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Abstract

We study some qualitative properties (including removable singularities and superhar-
monicity) of non-negative solutions to

(—=A)u = fu? inR"\X

which are singular at ¥. Here v € (0, §). Among other things, we first prove that if ¥ is a
compact set in R™ with Assouad dimension d (not necessarily an integer), d < n — 2v, and

ue Ly(R")N LY (R™\X) is a non-negative solution for some

n—d

p>n—d—2”y’

then u € L} (R™) and u is a distributional solution in R™. Then we prove that (—A)%u > 0
for all 0 € (0,7), if ¥ = ¢.

1 Introduction and statement of results

Fix v € (0,%). Set ¥ C R™ and consider non-negative solutions to

(—A)'u = fuP inR"\ X (1.1)
that are singular at 3. Here f is a measurable function; in addition we suppose that there exists
C > 0 such that

% <f<C inR™ (1.2)

To give a meaning to equation (L)), we need to assume that u € L, (R") and v? € L}, (R"\ %),
where we have defined, for s € R,

Ly(R™) := {u € L}, (R"): /R _ @)l dr < oo} .

n 1 + |$|7’L+28

Then (L)) is to be understood in the following sense:

/ u(—A)pdr = fuPpdzr  for every ¢ € C°(R"\ X). (1.3)
n Rn
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n+2vy
n—2y’
geometry [12} 11, 22]. More precisely, let |dz|? be the Euclidean metric and consider a conformal

For the particular power p = ([T is the fractional curvature equation in conformal

change g = u"27|dz|? for some smooth positive function u. One can define the conformal
fractional Laplacian operator with respect to the metric g, which satisfies

_ n+2y

Py =u 2 (=A)"(u-).

The fractional curvature of g is given by

n+2y

Qf:=Pi(1) =u > (-A)Tu. (1.4)

This definition can be extended to more general classes of manifolds but let us concentrate on
Euclidean background. Note here that in the local case v = 1, curvature (I4)) is simply the scalar
curvature times a multiplicative constant, while for v = 2, it coincides with the @Q-curvature
associated to the Paneitz operator.

When f = 1, ([ILI]) yields a fractional order generalization of the Yamabe problem. In the
smooth manifold case some references are [24] 25, [32] B5]. Nevertheless, the fractional Yamabe
problem in the presence of singularities it is far from being resolved, and the dimension of the
singularity is strongly tied to the sign of the curvature [23]. We will restrict ourselves to the
(more interesting) positive case. In particular, isolated singularites have been considered in
[9, [16], 17, [4, 30], while solutions with singular set ¥ a smooth submanifold were studied in
[6] 29], for instance. See also [5] for a construction involving more general singular sets (at the
expense of not having a complete metric).

In this paper we would like to show that the singularity in (ILI]) is removable, in the sense
that the equation holds on all of R", this is, u? € L} _(R") and that the above relation (L3)
holds for every ¢ € S(R™). While Theorem below contains Theorems [[.T] and [L.4] we have
stated them separately since the proof of Theorem builds up on the other two.

Our arguments do not relay on the well known extension problem for the fractional Laplacian
[10] and thus, are not restricted to powers v € (0,1). Note also that it is enough to show these
results assuming f = 1 and we will do so in many places.

Theorem 1.1. Take ¥ a finite number of points. Let u > 0 be a non-trivial solution to (LIJ).

Assume that
> n < TL)
p = 2,_}/7 v E 07 2 )

and f satisfies (L2). Then uP € L} (R™) and u is a distributional solution in R™.

In contrast to Theorem [T}, in the (very) subcritical regime it is not possible to have non-
negative distributional solutions in R™:

Proposition 1.2. If u is a non-negative weak solution to
(—A)u = fuP in R", (1.5)

for f satisfying (L2) with 1 <p < il then u=0.



Theorem [T and Proposition are essentially contained in [I5], where they proved that
nonnegative classical solutions to the Dirichlet problem for (—A)Yu = «? in Q \ {0} are weak
solutions in R™ for p > n_"zy. They also classified the asymptotic behavior of the singularity for
smaller values of p. Nevertheless, our method is very different from theirs and it can be applied
to more general singular sets and all powers v € (0, §).

Remark 1.3. For the particular value p = —*5-, solutions with an isolated singularity have been

considered in [13] [14], and a complete classification should be possible. Note that these have the
asymptotic form 1/[r"=2Y(—logr)"=27)/27],

Theorem 1.4. Let ¥ be a m-dimensional smooth compact, closed manifold in R™, with 0 <
m < n— 2y, and take u > 0 be a non-trivial solution to (ILI]). Assume that

p_n—m—Q’y’ Y 72 )

and f satisfies (L2). Then uP € L} (R™) and u is a distributional solution.

Now we consider the case of a general compact set ¥ in R™. Although our removability
result is stated in terms of its Assouad dimension d, the precise property that we will use is
(B0 which is taken from [3I]. The underlying idea is that, even though our problem is non-local,
to estimate our particularly chosen cutoff function (3:2]) we only need to control the size of a
tubular neighborhood around 3.

In paper [31] the authors also mention, without proof, the relation between (B and the
more standard Minkowski dimension. Additionally, Assouad dimension has been considered in
connection to fractional Hardy inequalities in R™ \ ¥ ([19] 33| [I§], for instance).

Theorem 1.5. Fiz v € (0,%). Let X be compact set in R" with Assouad dimension d (not
necessarily an integer), d < n — 2y. Assume ([L2), and let w € L,(R") N LY (R"\X) be a
non-negative solution to (1) for some

L= d
b= da- 2y
Then w e L} (R™) and u is a distributional solution in R™.

Remark 1.6. If the singular set ¥ is a manifold of dimension d with corners, then we can allow

n—d

>
p_n—d—2’y

Some of the arguments from the proof of Theorem are useful in other settings. In

particular, they help understanding fractional capacity. Given any compact set ¥ C R™, the
fractional capacity of order « of ¥ is defined by

Cap, (X) := inf{/ [(—A)2p|?dz: o € CX(R™), ¢ > 1 on E}.

