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ABSTRACT. For the generalized surface quasi-geostrophic equation{
∂tθ + u · ∇θ = 0, in R2 × (0, T),

u = ∇⊥ψ, ψ = (−∆)−sθ in R2 × (0, T),

0 < s < 1, we consider for k ≥ 1 the problem of finding a family of k-vortex
solutions θε(x, t) such that as ε→ 0

θε(x, t) ⇀
k

∑
j=1

mjδ(x− ξ j(t))

for suitable trajectories for the vortices x = ξ j(t). We find such solutions in the
special cases of vortices travelling with constant speed along one axis or rotating
with same speed around the origin. In those cases the problem is reduced to a
fractional elliptic equation which is treated with singular perturbation methods.
A key element in our construction is a proof of the non-degeneracy of the radial
ground state for the so-called fractional plasma problem

(−∆)sW = (W − 1)γ
+, in R2, 1 < γ <

1 + s
1− s

whose existence and uniqueness have recently been proven in [11].

1. INTRODUCTION

In this paper we consider the problem{
∂tθ + u · ∇θ = 0, in R2 × (0, T)

u = ∇⊥ψ, ψ = (−∆)−sθ in R2 × (0, T),
(1.1)

where 0 < s < 1 and (a1, a2)
⊥ = (a2,−a1), which is known as the modified or

generalized surface quasi-geostrophic equation. Here θ is the active scalar being
transported by the velocity field u generated by θ and ψ is the stream function.
The operator (−∆)−s in Rn is the standard inverse of the fractional laplacian and
is given by the expression

(−∆)−sθ(x) =
∫

Rn
Gs(x− y)θ(y) ds, Gs(z) =

cn,s

|z|n−2s (1.2)

where

cn,s = π−
n
2 2−2s Γ( n−2s

2 )

Γ(s)
. (1.3)
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The case s = 1
2 in (1.1) corresponds to the surface quasi-geostrophic (SQG) equa-

tion while the limit s ↑ 1 corresponds to the 2D Euler equation. In the formulation
(1.1) we assume that θ is sufficiently regular so that ψ is C1.

Equations (1.1) for s = 1
2 first appeared as models of geophysical flows. Af-

ter the classical work by Constantin, Majda and Tabak [12], who pointed out its
formal mathematical analogies with the three dimensional Euler equation, these
equations have been widely investigated.

The Cauchy problem for (1.1) is a delicate matter. For 0 < s < 1, local well-
posedness is known for sufficiently regular initial data, see [9, 10, 12, 22] and the
references therein. Large class of initial data (patches) may produce finite time
singularities, see [21, 22].

Of special interest are solutions of (1.1) with highly concentrated values of the
active scalar θ(x, t) around a finite number of points ξ1(t), . . . , ξk(t) which are ide-
alized as regular solutions that approximate a singular object of the form

k

∑
i=1

miδ(x− ξi(t)), (1.4)

where δ(x) is the standard Dirac mass at the origin. The constants mi are called
the intensities of the vortices ξi(t). In the case s = 1, corresponding to the 2D
Euler equation, these solutions represent fluids with sharply concentrated vortici-
ties around the points ξi(t). In this setting the problem is classical and traces back
Kirchhoff. The location of the limiting point vortices is found by formal substitu-
tion, leading to the Hamiltonian system

ξ̇ j(t) =
1

2π

k

∑
i 6=j

mi
(ξi(t)− ξ j(t))⊥

|ξi(t)− ξ j(t)|2
j = 1, . . . , k. (1.5)

Finding regular solutions that approximate the superposition of point vortices
(1.4) for a given solution of system (1.5), is the classical vortex desingularization
problem. See the works [24, 15, 16, 7, 32] and references therein.

For the generalized SQG equation (1.1), the point vortex model corresponding
to a solution of the form (1.4) becomes

ξ̇ j(t) =
1

22s−1π

Γ(2− s)
Γ(s) ∑

i 6=j
mi

(ξi(t)− ξ j(t))⊥

|ξi(t)− ξ j(t)|4−2s , j = 1, . . . , k, (1.6)

see the recent work by Rosenzweig [31] and references therein.

The purpose of this paper is to construct regular solutions θ(x, t) which resem-
ble a superposition of point vortices of the form (1.4), where the k-tuple (ξ1(t), . . . , ξk(t))
represents a solution of system (1.6) which does not change form as time evolves.
More precisely, we focus on traveling and rotating solutions of system (1.6).

A traveling solution of (1.6) is one of the form

ξ j(t) = bj + cte2 (1.7)

where b1, . . . , bk are points in R2, the constant c ∈ R is the speed and without loss
of generality we take the travel direction to be e2 = (0, 1). Then (1.6) reduces to
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the system

ce2 =
Γ(2− s)

22s−1πΓ(s) ∑
i 6=j

mi
(bi − bj)

⊥

|bi − bj|4−2s , j = 1, . . . , k. (1.8)

A rotating solution of (1.6) is one of the form

ξ j(t) = Qαtbj, Qαt =

[
cos(αt) − sin(αt)
sin(αt) cos(αt)

]
(1.9)

and b1, . . . , bk ∈ R2. These are solutions of (1.6) if

αbj = −
Γ(2− s)

22s−1πΓ(s) ∑
i 6=j

mi
bi − bj

|bi − bj|4−2s , j = 1, . . . , k. (1.10)

For simplicity, we will concentrate on the most elementary solutions to (1.8)
and (1.10). For (1.8) we consider the traveling vortex pair, namely the solution
with k = 2, and

b1 = de1, b2 = −de1, e1 = (1, 0), m1 = −m2 = m,

c = −Γ(2− s)
4πΓ(s)

m
d3−2s ,

(1.11)

where d > 0.
In the case of rotating solutions, we consider the rotating polygon with equal

masses, that is, for k ≥ 2,

bj = ρe2πi j
k , mj = m, j = 0, . . . , k− 1,

α =
m

ρ2−2s
Γ(2− s)

2s+1πΓ(s)

k−1

∑
l=1

1
(1− cos( 2πl

k ))1−s
,

(1.12)

where ρ > 0.

1.1. Main results. In analogy with the solution (1.7) of (1.6), we look for traveling
solutions to (1.1) by requiring that

θ(x1, x2, t) = Θ(x1, x2 − ct), (1.13)

for some profile function Θ(x1, x2) defined on R2. In this case, the generalized
SQG equation (1.1) can be rewritten as the stationary problem

(∇⊥Ψ− ce2) · ∇Θ = 0, Ψ = (−∆)−sΘ. (1.14)

The condition that θ approximates (1.4) now becomes

Θ(x) ≈
k

∑
j=1

mjδ(x− bj). (1.15)

Similarly, associated to solutions (1.9) of system (1.6), we look for rotating solu-
tions θ(x) of (1.1) close to (1.4), by requiring that

θ(x, t) = Θ(Q−αtx), x ∈ R2, (1.16)

with Θ(x) also having the concentration behavior (1.15). Then (1.1) becomes

(∇⊥Ψ + αx⊥) · ∇Θ = 0, Ψ = (−∆)−sΘ. (1.17)
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Our first result states the existence of a traveling solution concentrated near the
vortex pair associated to the solution (1.7), (1.11) of system (1.8).

