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ABSTRACT. Let Q be a smooth bounded domain in R™ and denote the regular
part of the Green’s function on Q with Dirichlet boundary condition as H(z,y).
Assume that ¢ € Q and n > 5. We prove that there exists an integer kg such
that for any integer k > ko there exist initial data ug and smooth parameter
functions £(t) — ¢, 0 < p(t) — 0 as t — +oo such that the solution uq of the
critical nonlinear heat equation

4
ut = Au+ |u|"=2u in Q x (0, 00),
u =0 on N x (0,00),

u(-,0) = ug in £,

has the form

w0 =) (@ (250) - o).

w(t)
where the profile Qf is the non-radial sign-changing solution of the Yamabe
equation
4
AQ+QITFQ =0in R",
constructed in [9]. In dimension 5 and 6, we also prove the stability of ugq(z,t).

1. INTRODUCTION

Let €2 be a smooth bounded domain in R™ with n > 3. We consider the following
critical nonlinear heat equation

uy = Au+ |u|ﬂ4f2u in Q x (0, 00),
u =10 on 90 x (0,00), (1.1)
u(+,0) = up in Q,
for a function u : Q x [0, 00) — R and smooth initial datum ug satisfying ug|aon = 0.
Problem (1.1) can be viewed as a special case of the well-known Fujita equation
uy = Au + |ulP"tu (1.2)

with p > 1, which appears in many applied disciplines and become a prototype
for the analysis of singularity formation in nonlinear parabolic equations. A large
amount of literature has been devoted to this problem on the asymptotic behaviour

and blowing-up solutions after Fujita’s seminal work [18]. See, for example, [1], [2],
(L], 112, [19], [200, (21, (220, [23), [27], [28], [29), [30], [40] and references therein.
We refer the the interested readers to [38] for the corresponding background and a
comprehensive survey of the results until 2007. Blowing-up phenomena for problem
(1.2) is very sensitive to the exponent p, the critical case p = Z—fg is special in several
ways, positive steady state solutions do not exist if p < Z—'fg Radial and positive
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global solutions must go to zero and bounded, see [34], [35], [38], they exist in the
case p > Z—fg with infinite energy, see [24]. Infinite time blowing-up solutions exist
in that case but they exhibit entirely different nature, see [36], [37].

The motivation of this paper is twofolds. In [2], Cortazar, del Pino and Musso
proved the following result. Suppose n > 5, denote the Green’s function of the
Laplacian A in Q with Dirichlet boundary value as G(z,y) and the regular part of

G(z,y) as H(x,y). Let q1,- -+, qr be k distinct points in Q such that the matrix

flg(qh ) —G(((h, CI2)) e _g(CIh (Ikg

R _ ’ H(go, e 7

G(q) = %2 a) qf o ) (%2 o (1.3)
G, 1) —G(qr,q2) - H(qr,qr)

is positive definite. They proved the existence of ug and smooth parameter functions
&(t) = q;, 0 < p(t) = 0,as t = +o0, j =1,--- , k, such that (1.1) has an infinite
time blowing-up positive solution u, whose shape can be approximately described

as
n—2

k 2
~N o 15 (t)
N ”Z ! (u?(t)m—sju)?) ’

with p;(t) = ﬁjfﬁ(l +0(1)), as t — oo, for some positive constants ;. The
profile of u, is a super-position of functions that are obtained from a fixed profile

n—2

U(x):an< ! ) (1.4)

1+ |z|?

properly scaled by p;(t) and translated by &;(t). The function U is the unique
radially symmetric entire solution for the Yamabe equation

AQ+1Q|7=Q =0 in R". (1.5)

The aim of this paper is to explore the possibility to construct sign-changing so-
lutions to (1.1) which blows-up, as t — oo, in the form of the profile of a sign-
changing entire solution to the time-independent limit problem (1.5). Pohozaev’s
identity tells us that any sign-changing solution of (1.5) is non-radial. The ex-
istence of non-radial sign-changing and with arbitrary large energy elements of
¥ :={Q € DM*(R")\{0} : Q satisfies (1.5)} was first proved by W. Ding [I ] using
variational arguments. Indeed, using stereographic projection to S™, (1.5) trans-

forms into
—2
Asn’l} + M
4
(see, for example, [39], [26]), Ding proved the existence of infinitely many critical

points to the corresponding energy functional in the space of functions satisfying

v(x) = v(|z1], |z2]), == (z1,22) € S" C R =RF x R*"F17F | >2

(|v\n4jv —v)=0in S",

More explicit constructions of sign-changing solutions to (1.5) were obtained in [9],
[10]. Furthermore, [32] proves the rigidity results (non-degeneracy) of the solutions
found in [9], [10]. Classification of solutions in ¥ plays an important role in the
soliton resolution conjecture for energy critical wave equation, for example, [15], [16]
and the references therein. Therefore, a natural question is: does the infinite time
blowing-up phenomenon for problem (1.1) occur with sign-changing profiles? In
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this paper we show that the sign-changing blowing-up solutions with basic cell
constructed in [9] do exist.

Our starting point is the sign-changing solutions @ of (1.5) constructed in [9]
and [10]. Let us describe these solutions more precisely. In [9], it was proven that
there exists a large positive integer kg such that Yk > kg, a solution @ = @ of
(1.5) exists. Furthermore, if we define the energy functional by

1 1 2
Bw =y [ (VuPdo— g [ puptias, p= 12
2 Jan p+1 Jgn n—2
then we have
(k+1)S, (1+O0(k*™)) ifn>4,

E(Qx) =
(k+1)S;3 (1+O(k™t|logk|™") ifn=3

as k — oo. Here S, is a positive constant depending on n. The function Q = Qy
decays like the radial symmetrical solution U(z) defined in (1.4) at infinity, that is
to say, we have

n—2

4 4 n—2
li n—2 = 277 (1+d 1.
i " Que) = | 1+ d (16)
where
O(k=1) ifn>4,
dy = as k — oo.

O(k~Ylogkl?) ifn=3
Furthermore, we have

Q) = [n(n — 2] (1 -

n —

2
5 x|2+0(|x|3)> as |z|—0

and there exists n > 0 (depending only on kg) such that for any k,

n<Q(z) <Q(0) forall |z|< %

On the other hand, Q = @} is invariant under rotation of angle 27” in the z1, x4
plane, i.e.,
Qe*z,2)) = Qz,2"), == (v1,23), 2 = (v3,...,270). (1.7)
It is also even in the x;-coordinates, for any j = 2,--- ,n and invariant under the
Kelvin’s transformation, namely, we have
Qxi,...,xj, ..., xn) = Q(1,...,—Tj,..., &), j=2,...,n (1.8)
and
Qx) = [z[*7"Q(|z|x). (1.9)
It was proved in [32] that these solutions are non-degenerate. More precisely, fix
one solution = @y and define the linearized operator of (1.5) at @ as
L(¢) = Ap +p|QIP ' o. (1.10)

The invariance of any solution of (1.5) under dilation (if u satisfies (1.5), then the
function u’anzu(,uflx) solves (1.5) for all ;4 > 0), under translation (if u solves
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(1.5), then u(z + &) also solves (1.5) for £ € R™), together with the invariance (1.7),
(1.8), (1.9) produce natural kernel functions ¢ of L, that is to say, we have

L(p) = 0.
These are 3n linearly independent functions defined as follows:
n—2
(@) = "2 2Q() +VQU) =, (1.11)
zo(x) = iQ(:U) for a=1 n (1.12)
« - axa b - y*r b M
() = a0 QUa) + 11 - Q(a) (113)
Zn+1\T) = —T2 axl X T 8£82 x), .
Znyo(x) = —2x120(2) + 2221 (2),  2nis(x) = —22020(x) + |2]?22(x)  (1.14)
and, forl =3,...,n
Zntia1() = —zz1(x) + x121(x),  2opsi—1(x) = —x120(2) + 2221 (). (1.15)

Indeed, direct computations yield that
L(z4)=0, forall a=0,1,...,3n—1.

The function zy defined by (1.11) is from the invariance of (1.5) under dilation
u_%Q(u_lx). zi, i =1,...,n defined by (1.12) are due to the invariance of (1.5)
under translation Q(x + £). The function z,41 in (1.13) is generated from the
invariance of () with respect to rotation in the (x1,xs)-plane. The functions z, o
and zp4+3 in (1.14) are generated from the invariance of (1.5) with respect to the
Kelvin transformation (1.9). The functions in (1.15) are due to the invariance of
(1.5) under rotations in the (x1,z;)-plane, (x2, x;)-plane respectively.

Let us recall that the Green’s function G(z, y) is defined by the following Dirichlet
boundary value problem

—AG(z,y) = c(n)d(z —y) inQ,
G(,y)=0 on 09,
where §(z) is the Dirac measure at the origin and ¢(n) is a constant depending on

n satisfying

CAT() = (i), T()= 20 =D T

- |x|n—2 - |$|n—2

Denote the regular part of G(x,y) as H(x,y), namely, H(x,y) satisfies the following
problem

—AH(z,y) =0 in €,
H(yy) =T(-—y) in oQ.
Our main result can be stated as follows.

Theorem 1.1. Assume n > 5 and q is a point in 2. There exists an integer ko
such that, for any k > kg, there exist an initial datum ug and smooth parameter
functions £(t) — ¢, 0 < p(t) — 0, as t — 400, such that the solution u, to (1.1)
has form

wlat) =% (@ (50 ) < H) 4 pen). 019
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where p(x,t) is a bounded smooth function satisfying p(xz,t) — 0 uniformly away
from q as t — +o0.

Theorem 1.1 exhibits new blowing-up phenomena where the profile of bubbling is
sign-changing rather than the positive solution for the critical heat equation. In the
case of positive bubbling, the linear operator around the basic cell contains exactly
n + 1 dimensional kernels corresponding to the rigidity motions (translation and
dilation). However, in the case of sign-changing (non-radial) blowing-up solution,
the kernel of the linearized operators at the basic cell includes not only the func-
tions generated from dilation and translations, but also functions due to rotation
around the sub-planes and Kelvin transform. Therefore we have to find enough
parameter functions to adjust. Similar to the supercritical Bahri-Coron’s problem
in [33], our computations indicate that the dominated role played is still scaling and
translations. Indeed, (1.16) has a more involved form, see (2.18) below for details.
Note that in [42], sign-changing blow-up solutions were also constructed, but their
basic cell is the positive radial solution U(z) defined in (1.4).

We believe that this is the first example of blowing-up solutions in nonlinear
parabolic equations whose core profile is non-radial. In a series of interesting papers,
Duyckaerts, Kenig and Merle [15, 17] introduced the notion of nondegenracy for
nonradial solutions of the equation (1.5) and obtained the profile decomposition
for possible blow-up solutions for energy critical wave equation in general setting.
Existence of bubbling solutions with the positive radial profile for the energy critical
wave equations has been constructed in [13,25]. However as far as we know there
are no examples of noradial blow-up for energy critical wave equation.

To prove Theorem 1.1, we will use the inner-outer gluing scheme for parabolic
problems. Gluing methods have been proven very useful in singular perturbation
elliptic problems, for example, [6], [7], [3]. Recently, this method has also been
developed to various evolution problems, for instance, the construction of infinite
time blowing-up solutions for energy critical nonlinear heat equation [2], [12], the
formation of singularity to harmonic map flow [3], finite time blowing-up solutions
for energy critical heat equation [11], vortex dynamics in Euler flows [4] and type
IT ancient solutions for the Yamabe flow [5].

The proof consists of constructing an approximation to the solution with suf-
ficiently small error, then we solve for a small remainder term using linearization
around the bubble and the Schauder fixed-point arguments. In Section 2, we con-
struct the first approximation with form (2.18). To get an approximation with fast
decay far away from the point ¢, we add nonlocal terms to cancel the slow decay
parts as in [3]. Then we compute the error, in order to improve the approximation
error near the point ¢, we have to use solvability conditions for the corresponding
elliptic linearized operator around the sign-changing bubble. These conditions yield
systems of ODEs for the parameters. (See equations (4.14).) Of these systems of the
ODEs, the equation for the scaling parameter function plays a dominant role, from
which we deduce the blow-up dynamics of our solutions. After the approximate
solution has been constructed, the full problem is solved as a small perturbation
by the inner-outer gluing scheme, see Section 3. This consists of decomposing the
perturbation term into form n(;NSJr 1, where 7 is a smooth cut-off function vanishing
away from ¢. The tuple ((jNJ, 1) satisfy a coupled nonlinear parabolic system where
the equation for 4 is a small perturbation of the standard heat equation, and g?)
satisfies the parabolic linearized equation around the bubble.



6 M. DEL PINO, M. DEL PINO, J. WEI, AND Y. ZHENG

When dealing with parabolic problems for qz~5, a crucial step is to find a solution
to the linearized parabolic equation around the bubble with sufficiently fast decay.
However, it seems that the argument in [2] for the positive bubbling of the critical
heat equation does not work in our sign-changing case since we can not perform
Fourier mode expansions. Inspired by the linear theory of [3], [31] and [41], our
main contributions in this paper is to use blowing-up arguments based on the
non-degeneracy of bubbles proved in [32] and a removable of singularity property
for the corresponding limit equation. As pointed out in [15], the term |Q[P~! =
|Q "2 in L(¢) = A¢ + p|Q|P~1¢ is not C* when the space dimension n > 7, as
a result of this fact, the solution qz~5, 1) do not have Lipschitz property with respect
to the parameter functions. This is the reason we use Schauder fixe-point theorem
rather than Contraction Mapping Theorem to solve the inner-outer gluing parabolic
system in Section 4. In dimension 5 and 6, q~5 and 1 do have Lipschitz continuity
with respect to the parameter functions, Theorem 1.1 as well as a stability result
for ug can be proved using the Contraction Mapping Theorem in the spirit of [2],
see Section 8.

2. CONSTRUCTION OF THE APPROXIMATION

2.1. The basic cell. Let O(n) be the orthogonal group of n x n matrices M with
real coefficients and M7 M = I, SO(n) C O(n) be the special orthogonal group
of all matrices in O(n) satistying det(M) = 1. It is well known that SO(n) is a
compact group containing all rotations in R™, and via isometry, it can be identified
with a compact subset of R™ 5. Let S be the subgroup of SO(n) generated by
rotations in the (z1,22)-plane and (xj, x4 )-plane, for any j = 1,2, a = 3,...,n.
Then S is a compact manifold of dimension 2n — 3 without boundary. That is

n(n—1) ~

to say, there exists a smooth injective map x : S — Rz such that x(9) is a

compact manifold without boundary of dimension 2n — 3 and x~* : x(5) — S is
the smooth parametrization of S in a neighborhood of the identity map. Let us
write
e K =x(5), Ro=x""(0)
for a smooth compact manifold K of dimension 2n — 3 and Ry denotes a rotation
map in S.
Let A= (u,&,a,0) € RT x R™ x R? x R?"3_ define

Ry (% - a|%|2>

na(z)[?