We give a removability result for v-harmonic functions:



Theorem 1.7. Set v € (0,1). Let h € L*(Q2) be a solution to the equation
(~AYh=0 inQ\%,
for some compact set 3 C Q. If Cap,(X) = 0 then (—A)"h =0 in .

Fractional capacity for the non-linear problem (—A)Yu = u% in Q\ X was studied in
[29] for exponents v € (0,1). Indeed, they provided the asymptotic blow-up rate for positive
solutions with a singular set of zero fractional capacity. They also gave an equivalent definition of
capacity in terms of the Caffarelli-Silvestre extension for the fractional Laplacian, and considered
the relation to the Hausdorff dimension of 3.

As a by-product of the arguments in the proof of Theorem [[L7] we obtain a relation between
fractional capacity and property ([B.1I) that is valid for all o € (0, 5). This relation could then
be rephrased in terms of Assouad or Minkowski dimension (see Proposition E.2]).

In the last part of the paper we show some new maximum principles for the fractional
Laplacian. We consider the general problem

(=A)'u = F(z) inR" (1.6)

with v € (0, %) and F € L}, .(R™). If v is not an integer, we shall assume that v € L. (R™).

Equation (6]) means that
/ u(—=A)pdx = / Fodx for every ¢ € C°(R"). (1.7)

Theorem 1.8. Fizy € (0,%5). Let u € Ly(R"™) be a solution to ([LE)) for some F > 0 satisfying,
in addition, that u € Ly (R™) for some s € (0, 3). Then
(—=A)u >0 onR™  for every sop < o <.

In our second maximum principle we do not need to assume any boundedness of w if it is a
solution of the semi-linear equation:

Theorem 1.9. Let u € Ly (R") be a non-negative weak solution to (LH) for some 1 < p < oo
and v € (0,%). Assume also (L2)). Then for every o € (0,7v) we have

(—=A)u >0 inR"

The proofs of the above maximum principles will be presented in Section [0, and relay on a
bootstrap argument to improve the decay of w at infinity (Section [5.2]). Note that, if v € N we do
not need the assumption u € L (R") since we get a better bound very easily (see Lemma [5.5]).
This gives a new proof of the so-called super-harmonicity properties of poly-harmonic equations,
first proved in Theorem 3.1 of [3§].

A source of inspiration for the statement of Theorem is the following pointwise estimate

from [21]:
[ 2 o 2 |[Vul?
—Au > 7|x|5u%—l——| Y in R", n >4,
p+1—c, n—4 wu




for positive bounded solutions of the fourth order Hénon equation
(=A)?u = |z|%P in R,

for some @ > 0 and p > 1. This estimate implies, in particular, Theorem for v = 2 and
o = 1. However, their proof involves an iteration argument in the spirit of Moser, and it is
adapted to a local problem, but not generalizable to our non-local equation.

Finally, as a consequence of our removability theorems, we obtain a maximum principle
analogous to the one in Theorem in the presence of singularities:

Corollary 1.10. Assume that we are in the hypothesis of Theorem[I1l, Theorem[1.4) or Theorem
[7.5. Then
(—=A)Yu>0 inR"™ forevery o€ (0,7).

The significance of maximum principles becomes clear in conformal geometry. Indeed, the
sign of the curvature (I4]) controls the positivity of the conformal fractional Laplacian operator
P,, the location of the first real scattering pole and the geometry and the topology of the
manifold [23] 27]. It has been conjectured that, in many cases, positive ()4 curvature implies
positive @, curvature for o € (0,7), at least for another metric in the same conformal class.
This is precisely the result of [27] for v = 1 and any o € (0,v). We also recall [37] and [39] for
some related work when ~ > 1.

In all these results positivity of the scalar curvature (y = 1) is the crucial assumption, since
it allows to construct a very special comparison function in the proof of the maximum principle.
This is precisely the main obstruction to use the same method in other settings. Indeed, this
obstruction depends on the local geometry of the manifold and it does not seem to be easily
generalizable to the fractional case. Our Theorem [[9 together with Corollary [LI0, hints that
it is still reasonable to expect some kind of maximum principle for v € (0,1) in conformal
geometry, at least for a special class of manifolds.

From another point of view, boundary blow up for fractional order equations is reasonably
understood. Some references on large solutions are [II, 2], 3], 26].

Our paper is structured as follows: in Section 2] we prove Theorems [T and [[4] for point
or smooth singularities. The case of a general singular set X is considered in Section [3, where
we also give the necessary background on the Assouad dimension. Then, in Section [ we use
some of these ideas to relate dimension to capacity and give the proof of Theorem [[.71 The
main bootstrap argument comes in Section [, which is the main ingredient in the proof of the
maximum principles in Section The proof of Proposition is postponed to this Section
since it relies on the previous bootstrap argument.

2 Distributional solutions

Here we give the proof of Theorems [[.T] and [[L4] when the singular set X is a smooth manifold
of dimension m > 0.
The fractional Laplacian is defined, for o € (0,1), by the singular integral formula

—A)u(x) =C, ,P.V. ———d
( ) ( ) , an |3j y|n+20' Y



while, for higher powers, say 0 =k + o', k € N, ¢/ € (0,1), it is well known that
(—A)7 = (=A)" o (-A).

Theorem [[LT] should be compared to the results in [15], where they show that, for v € (0, 1),
any (non-negative) classical solution to

(=AY u=uP in Q\ {0},
u=0 inR"\Q

is a weak solution of

(=A)"u =uP + kéy in Q,
u=0 inR"\Q,

for some k > 0, where &g is the standard Dirac delta. When p > #, the solution extends
distributionally to all R™, this is, & = 0. In the subcritical case p € (1, #) they characterize
the asymptotics of non-removable solutions.

Theorem [[I] is a restatement of the above, but using different ideas in the proof (a very
delicate choice of test functions and a dyadic decomposition near the singularity). In particular,
our argument contains the core for the generalization to higher dimensional singularities, and

also works for any power v € (0, %).

2.1 Point singularities

For simplicity let us assume that ¥ is a single point and ¥ = {0} (after all, the argument is
local near each singular point).
We fix two cut-off functions n; € C*°(R"™), ¢ = 1,2, such that 0 <7; <1 and

[0 forfal<L, N
mo={{ oIy m@=1-me,
We set .
Ne(x) == me(x)n(z), me(x):=m (E) for e > 0. (2.1)

Let us first estimate (—A)%1, for this cut-off.

