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Abstract

A geometric variational problem is defined on subsets of a prescribed measure in the entire plane.
The functional of the problem consists of two terms: the perimeter of the input subset and an interaction
integral with a kernel that is the sum of a logarithmic function and a quadratic function. This kernel is
bounded below and tends to infinity at zero and infinity. A single disc is always a critical point of the
functional but its stability depends on the parameters of the problem. When the parameters are in a
suitable range there exist assemblies of multiple perturbed discs that are stable critical points.
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1 Introduction

We study a geometric variational problem

J (Ω) = P(Ω) +
γ

2

∫
Ω

∫
Ω

K(|x− y|) dx dy. (1.1)

defined on the admissible class

A = {Ω ⊂ R2 : Ω is Lebesgue measurable and |Ω| = m}, m > 0; (1.2)

namely A comprises of measurable subsets of R2 of the prescribed positive measure m. This m is the first
parameter of the problem. Here | · | stands for the Lebesgue measure on R2.

∗Corresponding author. Phone: 1 202 994-6791; Fax: 1 202 994-6760; E-mail: ren@gwu.edu
†Supported in part by NSF grant DMS-2307068 and Simons Foundation Collaboration Grant for Mathematicians #709260.
‡Supported in part by AMS-Simons Research Enhancement Grant 2024-2027. E-mail: cwang@wlu.edu
§Supported in part by GRF “New frontier in singular limits of nonlinear partial differential equations”. E-mail:

wei@math.cuhk.edu.hk

1



In (1.1), P(Ω) stands for the perimeter of Ω. If Ω is enclosed by piecewise C1 curves, then P(Ω) is the
total length of these curves. In general, if Ω is merely measurable, then

P(Ω) = sup

{∫
Ω

div g(x) dx : g ∈ C1
0 (R2,R2), |g(x)| ≤ 1 ∀x ∈ R2

}
. (1.3)

Here div g is the divergence of the C1 vector field g with compact support and |g(x)| =
√∑2

j=1 g
2
j (x) stands

for the Euclidean norm of the vector g(x) ∈ R2; see, for instance [4]. This term models a growth force. It
prefers connected Ω’s with small perimeters like a disc. If it were the only term in (1.1), then we would just
have the standard isoperimetric problem.

The function K in the integral is given by

K(t) =
1

2π
log

1

t
+ t2, t > 0 (1.4)

We call K a logarithmic-quadratic interaction because it is the sum of the logrithmic function 1
2π log 1

t and
the quadratic function t2. If we view K as the potential of a force field, then the force is repulsive in short
distance and attractive in long distance. In (1.1) the logarithmic part of K works as an inhibition force. It
likes to break the set Ω into disconnected small pieces. The quadratic term in K prevents disconnected pices
of Ω from moving too far away from each other.

The constant

γ > 0 (1.5)

is another paramter of the problem. By tuning γ we can quantitatively adjust the strength of the perimeter
term of J versus the strength of the integral term.

Our study of problem (1.1) is partially motivated by the nanostructures of diblock copolymers. A
diblock copolymer molecule is a linear sub-chain of A-monomers grafted covalently to another sub-chain of
B-monomers. Because of the repulsion between the unlike monomers, the different type sub-chains tend
to segregate, but as they are chemically bonded in chain molecules, segregation of sub-chains cannot lead
to a macroscopic phase separation. Only a local micro-phase separation occurs: micro-domains rich in A
monomers and micro-domains rich in B monomers emerge as a result. These micro-domains form patterns
known as morphological phases. The widely observed morphological phases in diblock copolymers are the
lamellar phase, the cylindrical phase, and the spherical phase [2].

When temperature is low, the A-monomers and the B-monomers in a diblock copolymer separate fully.
The A-monomers form a subset in the sample space and the B-monomers form the compliment subset. In
the cylindrical phase the subset of the minority monomers is a union of many parallel cylinders whose cross
sections are discs of approximately the same radius. The first step to study the cylindrical phase is to isolate
one cylinder and consider a cross section which is approximately a disc. A single disc in R2 is thus a building
block and it can be analyzed by problem (1.1).

Ohta and Kawasaki [8] proposed a density functional theory to study diblock copolymers. In the strong
segregation region where A-monomers and B-monomers separate completely, their theory is reduced to a
geometric variational problem by a Γ-convergence argument [11]. The free energy of a diblock copolymer
sample on a bounded domain D takes the form

JOK(Ω) = PD(Ω) +
γ

2

∫
Ω

(−∆)−1(χΩ − ω)(x) dx (1.6)

where Ω is a subset of the domain D of the prescribed measure equal to ω|D|, ω ∈ (0, 1). In (1.6) PD(Ω) is the
perimeter of Ω in D, (−∆)−1 is the inverse of the negative Laplace operator with the zero Neumann boundary
condition (or the periodic boundary condition if D is a flat torus), and χΩ is the characteristic function of Ω.
This model has been studied extensively in the mathematical community in recent years. Many critical points
of JOK have been found that phenomenologically match experimental data [11, 12, 14, 6, 1, 3, 7, 5, 9, 10].
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Since the problem (1.6) is formulated on a bounded domain D, the operator (−∆)−1 depends on the
shape of D. It is an integral operator defined with the help of Green’s function G of (−∆)−1:

(−∆)−1(χΩ − ω)(x) =

∫
Ω

G(x, y) dy (1.7)

Consequently the second term in (1.6) can be written as∫
Ω

(−∆)−1(χΩ − ω)(x) dx =

∫
Ω

∫
Ω

G(x, y) dxdy (1.8)

In two dimensions, Green’s function G can be written as a sum of two parts:

G(x, y) =
1

2π
log

1

|x− y|
+R(x, y) (1.9)

where the logarithmic part is the fundamental solution of −∆ in R2, and R(x, y) is the regular part of G, a
smooth function dependent on the geometry of D.

It is often necessary to derive a model from JOK that is defined on the entire space Rd, d = 1, 2, or 3,
instead of a bounded domain D. For example, we may want to zoom in to study a small part of a diblock
copolymer system. Or we may have a physical or biological species of finite size living in an infinite sea. A
natural approach is to drop the regular part R and consider, in two dimensions,

JR2(Ω) = P(Ω) +
γ

2

∫
Ω

∫
Ω

1

2π
log

1

|x− y|
dxdy (1.10)

This was done in three dimensions by Ren and Wei in [15, 16, 17] to study torus like structures, and in two
dimensions by Ren and Zhang to study the stability of single disc and single ball configurations [18].

However JR2 in (1.10) has one shortcoming: the energy functional is not bounded below because
log 1
|x−y| → −∞ if |x − y| → ∞. If one takes Ω to be the union of two discs, say B(ξ1, r1) and B(ξ2, r2),

and sends |ξ1 − ξ2| → ∞, then JR2(B(ξ1, r1) ∪ B(ξ2, r2)) → −∞. In other words, the system likes to push
disconnected pieces infinitely away from each other.

Here we fix this problem by adding a quadratic term into the logrithmic kernel in (1.10) and consider J
of (1.1) with a new kernel K(t) of (1.4). The quadratic term t2 is more dominate when t is large, so that
K(t) → ∞ when t → ∞. This will prevent disconnected pieces from moving too far away from each other.
Apart from this improvement, most interesting features of JR2 are preserved in J .

In this paper we study two problems. First we consider a single disc Bρ in R2 of radius ρ satisfying the
area constraint in (1.2), i.e. πρ2 = m. It is easily seen to be a stationary point of J . We ask whether Bρ is
stable. To have a precise notion of stability, we will identify perturbations of Bρ as functions φ. The disc Bρ
corresponds to φ = 0. This technique turns the geometric variational problem (1.1) to a variational problem
with long range interaction on a function space, and transforms the critical point equation (1.18) of J to an
integro-differential equation. This approach will involve three function spaces, X , Y, and Z defined in (2.4),
(2.5), and (2.6) respectively. The functional J then becomes a functional defined on a neighborhood of 0 in
Y; the first variation of J , denoted J ′, becomes a nonlinear operator from a neighborhood of 0 in X to Z;
the second variation at Bρ, denobed J ′′(0), is a linear operator from X to Z. In Theorem 2.1 we find the
eigenvalues of J ′′(0). These eigenvalues are used to interprete the stability of Bρ. In Theorem 2.2 we prove
that if ρ is greater than or equal to 1

2
√
π

, then Bρ is stable for any γ > 0; if ρ is less than 1
2
√
π

, then there

exists a treshold value βρ > 0 such that Bρ is stable if γρ3 < βρ and unstable if γρ3 > βρ.
The second problem is about critical points of J that are assemblies of multiple perturbed discs. As we

have explained that JR2 , which has no quadratic term in the kernel, likes to push disconnected piece away
from each other, any union of multiple discs cannot be stable in JR2 . However, with the quadratic term in
the kernel, J behaves much better. We prove in Theorem 3.1 that for any integer N ≥ 2, there is a range
for parameters m and γ, where m is small, γ is suitably large, and J admits a stable stationary point which
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is a union of N perturbed discs of approximately the same radius. The centers of these discs are close to the
global minimum of a function F defined in terms of the kernel K in (3.2).

The first problem is studied in section 2 and the second problem in sections 3 through 5. In section 6 we
present some numerical minimization results of the function F .