Theorem 1.1. Consider the traveling vortex pair given by (1.11). Then for ε > 0 small
there is a solution θε of (1.1) of the form (1.13) such that Θε is C1(R2), and

Θε(x) ⇀ mδ(x− b1)−mδ(x− b2) as ε→ 0, supp Θε ⊂
2⋃

j=1

BCε(bj),

where the convergence is in the sense of measures and C > 0 is a constant.

Similarly, we obtain rotating concentrated solutions near the vertices of the ro-
tating polygon solution (1.9), (1.12) of (1.10).

Theorem 1.2. Consider the rotating polygon given by (1.12). Then for ε > 0 small there
is a solution θε of (1.1) of the form (1.16) such that Θε is C1(R2),

Θε(x) ⇀ m
k

∑
j=1

δ(x− bj) as ε→ 0, supp Θε ⊂
k⋃

j=1

BCε(bj),

where the convergence is in the sense of measures and C > 0 is a constant.

A natural way of obtaining solutions to the stationary problem (1.14) is to lo-
cally impose that Θ(x) = f (Ψ(x) + cx1) for a sufficiently regular function f (u) so
that (1.14) locally becomes the elliptic equation

(−∆)sΨ = f (Ψ + cx1). (1.18)

Similarly, locally imposing Θ(x) = f (Ψ(x) + α |x|
2

2 ), problem (1.17) becomes

(−∆)sΨ = f
(

Ψ + α
|x|2

2

)
. (1.19)

Using this observation, Gravejat and Smets [20] have recently found solutions
Θ(x) to problem (1.14) for s = 1

2 , with compact support and odd symmetry in
x1. They use variational techniques applied to a suitable class of subcritical non-
linearities.

1.2. Extensions. Traveling solutions with multiple vortices can be found under
suitable non-degeneracy conditions for solutions of system (1.8). For instance,
following [23], we can consider configurations with k vortices with intensities 1
located at points p1, . . . , pk and k vortices with intensities −1 located at q1, . . . , qk.
We say that b = (p, q) = (p1, . . . , pk, q1, . . . , qk) is an array of traveling vortices if
it satisfies the following conditions.

∑
j 6=i

pi − pj

|pi − pj|4−2s −
k

∑
l=1

pi − ql
|pi − ql |4−2s = c

22s−1πΓ(s)
Γ(2− s)

e1, i = 1, . . . , k,

∑
l 6=m

qm − ql
|qm − ql |4−2s −

k

∑
j=1

qm − pj

|qm − pj|4−2s = −c
22s−1πΓ(s)

Γ(2− s)
e1, m = 1, . . . , k,

(1.20)
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FIGURE 1. Figure 1. Six vortices

where c ∈ R. The set of points (p, q) is called a symmetric array of traveling
vortices if in addition to (1.20) it satisfies

qi = − p̄i, i = 1, . . . , k;
there exists j0 such that p2j−1 = p̄2j, j = 1, . . . , j0
and Im(pj) = 0, for j = 2j0 + 1, . . . , k.

(1.21)

(Here z̄ denotes the conjugate of z and Im(z) is the imaginary part of z.) A sym-
metric array of traveling vortices (p, q) is called nondegenerate if the linearization
map at (p, q) among points satisfying (1.21) has only trivial kernel.

When s = 1 these definitions are introduced in [23]. There it is shown that the
roots of certain Adler-Moser polynomials are nondegenerate symmetric arrays of
traveling vortices with k = n(n+1)

2 for some integer n. As a consequence they
constructed multiple vortices to the traveling wave equation to Gross-Pitaevskii
equation.

By a perturbation argument in s, we also obtain that for each fixed k = n(n+1)
2

there exist nondegenerate symmetric arrays of traveling vortices when s < 1, |1−
s| � 1. Since the forces are analytic in s, we infer that except finite number of s,
for each fixed k = n(n+1)

2 , there exist a unique nondegenerate symmetric array of
traveling vortices. For general s ∈ (0, 1), it is an interesting and challenging ques-
tion to find nondegenerate symmetric arrays of traveling vortices. In the special
case s = 1

2 (the SQG case), we can use MatLab1 to compute numerically the exis-
tence of six nondegenerate symmetric arrays of traveling vortices (See Figure 1):
p1 = −q̄1 = (−1.026, 0.563), p2 = −q̄2 = (−1.026,−0.563), p3 = −q̄3 = (0.368, 0).

We state the following theorem on the existence of multiple vortex-anti vortex
solutions to (1.14).

Theorem 1.3. Let (p1, . . . , pk, q1, . . . , qk) be a nondegenerate symmetric array of travel-
ing vortices. Then for ε > 0 small, there exists a solution Θε to (1.14) such that

Θε(x) ⇀
k

∑
j=1

δ(x− pj)−
k

∑
j=1

δ(x− qj)

1We thank Prof. Yong Liu for the computations.
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as ε→ 0. Moreover supp Θε ⊂
⋃k

j=1 BCε(bj) and has Θε has the symmetries

Θε(x1, x2) = −Θε(−x1, x2) = Θε(x1,−x2) for all (x1, x2) ∈ R2.

A similar result can be found for the Euler equation case s = 1, applying the
results of [7].

More general traveling solutions than those in Theorem 1.3 can also be found.
Let us consider the functional of k points b = (b1, . . . , bk) ∈ R2k,

I(b) = c
k

∑
i=1

mi(bi · e1) +
Γ(1− s)

π22s−1Γ(s) ∑
i 6=j

mimj

|bi − bj|2−2s .

Critical points of I(b) correspond to solutions of system (1.8). The functional I is
invariant under translations along the e2-direction, and therefore all critical points
of I are degenerate. We say that a critical point b of I is non-degenerate up to
vertical translations, if D2 I(b) has a one-dimensional kernel. The following result
holds.

Theorem 1.4. If b is a critical point non-degenerate up to vertical translations then
there exists a solution Θε(x) of Equation (1.14) such that supp Θε ⊂

⋃k
j=1 BCε(bj) and

Θε(x) ⇀
k

∑
j=1

mjδ(x− bj) as ε→ 0.

A similar result holds in the case of rotating solutions. Let k ≥ 2 be an integer,
m1, . . . , mk ∈ R and α 6= 0. Let us consider the energy functional

J(b) =
α

2

k

∑
i=1

mi|bi|2 +
Γ(1− s)

π22s−1Γ(s) ∑
i 6=j

mimj

|bi − bj|2−2s ,

where b = (b1, . . . , bk) ∈ R2k. Critical points of J correspond to solutions of
(1.10). Since this functional is invariant under rotations around the origin, its crit-
ical points are always degenerate. We say that a critical point b is non-degenerate
up to rotations if D2 J(b) has a one-dimensional kernel.

Theorem 1.5. Let b = (b1, . . . , bk) be a critical point of J that is non-degenerate up to
rotations. Then for ε > 0 small there exists a solution Θε to (1.17) such that

Θε(x) ⇀
k

∑
j=1

mjδ(x− bj)

as ε→ 0. Moreover supp Θε ⊂
⋃k

j=1 BCε(bj).