Lemma 2.1. Take 1. as in [21). For every o > 0 we have

Cy 1 Cy

— + . (2.2)
20 |z o n+20
€27 (1 4 Lyn+2 (1+|z])

|(=8)7ne(2)] <

Proof. The claim follows trivially if o is an integer. For o € (0,1) we can use the usual formula
for (—A)? in terms of a singular integral to write

(=8)7n:(x)
= (@) (A () + (~A)ma(x) + Cp o PV / n (m.(v) . 1_)(;7|2n(f2)0— () 4
— @A (L) + (A ) + Gy [ IR Z ) g,



This gives ([2.2) for o € (0,1).

When o > 1 we write 0 = k+ 07 with kK € N, 0 < 01 < 1. We have

A (2) — AFno(y) = [AFnc(2) — AP ()] (2) + [AFna(2) — AFna(y)]
+ U (2) + Vo o(z,y),

where

Uy (x) = AF(nrem2) () — ma(2) A1 e (z) — AFpa (),
Uy o (2,y) = ma(x) AFnyc(y) + AFna(y) — AF(nycm) (y).-

Notice that for ¢ < & we have ¥y, = 0, and

0 for |z] <1,y € R",
Woe(z,y) = () = DAFme —1)(y)  for 1 < |z| <2,y €R", (2.3)
AF2(1 = m.e)](y) for |z > 2, y € R™
Therefore,
(=A)7ne(x) = m2(x)(=A) me(@) + (=A)7m(z) + L (2),
where Uy (2.1)
o 2,e\T, Y
IE('Z.) - Cn,O'PV . ‘.Z' _ y‘n+2o.1

Since the above integrant has no singularity at {x = y} for e < i thanks to (2.3)), one can use
integration by parts to deduce that

n

€
| (z)] < T for every x € R",
and this concludes the proof of the Lemma. O

Proof of Theorem [I1. Using the test function 7. as defined in ([ZI) we get from Lemma 21]

that, for a power p > =5,

/ uPne de = / u(—A)Tn. dx
n R”

527 | | )n+2fy
e BQE Bl\BQE ¢ n+27 (2.4)
1
C n
<CH+ / wdxr +e? / uPde| 4 et
exy Bac B1\Ba:

==

<C d C
= +€2V/stu T 4+

/ wPdr|
BI\BZE



where 1 = = 4+ = In particular, passing the last term above to the left hand side,

1,1
p ' p

C
Pnede < C+ —= dx. 2.5
/nungx_ +€2V/stuw (2.5)

By Holder inequality with 1 = % + 1% and the previous formula, we have, for every integer
k> -1,

1
n Vg
/ ud:nﬁC’(ik)pl / uP dx
{55 <lal< ) 2 BIB_
c\i% _ g
p
gc(Z—k) /B uds +0<2k)
ok+1
e\ L-2 Z €N\
D P P
Since ; — 77 >0 (iff p > "t?”’, which is true as p > #), summing the above inequality from
k=1
to oo, we get .
n_ 2y P n
/ udr < Cev’ » (/ udx) + Cer'.
B25 5
Hence

o P n
/ wdr < Ce" 2%+ Cev.
B25

Asn— 27% > 2v and 7 > 2, going back to (2.5) we get that u” € LY(By).
To finish the proof we also need to show that w is a distributional solution on R". Basically
we need to show that for every ¢ € C°(R"),

| utaremade = [ u-aypds

And this follows from the bound [[(—=A)Y(¢n1c) — (=A)7¢l|;» < C, which is proved similarly.
U

2.2 Higher dimensional singular set

Let X be a smooth m dimensional compact, closed submanifold of R™ (or a disjoint union of
submanifolds with different dimensions). For p > 0 small we let NV, to be the geodesic tubular
neighborhood of radius p around ¥ and choose Fermi coordinates in N, as follows: First we fix
any local coordinate system y = (y1,...,¥ym) on 2. For every yo € X there exists an orthonormal
frame field E1,..., E,_m,, basis of the normal bundle of . Set N = n —m. Then we consider
the coordinate system

EXR"™ > (y,2) >y + ZzZEZ(y)



For |z| < 4p with p small, these generate a well-defined coordinate system in a neighborhood of
yo- In this coordinate system the Euclidean metric has the following expansion ([36])

grRn = GRn—-m + g5 + O(|z])dzdy + O(|z|)dy

We fix non-negative radially symmetric smooth functions n; and 72 in R”™™ such that

() = 0 for|z] <1 (2) = 1 for|z| <2p
ME=01 forfzl =2, YTV 00 for |2 > 3p.

For € > 0 small enough we set

ne@) = meEmlaD), me) =m(2),

€

where (y,z) € ¥ x R"™™ are the Fermi coordinates of x.

Lemma 2.2. We claim that

¢ m(=) ¢

—A)? < R™.
(A1) < v+ T

Proof. We give a proof only for o € (0,1). The proof for other values of o follows as in the
previous section. We write

’x’n+2a
_ Z) -
= /]R” ’33‘7”20 dz.

if &.(x,2)#0 then & e B,(x)or —2 € By(x).

For x € R™ \ Ny, we see that

Therefore,

C

|(=A)n:(2)| < 1 ja)ee for z € R™\ Ni,.

For z € Ny, we write

o _ e(2,2) - ®e(2,2) - _
(=A)7n: () —/{ - d +/{ : di =: (I) + (11).

E|<p} [E[PT E|>p} [E[MT20

Clearly |(II)| < C.