We end the introduction with a review of the equation for critical points of J in the standard setting. Let Ω
be a subset of R2 with sufficiently smooth boundary ∂Ω. The inward pointing unit normal vector on ∂Ω is
denoted N. A deformation of Ω is a smooth function S : R2 × (−ε0, ε0)→ R2, ε0 > 0, such that S(x, 0) = x
for every x ∈ R2, and S(·, ε) : R2 → R2 is a diffeomorphism for every ε ∈ (−ε0, ε0). The infinitesimal element
of the deformation is

X(x) =
∂S(x, ε)

∂ε

∣∣∣
ε=0

, ∀x ∈ R2 (1.11)

The image of Ω under S(·, ε) is denoted Ωε. Then Ω0 = Ω.
There is a first variation formula:

dJ (Ωε)

dε

∣∣∣
ε=0

= −
∫
∂Ω

(κ(∂Ω) + γK[Ω])N ·X ds, (1.12)

In (1.12) κ(∂Ω) is the curvature of ∂Ω with respect to the inward pointing normal vector N. In particular,
if Ω were convex, κ(∂Ω) would be non-negative. Also K[Ω] denotes a function defined on R2 given by

K[Ω](x) =

∫
Ω

K(x− y) dy (1.13)

The integral on the right side of (1.12) is taken against the arc length element ds.
Another useful formula related to the deformation S is

d|Ωε|
dε

∣∣∣
ε=0

= −
∫
∂Ω

N ·X ds (1.14)

For applications in material systems with mass constraint we require that Ω in (1.1) be a measurable set of
the fixed measure as in (1.2). Then deformations of Ω must be measure preserving; namely |Ωε| = |Ω| = m
and (1.14) implies ∫

∂Ω

N ·X ds = 0 (1.15)

We say that Ω is a critical point of J if

dJ (Ωε)

dε

∣∣∣
ε=0

= 0 (1.16)

for any deformation S of Ω that preserves the measure of Ωε. Then by (1.12), (1.15) and (1.16), we deduce
that ∫

∂Ω

(κ(∂Ω) + γK[Ω])N ·X ds = 0 whenever

∫
∂Ω

N ·X ds = 0. (1.17)

This yields the equation for critical points of J :

κ(∂Ω) + γK[Ω] = C on ∂Ω (1.18)

where C ∈ R is a Lagrange multiplier corresponding to the constraint |Ω| = m, or condition (1.15).
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2 The single disc

The single disc is special. Denote by Bρ the disc of radius ρ > 0. Without the loss of generality, we assume
that Bρ is centered at the origin of R2. Since Bρ must satisfy the constraint |Ω| = m in (1.2),

πρ2 = m. (2.1)

In this section we replace m by ρ as the first parameter of the problem.
Since the curvature of the circle ∂Bρ is just the inverse of the radius ρ:

κ(∂Bρ) =
1

ρ
, (2.2)

and K[Bρ] is a radially symmetric function and hence a constant on ∂Bρ, Bρ satisfies the critical point
equation (1.18):

κ(∂Bρ) + γK[Bρ] = C on ∂Bρ. (2.3)

Therefore it is a critical point of J .
We identify perturbations of Bρ with functions in some Hilbert spaces. Define

X =

{
φ ∈W 2,2(S1) :

∫ 2π

0

φ(θ) dθ = 0

}
(2.4)

Y =

{
φ ∈W 1,2(S1) :

∫ 2π

0

φ(θ) dθ = 0

}
(2.5)

Z =

{
φ ∈ L2(S1) :

∫ 2π

0

φ(θ) dθ = 0

}
(2.6)

Here S1 is the unit circle in R2 centered at the origin, L2(S1) is the L2-Lebesgue space on S1, W 1,2(S1) is
the W 1,2-Sobolev space on S1, and W 2,2(S1) is the W 2,2-Sobolev space on S1. Note that

X ⊂ Y ⊂ Z ⊂ L2(S1). (2.7)

The inner product of L2(S1) is denoted

〈φ, ψ〉 =

∫ 2π

0

φ(θ)ψ(θ) dθ, (2.8)

which is inherited by Z. The norms of X , Y and Z are given respectively by

‖φ‖2X = 〈φ′′, φ′′〉+ 〈φ′, φ′〉+ 〈φ, φ〉 (2.9)

‖φ‖2Y = 〈φ′, φ′〉+ 〈φ, φ〉 (2.10)

‖φ‖2Z = 〈φ, φ〉, (2.11)

Then
Ωφ =

⋃
θ∈S1

{
teiθ : t ∈

[
0, (ρ2 + 2φ(θ))1/2

]}
(2.12)

defines a set if φ ∈ X , Y, or Z, and ρ2 + φ(θ) ≥ 0 for every θ ∈ S1.
Let δ0 > 0 and consider φ ∈ Y such that

‖φ‖Y ≤ δ0ρ2. (2.13)

Then for every θ ∈ S1,

ρ2 + 2φ(θ) ≥ ρ2 − 2‖φ‖L∞ ≥ ρ2 − 2C̃‖φ‖Y ≥ ρ2 − 2C̃δ0ρ
2 = (1− 2C̃δ0)ρ2 (2.14)
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where C̃ is a constant in the Sobolev embedding W 1,2(S1,R)→ L∞(S1,R); namely

‖f‖L∞ ≤ C̃‖f‖W 1,2 , ∀f ∈W 1,2(S1,R). (2.15)

If we make δ0 small so that
1− 2C̃δ0 > 0, (2.16)

then ρ2 + 2φ(θ) > 0 and φ defines a perturbed disc Ωφ.
Also note that

|Ωφ| =
∫ 2π

0

∫ (ρ2+2φ(θ))1/2

0

t dtdθ =

∫ 2π

0

ρ2 + 2φ(θ)

2
dθ = πρ2 +

∫ 2π

0

φ(θ) dθ, (2.17)

so the constraint (2.1) becomes the condition ∫ 2π

0

φ(θ) dθ = 0 (2.18)

in (2.4), (2.5), (2.6).
Now we treat J as a functional of φ and write

J (φ) = J (Ωφ). (2.19)

More specifically, in terms of φ, the two terms in J (φ) become

P(Ωφ) =

∫
2π

0

√
ρ2 + 2φ(θ) +

(φ′(θ))2

ρ2 + 2φ(θ)
dθ (2.20)

∫
Ωθ

∫
Ωθ

K(|x− y|) dxdy =

∫ 2π

0

∫ √ρ2+2φ(θ)

0

∫ 2π

0

∫ √ρ2+2φ(ω)

0

K(|teiθ − τeiω|)tτ dτdωdtdθ. (2.21)

In this paper we identify R2 with C and write eiθ in stead of (cos θ, sin θ) for simplicity.
Note that if φ = 0, then

Ω0 = Bρ (2.22)

and
J (0) = J (Bρ). (2.23)

This functional J of φ is defined in a neighborhood of 0 in Y:

Dom(J ) = {φ ∈ Y : ‖φ‖Y ≤ δ0ρ2} (2.24)

where δ0 is given in (2.13) and satisfies (2.16).
The first variation of J , denoted by J ′, may be regarded as a nonlinear operator from a subset of X to

Z so that
dJ (φ+ εψ)

dε

∣∣∣
ε=0

= 〈J ′(φ), ψ〉 (2.25)

The domain of J ′ is

Dom(J ′) = {φ ∈ X : ‖φ‖X ≤ δ0ρ2} (2.26)

Here δ0 is the same as in the definition of Dom(J ), but φ is taken to be in X instead of Y. Clearly
Dom(J ′) ⊂ Dom(J ).

Calculations show that

dJ (φ+ εψ)

dε

∣∣∣
ε=0

=

∫ 2π

0

(κ(φ)(θ) + γK[φ](θ))ψ(θ) dθ (2.27)
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where

κ(φ)(θ) =
ρ2 + 2φ(θ) + 3(φ′(θ))2

ρ2+2φ(θ) − φ
′′(θ)(

ρ2 + 2φ(θ) + (φ′(θ))2

ρ2+2φ(θ)

)3/2
, (2.28)

K[φ](θ) =

∫
Ωφ

K
(∣∣∣(ρ2 + 2φ(θ))1/2eiθ − y

∣∣∣) dy. (2.29)

Note that κ(φ) is the curvature of ∂Ωφ with respect to the inward pointing normal vector. Comparing (2.25)
and (2.27) we find that

〈J ′(φ), ψ〉 = 〈κ(φ) + γK[φ], ψ〉 (2.30)

for all ψ ∈ X . Since ψ is subject to the condition
∫ 2π

0
ψ(θ) dθ = 0, (2.30) implies that there exists C ∈ R

such that

J ′(φ) = κ(φ) + γK[φ]− C. (2.31)

Note that J ′(φ) is in Z, but κ(φ) + γK[φ] is in L2(S1), not necessarily in Z.
It is convenient to introduce a congruence relation ∼= in L2(S1). For ψ, η ∈ L2(S1), we say that ψ ∼= η if

there exists C ∈ R such that

ψ − η = C. (2.32)

The constant C can be found from ψ and η by averaging:

1

2π

∫ 2π

0

ψ(θ) dθ − 1

2π

∫ 2π

0

η(θ) dθ = C. (2.33)

The second variation of J , denoted by J ′′, is a map from Dom(J ′) to the space of bounded linear
operators from X to Z. Note that J ′′ has the same domain as J ′: Dom(J ′′) = Dom(J ′). At each
φ ∈ Dom(J ′), J ′′(φ) is a linear operator from X to Z such that

d2J (φ+ εψ)

dε2

∣∣∣
ε=0

= 〈J ′′(φ)(ψ), ψ〉 (2.34)

for all ψ ∈ X . In this section we only need the second variation at Bρ, i.e. φ = 0. Calculations show that

J ′′(0)(ψ)(θ) ∼= ρ−3(−ψ′′(θ)− ψ(θ))

+ γ

[∫ 2π

0

K
(
|ρeiθ − ρeiω|

)
ψ(ω) dω +

(
ρ−1

∫
Bρ

K ′
(
|ρeiθ − y|

) (ρeiθ − y) · eiθ
|ρeiθ − y|

dy

)
ψ(θ)

]
. (2.35)

Note that J ′′(0) is a self-adjoint operator defined on X ⊂ Z. Its spectrum consists of eigenvalues only. The
following theorem gives all the eigenvalues of this operator.

