.), where L2(w p&1.) is
the Hilbert space with

(u, v) =|
Rn

w p&1u } v

Since w is exponentially decaying at �, i is compact. Hence there are a
discrete number of values &1�&2� } } } and functions v1 , v2 , ..., wich are
solutions of (4.2).
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Let + be an eigenvalue with +�p and v be a solution of (4.2). As in
[11], v # C�(Rn). Let +k , ek(w) with w # Sn&1 be the eigenvalues and
eigenfunctions of the Laplace�Beltrami operator on Sn&1. Then

+0=0<+1= } } } =+n=n&1<+n+1� } } }

and e$k 's are normalized so that they form a complete orthonormal basis of
L2(Sn&1).

Put

v~ k(r) :=|
S n&1

v(r, w) ek(w) dw.

Then v~ � 0 exponentially as r � � and it satisfies

v~ "k(r)+
n&1

r
v~ $k&v~ +\+w p&1&

+k

r2+ v~ k=0, r>0 (4.5)

for k=0, 1, 2, ... . We claim that v~ k#0 if k>n.
Suppose for a contradiction that there is a \k # (0, �] such that v~ k(r)>0

for 0<r<\k and v~ k( \k)=0. As in [17], multiplying (4.5) with w$(r) rn&1

and integrate the resulting equation over 0<r<\k . We obtain

\n&1
k v~ kw$( \k)+\|

\ k

0
w$(r) rn&1v~ k+ (+&p)

+(n&1&+) |
\ k

0
w$v~ krn&3 dr=0.

Since +�p and w$(r)<0 for r�0, v~ k( \k)�0, we conclude that
+k>n&1, i.e., k>n. Here v~ (r, w)=v~ 0(r)+�n

k=1 v~ k(r) ek(w).
It follows then the dimension of the kernel L+=2&1++w p&1 is at most

n+1. But note that +=1, w is a solution of (4.2), +=p, �w��xj is a solu-
tion of (4.2), and

|
R n

w p&1w
�w
�xj

=0, |
R n

w
�w
�xj

+{w } {
�w
�xj

=0.

We conclude that +1=1, +2=p=+3= } } } =+n+1, and V1=span[w],
Vp=span[�w��xj ].
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Lemma 4.2. There exist =0>0, \>0 such that for any =<=0 and
P # B� 2$(P0), we have

|
0 =, P

|{v| 2+v2�( p+\) |
0=, P

(P0 =, P w) p&1 v2, for all v # E=, P . (4.6)

Proof. Suppose on the contrary, there exist =k � 0, \k � 0, Pk # B� 2$(P0),
and vk # E= k , P k so that

|
0 = k , P k

|{vk | 2+v2
k�( p+\k) |

0= k , P k

(P0=, P w) p&1 v2
k .

Assume that �0= k , P k
|{vk | 2+v2

k=1 and extend vk equal to 0 outside 0=k , P k .
Observe that

|
R n

|{vk | 2+v2
k=1

|
R n

|{vk | 2+v2
k�( p+\k) |

Rn
(P0=, P w) p&1 v2

k

|
R n

{vk } {P0= k , P k
w+vk } P0= k , P k

w=0

|
R n

{vk } { \ �
�Pi

P0= k , Pk
w++vk }

�
�Pi

P0= k , P k
w=0.

Since &vk&H 1 (Rn)=1, there exist v0 # H 1(Rn), vk ( v0 in H1(Rn), and
vk � v0 in H 1

loc(Rn).
Hence we have by taking limits (noting that w is exponentially decaying

and using Lemma 2.4)

1�p |
Rn

w p&1 v2
0

|
R n

{v0 } {w+v0 } w=0

|
R n

{v0 } {
�w
�xj

+v0

�w
�xj

=0

|
R n

|{v0 | 2+v2
0�1.

That is a contradiction to Lemma 4.1.
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Let us consider the minimization problem

Minimize &u=(= } +P)&:P0 =, P w&W0
1, 2 (0=, P) , (4.7)

where : # ( 1
2 , 2] and P # B� 2$(P0).

Since P0 =, P w is continuous about P, (4.7) is achieved and we can write

u=(= } +P=)=:= P0 =, P =
w+|= (4.8)

where |= # E=, P = and P= # B� 2$(P0).
By Corollary 3.3, &|=&W 0

1, 2(0 =, P =)
� 0 as = � 0. Moreover,

&u=(= } +P=)&W 0
1, 2 (0 =, P =)

=:= &P0=, P =
w&W 0

1, 2 (0 =, P =)
+&|=&W0

1, 2 (0=, P =)
.

Therefore := � 1 as = � 0, since &v=&W 0
1, 2 (0=, P =)

� &w&H1(Rn) and
&P0=, P =

w&W0
1, 2 (0=, P=)

� &w&H1(Rn) .

We are now ready to finish the proof of Lemma 3.4.

Proof of Lemma 3.4. To prove (3.5), we note that by (4.8), we just need
to prove that P= � P� # B� $(P0) for some P� and a sequence ===k � 0.

By Corollary 3.3 and (4.8), we have

"P0= w \ } &
P$=
= +&P0= w \ } &

P=

= +"W 0
1, 2 (0 =, P 0)

� 0

as = � 0, where P$= � P1 # B� $(P0).
Assume that |P$=&P= |�&�0 when = is sufficiently small, then

"P0=, P$=
w \ } &

P$=
= +&P0=, P =

w \ } &
P=

= +"W 0
1, 2 (0 =, P 0 )

� 2 &w&H 1(Rn){0,

which is a contradiction.
Hence P= � P1 # B� $(P0) by passing to a subsequence. We now choose

Ck l=:=k l
, Pk l=P=k l

, and P� =P1 ; then the first part of Lemma 3.4 is
proved.