Let d = d(x) be the distance function from the point z € R™ to X. Then, for z € Ny, we
have that d(z) = |z| where z = (y,2). As n2 = 1 in Ny, for 2 € N, and & small we have the
following estimates on ®.(x, Z):

i) ®o(2,8) =0 for 4e <d(z) < p and |Z| < 3d(z).
To see this use that d(z +Z) > d(x) — |Z| > 2e.



ii) For 2¢ < d(x) < p we have
{Z: @ (2,2) A0} ={Z : £& € No. — z} =: A (x),
and we will use this fact later.
iii) For d(x) < 4e, |Z| < & we have
|z |2

|@c(2,7)| < |2 D1l < C—

To prove the previous inequality we note that

w0 =m ("), V@) =1, V@) < g

where the last inequality follows from the fact that d? is smooth in Ni,. Therefore, as
ni(t) =0 for [¢t| < 1, we get

D*n.(z) = éni’(@) + éng (@)qu?d(gp)p _ o(i).

€ g2

Now, step i) yields, for d(m) < 4e,

dx dx C
|(I)|<C T—FC it = o5 -
flz<e} |Z[MT2772 flafze} |Z["27 7 €2
Finally, using i)—ii) we have, for 4e < d(z) < p,
dx
nH<c —_
1) < e

{|Z]>3d(2)}NAs (a

It remains to estimate the above integral.

In the case that Na. is simple type, that is, of the form {(y,z2) : |y| < 1, |z| < 2¢}, then the
above integral can be controlled as follows: write x = (yo, 20), & = (7, £), so that |Z|> = |§|*>+|Z|?,
and £7 € No. —z is equivalent to [yo £ | < 1, |29 £ Z| < 2¢, which gives |Z| > %]z as [z| > 4e.
Therefore (just take the plus sign)

dydz
e/ e
{z0+21<2¢} J {lyo+al<1y (9] + [Z])
. / dijd3
T Jsotzi<2ey Jygl<2y (91 + 1220

1 dj
<C _ / Y4z ge |3l
{zo+31<2¢e} 121N T2 Jpm (1 + [g[)nF20

1
<C =g A2
{z0+3|<2¢} 12|V T2
el -
< CW, as |zo| < 2[Z|

1 1
g2 (1+ d(x))N+2a'

~

10



If Na is not of simple type, we proceed as follows. First we cover ¥ by a finite number of
small enough balls and write the metric gy, in normal coordinates. A neighborhood of ¥ 3 ¢ is
then identified with a neighborhood in R 5 0 with the metric

gz = dy® + O(ly*)dy’.
Then we can reduce to the previous type just taking into account the O(|y|?) error. O

Proof of Theorem[1.4} The proof is very similar to that of Theorem [[.LTI Here we only give a
sketch.
Using the test functions in Lemma [2.2] we have, similarly to (2.4)),

/ C dzdy oy
AP, < C+ / < C 4 CceN2r,
||( ) 775||Lp (Rn) — €2fyp Np (1 + %)(N—I—%{)p’ -

Using this one obtains

/upnadang—i-%/ uda:—l—C/ uP dx
n €Py NQE NP\N2E

/upngdxﬁC—F%/ udr,
n E’y '/\/'25

which is analogous to (Z3)). Since |N;| = vV for r > 0 small, one can proceed as before, taking
a dyadic sequence of distances to X. O

B =

Hence,

3 The non-smooth setting

The Assouad dimension was introduced in [7), [§] (see also [34] for its basic properties). It
possesses all the properties any reasonable dimension definition must have. In particular, it is
similar to the more standard Minkowski dimension, but it takes into account all scales ([31]).

We will not need the complete definition of Assouad dimension, but just property (B1) below
for tubular neighborhoods taken from [31]. In this paper it is mentioned that the estimate (B.I])
also holds in terms of the more usual Minkowski dimension but it is not proved explicitly, so we
have decided to keep the original Assouad dimension in our statements.

Its precise definition is as follows: if (X,d) is a doubling metric space, there is a constant
C > 1 such that each ball Br(z) can be covered by at most C(r/R)™* balls of radius r for
all 0 < r < R < diam(X), where s = logy, N. Obviously, this could be true for smaller values
of s. The infimum of such admissible exponents s is called the upper Assouad dimension of
X. Considering the restriction metric, this definition extends to all subsets of X. The upper
Assouad dimension of £ C X is denoted by dim4(E). In the literature, the upper Assouad
dimension is usually simply known as the Assouad dimension of E, and we will denote by d.

Now we look at the size of a tubular neighborhood N,.. Let ¥ be a compact set in R™ which
has the following property: For some A > 0 there exists C' > 0 such that

H"Y(ON, N B) < Cr™! (%)_A , (3.1)

11



for every ball B of radius R € (0,diam(X)) centered at ¥ and for every r € (0, R). Here, H*
denotes the s-dimensional Hausdorff measure. It has been shown in [3I] that (BI) holds for
every \ bigger than the Assouad dimension of X.

To prove Theorem we would like to reproduce the arguments in the previous section.
Nevertheless, since the distance function to X is not smooth any longer, we cannot use it to
construct a cutoff. Instead, we fix a non-negative function p € C°(By) such that [, pdz = 1.
Setting p.(z) = Zp(£), we define

wle) =1 [ pla-y)dy (3.2)
NZE
Then 7. € C°°(R"™) is non-negative, and it satisfies
ne=1 on N3 andn.=0 onN.. (3.3)
Moreover,
. 1
Vi <= forj=1,2,....
el

Lemma 3.1. Assume that BI) holds for some 0 < A\ < n. Let ¢ € C(R™). Then, setting
we = @ne we have for every o > 0,

(=8)7¢e () = ne(2)(=A)7p(2) + L(2),

where
520 (1 + d(x) )n+20—)\ d(m)"”” '

Here x4 denotes the characteristic functzon of the set A.

Proof. Given o > 0, let k be the integer part of o, that is, ¢ = k + ¢’ with ¢/ € (0,1) and
k € {0} UN. First we consider the case when d(z) > 10e (recall (33]) here). Then we have

_(—A)k ANk _
(~A)¢-(2) = Crg / @A ol = ﬁ)_‘p% AT =W,
w1 = n.(y)]
A +C"“/ " yl"”” w (3.4)

— () (-Ayp() + o [ AU o dy

Rn |z —y[mT2o
=:n:(2)(—A)7¢(z) + I(z),

where the second last inequality follows by integration by parts. Notice that the integrand is
not singular at y = x as the function 1 — 7). is supported in N..