Theorem 2.1. At Bρ, the eigenvalues of J ′′(0) are λ(n), n = 1, 2, 3, ..., given by

λ(1) = 0,

λ(n) = ρ−3(n2 − 1) + γ

(
1

2n
− 1

2
+ 2πρ2

)
, n ≥ 2

and the corresponding eigen spaces are E(n) = {c1 cosnθ + c2 sinnθ : c1, c2 ∈ R}.
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Proof. We write

K(t) = L(t) +Q(t), where L(t) =
1

2π
log

1

t
, Q(t) = t2. (2.36)

Let ψ(θ) = einθ, n = ±1,±2, .... The theorem follows from the following computation.

einθ → ρ−3((−einθ)′′ − einθ) = ρ−3(n2 − 1)einθ (2.37)

einθ →
∫ 2π

0

L
(
|ρeiθ − ρeiω|

)
einω dω =

1

2|n|
einθ (2.38)

einθ →
∫ 2π

0

Q
(
|ρeiθ − ρeiω|

)
einω dω =


−2πρ2eiθ if n = 1

−2πρ2e−iθ if n = −1

0 if |n| 6= 1

(2.39)

einθ →

(
ρ−1

∫
Bρ

L′
(
|ρeiθ − y|

) (ρeiθ − y) · eiθ
|ρeiθ − y|

dy

)
einθ = −1

2
einθ (2.40)

einθ →

(
ρ−1

∫
Bρ

Q′
(
|ρeiθ − y|

) (ρeiθ − y) · eiθ
|ρeiθ − y|

dy

)
einθ = 2πρ2einθ. (2.41)

Here (2.38) and (2.40) may be less obvious. Because of the Fourier series

log |1− eiη| = −
∞∑
n=1

cosnη

n
= −

∞∑
n=−∞,n6=0

einη

2|n|
, (2.42)

one finds

einθ →
∫ 2π

0

log |1− ei(θ−ω)|einω dω =

{
− π
|n|e

inθ, if n 6= 0

0, if n = 0
. (2.43)

This proves (2.38). For the integral in (2.40), note

ρ−1

∫
Bρ

L′
(
|ρeiθ − y|

) (ρeiθ − y) · eiθ
|ρeiθ − y|

dy = − 1

2πρ

∫
Bρ

(
ρeiθ − y

)
· eiθ

|ρeiθ − y|2
dy (2.44)

= − 1

2π

∫
B1(0)

(eiθ − Y ) · eiθ

|eiθ − Y |2
dY. (2.45)

Let Y = eiθ(1− Z), and Z = reiβ . The disc B1(0) now becomes B1(1), the disc centered at 1 ∈ C ≡ R2 of
radius 1. Its boundary is parametrized in the polar coordinates by r = 2 cosβ. Then we have∫

B1(0)

(eiθ − Y ) · eiθ

|eiθ − Y |2
dY =

∫
B1(1)

eiθZ · eiθ

|Z|2
dZ =

∫ π/2

−π/2

∫ 2 cos β

0

cosβ drdβ = π, (2.46)

and (2.40) follows.

The zero eigenvalue λ(1) = 0 associated with the eigenfunctions cos θ and sin θ is the result of the
translation invariance of J : for any Ω ∈ A,

J (Ω) = J (ThΩ) (2.47)

for every h ∈ R2 where ThΩ = {x+ h : x ∈ Ω} ⊂ R2 is a translate of Ω by h.
The stability of Bρ is determined by the remaining eigenvalues. If all the remaining eigenvalues are

positive, then Bρ is a stable critical point; if one of the remaining eigenvalue is negative, then Bρ is an
unstable critical point. The next theorem gives the stability of Bρ in terms of the two parameters: ρ and γ.
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Theorem 2.2. The stability of Bρ follows from the following statements.

1. If ρ ≥ 1
2
√
π

, then for all γ > 0, λ(n) > 0, n = 2, 3, ....

2. If ρ < 1
2
√
π

, then there exists βρ > 0 such that all λ(n) > 0, n = 2, 3, ..., if γρ3 < βρ.

3. If ρ < 1
2
√
π

and γρ3 > βρ, then at least one λ(n) is negative.

4. If ρ < 1
2
√
π

and γρ3 = βρ, then all λ(n) ≥ 0 and at least one λ(n), n ≥ 2, equals 0.

Proof. By Theorem 2.1,

λ(n) = ρ−3(n2 − 1) + γ

(
1

2n
− 1

2
+ 2πρ2

)
, n = 2, 3, ... (2.48)

If ρ ≥ 1
2
√
π

, then − 1
2 + 2πρ2 ≥ 0, and hence all λ(n) > 0, n = 2, 3, ..., which proves part 1.

Let ρ < 1
2
√
π

. Introduce

gρ(n) =
− 1

2n + 1
2 − 2πρ2

n2 − 1
, n = 2, 3, ... (2.49)

so that

λ(n) = γ(n2 − 1)

(
1

γρ3
− gρ(n)

)
, n = 2, 3, ... (2.50)

by (2.48). Since 1
2 − 2πρ2 > 0, gρ(n) > 0 if n is sufficiently large. Also gρ(n) → 0 as n → ∞. Hence gρ

achieves a positive maximum value at some nρ ∈ {2, 3, ...}. Define βρ > 0 such that

1

βρ
= max{gρ(n) : n = 2, 3, ...} = gρ(nρ). (2.51)

If γρ3 < βρ, then
1

γρ3
> gρ(n), n = 2, 3, ... (2.52)

and all λ(n) > 0, proving part 2.
If γρ3 > βρ, then

1

γρ3
< gρ(nρ) (2.53)

and λ(nρ) < 0, proving part 3.
If γρ3 = βρ, then

1

γρ3
≥ gρ(n), n = 2, 3, ..., and

1

γρ3
= gρ(nρ). (2.54)

Therefore λ(n) ≥ 0, n = 2, 3, ..., and λ(nρ) = 0, proving part 4.

3 Multiple disc assemblies

Now we proceed to build critical points of J that are assemblies of perturbed discs. Let N ∈ {2, 3, ...},
ρ > 0, and write the constraint |Ω| = m on the measure of Ω as

|Ω| = Nπρ2 (3.1)

Henceforth we replace the parameter m in (1.2) by ρ and N . The main result is the following theorem which
is proved in this and the next two sections.
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Theorem 3.1. Let N be an integer ≥ 2 . For each η > 0, there exists δ > 0, depending on N and η only,
such that if

1. ρ < δ,

2. γρ3 < 12− η,

3. γρ3 log 1
ρ > 1 + η,

then there exists a critical point of J satisfying the constraint (3.1). Moreover, the following properties hold.

1. This critical point is the union of N disconnected components, and each component is close to a disc
of radius ρ centered at ξρ,j, j = 1, 2, ..., N .

2. As ρ→ 0, any accumulation point of (ξρ,1, ξρ,2, ..., ξρ,N ) is a global minimum of the function

F (ξ1, ξ2, ..., ξN ) =

N∑
j=1

N∑
k=1,6=j

K(|ξj − ξk|). (3.2)

3. This critical point is stable in a sense.

From now on N is a fixed positive integer greater than or equal to 2. Take N discs B(ξj , rj) centered at
ξj of radius rj subject to the constraint (3.1), i.e.

N∑
j=1

r2
j = Nρ2. (3.3)

We introduce two positive numbers δ1 and δ2 to specify the range of (ξ, r). For now we only require
δ1 > 0 and 0 < δ2 < 1, but more conditions on them will be added later. The ξj ’s must satisfy

4δ1 ≤ |ξj − ξk| ≤
1

4δ1
for all j 6= k (3.4)

and the rj ’s satisfy
|rj − ρ| ≤ δ2ρ (3.5)

The discs B(ξj , rj) must be mutually disjoint. For xj ∈ B(ξj , rj) and xk ∈ B(ξk, rk), j 6= k

|xj − xk| ≥ |ξj − ξk| − rj − rk ≥ 4δ1 − (ρ+ |rj − ρ|)− (ρ+ |rk − ρ|) ≥ 4δ1 − (ρ+ δ2ρ)− (ρ+ δ2ρ)

= 4δ1 − 2(1 + δ2)ρ (3.6)

Hence the B(ξj , rj)’s are disjoint if
4δ1 − 2(1 + δ2)ρ > 0 (3.7)

which is accomplished if ρ is sufficiently small.

Lemma 3.2.

J (∪Nj=1B(ξj , rj)) =

N∑
j=1

2πrj +
γ

2

N∑
j=1

N∑
k=1

∫
B(ξj ,rj)

∫
B(ξj ,rj)

K(|x− y|) dx dy

=

N∑
j=1

2πrj +
γ

2

 N∑
j=1

(
πr4
j

2
log

1

rj
+
πr4
j

8
+ π2r6

j

)

+

N∑
j=1

N∑
k=1,6=j

(
πr2
j r

2
k

2
log

1

|ξj − ξk|
+ π2r2

j r
2
k|ξj − ξk|2 +

π2r2
j r

2
k(r2

j + r2
k)

2

)
10



Proof. Clearly

P(∪Nj=1B(ξj , rj)) =

N∑
j=1

2πrj . (3.8)

Let X = teiθ, Y = eiθZ, and Z = ρeiβ . If 0 ≤ t ≤ 1, then, with the help of

log |1− ρeiβ | = −
∞∑
k=1

ρk cos kβ

k
, (3.9)

we compute∫
B1

log |X − Y | dY

=

∫ 1

0

∫ 2π

0

log |t− ρeiβ |ρ dβdρ

=

∫ t

0

∫ 2π

0

log |t− ρeiβ |ρ dβdρ+

∫ 1

t

∫ 2π

0

log |t− ρeiβ |ρ dβdρ

=

∫ t

0

∫ 2π

0

(
log t+ log |1− ρ

t
eiβ |
)
ρ dβdρ+

∫ 1

t

∫ 2π

0

(
log ρ+ log |1− t

ρ
e−iβ |

)
ρ dβdρ

=

∫ t

0

∫ 2π

0

(
log t−

∞∑
k=1

(ρ
t

)k cos kβ

k

)
ρ dβdρ+

∫ 1

t

∫ 2π

0

(
log ρ−

∞∑
k=1

(
t

ρ

)k
cos kβ

k

)
ρ dβdρ

=

∫ t

0

2π(log t)ρ dρ+

∫ 1

t

2πρ log ρ dρ

= πt2 log t+ 2π

(
−1

4
− t2

2
log t+

t2

4

)
=
π

2
(t2 − 1).