Qalz) =1~ "% na(@))” ™" Q : (2.1)

where
_z=£ [z — ¢l
= —a

|z — ¢ Iz
and @ is the fixed non-degenerate solution to problem (1.5) as described in the
introduction. It was proved in [15] that for any choice of A, Q4 still satisfies (1.5),
i.e.,

na(x) (2.2)

AQa + |QA|p_1QA =0, in R".
Direct computations yield the following relations between the differentiation of @ 4
with respect to each component of A and z, defined in (1.11), (1.12), (1.13), (1.14)
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and (1.15). Precisely, we have

0
20(y) = — @ [QA(@]\N:Lg:o,a:o,o:o (2.3)
0
za(y) = — @ [QA(I')}W:Lg:o,a:o,e:o , a=1,...,n, (2.4)
0
Znt2(y) = Jay [Qa(@)]|1=1,620,a=0,0=0 - (2.5)
0
Znt3(y) = 8712 [QA(ﬂf)]lu:L&:o,a:Oﬁ:o- (2.6)

Let 6 = (012,613, ...,01n, 023, ... ,02,), where §;; is the rotation in the (¢, j)-plane,
then we have

w1 (0) = 5o Qa1 om0 27)
and, for I =3,...,n,
0
Zntir1(y) = 3711 [QA(x)hu:l,g:O,a:0,0:O’ (2.8)
0
Zon+i-1(y) = @ [QA('I)]W:17§:O7@:0,9:0' (2.9)
Following the definition in [15], a solution @ of (1.5) is non-degenerate if
Kernel(L) = Span{z, : « =0,1,2,...,3n — 1}, (2.10)
or equivalently, any bounded solution of L(p) = 0 is a linear combination of z,,
a=0,...,3n—1. It was proved in [32] that, the solution @ is non-degenerate when

the dimension satisfies some extra conditions. Indeed, the authors showed that for
all dimensions n < 48, any solution Q = @y is non-degenerate, for dimension
n > 49, there exists a subsequence of solutions @)y, which is non-degenerate in the
sense (2.10).

2.2. Setting up the problem. Let 3 > 0 be a sufficiently large constant, let us
consider the heat equation
{ut = Au+ |u|ﬁu in  x (tg, ),

) (2.11)
u=20 in 09 X (tg,00).

Observe that the solution of (2.11) provides a solution u(z,t) = u(x,t—tg) to (1.1).
Given a fixed point ¢ € Q, we will find a solution wu(z,t) of equation (2.11) with

approximate form
_n=2 x — &(t)
u(z,t) = u(t)” 2 Q ( ) .
(2.0) ~ 1) o
More precisely, let A = A(t) = (u(t),£(t),a(t),0(t)) € Rt x R® x R? x R?"~3 be
the parameter functions and define the function
0 ’2
u(t)

R (2582 a0

Qaey (@) = p) ™= Ina (@) Q N (@) . (2.12)
where
oz =&)Lz =€)
nag) (@) = =€) a(t) (2.13)
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and @ is the non-degenerate solution for (1.5) described in Section 2.1. With
abuse of notation when there is no ambiguity, here and in what follows, A(t) =
(u(t),&(t),a(t),0(t)) will be abbreviated as A = (u,&,a,0), a is a vector in R?

aq . .
a=1, € R?, it is also a vector in R™, namely,
2
a1
a2

a=1] 0] eR"
0
To begin with, we assume that for a fixed positive function pg(t) — 0 (t — +00)
and a constant o > 0, there hold

p(t) = po(t) + O(ug ™ (t)) as t — +oo,

Et) =q+O0(ug (1)) as t— +oo,
a(t) = O(pg(t)) as t— +oo,
0(t) = O(ug(t)) as t— +oo.
In [15], it was proven that for any choice of A, the function Q4 still satisfies (1.5),
namely

AQ4 + |QA|p71QA =0 in R"™.

Rot _ z— Et(t) 2 _
Let §j = — ) (5% Inlaz(t)‘ goub) and n = |: gg& a(t) |xu(§t()t)‘, then we have the
following expansion
T —&(t) e — )] |*
n|* = —a(t)
|z — &(t)] u(t)
x-ﬁ@) 2|z =€)
=1-—2a(t) - + |la(t) | ————,
O () + aorE G
1

W 1 - 2a(t) - ( () +Ja(t)2lz=g0l &((t))lz

o (80 o5

2
e () e (t)
Ao (5567 o0 5557 ) o (TN,
B FE - “”< 1(t) )+ owal?)

S(u) := —uy + Au+ |uPtu,

and

2

x —&(t)
p(t)

<

Denote the error operator as

with p = Z—fg . Then the error of the first approximation Q 4(x,t) can be computed
as

S(Qa) =~ (Qale.) = 0+ £1 4 £ + &5
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For y = (t)t), using Taylor expansion, the expressions of &y, &1, & and &5 are

given below explicitly.

€0 = W;u T Il w0 (9) + Zﬁ;u (0) " 20(@) (25 - Roa)

D) e o & — &)
wpt O < UE )< (1) >
=MD () (L (- ) Folus €, 0,0, )

where f are generic smooth bounded functions of the tuple (u, €, a,6,y) which may
different from one place to another, Fy(u,§,a,0,y) is a smooth bounded function
depending on (u, &, a,0,y). Similarly, we have

2

& =ty (n -2~ (n- a) ( it 3 f) Q@)

lz =&

+pu

@) -

o e
7"772 2—n AW ~27n xif §
+ 1 " "VQ(y) <yn|2 (a <|w—£|u>>>

- 3
=l 2 VQ(y)@(14-(3/@)}71(%57@79,3/))

where f are generic smooth bounded functions of the tuple (u, €, a,6,y) which may
different from one place to another, F;(u,&,a,0,y) is a smooth bounded function
depending on (u, &, a,0,y). Furthermore, & = £91 + E32, where

o= il 20 |20 + V) -]

x—{z
I

+ 0T " Rony - VQ(§)

2
aiay

w2 M + v 1] [

n—2

=p 2 {—2(a1-y) [TQ(yHVQ(y)-y] +d1~VQ(y)yl2}><

<1 + (y . Cl) F21(/J/7§; a7‘97y)>

n—2
2

:M_

Zn+2 (y)al (1 + (y . a) F21</1'7 57 a, 97 y))
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and
_n=2, e n—2 ~ -~ o~
Eog = —p~ 2 |n|7"2 (G2 - y) — @ (1) +VQ(@) -7

r—¢
I

2

+ 0T " Roa - VQ(§)

2

w2 P 2em - vaw | |7

n

_— ';"‘{_2(a2-y) [H;QQ(yHVQ(y)'y] +d2~VQ(y)yI2}X

<1 + (y . Cl) F22(/~’/7§a a797y)>

= M_72n+3(y)a2 (1 + (y . a) FQQ(N? 57 a, 97 y)) .

Here we identify the component a;, j = 1,2 of a with the vector

ap 0
0 a9
0| err, if j=1, 0 |err, if j=1,
0 0

f are generic smooth bounded functions of the tuple (u,&,a,6,y) which may dif-
ferent from one place to another, Fa1(u, &, a,0,y) and Faa(p, &, a,6,y) are smooth
bounded functions depending on (u,§,a,8,y). Finally, &3 = 312 + 2?23 Es15 +
> i=3 E3,2j, where

Esa2=p" 2 P"VQ(H) - (i)b12

=177 Zo1(y)bh2 (1+ (y - Rea) Fs 21 (1€, 0,0, 9))

and similarly, for j = 3,--- ,n,
_n=2 ;
E31j =1 7 zngjt1(9)01; (L+ (y - Roa) F315(1, €, a,0,9))

E32j = 17T zans1—1(y)fa; (1+ (y - Roa) Fai(, €. 0,0, )),

where 7 is the rotation matrix with angle g around the axes z;, 2o in &3 12,
around the axes x1, ; in £31; and around the axes x, x; in £39; respectively,
F319(p,&,a,0,y), F31;(1, &, a,60,y) and Fz9;(11,€,a,6,y), j =3,--- ,n, are smooth
bounded functions depending on (1, ¢, a, 8, y).

To perform the gluing method, the terms u_%_l,uzo (y), ,u_%_lé-VQ(y) and
/fnT72’1VQ(y) - (iRg€) 6 do not have enough decay, inspired by [3], we should add
nonlocal terms to cancel them out at main order. By the detailed construction of

Q (see [9]) and (1.6) we know that the main order of z(y) is

Dn,k(2 — |y|2)
(L+1yl?)=
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n—2

with D, j = — 252 {L} T2

ol by (1 + dg). Therefore, we consider the following

heat equation

an(2— 2= f‘)
) =0in R" x (g, 400). (2.14)

2
z=&
<1+#\)

By the Duhamel’s principle, we known

— i+ Ap+ %u‘("‘Q

2
y—¢(5)
t R 'u(g) o Dn,k: <2 — (3) > )
[ [ pt-semn B ) dyds (215)
o Je 4G5 L )’
e
2
provides a bounded solution for (2.14) Here p(t,z) = 7 1)E e~ is the standard
heat kernel for the heat operator —=; + A on R™ x (t9,400). By the super-sub
solution argument, ®°(z,t) satisfies the estimate ®°(x,t) ~ Zﬁ (see Lemma

1.3).

To cancel the main order = "z°~1¢ . —Ent¥ _ of ,="3*~1¢. Y Q(y) where Enk

(+lyl*) 2
is a constant depending on n and k, for y = %, we consider the following heat
equation
—(n—2) 1 g . n
—or+Ap+ E, ki —— =y =01in R" x (to, +00). (2.16)
(1+y[*)= »

The solution defined from the Duhamel’s principle

o' (a, Enk/ / (1= 50— 02 (5) S )A IO

1

y—£(8)
(1 + ’ i)

—dyds

7

—n+4

satisfies the estimate ®!(x,t) ~ %W

Similarly, for ¢ = 1,2, we consider the heat equation
—(n-2) Bnkly> = 2Dy k(2 — |y[*)

(L+[yl?)?
which has a bounded solution given by

= [ [ e se-ouin (582)

-+ Ap+p a;y; = 0 in R™ X (tg, +00), (2.17)

y*&(S) _ _|y=¢€3)
E"k’ 1(3) 2Dn i (2 ‘ ENON >
= dyds
y—£(3) :
(1 Jr‘ (3 )

satisfies the estimate ®2(x,t) ~ |al\$
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Now we define ®*(z,t) = ®°(x,t) + & (x,t) + S -_, % (x,t). Since the final
solution must sasify u = 0 in 92, a better approximation than @ 4(z,t) should be

ualz,t) = Qa(x,t) + u"= ®*(z,t) — p' = H(z,q). (2.18)
The error of w4 can be computed as follows,
S(ua) = —0ua + |ualPrua —QalP QA + M%AQ*(x,t). (2.19)

2.3. The error S(uya). Near the given point ¢, the following expansion holds.

Lemma 2.1. Consider the region |x — q| < & for e small enough, we have

_nt2
S(ua) =p~ 2 (uEo + pEy + pFEy + pE3 +R)
with
— n— n— . Dn, 7 2— Yy 2
Eo =p|QP! [_M *H(q,q) + 1 S‘I)O(q,t)] + fu(t) (Zo(y) - (1k—|(—|y|2)72!)> )

By =plQPP~ [-u"T?*VH(q,q)] -y +plQPT [1" P2 (g, )]

En kY :
+|VQy) — ———= ] -¢
( v a+m%J
E2 — p‘le—l [Mn_3¢2’1(q,t) + Mn—3(1)2,2(q7t)]

a — z _w 2 i _M
+p(t) 1< 2y1<o(y) ENVEE >+y| <8y1Q(y) (1+|y|2)3’>>

ao [ =20 [ 200 — Lot =191 o O 0\ Enxp
+ p(t) 2< 2y2<0(y) 0+ 1P >+y| (ayzQ(y) (1+|y|2)3>>,

n

By = zpp1(y)pbra + ) (Zn+j+1(y)uélj + an+j_1(y)u92j)

7j=3
and ~
+2 1 Ngilf /lgﬂ!j 2 7
R= (o " +py )f+ ca+ (€ —q) + pgé - hy
(H’() Ho ‘Lt)f 1+|y|2 1+|y|4 (5 q) Nof

where f, f, g and h are smooth and bounded functions depending on the tuple of
variables (pg *p, €, a,0,2 — €).
Proof. Set
2
z—&t) _  |z—=E(1)
e ( MO0 )
Y= )

[nl?

we have
n—2 — ~ n—2 _ . n-2
ua(@,t) = pt)" = T Q@) +puT O (a,t) —pT H(z,q)
and
S(UA) :Sl+SQ,
where
n—2 n—4
St :=& + &1 +52+53—|—Tu 2 ,LLH(JJ,(])
n—2

T R (1) — 1T 98" (1),
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n— ‘P—l

S2 1= |u(®) T P Q@) + 4T O (1) — 07T H )
(667 P " Q@) + n*7 @ (2, 1) — T H(w,q))
—u®) 7= TR @ITTQ (1) + 1T AR (1),

Let

n+2

So =" 7 [l0@) + 017 Q@) + ©) — 1M Q@)
and
© =" 2" 28" (1, 1) — 2| 2H (1, q). (2.20)
Observe that |©] < pg~? when ¢ is small enough, we may assume Q(y) /6| < 3 in

the considered region |x —q| < e. Using Taylor’s expansion, we obtain the following

1
So =1~ 72" | p1Q@) P O + plp — 1) / (1- ) |Q@) + 502 ds0? |
0

Hence we have
O = " 2" 20 ((In]*R-ef + aly|* )+ &, t)
— " 2" P H((In* R-g§ + aly[* ) + £, q).

We further expand as
© = — " 2n|" 2 (H(q, q) — ®*(q,1))
+ ((INPR-o7 + aly)u+ € = q) - [=u" 2" 2V (H (g, q) — ®*(g,1))]
+ /01 { — 12" 2 D2 H (g + s((In[*R-e7 + aly|*)p + € — ), q)}
[(InPR-67 + aly|*)p + € — q]*(1 — s)ds
+ /01 {u"‘2|n|"‘2D§<I>*(q +s((InPR-og + aly*)u+ € — q), t)}
[(nI* R0 + aly*)p + & — q)*(1 — 5)ds.
Therefore, we have

O = —u" 2" 2H(g,q) — n" "' |n|"VH(g,9) - R_7
—u" 2"V H(q,q) - (€ —q) — " n[""*VH(q,q) - aly|?
+ TP (g, 1) 4 " "V (g, t) - R_g
+ "MV R (g, 1) - (€ — q) — p" T n|" TPV (g, 1) - alyl?
+ g F (g 1€ 0,0, =€)

|z —
1i(t) 1(t)

_ T — z— €2\ ? 3
— ! <12a~ - +Ia\2| d > VH(q,q) - R_¢y
() [t

n—2
e T — g 5 2 2
=—u 2(1—2a~ + [af? | ) H(q,q)
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— 2 (12‘1'2&)5““'2'%“2_(5)'2) z VH(q,q) (£ —q)
— ! (1—2@ J;L(_t)£+|a|2|mﬂz_(f)|2>z‘2VH(q, ) - alyl?
+ 2 (1 2a x&fﬂ |2|$ 2_(32)%2@*((1,&

N G '2|xu;<f>|2>gw’*(q’“ o
4 pn2 (1—2a i &fﬂ |2'$M;(g'2)TV¢*(q7t> ()
Lt <12a. u(tf | |2'22(f)'2)n22 VO (q,t) - alyl?