Next we estimate I for 10e < d(xz) < 1. We have by the co-area formula (see e.g. [20]
Section 3.4.3])

L(x)| < C /3/ W) (3.5)
T e Iw—yl"”“ B N, Iw—yl"“" '

12



Note here that the distance function to ¥ is a 1-Lipschitz function even if ¥ is very bad. In
particular, by Rademacher’s theorem, it is differentiable a.e. with |Vd| = 1.

Let & € ¥ be such that it minimizes the distance of x from X, that is, d(z) = |z — Z| =: R.
Then for 0 < r < 3¢ we have

ON; C (0N, N Br(#)) | ) {ON: N (Baeg(#) \ Bor-1g(E))} -

k>1

Notice that
|z —y| 2 2R for y € ON, N (Byrg(&) \ Byr-15(2)), k>1,

and also
|lv —y| > R fory € ON, N Bgr().

This, and (B.J)) imply that (B3] can be estimated by

1 3e -1 T -A
|Is($)|§ZW/O r (ﬁ) dr
k>0
A
S
~ Rn+2a—)\ p (2n+20—)\)k
>0

En—)\

<_ £
~ d(x)n+2o—)\

The above proof also shows that [N3.| < €"~*. Therefore, as |z —y| > d(x) for d(z) > 1, we

easily get that
1 gn A

N€|§d

L (z)] S (@)

= e

Finally, we treat the case d(x) < 10e. As the term 7.(—A)%¢p is bounded, instead of esti-
mating I. we estimate the term (—A)%¢. in ([B.4]). We have

~AYrp(z) — (—A)Yro.(x — (=AY (z —
(~AFoe) = 30, [ ARV CAN ol ) - (O la ),

for d(z) > 1.

Since the integrant is bounded by
g2k ‘ h’n+2a’ g2’ ’

1
[(—A)7pe(z)] < 2 for d(x) < 10e.

one easily obtains

We conclude the proof of the Lemma.
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Proof of Theorem[LA. We choose A > d but very close to d so that n — 2yp’ > X (equivalently,
p = nn)\ )\2 )
We fix p € C°(R™) such that ¢ > 0 and ¢ = 1 on Nj. Using the test function ¢, := pn. in

([C3), where 7. as defined in [B.2]), and together with Lemma B1] we get

/ upgpedx:/ u(—A) @, dz
n Rn

C u(z)
= C+ & / (1 d(x) )n+2fy—)\ dr (36)

{//\@s //\/1\/\/36} T()J;’)H?V—A -

. Note that, again by the co-area formula, and the fact that [ON,| < r"~*~! for

n— 1
N\Wse (1 + d(w)) P! (n4+2y—\) 3e Jon, (14 d(z )) P’ (n4+2v—X\)

Using Holder inequality in the last term in ([B.6]) and substituting the above expression, we obtain

1
C n—>A\ p
/ uPp.dr < C + —- / wdr +¢e ¢ / uP dx
n e~ N3 N1\N3e

P
<C+ % udx + C / ude |
€ g /\/35 NI\N3E

where we have used that A <n —2yp’. As p. =1 on N7 \ N, we deduce that

/ upd:n§0+%/ wdz.
N1\N3e €77 J Na.

Once this main estimate has been obtained, proceeding as in the previous subsections one can
prove that u € L (R™).

Next we show that u is a distributional solution in R™: for any ¢ € C2°(R"), taking ¢. := ¢n.
as a test function we obtain

/ upgpeda::/ w]e(—A)V(pd:p+/ ul () dz,

where I, is as in Lemma B1] with o = ~. Tt follows that

/upcpada:—> wodr and /una(—A)thdx—) u(=A) pdx

as € — 0 thanks to the above bounds.

14



Since A < n — 2yp/, from Lemma B with o = v we get that ||I. HL,, Ap) < € independently
of € (the proof is similar to (3.1)), using the co-area formula). Moreover, as u € L,(R"), we have

lim u(z)|Iz(z)|de =0 for every § > 0.
e—0 NJC

Hence, for every 6§ > 0,

tim [ (@)l (a)] de = 1310</N ) ) 2l do < Jull o) el o agy

uniformly in §. Taking 6 — 0 we obtain

lim uw(z)| I (x)| dz = 0.

e—0 Rn
Thus, u is a distributional solution in R™. O

Finally, for Remark [[LG] assume that X is a smooth manifold with corners. Since we are
simply using estimate (3.I]) and not the full machinery of Assouad dimension, our proof includes
this case as well. More generally, if (3I]) holds for some compact set ¥ and A > 0, and u > 0 is
a solution to (L)) with p > %, then u is a distributional solution in R™.

4 Capacity

Here we verify Theorem [[L7l The fractional capacity of order v of ¥ C R™ is defined by

Cap, (%) := inf{/ (=A)2p|?dz: o € CX(R™), ¢ > 1 on Z}
The relation between fractional capacity and Hausdorff dimension was studied in [29], where
they provided an equivalent notion of capacity in terms of the extension:
Proposition 4.1 ([29]). Assume that o € (0,1) and let ¥ C R™ be a compact set.
i. If H"29(%) < oo, then Cap,(3) = 0.

ii. If Cap,(X) =0, then H*(X) = 0 for s > n — 20. In particular, the Hausdorff dimension
of 33 is less or equal to n — 20.

Our arguments from the previous section allow us to extend this result to any o € (0, 5) in
terms of property (B8] (which can then be related to Minkowski or Assouad dimension). More
precisely,

Proposition 4.2. Let ¥ be a compact set in R"™. Assume that B holds for some X € (0,n).
Then, for every o € (0, "T_A], we have Cap,(X) = 0.