If X = teiθ with t > 1, then the calculations above change to∫
B1

log |X − Y | dY =

∫ 1

0

∫ 2π

0

log |t− ρeiβ |ρ dβdρ

=

∫ 1

0

∫ 2π

0

(
log t+ log |1− ρ

t
eiβ |
)
ρ dβdρ

=

∫ 1

0

∫ 2π

0

(
log t−

∞∑
k=1

(ρ
t

)k cos kβ

k

)
ρ dβdρ

=

∫ 1

0

2π(log t)ρ dρ

= π log t

Therefore ∫
B1

1

2π
log

1

|X − Y |
dY =


1

4

(
1− |X|2

)
, if 0 ≤ |X| ≤ 1

1

2
log

1

|X|
, if 1 < |X|

(3.10)

Also ∫
B1

|X − Y |2 dY = π|X|2 +
π

2
. (3.11)
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Hence ∫
B1

K(|X − Y |) dY =


1

4

(
1− |X|2

)
, if 0 ≤ |X| ≤ 1

1

2
log

1

|X|
, if 1 < |X|

+ π|X|2 +
π

2
(3.12)

Consequently∫
B1

∫
B1

K(|X − Y |) dXdY =

∫
B1

1− |X|2

4
dX +

∫
B1

(
π|X|2 +

π

2

)
dX =

π

8
+ π2 (3.13)

More generally,

∫
B(ξj ,rj)

K(|x− y|) dy =


r2
j

2
log

1

rj
+
r2
j

4

(
1− |x− ξj |

2

r2
j

)
, if 0 ≤ |x− ξj | ≤ rj

r2
j

2
log

1

|x− ξj |
, if rj < |x− ξj |

+ πr2
j |x− ξj |2 +

πr4
j

2
.

(3.14)
Then∫

B(ξj ,rj)

∫
B(ξj ,rj)

K(|x− y|) dxdy =
πr4
j

2
log

1

rj
+
πr4
j

8
+ π2r6

j (3.15)∫
B(ξj ,rj)

∫
B(ξk,rk)

K(|x− y|) dxdy =
πr2
j r

2
k

2
log

1

|ξj − ξk|
+ π2r2

j r
2
k|ξj − ξk|2 +

π2r2
j r

2
k(r2

j + r2
k)

2
(3.16)

where j 6= k, and the lemma follows from (3.8), (3.15), and (3.16).

Now we introduce perturbations of ∪Nj=1B(ξj , rj) and we proceed along the same line as in the single disc
case. Define

X =

φ = (φ1, φ2, ..., φN ) ∈W 2,2(S1,RN ) :

N∑
j=1

∫ 2π

0

φj(θ) dθ = 0

 (3.17)

Y =

φ = (φ1, φ2, ..., φN ) ∈W 1,2(S1,RN ) :

N∑
j=1

∫ 2π

0

φj(θ) dθ = 0

 (3.18)

Z =

φ = (φ1, φ2, ..., φN ) ∈ L2(S1,RN ) :

N∑
j=1

∫ 2π

0

φj(θ) dθ = 0

 . (3.19)

Note that

X ⊂ Y ⊂ Z ⊂ L2(S1,RN ). (3.20)

The inner product of L2(S1,RN ) is denoted

〈φ, ψ〉 =

N∑
j=1

∫ 2π

0

φj(θ)ψj(θ) dθ, (3.21)

and Z is the subspace of L2(S1,RN ) perpendicular to (1, 1, ..., 1). The norms of X , Y and Z are given
respectively by

‖φ‖2X = 〈φ′′, φ′′〉+ 〈φ′, φ′〉+ 〈φ, φ〉 (3.22)

‖φ‖2Y = 〈φ′, φ′〉+ 〈φ, φ〉 (3.23)

‖φ‖2Z = 〈φ, φ〉, (3.24)
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Given N distinct discs B(ξj , rj) centered at ξj of radius rj considered before, define a perturbation Ωφ
by

Ωφ =

N⋃
j=1

Ωφj , Ωφj =
⋃
θ∈S1

{
ξj + teiθ : t ∈

[
0,
(
r2
j + 2φj(θ)

)1/2]}
(3.25)

for φ ∈ Y sufficiently small.
We must ensure that each perturbed disc Ωφj is well defined; namely

r2
j + 2φj(θ) ≥ 0, ∀θ ∈ S1, j = 1, 2, ..., N (3.26)

This is one reason why the Y-norm of φ has to be small. To quantify this condition assume

‖φ‖Y ≤ δ0ρ2 (3.27)

where δ0 is to be determined. We have, for every θ ∈ S1,

r2
j + 2φj(θ) ≥ r2

j − 2‖φj‖L∞ ≥ r2
j − 2C̃‖φ‖Y ≥ r2

j − 2C̃δ0ρ
2

≥ (ρ− |rj − ρ|)2 − 2C̃δ0ρ
2 ≥ (ρ− δ2ρ)2 − 2C̃δ0ρ

2

=
(

(1− δ2)2 − 2C̃δ0

)
ρ2 (3.28)

Here C̃ is the same Sobolev embedding constant as in (2.15). If we make δ0 small enough so that

(1− δ2)2 − 2C̃δ0 > 0, (3.29)

then each Ωφj is a well defined perturbed disc. Condition (3.29) is met provided δ0 is small in comparison to
δ2. Henceforth δ0 is taken to satisfy (3.29); this δ0 is analogous to but different from the δ0 in the previous
section.

We also need to be certain that Ωφj do not intersect Ωφk whenever j 6= k. Let xj ∈ Ωφj . Note that

|xj − ξj |2 ≤ r2
j + 2‖φj‖L∞ ≤ (ρ+ |rj − ρ|)2 + 2C̃δ0ρ

2 ≤ (1 + δ2)2ρ2 + 2C̃δ0ρ
2

≤
(

(1 + δ2)2 + 2C̃δ0

)
ρ2 (3.30)

and consequently

|xj − xk| ≥ |ξj − ξk| − |xj − ξj | − |xk − ξk|

≥ 4δ1 − 2

√
(1 + δ2)2 + 2C̃δ0 ρ. (3.31)

Hence if we strengthen the condition (3.7) to

4δ1 − 2

√
(1 + δ2)2 + 2C̃δ0 ρ > 0, (3.32)

then Ωφj does not intersect Ωφk whenever j 6= k, and (3.32) can be achieved if ρ is small.
Now we treat J as a functional of φ and write

J (φ) = J (Ωφ). (3.33)

Note that if φ = (0, 0, ..., 0) which we simply denote by 0, then

Ω0 =

N⋃
j=1

B(ξj , rj) (3.34)
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and

J (0) = J (

N⋃
j=1

B(ξj , rj)) (3.35)

which is given in Lemma 3.2. This functional J of φ is defined for small ρ and the domain of J is a small
neighborhood of 0 in Y:

Dom(J ) = {φ ∈ Y : ‖φ‖Y ≤ δ0ρ2} (3.36)

where δ0 is given in (3.27) and satisfies (3.29). Then as we have just explained when ρ is small, every φ in
Dom(J ) represents a perturbation of ∪Nj=1B(ξj , rj).

The first variation of J , denoted by J ′, may be regarded as a nonlinear operator from a subset of X to
Z so that

dJ (φ+ εψ)

dε

∣∣∣
ε=0

= 〈J ′(φ), ψ〉, ∀ψ ∈ X . (3.37)

The domain of J ′ is

Dom(J ′) = {φ ∈ X : ‖φ‖X ≤ δ0ρ2}. (3.38)

Here δ0 is the same as in the definition of Dom(J ), but φ is taken to be in X instead of Y. Clearly
Dom(J ′) ⊂ Dom(J ).

Calculations show that

dJ (φ+ εψ)

dε

∣∣∣
ε=0

=

K∑
j=1

∫ 2π

0

(κj(φj)(θ) + γKj [φ](θ))ψj(θ) dθ (3.39)

where

κj(φj)(θ) =
r2
j + 2φj(θ) +

3(φ′
j(θ))

2

r2j+2φj(θ)
− φ′′j (θ)(

r2
j + 2φj(θ) +

(φ′
j(θ))

2

r2j+2φj(θ)

)3/2
(3.40)

Kj [φ](θ) =

∫
Ωφ

K
(∣∣∣ξj + (r2

j + 2φj(θ))
1/2eiθ − y

∣∣∣) dy. (3.41)

Note that κj(φj) is the curvature of ∂Ωφj . Let us define κ(φ) and K[φ], both in L2(S2,RN ), by

κ(φ) = (κ1(φ1), κ2(φ2), ..., κN (φN )) (3.42)

K[φ] = (K1[φ],K2[φ], ...,KN [φ]) . (3.43)

Then

dJ (φ+ εψ)

dε

∣∣∣
ε=0

= 〈κ(φ) + γK[φ], ψ〉. (3.44)

Comparing (3.37) and (3.44) we find that

〈J ′(φ), ψ〉 = 〈κ(φ) + γK[φ], ψ〉 (3.45)

for all ψ ∈ X . Since ψ ⊥ (1, 1, ..., 1), J ′(φ) and κ(φ)+γK[φ] differ by a scalar multiple of (1, 1, ..., 1); namely
there exists C ∈ R such that

J ′j (φ) = κj(φj) + γKj [φ]− C, j = 1, 2, ..., N. (3.46)
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Analogous to the setting in the previous section, we introduce a congruence relation ∼= for members in
L2(S1,RN ). This time ψ ∼= η if there exists C ∈ R such that

ψj − ηj = C for all j = 1, 2, ..., N. (3.47)

We may also abuse this notation and write ψj ∼= ηj , j = 1, 2, ..., N , in place of ψ ∼= η. Under this notation
(3.46) becomes

J ′(φ) ∼= κ(φ) + γK[φ]. (3.48)

Our approach to solve the equation

J ′(φ) = 0 (3.49)

is based on a type of Lyapunov-Schmidt reduction argument and consists of two steps. First in section 4 we
find a “pseudo-solution” which solves (3.49) up to a finite dimensional subspace. Then in the second step
we find an exact solution in section 5.

The pseudo-solution is found in a space X[ which is a subspace of X ; namely

X[ = X ∩ Z[ (3.50)

where

Z[ =

{
φ ∈ Z :

∫ 2π

0

φj(θ) dθ =

∫ 2π

0

φj(θ) cos θ dθ =

∫ 2π

0

φj(θ) sin θ dθ = 0, j = 1, 2, ..., N

}
. (3.51)

If φ ∈ X[ ∩Dom(J ′), then in terms of the set Ωφ, the condition∫ 2π

0

φj(θ) dθ = 0 (3.52)

means that the measure of each component Ωθj equals πr2
j . The condition∫ 2π

0

φj(θ) cos θ dθ =

∫ 2π

0

φj(θ) sin θ dθ = 0 (3.53)

says that Ωφj is “centered” at ξj .
Let Π be the orthogonal projection operator from Z to Z[.
We find J ′(0), the first variation of S at φ = 0, and estimate ΠJ ′(0).

