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Abstract. Let Ω be a smooth bounded domain in Rn and denote the regular

part of the Green’s function on Ω with Dirichlet boundary condition as H(x, y).
Assume that q ∈ Ω and n ≥ 5. We prove that there exists an integer k0 such

that for any integer k ≥ k0 there exist initial data u0 and smooth parameter

functions ξ(t)→ q, 0 < µ(t)→ 0 as t→ +∞ such that the solution uq of the
critical nonlinear heat equation

ut = ∆u+ |u|
4

n−2 u in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω,

has the form

uq(x, t) ≈ µ(t)−
n−2
2

(
Qk

(
x− ξ(t)
µ(t)

)
−H(x, q)

)
,

where the profile Qk is the non-radial sign-changing solution of the Yamabe

equation

∆Q+ |Q|
4

n−2Q = 0 in Rn,
constructed in [9]. In dimension 5 and 6, we also prove the stability of uq(x, t).

1. Introduction

Let Ω be a smooth bounded domain in Rn with n ≥ 3. We consider the following
critical nonlinear heat equation

ut = ∆u+ |u|
4

n−2u in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω,

(1.1)

for a function u : Ω× [0,∞)→ R and smooth initial datum u0 satisfying u0|∂Ω = 0.

Problem (1.1) can be viewed as a special case of the well-known Fujita equation

ut = ∆u+ |u|p−1u (1.2)

with p > 1, which appears in many applied disciplines and become a prototype
for the analysis of singularity formation in nonlinear parabolic equations. A large
amount of literature has been devoted to this problem on the asymptotic behaviour
and blowing-up solutions after Fujita’s seminal work [18]. See, for example, [1], [2],
[11], [12], [19], [20], [21], [22], [23], [27], [28], [29], [30], [40] and references therein.
We refer the the interested readers to [38] for the corresponding background and a
comprehensive survey of the results until 2007. Blowing-up phenomena for problem
(1.2) is very sensitive to the exponent p, the critical case p = n+2

n−2 is special in several

ways, positive steady state solutions do not exist if p < n+2
n−2 . Radial and positive

1
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global solutions must go to zero and bounded, see [34], [35], [38], they exist in the
case p > n+2

n−2 with infinite energy, see [24]. Infinite time blowing-up solutions exist

in that case but they exhibit entirely different nature, see [36], [37].
The motivation of this paper is twofolds. In [2], Cortazar, del Pino and Musso

proved the following result. Suppose n ≥ 5, denote the Green’s function of the
Laplacian ∆ in Ω with Dirichlet boundary value as G(x, y) and the regular part of
G(x, y) as H(x, y). Let q1, · · · , qk be k distinct points in Ω such that the matrix

Ĝ(q) =


H(q1, q1) −G(q1, q2) · · · −G(q1, qk)
−G(q2, q1) H(q2, q2) · · · −G(q2, qk)

...
...

. . .
...

−G(qk, q1) −G(qk, q2) · · · H(qk, qk)

 . (1.3)

is positive definite. They proved the existence of u0 and smooth parameter functions
ξj(t)→ qj , 0 < µj(t)→ 0, as t→ +∞, j = 1, · · · , k, such that (1.1) has an infinite
time blowing-up positive solution uq whose shape can be approximately described
as

uq ≈
k∑
j=1

αn

(
µj(t)

µ2
j (t) + |x− ξj(t)|2

)n−2
2

,

with µj(t) = βjt
− 1
n−4 (1 + o(1)), as t → ∞, for some positive constants βj . The

profile of uq is a super-position of functions that are obtained from a fixed profile

U(x) = αn

(
1

1 + |x|2

)n−2
2

, (1.4)

properly scaled by µj(t) and translated by ξj(t). The function U is the unique
radially symmetric entire solution for the Yamabe equation

∆Q+ |Q|
4

n−2Q = 0 in Rn. (1.5)

The aim of this paper is to explore the possibility to construct sign-changing so-
lutions to (1.1) which blows-up, as t → ∞, in the form of the profile of a sign-
changing entire solution to the time-independent limit problem (1.5). Pohozaev’s
identity tells us that any sign-changing solution of (1.5) is non-radial. The ex-
istence of non-radial sign-changing and with arbitrary large energy elements of
Σ :=

{
Q ∈ D1,2(Rn)\{0} : Q satisfies (1.5)

}
was first proved by W. Ding [14] using

variational arguments. Indeed, using stereographic projection to Sn, (1.5) trans-
forms into

∆Snv +
n(n− 2)

4
(|v|

4
n−2 v − v) = 0 in Sn,

(see, for example, [39], [26]), Ding proved the existence of infinitely many critical
points to the corresponding energy functional in the space of functions satisfying

v(x) = v(|x1|, |x2|), x = (x1, x2) ∈ Sn ⊂ Rn+1 = Rk × Rn+1−k, k ≥ 2.

More explicit constructions of sign-changing solutions to (1.5) were obtained in [9],
[10]. Furthermore, [32] proves the rigidity results (non-degeneracy) of the solutions
found in [9], [10]. Classification of solutions in Σ plays an important role in the
soliton resolution conjecture for energy critical wave equation, for example, [15], [16]
and the references therein. Therefore, a natural question is: does the infinite time
blowing-up phenomenon for problem (1.1) occur with sign-changing profiles? In
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this paper we show that the sign-changing blowing-up solutions with basic cell
constructed in [9] do exist.

Our starting point is the sign-changing solutions Q of (1.5) constructed in [9]
and [10]. Let us describe these solutions more precisely. In [9], it was proven that
there exists a large positive integer k0 such that ∀k ≥ k0, a solution Q = Qk of
(1.5) exists. Furthermore, if we define the energy functional by

E(u) =
1

2

∫
Rn
|∇u|2dx− 1

p+ 1

∫
Rn
|u|p+1dx, p =

n+ 2

n− 2
,

then we have

E(Qk) =

 (k + 1)Sn
(
1 +O(k2−n)

)
if n ≥ 4 ,

(k + 1)S3

(
1 +O(k−1| log k|−1

)
if n = 3

as k → ∞. Here Sn is a positive constant depending on n. The function Q = Qk
decays like the radial symmetrical solution U(x) defined in (1.4) at infinity, that is
to say, we have

lim
|x|→∞

|x|n−2Qk(x) =

[
4

n(n− 2)

]n−2
4

2
n−2
2 (1 + dk) (1.6)

where

dk =

 O(k−1) if n ≥ 4 ,

O(k−1| log k|2) if n = 3
as k →∞.

Furthermore, we have

Q(x) = [n(n− 2)]
n−2
4

(
1− n− 2

2
|x|2 +O(|x|3)

)
as |x| → 0

and there exists η > 0 (depending only on k0) such that for any k,

η ≤ Q(x) ≤ Q(0) for all |x| ≤ 1

2
.