+ uh F (gt € a,0,2 — €)
21+ O(lallyl)) H(g,q)

—u" (1 +O(lally])) VH(q,q) - y (1 + O(lally]))
—u" 2 (1+0(lallyl)) VH(q,9) - (£ — q)
VH(q,q) - alyl®

+ " (14 0(lally])) VO* (g, 1) -y (1 + O(lally]))
2 (1+O(lallyl)) VO*(q,t) - (£ — q)
+ 1" (1+ O(lallyl)) VO* (g, ) - aly|?
+ugFpg 1€ 0,0, —8)
= —u""?H(q,q) — p" " 'VH(q,q) -y — " >VH(q,q) - (£ — q)
— 1"V H(q,q) - aly|® + p" 0% (g, 1)
+ IV (g, t) -y + p" VR (g, t) - (€= q) + p" TV (g, 1) - alyl
+ g Fpg i€ a,0,2 — &) + pg ~2lally | F(ug ' 1, €, 0,0, — €)

( )
( (lallyl)) v
( (lally) v
—u" " (1 +O(lallyD)
+ "7 (14 O(lallyl) @ (q,t)
( (lally])
( (lally]))

\Y
\Y

and
plQ@I" O
=p|Q (Roy +alyl* +0 ()0
= p|Qw) + VQw) - (alyl + (Ray — ) + 0Ualy?)| " ©
=p (1" ¥) +O(allyh) ©
=p (IQI”_1 (y) + O(IGHy\)) ( —u""*H(q,q) — " 'VH(q,q) -y

—u"*VH(q,q)- (£ —q) — u" 'VH(q,q) - aly|?
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+p" TR (g, t) + p TV (g ) -y + p TPV R (g, t) - (€ — q)
+ u" IO (g, t) - alyl® + pg F(pg i€ a, 0,0 =€)

+ g2 ally F (g i, € a, 0,0 — 5))

=p|Q" " (y) ( — " ?H(q,q) — p""'VH(q,q) -y

— W ?VH(q,q) - (£—q) — p" 'VH(q.q) - aly|?

+ " (g 1) + p" IV (g 1)y + p" TV (g, 1) - (€ )

115~ lally|
L+ [yl

where the smooth functions F' are bounded in its arguments which may different
from line to line.
Decompose S7 as S1 = S11 + Si2, where

S11:=8E+E +E +E — /LanQat(I)*CL‘,t),

n—2 n—4 n—2 n-4a
Sz i=—o—p' = (H(z,q) — —5—p""

-|-,un1V‘I)*(q,t)a|y|2> + F(,ual,u,g,a,ﬁ,m—f),

a®*(x, t).
Observe that
n-2_q, _
SlZ :MOQ /‘LF(MO 1/1,5,(1,9,.@—5)

holds for a function F' smooth and bounded in their arguments. This proves the
lemma. O

Recall that we are trying to find a solution with form
u(w,t) = ua(z,t) + (x,1),

where ¢ is a small term compared with u4(x,t). By the relation S(u4 + ¢) = 0,
the main equation can be written as

— 016+ AG+ plual” §+ S(ua) + Na(9), (2.21)
where
< T ~|p—1 7 -1 bt -1 7
Na@) = ua+ 6] (wa+d)—ual ™ (watd)—plual 'o. (222

Note that around g, it is more convenient to use the self-similar form, so we write

o(x,t) as

) =)o (50, (2.23)

2.4. Improvement of the approximation. The largest term in the expansion
n+42

for p 9 (ua) is uEy. To improve the approximation error near the point ¢, ¢(y, t)

should be the solution of the elliptic equation (at main order)

Aydo + QP (y)do = —poEo in R™, oy, t) =0 as |yl —oo.  (2.24)

Equation (2.24) is an elliptic equation of form

L) = Ayp +p|QIP ()¢ = h(y) inR™, (y) =0 as |yl —oo. (2.25)
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By the nondegeneracy of the basic cell @ (see [32]), we know that each bounded
solution of L[y] = 0 in R™ is contained in the space

span{zo, e 7Z37L—1}~

Standard elliptic theory tells us that problem (2.25) is solvable for hA(y) = O(|y|~™),
m > 2, if and only if the L? orthogonal identities

h(y)z;(y)dy=0 foralli=0,---,3n—1
R’V‘L
hold.
For (2.24), we first consider the following condition,

[ 1 S 0wy = 0. (2.26)

We claim that, for suitable positive constant b and a positive constant ¢,, depending
1
only on n, choosing p = bug(t) , po(t) = cpt™ 72, (2.26) can be achieved at main

order. Observe that fio(t) = —mug_?’(t) and the main contribution to the

left of (2.26) comes from the following term

Eo; = plQIP ™ [0 (8%(q. 1) ~ H(a.9))] + (t) <zO<y> - DQ""”) -
(1+[yP)?

Now let us compute the term ®°(q,t) which is given by (2.15). Note that the heat

T
kernel function p(t,x) = a 1)% e i

satisfies the following transformation law

=)= -3 (1,0,

therefore we have

2
. 3) lf(n 2)(5)137171C (2 _ ’y;(ﬁg()S) )
(Po(qvt) - p(t_§7q_y) ~ [ dyd§
to JR7 () 14 |r=Rowé®) 2\ 2
n(8)
2
t ,L,L(g) /”’_(n_2) (S)Dn,k (2 - ’z@% )
=—(1 1 t— — n dyds
o) [ [ e-sa-piE 7 s

et [ o) 2

W=




For
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t o~

(5) _(n—
=—ﬂ+0ﬂ»/) (n=2)

105" (g)dg/np<1’ q_y>

(t—3)z
D <2 g
X
-y

(1 e

2\ 2 (t—38)2
(t-5)2 >
~—(1+o) | Zﬁgw”(m (“ L) ) s,

(t—5)2

n(3)

(t—3)2

2)

=y

1

2 d y—4q

(t—35)2

1(5)

Fa) = [ )22 C=def) ;,

(1+a?[af?)?
We claim that, for a suitable positive constant ¢ depending on n and b, it holds
that

P b [C) ey () I D
(g, 1) (1+<1))/t0u<§>“ ()F( e )d (1+0(1). (227)

Indeed, for a small positive constant ¢, decompose the integral

[reor ()

()

1(3)
t e ~\ 1
i) oy (G DFY
—|—/ —=u S)F — ds
AT L e
= Il + IQ.
For I, we have t — § > 4, therefore

b4fn
0< -1, <

P (t=35)2\ .
< aa, W( il >d$

8)
1 —("—2)
pi-n t—9 t—3)3

—Cﬁ/ p2 (|2 ds

(n—4)en™* Jiy ()

C /t—é 1 1 5 C 2 1
= = n—2 dS S

n—4 to S (t - §)T

(n—4)ton — 4%

Note that we have used the definition pug = be,t™ 77 and the fact la|"2F(a) < C

— ! ,u(§) —(n—2) 3 (t_g)% 5
= ”F< >d>

1(5)

17
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[N

after change of variables (t=%)

G 5, we have
ds = —- f‘(f) —d3
F(t =372+ A(3)s

and

Observe that for small 8, (¢ — 872 + j1(3)5 = 3(t — 5) 72 (1 — 25z (t — 9)) >
=531 - 250), ds = (t”_<7)>(1 + O(6))d3, hence
,
= _(nibj;;:z-‘l /O““"” SF(8)ds+o) | = ——22X " 4t o)

1
when % is large enough. Here the constant A = fooo SF(8)ds < +oo since the

dimension of the space satisfies n > 4. Hence we have

0 = - 0] ' @ -(n=2)(5 (t— §>% 3
#0) = =o)L )F< ) )d 228
2b47n ( . )

WA +o(1) := BV + 0(1)

when tg is sufficiently large. Here the constant B is B = B, := WA. This
is (2.27).

Direct computations yields that

—(n— e 2c1A+c
1y ¢ 3)(0/ Eo(y,t)z0(y)dy =~ e1b" > H(q,q) — —— 2.b

with

= p / QP (4)20(y)dy € (0, +00),

_ oy Prk =1y -
02—/n<o(y) 0+ P2 ) o(y)dy € (0, +00).

Note that ¢; < +00 and ¢y < +00 are due to the assumption n > 4. We will prove

c1 >0, c>0 (230)
in the Appendix. Write

(u(t) = buo(t) = bept 77,
Then (2.26) can be satisfied at main order if the following hold

_ 201A + Co
V" 2H(q,q) — —————= p> = (. 2.31
(00) = o i (2:31)
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Imposing ijﬁ = n%Q’ ie.,
(2614 + ¢3)(n — 2)] 72
Cp = )
2(7’L — 4)01
we get
. 2¢1 -3
t) = — 0 o(1). 2.32
N’O( ) (261A+02)(’I’L—2)M0 ( ) ( )
By (2.31) and (2.32), the constants b should satisfy the relation
2b
H(q,q)b" % = —. 2.
(. = 2 (239
It is clear that (2.33) can be uniquely solved if and only if
H(q,q) >0, (2.34)
which holds from the maximum principle. Under the assumption (2.34),
=) a (2.35)
= ——— : 2.35
(n—2)H(q,q)
Similarly, the relations
| S huldy =0, i=1, 301 (236)

can be achieved at main order by choosing &y = ¢, ap = (0,0) and 6y = (0,--- ,0).
Now fix pg(t) and the constant b satisfying (2.35), denote

fio = bpo(t).
Let ® be the solution for (2.24) for 1 = fip which is unique, then we have the
following

Ay® +plQIPH (y)® = —poEo[o, fro] in R™, ®(y,t) — 0 as |y| — oo.
From the definitions for pg and b, we obtain
noBo = —vpg *q0(y),
where v is positive,

Ao B () Pus2= )
=D + =Dt ( o(y) TENNDE > (2.37)

q0(y) :

and [, qo(y)zody = 0.
Let po = po(Jy|) be the solution for L(py) = go. Then po(y) = O(|y|=2) as
ly| — oo since (2.37) holds. Therefore,

Dy, 1) = yug *po(y). (2.38)
Thus the corrected approximation should be
wh(z,t) = ua(x,t) + O(x,t) (2.39)

with

B(z,t) = p(t) T (x - 5(0) .
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2.5. Estimating the error S(u%). In the region |z —¢| > §, S(u’) can be de-
scribed as

'n72_1 n

nt2 n—-2. — n . — n . —
Sui)(@,t) = pg®  pfi+tpe® fotpe® §-frtuga fotpugt-fs, (2.40)
where f1, fa, fi, fé and f;, are smooth bounded functions depending on the tuple

(, 1 1, €, 0, 6).
In the region near the point ¢, direct computations yields that

S(uy) = S(ua) — N_HTHNOEO[,HO, o] + u_";z{ — 1120,®(y, )

. |n—2 : 2.41
i P52 000 4y 0| 4 7,800 -uf} (241)
~|p—1 ~ p—1 _nt2 p—1
lua+ @ (wa+®) = fual ua - F QU 0, 0),
where y = % If |z — ¢| <9,
n+2 * n+2 _ .
p2 S(uy) = p 7 S(ua) — poEolfios fo] + Aly), (2.42)
where
+4 1 N(Q)rh4 1 r—¢
A:‘Ll,g f(N(T M?g,avoauy)+ 1+|y‘gg(:u’6 Ma€7a30nuy)a Y= T (243)

for smooth and bounded functions f and g.
Now we write p(t) as
u(t) = fio + A(t).
From (2.42),

n+2

S(us) = u% {juo (Bolp, i — Eolfio, o)) + \Eolp, i + pEi 1, €] + R+ A}

Observe that ®° is a nonlocal term depending on u, £ and we have
3000 4+ A, bjio + Al(g, 1) — p" 2@ [0, bjio] (g, t) = —2AX — g~ (n — 3) BA
which can be deduced by similar arguments as (2.28), one gets

Eo[fio + )\, bjuo + Al — Eo|fio, bjito]

=A <20(y) - an(2|y2)> — 15 PIQPTH (y) [(n — 3)b" " H (g, q)A]

(1+y?)>
+ g PlQIP T () (n = 3)BA = plQIP T ()24 — i plQIP T (y) (n — 3)BA,

As for AEo[u, 1], we have

=M 2 —M w0 | 2 _M
AEo[u, i = AA( 0(¥) EOE: ) +Ab|ft0 ( o(y) 0+ 1oB)? )

+plQPH y)ug ™ (" H(g,q)) | +pIQP (y)buy T BA

— 1 PlQIP T (y) f (1o T AN,

where f is smooth and bounded in its arguments.
Combine all the estimates above, we get the expansion for S(u%).
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Lemma 2.2. In the region |z — q| < § for a fized small 6 > 0, set pu = fig + X with
IAN()] < po(t)1T9 for some positive number o € (0,n —4). When t is large enough,
we have the expansion of S(u%) as

S(u)

-, A 20 (1) — D2 = yP) p—1
- {W ( R TFAREE R (y)>
— popg~plQIP T (y) [(n — 3)b"*H(q, q)A]

En,k:y : — n—
+ (VQ(y) - (1+y|2)2> S+ plQP [-u" TV H(q,q)] -y
Dy k(2 -y

2 . 2) 2 0 En kY1
al -2 zZ e - -
+ (1) < Y1 ( 0(y) 01 ) ) + 1yl (ale(y) 0t |y|2)2>>

2(as [ — . ~ Dap(2—yP) 2 O By
+ut(t) 2( 2yz<o(y) 01 ) >+|y| (ayQQ(y) (1+|yl2)3>>

n

+ 12 (#)0122n 41 (y) + (M2(t)91jzn+j+1(y) + M2(t)é2j22n+j—1(y)> }
=3

e[ Dui(2— [yl?)
+u szlm <ZO<y>—’n
1+ )

QP ( (g, q) + B)

_n+2 [ n— _ f2 \ n n—1 -
+ue 2 g tplQP 1(y)f1)\2+W)\/\+No+2f3+ﬂo lﬂf4}

_n+2 :._, . .-
+ug * |Efi+Ef2+ES3

r n 2n—4 n—2 n—1- n—2-=

—me2 [opuggr g g2 My 93 ro G Bo g2 }
oy + A+ ‘a (€~

A o P T i W P T o P

)

where & = £+ py, f1, fo, fs.fu. fi, Far f3, 91, 92, g3 and Gy, Go are smooth bounded
(vector) functions depending on the tuple of variables (,ualu,@a, 0,x).