In [6] a related problem in gravitation theory, consisting in the desingulariza-
tion of rotating point masses in a continuous model of stellar dynamics, has been
considered. The result obtained there is similar to Theorem 1.5 for s = 1

2 . Critical
points of J for s = 1

2 are called relative equilibria for the N-body problem. Their
study is classical in celestial mechanics. In particular, it is known that for almost
every choice of masses, critical points are non-degenerate up rotations and their
number is estimated, see [29]. See also [25, 30, 26, 27, 28] and references therein.
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1.3. The fractional plasma problem. The proof of theorems 1.1–1.5 consists of
gluing highly concentrated solutions of special elliptic equations of the form (1.18)
and (1.19). For this purpose we will use suitably scaled radial solutions of the
so-called fractional plasma problem. In any space dimension n ≥ 2, this is the
semi-linear elliptic problem{

(−∆)sW = (W − 1)γ
+ in Rn,

W(x)→ 0 as |x| → ∞,
(1.22)

where s ∈ (0, 1), 1 ≤ γ < n+2s
n−2s . Problem (1.22) arises in the context of aggregation-

diffusion equations, see [8].
When s = 1 this free boundary problem has been studied in [33, 34, 2, 5, 18].

For s = 1 solutions are radially symmetric up to translations and can be ana-
lyzed using ODE techniques. This is not possible in the nonlocal case s ∈ (0, 1)
and the analysis becomes substantially harder. Recently, in [11] it has been proven
that (1.22) has a unique radial solution. The proof relies on an application of a
monotonicity formula developed for the fractional Schrödinger equation in [19].

In this paper, we will use this ground state to (1.22) to construct solutions by a
Lyapunov-Schmidt reduction. Our first contribution in this paper is to derive the
non-degeneracy of the radial ground state solution of (1.22).

The paper is organized as follows. In section 2 we describe the elliptic equation
we use to prove Theorems 1.1, 1.3, and 1.4 and the form of the solution at main
order. In Section 3, we introduce the radial ground state solution to (1.22) and
study the non-degeneracy of the linearized operator around it. Section 4 is de-
voted to the proof of Theorem 1.1, with some some arguments deferred for later:
a solvability theory for the linearized equation is developed in section 5 and some
computations associated to the nonlinear problem are in section 6. We give some
ideas of the proofs of Theorems 1.2–1.5 in section 7.

2. AN ELLIPTIC EQUATION FOR CONCENTRATED SOLUTIONS OF (1.14)

To prove Theorems 1.1, 1.3 and 1.4 we need to find a family of solutions Θε(x)
to the equation

(∇⊥Ψ− ce2) · ∇Θ = 0, Ψ = (−∆)−sΘ, (2.1)

such that

Θε(x) ⇀
k

∑
j=1

mjδ(x− b0
j ),

for given intensities mj and a solution b0 = (b0
1, . . . , b0

k) of system (1.8). In order to
achieve this we consider the following elliptic problem.

(−∆)sψ = ε(2−2s)γ−2
k

∑
j=1

σj(σj(ψ + cx1)− ε2s−2λj)
γ
+χBδ(bj)

in R2,

ψ(x)→ 0 as |x| → ∞,

(2.2)

where we take σj = +1 if mj > 0 and = −1 if mj < 0. The scalars λj will be
suitably chosen later on. We also assume that 1 < γ < 2+2s

2−2s . The number δ > 0
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is fixed so that the balls Bδ(bj) are disjoint and the points b1, . . . , bk are close to
b0

1, . . . , b0
k .

We look for sufficiently smooth solutions ψ of problem (2.2) such that

Θε(x) := ε(2−2s)γ−2
k

∑
j=1

σj(σj(ψ + cx1)− ε2s−2λj)
γ
+χBδ(bj)

(x)

has its support contained in
⋃k

j=1 Bδ(bj). We readily check that the latter condition
guarantees that Θε(x) solves (2.1).

We will find a solution of problem (2.2) which at main order looks like a super-
position of sharply scaled similar radial profiles centered near each of the points bj.
In [11] it was proved that there exists a unique radial solution W(y) of the problem{

(−∆)sW = (W − 1)γ
+ in R2,

W(y)→ 0 as |y| → ∞,
(2.3)

where 0 < s < 1 and 1 < γ < 2+2s
2−2s . This solution is understood as a W ∈ L∞(R2)

with W(y)→ 0 as |y| → ∞ that satisfies the integral equation

W = (−∆)−s[(W − 1)γ
+] in R2. (2.4)

It turns out that W ∈ C1,β(R2) and it has has the precise asymptotic behavior

W(y) = Mγc2,s|y|−(2−2s)(1 + o(1)) as |y| → ∞, (2.5)

where Mγ =
∫

Rn(W − 1)γ
+dy > 0 and c2,s is given in (1.3).

We look for a solution of (2.2) that looks approximately like

ψ0(x) = ε2s−2
k

∑
j=1

σjµ
− 2s

γ−1
j W

( x− bj

εµj

)
, (2.6)

where µj are positive constants. Then as ε→ 0 we have

(−∆)sψ0(x) ⇀ Mγ

k

∑
j=1

σjµ
2(1− sγ

γ−1 )

j δ(x− bj).

Therefore we fix µj > 0 such that

Mγσjµ
2(1− sγ

γ−1 )

j = mj, j = 1, . . . , k, (2.7)

which is possible if in addition we assume that γ 6= 1
1−s .

We compute, for x ∈ Bδ(bl), assuming for simplicity that σl = 1,

(−∆)sψ0 − ε(2−2s)γ−2
k

∑
j=1

σj(σj(ψ0 + cx1)− ε2s−2λj)
γ
+χBδ(bj)

(2.8)

= ε−2µ
− 2sγ

γ−1
l

[(
W
( x− bl

εµl

)
− 1
)γ

+

−
(

W
( x− bl

εµl

)
+ ∑

j 6=l
σjµ

2s
γ−1
l µ

− 2s
γ−1

j W
( x− bj

εµj

)
+ cµ

2s
γ−1
l ε2−2sx1 − µ

2s
γ−1
l λl

)γ

+

]
.
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We note that ψ0 is a good approximation to a solution to (2.2) if the parameters λj
are chosen such that

∑
j 6=l

σjµ
2s

γ−1
l µ

− 2s
γ−1

j W
( bl − bj

εµj

)
+ cµ

2s
γ−1
l ε2−2sbl,1 − µ

2s
γ−1
l λl = −1. (2.9)

Similarly, if σl = −1 we impose that

−∑
j 6=l

σjµ
2s

γ−1
l µ

− 2s
γ−1

j W
( bl − bj

εµj

)
− cµ

2s
γ−1
l ε2−2sbl,1 − µ

2s
γ−1
l λl = −1. (2.10)

Using the expansion (2.5) we get that

λl = µ
− 2s

γ−1
l + O(ε2−2s)

as ε → 0. With this choice of λl , we find that the error of approximation created
by ψ0, has the estimate

ε2
{
(−∆)sψ0 − ε(2−2s)γ−2

k

∑
j=1

σj(σj(ψ0 + cx1)− ε2−2sλj)
γ
+χBδ(bj)

}
= O(ε3−2s)

k

∑
j=1

χBCε(bj)
. (2.11)

The proof of Theorems 1.1, 1.3 and (1.4) consists in finding a solution of problem
(2.2) as a suitable small perturbation of the function ψ0 defined above. Linearizing
the problem around ψ0 and a Lyapunov-Schmidt reduction procedure, transforms
the problem into one of adjusting the points bj as a small perturbation of a solution
of system (1.8). Nondegeneracy of the reduced limiting problem and that of the
linearized elliptic operator play a crucial role in the complete proof. The proofs of
Theorems 1.2 and 1.5 follow from similar considerations.

Of central importance will be the understanding of invertibility properties of
the linearized operator of equation (2.3), namely{

L0[φ] := (−∆)sφ− γ(W(y)− 1)γ−1
+ φ,

φ(y)→ 0 as |y| → ∞.