On the other hand, Q = Qk is invariant under rotation of angle 2π
k in the x1, x2

plane, i.e.,

Q(e
2π
k x̄, x′) = Q(x̄, x′), x̄ = (x1, x3), x′ = (x3, . . . , xn). (1.7)

It is also even in the xj-coordinates, for any j = 2, · · · , n and invariant under the
Kelvin’s transformation, namely, we have

Q(x1, . . . , xj , . . . , xn) = Q(x1, . . . ,−xj , . . . , xn), j = 2, . . . , n (1.8)

and

Q(x) = |x|2−nQ(|x|−2x). (1.9)

It was proved in [32] that these solutions are non-degenerate. More precisely, fix
one solution Q = Qk and define the linearized operator of (1.5) at Q as

L(φ) = ∆φ+ p|Q|p−1φ. (1.10)

The invariance of any solution of (1.5) under dilation (if u satisfies (1.5), then the

function µ−
n−2
2 u(µ−1x) solves (1.5) for all µ > 0), under translation (if u solves
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(1.5), then u(x+ ξ) also solves (1.5) for ξ ∈ Rn), together with the invariance (1.7),
(1.8), (1.9) produce natural kernel functions ϕ of L, that is to say, we have

L(ϕ) = 0.

These are 3n linearly independent functions defined as follows:

z0(x) =
n− 2

2
Q(x) +∇Q(x) · x, (1.11)

zα(x) =
∂

∂xα
Q(x), for α = 1, . . . , n, (1.12)

zn+1(x) = −x2
∂

∂x1
Q(x) + x1

∂

∂x2
Q(x), (1.13)

zn+2(x) = −2x1z0(x) + |x|2z1(x), zn+3(x) = −2x2z0(x) + |x|2z2(x) (1.14)

and, for l = 3, . . . , n

zn+l+1(x) = −xlz1(x) + x1zl(x), z2n+l−1(x) = −xlz2(x) + x2zl(x). (1.15)

Indeed, direct computations yield that

L(zα) = 0, for all α = 0, 1, . . . , 3n− 1.

The function z0 defined by (1.11) is from the invariance of (1.5) under dilation

µ−
n−2
2 Q(µ−1x). zi, i = 1, . . . , n defined by (1.12) are due to the invariance of (1.5)

under translation Q(x + ξ). The function zn+1 in (1.13) is generated from the
invariance of Q with respect to rotation in the (x1, x2)-plane. The functions zn+2

and zn+3 in (1.14) are generated from the invariance of (1.5) with respect to the
Kelvin transformation (1.9). The functions in (1.15) are due to the invariance of
(1.5) under rotations in the (x1, xl)-plane, (x2, xl)-plane respectively.

Let us recall that the Green’s functionG(x, y) is defined by the following Dirichlet
boundary value problem{

−∆G(x, y) = c(n)δ(x− y) in Ω,

G(·, y) = 0 on ∂Ω,

where δ(x) is the Dirac measure at the origin and c(n) is a constant depending on
n satisfying

−∆Γ(x) = c(n)δ(x), Γ(x) =
Q(0)

|x|n−2
=

[n(n− 2)]
n−2
4

|x|n−2
.

Denote the regular part of G(x, y) as H(x, y), namely, H(x, y) satisfies the following
problem {

−∆H(x, y) = 0 in Ω,

H(·, y) = Γ(· − y) in ∂Ω.

Our main result can be stated as follows.

Theorem 1.1. Assume n ≥ 5 and q is a point in Ω. There exists an integer k0

such that, for any k ≥ k0, there exist an initial datum u0 and smooth parameter
functions ξ(t) → q, 0 < µ(t) → 0, as t → +∞, such that the solution uq to (1.1)
has form

uq(x, t) = µ(t)−
n−2
2

(
Qk

(
x− ξ(t)
µ(t)

)
−H(x, q) + ϕ(x, t)

)
, (1.16)



SIGN-CHANGING BLOWING-UP SOLUTIONS FOR THE CRITICAL HEAT EQUATION 5

where ϕ(x, t) is a bounded smooth function satisfying ϕ(x, t) → 0 uniformly away
from q as t→ +∞.

Theorem 1.1 exhibits new blowing-up phenomena where the profile of bubbling is
sign-changing rather than the positive solution for the critical heat equation. In the
case of positive bubbling, the linear operator around the basic cell contains exactly
n + 1 dimensional kernels corresponding to the rigidity motions (translation and
dilation). However, in the case of sign-changing (non-radial) blowing-up solution,
the kernel of the linearized operators at the basic cell includes not only the func-
tions generated from dilation and translations, but also functions due to rotation
around the sub-planes and Kelvin transform. Therefore we have to find enough
parameter functions to adjust. Similar to the supercritical Bahri-Coron’s problem
in [33], our computations indicate that the dominated role played is still scaling and
translations. Indeed, (1.16) has a more involved form, see (2.18) below for details.
Note that in [42], sign-changing blow-up solutions were also constructed, but their
basic cell is the positive radial solution U(x) defined in (1.4).

We believe that this is the first example of blowing-up solutions in nonlinear
parabolic equations whose core profile is non-radial. In a series of interesting papers,
Duyckaerts, Kenig and Merle [15, 17] introduced the notion of nondegenracy for
nonradial solutions of the equation (1.5) and obtained the profile decomposition
for possible blow-up solutions for energy critical wave equation in general setting.
Existence of bubbling solutions with the positive radial profile for the energy critical
wave equations has been constructed in [13, 25]. However as far as we know there
are no examples of noradial blow-up for energy critical wave equation.

To prove Theorem 1.1, we will use the inner-outer gluing scheme for parabolic
problems. Gluing methods have been proven very useful in singular perturbation
elliptic problems, for example, [6], [7], [8]. Recently, this method has also been
developed to various evolution problems, for instance, the construction of infinite
time blowing-up solutions for energy critical nonlinear heat equation [2], [12], the
formation of singularity to harmonic map flow [3], finite time blowing-up solutions
for energy critical heat equation [11], vortex dynamics in Euler flows [4] and type
II ancient solutions for the Yamabe flow [5].

The proof consists of constructing an approximation to the solution with suf-
ficiently small error, then we solve for a small remainder term using linearization
around the bubble and the Schauder fixed-point arguments. In Section 2, we con-
struct the first approximation with form (2.18). To get an approximation with fast
decay far away from the point q, we add nonlocal terms to cancel the slow decay
parts as in [3]. Then we compute the error, in order to improve the approximation
error near the point q, we have to use solvability conditions for the corresponding
elliptic linearized operator around the sign-changing bubble. These conditions yield
systems of ODEs for the parameters. (See equations (4.14).) Of these systems of the
ODEs, the equation for the scaling parameter function plays a dominant role, from
which we deduce the blow-up dynamics of our solutions. After the approximate
solution has been constructed, the full problem is solved as a small perturbation
by the inner-outer gluing scheme, see Section 3. This consists of decomposing the
perturbation term into form ηφ̃+ψ, where η is a smooth cut-off function vanishing
away from q. The tuple (φ̃, ψ) satisfy a coupled nonlinear parabolic system where