3. THE INNER-OUTER GLUING PROCEDURE
We will find a solution for (2.11) with form
u=ujh+¢

when t( is large enough, the function ¢~>(x, t) is small compared to u*. To this aim,
we use the inner-outer gluing procedure.
Write
B(a,t) = Y, t) + ¢ (2,t) where ™ (x,t) = (e, )d(a, )
with

3ort) = 1y T (ft) C () = bpo(t)
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nr(z,t) =1 <‘;Nf|> :

In above, n(7) is a (smooth) cut-off function defined on the interval [0, +00), n(7) =
1for 0 <7< 1andn(r)=0for 7> 2. Risa fixed number defined as

R=tf with 0<p<1. (3.1)
Under this ansatz, problem (2.11) can be written as

0d = A+ p(us)P" 1o+ N(8) + S(ufy) in Qx (tg,00),
qg: —u, in 90 x (to,00),

and

(3.2)

where N4(9) = i By + 6) — plus P16 — s P, S(uy) = Byt +
Au’y + |uy P~ u¥. Let us write S(u%) as
S(uy) = Sa+ ST

where

Sa
= {uoA (Zo@) - DeslB- W) 2Ap|@|ﬂ1<y>>
(1+yl*)*
— popg*plQIP () [(n — 3)b" " H(q, q)A]

<zo<y> - W) QP () ( bt H(g0) + B)

+ Ab| 2o
(L+[y[?*)>

(1 +1[yl*)*

2(van [ — . ~ Dni(2-yP) 2 O _ Enwn
+ 17 () 1( 241 ( o(y) 1+ g2 >+y| <8y1Q(y) (1+|y|2)2>>

2N | — ; _ D2yl 2 O  Engye
+ (1) 2( 2yz<o(y) EEE >+y| (ayzQ(y) (1+|yl2)3>>

+ 1 (£)f122n 11 (y +Z< £)0152n+1(y )+M2(t)92j22n+j71(y)) }
i=

+ <VQ(y) - Eky) S+ p|QP T [-p" 2V H(g,9)] 1y

Define

Va=p <|U*A|p_1 - ’u‘"QQQ (m;f)

then ¢ satisfies problem (3.2) if

(1) 9 solves the outer problem
Oyh = A+ Varh + 2VnrVo + 6(A — 0) g + Na(@) + Sour, in Q x (to, 00),
Y =—u%y on 9N X (ty,0),

p—1
) nr +p(L—ng)usP, (3.3)

with
Sout = S + (1 = ng)Sa. (3.5)
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(2) ¢ solves
NROLG = 1R [Aiﬁ +plQueol’ P+ plQue

n—2

for Que == p= 2
inner problem

nt2
130 = Ay + plQIP ()b + 1o Sal€+ poy.t)

n

_o 2
+ g %IQI”‘l(%y)w(@ruoy?t)+B[¢]+B°[¢] in  Byr(0) x (to,00),

Pl 4 SA} in Byp,(€) x (to, 00), (3.6)

Q (xu;g) In the self-similar form, (3.6) becomes the so-called

(3.7)
where )
Bl6] = uofio (”2¢+yovy¢) + oV - € (3.8)
and
B%ﬂ:pDQW*(ﬁw)—@P*@ﬂ¢+p@%ﬂw*—ww*(ﬁwﬂ¢.
(3.9)

4. SCHEME OF THE PROOF

To find a solution (¢, ¥) satisfying (3.4) and (3.7), we proceed with the following
steps.

4.1. Linear theory for (3.7). Let us rewrite problem (3.7) as

130:d = Ny + p|QIP T (y)d + H[N, €,a,0, )\, €, a,0,0,9](y. 1),y € Bar(0%1)
for t > tg, where

HNEa,0,7,€,0,0,6,9) =p® Sa(€ + poy.t) + Blo] + B[g]

n

— U% 1, M0
+ ppg 2 EIQV’_ (;y)w(fﬂLuoy,t),

the terms B[¢], B°[¢] are defined in (3.8), (3.9) respectively. Using change of
variables

(4.2)

dt
t:t(T)’ ar :M(Q)(t)7

(4.1) becomes
0r6 = Dy +plQI"™ ()¢ + HIA.€, 0,0, A.€,0,0, 6, 4](y, (7)) (4.3)

for y € Bagr(0), 7 > 79. Here 79 the (unique) positive number such that t(7p) = to.
We try to find a solution ¢ to the following equation

0-¢ = Dy +p|QPP T (y)¢
—|—H[/\,§,a,9,/.\,é,d,9',¢, W(?Jvt(T)), Y S B2R(0)7 T Z 70,

" (4.4)
$(y.70) =Y _eZi(y), y € Bag(0),
1=1
for suitable constants e¢;, [ = 1,--- , K. Here Z; are eigenfunctions associated to

negative eigenvalues of the problem
L(¢)+Xp =0, ¢eL>®R").
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It was proved in [15] that K is finite and Z; satisfies

e~V =Alz|
Z1(x) ~ ——— as |z| = oc.
|z 7=
Next, we prove that (4.4) is solvable for ¢, provided v is in suitable weighted spaces
and the parameter functions A, £, a, 6 are chosen so that the term H[X, &, a,0, ), &, a, 0, ¢, ¥](y, t(7))
in the right hand side of (4.4) satisfies the following L? orthogonality conditions

HX & a,0,A,€,4,0,0,9](y,t(7))z(y)dy = 0, (4.5)
Bar
forall 7 > 79,1 =0,1,2,--- ,3n — 1. These conditions will impose highly nonlin-
earity to (4.4), to get a solution ¢, we apply the Schauder fixed-point theorem. We
first need a linear theory for (4.4).
For R > 0 large but fixed, consider the following initial value problem

06 = MG+ plQP ()6 + h(y, ), y € Bar(0), T > 7,

K (4.6)
$(y:70) = Y _ eZi(y), y € Bar(0).
=1
Set
o
= 1 _—
Y + n—2’
then we have = >"7 ~ 777, Define the weighted norm for h as

1Pllav := sup sup (1 + |y[*)[A(y, T)|.

T>T0 YyEB2Rr

Then the following estimates for (4.6) hold.

Proposition 4.1. Suppose a € (2,n —2), v > 0, ||hll24a,r < +o0 and
/ My, 7)zj(y)dy =0 for all 7€ (19,00), j=0,1,---,3n—1.
Bar

Then there exist functions ¢ = ¢[h](y,T) and (e1,--- ,ex) = (e1[h](7), -+ ,ex[h](T))
satisfying (4.6). Furthermore, for T € (19,+00), y € Bag(0), there hold

I+ 1yDIVyo(y, T + oy, DI S 777 (1 + |y)) " [[All 240w (4.7)

and
|€l[h]| 5 ||hH2+a,y fO’I” l = 17' o ,K- (48)

Here and in the following of this paper, the symbol a < b means a < Cb for some
positive constant C' which is independent of ¢ and ty. The proof of Proposition 4.1
is given in Section 5.

4.2. The orthogonality conditions (4.5). To apply Proposition 4.1, we should
choose the parameter functions A, £, a and 6 such that (4.5) hold.

Let us fix a o € (0,n —4). Given h(t) : (tp,00) — R¥ and § > 0, the weighted
L norm is defined as

1Rlls = llso(8) " R() | o= (10,00 -
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In what follows, a is always a positive constant such that o > 2 and o — 2 is small
enough. Also assume the parameter functions A, &, a, 6, A, £, a and 6 satisfy the
following constraints,

. . . . c
A lln-s+0 + €O ln-s+0 + lat)ln-ate + [0 ln-110 < 7o, (4.9)

IXOlro + 1608) = dllivo + la)ls + 160 < = (410)

here c is a positive constant which is independent of R, t and 3. Let us define the
norm ||@||p—2+0,o of ¢ as the least number M > 0 such that
n—2+o

I
L+ [yDIVyo(y, )] + [y, t)| < Mli e (4.11)
and ||4]]««,8,q is the least M > 0 such that
t" |z — ¢
V(x| < M———— y= 4.12
(e8] € My - (112)
holds. Here g = 2(’;77_24) + ~%;. We suppose ¢ and 1 satisfy
[lln—2t0a < cty® (4.13)
and
ctg ©
[l p.0 < o=
for some small € > 0, respectively.
Then we have the following result.
Proposition 4.2. (4.5) is equivalent to
14+ (n—4) Cope 4
A4+ ——— A =Tlp[A 0, A 0 t
+ (Tl*4)t 0[ 7€aaa ) 757047 7¢a’¢}]( )7
él:Hl[)‘agvavaaAaéadvéa(bﬂp}(t)a l:]-7"'7n7
912 = N()_1Hn+1 P\; 57 a, 0; /.\a év da 93 ¢a lb](t),
dl = //L(;IHWA_Q[A,S,U,,Q,X,é,d,é,(b, w](t)a (414)

a2 = MalHn+3[Aa §7 a, 93 ).‘7 é? aa éa ¢7 QM (t)a
éll - NalHn+l+l[>\a fa a, 9, ).‘a év da éa ¢)7 Z/J](t), I = 3, e, N
921 - M0_1H2n+l—1[)‘7 Ea a, 97 >.\7 év d’a éa ¢7 w](t)a l = 37 e, M.
The terms in the right hand side of (4.14) can be written as
Co to°  lsio ty ©
HO [)\7 57 a, 97 )‘7 ga a, 07 ¢a M (t) = Rg,Q Ho o (t)fo (t) + Rg,Q

o [ A€, ot o, 1§ HON, 1€ — @), 1, 20, 1T 0T ] (0)

and forl=1,--- 3n—1,

Hlp‘,&aa597>.‘aé7daéa¢ﬂ¢](t)

= gy 2 [0V H(q,9)] + pi () Ault) +

tO_E
Ra72

. . . . _ _ _ _ _ L_Q—&-a'
o [A,é,uomuo@,ug YON g E— @), 1y a1y TR0, 1y T b e ® | (D),
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where ¢; are suitable constants, fi(t) and ©;[---](t) 1 = 0,-,3n — 1) are bounded
smooth functions for t € [tg,0).

The proof of Proposition 4.2 is given in Section 6.

4.3. The outer problem. Let us consider the out problem (3.4),
Ot = A + Vat) + 2VnpVe + 6 (A — 8;)nr
+NA(§£)+Souta in 2 x (to,OO), (415)
1/) = _U*A on 0 x (to,OO), 1/)(th ) = 7/}0 in Q7

with a smooth and small initial datum ).
To apply the Schauder fixed-point theorem to (4.15) and get a solution ¥, we
first consider the corresponding linear problem

Op =AY+ Va + f(z,t) in Qx (to,00),
Y=g on 9N x (tg,00), (4.16)
¢(t0, ) = h in Q,

where f(z,t), g(z,t) and h(z) are smooth functions, V), ¢ is defined in (3.3). We
denote || f||«,y,2+a as the least M > 0 such that

—9,—
[V At r—&

—_ =— 4.17
1+ |y[2+s Y I ( )

for given ¢, v > 0. Then the following a priori estimate holds for problem (4.16).

[f(z, )] < M

Proposition 4.3. Suppose || fll+,,24c < +00 for some constants s, v >0, 0 < ¢ K
L [hllzee @) < +oo and [|[T7g(x, 7)|| Lo (90 x (t0,00)) < +00. Let ¢ = [f, g, h] be the
unique solution of (4.16), then there exists 6 = 6(2) > 0 small such that, for all
(z,t), one has

t™7 S(t—
[W(z,t)] < Hf”*m%cm + e B oo ()

(4.18)

_ T —

+ 71 m7g(@, 7)1 00 (t0,00)): Y = p

and
ptt

Vip(z, )| S| f |*,7,2+<W for [yl < R. (4.19)
The proof is the same as Lemma 4.1 in [2], so we omit it. This result will be

applied to problem (4.15), as a first step, we establish the following estimates for
f)(,t) = 2VneVe + (A — 9)nr + Na() + Sour-
Proposition 4.4. We have

(1)
_ _ n—2+a_
to 1 e (1)
Sout(z:1)] S —a n : 4.20
| t(lL’ )|N Ra_Q 1+‘y|0‘ ( )
(2)
1 72 1L;2+U(t)
2VnRVS+ (A = 0| S Tz |6lln-2ma (4.21)

L+ [y[@
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3)

Na(@) S

n—2

_ (T ()

€ 2 2 0 >

tO (||¢||n—2+<7,o¢ + ||w‘|**,[3,a)Ra_2 1+ |y|a ) when 6 Z N, (422)

n—2
—2 5 +o
_ 1 "k (t)
to " (I8l 2100 + P15 5.0) : ,  when 6 <n.

N e
The proof of Proposition 4.4 is given in Section 7.

4.4. Proof of Theorem 1.1: solving the inner-outer gluing system. Let us
formulate the whole problem into a fixed point problem.
Fact 1. Let h be a function satisfying [|4//,—31+0 < 7a=z. The solution for

14+ (n—4)
At ——— A= h(t 4.23
e A =) (423)
can be expressed as follows
1 n— t 1 n—
) =t 65 {d+ / e h(T)dT} : (4.24)
to

with d be an arbitrary constant. Therefore, it holds that

(n—4)—o

ito iy w—
tIAD) L to.00) Sto " A+ [[Blla-sto

and

. _(n—4)-0
ANOn-3+0 Sto ™" d+[[hlln—3+0-
Set A(t) = A(t), then we have
11+ (n—4) /C>O
- A(s)ds = h(t 4.25
| Aes = o, (4.25)
which defines a bounded linear operator £, : h — A associating the solution A of
(4.25) to any h satisfying ||h||n—3+s < +00. Moreover, the operator £; is continuous

between the space L™ (tp,00) endowed with the || - ||,—3+o-topology.
For any h : [tg,00) = R™ with ||h|,—3+s < +00, the solution of

A+

€=y e[V TV H(g,9)] + h(t) (4.26)

can be written as -
£(t) = €°(¢) +/ h(s)ds, (4.27)
where ' -
€0 =g+ e[ VH@a)] [ s)ds
Thus t
€)= al S 775 + 775 [hfla-sso

and

”f - fo||n73+cf S ||h||nf3+o-
Define Z(t) = £(t) — €9, then (4.27) defines a continuous linear operator Ly : h — =
in the || - ||n—3+o-topology.
Similarly, from Proposition 4.2, we can define L3 : h — I' := a(t) and L4 : h —
T := 0(t) which are continuous linear operators in the || - ||,—44o-topology.
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Note that (A, &, a, ) is a solution of (4.14) if (A = A(t), B = £(t) — £°(t),

T':=a(t), T:=0(¢)) is a fixed point of the following problem
(A,Z,T,7) = To(A,Z,T,7) (4.28)

where

To: = (L1(MIAZ, T, T, 6,0], L2(12[A, 2T, T, 6, 0),

Lo([I3[A, 2,1, 6, 9], La(IL[AE T, Y, 6,0
= (A E D, 6,0), A(AE D, T, 6,0, As(A, 21T, 6,0),
Ay(AET,T,6,))

with

ﬂl[A’EaF7T7¢7,¢)] = Hl |:/ AaQ+/ Ev/’(‘O/ Fa/ T7A7EaMOFaT7¢7 1/):|
t t t t

for | =0,1,---,3n — 1.