We will prove in Section 3 that the only decaying elements in the kernel of L0 are
the ones associated to the invariance of (2.3) under translations.

We will proceed with the detailed proof of Theorem 1.1 in section 4 below.

3. THE NONDEGENERACY OF THE BUILDING BLOCKS

Recently, in [11], the authors studied the fractional plasma equation:{
(−∆)sW = (W − 1)γ

+ in Rn,

W(y)→ 0 as |y| → ∞,
(3.1)

in the sense (2.4). where s ∈ (0, 1), 1 ≤ γ < n+2s
n−2s . and they proved the following:

Theorem 3.1 (Theorem 1.1 in [11]). There exists a unique radial solution W to equation
(3.1). W is of class C1,β for some β > 0. Moreover, this ground state solution satisfies:

(i) W(x) = W(|x|) is radial symmetric and decreasing in r = |x|;
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(ii) It satisfies the following asymptotic behavior:

W(x) = Mγcn,s|x|−(n−2s)(1 + o(1)) as |x| → ∞, (3.2)

where Mγ =
∫

Rn(W − 1)γ
+dx > 0. Moreover,

W ′(|x|) = −(n− 2s)Mγcn,s|x|−(n−2s)−1(1 + o(1)) as |x| → ∞. (3.3)

In this section, we will study the linearized operator of this equation around the
ground state, namely,

L0[φ] = (−∆)sφ− γ(W − 1)γ−1
+ φ. (3.4)

We are interested in characterizing the set of all solutions φ ∈ L∞(Rn) of the prob-
lem {

L0[φ] = 0 in Rn,

φ(y)→ 0 as |y| → ∞,
(3.5)

to which we make sense in L∞(Rn) written in the form

φ = (−∆)−s[Vφ]. (3.6)

where
V(x) = γ(W(x)− 1)γ

+. (3.7)
It actually follows from result of [17] that if φ ∈ L∞ satisfies (3.5) in the distribu-
tional sense, then it must satisfy (3.6).

It follows from the regularity analysis in [19] that solutions φ ∈ L∞(Rn) of
Problem (3.7) are of class C1,β with β > 2s which makes the equation (3.5) satisfied
in the classical sense.

Besides, as in [4, 19] it follows that the s-harmonic extension of φ(x) defined as

Φ(x, y) = kn,s

∫
Rn

y2s

(y2 + |x− z|2) n+2s
2

φ(z) dz, kn,s

∫
Rn

dz

(1 + |z|2) n+2s
2

= 1

satisfies in the classical sense
∂yyΦ +

1− 2s
y

∂yΦ + ∆Rn Φ = 0 in Rn+1
+ ,

−d̃s lim
y→0

y1−2s∂yΦ = V(x)φ on Rn,
(3.8)

where d̃s = − 22s−1Γ(s)
sΓ(−s) and Φ|y=0 = φ. We are using the notation (x, y) ∈ Rn+1, x ∈

Rn, y ∈ R and Rn+1
+ = {(x, y) ∈ Rn+1|y > 0}. The latter limit holds uniformly in

the Cβ sense in x. In fact, for some C > 0 and all y > 0 we have that

‖∇xΦ(·, y)‖Cβ(Rn) + ‖y
1−2s∂yΦ(·, y)‖Cβ(Rn) ≤ C.

By the invariance of (3.1) under translations, every directional derivative of W
annihilate L0. In fact

L0[
∂W
∂xj

] = 0, j = 1, . . . , n.

Equation (3.1) is also invariant under the dilations

λ
2s

γ−1 (W(λx)− 1) + 1 where λ > 0.
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Thus

z0(x) =
d

dλ

[
λ

2s
γ−1
(
W(λx)− 1

)]
λ=1

also satisfies L0[z0] = 0. Note that z0 ∈ L∞(Rn), but lim|x|→∞ z0(x) = − 2s
p−1 6= 0.

The main result here is the following.

Proposition 3.2. If φ ∈ L∞(Rn) is a solution to (3.5), then φ is a linear combination of
∂W
∂x1

, · · · , ∂W
∂xn

.

Proof of Proposition 3.2. Let φ ∈ L∞(Rn) be a solution to (3.5). Since φ ∈ L∞(Rn)
satisfy (3.6), we have that

|φ(x)| ≤ C(1 + |x|)−(n−2s).

Let Φ = Φ(x, y) be its s-harmonic extension, which is regular and satisfies (3.8).
Denote by µi, i = 0, 1, . . . the i-th eigenvalue of −∆Sn−1 , repeated according

to multiplicity and arranged in increasing order, and by Ei(θ) the corresponding
eigenfunction. In particular E0 is constant and E1, . . . , En are the coordinate func-
tions xi normalized. Then we can write Φ using Fourier decomposition as

Φ(x, y) =
∞

∑
i=0

Φi(x, y), Φi(x, y) = ψi(r, y)Ei(θ), (3.9)

where x = rθ, r = |x|, θ ∈ Sn−1, y > 0, so that Φi is the Fourier mode i of Φ. The
convergence of the series in (3.9) is in the locally uniform and C1 senses.

We observe that L0[φi] = 0 where φi(x) = Φi(x, 0). We have also that ψi satis-
fies:

∂yyψi +
1− 2s

y
∂yψi + ∂rrψi +

n− 1
r

∂rψi −
µi
r2 ψi = 0 in Rn+1

+ ,

−d̃s lim
y→0

y1−2s∂yψi = V(r)ψi on Rn.
(3.10)

The latter limit holds uniformly in the Cβ sense in r.

Step 1. First we consider the mode zero case, that is, φ0 with the notation (3.9),
which is radial element of the kernel of L0.

We claim that φ0 = az0 for some constant a ∈ R. Indeed, consider the function
u := φ0 − az0 where a is chosen so that u(0) = 0. We note that L0[u] = 0 and that
u ∈ L∞(Rn). We will use the argument in [19] to prove that u ≡ 0.

The ground state W of (3.1) constructed in Theorem 3.1 satisfies that there exists
a unique R0 > 0 such that W(R0) = 0. By standard estimates for the extension
problem (3.8), W(r) is smooth for r 6= R0 (see for example the appendix in [19] and
[3]). Hence V(r) is smooth for r 6= R0. Let U denote the extension of u to Rn+1

+
solving (3.8). Following [19, 3], for r > 0 let

H(r) = d̃s

∫ ∞

0

y1−2s

2
[(∂rU(r, y))2 − (∂yU(r, y))2] dy +

1
2

V(r)u(r)2.

We note that H(r) is well defined and continuous for all r ≥ 0 and smooth for
r 6= R0. We also observe that H(r) → 0 as r → ∞, since V(r) = 0 for r > R. As in
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[19] we have

H′(r) = −d̃s
n− 1

r

∫ ∞

0
y1−2s(∂rU(r, y))2 dy +

1
2

V′(r)u(r)2 ≤ 0 for r > 0, r 6= R0.

(3.11)
Since H(0) ≤ 0 and H(r) → 0 as r → ∞ we conclude that H(r) = 0 for all
r > 0. Hence H′(r) = 0, and using again (3.11) we find that U(r, z) must be
constant. Since u(0) = 0, we conclude that u ≡ 0, that is, φ0 = az0. But since
limr→∞ z0(r) 6= 0 and limr→∞ φ0(r) = 0, we deduce that a = 0, so φ0 ≡ 0.