Lemma 3.3.

J ′j (0) ∼=
1

rj
+ γ

r2
j

2
log

1

rj
+

3πr4
j

2
+

N∑
k=1,6=j

(
r2
k

2
log

1

|ξj + rjeiθ − ξk|
+ πr2

k|ξj + rje
iθ − ξk|2 +

πr4
k

2

)
Consequently there exist C ′1 > 0 and C1 > 0 such that

‖ΠJ ′(0)‖Z ≤ C ′1γρ4 ≤ C1ρ.

Proof. Since J ′(0) ∼= κ(0) + γK[0], one finds

κj(0)(θ) =
1

rj
, (3.54)
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and, from (3.14) and (3.41),

Kj [0](θ) =

N∑
k=1

∫
B(ξk,rk)

K(|ξj + rje
iθ − y|) dy

=
r2
j

2
log

1

rj
+

3πr4
j

2
+

N∑
k=1,k 6=j

[
r2
k

2
log

1

|ξj + rjeiθ − ξk|
+ πr2

k|ξj + rje
iθ − ξk|2 +

πr4
k

2

]
. (3.55)

Expand

log |ξj + rje
iθ − ξk| = log |ξj − ξk|+

ξj − ξk
|ξj − ξk|2

· rjeiθ +O(r2
j ) (3.56)

|ξj + rje
iθ − ξk|2 = |ξj − ξk|2 + 2(ξj − ξk) · rjeiθ + r2

j . (3.57)

When Π is applied, constant terms and terms that just involve cos θ and sin θ vanish and we arrive at the
conclusion of the lemma. Note that C ′1γρ

4 ≤ C1ρ because γρ3 < 12 − η which is the second condition of
Theorem 3.1.

The second derivative of J at φ ∈ Dom(J ′′) = Dom(J ′), denoted by J ′′(φ), is a linear operator from X
to Z so that

d2J (φ+ εψ)

dε2

∣∣∣
ε=0

= 〈J ′′(φ)(ψ), ψ〉 (3.58)

for all ψ ∈ X . Calculations show that the second variation at 0 is

J ′′j (0)(ψ)(θ) ∼= r−3
j (−ψ′′j (θ)− ψj(θ)) + γ

[
N∑
k=1

∫ 2π

0

K
(
|ξj + rje

iθ − ξk − rkeiω|
)
ψk(ω) dω

+

N∑
k=1

(
r−1
j

∫
B(ξk,rk)

K ′
(
|ξj + rje

iθ − y|
) (ξj + rje

iθ − y
)
· eiθ

|ξj + rjeiθ − y|
dy

)
ψj(θ)

]
. (3.59)

To find a pseudo-solution, we need to study ΠJ ′′(0)|X[ from X[ to Z[, which is the restriction of J ′′(0)
to X[ composed with Π. For simplicity we denote this operator just by ΠJ ′′(0).

Lemma 3.4. There exists c2 > 0 such that for every ψ ∈ X[,

1.
〈ΠJ ′′(0)(ψ), ψ〉 ≥ c2ρ−3‖ψ‖2Y

2.
‖ΠJ ′′(0)(ψ)‖Z ≥ c2ρ−3‖ψ‖X .

The operator ΠJ ′′(0) is bounded, one-to-one, and onto from X[ to Z[ with a bounded inverse. The sec-
ond assertion means that the norm of the inverse operator (ΠJ ′′(0))−1 : Z[ → X[ is bounded by 1

c2
ρ3:

‖(ΠJ ′′(0))−1‖ ≤ 1
c2
ρ3.

Proof. We decompose J ′′(0) into the sum of two operators

J ′′(0) = L+M (3.60)

The operator L is the main part of J ′′(0), given by

Lj(ψ)(θ) ∼= r−3
j (−ψ′′j (θ)− ψj(θ)) + γ

[∫ 2π

0

L(|rjeiθ − rjeiω|)ψj(ω) dω

+

(
r−1
j

∫
B(0,rj)

L′(|rjeiθ − y|)
(
rje

iθ − y
)
· eiθ

|rjeiθ − y|
dy

)
ψj(θ)

]
. (3.61)
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The operator M is the minor part given by

Mj(ψ)(θ) ∼= γ

[∫ 2π

0

Q
(
|rjeiθ − rjeiω|

)
ψj(ω) dω

+

(
r−1
j

∫
B(0,rj)

Q′
(
|rjeiθ − y|

) (rjeiθ − y) · eiθ
|rjeiθ − y|

dy

)
ψj(θ)

+

N∑
k=1, 6=j

∫ 2π

0

K
(
|ξj + rje

iθ − ξk − rkeiω|
)
ψk(ω) dω

+

N∑
k=1,6=j

(
r−1
j

∫
B(ξk,rk)

K ′
(
|ξj + rje

iθ − y|
) (ξj + rje

iθ − y
)
· eiθ

|ξj + rjeiθ − y|
dy

)
ψj(θ)

 . (3.62)

Decompose Z into

Z =

∞⊕
n=0

Zn (3.63)

Zn =
{
A cosnθ +B sin θ : A,B ∈ RN

}
, if n ≥ 1 (3.64)

Z0 =

A ∈ Rn :

N∑
j=1

Aj = 0

 . (3.65)

Then

Z[ =

∞⊕
n=2

Zn (3.66)

We see from (2.37), (2.38), (2.40) that for each n ≥ 1, Zn is an invariant subspece of the operator L, and
L is diagonalized in Zn. There are N eigenvalues in this subspace given by

λ(n, j) = r−3
j (n2 − 1) + γ

(
1

2n
− 1

2

)
, j = 1, 2, ..., N (3.67)

with two corresponding eigenvectors ej cosnθ and ej sinnθ where ej is the j-th standard unit vector in RN .
In the case of Z0, note that

1→ r−3
j (1′′ − 1) = −r−3

j (3.68)

1→
∫ 2π

0

L(rje
iθ − rjeiω|)1 dω = log

1

rj
(3.69)

1→

(
r−1
j

∫
B(0,rj)

L′
(
|rjeiθ − y|

) (rjeiθ − y) · eiθ
|rjeiθ − y|

dy

)
1 =

(
−1

2

)
1, (3.70)

so Z0 is also an invariant subspace of L, but L is not yet diagonalized in Z0. There are N − 1 eigenvalues
λ(0, j), j = 1, 2, ..., N − 1, in this subspace, but we do not need to find them in this work, since we only need
to study L on X[ ⊂ Z[ and Z[ ∩ Z0 = {0}.
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Because of (3.66), for every ψ ∈ X[ there exist An,j , Bn,j ∈ R such that

ψ(θ) =

∞∑
n=2

N∑
j=1

(An,jej cosnθ +Bn,jej sinnθ) (3.71)

L(ψ)(θ) =

∞∑
n=2

N∑
j=1

λ(n, j) (An,jej cosnθ +Bn,jej sinnθ) (3.72)

〈L(ψ), ψ〉 =

∞∑
n=2

N∑
j=1

λ(n, j)π(A2
n,j +B2

n,j) (3.73)

〈L(ψ),Lψ〉 =

∞∑
n=2

N∑
j=1

λ2(n, j)π(A2
n,j +B2

n,j) (3.74)

Also for n ≥ 2,

λ(n, j) = r−3
j n2

(
n2 − 1

n2

)(
1−

γr3
j

2n(n+ 1)

)
(3.75)

≥ r−3
j n2

(
1− 1

22

)(
1−

12− η
2

2 · 2 · (2 + 1)

)
(3.76)

= r−3
j n2

( η
32

)
(3.77)

To reach (3.76) we need the inequality

γr3
j ≤ 12− η

2
. (3.78)

Recall γρ3 < 12 − η, condition 2 of Theorem 3.1, and also rj satisfies (3.5), |rj − ρ| ≤ δ2ρ. Hence (3.78)
holds if δ2 is sufficiently small. Therefore

〈L(ψ), ψ〉 ≥
( η

32

) ∞∑
n=1

N∑
j=1

r−3
j πn2

(
A2
n,j +B2

n,j

)
(3.79)

〈L(ψ),L(ψ)〉 ≥
( η

32

)2 ∞∑
n=1

N∑
j=1

r−6
j πn4

(
A2
n,j +B2

n,j

)
(3.80)

On the other hand

‖ψ‖2Z =

∞∑
n=2

N∑
j=1

π
(
A2
n,j +B2

n,j

)
(3.81)

‖ψ‖2Y =

∞∑
n=2

N∑
j=1

π(n2 + 1)
(
A2
n,j +B2

n,j

)
(3.82)

‖ψ‖2X =

∞∑
n=2

N∑
j=1

π(n4 + n2 + 1)
(
A2
n,j +B2

n,j

)
(3.83)

Hence there exists c2 > 0 such that for all ψ ∈ X[,

〈L(ψ), ψ〉 ≥ 2c2ρ
−3‖ψ‖2Y , and ‖L(ψ)‖Z ≥ 2c2ρ

−3‖ψ‖X (3.84)
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Next we estimate M. We can find C ′2 > 0 such that for every ψ ∈ X[, the terms in (3.62) satisfy∣∣∣∣∫ 2π

0

Q
(
|rjeiθ − rjeiω|

)
ψj(ω) dω

∣∣∣∣ ≤ C ′2ρ2‖ψj‖L2 (3.85)

r−1
j

∫
B(0,rj)

Q′
(
|rjeiθ − y|

) (rjeiθ − y) · eiθ
|rjeiθ − y|

dy = 2πr2
j (3.86)∣∣∣∣∫ 2π

0

K
(
|ξj + rje

iθ − ξk − rkeiω|
)
ψk(ω) dω

∣∣∣∣ ≤ C ′2ρ‖ψj‖L2 (3.87)∣∣∣∣∣r−1
j

∫
B(ξk,rk)

K ′
(
|ξj + rje

iθ − y|
) (ξj + rje

iθ − y
)
· eiθ

|ξj + rjeiθ − y|
dy

∣∣∣∣∣ ≤ C ′2ρ (3.88)

uniformly with respect to θ. Here (3.87) may be less obvious. It holds because
∫ 2π

0
ψk(ω) dω = 0 when

ψ ∈ X[, ∫ 2π

0

K
(
|ξj + rje

iθ − ξk − rkeiω|
)
ψk(ω) dω

=

∫ 2π

0

(
K
(
|ξj + rje

iθ − ξk − rkeiω|
)
−K(|ξj − ξk|)