15



n—>\

Proof. 1t suffices to prove the Proposition for o = *5=. We fix a non-negative function p €

C°(By) such that [z, pde = 1. Similarly to B2)), we set p.(z) = slnp(f) and
nw) = [ plo—v)dy
NQE
We claim that for 0 <e < <1,
- - e\ 20
| m@-arna = [ a7 =on(5)”
Indeed, from Lemma [B.1] we have that

[(=A)7ns

c
(‘T)’ < 5?(1 d(z

which leads to

/ @) (A () d = O(5) /N dr = O(e"5727) = O(e205727),

where we have used that the measure of the tubular neighborhood N3, is of order &
For k > 1 we set (compare to [20, Section 4.7.2] for the proof in the local case)

1 K 7
N Iee
Py = S’WZ:; 7

where

_El

Mw
C\I}—t

=1
Notice that ¢, € C(R"), ¥ =1 on N, ,

min {6( EZ} < min{l, l} for ¢ # 0.
Ej €¢ 0y
Therefore,
/ (=A) 3P dr = | d(—A) oy, da
n Rn

] =

1
S

TN
e~
Il

1 (#0,0,0=1

16
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We estimate the two terms in the right hand side above by (@I]), so

k k 20
- C 1 C 1 11
_ 2 2 < — — 4+ — _ 1 _
/n’( A)2 4l dx—sgzﬁ S2 2 e@mm{e’é}

=1 0405 0,0=1
k k

c C 1 1
<GtwmD.50.=
- §2 2 1420

S, Si — 14 p 0+
_c.c

This concludes the proof of the Proposition. O

For o € (0,1), in the definition of Cap,(X), one can take the infimum over the set of functions
in H?(R™) which satisfy

0<p<1 and ¢ =1 in a small neighborhood of X.

Indeed, by a density argument, we can replace the space C2°(R™) by H°(R") N C°(R™). Then
from the relation

2
NG 2dm:cm/ lp(x) — o(y)| drdy,
/n|( 4 N R e T

we see that
el e @y < [l o @y,

and hence we can assume that ¢ > 0. Finally, for a given ¢ > 0 and 0 < ¢ € H°(R") N C°(R")
with ¢ > 1 on X, we set

() ::{ 1 for p(z) > 1—¢,

f(Tme) for 0 <op(r)<1l-—ec.

It follows that 0 < ¢ <1, » =1 in a small neighborhood of ¥, and

181l zro®ny < (14 Ce)lloll o ®r),
as claimed.

Proof of Theorem [17. Since (—A)7h = 0in Q\X, h is smooth in 2\ ¥. We fix a smooth domain

Q with ¥ € Q € Q so that h € C°(Q\ ). Let H be the y-harmonic function in Q given by
the standard Poisson formula with boundary data h. We claim that h = H in .

To see this, fix smooth domain €, such that ¥ € Q; € Q and d(3,09) < % Let o be a
minimizer of

{[caippar pem@), 0sps<t p=1mm).

17



Then ¢ satisfies
(=AY =0 inR"\ Qg 0<¢p <1, @r=1o0nQ.

Since the capacity of X is 0, we also have that

/n [(=A) 2| da — 0.

2n
n—2s"

In particular, by Sobolev embedding, ||¢k || z»wn) — 0 for p =
pr — 0 almost everywhere in R".

Since h and H are bounded in Q, there exists M > 0 such that h — H — Mgy, < 0 in €.
Then we see that

Hence, up to a subsequence,

(=AY (h—H—Mg)=0 inQ\Q, h—H—Mp,<0 inR"\ (Q\Q%).
Thus by maximum principle
h—H— Mg, <0 inQ\ Q.

As ¢ — 0 a.e., taking the limit £ — oo we have that h < H. In a similar way, h > H.

5 The growth at infinity

5.1 Preliminary estimates

We start with some preliminary bounds:

Lemma 5.1. Let ¢y € C?(R") N L,(R™) for some o € (0,1). Then
[(=A)7po(z)]

< C(n,o) <

D20l Lo (ay2)) - NpollLoe (as)
(1 + [x])2—2 (1 + [x])%

/ ©o(y) y
(42l <omyi<142pa)y |7 —y["H2e

|
2

where
Al(a:) = BH%(:U), Ag(x) = ]R"\Al(a:), Al = Bl+%(0)’ A2 = Rn\Al

In particular, if there exists p > 0 such that

sup |z|PH | DY (z)| < 0o for every multi-index o with 0 < |a| < 2,

reR”™
then
(14 z])727° if p<n
[(=A)7po(x)] < C(n,0,00) ¢ (1 +[z))7>Plog(2+[z])  ifp=mn
(1+ |z|)~20m if p > n.

18



Proof. The proof is standard but we give the details for completeness. We shall use the following
definition of (—A)“

Then we have
[(—=A)7¢o(x)] < C (I + I2),

where we have defined

I = i=1,2.

)

wo(z +y) + @o(z —y) — 2p0(x)
n+2 dy
A; |y|+2e

Noticing that
leo(z + ) + oz —y) — 2¢0(x)| < ID*@oll L (a, @) lyl®  for y € Ay,

we get g
Y —20
I < ”D2900”L°°(A1(m))/A Ty < Ol D%l oo (ay 2 (1 + |2)* 727
1

On the other hand

wo(z —y) ‘ dy
———=dy| + 2|po(x / s <2
/Az [y o)l | e

—: 213 4 Clpo(x)| (1 + |z]) 7%

/ +/ ¢o(z —y) dy
arlgl<pi<iazialy  Juszayy) WM

vo(y) oy
/{1+i<|m—y|<1+2lm|} |z — y[nt2e dy| + Clleoll oo (45) (L + [2])

|
2

I <2

[ St ] + Cla@ + 1

Now we bound

I3 <

<

C / -2
< T Thaes [eo(W)l dy + Clleol| oo a5y (1 + [x]) 77
(L+[2))"27 Sy <143/ (42)
Combining these estimates we conclude the proof of the Lemma. O
Lemma 5.2. Let ¢ € C®(R"™) be such that p(z) = ﬁ on BY for some p > 0. Let n be a

smooth cutoff function such that
n(x)=1 forlz|<1 and n(z)=0 for|x|>2.
Denote by n-(z) = n(ex) and p-(x) := pn:(x). Then for every v > 0 we have
(=AY — (=A)"¢  locally uniformly in R™.

Moreover, there exists C' > 0 (independent of €) such that

(1+ |z~ ifp<n
[(=A)pe(2)| < C(n,y,0) ¢ (L4 [z])7>7Plog(2 + |z])  ifp=mn
(14 ]z if p>n.
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Proof. We write v = v9 + 71 where 0 < 71 < 1 and 79 € NU {0}. It follows from Lemma [5.1]
applied to (—A)"¢p, — (—A)"p, that

(—A) . = (=A)7¢ locally uniformly in R".