Step 2. The modes 1, . . . , n. We consider φi, i = 1, . . . , n with the notation (3.9),
which are elements in the kernel of L0 in Fourier mode i. We denote by Φi the
extension of φi and write Φi(x, y) = ψi(r, y)Ei(θ) as in (3.9).

Differentiating the equation (3.1) we get

L0[zi] = 0, zi = −
∂W
∂xi

.

Let Zi be the extension of of zi solving (3.8) and write Zi = Z∗(r, y)Ei(θ) so that Z∗
solves (3.10). Note that zi = W ′(r) xi

|x| and that W ′(r) < 0 by the results in [11]. By
the strong maximum principle Z∗(r, y) > 0 for all r > 0 and all y ≥ 0. We consider
the function ϕ = ψi

Z∗ and note that it satisfies

1
rn−1 ∂r(rn−1Z2

∗∂r ϕ) +
1

y1−2s ∂y(y1−2sZ2
∗∂y ϕ) = 0, r > 0, y > 0.

We multiply this equation by ϕrn−1y1−2s and integrate in the region Dε,R = {(r, y)|r >
0, y > 0, ε2 < r2 + y2 < R2} where 0 < ε < R, to find that∫

Dε,R

Z2
∗[(∂r ϕ)2 + (∂y ϕ)2]rn−1y1−2s drdy = −Iε + IR

where

Iρ =
∫
Cρ

Z2
∗[rϕ∂r ϕ + yϕ∂y ϕ]

rn−1y1−2s

(r2 + y2)
1
2

d`,

where Cρ = {(r, y)|r > 0, y > 0, r2 + y2 = ρ2} and ` is arclength in (r, y). We claim
that

lim
R→∞

IR = 0, lim
ε→0

Iε = 0. (3.12)

To prove these statements, we note first that

Z2
∗ϕ∂r ϕ = ψi∂rψi −

ψi
Z∗

ψi∂rZ∗, Z2
∗ϕ∂y ϕ = ψi∂yψi −

ψi
Z∗

ψi∂yZ∗.

We recall some estimates for first R we observe that using the Poisson kernel for
the operator ∆x +

1−2s
y ∂y [4] we have that

Z∗(r, y) ≥ c
y2s

(r2 + y2)
n+2s

2
, |ψi(r, y)| ≤ C

y2s

(r2 + y2)
n+2s

2
,

for r2 + y2 large, where c > 0 is a constant. Using these estimates with similar ones
for the derivatives we find that for R large

|IR| ≤ CR−n−1−2s,
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where C is a constant. This proves the first limit in (3.12).
For the estimate of Iε when ε > 0 is small, we first observe that

Z∗(r, y) ≥ cr

for r2 + y2 < δ2 and some c > 0, δ > 0. This is proved using the maximum
principle applied to the equation (3.10) with the subsolution r + br2 where b > 0.
We also have the estimates

y1−2s|∂yψi|+ y1−2s|∂yZ∗| ≤ C

for r2 + y2 < δ2, which follow from [3][Lemma 4.5]. Then

|Iε| ≤ Cεn−2s → 0

as ε→ 0. This proves the second limit in (3.12).
Using (3.12) we deduce that∫

{r>0, y>0}
Z2
∗[(∂r ϕ)2 + (∂y ϕ)2]rn−1y1−2s drdy = 0,

which implies that ϕ is constant. We deduce then that φi = cizi for some constant
ci.

Step 3. The remaining modes m ≥ n + 1. We use an integral estimate as in [14, 13].
As before, let z∗(r) = −W ′(r) > 0 and Z∗(r, y) be its extension. Consider φm

with m ≥ n+ 1 and Φm its extension, which we write as Φm(x, y) = ψm(r, y)Em(θ).
Let us rewrite (3.10) as

1
y1−2s ∂y(y1−2s∂yψm) +

1
rn−1 ∂r(rn−1∂rψm) = µm

ψm

r2 in Rn+1
+ ,

−d̃s lim
y→0

y1−2s∂yψm = V(r)ψm on ∂Rn+1
+ .

Let us write ψm = ϕZ∗. Arguing as in the previous step now we find the identity

1
Z2∗

1
y1−2s ∂y(y1−2s∂yφ) +

1
Z2∗

1
rn1

∂r(rn−1∂rφ) =
µm − µ1

r2 ϕ.

As in the previous step, testing this equation against ϕ and integrating we get∫ ∞

0

∫ ∞

0
[Z2
∗(∂rφ)y1−2srn−1 + Z2

∗(∂yφ)y1−2srn−1] dydr

+
∫ ∞

0

∫ ∞

0

µm − µ1

r2 Z2
∗ϕ2y1−2srn−1dydr = 0.

Since µm > µ1 we find that ϕ = 0, hence ψm = 0 for m ≥ n + 1. This completes
the proof of Proposition 3.2.

�

We point out that a different proof can be done using the ODE techniques for
fractional problems as in [1]. The monotonicity of V(r) is not needed.
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4. CONSTRUCTION OF A VORTEX-ANTI VORTEX PAIR: THE PROOF OF
THEOREM 1.1

Let us consider the traveling vortex-anti vortex pair described by (1.11), cen-
tered at b1 = (d, 0), b2 = (−d, 0) with masses m and −m. For the construction of
the solution stated in Theorem 1.1 we take the formulation described in Section 2
and specialize it to the following problem
(−∆)sψ = ε(2−2s)γ−2((ψ + cx1 − ε2−2sλ)γ

+χBδ(b1)
− (−ψ− cx1 − ε2−2sλ)γ

+χBδ(b2)

)
in R2,

ψ(x)→ 0 as |x| → ∞,
(4.1)

where we have taken the same λ for both points.

Given the symmetries of the problem, it is natural to construct a solution with

ψ(x1, x2) = −ψ(−x1, x2) = ψ(x1,−x2) for all (x1, x2) ∈ R2. (4.2)

Following (2.6) we take as a first approximation of a solution to (4.1)

ψ0(x) = ε2s−2µ
− 2s

γ−1 W
( x− b1

εµ

)
− ε2s−2µ

− 2s
γ−1 W

( x− b2

εµ

)
, (4.3)

where W is the ground state of (2.3) and µ > 0 is defined as in relation (2.7) by

Mγµ
2(1− sγ

γ−1 ) = m. (4.4)

Let us write

S(ψ) = (−∆)sψ− ε(2−2s)γ−2[(ψ + cx1 − ε2−2sλ)γ
+χBδ(b1)

− (−ψ− cx1 − ε2−2sλ)γ
+χBδ(b2)

]
,

so that problem (4.1) is equivalent to S(ψ) = 0 and ψ(x) → 0 as |x| → ∞. We
recall that the scalar λ is defined by (2.9), which in the case of a vortex-anti vortex
pair becomes

W
( b1 − b2

εµ

)
− cε2−2sµ

2s
γ−1 d + µ

2s
γ−1 λ = 1, (4.5)

since b1 = (d, 0), b2 = (−d, 0). This gives λ = λ(c, d) with the form

λ = µ
− 2s

γ−1 + O(ε2−2s) > 0.