Fact 2. Proposition 4.1 tells us that there exists a linear operator 7; associating
to the solution of (4.6) for any function h(y, ) with ||A||24q,,-bounded. Thus the
solution of problem (4.3) is a fixed point of the problem

¢ = Ti(H\,€,a,0,\,€,d,0,6,9](y, 1(7))). (4.29)

Fact 3. Proposition 4.3 defines a linear operator 75 which associates any given
functions f(x,t), g(xz,t) and h(z) to the corresponding solution ¢ = T3(f, g, h) for
problem (4.16). Denote ¢4 (z,t) := T2(0, —u%, o). From (2.39), (2.18) and (2.38),
Vz € 012, one has

n+2

[ua(@, )] < p® (0).

From Lemma 4.3,
n—2 + o
2(n—4) n—4

1] S e 01|y || Lo ey + £ P o (to)? 7 where 8 =

Therefore, 1) +1); is a solution to (4.15) if ¢ is a fixed point of the following operator
A(w) = 7-2(f[7l)]»070)a

with
fl¥] = 2VnrVé + ¢(A — 8i)nr + Na(@) + Sour- (4.30)
That is to say, we have to solve the fixed point problem

From Fact 1-3, to prove Theorem 1.1, we should solve the following fixed point
problem with unknowns (¢, ¥, \, €, a,0, A, &, a,6),

(Au E? F7 T) = %(Aa Ea F7 T)7
¢ =Ti(H[\E a,0,)& a,0,0,¢](y, t(7))), (4.32)

where

f() = 2VnrVé + ¢(A — 8,)nr + Na(d) + Sour.
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To find a fixed point, we will use the Schauder fixed-point theorem in the set

B = {(¢a 7/% )‘7 fa a, 97 }‘7 év d’ 9) : RaiQH}‘(t) Hﬂ*3+0’ + RaiQ”é(t) ||n73+¢7

+ RO a()lln—a+o + R0 In-a+0 + BN 144
+R2E() = allivo + RO llalle + R0l + 3R [l]n .0

+tolllln—2+0.0 < C}

for some large but fixed positive constant c.
Let

K =max{||folln-3+0: [ filln-3+c, s [ fan—1lln—3+0}
where fy, f1, -+, fan—1 are the functions defined in Lemma 4.2. Then we have

n—3+4c

T AN BT, Y, ¢, 0)

K

_o 1 1
Sty T d+ W||¢||n—2+a,a + WWH**,B@ Ry Ty

1 1,
+ WHAHn—?ﬂro + WH:‘HW—?)JFU

 (n—4)—-o
Thus, for d satisfying ¢, "' d< %, To(B) C B (choose the constant p in (3.1)
sufficiently small).

On the set B, it is clear that

o I
H[/\a 67 a, 03 )‘7 fa a, 07 (,25, ’l/}] (y7 t(T)) /S tO 1 + |y|2+a
From Proposition 4.1, 71 (B) C B holds.

Similarly, Proposition 4.4 ensures that 72(B) C B. Therefore the operator 7
defined in (4.32) maps the set B into itself. Since A, €, a, 0, A, &, @, 0, ¢ and 1
decay uniformly when ¢ — +o00, this fact combines with the standard parabolic
estimate ensures that 7 is compact. By the Schauder fixed-point theorem, we
conclude that (4.32) has a fixed point in B. That is to say, we find a solution to the
system of outer problem (3.4) and inner problem (3.7), which provides a solution
o (1.1). This completes the proof of Theorem 1.1.

5. PROOF OF PROPOSITION 4.1

In the following, we assume that h = h(y, 7) is a function defined on R™ which is
zero outside the ball Bag(0) for all 7 > 7. As a first step to the proof of proposition
4.1, we have the following

Lemma 5.1. Suppose o € (2,n —2), v >0, [|h|l24a,, < +00 and

/ h(y,7)zj(y)dy =0 for all T € (19,00), j=0,1,---,3n—1.



30 M. DEL PINO, M. DEL PINO, J. WEI, AND Y. ZHENG

Then for any T1 > 19 large enough, the solution (¢(y,T),c1(7), -+ ,cx(T)) to the
following problem
K
0-¢ = Ap+plQIP (W) + h(y,7) = > _a(r)Zily), y €R", 7> 7,
1=1
(5.1)
oy, ) Zi(y)dy =0 for all 7€ (19,+00), I=1,--- K,
Rn
¢(ya7—0) =0, y€ Rna
satisfies
16, o S All24a,m (5.2)
andvVl=1,--- | K,
la(T)] S 77" RYhll24ar for T € (T0,71).
Here [l = 5Pz m (1 + Iy ")l e o).
Proof. (5.1) is equivalent to
K
Or¢ = Ag + p-1 + h(y, c eR", 7>,
¢ =00 +plQP (y)d + h(y, T l;z .Y " (53
¢(y,70) =0, y €R"
with ¢;(7) given by the following relation
CI(T)/ |Zl(y)|2dy = / h(yaT)Zl(y)dya l= 1, K.
Rn n
Then
(D) S 7R [hl240.m, (5.4)

holds for 7 € (79, 71). Therefore we are left with the proof of (5.2) for the solution
¢ of equation (5.3). Inspired by Lemma 4.5 of [3], the linear theory of [31] and [11],
we use the blowing-up argument.

First, we have Claim: given 71 > 79, ||@||a,~, < +00 holds. Indeed, given Ry > 0,
the standard parabolic theory ensures that there is a constant K1 = K;(Rg, 71) such
that

lo(y, )| < K1 in Bgr,(0) x (70, 71].
Let us fix Ry > 0 large enough and take K5 > 0 large enough, then Kop™® is a
super-solution of (5.3) when p > Ry. Therefore, for any 71 > 0, |¢p| < 2K2p~“ and
|¢]la,r, < +o0. Next, we prove the following identities,

é(y, 1)z (y)dy =0 for all 7 € (r9,71), j=0,1,---,3n—1 (5.5)
R"L

and
oy, 7)Zi(y)dy =0 for all T € (19,71), L =1,--- , K. (5.6)
Rn

Indeed, (5.6) follows from the definition of ¢;(7). Let us test (5.3) with z;n, where
n(y) =no(ly|/R), j =0,1,--- ,3n — 1, R is a positive constant and 7 is a smooth
cut-off function defined by
1, forr <1,
mir) = {

0, for r > 2.
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Then we have
K

(-, 7)zin —/ ds/ s)Lo[nzj] + hzjn — ch(s)lejn).
R"'L n

I=1
Furthermore,

[ (nalozs + hesn - S s )

=1

= / qb(szn + 2V17sz>
R

K
—hz;(1—n +ch )Z1zj(1 —n)
=1

= O(R™)
holds uniformly on 7 € (79, 71) for a small positive number e. Letting R — +00,

we get (5.5). Finally, we claim that when 71 > 7 is large enough, for any solution
¢ of (5.3) satistying ||¢]|a,r < 400, (55) and (5.6), there holds

(5.7)

This proves (5.2).

To prove estimate (5.7), we use the contradiction arguments. Suppose there are
sequences 71 — +o0 and ¢y, hg, cf (I=1,---, K) satisfying the following parabolic
problem

Ordr = Mg+ p| QP k;+hk—z€l , y R, T >0,

iy, 7)z(y )dy—OfOI"aHTG(TO,Tl)j—Ol -,3n—1,
R7l

bu(y, 7)Z1(y)dy = 0 for all 7 € (19, 71), =1, , K,
RTL

ér(y,70) =0,y € R"

and
fkllare =1 [Pklloga,x — 0. (5.8)
By (5.4), we obtain Sup.re(.rm.r{c)TVCf(T) — 0,1 =1,...,K. First, we claim that
the following holds
sup  77|¢p(y, 7)| = 0 (5.9)
To<T<LTE

uniformly on compact subsets of R™. Indeed, if for some |yz| < M, 70 < 75 < 1F,

(73)"|n (yw, 73)| =
then we have 75 — 4o00. Now, define

Q;n(ya T) = (TQIC)V(bn(vaQk + T)'

1
9’

Then
Drpp = L —|—hk—ch in R" x (19 — 74,0,
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with hy — 0, & —0(=1,--,K) uniformly on compact subsets in R" x (—o0, 0],
moreover, we have

|ok(y, )| < in R™ x (19 — 73, 0].

L+ [yl

Using the dominant convergence theorem and the fact that o € (2,n — 2), bp — &
uniformly on compact subsets in R x (—o0, 0] for a function ¢ # 0 satisfying

0:¢ = Ad+ QP (y)p in R"™ x (—o0,0],

gz;(y,r)zj(y)dy =0 forall 7 € (—00,0], 7=0,1,--- ,3n — 1,
RTL

by, 7)Zi(y)dy =0 for all 7 € (—00,0], I =1,--- , K, (5.10)
R7L

|jb(y7 7')| < W

o(y,70) =0, yeR™

Now we claim that ¢ = 0, which contradicts to the fact that é # 0. Standard
parabolic regularity tells us that ¢(y, 7) is C?¢ for some g € (0,1). Then a scaling
argument shows that

(L + DIVl + 16r] + A0 < (1+Jy)) 272
Differentiating (5.10) with respect to 7, we have 9,6, = Ad, + p|Q[P~(y)¢, and
L+ YDIVor| + [drr| + 1A, S (14 |y)) ™7
Furthermore, it holds that

in R" x (—o0,0],

1 - o
§8T |¢T|2 + B((b‘ra (bT) =0,
Rn

where
BG.0) = [ (1998 = plar wIdF] av.

Since [, q?)(y,r)zj(y)dy =0 and [p, oy, 7)Z(y)dy = 0 hold Vr € (—00,0], j =
0,1,---,3n—1,l=1,--- K, we have B(QE,QNS) > 0. Note that

[ 16:7 = ~50.8.9).

Combine the above facts, we get,
0
o [ 16 <o [ ar [ 15 <ioc
Rﬂ. — 00 n

Hence qZST = 0. Thus ¢~5 is independent of T, L[é] = 0. Since ¢ is bounded, from
the nondegeneracy of L, (;3 is a linear combination of the kernel functions z;, j =
0,1,---,3n—1. But [p, ¢z =0,j=0,1,---,3n—1, we get ¢ = 0, a contradiction.
Therefore (5.9) holds.

From (5.8), there exists a sequence y; with |y;| — 400 such that

()" (1 s (o 75| = 5.
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Let
O (2, 7) = (75)" yn|bu(yn + lykl 2, lywl* T + 75),
then
Or i = Agy, + ardp + hi(2,7),
with

hie(2,7) = (75)" ye* b (yr + iz, e T + 75).
From the assumptions on hj, one gets

(e (2, T < o(D)lgi + 21727 (7)) P +1) 7"
with

e = 2 e
|yl

and |é| = 1. Hence hy(z,7) — 0 uniformly on compact subsets in R™\ {¢} x (—o0, 0].
ar, has the same property as hy(z, 7). Furthermore, ¢ (0,70)| > 3 and

|6k (2,7 S J9e + 27 () HuwlPr +1) 77

Hence one may assume ¢ — ¢ # 0 uniformly on compact subsets in R” \ {¢} x
(—00,0] for ¢ satisfying

br=A¢ inR™\ {&} x (—00,0] (5.11)

and )
6(z,7)] < [z =7 inR™\ {&} x (—00,0]. (5.12)
Similar to Lemma 5.2 of [11], functions ¢ satisfying (5.11) and (5.12) is zero, which

is a contradiction to the fact that ¢ # 0. This concludes the validity of (5.7).
Indeed, set

ulp,t) = (9 + O™ 4 .
Then
2 —a/2-1 ¢ . ¢
—uy + Au < (p* + Ct) [a(a+2—n)+§a]<0, 1fa<n—2—§.

For any o < n — 2, we can always find a fixed C' > 0 such that « < n — 2 — %

Hence u(|z — é|,7 + M) is a positive super-solution of (5.12) in (0,00) x [—M,0].
Via the comparison principle, |¢(z,7)| < 2u(|]z — é|,7 + M). Letting M — +oo we
get

~ 2e
< —
37 < e
Since € > 0 is arbitrary, we conclude that (;NS = 0. The proof is completed. ([

Proof of Proposition j.1. First let us consider the following problem

K
06 =8¢+ plQI" W) + h(y,7) = Y () Z, y R, 7>,
=1

o(y,70) =0, y € R™.

Let (¢(y,7),c1(T), -+ ,cx (7)) be the unique solution to problem (5.1). By Lemma
5.1, for 71 > 719 large enough, there hold

6@y, D)l S 77" (L + [y) " [|Pll24ar for all 7 € (0,m), y € R"
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and
lei(7)| < 77V RY||h|2+a,n, for all 7 € (19,71), I=1,--- K.

From the assumptions of the proposition, for an arbitrary 71, ||hl|24a,, < 400 and
1hll24a,m < ||Pll2+a,. hold. Therefore, one has

[¢(y, I S 777 (1 4 [y)) " *[|hll2+a,. for all T € (70, 71), y € R"
and
lei(7)| < 77V RY||hl|24a,y for all T € (19, 71), (=1--- K.
From the arbitrariness of 7, we have
9@y, T S 777 (1 + [y)) " *[|hll2+a.. for all T € (70, +00), y € R”

and
ler(T)] < 777 RY||h||2+a, for all T € (19, +00), [=1--- K.

Using the parabolic regularity results and a scaling argument, we get (4.7) and
(4.8). (]

6. PROOF OF PROPOSITION 4.2

The following integral identities will be useful in the computation of this section.

Lemma 6.1. As k — 400, for j=0,---,3n — 1, we have

~l? a0 +O(k™Y)  ifj =0,
/ <ZO<y> - DW“’”) 5 (0)dy =
Sk Ok~ ifj#0,
ain+O0(k™) ifji=1,
/ iQ(?J) - Enikyln zi(y)dy =< a1np2 +O(k™Y)  if j=n+2,
~\ 91 L+ ly)® )~ |
O(k™) ifj#1,n+2,
aso+O(k™1) ifj =2,
/ iQ(y) - M zi(y)dy = azpni3 +O(k™Y)  ifj=n+3,
» \ O L+ |
O(k~1) if 5 #2,n+ 3.