)
ψk(ω) dω (3.89)

and
K
(
|ξj + rje

iθ − ξk − rkeiω|
)
−K(|ξj − ξk|) = O(ρ) (3.90)

uniformly with respect to θ and ω. By (3.85), (3.86), (3.87), and (3.88), we deduce that there exists C2 > 0
such that for all ψ ∈ X[,

‖ΠM(ψ)‖Z ≤ ‖M(ψ)‖Z ≤ C2γρ‖ψ‖Z (3.91)

On X[, since ΠL = L, ΠJ ′′(0) = L+ ΠM. Then by (3.84) and (3.91), for all ψ ∈ X[,

〈ΠJ ′′(0)(ψ), ψ〉 = 〈L(ψ), ψ〉+ 〈ΠM(ψ), ψ〉
≥ 2c2ρ

−3‖ψ‖2Y − C2γρ‖ψ‖2Z
≥ (2c2ρ

−3 − C2γρ)‖ψ‖2Y
≥ c2ρ−3‖ψ‖2Y (3.92)

‖ΠJ ′′(0)(ψ)‖Z ≥ ‖L(ψ)‖Z − ‖M(ψ)‖Z
≥ 2c2ρ

−3‖ψ‖X − C2γρ‖ψ‖Z
≥ (2c2ρ

−3 − C2γρ)‖ψ‖X
≥ c2ρ−3‖ψ‖X (3.93)

if ρ is sufficiently small. Again we have used γρ3 < 12− η. This proves part 1 and part 2.
A weaker version of part 2 is

‖ΠJ ′′(0)(u)‖Z ≥ c2ρ−3‖u‖Z , for all u ∈ X[, (3.94)

It implies that ΠJ ′′(0) is one-to-one.
Let v ∈ Z[ be perpendicular to the range of ΠJ ′′(0), i.e. 〈ΠJ ′′(0)(u), v〉 = 0 for all u ∈ X[. Since ΠJ ′′(0)

is a self-adjoint operator on Z[ with the domain X[ ⊂ Z[, one deduces that v ∈ X[ and ΠJ ′′(0)(v) = 0. By
the injectiveness of ΠJ ′′(0), v = 0. Hence the range of ΠJ ′′(0) is dense in Z[.

To show that ΠJ ′′(0) is surjective, let w ∈ Z[. There exist un ∈ X[ such that ΠJ ′′(0)(un) → w in Z[.
Therefore ΠJ ′′(0)(un) is a Cauchy sequence in Z[. By (3.94), un is also a Cauchy sequence in Z[. There
exists u ∈ Zb such that un → u in Zb. As a self-adjoint operator, ΠJ ′′(0) has a closed graph in Z[ ×Z[, so
(u,w) is on this graph. Hence u ∈ Xb and ΠJ ′′(0)(u) = w; This proves the last statement.
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Also needed is an estimate on the third variation of J .

Lemma 3.5. There exist C ′3 > 0 and C3 > 0 such that for all φ ∈ Dom(J ′), the following estimates hold
for all u ∈ X and v ∈ X ,

1.
|〈J ′′′(φ)(u, v), v〉| ≤ C ′3

(
ρ−5 + γρ−2

)
‖u‖X ‖v‖

2
Y ≤ C3ρ

−5 ‖u‖X ‖v‖
2
Y ,

2.
||J ′′′(φ)(u, v)||Z ≤ C ′3

(
ρ−5 + γρ−2

)
‖u‖X ‖v‖X ≤ C3ρ

−5 ‖u‖X ‖v‖X .

Proof. The proof of this lemma is similar to that of [13, Lemma 3.2] and [12, Lemma 6.1] and is omitted.

We close this section with a remark on our setting of J as a functional defined on DomJ ⊂ X . This
setup addresses perturbations of ∪Nj=1B(ξj , rj), and is dependent on ξ1, ξ2, ..., ξN , and r1, r2, ..., rN . We do
not emphasize this dependence in our notations in this section or the next section, but we will do so in
section 5 to exploit this dependence.

4 A pseudo-solution

In this section we solve the equation

ΠJ ′(φ) = 0, φ ∈ X[ ∩Dom(J ′). (4.1)

Any φ that solves this equation is termed a pseudo-solution. More explicitly, φ = (φ1, φ2, ..., φN ) is a
pseudo-solution if φ ∈ X[ ∩Dom(J ′) and

κj(φj)(θ) + γKj [φ](θ) = Aj cos θ +Bj sin θ + Cj , j = 1, 2, ..., N, (4.2)

for some Aj , Bj , Cj ∈ R.

Lemma 4.1. When ρ is sufficiently small, there exists ϕ ∈ X[ ∩Dom(J ′) such that ΠJ ′(ϕ) = 0. Moreover,

‖ϕ‖X ≤
2C1

c2
ρ4.

Recall that C1 comes from Lemma 3.3 and c2 comes from Lemma 3.4.

Proof. Expand J ′(φ) as
J ′(φ) = J ′(0) + J ′′(0)(φ) +R(φ) (4.3)

where R(φ), defined by (4.3), will be shown to be a higher order term. Turn the equation (4.1) to a fixed
point form:

φ = T (φ) (4.4)

where
T (φ) = −(ΠJ ′′(0))−1(ΠJ ′(0) + ΠR(φ)) (4.5)

is an operator defined on

W = {φ ∈ X[ : ‖φ‖X ≤ ερ2}, (4.6)

and

ε = min

{
c2

4C3
,
δ0
2

}
. (4.7)
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Recall that c2 is from Lemma 3.4, C3 is from Lemma 3.5, and δ0 is from (3.27) satisfying (3.29). Since
ε < δ0, members in W all represent assemblies of perturbed discs and T is well defined on W.

By Lemmas 3.3 and 3.4.2

‖(ΠJ ′′(0))−1ΠJ ′(0)‖X ≤
1

c2
ρ3C1ρ =

C1

c2
ρ4. (4.8)

Lemma 3.5.2 implies that

‖R(φ)‖Z ≤
C3

2
ρ−5‖φ‖2X . (4.9)

and

‖(ΠJ ′′(0))−1ΠR(φ)‖X ≤
1

c2
ρ3C3

2
ρ−5‖φ‖2X =

C3

2c2
ρ−2‖φ‖2X . (4.10)

For φ ∈ W, by (4.5), (4.8), and (4.10) one deduces

‖T (φ)‖X ≤
C1

c2
ρ4 +

C3

2c2
ρ2ε2 =

(C1

c2
ρ2 +

C3

2c2
ε2
)
ρ2. (4.11)

Now we require ρ to be sufficiently small so that

C1

c2
ρ2 <

ε

2
(4.12)

and consequently, with the help of (4.7),

‖T (φ)‖X ≤
(
ε

2
+
ε

2

C3

c2
ε

)
ρ2 ≤ ερ2. (4.13)

Therefore T maps W into itself.
Next show that T is a contraction. Let φ, ψ ∈ W. First note that

T (φ)− T (ψ) = −(ΠJ ′′(0))−1 (Π (R(φ)−R(ψ))) . (4.14)

Because

R(φ)−R(ψ) = J ′(φ)− J ′(ψ)− J ′′(0)(φ− ψ), (4.15)

one finds, with the help of Lemma 3.5.2, that

‖R(φ)−R(ψ)‖Z ≤ ‖J ′(φ)− J ′(ψ)− J ′′(ψ)(φ− ψ)‖Z + ‖J ′′(ψ)(φ− ψ)− J ′′(0)(φ− ψ)‖Z

≤ C3

2
ρ−5‖φ− ψ‖2X + C3ρ

−5‖ψ‖X ‖φ− ψ‖X

≤ C3ρ
−5

(
1

2
‖φ− ψ‖X + ‖ψ‖X

)
‖φ− ψ‖X

≤ 2C3ερ
−3‖φ− ψ‖X . (4.16)

Then Lemma 3.4.2 and (4.7) imply that

‖T (φ)− T (ψ)‖X ≤
2ε C3

c2
‖φ− ψ‖X ≤

1

2
‖φ− ψ‖X . (4.17)

Hence T is a contraction mapping, and a unique fixed point, which we denote by ϕ, exists in W.
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By the definition of W, ‖ϕ‖X = O(ρ2). However, this can be improved to order O(ρ4), if one revisits the
equation ϕ = T (ϕ) and derives from (4.5), (4.8) and (4.10) that

‖ϕ‖X ≤ ‖(ΠJ ′′(0))−1ΠJ ′(0)‖X + ‖(ΠJ ′′(0))−1ΠR(ϕ)‖X ≤
C1

c2
ρ4 +

C3

2c2
ρ−2‖ϕ‖2X .

Rewrite the above as (
1− C3

2c2
ρ−2‖ϕ‖X

)
‖ϕ‖X ≤

C1

c2
ρ4. (4.18)

In (4.18) estimate

C3

2c2
ρ−2‖ϕ‖X ≤

C3

2c2
ε ≤ 1

8
(4.19)

by (4.7). The estimate of ϕ follows from (4.18) and (4.19).

The next two lemmas show some properties of the pseudo-solution ϕ. Lemma 4.2.1 says that ΠJ ′′(ϕ) is
positive definite, so ϕ locally minimizes J in X[. Lemma 4.3 gives a good estimate of J (ϕ) which is very
close to J (0).

Lemma 4.2. When ρ is sufficiently small, for all ψ ∈ X[,

1.
〈ΠJ ′′(ϕ)(ψ), ψ〉 ≥ c2

2
ρ−3‖ψ‖2Y

2.
‖ΠJ ′′(ϕ)(ψ)‖Z ≥

c2
2
ρ−3‖ψ‖X .

Proof. By Lemmas 3.4, 3.5 and 4.1,

〈ΠJ ′′(ϕ)(ψ), ψ〉 = 〈ΠJ ′′(0)(ψ), ψ〉+ 〈Π(J ′′(ϕ)− J ′′(0))ψ,ψ〉
≥ c2ρ

−3‖ψ‖2Y − C3ρ
−5‖ϕ‖X ‖ψ‖2Y

≥
(
c2 −

2C1C3

c2
ρ2

)
ρ−3‖u‖2Y ,

and

‖ΠJ ′′(ϕ)(ψ)‖Z ≥ ‖ΠJ ′′(0)(ψ)‖Z − ‖Π(J ′′(ϕ)− J ′′(0))ψ)‖Z
≥ c2ρ

−3‖ψ‖X − C3ρ
−5‖ϕ‖X ‖ψ‖X

≥
(
c2 −

2C1C3

c2
ρ2

)
ρ−3‖ψ‖X .