With this choice of λ, we obtain from (2.11) that for y ∈ Bδ/(µε)(b′1)

S(ψ0) = ε−2µ
− 2sγ

γ−1
[
(W(y− b′1)− 1)γ

+

−
(
W(y− b′1)− 1 + W(b′1 − b′2)−W(y− b′2)

+ cε3−2sµ
2s

γ−1+1(y1 − d)
)γ

+
χ{y∈Bδ/(εµ)(0)}

]
, (4.6)

where

y =
x
εµ

= (y1, y2) ∈ R2, b′j =
bj

εµ
.
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We will work with the parameters c, µ > 0 fixed and

d ∈
(

d0,
1
d0

)
(4.7)

to be adjusted, where d0 > 0 is fixed small. Then we see that

S(ψ0) = O
(
ε−2µ

− 2sγ
γ−1 ε3−2sχBCε(0)

)
,

for some constant C > 0.
It will be convenient to work with the unknown v defined by

ψ(x) = ε2s−2µ
− 2s

γ−1 v
( y

εµ

)
.

We note that

S(ψ) = ε−2µ
− 2sγ

γ−1
[
(−∆y)

sv− f (y, v)
]
,

where

f (y, v) =
(
v + cε3−2sµ

2s
γ−1+1y1 − µ

2s
γ−1 λ

)γ

+
χBδ/(εµ)(b′1)

−
(
− v− cε3−2sµ

2s
γ−1+1y1 − µ

2s
γ−1 λ

)γ

+
χBδ/(εµ)(b′2)

.

Thus (4.1) becomes the nonlinear problem{
(−∆)sv = f (y, v) in R2

v(y)→ 0 as |y| → ∞,
(4.8)

which we interpret as
v = (−∆)−s f (y, v) in R2.

The ansatz (4.3) takes the form

v0(y) = W(y− b′1)−W(y− b′2). (4.9)

We look for a solution of (4.8) of the form v = v0 + φ. Then equation (4.8) is
equivalent to

L[φ] = −E + N[φ] (4.10)

where

L[φ] = (−∆)sφ−V(y)φ, V(y) = fv(y, v0)

E = (−∆y)
sv0 − f (y, v0)

N[φ] = f (y, v0 + φ)− f (y, v0)− fv(y, v0)φ. (4.11)

We interpret this equation as the fixed point problem in L∞(R2)

φ− (−∆)−s[Vφ] = (−∆)−s[N(φ)− E].

The symmetries (4.2) allow us to invert the operator L up to one parameter, asso-
ciated with the function

Z = Z1 + Z2, Z1(y) =
∂W
∂y1

(y− b′1), Z2(y) =
∂W
∂y1

(y− b′2).
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Note that the function Z is odd in y1 and even in y2. Let us consider the projected
linear problem 

L[φ] = h(y) + aV(y)Z(y) in R2,∫
R2

VZφ dy = 0,

φ(y)→ 0 as |y| → ∞

(4.12)

where a is the constant such that
∫

R2(h + aVZ)Z = 0, namely

a = −
∫

R2 hZ∫
R2 VZ2 (4.13)

We introduce the following weighted L∞ norm

‖φ‖β := sup
y∈R2

ρ(y)−β|φ(y)| (4.14)

where
ρ(y) =

1
1 + |y− b′1|

+
1

1 + |y− b′2|
.

In order to deal with the linear problem (4.12), we will use the norms:

‖φ‖∗ = ‖φ‖2−2s , ‖h‖∗∗ = ‖h‖2+σ , (4.15)

where 0 < σ < 1.
We have the following:

Proposition 4.1. Assume that d satisfies (4.7) and h satisfies ‖h‖∗∗ < ∞ and the sym-
metries (4.2). Then for ε > 0 small there exists a unique solution φ = Td(h) of (4.12),
which defines a linear operator of h and there exists C > 0 independent of ε such that

‖φ‖∗ + |a| ≤ C‖h‖∗∗.
Moreover φ satisfies the symmetries (4.2).

We prove this proposition in Section 5.

Instead of solving problem (4.10) directly, we consider the nonlinear projected
problem 

L[φ] = −E + N[φ] + aVZ, in R2∫
R2

VZφ dy = 0,

φ(y)→ 0 as |y| → ∞.

(4.16)

Proposition 4.2. Assume that d satisfies (4.7). There is r0 > 0 such that for ε > 0 small
there exists a unique solution φ = φd to (4.16) in the ball ‖φ‖∗ ≤ r0. Moreover it satisfies

‖φd‖∗ ≤ Cε3−2s

and φd is continuous with respect to d ∈ (d0, 1/d0).

The proof of this Proposition is in section 6.

We have obtained a solution vd = v0 + ϕ of{
(−∆)svd = f (y, vd) + adVZ, in R2

vd(y)→ 0 as |y| → ∞,
(4.17)
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for some parameter ad. The fully solvability of (4.8) is reduced to finding d such
that ad = 0.

Multiplying (4.17) by Z and integrating over R2, we have that

ad

∫
R2

VZ2dx =
∫

R2
[(−∆)svd − f (y, vd)]Zdy.

Thus ad = 0 is reduced to∫
R2
[(−∆)svd − f (y, vd)] Z dy = 0.

We have the following:

Proposition 4.3. If d satisfies (4.7), then

∫
R2
[(−∆)svd− f (y, vd)] Z dy = c0ε3−2s

( 1
d3−2s + c1

)
+O(ε(3−2s)min(γ,2))+O(ε4−2s),

where c0 6= 0 is a constant and c1 = c
m

4πΓ(s)
Γ(2−s) (here c and m are the parameters in (1.11)).

The proof of this proposition is in section 6.

Proof of Theorem 1.1. The equation ad = 0 is reduced to

1
d3−2s − c1 + g(d) = 0,

where g is continuous and g(d) = O(ε(3−2s)min(γ,2)) + O(ε4−2s) as ε → 0. There-

fore we can find a solution d = c
− 1

3−2s
1 (1 + o(1)). �

5. LINEAR THEORY

Here we prove Proposition 4.1.

Proof of Proposition 4.1. Let us consider the space X defined as

X =
{

φ ∈ L∞(R2) / ‖φ‖2−2s−σ′ < +∞, φ satisfies (4.2),
∫

R2
V Z φ dy = 0

}
,

which endowed with the norm ‖ ‖X = ‖ ‖2−2s−σ′ norm becomes a Banach space.
Norms ‖ ‖β were defined in (4.14). Here 2− 2s− σ′ > 0. Thus we want to solve
the equation

φ = K(φ) + A[h], φ ∈ X (5.1)
where

K[φ] = (−∆)−s(Vφ), A[h] = (−∆)−s(h + aVZ)
with a given by (4.13). We recall that the operator (−∆)−s is defined by (1.2). We
directly check that

‖(−∆)−sh‖2−2s ≤ C‖h‖∗∗. (5.2)
Besides, we have that for any φ ∈ L∞(R2),

‖K(φ)‖2−2s ≤ C‖φ‖L∞(R2). (5.3)

Let us also notice that the operators A and K respect symmetries (4.2). We also see
that ∫

R2
A[h]VZ =

∫
R2
(h + aVZ)(−∆)−s[VZ] =

∫
R2
[h + aVZ]Z = 0
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and, similarly ∫
R2

K[φ]VZ =
∫

R2
VφZ = 0.