the equation for ψ is a small perturbation of the standard heat equation, and φ̃
satisfies the parabolic linearized equation around the bubble.
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When dealing with parabolic problems for φ̃, a crucial step is to find a solution
to the linearized parabolic equation around the bubble with sufficiently fast decay.
However, it seems that the argument in [2] for the positive bubbling of the critical
heat equation does not work in our sign-changing case since we can not perform
Fourier mode expansions. Inspired by the linear theory of [3], [31] and [41], our
main contributions in this paper is to use blowing-up arguments based on the
non-degeneracy of bubbles proved in [32] and a removable of singularity property
for the corresponding limit equation. As pointed out in [15], the term |Q|p−1 =

|Q|
4

n−2 in L(φ) = ∆φ + p|Q|p−1φ is not C1 when the space dimension n ≥ 7, as

a result of this fact, the solution φ̃, ψ do not have Lipschitz property with respect
to the parameter functions. This is the reason we use Schauder fixe-point theorem
rather than Contraction Mapping Theorem to solve the inner-outer gluing parabolic
system in Section 4. In dimension 5 and 6, φ̃ and ψ do have Lipschitz continuity
with respect to the parameter functions, Theorem 1.1 as well as a stability result
for uq can be proved using the Contraction Mapping Theorem in the spirit of [2],
see Section 8.

2. Construction of the approximation

2.1. The basic cell. Let O(n) be the orthogonal group of n× n matrices M with
real coefficients and MTM = I, SO(n) ⊂ O(n) be the special orthogonal group
of all matrices in O(n) satisfying det(M) = 1. It is well known that SO(n) is a
compact group containing all rotations in Rn, and via isometry, it can be identified

with a compact subset of R
n(n−1)

2 . Let Ŝ be the subgroup of SO(n) generated by
rotations in the (x1, x2)-plane and (xj , xα)-plane, for any j = 1, 2, α = 3, . . . , n.

Then Ŝ is a compact manifold of dimension 2n − 3 without boundary. That is

to say, there exists a smooth injective map χ : Ŝ → R
n(n−1)

2 such that χ(Ŝ) is a

compact manifold without boundary of dimension 2n − 3 and χ−1 : χ(Ŝ) → Ŝ is

the smooth parametrization of Ŝ in a neighborhood of the identity map. Let us
write

θ ∈ K = χ(Ŝ), Rθ = χ−1(θ)

for a smooth compact manifold K of dimension 2n − 3 and Rθ denotes a rotation
map in Ŝ.

Let A = (µ, ξ, a, θ) ∈ R+ × Rn × R2 × R2n−3, define

QA(x) = µ−
n−2
2 |ηA(x)|2−n Q

Rθ
(
x−ξ
µ − a|

x−ξ
µ |

2
)

|ηA(x)|2

 , (2.1)

where

ηA(x) =
x− ξ
|x− ξ|

− a |x− ξ|
µ

(2.2)

and Q is the fixed non-degenerate solution to problem (1.5) as described in the
introduction. It was proved in [15] that for any choice of A, QA still satisfies (1.5),
i.e.,

∆QA + |QA|p−1QA = 0, in Rn.
Direct computations yield the following relations between the differentiation of QA
with respect to each component of A and zα defined in (1.11), (1.12), (1.13), (1.14)
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and (1.15). Precisely, we have

z0(y) = − ∂

∂µ
[QA(x)]|µ=1,ξ=0,a=0,θ=0 (2.3)

zα(y) = − ∂

∂ξα
[QA(x)]|µ=1,ξ=0,a=0,θ=0 , α = 1, . . . , n, (2.4)

zn+2(y) =
∂

∂a1
[QA(x)]|µ=1,ξ=0,a=0,θ=0 , (2.5)

zn+3(y) =
∂

∂a2
[QA(x)]|µ=1,ξ=0,a=0,θ=0 . (2.6)

Let θ = (θ12, θ13, . . . , θ1n, θ23, . . . , θ2n), where θij is the rotation in the (i, j)-plane,
then we have

zn+1(y) =
∂

∂θ12
[QA(x)]|µ=1,ξ=0,a=0,θ=0 (2.7)

and, for l = 3, . . . , n,

zn+l+1(y) =
∂

∂θ1l
[QA(x)]|µ=1,ξ=0,a=0,θ=0 , (2.8)

z2n+l−1(y) =
∂

∂θ2l
[QA(x)]|µ=1,ξ=0,a=0,θ=0 . (2.9)

Following the definition in [15], a solution Q of (1.5) is non-degenerate if

Kernel(L) = Span{zα : α = 0, 1, 2, . . . , 3n− 1}, (2.10)

or equivalently, any bounded solution of L(ϕ) = 0 is a linear combination of zα,
α = 0, . . . , 3n−1. It was proved in [32] that, the solution Q is non-degenerate when
the dimension satisfies some extra conditions. Indeed, the authors showed that for
all dimensions n ≤ 48, any solution Q = Qk is non-degenerate, for dimension
n ≥ 49, there exists a subsequence of solutions Qkj which is non-degenerate in the
sense (2.10).

2.2. Setting up the problem. Let t0 > 0 be a sufficiently large constant, let us
consider the heat equation{

ut = ∆u+ |u|
4

n−2u in Ω× (t0,∞),

u = 0 in ∂Ω× (t0,∞).
(2.11)

Observe that the solution of (2.11) provides a solution u(x, t) = u(x, t− t0) to (1.1).
Given a fixed point q ∈ Ω, we will find a solution u(x, t) of equation (2.11) with
approximate form

u(x, t) ≈ µ(t)−
n−2
2 Q

(
x− ξ(t)
µ(t)

)
.

More precisely, let A = A(t) = (µ(t), ξ(t), a(t), θ(t)) ∈ R+ × Rn × R2 × R2n−3 be
the parameter functions and define the function

QA(t)(x) = µ(t)−
n−2
2

∣∣ηA(t)(x)
∣∣2−nQ

Rθ(t)
(
x−ξ(t)
µ(t) − a(t)

∣∣∣x−ξ(t)µ(t)

∣∣∣2)
|ηA(t)(x)|2

 , (2.12)

where

ηA(t)(x) =
x− ξ(t)
|x− ξ(t)|

− a(t)
|x− ξ(t)|
µ(t)

(2.13)
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and Q is the non-degenerate solution for (1.5) described in Section 2.1. With
abuse of notation when there is no ambiguity, here and in what follows, A(t) =
(µ(t), ξ(t), a(t), θ(t)) will be abbreviated as A = (µ, ξ, a, θ), a is a vector in R2,

a =

(
a1

a2

)
∈ R2, it is also a vector in Rn, namely,

a =


a1

a2

0
· · ·
0

 ∈ Rn.

To begin with, we assume that for a fixed positive function µ0(t)→ 0 (t→ +∞)
and a constant σ > 0, there hold

µ(t) = µ0(t) +O(µ1+σ
0 (t)) as t→ +∞,

ξ(t) = q +O(µ1+σ
0 (t)) as t→ +∞,

a(t) = O(µσ0 (t)) as t→ +∞,
θ(t) = O(µσ0 (t)) as t→ +∞.