If ρ is sufficiently small, then 2C1C3

c2
ρ2 ≤ c2

2 and both parts of the lemma follow.

Lemma 4.3. It holds uniformly with respect to ξ and r that

J (ϕ) = J (0) +O(ρ5).

Proof. Expanding J (ϕ) yields

J (ϕ) = J (0) + 〈J ′(0), ϕ〉+
1

2
〈J ′′(0)(ϕ), ϕ〉+

1

6
〈J ′′′(tϕ)(ϕ,ϕ), ϕ〉 (4.20)
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for some t ∈ (0, 1). On the other hand expanding J ′(ϕ), and then applying Π give

‖ΠJ ′(ϕ)−ΠJ ′(0)−ΠJ ′(0)(ϕ)‖Z ≤ sup
t∈(0,1)

1

2
‖ΠJ ′′′(tϕ)(ϕ,ϕ)‖Z . (4.21)

Since ΠJ ′(ϕ) = 0, (4.21) shows that

‖ΠJ ′(0) + ΠJ ′′(0)(ϕ)‖Z ≤ sup
t∈(0,1)

1

2
‖ΠJ ′′′(tϕ)(ϕ,ϕ)‖Z ,

which implies that

〈ΠJ ′(0), ϕ〉+ 〈ΠJ ′′(0)(ϕ), ϕ〉 ≤

(
sup
t∈(0,1)

1

2
‖ΠJ ′′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X . (4.22)

Since ϕ ∈ X[,
〈ΠJ ′(0), ϕ〉 = 〈J ′(0), ϕ〉, 〈ΠJ ′′(0)(ϕ), ϕ〉 = 〈J ′′(0)(ϕ), ϕ〉. (4.23)

Then (4.22) shows that

〈J ′(0), ϕ〉+ 〈J ′′(0)(ϕ), ϕ〉 ≤

(
sup
t∈(0,1)

1

2
‖ΠJ ′′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X . (4.24)

By (4.24), (4.20) yields that∣∣∣∣J (ϕ)− J (0)− 1

2
〈J ′(0), ϕ〉

∣∣∣∣ ≤ 5

12

(
sup
t∈(0,1)

‖J ′′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X .

Therefore Lemma 3.3, (4.23), Lemma 3.5.2 and Lemma 4.1 imply that

|J (ϕ)− J (0)| ≤ 1

2
|〈J ′(0), ϕ〉|+ 5

12

(
sup
t∈(0,1)

‖J ′′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X

=
1

2
|〈ΠJ ′(0), ϕ〉|+ 5

12

(
sup
t∈(0,1)

‖J ′′′(tϕ)(ϕ,ϕ)‖Z

)
‖ϕ‖X

≤ 1

2
C1ρ

2C1

c2
ρ4 +

5

12
C3ρ

−5

(
2C1

c2
ρ4

)3

=
C2

1

c2
ρ5 +

10C3C
3
1

3c32
ρ7.

This completes the proof.

5 The reduced problem

In this section we explore the roles played by the centers ξj and the radii rj of ∪Nj=1B(ξj , rj). Write
ξ = (ξ1, ξ2, ..., ξN ), r = (r1, r2, ..., rN ), and denote the pseudo-solution ϕ found in the last section by ϕ(·, ξ, r).
We will see that if ξ and r are chosen properly, the pseudo-solution turns out to be an exact solution.

The domain for (ξ, r) is defined in (3.4) and (3.5) which we now denote by

M =

(ξ, r) ∈ R3N : 4δ1 ≤ |ξj − ξk| ≤
1

4δ1
∀j 6= k, |rj − ρ| ≤ δ2ρ ∀j,

N∑
j=1

r2
j = Nρ2

 ; (5.1)

M is an 3N − 1 dimensional submanifold with boundary in R3N . Define a function J by

J(ξ, r) = J (ϕ(·, ξ, r)), (ξ, r) ∈M. (5.2)
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Lemma 5.1. If (ξc, rc) in the interior of M is a critical point of the function J , then ϕ(·, ξc, rc) is a critical
point of the funcional J .

Proof. Recall the general first variation formula (1.12) for Ω deformed to Ωε:

∂J (Ωε)

∂ε

∣∣∣
ε=0

= −
∫
∂Ω

(κ+ γK[Ω])N ·X ds = −
N∑
j=1

∫
∂Ωj

(κ(∂Ωj) + γK[Ω])Nj ·Xj ds (5.3)

where the Ωj ’s are the components of Ω. Let Ωϕ(·,ξ,r) be the union of perturbed discs specified by ϕ(·, ξ, r).
Since ΠJ ′(ϕ) = 0, there exist Aj(ξ, r), Bj(ξ, r), and Cj(ξ, r) such that on ∂Ωϕj(·,ξ,r)

κj(ϕj) + γKj [ϕ] = Aj(ξ, r) cos θ +Bj(ξ, r) sin θ + Cj(ξ, r) (5.4)

Let the boundary of the component Ωϕj(·,ξ,r) be parametrized by Rj ; namely

Rj(θ) = ξj +
√
r2
j + 2ϕj(θ, ξ, r) e

iθ, j = 1, 2, ..., N. (5.5)

The unit tangent and normal vectors of Rj are

Tj(θ) =
∂Rj(θ)
∂θ∣∣∂Rj(θ)
∂θ

∣∣ , and Nj(θ) = iTj(θ), (5.6)

respectively. Since ds =
∣∣∂Rj(θ)

∂θ

∣∣dθ,
Tj(θ)

ds

dθ
=
∂Rj(θ)

∂θ
=

∂ϕj
∂θ√

r2
j + 2ϕj

eiθ +
√
r2
j + 2ϕj i e

iθ (5.7)

Nj(θ)
ds

dθ
=

∂ϕj
∂θ√

r2
j + 2ϕj

i eiθ −
√
r2
j + 2ϕj e

iθ. (5.8)

In (5.3), κj is the curvature of Rj , and Nj points inwards.
In this proof we generate deformations by varying (ξ, r) in M . They supply Xj in (5.3). First take ξk,1,

the horizontal coordinate of the k-th center, to be a variable and keep the other centers fixed. This amounts
to moving Ωϕk(·,ξ,r) horizontally while changing the shape of Ωϕ(·,ξ,r) slightly. Then

Xk =
∂Rk

∂ξk,1
= (1, 0) +

∂ϕk
∂ξk,1√
r2
k + 2ϕk

eiθ (5.9)

Nk ·Xk
ds

dθ
= −

∂ϕk
∂θ√

r2
k + 2ϕk

sin θ −
√
r2
k + 2ϕk cos θ − ∂ϕk

∂ξk,1
, (5.10)

Xj =
∂Rj

∂ξk,1
=

∂ϕj
∂ξk,1√
r2
j + 2ϕj

eiθ, j 6= k (5.11)

Nj ·Xj
ds

dθ
= − ∂ϕj

∂ξk,1
, j 6= k (5.12)

Since ϕ ∈ X[, ∫ 2π

0

ϕj dθ =

∫ 2π

0

ϕj cos θ dθ =

∫ 2π

0

ϕj sin θ dθ = 0. (5.13)

It follows that ∫ 2π

0

∂ϕj
∂ξk,1

dθ =

∫ 2π

0

∂ϕj
∂ξk,1

cos θ dθ =

∫ 2π

0

∂ϕj
∂ξk,1

sin θ dθ = 0. (5.14)
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Because ∫
∂Ωϕ,k

Nk ·Xk ds =

∫ 2π

0

[
− d

dθ

(√
r2
1 + 2ϕ1 sin θ

)
− ∂ϕk
∂ξk,1

]
dθ = 0, (5.15)∫

∂Ωϕ,j

Nj ·Xj ds =

∫ 2π

0

− ∂ϕj
∂ξk,1

dθ = 0, j 6= k (5.16)

by (5.10), (5.12), and (5.14), one deduces from (5.3), (5.4), (5.10), (5.12), (5.14), (5.15), and (5.16),

∂J (Ωϕ(·,ξ,r))

∂ξk,1
= −

N∑
j=1

∫ 2π

0

(Aj(ξ, r) cos θ +Bj(ξ, r) sin θ + Cj(ξ, r)) Nj ·Xj ds.

=

∫ 2π

0

(Ak(ξ, r) cos θ +Bk(ξ, r) sin θ)

(
∂ϕk
∂θ√

r2
k + 2ϕk

sin θ +
√
r2
k + 2ϕk cos θ

)
dθ

= Ak(ξ, r)(O(ρ3) + πrk) +Bk(ξ, r)O(ρ3). (5.17)

Here note that, by Lemma 4.1,

ϕk(θ, ξ, r) = O(ρ4), and
∂ϕk(θ, ξ, r)

∂θ
= O(ρ4) (5.18)

uniformly with respect to θ, ξ, and r.
If we vary ξk,2 but hold other parameters, a similar argument shows that

∂J (Ωϕ(·,ξ,r))

∂ξk,2
= Ak(ξ, r)O(ρ3) +Bk(ξ, r)(O(ρ3) + πrk) (5.19)

At the critical point (ξc, rc) of the function J ,

0 =
∂J(ξc, rc)

∂ξk,1
=
∂J (Ωϕ(·,ξ,r))

∂ξk,1

∣∣∣
(ξc,rc)

= Ak(ξc, rc)(O(ρ3) + πrc,k) +Bk(ξc, rc)O(ρ3) (5.20)

0 =
∂J(ξc, rc)

∂ξk,2
=
∂J (Ωϕ(·,ξ,r))

∂ξk,2

∣∣∣
(ξc,rc)

= Ak(ξc, rc)(O(ρ3)) +Bk(ξc, rc)(O(ρ3) + πrc,k) (5.21)

Hence Ak(ξc, rc) and Bk(ξc, rc) satisfy a homogenous linear 2 by 2 system, and this system is non-singular
if ρ is small. Therefore

Ak(ξc, rc) = Bk(ξc, rc) = 0. (5.22)

Now we are going to vary rk, but it is more convenient to use wk = r2
k instead. Then

Xk =
∂Rk

∂wk
=

∂ϕk
∂wk

+ 1√
r2
k + 2ϕk

eiθ (5.23)

Nk ·Xk
ds

dθ
= − ∂ϕj

∂wk
− 1, (5.24)

Xj =
∂Rj

∂wk
=

∂ϕj
∂wk√
r2
j + 2ϕj

eiθ, j 6= k (5.25)

Nj ·Xj
ds

dθ
= − ∂ϕj

∂wk
, j 6= k (5.26)

Again by (5.13), ∫ 2π

0

∂ϕj
∂wk

dθ =

∫ 2π

0

∂ϕj
∂wk

cos θ dθ =

∫ 2π

0

∂ϕj
∂wk

sin θ dθ = 0. (5.27)
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One deduces from (5.3), (5.4), (5.24), (5.26), and (5.27),

∂J (Ωϕ(·,ξ,r))

∂wk
= −

N∑
j=1

∫ 2π

0

(Aj(ξ, r) cos θ +Bj(ξ, r) sin θ + Cj(ξ, r)) Nj ·Xj ds. (5.28)

=

∫ 2π

0

(Ak(ξ, r) cos θ +Bk(ξ, r) sin θ + Ck(ξ, r)) (−1) dθ (5.29)

= −2πCk(ξ, r) (5.30)

At the critical point (ξc, rc) of the function J , because of the constraint (3.1), i.e.