Hence A and K take values in the space X. Using Arzela-Ascoli’s theorem, the lat-
ter property yields compactness of the operator K in X since ‖φ‖X = ‖φ‖2−2s−σ′ .
On the other hand the equation

φ− K[φ] = 0, φ ∈ X

only has the trivial solution thanks to conditions (4.2),
∫

R2 VφZ = 0 and Proposi-
tion 4.1. Fredhom’s alternative then yields existence of a unique solution of prob-
lem (5.1), which satisfies

‖φ‖X ≤ C‖A[h]‖X .
Using the equations and estimates (5.2), (5.3) we get the desired estimate

‖φ‖∗ ≤ C‖h‖∗∗.
The proof is concluded. �

6. PROOF OF PROPOSITIONS 4.2 AND 4.3

Proof of Proposition 4.2. Let Td be the operator obtained in Proposition 4.1 that to h
with h with ‖h‖∗∗ < ∞ and satisfying the symmetries (4.2) associates φ = Td[h]
solution to (4.12) with the estimate

‖Td[h]‖∗ ≤ C1‖h‖∗∗.

Let X∗ = { φ ∈ L∞(R2) | ‖φ‖∗ < ∞, φ satisfies (4.2) } be endowed with ‖ ‖∗.
Let

A : X∗ → X∗, A[ϕ] = Td[−E + N[φ]].

Then (4.16) is equivalent to solve the fixed point problem

φ = A[φ],
which we set-up in the closed ball

B = { φ ∈ X∗ | ‖φ‖∗ ≤ r0 },
where r0 > 0 is to be determined later.

From (4.6) we see that

‖E‖∗∗ ≤ Cε3−2s.

We claim that for φ ∈ B

|N[φ]| ≤ C|φ|min(γ,2)χBR0 (b
′
1)∪BR0 (b

′
2)

, (6.1)

where R0 is a large fixed constant. Indeed, N[φ], defined in (4.11), can be written
as

N[φ] = N1[φ] + N2[φ]

where

N1[φ] = χBδ/(εµ)(b′1)

[(
v0 + φ + cε3−2sµ

2s
γ−1+1y1 − µ

2s
γ−1 λ

)γ

+

−
(
v0 + cε3−2sµ

2s
γ−1+1y1 − µ

2s
γ−1 λ

)γ

+

− γ
(
v0 + cε3−2sµ

2s
γ−1+1y1 − µ

2s
γ−1 λ

)γ−1
+

φ
]
,
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with an analogous formula for N2[φ]. Using the definition of v0 (4.9) and the choice
of λ (4.5) we see that

N1[φ] = χBδ/(εµ)(b′1)

[
(W(y− b′1)− 1 +R+ φ)γ

+ − (W(y− b′1)− 1 +R)γ
+

− γ(W(y− b′1)− 1 +R)γ−1
+ φ

]
,

whereR = O(ε3−2s|y− b′1|). We deduce from here that

|N1[φ]| ≤ C|φ|min(γ,2)

and also that the support of N1[φ] is contained in the ball BR0(b
′
1) for some R0

large fixed (assuming ε > 0 is small). We have similar estimates for N2[φ] and we
deduce (6.1). From (6.1) we get

‖N[φ]‖∗∗ ≤ C2‖φ‖
min(γ,2)
∗ .

So for φ ∈ B we have

‖A[φ]‖∗ ≤ C1(‖E‖∗∗ + ‖N[φ]‖∗∗) ≤ C1Cε3−2s + C1C2rmin(γ,2)
0 .

We choose r0 > 0 small so that C1C2rmin(γ,2)
0 ≤ 1

2 r0. Then we work with ε > 0
small so that C1Cε3−2s ≤ 1

2 r0. This shows that Amaps B into itself.
Also from the expression of N, we have

|N(φ1)− N(φ2)| ≤ C
(
|φ1|min(γ−1,1) + |φ2|min(γ−1,1))|φ1 − φ2|χBR0 (b

′
1)∪BR0 (b

′
2)

where R0 is a large fixed constant. This implies that for φ1, φ2 ∈ B,

‖N(φ1)− N(φ2)‖∗∗ ≤ Crmin(γ−1,1)
0 ‖φ1 − φ2‖∗.

Hence

‖A(φ1)−A(φ2)‖∗ ≤ C1(‖N(φ1)− N(φ2)‖∗∗) ≤ CC1rmin(γ−1,1)
0 ‖φ1 − φ2‖∗.

If r0 is small we obtain that A is a contraction mapping from B into itslef and then
problem (4.16) admits a unique solution φd ∈ B.

From the proof above and the estimate for E, one has

‖φd‖∗ ≤ C‖E‖∗∗ ≤ Cε3−2s.

Since E and V in (4.16) depend continuously on d, the fixed point characterization
of φd shows that it is continuous with respect to d.

�

Proof of Proposition 4.3. We let φ denote the solution of (4.16) obtained in proposi-
tion 4.2 and v = v0 + φ. Since

(−∆)sv− f (y, v) = L[φ] + E− N[φ]

we have∫
R2
[(−∆)svd − f (y, vd)] Z dy =

∫
R2

L[φ]Z dy +
∫

R2
EZ dy +

∫
R2

N[φ]Z dy.

Let us consider the term
∫

R2 EZ dy. From (2.8) and the choice of λ (4.5) we have

E = E1 + E2
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where

E1(y) = χBR0 (b
′
1)

[
(W(y− b′1)− 1)γ

+

−
(

W(y− b′1)− 1 + W(b′1 − b′2)−W(y− b′2) + cε3−2sµ
2s

γ−1+1(y1 −
d
εµ

)
)γ

+

]
and

E2(y1, y2) = −E1(y1, y2).

Directly we have

|Ej| ≤ Cε3−2sχBR0 (b
′
j)

. (6.2)

Writing∫
R2

EZ dy =
∫

R2
E1Z1 dy +

∫
R2

E1Z2 dy +
∫

R2
E2Z1 dy +

∫
R2

E2Z2 dy

we see that ∫
R2

E1Z1 dy =
∫

R2
E2Z2 dy,

and ∫
R2

E1Z2 dy = O(ε2(3−2s)),
∫

R2
E2Z1 dy = O(ε2(3−2s)),

where we have used (6.2) and (3.3). Therefore we need only to compute
∫

R2 E1Z1 dy.
For y ∈ BR0(b

′
1) we have

E1(y) = −γ(W(y− b′1)− 1)γ−1
+

[
W(b′1 − b′2)−W(y− b′2) + cε3−2sµ

2s
γ−1+1(y1 −

d
εµ

)
]

+ O(ε(3−2s)(γ−1)).

So, integrating by parts∫
R2

E1Z1 dy =
∫

R2
(W(y− b′1)− 1)γ

+

[
−∂y1W(y− b′2) + cε3−2sµ

2s
γ−1+1

]
dy

and using the expansion (3.2)∫
R2

E1Z1 dy

=
∫

R2
(W(y− b′1)− 1)γ

+

[
(2− 2s)Mγc2,s

( εµ

2d

)3−2s
+ cε3−2sµ

2s
γ−1+1 + O(ε4−2s)

]
dy

= c0ε3−2s
[ 1

d3−2s +
c
m

4π
Γ(s)

Γ(2− s)
+ O(ε)

]
,

for some constant c0 6= 0, where we have used (4.4). Therefore∫
R2

EZ dy = 2c0ε3−2s
[ 1

d3−2s +
c
m

4π
Γ(s)

Γ(2− s)
+ O(ε)

]
. (6.3)
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Nest we consider
∫

R2 N[φ]Z dy. Using that ‖φ‖∗ ≤ Cε3−2s and (6.1) we get∣∣∣∣∫
R2

N[φ]Z dy
∣∣∣∣ = ∣∣∣∣∫

R2

(
f (y, v0 + φ)− f (y, v0)− fv(y, v0)φ

)
Z dy

∣∣∣∣
≤
∫

BR0 (b
′
1)∪BR0 (b

′
2)
|φ|min(γ,2)Z dy

≤ Cε(3−2s)min(γ,2). (6.4)

Next, for the integral involving L[φ], we have∫
R2

L[φ]Z dy =
∫

R2
φL[Z] dy

=
∫

R2
φ[γ(W(y− b′1)− 1)γ−1

+ Z1 + γ(W(y− b′2)− 1)γ−1
+ Z2 − fv(y, v0)Z]dy.