In [15], it was proven that for any choice of A, the function QA still satisfies (1.5),
namely

∆QA + |QA|p−1QA = 0 in Rn.

Let ỹ =
Rθ(t)

(
x−ξ(t)
µ(t)

−a(t)| x−ξ(t)µ(t) |
2
)

|η|2 and η = x−ξ(t)
|x−ξ(t)| − a(t) |x−ξ(t)|µ(t) , then we have the

following expansion

|η|2 =

∣∣∣∣ x− ξ(t)|x− ξ(t)|
− a(t)

|x− ξ(t)|
µ(t)

∣∣∣∣2
= 1− 2a(t) ·

(
x− ξ(t)
µ(t)

)
+ |a(t)|2 |x− ξ(t)|

2

µ2(t)
,

1

|η|2
=

1

1− 2a(t) ·
(
x−ξ(t)
µ(t)

)
+ |a(t)|2 |x−ξ(t)|

2

µ2(t)

= 1 + 2a(t) ·
(
x− ξ(t)
µ(t)

)
+O

(
|a(t)|2 |x− ξ(t)|

2

µ2(t)

)
and

ỹ =

Rθ(t)

(
x−ξ(t)
µ(t) − a(t)

∣∣∣x−ξ(t)µ(t)

∣∣∣2)
|η|2

= Rθ(t)

(
x− ξ(t)
µ(t)

)
+Rθ(t)a(t)

∣∣∣∣x− ξ(t)µ(t)

∣∣∣∣2
+O

(
|a|2 |x− ξ(t)|

3

µ3(t)

)
.

Denote the error operator as

S(u) := −ut + ∆u+ |u|p−1u,

with p = n+2
n−2 . Then the error of the first approximation QA(x, t) can be computed

as

S(QA) = − ∂

∂t
(QA(x, t)) = E0 + E1 + E2 + E3.
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For y = x−ξ(t)
µ(t) , using Taylor expansion, the expressions of E0, E1, E2 and E3 are

given below explicitly.

E0 =
µ̇(t)

µ(t)
µ−

n−2
2 (t) |η|2−n z0(ỹ) +

µ̇(t)

µ(t)
µ−

n−2
2 (t) |η|2−n z0(ỹ) (2ỹ ·Rθa)

− µ̇(t)

µ(t)
µ−

n−2
2 (t) |η|2−n

(
∇Q(ỹ) · Rθa

|η|2

)(
|x− ξ(t)|2

µ2(t)

)
=
µ̇(t)

µ(t)
µ−

n−2
2 (t)z0 (y) (1 + (y · a)F0(µ, ξ, a, θ, y)) ,

where f are generic smooth bounded functions of the tuple (µ, ξ, a, θ, y) which may
different from one place to another, F0(µ, ξ, a, θ, y) is a smooth bounded function
depending on (µ, ξ, a, θ, y). Similarly, we have

E1 = µ(t)−
n−2
2 (n− 2)|η|−n (η · a)

(
x− ξ
|x− ξ|

· ξ̇
µ

)
Q(ỹ)

+ µ−
n−2
2 |η|2−n∇Q(ỹ) ·

[
1

|η|2
Rθ

(
ξ̇

µ
− 2a(x− ξ) · ξ̇

µ2

)]

+ µ−
n−2
2 |η|2−n∇Q(ỹ) ·

(
ỹ

2η

|η|2

(
a

(
x− ξ
|x− ξ|

ξ̇

µ

)))

= µ−
n−2
2 ∇Q (y) · ξ̇

µ(t)
(1 + (y · a)F1(µ, ξ, a, θ, y))

where f are generic smooth bounded functions of the tuple (µ, ξ, a, θ, y) which may
different from one place to another, F1(µ, ξ, a, θ, y) is a smooth bounded function
depending on (µ, ξ, a, θ, y). Furthermore, E2 = E21 + E22, where

E21 = −µ−
n−2
2 |η|−n2 (ȧ1 · y)

[
n− 2

2
Q (ỹ) +∇Q(ỹ) · ỹ

]
+ µ−

n−2
2 |η|−nRθȧ1 · ∇Q(ỹ)

∣∣∣∣x− ξµ
∣∣∣∣2

+ µ−
n−2
2 |η|−n2

[
n− 2

2
Q(ỹ) +∇Q(ỹ) · ỹ

] ∣∣∣∣x− ξµ
∣∣∣∣2 a1ȧ1

= µ−
n−2
2

{
− 2 (ȧ1 · y)

[
n− 2

2
Q (y) +∇Q (y) · y

]
+ ȧ1 · ∇Q (y) |y|2

}
×(

1 + (y · a)F21(µ, ξ, a, θ, y)

)

= µ−
n−2
2 zn+2(y)ȧ1

(
1 + (y · a)F21(µ, ξ, a, θ, y)

)
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and

E22 = −µ−
n−2
2 |η|−n2 (ȧ2 · y)

[
n− 2

2
Q (ỹ) +∇Q(ỹ) · ỹ

]
+ µ−

n−2
2 |η|−nRθȧ2 · ∇Q(ỹ)

∣∣∣∣x− ξµ
∣∣∣∣2

+ µ−
n−2
2 |η|−n2

[
n− 2

2
Q(ỹ) +∇Q(ỹ) · ỹ

] ∣∣∣∣x− ξµ
∣∣∣∣2 a2ȧ2

= µ−
n−2
2

{
− 2 (ȧ2 · y)

[
n− 2

2
Q (y) +∇Q (y) · y

]
+ ȧ2 · ∇Q (y) |y|2

}
×(

1 + (y · a)F22(µ, ξ, a, θ, y)

)

= µ−
n−2
2 zn+3(y)ȧ2

(
1 + (y · a)F22(µ, ξ, a, θ, y)

)
.

Here we identify the component aj , j = 1, 2 of a with the vector
a1

0
0
· · ·
0

 ∈ Rn, if j = 1,


0
a2

0
· · ·
0

 ∈ Rn, if j = 1,

f are generic smooth bounded functions of the tuple (µ, ξ, a, θ, y) which may dif-
ferent from one place to another, F21(µ, ξ, a, θ, y) and F22(µ, ξ, a, θ, y) are smooth
bounded functions depending on (µ, ξ, a, θ, y). Finally, E3 = E3,12 +

∑n
j=3 E3,1j +∑n

j=3 E3,2j , where

E3,12 = µ−
n−2
2 |η|2−n∇Q(ỹ) · (iỹ)θ̇12

= µ−
n−2
2 zn+1(y)θ̇12 (1 + (y ·Rθa)F3,21(µ, ξ, a, θ, y))

and similarly, for j = 3, · · · , n,

E3,1j = µ−
n−2
2 zn+j+1(y)θ̇1j (1 + (y ·Rθa)F3,1j(µ, ξ, a, θ, y)) ,

E3,2j = µ−
n−2
2 z2n+l−1(y)θ̇2j (1 + (y ·Rθa)F3,2j(µ, ξ, a, θ, y)) ,

where i is the rotation matrix with angle π
2 around the axes x1, x2 in E3,12,

around the axes x1, xj in E3,1j and around the axes x2, xj in E3,2j respectively,
F3,12(µ, ξ, a, θ, y), F3,1j(µ, ξ, a, θ, y) and F3,2j(µ, ξ, a, θ, y), j = 3, · · · , n, are smooth
bounded functions depending on (µ, ξ, a, θ, y).