To prove the second part of the lemma, first we note that

C(a)

|D%p.(x)] < T3 el for every multi-index a, ¢ > 0.

In particular, ¢ := (—A)"p. satisfies
C C

sup [ D*¢(y)| < : sup  [¢(y)| £ =7, and
{o—yl<1+ 5} (L4200 etz (1+ o)
(y) (14 |z])=27—" ifp<n
(45l <la—yi<142al} |2 — 0l (1+ [a)) 2" if p>n,

where the last inequality follows trivially if 79 = 0. If 79 # 0 then using integration by parts
one can obtain the desired estimate.
The proof follows by Lemma (.11 O

Now we look at the general equation
(=A)"u=F(z) in R", (5.1)

understood as in (7). The first step to prove Theorem [[.8lis to show next that, for any 6 > 2s,
and outside the origin, W is a good test function in (LT):

Lemma 5.3. Let u be as in Theorem [[.8. Let ¢ € C*°(R™) be such that ¢(z) = W on
Bf{ for some § > 2sy. The following identity holds:

/u(—A)“&pdaz = /F(az)gp(m) dx.

In particular,

F
/R H_|x|(—nx—)27+6 dx < oo for every § > 2sp. (5.2)

Proof. By Lemma B2 with p = n — 2y + 0 we have that

/ Fodr = lim Fo.dx = lim u(—A) V. dx = / u(—A) pdr < oo,

e—0 R” e—0 Rn n

thanks to monotone convergence theorem and dominated convergence theorem, and this com-
pletes the proof.
O
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5.2 A bootstrap argument for the semilinear equation
From the discussion in the previous subsection, if u is a solution to

(—A)'u = fuP in R", (5.3)
a bootstrap argument allows to improve the estimate on the growth of u at infinity. Indeed,

Lemma 5.4. Let u € L,(R™) be a non-negative solution to ([B3)) for some 1 < p < oo and
v € (0,5). Assume that there exists C > 0 such that

<f<C inR™

Ql=

Then

P
RIQLLO) dx < 0. (5.4)
Rn ]. + ‘.Z"n_2’y
Proof. For § > 0 we fix ¢ € C*°(R") such that p(z) = |m|++5 on Bf. Letting 7. as before we
set - := n-. Then together with Lemma [5.2] dominated convergence theorem and monotone
convergence theorem we get

fuP(x)
~ _
00 > /nu(—A) pdr = g PR 5 dx.

Hence, as f has a positive lower bound, we get

P
/ &)(de<oo for every d > 0.
Rn 1 + |$|TL+

For any ¢ > n we can write ¢ = g1 + g2 with ¢;p > n and ¢2p’ > n. Then by Holder inequality
we get that

1

1
P 7 d o
/ w(@) dr < C / ui(x)da: ’ / 7$, " < for every q¢ > n.
Rn 1 + |$U|q Rn 1 + |$U|q1p Rn 1 + |33|‘12p

From this, and Lemma [5.2] we see that ¢ € C*°(R") with ¢(z) = W on Bf with § > 0 can
be used as a test function in (7)), and consequently we have

uP ()
dr < oo for ever >n — 2.

Again by Holder inequality

2
/ uz) dx < oo for every ¢ >n — 7, (5.5)
R™ 1+ ‘x’q p
Now we can take ¢ € C*°(R") with ¢(z) = W%% on Bf as a test function, and we obtain

4. ]

Similar arguments, but with a more complex iteration will yield the triviality of solutions to

BE3) for 1 <p< n_"z,y (see Proposition [[.2]). We give the details below in Section
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5.3 The case y € N
Growth estimates are easy to obtain in this case.

Lemma 5.5. If u is a solution to (L3)) for some p > 1, v an integer in (0, %), and right hand
side satisfying (L2), then

u(z) 4
dr < oo for every s >n — 2vy—, 5.6
| for cvery "= (5.6)

1,1
where p,+p—1.

Here the meaning of equation (LF) is that u? € L} (R") (thus u € L} (R")), and u is a
distributional solution.

Let us first introduce some notations: For a smooth function ¢, let <7 be the set of all
derivatives of ¢ and their products, that is

k
o = {HD%: keN, aieN”}.

i=1

For ¢ > 1 let <7 be the vector space (over R) generated by the elements of &7 of order ¢, that

is, generated by the set
k k
{HDO‘%,D : Z lai| = 6} .
i=1

i=1
We fix ¢ € C*°(R") with ¢ > 0. By induction one can show that for every multi-index «
with |o| = k € [1,¢] we have

k
-
D%l = E T Fap,  Fayp € Y.
=1

xT

Setting pr(r) := o(F) one gets (use that ¥ < Cp? for ¢ > o)

|a

. c O
|D 90?2(33” < WZ@R(@(] f< W@R(iﬂ)q o,
(=1

Proof of Lemma 5. We fix a non-negative function ¢ € C°(R™) such that ¢ = 1 on By and
@ =0 on Bsy. Let o be as above. We will use Holder inequality with % + ;z% = 1. For this, fix
q > 2vp’ an integer (we can also take ¢ = 29p/, by a density argument; in that case ¢ will be
C?F) and consider the smooth test function ©%. From the equation we obtain

]

C _9 C 1 q—2v—=
fuP ! dx:/ u(—A)7pl d$§—/ ! de:—/ UPhP P dx
R ( ) R R2v Bon R R2v Bon RYR

n

C 1 n_9 P
Sﬁ/}BRUSDdeﬁCRP 7</nup€0§zdx> )
2
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which leads to
/ uP(z) dz < CR"™2"  for every R > 0.
Br

n
n—2y

(Notice that the above estimate implies u =0 for 1 < p < ). Then by Hoélder inequality

/ u(‘r) dr < CR_S—HL_}Y%.
Bor\Bgr 1 t17[°

Taking a diadic sum one obtains (5.6]). O

5.4 The model solution

We consider the linear problem (G1I), for v € (0,%) and some function F € L, (R™). Here
we start the proof of Theorem by constructing a solution v of the equation having the best
possible decay.