But

γ(W(y− b′1)− 1)γ−1
+ Z1 + γ(W(y− b′2)− 1)γ−1

+ Z2 − fv(y, v0)Z = A1 + A2

where

A1 = γ(W(y− b′1)− 1)γ−1
+ Z1 − γ(W(y− b′1)− 1 +R1)

γ
+χBR0 (b

′
1)
(Z1 + Z2)

A1 = γ(W(y− b′2)− 1)γ−1
+ Z2 − γ(W(y− b′2)− 1 +R1)

γ
+χBR0 (b

′
2)
(Z1 + Z2)

andR1 = O(ε3−2s|y− b′1|) andR2 = O(ε3−2s|y− b′2|). Using the decay of W ′ (3.3)
we find that

|A1| ≤ Cε(3−2s)min(γ−1,1)χBR0 (b
′
1)

, |A2| ≤ Cε(3−2s)min(γ−1,1)χBR0 (b
′
2)

,

for a possible larger R0. Using that ‖φ‖∗ ≤ Cε3−2s we find that∣∣∣∣∫
R2

L[φ]Z dy
∣∣∣∣ ≤ Cε(3−2s)min(γ,2). (6.5)

Putting together (6.3), (6.4) and (6.5) we obtain the desired conclusion.
�

7. ON THEOREMS 1.2–1.5

The proofs of the remaining results follow similar lines as those above, so we
only present a sketch of the necessary changes.

Concerning Theorem 1.3, let us first formally derive the balancing conditions
(1.20). As described in section 2, we consider the elliptic problem

(−∆)sψ = ε(2−2s)γ−2
k

∑
j=1

(ψ + cx1 − ε2s−2λ+
j )

γ
+χBδ(pj)

− ε(2−2s)γ−2
k

∑
l=1

(−ψ− cx1 − ε2s−2λ−l )
γ
+χBδ(ql)

in R2,

ψ(x)→ 0 as |x| → ∞,

(7.1)

and look a solution that at main order is approximated by

ψ0(x) = ε2s−2µ
− 2s

γ−1
[ k

∑
j=1

W
( x− pj

εµ

)
−

k

∑
l=1

W
( x− ql

εµ

)]
,
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where, as in (2.7), µ > 0 is such that Mγµ
2(1− sγ

γ−1 ) = 1, and λ+
j , λ−l are as in (2.9),

(2.10). With these choices, the error of approximation, defined by

E = (−∆)sψ− ε(2−2s)γ−2
k

∑
j=1

(ψ + cx1 − ε2s−2λ+
j )

γ
+χBδ(pj)

+ ε(2−2s)γ−2
k

∑
l=1

(−ψ− cx1 − ε2s−2λ−l )
γ
+χBδ(ql)

has the form, for x near pi:

E = ε−2µ
− 2sγ

γ−1
[(

W
( x− pi

εµ

)
− 1
)γ

+

−
(

W
( x− pi

εµ

)
+ ∑

j 6=i

(
W
( x− pj

εµ

)
−W

( pi − pj

εµ

))
−

k

∑
l=1

(
W
( x− ql

εµ

)
−W

( pi − ql
εµ

))
+ cµ

2s
γ−1 ε2−2s(x1 − pi,1)

)γ

+

]
.

Changing x = εµy and expanding in ε gives

∑
j 6=i

(
W
( x− pj

εµ

)
−W

( pi − pj

εµ

))
−

k

∑
l=1

(
W
( x− ql

εµ

)
−W

( pi − ql
εµ

))
+ cµ

2s
γ−1 ε2−2s(x1 − pi,1)

∼ cε3−2s

{
−∑

j 6=i

(pi − pj) · y
|pi − pj|4−2s +

k

∑
l=1

(pi − ql) · y
|pi − ql |4−2s +

c
m

22s−1πΓ(s)
Γ(2− s)

y · e1

}
+ O(ε4−2s).

We want that the first order expansion vanishes, which leads to the equation

∑
j 6=i

pi − pj

|pi − pj|4−2s −
k

∑
l=1

pi − ql
|pi − ql |4−2s = c

22s−1πΓ(s)
Γ(2− s)

e1,

for any i = 1, . . . , k.
A similar computation for x near qm leads to

∑
l 6=m

qm − ql
|qm − ql |4−2s −

k

∑
j=1

qm − pj

|qm − pj|4−2s = −c
22s−1πΓ(s)

Γ(2− s)
e1.

To prove that if (p, q) is a nondegenerate symmetric array of traveling vortices
there exists a solution of (7.1) close to ψ0, we work in the symmetry class

Ψ(x1, x2) = −Ψ(−x1, x2) = Ψ(x1,−x2). (7.2)

Following the same proof as in that of Theorem 1.1 and utilizing the non-degeneracy
conditions under the symmetry condition (7.2), which is guaranteed by the sym-
metry condition (1.21) on (p, q), we obtain Theorem 1.3.

The proof of Theorem 1.4 is similar. In that case the final adjustment of the
points b = (b1, . . . , bj) is found as a small perturbation of a given b0, critical point
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of I(b) which is non-degenerate up to vertical translations. Indeed, the points
b = (b1, . . . , bj) obey an equation of the form

∇b I(b) +N (b) = 0

where N (b) is an ε- small term, which is invariant under vertical translations. A
standard degree argument involving a local orthogonal decomposition of b yields
the desired result.

In the case of the rotating solutions as in Theorems 1.2 and 1.5, we need to find
a family of solutions Θε(x) to the equation

(∇⊥Ψ + αx⊥) · ∇Θ = 0, Ψ = (−∆)−sΘ,

such that

Θε(x) ⇀
k

∑
j=1

mjδ(x− b0
j ),

for given intensities mj and a solution b0 = (b0
1, . . . , b0

k) of system (1.10). To achieve
this we consider the elliptic problem

(−∆)sψ = ε(2−2s)γ−2
k

∑
j=1

σj

(
σj

(
ψ + α

|x|2
2

)
− ε2s−2λj

)γ

+
χBδ(bj)

in R2,

ψ(x)→ 0 as |x| → ∞,

where 1 < γ < 2+2s
2−2s , γ 6= 1

1−s , σj = +1 if mj > 0 and = −1 if mj < 0. The
choice of λj is done similarly as in the case of the traveling solutions and we have

λj = µ
− 2s

γ−1
j + O(ε2−2s). The points b1, . . . , bk are close to b0

1, . . . , b0
k , and δ > 0 is

fixed so that the balls Bδ(bj) are disjoint.
The ansatz ψ0 is the same as in (2.6) with µ as in (2.7). The proof of Theorem 1.2

is then a direct adaptation of the proof of Theorem 1.1.
Theorem 1.5 similarly follows after a reduction to a problem of the form

∇b J(b) +N (b) = 0

where now N (b) is a small ε-perturbation which is invariant under rotations.
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