To perform the gluing method, the terms µ−
n−2
2 −1µ̇z0(y), µ−

n−2
2 −1ξ̇ ·∇Q(y) and

µ−
n−2
2 −1∇Q(y) · (iRθξ) θ̇ do not have enough decay, inspired by [3], we should add

nonlocal terms to cancel them out at main order. By the detailed construction of
Q (see [9]) and (1.6) we know that the main order of z0(y) is

Dn,k(2− |y|2)

(1 + |y|2)
n
2
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with Dn,k = −n−2
2

[
4

n(n−2)

]n−2
4

2
n−2
2 (1 + dk). Therefore, we consider the following

heat equation

− ϕt + ∆ϕ+
µ̇

µ
µ−(n−2)

Dn,k

(
2−

∣∣∣x−ξµ ∣∣∣2)(
1 +

∣∣∣x−ξµ ∣∣∣2)n
2

= 0 in Rn × (t0,+∞). (2.14)

By the Duhamel’s principle, we known

Φ0(x, t) = −
∫ t

t0

∫
Rn
p(t−s̃, x−y)

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)

Dn,k

(
2−

∣∣∣y−ξ(s̃)µ(s̃)

∣∣∣2)(
1 +

∣∣∣y−ξ(s̃)µ(s̃)

∣∣∣2)n
2

dyds̃ (2.15)

provides a bounded solution for (2.14). Here p(t, x) = 1

(4πt)
n
2
e
−|x|2

4t is the standard

heat kernel for the heat operator − ∂
∂t + ∆ on Rn × (t0,+∞). By the super-sub

solution argument, Φ0(x, t) satisfies the estimate Φ0(x, t) ∼ µ̇
µ

µ−n+4

1+|y|n−4 (see Lemma

4.3).

To cancel the main order µ−
n−2
2 −1ξ̇ · En,ky

(1+|y|2)
n
2

of µ−
n−2
2 −1ξ̇ · ∇Q(y) where En,k

is a constant depending on n and k, for y = x−ξ
µ , we consider the following heat

equation

− ϕt + ∆ϕ+ En,kµ
−(n−2) 1

(1 + |y|2)
n
2

ξ̇

µ
· y = 0 in Rn × (t0,+∞). (2.16)

The solution defined from the Duhamel’s principle

Φ1(x, t) = −En,k
∫ t

t0

∫
Rn
p(t− s̃, x− y)µ−(n−2)(s̃)

ξ̇(s̃) · y−ξ(s̃)µ(s̃)

µ(s̃)
×

1(
1 +

∣∣∣y−ξ(s̃)µ(s̃)

∣∣∣2)n
2
dyds̃

satisfies the estimate Φ1(x, t) ∼ |ξ̇|µ
µ−n+4

1+|y|n−3 .

Similarly, for i = 1, 2, we consider the heat equation

−ϕt + ∆ϕ+ µ−(n−2)En,k|y|2 − 2Dn,k(2− |y|2)

(1 + |y|2)
n
2

ȧiyi = 0 in Rn × (t0,+∞), (2.17)

which has a bounded solution given by

Φ2,i(x, t) = −
∫ t

t0

∫
Rn
p(t− s̃,x− y)µ−(n−2)(s̃)ȧi(s̃)

(
y − ξ(s̃)
µ(s̃)

)
i

×

En,k

∣∣∣y−ξ(s̃)µ(s̃)

∣∣∣2 − 2Dn,k

(
2−

∣∣∣y−ξ(s̃)µ(s̃)

∣∣∣2)(
1 +

∣∣∣y−ξ(s̃)µ(s̃)

∣∣∣2)n
2

dyds̃

satisfies the estimate Φ2,i(x, t) ∼ |ȧi| µ
−n+4

1+|y|n−5 .



12 M. DEL PINO, M. DEL PINO, J. WEI, AND Y. ZHENG

Now we define Φ∗(x, t) = Φ0(x, t) + Φ1(x, t) +
∑2
i=1 Φ2,i(x, t). Since the final

solution must sasify u = 0 in ∂Ω, a better approximation than QA(x, t) should be

uA(x, t) = QA(x, t) + µ
n−2
2 Φ∗(x, t)− µ

n−2
2 H(x, q). (2.18)

The error of uA can be computed as follows,

S(uA) = −∂tuA + |uA|p−1uA − |QA|p−1QA + µ
n−2
2 ∆Φ∗(x, t). (2.19)

2.3. The error S(uA). Near the given point q, the following expansion holds.

Lemma 2.1. Consider the region |x− q| ≤ ε for ε small enough, we have

S(uA) = µ−
n+2
2 (µE0 + µE1 + µE2 + µE3 +R)

with

E0 = p|Q|p−1
[
−µn−3H(q, q) + µn−3Φ0(q, t)

]
+ µ̇(t)

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
,

E1 = p|Q|p−1
[
−µn−2∇H(q, q)

]
· y + p|Q|p−1

[
µn−3Φ1(q, t)

]
+

(
∇Q(y)− En,ky

(1 + |y|2)
n
2

)
· ξ̇,

E2 = p|Q|p−1
[
µn−3Φ2,1(q, t) + µn−3Φ2,2(q, t)

]
+ µ(t)ȧ1

(
−2y1

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ |y|2

(
∂

∂y1
Q(y)− En,ky1

(1 + |y|2)
n
2

))

+ µ(t)ȧ2

(
−2y2

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ |y|2

(
∂

∂y2
Q(y)− En,ky2

(1 + |y|2)
n
2

))
,

E3 = zn+1(y)µθ̇12 +

n∑
j=3

(
zn+j+1(y)µθ̇1j + z2n+j−1(y)µθ̇2j

)
and

R = (µn+2
0 + µn−1

0 µ̇)f +
µn−1

0
~f

1 + |y|2
· a+

µn−2
0 ~g

1 + |y|4
· (ξ − q) + µn0 ξ̇ · ~h,

where f , ~f , ~g and ~h are smooth and bounded functions depending on the tuple of
variables (µ−1

0 µ, ξ, a, θ, x− ξ).