/ (a -Qy) - ki) zj(y)dy =
A L+ [y Ok ifj#i
Furthermore,

On41,n+1 T O(kil) ifj=n+1,

/ ens1 (9)7 () dy =
n Ok ifj#n+1,
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_ . _Dn,k(2_|y|2) 2 i _ En,kyl 5
/ ( 2y1<0(y) S >+|y (aylcxy) (H'Mg)) S (y)dy

ant21+O(k™1) ifj=1,

= Gny2n2 O™ ifj=n+2,

O(k~") ifj#1Ln+2,
B B Dn,k(2 - |y|2) 2 i N En,kyQ )
/n ( 2y, <20(y) AR ) + 1yl <ay2Q(y) RERNDH |y2)g>> 2 (y)dy
an+taz +O(k™1) ifj=2,

=S any3npz + O™ ifj=n+3,

O(k~1) ifj#2,n+3.

Fori=3,--- ,n,

Untitinriv1 O™ ifj=n+i+l,

/ i ()7 () dy =
" O(k~1) ifj#n+i+1,

aonti-12n+i—1 +Ok™) ifj=2n+i-1,
/ Zznﬂ;l(y)zj(y)dy =

O(k=1) if j #2n+i— 1.
In the above, a; ; are positive constants depending on n and k, the matrices
ai,1 a1n+2 az2 a2,n+3
n+2,1  Gnt2n+2) Gp+432 Op+3,n+3

are invertible.

The proof of this lemma is given in the Appendix.

6.1. The equation for A. We consider (4.5) for [ = 0.
Lemma 6.2. Whenl =0, (/.5) is equivalent to
1+ (n—4) 1\ . 1 o
——A+ 0| = o\ -

(n— 4%t + (k‘)f—'— (k>Mo(a1+a2)

1 . L . .. .
+ @ (]C) Ho 912 + Z(elj + 02]) = HO[)‘7€7OH 97 )‘7§a a797 ¢a w](t)

=3

A+
(6.1)

The right hand side term of (6.1) can be expressed as
. . to© 3 to©
HOP‘a 57 a, 03 )‘7 5; (i, 07 (ba QM (t) = Ra_2 H“(T)L_ +U(t)f0(t) + Ra_Q X
.o . n=2, ,
O0 | A&, o, ol iy~ (0N, (& — @), P iy 00, 1y T b T u;] (t)

where fo(t) and Ol --1(t) are bounded smooth functions for t € [tg, 00).
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Proof. We compute

H[/\’ 57 a, ‘9’ ).‘7 éa él, 97 ¢7 1/)] (yv t(T))ZO (y)dy,

Bar

where H[A, €, a, 0, N\ € a0, &, ¥)(y, t(7)) is defined in (4.2). Write

nt2
to> Sa(€+ poy,t)
n+t2

= (f) (11051 (2, 1) + AbSa(2,t) 4+ pS3(z,t) + p?Sa(z,t) + S5 (z, )] s=e+py

3
-
M

+
/N

= |8

N———
w0

olS1(€ + poy, t) — S1(§ + py,t)]

3
+
N

+
e

= |8

S~
.

Ab[S2(& + poy,t) — S2(& + py, t)]

3
T
N

+
Y

= |8

N———
)

u[S3(& + poy, t) — S3(€ + py, t)]

3
-
M

12[S4(€ + poy, t) — Sa(€ + py,t)]

+
R

= |8
N————

3
S
N

1785 (€ + poy, t) — S5(€ + py, t)],

+
N

= |8

N————

where

’ i€ Dy, i (2_ zﬂg‘z) .
Sl(z) =)\ 20 < > — 5 % — 2Ap‘Q|p71 <N)
(1)

— g Pl <Z;§> [(n—3)0""*H(q,9)A] ,

_ E, =5
Sy(z) = VQ(Z 5)— Lo
) ey

walQrt (28 Fareva) - (0,

I
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2
D, p(2 — | =5
Su(z) = i —2(“) zo<z£>— il w7 ﬂ)
1% 1 1 <1+ 25‘2)2
o
=g | 2 (=) Eu (),
+ 7@ - n
/’L ayl ,LL (1+ 25‘2>2
o
Doi(2 2_5’2)
259 [ (59 el
H 2 1% 14 Zf‘)
—¢P| o <z£) Emk(?)z
+ 7@ - n
1% 8?42 1% (1+ z£‘2>2
I

and

S5(2) = zZnt1 (§> 012 + Z (Zn+j+1 <€) 015 + Zanyj—1 (f) 92j) .
I = I I

Direct computations yield that

; S1(€+ py)zo(y)dy = (24c1 + e2)(1+ O(R*™") + O(R™*))A

+a(L+OR)ug™ [(n—3)b" " H(q, q)]

: So(€ + py)zo(y)dy = O(R*™™ + R2)ug ™2,
2R

[ s+ iy =0 (1) €+ 00+ B2

86 + i)y =0 (1 ) @ + o),

Bar

and

Bar

S5(& + py)zo(y)dy = O </i> (ém + zn: (éu + é2j>) .

=3
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Since % =1+ ﬁ)*l, for 1 =1,2,3,4,5, we have the following estimates
/B [S1(& + poy, ) — Si(€ + py, t)]20(y)dy
2R

A AL A
:g(t,%))\+g(t,%)£+g(t,%)(d1+a2)

A . ", .
-I-g(t, %) 012 + Z (91j + ng)

i=3
A n—4 -
+9(t7%)/ﬁo )\‘f'(5—Q>+a1+a2+912+2(91j+92j‘)
=3
+ g Hf (),

where f and g are smooth, bounded functions satisfying g(-,s) ~ s as s — 0. Thus

n+2

2 n+2
c (H) pot / to® Sa(€+ poy,t)zo(y)dy
Ho Bar

SRR A (i) “o‘wmf

1 A
+O<>+t L
( g) Tl )

2

A B n
+9(t7%)ﬂg A+ (- )+ pan +ua2+u912+M2(91j+92j)
j=3

for smooth bounded functions g satisfying g(-,s) ~ s as s — 0.
Let us compute the term

n—=2 A _ u
puo™ (142072 [ 1@ (E20) 0t + oy )20(0)dy.
Ho Bar K
Its principal part is [ := fBzR 1QIP~L () (€ + poy, t)z0(y)dy. From (4.12), we have

I= R;: o o ? f(t) for a smooth bounded function f.
Furthermore, we have

BIOI(w. )20lu)dy = g [~ (A161(0) + 0] ()]

Bar

and

ly n—2+o A
[ Bl = i (2) i)

for smooth bouned function g(s) with g(s) ~ s (s — 0) and £[¢](¢) is bounded
smooth in ¢.
Combine the above estimations, we have the validity of the lemma. (I
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6.2. The equation for {. Now we compute (4.5) for I =1,-

Lemma 6.3. Forl =1, (4.5) is equivalent to

a1 1§1+an+21uoa1+0<k>)\+0< > Lol

(6.3)
+ 0 < ) Ho (912 + Z 91] + 92])) = Hl[)‘7£7a797A753d797¢7¢](t)'
7j=3
Forl=2, (4.5) is equivalent to
a22§2+an+32u0a2+0< )A—&—O( >M0a1
(6.4)

+O< )/JO (912+Z 01] +92j)) :H2[)\7570797}\»§:7d»97¢7¢](t)-

7j=3
Forl=3,---,n, (4.5) is equivalent to
. 1 1
fl—l-O()/\-i-O( >uo(a1+(12)+0( >M0 912-1—2 01 + 625)
k = (6.5)
:Hl[)\,f,a,ﬂ,).\,f-,d,é,gb,¢](t).
Forl=1,---,n,

I\ €, a,0, )\, €, a,0,6,9](t)
= u§ "% "2V H(q,q)] + pg PO (4) fF(E) + ];2,2

|:).\7£,,LL0@,,LL09.,,LLO ( ))‘ :un 4(5_ q)7/j/6l 3 739 :un 3+U¢7 2 +U¢} (t)a

where ¢; is a positive constant, f(t) and ©; are smooth bounded for t € [ty,00).

6

Proof. We compute

H[)H 57 a, 97 ).\7 év aa év ¢7 /(p] (ya t(T))Zl (y)dy7

Bar

n+2

where H[\, €, a,0, )\, €, a,0,0,9)(y, (1)) is defined in (4.2). Expand jy2 Sa(€ +
Loy, t) as (6.2), by direct computations, we have

sie+ ity =0 (1) (+u40).

Bar

Sl + i)a()dy =0 (1) G+ ™)

Bar

; S3(&+ py)a(y)dy = (1+ O(R™))ari&

~ 1+ OR ) [ 1QP waty)dy Y (a.0),
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: Sy(§+ py)z(y)dy =

ant2,1(1+O(R*™™))a1 + O (3) (14 O(R*™"))as ifl=1,
ant2,2(1+ O(R*™))az + O () (1 + O(R*™™))as ifl=2,

O () 1+ O(R*™™)) (a1 + a2) ifl=3,--,n

and

Bar

Sile + ity =0 (1 (ém +3° (0 + e'zj)) |

Jj=3

Since % =1+ ﬁ)_l, for j =1,2,3,4,5, we have
/B [S5E + poys t) — 56 + iy, D) 1)y
2R

AL AL Ao
=gt A gt e+ gt D) (a1 + a2)

+g(t, %) (912 + Zn: (élj + 92j)>

Jj=3

A B n
Jrg(t,%),ug 4 (AJr(Eq)+a1+a2+012+2(01j+92j))
7=3

+ gL (@),

where f and g are smooth, bounded functions satisfying g(-,s) ~ s as s — 0. Thus

n+2

2 nt2
(P‘) ! / 1ot Sal€+ poy, )z (y)dy
Ho Bar

¢ _pf]Rn |Q\p_1y121(y)dy n—2 n—2 1 e A :
e o 3) )
+ (O (i) + taeg(t, ,lj:))> Ho (dl + [12)

+ (O (i) +t5%g(t, lj())) I (9'12 + zn: (élj + 9@-))

Jj=3

A 3 n
+9(t, %)Mg ! (/\ + (€ — ) + poar + poaz + pobhz + o Z (615 + 921)) ;
j=3
for smooth bounded functions g satisfying g(-,s) ~ s as s — 0.
The computations for the term
nT_z A -2 p—1,H0
pro® (1+—) QP (—y)¥(§ + noy, t)zu(y)dy,
Ho Bar 2

Bl¢] and B°[¢] are similar to that of Lemma 6.2. O
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6.3. The equation for 6,5. Now we compute (4.5) for [ =n + 1.
Lemma 6.4. Forl=n+1, (4.5) is equivalent to

u0912+0(]1€>/\+0< >§+O( >u0(a1+a2)+0( ) (291]+92J)

- Hn+1[)‘7 57 a, 07 }\a éa a’ é) ¢7 1/)]<t)’
(6.6)

t*{i
07,®n+1

Hn+1 [)‘7 67 a, 97 ).\7 57 d? 97 ¢7 ¢] (t) = /1’671724»0’ (t)f(t> +
(A€, o, ol 1= (O, 1 (€ = @), sy, 0,150,107 *”w] (1),
where f(t) and O,41 are smooth bounded for t € [ty,00).

Proof. We compute

B H[Aag,aﬂoa}‘aéaa,éaqx w](yat(’r))zn+l(y)dy,

n+2

where H[\, &, a,0, )\ € a,6,0,9%)(y,t(7)) is defined in (4.2). Expand pg? Sa(€ +
Loy, t) as (6.2), by direct computations, we have

S1(& + py)zny1(y)dy = O (;) ()\ + u8‘4A) 7

Bar

[ satetmpzmntitn =0 (3 ) (o + ).

Sa(€ + 1y) 2 (y)dy = o( )s+0<1+R a2,

Bar

S4(€ + 1) 2nss (9)dy = O (;) (1+ O(R™)) (ir + z)

Bar
and

S(6 -+ ) () = (14 OGN0z 40 (1) 3 (8154 0y).

Bar =3

Since %0 =1+ #—):))*1, for j =1,2,3,4,5, we have
/B [S1(€ + oy, t) = Si(§ + py, t)]znr1(y)dy
2R

AL AL AL, .
= g(ta %))‘ + g(tv %)g +g(t7 %) (al + a‘2)

+g(t, %) (912 + i (91j + éQj))

=3

)\ n
+g(t, g™ (/\ +(E—q) tartaztbit+)y (61 + 92j)>

Ho =

+ g (),
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where f and g are smooth, bounded functions satisfying g(-,s) ~ s as s — 0. Thus

n+2

LA W =2
()7 / HoE SA(E + pioy, ) znsn (y)dy
Ho Bagr

~abra+ (0 (1) + 570t 2 )&
A
+(0(3) + w0t 2)) oo + a2

(o{d)ew )l

=3
A n
+9(t, %)Mg_4 A+ (€ = q) + poar + poas + probra + po Y (61 +02;) |
=3

for smooth bounded functions g satisfying g(-,s) ~ s as s — 0.
The computations for the term

2 )
g™ (14 ) /B 10 (E2y)u(e + o)z 01

Bl¢] and B°[¢] are similar to that of Lemma 6.2. O
6.4. The equation for a; and as. Now we compute (4.5) for I =n +2,n + 3.
Lemma 6.5. Forl=n+2,n+3, (4.5) is equivalent to

a1n+2§1+an+2n+2ﬂoa1+0<k>)\+O< )f—i—O( >/~Loaz

n (6.7)
+ o <k’> Ho (012 + jgg(elj + 92j)) = Hn+2[>‘a€7aa 03 )\,f,d, 07 (ba QM(t)a
a2n+3€2+an+3n+3uoa2+0( >>\+0< )54'0( >#0¢11
(6.8)
+O < > Ho 912 +Z 91] +92J) = Hn+3[x\,§,a,9,;\,5,&,0‘,(;5,1#}(75),
7j=3
Hn-‘rQ[)‘v 67 a, 97 )", éa a) év ¢7 ,(/J] (t) = Hg_2+a(t)f(t) + ;g,g ®n+2
|:)"7£.a/1/0da/1/09.7/’60 ( ))‘ /j/n 4(5 - Q)?/’Lg 3 _39 :un 3+U¢7 2 me} (t)7

Hn+3[A7§7a7 07 ).\7£a a, ¢ 1/’]( ) = n 2+J(t)f(t) + %Gn—i{%

o : _ . 2o
[/\,f,uoa,uof),uo O 15 — @), 1P iy 00, 15 G, g T 1/)} (t),
where f(t) and Oy y2, Onys are smooth bounded functions for t € [tg, 00).

Proof. We compute

; H[N € a,0,), €, a,0,0,9](y, t(7)) 2n2(y)dy,
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where H[X, &, a,0,),6,a,0,6,9)(y,t(r)) is defined in (4.2). Expand p,* Sa(§ +
Loy, t) as (6.2), by direct computations, we have

/32R S1(§ + py)znr2(y)dy = O <;> (}\ N ug’“‘A) |

S2(€+ y)znta(y)dy = O (;) (o + ™),

Bar

/ S5(& + 1Y) zn2(y)dy = az 26 + O(1 + log R)ug 2,
Bar

k

S5(§ + py)zn42(y)dy = O (;) (912 + zn: (91j + éQj)) .