From now on, we assume that ===kl and P=k l
� P� # B� $(P0). To prove

(3.6), we need some preparations.
We first calculate

|
0= , P=

(P0=, P =
w) p |==|

0= , P =

w p|=+|
0=, P =

[(P0= , P = w) p&w p] |=

=I1+I2 ,

where I1 and I2 are defined at the least equality.
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Let us first estimate (using (2.8))

|(P0=, P =
w) p&w p |

�C |P0=, P =
w&w| |w| p�Ce&;� = (P=)V=, P = w

p

�Ce&((1�2)+$1) ;�=(P =)e&((1�2)&$ 1) ;�=(P =)V=, P = w
p

�Ce&((1�2)+$1) ;�=(P =)(e&;� =(P=)V=, P=)
(1�2)&$1 } V (1�2)+$1

=, P =
w p

�Ce&((1�2)+$1) ;�=(P =)w p+(1�2)&$1 V (1�2)+$1
=, P =

�Ce&((1�2)+$1) ;�=(P =)e&( p+(1�2)&$ 1)| y |e(1+_ 1)((1�2)+$ 1)| y |

�Ce&((1�2)+$1) ;�=(P =)e&$ 2 | y |

if _1>0, $1>0, $2>0 are chosen small enough.
Hence

I2=|
0=, P =

((P0= , P = w) p&w p) |=�&w&L 2(0=, P =)
} Ce&((1�2)+$ 1) � =(P =)

I1=|
0=, P =

w p|==|
0 =, P =

(P0=, P =
w&2P0 =, P =

) |==0

since |= # E=, P = .
In conclusion, we have

|
0=, P =

(P0 =, P =w) p |=�Ce&((1�2)+$ 1) � =(P =) &|=&W 0
1, 2 (0 =, P =)

. (4.9)

Second, we calculate by Taylor's expansion,

|
0=, P =

v p+1
= =C p+1

= |P0=, P =
w| p+1

p+1+C p
=( p+1) \|0=, P =

P0=, P =
w+

p

|=

+( p( p+1))�2C p&1
= |

0=, P =

(P0=, P =
w) p&1 |2

= +O(&|=&r)

for some r>2, where, for the moment, we denote |u| p+1
p+1=�0=, p =

u p+1 and
&u&=&u&W0

1, 2 (0=, P =)
.
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Hence by (4.9),

|v= | &2
p+1=C&2

= |P0=, P =
w| &2

p+1

_{1+
p( p+1)

2C 2
= |P0=, P =

w| p+1
p+1

_|
0=, P =

(P0=, P =
w) p&1 |2

=

+O(e&((1�2)+$1) ;�=(P =) &|= &+&|=&r)=
&2�p+1

=C &2
= |P0=, P =

w| &2
p+1_{1&

p �0=, P =
(P0 =, P =w)

p&1 |2
=

2C 2
= |P0 =, P =

w| p+1
p+1

+O(e&((1�2)+$1) ;�= (P =) &|=&+&|=&r)= .

Thus,

K=(u=)=C &2
= |P0=, P =

w| &2
p+1 (C 2

= &P0=, P =
w&2+&|= &2)

_{1&
p �0=, P =

w) p&1 |2
=

2C 2
= |P0 =, P=

w| p+1
p+1

+O(e&((1�2)+$1) ;� =(P =) &|= &+&|=&r)=
={

&P0=, P =
w&2

|P0=, P =
w| 2

p+1

+C&2
= |P0=, P =

w| &2
p+1 &|= &2=

_{1&
p �0=, P =

(P0=, P =
w) p&1 |2

=

2C 2
= |P0=, P =

w| p+1
p+1

+O(e&((1�2)+$ 1) ;�= (P=) &|=&+&|=&r)=
=

&P0 = , P =
w&2

|P0 =, P =
w| 2

p+1

+C&2
= |P0=, P =

w| &2
p+1 &|=&2

&C&2
=

&P0 =, P =
w&2

|P0=, P =
| 2

p+1

}
p �0= , P =

(P0 =, P =
w) p&1 |2

=

|P0=, P =
w| p+1

p+1

+O(e&((1�2)+$ 1) ;�=(P =) &|=&+&|= &r)

=
&P0=, P =

w&2

|P0 =, P =
w| 2

p+1

+C&2
= |P0=, P =

w| &2
p+1

_{&|=&2&
&P0 =, P =

w&2

|P0 =, P=
| 2

p+1

} p |
0=, P =

(P0=, P =
w) p&1 |2

==
+O(e&((1�2)+$ 1) ;�=(P =) &|=&+&|= &r)
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�
&P0 =, P =

w&2

|P0 =, P =
w| 2

p+1

+C&2
= |P0=, P =

w| &2
p+1 \1 &|= &2

+O(e&((1�2)+$ 1) ;�=(P =) &|=&+&|= &r) (for some \1>0)

�I(w)+:1e&;�= (P =)+o(e&;� = (P=))

+\2 &|=&2+O(e&((1�2)+$1) ;�=(P =) &|=&+&|= &r)

(for some \2>0). (4.10)

By Lemma 2.3 again, we have

\2 &w=&2+O(e&((1�2)+$1) ;�= (P =) &|=&+&|=&r)�:1e&;� =(P 0)+o(e&;� = (P0)).

Since &|=& � 0 as = � 0, we obtain

&|=&2�Ce&;�= (P =)+Ce&;� = (P 0).

Substituting into (4.10), we obtain

A=�I(w)+:1 e&;� = (P=)+o(e&;� =(P =)) (4.11)

(since for = sufficiently small, ((1&$1) �=(P=)<�=(P0)).
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