Proof. Set

ỹ =

Rθ

(
x−ξ(t)
µ(t) − a

∣∣∣x−ξ(t)µ(t)

∣∣∣2)
|η|2

,

we have

uA(x, t) = µ(t)−
n−2
2 |η|2−nQ (ỹ) + µ

n−2
2 Φ∗(x, t)− µ

n−2
2 H(x, q)

and
S(uA) = S1 + S2,

where

S1 :=E0 + E1 + E2 + E3 +
n− 2

2
µ
n−4
2 µ̇H(x, q)

− n− 2

2
µ
n−4
2 µ̇Φ∗(x, t)− µ

n−2
2 ∂tΦ

∗(x, t),
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S2 :=
∣∣∣µ(t)−

n−2
2 |η|2−nQ (ỹ) + µ

n−2
2 Φ∗(x, t)− µ

n−2
2 H(x, q)

∣∣∣p−1

(
µ(t)−

n−2
2 |η|2−nQ (ỹ) + µ

n−2
2 Φ∗(x, t)− µ

n−2
2 H(x, q)

)
− µ(t)−

n+2
2 |η|−2−n |Q (ỹ)|p−1

Q (ỹ) + µ
n−2
2 ∆Φ∗(x, t).

Let

S2 =µ−
n+2
2 |η|−2−n

[
|Q(ỹ) + Θ|p−1

(Q(ỹ) + Θ)− |Q(ỹ)|p−1
Q(ỹ)

]
,

and

Θ =µn−2|η|n−2Φ∗(x, t)− µn−2|η|n−2H(x, q). (2.20)

Observe that |Θ| . µn−2
0 when ε is small enough, we may assume Q(y)−1|Θ| < 1

2 in
the considered region |x−q| < ε. Using Taylor’s expansion, we obtain the following

S2 =µ−
n+2
2 |η|−2−n

[
p |Q(ỹ)|p−1

Θ + p(p− 1)

∫ 1

0

(1− s) |Q(ỹ) + sΘ|p−2
dsΘ2

]
.

Hence we have

Θ = µn−2|η|n−2Φ∗((|η|2R−θỹ + a|y|2)µ+ ξ, t)

− µn−2|η|n−2H((|η|2R−θỹ + a|y|2)µ+ ξ, q).

We further expand as

Θ =− µn−2|η|n−2 (H(q, q)− Φ∗(q, t))

+ ((|η|2R−θỹ + a|y|2)µ+ ξ − q) ·
[
−µn−2|η|n−2∇ (H(q, q)− Φ∗(q, t))

]
+

∫ 1

0

{
− µn−2|η|n−2D2

xH(q + s((|η|2R−θỹ + a|y|2)µ+ ξ − q), q)
}

[(|η|2R−θỹ + a|y|2)µ+ ξ − q]2(1− s)ds

+

∫ 1

0

{
µn−2|η|n−2D2

xΦ∗(q + s((|η|2R−θỹ + a|y|2)µ+ ξ − q), t)
}

[(|η|2R−θỹ + a|y|2)µ+ ξ − q]2(1− s)ds.

Therefore, we have

Θ = −µn−2|η|n−2H(q, q)− µn−1|η|n∇H(q, q) ·R−θỹ
− µn−2|η|n−2∇H(q, q) · (ξ − q)− µn−1|η|n−2∇H(q, q) · a|y|2

+ µn−2|η|n−2Φ∗(q, t) + µn−1|η|n∇Φ∗(q, t) ·R−θỹ
+ µn−2|η|n−2∇Φ∗(q, t) · (ξ − q)− µn−1|η|n−2∇Φ∗(q, t) · a|y|2

+ µn0F (µ−1
0 µ, ξ, a, θ, x− ξ)

= −µn−2

(
1− 2a · x− ξ

µ(t)
+ |a|2 |x− ξ|

2

µ2(t)

)n−2
2

H(q, q)

− µn−1

(
1− 2a · x− ξ

µ(t)
+ |a|2 |x− ξ|

2

µ2(t)

)n
2

∇H(q, q) ·R−θỹ
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− µn−2

(
1− 2a · x− ξ

µ(t)
+ |a|2 |x− ξ|

2

µ2(t)

)n−2
2

∇H(q, q) · (ξ − q)

− µn−1

(
1− 2a · x− ξ

µ(t)
+ |a|2 |x− ξ|

2

µ2(t)

)n−2
2

∇H(q, q) · a|y|2

+ µn−2

(
1− 2a · x− ξ

µ(t)
+ |a|2 |x− ξ|

2

µ2(t)

)n−2
2

Φ∗(q, t)

+ µn−1

(
1− 2a · x− ξ

µ(t)
+ |a|2 |x− ξ|

2

µ2(t)

)n
2

∇Φ∗(q, t) ·R−θỹ

+ µn−2

(
1− 2a · x− ξ

µ(t)
+ |a|2 |x− ξ|

2

µ2(t)

)n−2
2

∇Φ∗(q, t) · (ξ − q)

+ µn−1

(
1− 2a · x− ξ

µ(t)
+ |a|2 |x− ξ|

2

µ2(t)

)n−2
2

∇Φ∗(q, t) · a|y|2

+ µn0F (µ−1
0 µ, ξ, a, θ, x− ξ)

= −µn−2 (1 +O(|a||y|))H(q, q)

− µn−1 (1 +O(|a||y|))∇H(q, q) · y (1 +O(|a||y|))
− µn−2 (1 +O(|a||y|))∇H(q, q) · (ξ − q)
− µn−1 (1 +O(|a||y|))∇H(q, q) · a|y|2

+ µn−2 (1 +O(|a||y|)) Φ∗(q, t)

+ µn−1 (1 +O(|a||y|))∇Φ∗(q, t) · y (1 +O(|a||y|))
+ µn−2 (1 +O(|a||y|))∇Φ∗(q, t) · (ξ − q)
+ µn−1 (1 +O(|a||y|))∇Φ∗(q, t) · a|y|2

+ µn0F (µ−1
0 µ, ξ, a, θ, x− ξ)

= −µn−2H(q, q)− µn−1∇H(q, q) · y − µn−2∇H(q, q) · (ξ − q)
− µn−1∇H(q, q) · a|y|2 + µn−2Φ∗(q, t)

+ µn−1∇Φ∗(q, t) · y + µn−2∇Φ∗(q, t) · (ξ − q) + µn−1∇Φ∗(q, t) · a|y|2

+ µn0F (µ−1
0 µ, ξ, a, θ, x− ξ) + µn−2

0 |a||y|F (µ−1
0 µ, ξ, a, θ, x− ξ)

and

p |Q(ỹ)|p−1
Θ

= p
∣∣∣Q(Rθy + a |y|2 +O

(
|a|2|y|3

))∣∣∣p−1

Θ

= p
∣∣∣Q(y) +∇Q(y) ·

(
a |y|2 + (Rθy − y)

)
+O(|a|2|y|2)

∣∣∣p−1

Θ

= p
(
|Q|p−1

(y) +O(|a||y|)
)

Θ

= p
(
|Q|p−1

(y) +O(|a||y|)
)(
− µn−2H(q, q)− µn−1∇H(q, q) · y

− µn−2∇H(q, q) · (ξ − q)− µn−1∇H(q, q) · a|y|2
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+ µn−2Φ∗(q, t) + µn−1∇Φ∗(q, t) · y + µn−2∇Φ∗(q, t) · (ξ − q)
+ µn−1∇Φ∗(q, t) · a|y|2 + µn0F (µ−1

0 µ, ξ, a, θ, x− ξ)

+ µn−2
0 |a||y|F (µ−1

0 µ, ξ, a, θ, x− ξ)

)

= p |Q|p−1
(y)

(
− µn−2H(q, q)− µn−1∇H(q, q) · y

− µn−2∇H(q, q) · (ξ − q)− µn−1∇H(q, q) · a|y|2

+ µn−2Φ∗(q, t) + µn−1∇Φ∗(q, t) · y + µn−2∇Φ∗(q, t) · (ξ − q)

+ µn−1∇Φ∗(q, t) · a|y|2
)

+
µn−2

0 |a||y|
1 + |y|4

F (µ−1
0 µ, ξ, a, θ, x− ξ),

where the smooth functions F are bounded in its arguments which may different
from line to line.