Let I' be the fundamental solution for the fractional Laplacian, this is,

(~A)P(@) =8, T(@) = g (o) = i

Since F' € L'(By), the convolution I'* F'x g, is well-defined almost everywhere in R”. Therefore,

up to a translation, we can assume that FTI' € L'(B;). Consequently, by the previous Lemma
(.3 the following function is well-defined

o) = [ (0w =) = Tw) Fl) dy (5.7

Moreover:
Lemma 5.6. Let u and F be as in Theorem [[.8 We have v € Ls(R™) for every s > 2s.

Proof. We shall use (5.2)) frequently with § = 2s or 2sg. Calculate
v(@)]
d 5.8
/Ru + s (5.8)
I'Ne—y) —T
S/ F(y) (/ +/ +/ > U y)n+2s(y)|dxdy
n Jel<8y  Joazanny  Ji¥<ai<onn) L1l
3
= Z I;.
i=1

We notice that

|| 1yl
‘P(x - y) - P(y)‘ < CW for ]az\ < ?,

and hence

F(y) dx F(y)
L<C T in—o~rt1 —— _dy<(C _ P q .
- /R ly[r= /{x<g}1+\xr"+zs—l ’= /R 2o W = 0
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Next, since

/ ‘P(x — y) n_—l—];s(y)‘ dx < nCL2 / n+2s dx = n—(‘; +2s?
{elz2y 1] 91" 27 Szl 1+ 2] ly[" =
one also has
Iy < o0.
Finally, we bound
Iz —y) F(y) 1
Igg/ Fy/ — I grdy + C —  dady
W) (Wl <jaf<apyly 1+ [yl 4> re (Y127 Sl <<y 14 |22
é ¢ + C F(yr3+2s / ii2
re 1+ [yl (zl<syly 121"
F(y)
<C+C —
— + Rn 14+ ’y‘n—2~/+2s Y
< 00.

Combining all the above estimates we have that the integral in (5.8)) is finite, as desired.

Finally, we recall a classification result that will be needed below.
Lemma 5.7. Let w € Lg(R™) for some s > 0. If
(—=A)w =0 1inR"

for some o > s, then w is a polynomial of degree at most |2s|, where |2s| € N is such that
2s — 1< |2s] < 2s.

Proof. See e.g. proof of [28 Lemma 2.4]. O

6 Maximum principles

Now we are ready for the proof of our maximum principles, Theorems and

Proof of Theorem [I.8 Take v as defined in (5.7)). From Lemma [5.6]l we have that v € Ls(R™) for
every s > so, s # 27. Hence, if we define w = u — v, then w € L4(R"™) for every s > sg, s # 2.
In addition, since, sg < % and (—A)Yw = 0 in R™, we conclude that w = const, thanks to
Lemma 5.7 Thus

(—A)u(z) = (~A)v(z) = e(n,0,7) /R

as desired. H

1

. WF(Z/) dy > 0,

Proof of Theorem[I.d. The main idea here is to use Lemma [5.4] to improve the growth of u at
infinity. Thus can simply use the auxiliary function

o(z) = e /R )y (6.1)

N |z —y|n=2

instead of the old (5.7). The rest of the proof is similar to that of Theorem [L.8 O
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6.1 Proof of Proposition

On the one hand, we claim that every non-negative solution to (LH]) with 1 < p < n_"z,y satisfies
/ U2 <o f S (6.2)
r < oo for ever — )
e 1+ [af? T

where 1 = % + 1%'

On the other hand, one has u = v, where v is given by (G.I]). To see this, recall that we have
proved above that u = v 4 const. In order to justify that this constant vanishes, it is enough to
show that u,v € Ls for some § < 0 small. Estimate (6.2)) yields the result for u. Moreover, to
check that v € Lg for some § < 0 one can use (6.4]), and proceed as in the proof of Lemma
In fact, one would get that

/Rn 1:(72‘(1 dr < oo for every q > 2v.

If w is non-trivial, then we can find R > 0 such that [ By, Juf dx > 0. Therefore, as [z — y| =~ |z
for (z,y) € BSp x Br, we obtain

u(rc):cn/R Mdyzcn/B Mdy> L for | > 2R,

n |z —y|n=2 r—y[nm T gy

This contradicts (6.2) as 7 <2y for 1 <p < ol

It remains to prove the claim (6.2), and we do that by an induction argument. Setting

1
pk

Sm = sm(p) =Y
k=1

we see that seo(p) = p%l and

n

n— 2y —2yss(p) =0 forp:n—Q’y'

Therefore, as s (p) is monotone decreasing in p € (1,00), we have that

n—2y—2vs00(p) <0 forl<p< .
n— 2y
In particular, there exists an integer mo > 1 (depending on p) such that n — 2y — 2ys,,, (p) < 0.
We shall take mg to be the smallest one.
Next we show that

u(z)
dx < oo for every ¢ >n — 278, 6.3
/Rn T3 e Y q Y (6.3)

with m = mg. As ([63) holds for m = 1, thanks to (G.5]), we only need to consider the case
mo > 1. Let us show that if (6.3)) holds for some m = m; € {1,...,mo — 1}, then it also holds
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for m = my+1. We fix a test function ¢ € C*°(R") with ¢ = ﬁ on BY, p :=n—2y—2ysy, +9,
0 > 0. Since p > 0, by Lemma [5.2], monotone convergence theorem and dominated convergence
theorem we get that

u(x)
wPodr = u(—A)7 dm</ dx < 00,
Rnf ¥ /n ( Vpdr S an 1+‘x’n—2fysm1+5
for every § > 0. By Holder inequality we conclude that (6.3]) holds with m = mj + 1. This
proves that (€3] holds with m = my.
From the definition of my we have that the integral in (63]) is finite for every ¢ > 2.

Therefore, we can take ¢ € C*°(R") with ¢ = ﬁ on Bf, § > 0 as a test function to conclude
that
P
L(x)& dr < oo for every 6 > 0. (6.4)
R 1+ |7

This, together with Holder inequality yields (6.2]).
]
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