Jj=3

. 1 oy .
/ Su(€ + 1Y) zni2(y)dy = ani2mni261 + O (> (1+ O(R™?))as,
Bar

Bar

Since £ = (1 + /%0)*1, for [ =1,2,3,4,5, we have
/B [S1(§ + poy:t) — Si(§ + py, t)]znr2(y)dy
2R

AL AL AL, .
= g(ta %)A +g(tv %)g +g(ta %) (al + (12)

ot ) (9 +3 (b + @))

=3

)\ B n
+g(t, — )iy * ()\ + (Ro& —q) + a1 +as+ 012 + Z (01 + 625)

Ho =

+uy L),
where f and g are smooth, bounded functions satisfying g(-, s) ~ s as s — 0. Thus
nt2

B\ 2 o otz
c <> Ho / Ho® Sa(€&+ poy,t)zn2(y)dy
Ho Bar

= a2 438 + Ant2nt2b001

A B n
+g(t, %)Mg * (/\ + (£ — q) + poar + poaz + pobiz + o Z (01 + 92j)) ;
=3

for smooth bounded functions g satisfying g(-,s) ~ s as s — 0.
The computations for the term
n—2 A

by (1427 /B 10 (e + o )2 (0)
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Bl¢] and B°[¢] are similar to that of Lemma 6.2. This proves (6.7). The proof of
(6.8) is similar. O

6.5. The equation for 6y, and 6y, | = 3,--- ,n. Now we compute (4.5) for
l=n+4,---,3n—1.

Lemma 6.6. Forl=3,---,n, (4.5) is equivalent to
. 1
N091l+0<k))\+0( >f+0< )Mo(a1+a2)
140 912+Z913 +Z923 =T41[N & a, 0,0, €, 0,0, 0,9](1),

( J#l Jj=3

)
u092l+0(]1€>>\ < >§+0( >uo(a1+a2)
wo(i)

Hn+l+1[/\a §7 a, 9, ).‘7 éa él, 97 ¢7 1/)] (t) = /JBL_Q—HT(t)f(t) =+ ﬁenﬁ‘l-‘rl
[Xé,uod,uoé,uo YON i NE ~ @)l a0, 1y by *"w] (1),
s e L. ne9to ty €
H2n+l—1[A7€,aa 03 )‘753 a>97 (rbv 1/)]( ) ) >t (t)f(t) + Ro— 2®2n+l 1

[?\,S,uod,ﬂoé,u A 1€ = @), 1B a, pl 30, p b g ? *"w} (t),

where f(t) and ©pyi41, Oonyi—1 are smooth bounded for t € [tg, 00).

(6.9)

o 9124—292]-1-2913 = Tan 1[N €, a,0,0,€, 0,0, 0,9](t),
j#£L j=3
’ (6.10)

The proof is similar to Lemma 6.4. Since the matrices

ai,1 a1,n+2 az,2 a2,n+3
an+2,1 an+2,n+2 ’ an+3,2 an+3,n+3
are invertible, equations (6.3), (6.4), (6.7) and (6.8) can be decoupled by inverting

the coefficient matrices. Combine Lemmas 6.3, 6.4, 6.5, 6.6 and 6.1, we get the
result of Proposition 4.2.

7. PROOF OF PROPOSITION 4.4
Proof of (4.20). Let us recall from (3.5) that
Sout = ST+ (1~ ng)Sa.

From (2.40) and Lemma 2.2, in the region | — ¢| > ¢ with § > 0, we have the
following estimate for Sy,

n—2
n-2i,

min(n—4,2)—(a—2)—0c ,ui M
[Souc 2,01 £ i (3 45 4) S MO o) Pt (7

In the region |z — ¢| < 6 with § > 0 sufficiently small, Lemma 2.2 tells us that

_nt2 n —2, "3ito
S t‘ () L 7.2
‘ {IJ ) Ho 1+ |y‘2 ~ 0 ( 0) 1+ |y|a ( )
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By the definition of ng, if v — £] > poR, (1 — nr) # 0. Therefore we have

—92 2240
1 1 > 1 2,7 73)

1—nr)Sal <
(L =) A~<Rn—2—a+34—a Ro=2 14yl

Here the decaying assumptions (4.9) and (4.10) are used, respectively. This proves
the validity of (4.20). }
Proof of (4.21). For the term 2VnrV ¢, recalling that

.
at) = g ¢( = ,t>

and the assumptions (4.11) and (4.13), we have

‘(VUR : V(fﬁ) (z, t)‘

/

< M) 252 |9,0)

~ T H
Rug  "° Ko
= n—-2
< n ( Ruo ) 'u,02 7
~ o Rpg (L4 [yltte)
o "o

1 B p
SJ ¢||n—2 o, g )
o220

—~

z—&
Rpo

(7.4)

H¢||n—2+a,a

z=¢

e Y#0, (14 |y]) ~ R, y = Z==. As for the second term

Mo

where, in the region 7’(

qNS(A — ﬁt)nR, by direct computations, we have
An ( 2
R

)|

—£
5(A = B0 ,§’2Mg°u52¢l
(=& (lz =€ . 1o\ 52
" ( )( 2 “°+Ru0§ o * 19l

Ry
From the definition of g?), we have the following estimate for the first term in the
right hand side of (7.5),

(7.5)

+

I = n=2,
’An(Ruﬁ)’ -2 <‘An(m)’ fe®
Tu%po |¢‘ ~ R2 2 (1 + |y|0¢) ||¢||n728+g’7a (7 6)
— =245 ’
< 1 B2 ()
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z=¢

here the fact that ‘An ( o e
R

second term in the right hand side of (7.5) as

/< ) |z — & gio + poé
7 Ry

z—¢
77,( Ru )‘ B B _n=2
S e R T Ry |9l
0

1

r—¢
Ry

—n32
Ho |¢|

n—2

— +o
1 N (t)

< -
~ Ra_2||¢||n—2+0704 1+|y‘a

From (7.4)-(7.7), we obtain (4.21).
Proof of (4.22). Since p — 2 > 0 when n < 6, we have the following

NAW + 91+ WR(Z)) S

[ [P~2 [|1/)|2 + ] + |773t1~5|2} , when 6 > n,
WP + Y1 P + InrdlP, when 6 < n.
When 6 > n, there hold
305420
(2> md)*| S G Moo
S g TPORYT? ¢ . u—2ug52+0

n—2+o0,a Roe—2 14 |y|a

and
. -2
O el Y o A W
A ~ Ho 1+ |y|2(a—2) *k, 8,0
—92,_
2 1 Hi t=7
*%, 8, Ra72 1 + |y|a'

S B2y ee2 |y

When 6 < n, one has

22 40)p
~|P o 2
’nmﬁ‘ S Wlldlﬁ%a,a
n—2
- 1 -2, 3 to
2+ (p—1 _ I
5“0 @ )URQ 2“%“¢||ﬁ—2+a,aRa,2 1+0|y|a
and
P < t—Pﬁ p
|¢| ~ 1+|y|p(a_2) ||w||**,[3,a
n—2
) 5 to
5 M4(1+ﬁ)+p(a72)7aRa72HQZJHP 1 Ki Ho

.00 pa=2 1 4 |y|
The estimate for ¢ is similar. This proves (4.22).

)‘ ~ 7= was used. From (4.9), we estimate the

(7.7)

(7.8)
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8. STABILITY RESULT IN DIMENSION 5 AND 6.

In dimension 5 and 6, we have p — 1 = % > 1. In this case, all the equations

can be solved by the Contraction Mapping Theorem since the operators 7y, 71 and
T> are Lipschitz continuous with respect to the parameter functions. Therefore,
Theorem 1.1 can be proved by the Contraction Mapping Theorem arguments in
dimension 5 and 6, moreover, we have the following stability result.

Theorem 8.1. Assume kg is a sufficiently large integer, n = 5,6 and q is a point
in ), then the conclusion of Theorem 1.1 holds when k > ky. Furthermore, there
ezists a sub-manifold M with codimension K in C1(Q) containing ug(z,0) such
that, if ug € M and is sufficiently close to uq(z,0), the solution u(z,t) to (1.1) still

has the form
u(z,t) = M) T (Qk (W) + @(m)) ,

where § = limy_, o0 £(t) is close to q.

Recalling that K is the dimension of the space V := {f € H'(R™)|(Lf, f) < 0}
and L is defined in (1.10). The proof is similar to [2] and [31], so we give a sketch
here. We divide the whole process into three steps.

Step 1. Solving the outer problem (4.15).

Proposition 8.1. Assume X, &, a, 0, \, €, a and 0 satisfy (4.9) and (4.10), ¢
satisfies (4.13), o € C*(Q) and

tO_E

Ra—? :

Then (4.15) has a unique solution 1p = \I/[/\,é',a,ﬁ,)'\,f.,d,@',qﬁ], fory = ‘TM—:)‘C', there
exist small constants o > 0 and € > 0 such that

Yol e @y + VY0l oo @) <

—e %*“7( )

t I t _S(t—
el S g e v Il

and

n—2

to® 1t ()
‘ d’(l'a )‘ ~ Ra—2 1+ |y|a_1

hold. Here R is defined in (3.1).

for [yl < R

Proposition 8.1 is a direct consequence of Proposition 4.3, Proposition 4.4 and
the Contraction Mapping Theorem, whose proof we omit here. This result indicates
that for any small initial datum vy, (4.15) has a solution ¥. Moreover, the following
proposition clarifies the dependence of ‘P[A,f,a,@,;\,f,d,é,qﬁ] on the parameter
functions A, &, a, 6, A, é, a0, ¢ which is proved by estimating, for instance,

U\ € a,0,),€,a,0,0][¢] = ;W\, €, a,0,A,€,a,0,6 + 5] =0

as a bounded linear operator between weighted parameter spaces. For simplicity,

the above operator is denoted by 9,V¥[¢]. Similarly, we define \¥[\], O ¥[¢],

0, V[al, 9pW[6], 85 [N, O W[E], 9,¥[a] and 0;[8].
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Proposition 8.2. Under the assumptions of Proposition 8.1, ¥ depends smoothly
on the parameter functions A\, &, a, 0, \, €, a, 0, ¢, fory = Z};f, there hold

";271
Ho (t) (8.1)
Ly

_ t— N t
‘65‘1'[5” <||f||1+al_’_||a(g> )
n-z_g
(t)
0.l < 0y (n allo T )
n-2_y
(t)
‘80\1/ ‘N Ra 2 <| ||01+|y|a 2)

ERTGIEMIES g§_2||§<t>|n_3+g< e

IR

Mo

—€

. th° s PR
|05 W[N] (2, t)| < Ra2||)\(t)||n3+a< 1+|y\“ 2 >

= t_s
|8d\IJ[a](z,t)| Ra—2 Ha( )||n—4+<7 < 1+ |y|a 2

—e = 2+0
- t .
000, 0)] < L0 ne(wnw(

R« 2 1_|_|y‘o< 2

and

_ 1 - CA
’a¢\1’[¢](xvt)| 5 Ro—2 H¢(t)”n—2+o,a (W) .

Proof. We prove (8.1). Decompose the term WY [N(z,t) = Z1 + Z with Z; =
T2(0, —9xu* [A],0), where T3 is defined by Proposition 4.3. Then Z is a solution of
the following problem

WZ = DZ+VaZ +OVaNY +Na (¥ + ™) [N + 0rSow [N in Q x (to, 0),
Z =0 in 00 x (tg, 00),
Z(',to) =0 in Q.

For any x € 01,
*IY —1+o0 N
|orui N (@, 1)) < g ()AD)

L4+ 20 N
S ud OO 40
From (8.3) and Proposition 4.3, we obtain

e n-2_y
210, S 12 <||A<t>||1+aw>.

To prove the estimation for Z, which can be viewed as a fixed point for the
operator

A(Z) = T2(g,0,0) (8.4)
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with
9= OVaNY + N (¥ + ™) [N + OrSout[N,

we estimate O Syu¢[A] first. In the region |x — q| > 6, from (2.40), (4.9) and (4.10),

we have
n—2

|07Sout N (@, )| S po®  f (s g s €, a, 0)A(D)]

n—2
to" (s e (1)
< _9 At LAt I 74
~ Ra—2 (” ( )||1+ 1+ |y‘a,2 )
where the function f is smooth and bounded depending on (z, y1y ', €, @, 6). In the
region |z — ¢| < 0, from (2.42), we have

OAS(u) [N (@, t) = OrS(ua)N(@, ) (1 + pof (z, 115 11,€, . 0)),

where the function f is smooth and bounded depending on (z, ug L€, a, ). Dif-
ferentiating (2.19) with respect to A, easy but long computations yield that

n-2_g

OAS (AN S 22 <| <>||1+0W). (85)

By the definition of S,,; together with (8.5), we obtain

_ n-2_4
5 to" (s fo® ()
< 0 0
|0xSout [Nl (z,t)| < = <||A(t)||1+al+|ya2>.

Now we estimate the other terms of g. When n = 5,6, we have

OAValNl (. ) =p(p — 1) [mzv’—%zawz B

n—2 ‘p73

—nR‘u‘” Q)| 1T Qy)oa(u

"% Q)

n n—2

,%Q(y))’ <t ‘u* ; Q(y)‘ and § = 51=2, 24) + -2 we obtain

Since ‘8>\ (ﬂ

AV, 0] S 1len g N 1 o®

1+ [yl
Similarly, we estimate the term p(p — 1)|u* [P~3u% (¢ + ¢")Oru’ [A] as
* |p—3, % n * Y tae 3 M_zu(?;_1+o
‘p(P = Dfui [P i (9 + ¢ )a/\UAP\H < WH)\HHUW

when n = 5,6. The last term p [

mated analogously.
In the set of functions satisfying

1 _ .
S+ Ty — P u*A} can be esti-

n-2_4

Ly Ho
<M e—————
|1Z (2, 1) T o=z A1+ T+ 2

—€

for a fixed large constant M, the operator A defined in (8.4) has a fixed point.
Indeed, A is a contraction map when R is large in terms of ¢y. Hence (8.1) holds.
The proof of the other estimates are similar, we omit them. [
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Substituting the solution ¢ = W[\, &, a, 0, N\ € a,b, @] of (4.15) given by Proposi-
tion 8.1 into (3.7), the full problem becomes
Ho0id = Dy +|QIP T (y)o + HIN € a0, )€, 0. ¢](y,1), y € B2r(0)8.6)
Similar to Section 4.1, using change of variables

dt

t=t(r), o =nd),

(8.6) reduces to

Or¢ = Nyd +plQPPH(y)d + HN €, a,0,),€,a,0, 6] (y, (7))

for y € Bar(0), T > 70, 7o is the unique positive number such that ¢(m) = tg. We
try to find a solution ¢ to the equation

0r0 = Dy + plQIP (y)¢
+ HIN € a,0,),€,6,0,8)(y, (7)), y € Bag(0), 7> 1o,

K (8.7)
¢y, 70) = > _eaZi(y), y € Bar(0),
1=1
for some suitable constants eq;, [ = 1,--- , K. To apply the linear theory Proposition

4.1, the parameter functions A, &, a,f need to satisfy the following orthogonality
conditions

H[)‘agvaaaa )\,f,a,G,QS](y,t(T))zl(y)dy:O, l :Oa]-,"' 3377’_1' (88)
Bar

Step 2. Choosing the parameter functions. By the Lipschitz properties
for U = V[ & a,0,)¢,a,0,¢] given by Proposition 8.2, Proposition 4.2 can be
strengthened as

Proposition 8.3. (8.8) is equivalent to

IL+(n—4), P oA
W)\ - HO[)\7 67 a, 97 )‘7 57 a, 97 ¢a w](t)7

§ =T\ a,0,0,¢,a,0,6,0)(t), 1=1,---,n,

b1 = pig g1 [N € 0,0, 7,8, 0,0, 0,9)(2),

a1 = pig 'Tnya[N, € a,0,A,8, 4,0, 6, ¢](t),

as = pig 'Mis[N, € a, 0,0, &, a,0, ¢, ¢](t),

01 = pg My [N & a,0,0,€,0,0,0,9](t), 1=3,---,n,
O = pg ' Mangi-1[\, &, 0,0,0,6,0,0,0,9](t), 1=3,--,n.