Decompose S1 as S1 = S11 + S12, where

S11 := E0 + E1 + E2 + E3 − µ
n−2
2 ∂tΦ

∗(x, t),

S12 :=
n− 2

2
µ
n−4
2 µ̇H(x, q)− n− 2

2
µ
n−4
2 µ̇Φ∗(x, t).

Observe that

S12 = µ
n−2
2 −1

0 µ̇F (µ−1
0 µ, ξ, a, θ, x− ξ)

holds for a function F smooth and bounded in their arguments. This proves the
lemma. �

Recall that we are trying to find a solution with form

u(x, t) = uA(x, t) + φ̃(x, t),

where φ̃ is a small term compared with uA(x, t). By the relation S(uA + φ̃) = 0,
the main equation can be written as

− ∂tφ̃+ ∆φ̃+ p |uA|p−1
φ̃+ S(uA) + ÑA(φ̃), (2.21)

where

ÑA(φ̃) =
∣∣∣uA + φ̃

∣∣∣p−1

(uA + φ̃)− |uA|p−1
(uA + φ̃)− p |uA|p−1

φ̃. (2.22)

Note that around q, it is more convenient to use the self-similar form, so we write
φ̃(x, t) as

φ̃(x, t) = µ(t)−
n−2
2 φ

(
x− ξ(t)
µ(t)

)
. (2.23)

2.4. Improvement of the approximation. The largest term in the expansion

for µ
n+2
2 S(uA) is µE0. To improve the approximation error near the point q, φ(y, t)

should be the solution of the elliptic equation (at main order)

∆yφ0 + p|Q|p−1(y)φ0 = −µ0E0 in Rn, φ0(y, t)→ 0 as |y| → ∞. (2.24)

Equation (2.24) is an elliptic equation of form

L[ψ] := ∆yψ + p|Q|p−1(y)ψ = h(y) in Rn, ψ(y)→ 0 as |y| → ∞. (2.25)
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By the nondegeneracy of the basic cell Q (see [32]), we know that each bounded
solution of L[ψ] = 0 in Rn is contained in the space

span{z0, · · · , z3n−1}.

Standard elliptic theory tells us that problem (2.25) is solvable for h(y) = O(|y|−m),
m > 2, if and only if the L2 orthogonal identities∫

Rn
h(y)zi(y)dy = 0 for all i = 0, · · · , 3n− 1

hold.
For (2.24), we first consider the following condition,∫

Rn
µ
n+2
2 S(uA)(y, t)z0(y)dy = 0. (2.26)

We claim that, for suitable positive constant b and a positive constant cn depending

only on n, choosing µ = bµ0(t) , µ0(t) = cnt
− 1
n−4 , (2.26) can be achieved at main

order. Observe that µ̇0(t) = − 1
(n−4)cn−4

n
µn−3

0 (t) and the main contribution to the

left of (2.26) comes from the following term

E0j = p|Q|p−1
[
µn−3

(
Φ0(q, t)−H(q, q)

)]
+ µ̇(t)

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
.

Now let us compute the term Φ0(q, t) which is given by (2.15). Note that the heat

kernel function p(t, x) = 1

(4πt)
n
2
e
−|x|2

4t satisfies the following transformation law

p(t− s̃, q − y) = (t− s̃)−n2 p
(

1,
|q − y|

(t− s̃) 1
2

)
,

therefore we have

Φ0(q, t) = −
∫ t

t0

∫
Rn
p(t− s̃, q − y)

µ̇(s̃)

µ(s̃)

µ−(n−2)(s̃)Dn,k

(
2−

∣∣∣y−ξ(s̃)µ(s̃)

∣∣∣2)(
1 +

∣∣∣y−Rθ(s̃)ξ(s̃)µ(s̃)

∣∣∣2)n
2

dyds̃

= −(1 + o(1))

∫ t

t0

∫
Rn
p(t− s̃, q − y)

µ̇(s̃)

µ(s̃)

µ−(n−2)(s̃)Dn,k

(
2−

∣∣∣ y−qµ(s̃)

∣∣∣2)(
1 +

∣∣∣ y−qµ(s̃)

∣∣∣2)n
2

dyds̃

= −(1 + o(1))

∫ t

t0

1

(t− s̃)n2
ds̃

∫
Rn
p

(
1,

q − y
(t− s̃) 1

2

)
µ̇(s̃)

µ(s̃)

×
µ−(n−2)(s̃) (t− s̃)

n
2 Dn,k

(
2−

∣∣∣∣ (t−s̃) 1
2

µ(s̃)
q−y

(t−s̃)
1
2

∣∣∣∣2
)

(
1 +

∣∣∣∣ (t−s̃) 1
2

µ(s̃)
q−y

(t−s̃)
1
2

∣∣∣∣2
)n

2
d
y − qj

(t− s̃) 1
2
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= −(1 + o(1))

∫ t

t0

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)ds̃

∫
Rn
p

(
1,

q − y
(t− s̃) 1

2

)

×
Dn,k

(
2−

∣∣∣∣ (t−s̃) 1
2

µ(s̃)
q−y

(t−s̃)
1
2

∣∣∣∣2
)

(
1 +

∣∣∣∣ (t−s̃) 1
2

µ(s̃)
q−y

(t−s̃)
1
2

∣∣∣∣2
)n

2
d
y − q

(t− s̃) 1
2

= −(1 + o(1))

∫ t

t0

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃,

with

F (a) =

∫
Rn
p (1, x)

Dn,k

(
2− a2|x|2

)
(1 + a2|x|2)

n
2

dx.

We claim that, for a suitable positive constant c depending on n and b, it holds
that

Φ0(q, t) = −(1 + o(1))

∫ t

t0

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃ = c(1 + o(1)). (2.27)

Indeed, for a small positive constant δ, decompose the integral∫ t

t0

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃

as ∫ t

t0

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃

=

∫ t−δ

t0

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃

+

∫ t

t−δ

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃

:= I1 + I2.

For I1, we have t− s̃ > δ, therefore

0 ≤ −I1 ≤
b4−n

(n− 4)cn−4
n

∫ t−δ

t0

µ−2(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃

≤ C b4−n

(n− 4)cn−4
n

∫ t−δ

t0

µ−2(s̃)

∣∣∣∣∣ (t− s̃)
1
2

µ(s̃)

∣∣∣∣∣
−(n−2)

ds̃

=
C

n− 4

∫ t−δ

t0

1

s̃

1

(t− s̃)n−2
2

ds̃ ≤ C

(n− 4)t0

2

n− 4

1

δ
n−4
2

.