N∑
j=1

wj = Nρ2, (5.31)

we find

µ =
∂J(ξc, rc)

∂wk
=
∂J (Ωϕ(·,ξ,r))

∂wk

∣∣∣
(ξc,rc)

= −2πCk(ξc, rc) (5.32)

where µ is the Lagrange multiplier corresponding to the constraint. Hence by (5.4), (5.22), and (5.32)

κj(∂Ωϕj(·,ξc,rc)) + γKj [Ωϕ(·,ξc,rc)] = − µ

2π
, j = 1, 2, ..., N. (5.33)

This shows that Ωϕ(·,ξc,rc) is a critical point of J according to (1.18). In terms of J ′, since

J ′(ϕ(·, ξc, rc)) ∼= κ(ϕ(·, ξc, rc)) +K[ϕ(·, ξc, rc)] (5.34)

by (3.48), (5.33) implies

J ′(ϕ(·, ξc, rc)) ∼= −
µ

2π
(1, 1, ..., 1) (5.35)

This means that J ′(ϕ(·, ξc, rc)) is a scalar multiple of (1, 1, ..., 1). But J ′(ϕ(·, ξc, rc)) is in Z which is
perpendicular to (1, 1, ..., 1). Hence

J ′(ϕ(·, ξc, rc)) = 0. (5.36)

This proves the lemma.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Recall that J is defined on M , a 3N − 1 dimensional submanifold with boundary.
Although it is a closed subset of R3N , M is unbounded, and hence not compact. However, due to the
translation invariance (2.47) of J , we can assume that ξ1 is the origin and consider the bounded subset

M0 = {(ξ, r) ∈M : ξ1 = (0, 0)} ⊂M. (5.37)

Then M0 is a compact 3N − 3 dimensional submanifold with boundary in R3N .
Let (ξρ, rρ) be a minimum of J on M0. We proceed to show that when ρ is sufficiently small, (ξρ, rρ) is

in the interior of M0 and hence also in the interior of M .
By Lemmas 3.2 and 4.3 we deduce

J(ξ, r) =

N∑
j=1

2πrj +
γ

2

 N∑
j=1

(
πr4
j

2
log

1

rj
+
πr4
j

8

)

+
N∑
j=1

N∑
k=1,6=j

(
πr2
j r

2
k

2
log

1

|ξj − ξk|
+ π2r2

j r
2
k|ξj − ξk|2

)+O(γρ6) (5.38)
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Note that the O(ρ5) term from Lemma 4.3 is absorbed into the O(γρ6) term above since γρ3 < 12− η.
First we pick out the leading order term so that

J(ξ, r) =

N∑
j=1

2πrj +
γ

2

N∑
j=1

(
πr4
j

2
log

1

rj

)
+O(γρ4) (5.39)

Introduce

Wj =

(
rj
ρ

)2

, (1− δ2)2 ≤Wj ≤ (1 + δ2)2,

N∑
j=1

Wj = N. (5.40)

Then

J(ξ, r) =

N∑
j=1

2πρ
√
Wj +

γ

2

N∑
j=1

(
πW 2

j

2
ρ4 log

1

ρ

)
+O(γρ4) (5.41)

1

γρ4 log 1
ρ

J(ξ, r) =

N∑
j=1

((
1

γρ3 log 1
ρ

)
2π
√
Wj +

πW 2
j

4

)
+O

(
1

log 1
ρ

)
. (5.42)

Hence as ρ→ 0,

1

γρ4 log 1
ρ

J(ξ, r)→ 2π

N∑
j=1

(
β
√
Wj +

W 2
j

8

)
(5.43)

uniformly with respect to ξ and W , where

1

γρ3 log 1
ρ

→ β ∈
[
0,

1

1 + η

]
(5.44)

as ρ→ 0 possibly along a subsequence, since

γρ3 log
1

ρ
> 1 + η (5.45)

which is condition 3 of Theorem 3.1. Take δ2 sufficiently small so that the function

q → f(q) = β
√
q +

q2

8
, q ∈

[
(1− δ2)2, (1 + δ2)2

]
(5.46)

is convex on [(1− δ2)2, (1 + δ2)2]. This δ2 exists since

f ′′(1) =

(
− β

4q3/2
+

1

4

) ∣∣∣
q=1

= −β − 1

4
> 0 (5.47)

by (5.44). Hence the right side of (5.43) is minimized at W1 = W2 = ... = WN = 1 by Jensen’s inequality.
This implies that

rρ
ρ
→ (1, 1, ..., 1) as ρ→ 0. (5.48)

Next we return to (5.38) to study ξρ. Recall the function F in Theorem 3.1 whose domain is

Dom(F ) = {ξ = (ξ1, ξ2, ..., ξN ) ∈ RN : ξj 6= ξk if j 6= k} (5.49)

Since
lim
t→0+

K(t) = lim
t→∞

K(t) =∞, (5.50)
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F attains a global minimum in the domain of F . Choose δ1 small enough so that

ξ∗ ∈
{
ξ = (ξ1, ξ2, ..., ξN ) ∈ Dom(F ) : 4δ1 < |ξj − ξk| <

1

4δ1
for all j 6= k

}
(5.51)

for any global minimum ξ∗ of F .
We claim that ξρ converges to a global minimum of F along any convergent subsequence. Suppose this

is false. Let ξρ → ξ0 a ρ → 0, possibly along a subsequence, and ξ∗ be a global minimum of F . Then
F (ξ∗) < F (ξ0). Set

Wρ = (Wρ,1,Wρ,2, ...,Wρ,N ), Wρ,j =

(
rρ
ρ

)2

(5.52)

Then, since Wρ → (1, 1, ..., 1) as ρ→ 0 by (5.48), (5.38) implies that

1

γρ4
(J(ξ∗, rρ)− J(ξρ, rρ))

=
1

2

N∑
j=1

N∑
k=1,6=j

(
πWρ,jWρ,k

2
log

1

|ξ∗j − ξ∗k|
+ π2Wρ,jWρ,k|ξ∗j − ξ∗k|2

)

− 1

2

N∑
j=1

N∑
k=1,6=j

(
πWρ,jWρ,k

2
log

1

|ξρ,j − ξρ,k|
+ π2Wρ,jWρ,k|ξj − ξk|2

)
+O(ρ2)

→ π2

2
F (ξ∗)− π2

2
F (ξ0) < 0 (5.53)

in contradiction to the fact that (ξρ, rρ) is a minimum of J .
Because of (5.51), for any global minimum ξ∗ of F , ((ξ∗1 , ξ

∗
2 , ..., ξ

∗
N ), (ρ, ρ, ..., ρ)) is in the interior of M .

Since ξρ converges to a global minimum of F and (5.48) holds, (ξρ, rρ) is in the interior of M when ρ is
small. Then Lemma 5.1 asserts that ϕ(·, ξρ, rρ) is a critical point of J .

The stability of Ωϕ(·,ξρ,rρ) comes from its construction. First by Lemma 4.2, Ωϕ(·,ξ,r) locally minimizes
J in X[ for each (ξ, r). Then (ξρ, rρ) minimizes J among all (ξ, r) ∈ M . As a minimum of minimum, we
claim that Ωϕ(·,ξρ,rρ) is stable.

6 Discussion

Theorem 3.1 tells us that the critical point Ωϕ(·,ξρ,rρ) is an assembly of N perturbed discs of approximately
the same radius. The centers of these discs are close to a global minimum of F . To get a picture of Ωϕ(·,ξρ,rρ)

we need to find the global minima of F .
When N = 2, (ξ1, ξ2) is a global minimum of F if and only if |ξ1 − ξ2| is the minimum of K; namely

|ξ1 − ξ2| =
1

2
√
π

= 0.28209479... (6.1)

When N = 3, (ξ1, ξ2, ξ3) is a global minimum of F if and only if ξ1, ξ2, and ξ3 are the vertices of an
equilateral triangle in R2 whose side length is 1

2
√
π

.

When N ≥ 4, we resort to numerical calculations. Figure 1 gives the numerical results for K = 2, 3, ..., 13.
We also numercially minimize F for large K. Figures 2 and 3 show the results for K = 100 and K = 500. It
looks that when K is large, the small discs fill a large circular region in R2 with an approximate hexagonal
pattern.

If F has local minima, then our numerical computation may find a local minimum instead of a global
minimum. But a local minimum of F can still be useful. If F admits a strict local minimum in M0 in the
sense that there exists a neighborhood of the local minimum where F at every other point is strictly greather
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Figure 1: Numerical minima of F for K = 2, 3, ..., 13.
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Figure 2: Numerical minimum of F for K = 100.

than F at the local minimum, then a slight modification of the argument in section 6 shows that J has a
stable critical point which is an assembly of perturbed discs and the centers of the discs are close to this
local minimum of F .
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