The terms in the right hand side of the above system can be expressed as

A

—€ —€

C S t
HO[)\yfvaa97)‘7£aa707¢aw}(t) = Rgle’l’o i <t)f0(t)+ RcovaX

\ ¢ . 1 n— n— n— n— n—3+o 2240
Oo | A& ko, pob, g~ (N, g~ (€ — @), g Pa, 1l 0, 1y TP, 1y 2 w} (t)
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,3n — 1,
Hj [)\7 57 a, 97 ).\7 57 d? é? ¢7 ’(/}] (t)

and for j=1,---

“2e; [0V H (0, 0)] + pg T (0 £5(1) +

—€

0
Roc—Q

X

6_7 P\»évﬂodaﬂoévﬂo ( ))‘ .un 4(§ - Q)»Hg_gavﬂo 30 :U‘O 3+U¢a 2 +U1f’} (t)7

where f;(t) and ©;[---](t) (j =0,---,
t € [tg,00), ¢; (=0,

CHN[C

EANOECARGIES

1051100{1(t) — ©5 10 ](1)

(1)

|05l108"1(6) — ©;[100 S )(1)

EAAGECHMYAGIES

1©; [~ * M) (t) — ©;[ug~

195115~ (&1 — )](8) — O

n—

0

CHIY

n—3

0

‘GJ[H
19 (15201 (1) — ©,[ug

O 7] (1) —

) - 65lal(t)] 5

(1)
(& - a)l()] S
*afV)(t) - 0[5~ )(0)
#mw—@MK%ﬁwﬂ

Oug > ) (t)] <

3n — 1) are bounded smooth functions for
,3n — 1) are suitable constants. Moreover, we have

RiJM@—AwH

~

|€1() &(t)],

NRa 2
—e

- (2)

< V() — al

0
~ Ra72

< to° 8
S Jazzholas (t) -

@,

M0|d§

. (2
a$? (b)),

0" ol (1) — ()],

0
~ Ra72

|A1(t) —

ty
Ra2

A2(t)],

| ~

a72

Ifl() (1],

tg 1 2
< =0 piolalV (1) — aP (1)),

~ Ro 2
< to
~ Ro— 2

—E

=0 piolay? () — a$? (1)),

- 92(t)|7

—&

Ra72

llp1(t) — palt

( )||n—2+0,04'

System (8.9) is solvable for A, £, a, 0 satisfying (4.9) and (4.10). Indeed, we have
Proposition 8.4. (8.9) has a solution A = A¢|(t), & = &[d](t), a = a|d](t) and

27d9[¢](t) satisfying estimates (4.9) and (4.10). Moreover, for t € (to,00), there
)
1 OGO — Ngal(D)] S g 61— dalln-21
S el 1) — Elgal0)] S gl — Dallazroa
pa” Olaln)(®) - algal(0)] S g1 — balln-zto

t)|0[¢1](t) —

0[ga](t)] <

tO
Ra— 2

llp1 —

¢2 Hn—2+o'7a-
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Using Proposition 8.2, the proof of Proposition 8.3 and 8.4 is similar to that
of [2] and [31], we omit it.

Step 3. Gluing: the inner problem. After choosing parameter functions
A= Ag|(t), & = E£[P](t), a = a[g](t) and 8 = O[¢](¢t) such that (8.8) hold, we solve
problem (8.7) in the class of functions with ||¢||,,—2++,e bounded. Problem (8.7) is
a fixed point of

¢ = A1(9) = Ta(HIN & 0,0, )£, 0, 9)).
It is easy to see that

n—2+o

‘H[A,§7A,§,¢](y7t)‘ Stasluﬁw (810)

and
1) = o) (41.6) S 15716 = 6224000 (8.11)

hold. From (8.10) and (8.11), A; has a fixed point ¢ in the set of functions
|0lln—2st0,a < ctg® for suitable large constant ¢ > 0. From the Contraction

Mapping Theorem, we obtain a solution to (2.11). Then the rest argument to
the stability part of Theorem 8.1 is the same as [2], we omit it.

9. APPENDIX

9.1. Proof of Lemma 6.1. Let us recall from [9] and [32] that
~ . 2 n;2
Qo) = V(o) = S U) 4 80e) with U) = (1577
j=1
and

Uj@) = ¢ 7 UG @ — &)).

Here (), is a positive constant satisfying ¢, ~ k2, & = /1 —(?(n;,0), n; =
(cosfj,sinb;,0), 6; = 25(j — 1) and ¢ is a small term than U(z) — Z?Zl Uj(x).
Let us introduce the functions

Zo(r) =" 2U(e) + VU (2) -,
n—2- ~
mo(o) = "=26(a) + V(a) -0
and
Za(@) = -2U(), 7al2) = ——d(@) for a=1
ax—axa x), ﬂax—axa z) for a=1,...,n.
Forl=1,...,k, define
n—2

Zoi(z) =

From (1.11) and (1.12),

20(z) = Zo(x) — Z [Zoz(x) +4/1—¢? cos@laixlUl(x)

=1

+4/1-¢ sin&aizUl(x)} + mo(x).

Ui(z) + VU () - (z — &),
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Forl=1,... k, define

0 0
— _ 2 i -
Zu(z) =4/1 - ¢} [cos 0, P Ui(z) + sin 6, Ds Ul(x)] ,
0 0
— 12| i
Zoy(x) =1/1—¢(F [ sin 6, e Ui(z) 4 cos 6, 90 Ul(x)} ,

0
Zei(z) = %Ul(m‘), for a=3,...,n.
Then we have
k
20 Z Zoi(x) + Zyu(z)] + mo(z), (9.1)
1=1
)
z1(z) = Z1(x) — Z pr Un(z) + m1(x)
o (9.2)
k .
0,7 —sin6,Z
— Z(w) - Z [cos 6, 11(30)1 SII21 1 Zoi ()] (),
=1 B Ck
)
22(e) = Zo(a) = Y - Un(e) + ma()
=1 (9.3)
ko ’
[sin 0; Z1;(x) + cos 0; Zo ()]
=Zy(x) = + ma(2),
= V1=
and
zo(T Z Zol +7a(x) fora=3,--- n. (9.4)
Moreover, the following 1dent1tles hold
Z7l+1 Z Zgl —|— Z‘Qﬂ'l( ) — X172 (1‘), (95)

B
E

Zn42(T) :Zq/l—Ck cos 0, Zy, (x Z’/l —Ck cos 0, Zy;(x (0.6)

=1 =1
— 2xymo () + \x|27rl(x),

Zn+3(.23) = Z \/ 1-— Ck SlnelZ()l Z \/ 1-— Ck sin QlZu (97)

=1 =1
— 2xomo(2) + |2 ma(),

k
Zntat1(x) =4/1 = ZCOS 01 Z o1 (x) + 2170 (2), for @ =3,... N, (9.8)
=1
k
Zonta—1(x) =4/1=C Zsin 01 Z o1 (x) + 2270 (2), for @ =3,... n. (9.9)
=1

Then we have the following estimations,

E
E
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Lemma 9.1.

/n Zal(:v)Zo(:v)dx:/nZg(ac)dm—i-O(k_l) if a=0,1=0,

=O0(k™")  otherwise,

(9.10)

/n Zo(x)Zp(z)dx = /n Zix)dz +O(k™) if a=p€{l,---,n}, =0,

=O(k™Y)  otherwise,
(9.11)

/n Zoa(2) Zoj(x)dw = / Z§(x)dz +O(k™") if a=0,1=4,
= O(l%fl) otherwise,
| za@z@is = [ Z@ar+ 06 i a=ge ik 1=
| = O(l%fl) otherwise,

z[2 -2
/ Lﬂ;fz“zﬁj(z)dw
Rn ( ) 2

L [a]?

(9.12)

(9.13)

/ T BE=2) zy@e+ 0t i p=0, j=0, @19
Rn

1+|x‘2)"T_2+1
O(k™Y)  otherwise,

/ %Zﬁj@)dz
B (1 + |x|2)T+l

/—xi  Zi(a)dz+O(Y) if B=0, j=ic {1, .n),
— n o\ 5 +1
R (14 |z]?) 2

O(k™)  otherwise.

(9.15)

Proof. We prove (9.12). Let n > 0 be a small fixed real number independent from
k. Then

/n Zai () Zoj(x)dx = /B(g " Zeoi(x) Zo)(x)dx +/ Zoy () Zoj(x)dx

R\B(&,7)
=11 + 19.

Change of variable via z = & + (xy, we obtain

i1 :/ Zo(x)Zo(x)dx
B(0,5%)

= (/ Z2(x)dx + O((Ckk)”)) if a =0,
=0if a#0.
As for the term i5, decompose

19 = / Zal(x)Z()j (ZL')d.’E + Z/ Zal(x)Zoj (CL’)d.T = 191 + 199.
R™M\US_1 B(&;,2) j#1 7B E)
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191 can be estimated as

) 2 oo 1 o0 ,'nn—l
|221| S CCk; { d.’L' = CC N mdr
k

el 2y [2l?n

1
<Ot =0 <k> .

And

|i22] <CZ/

J#l

n

% ,rn—l

-2

n—2
720-(;3)@ < C(Tk"‘Q/
ey o= G2 R

n-2 1
<ot <ca=0(3).
where C' are generic positive constants independent of k. Hence we have (9.12).
The proofs of (9.10), (9.11), (9.13), (9.14) and (9.15) are similar, we omit them.
This concludes the proof. O

Then Lemma 6.1 follows from Lemma 9.1, (9.1)-(9.9) and Proposition 2.1 of [32]
by long but easy estimates.

9.2. Proof of (2.30). First, we claim that

Lt wzma = [ vezamao () o)

for some small s > 0. Indeed, we have

[ 10 @) 20(w)dy

k
_ /R U@ =D U )| Zoly)dy

Jj=1

k
= [ U W Zowdy + (=1 [ U () |- Y Ui) + 9v)| Zolw)dy

Rn Rn 1

k
= /n UP(y) Zo(y)dy + O (Z/n Up2(y)Uj(y)Zo(y)dy)

+0 (g /Rn Ujl”l(y)Zo(y)dy> +0 (/Rn é(y)l”l(y)Zo(y)dy>
co ([ v o] zutway )
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and

[t wmman = [ etz

=167 [ A6+ &)

1 1
< CC}th /]R" (1+[22)2 \Ck2+fj|n72dy
_ 1 1
=oq /|z|§22k (1+121%)? |Gz +€j|n72dy
1 1

toqT /|z|2 L (L4 [22)? ¢z +§j‘n72 4

2,

_ 1 1 Ckz
g (0(&))a
S /|z|§1 (1 [22)% g2 - &1 Y

¢k

n—2 1 1 §]|>)
+C¢; ~/|Z| L 1+ 222 |<kz|n72 (1 +0 (Ckz dy

2Ck

=0(<£)=0(,£),

n—2

B CT 1
UP=2(y)U, (y) Zo(y)dy < C k ;
Lot womawase [ st

74y

1 1
—C 2“/ - d
2 me (14 |22)" 2 (L4 |Gz +&[)* Y

n—2 4dy

/ 1 1
— k
rr (L4 2) 7 Gz + &l

1 1
:CCkQH/ =2 T4y
sl<st (L4 [22) 77 (G2 + &

nyq 1 1
+o¢T dy
P bz (LR [Gez G

e 1 (o(&Y)s
g /zlél (1+[212)"2 Il g1

2<k
+ O 1 _ ! 4(1+o(5j|>>dy
1zgt (14 122)"7 (G2l Cr
21
~o()
1 ]

[ 18 ) Zalway = 0 (57 a) =0 (k7).

e (14 [y[)n+2

[ omwliw|ama=o (vt [ i) =0 (i)

hold. (9.16) follows from the above estimates. Similarly, we have

/Rn QI (y) Zon(y)dy = /R U™ (y) Zou(y)dy + O <1511+)
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and

Lzt = [ iz +o ().

Moreover,

_ n—2
. UP~(y) Zo(y)dy = > /. UP(y)dy > 0,

[ 0P @) Zul)y = G (—p Up-l<y>zo<y>dy>
R"n, RTL
n_ -2
R

/Rn |UP~ (y) Zu(y)dy = 0.

Then from (9.1),

—p [ 1@ Wiy
= [ 101 () +p§ | 1@t wzutmay
;
+pl§:/n IQIP‘l(y)Zu(y)dy—p/nWo(y)Zoz(y)dy
:—p/nUp Yy) Zo(y dy—i—pZ/ UL~ (y) Zoi (y) dy
+p;/w |Ul\p_1(y)le(y)dy—p/Rn mo(y) Zo(y)dy + O (,:)

n_1.n—2 1
= (1+k¢E N / UP(y)derO(kS)

which is positive when k is large. This proves ¢; > 0 when kg is large enough.

2
Finally, we prove co > 0. From (9.1), 20(y) — W
y

can be written as

) Dekl2= )
(1+1yl*)=

N g =2 en2 1)
_<Z°(y> 2 <1+|y2>3>

- Zk: (ZOl(y) - f ((2 —P) )

1+ |y?)®

- () — o(1)h, 2191 ~
Zzu +70(y) — o(1)hn, e (k — +00).
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Direct computation yields that

n—2a,(2 - |y]?

2 (1+y2)*
_ n-20.2- ) 1
f/n Zo(y) 2 (i)t Zo(y)derO(k)
. on—2y/m27"T (5 1) 1
w0 (i)
k
ey 2= (1
) e R O]
k
> [ Aty =0 ()
k
2—1y 1
o —o(l)hp,———F | 20 dy=01|~-].
22 J (o) ot e st ()
Therefore,
Dy k(2= Jy?)  on—2ym2 T (2 -1) 1
A o) R i 1C T O

which is positive when k is large enough. Hence co > 0 if kg is sufficiently large.
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