Note that we have used the definition µ0 = bcnt
− 1
n−4 and the fact |a|n−2F (a) ≤ C.

For

I2 =

∫ t

t−δ

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃,
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after change of variables (t−s̃)
1
2

µ(s̃) = ŝ, we have

ds̃ = − µ(s̃)
1
2 (t− s̃)− 1

2 + µ̇(s̃)ŝ
dŝ

and

I2 =

∫ t

t−δ

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃

=

∫ δ
1
2

µ(t−δ)

0

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F (ŝ)

µ(s̃)
1
2 (t− s̃)− 1

2 + µ̇(s̃)ŝ
dŝ.

Observe that for small δ, 1
2 (t − s̃)− 1

2 + µ̇(s̃)ŝ = 1
2 (t − s̃)− 1

2 (1 − 2
(n−4)s̃ (t − s̃)) >

1
2 (t− s̃)− 1

2 (1− 2
(n−4)s̃δ), ds̃ = µ(s̃)

1
2 (t−s̃)−

1
2

(1 +O(δ))dŝ, hence

I2 = − 2b4−n

(n− 4)cn−4
n

∫ δ
1
2

µ(t−δ)

0

ŝF (ŝ) dŝ+ o(1)

 = − 2b4−n

(n− 4)cn−4
n

A+ o(1)

when δ
1
2

µ(t−δ) is large enough. Here the constant A =
∫∞

0
s̃F (s̃)ds̃ < +∞ since the

dimension of the space satisfies n > 4. Hence we have

Φ0(q, t) = −(1 + o(1))

∫ t

t0

µ̇(s̃)

µ(s̃)
µ−(n−2)(s̃)F

(
(t− s̃) 1

2

µ(s̃)

)
ds̃

=
2b4−n

(n− 4)cn−4
n

A+ o(1) := Bb4−n + o(1)

(2.28)

when t0 is sufficiently large. Here the constant B is B = Bn := 2
(n−4)cn−4

n
A. This

is (2.27).
Direct computations yields that

µ
−(n−3)
0 (t)

∫
Rn
E0(y, t)z0(y)dy ≈ c1bn−3H(q, q)− 2c1A+ c2

(n− 4)cn−4
n

b (2.29)

with

c1 = −p
∫
Rn
|Q|p−1(y)z0(y)dy ∈ (0,+∞),

c2 =

∫
Rn

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
z0(y)dy ∈ (0,+∞).

Note that c1 < +∞ and c2 < +∞ are due to the assumption n > 4. We will prove

c1 > 0, c2 > 0 (2.30)

in the Appendix. Write

µ(t) = bµ0(t) = bcnt
− 1
n−4 .

Then (2.26) can be satisfied at main order if the following hold

bn−2H(q, q)− 2c1A+ c2

(n− 4)cn−4
n c1

b2 = 0. (2.31)
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Imposing 2c1A+c2
(n−4)cn−4

n c1
= 2

n−2 , i.e.,

cn =

[
(2c1A+ c2)(n− 2)

2(n− 4)c1

] 1
n−4

,

we get

µ̇0(t) = − 2c1
(2c1A+ c2)(n− 2)

µn−3
0 (t). (2.32)

By (2.31) and (2.32), the constants b should satisfy the relation

H(q, q)bn−3 =
2b

n− 2
. (2.33)

It is clear that (2.33) can be uniquely solved if and only if

H(q, q) > 0, (2.34)

which holds from the maximum principle. Under the assumption (2.34),

b =

(
2

(n− 2)H(q, q)

) 1
n−4

. (2.35)

Similarly, the relations∫
Rn
µ
n+2
2 S(uA)(y, t)zi(y)dy = 0, i = 1, · · · , 3n− 1 (2.36)

can be achieved at main order by choosing ξ0 = q, a0 = (0, 0) and θ0 = (0, · · · , 0).
Now fix µ0(t) and the constant b satisfying (2.35), denote

µ̄0 = bµ0(t).

Let Φ be the solution for (2.24) for µ = µ̄0 which is unique, then we have the
following

∆yΦ + p|Q|p−1(y)Φ = −µ0E0[µ0, µ̇0] in Rn, Φ(y, t)→ 0 as |y| → ∞.

From the definitions for µ0 and b, we obtain

µ0E0 = −γµn−2
0 q0(y),

where γ is positive,

q0(y) :=
p|Q|p−1(y)c2b

2

(n− 4)cn−4
n c1

+
b2

(n− 4)cn−4
n

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
(2.37)

and
∫
Rn q0(y)z0dy = 0.

Let p0 = p0(|y|) be the solution for L(p0) = q0. Then p0(y) = O(|y|−2) as
|y| → ∞ since (2.37) holds. Therefore,

Φ(y, t) = γµn−2
0 p0(y). (2.38)

Thus the corrected approximation should be

u∗A(x, t) = uA(x, t) + Φ̃(x, t) (2.39)

with

Φ̃(x, t) = µ(t)−
n−2
2 Φ

(
x− ξ(t)
µ(t)

)
.
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2.5. Estimating the error S(u∗A). In the region |x − q| > δ, S(u∗A) can be de-
scribed as

S(u∗A)(x, t) = µ
n−2
2 −1

0 µ̇f1 + µ
n+2
2

0 f2 + µ
n−2
2

0 ξ̇ · ~f1 + µ
n
2
0 ȧ · ~f2 + µ

n
2
0 θ̇ · ~f3, (2.40)

where f1, f2, ~f1, ~f2 and ~f3 are smooth bounded functions depending on the tuple
(x, µ−1

0 µ, ξ, a, θ).
In the region near the point q, direct computations yields that

S(u∗A) = S(uA)− µ−
n+2
2 µ0E0[µ̄0, µ̇0] + µ−

n+2
2

{
− µ2∂tΦ(y, t)

+ µµ̇

[
n− 2

2
Φ(y, t) + y · ∇yΦ

]
+∇yΦ(y, t) · µξ̇

}

+
∣∣∣uA + Φ̃

∣∣∣p−1

(uA + Φ̃)− |uA|p−1
uA − pµ−

n+2
2 |Q(y)|p−1Φ(y, t),

(2.41)

where y = x−ξ
µ . If |x− q| ≤ δ,

µ
n+2
2 S(u∗A) = µ

n+2
2 S(uA)− µ0E0[µ̄0, µ̇0] +A(y), (2.42)

where

A = µn+4
0 f(µ−1

0 µ, ξ, a, θ, µy) +
µ2n−4

0

1 + |y|2
g(µ−1

0 µ, ξ, a, θ, µy), y =
x− ξ
µ

(2.43)

for smooth and bounded functions f and g.
Now we write µ(t) as

µ(t) = µ̄0 + λ(t).

From (2.42),

S(u∗A) = µ−
n+2
2

{
µ0

(
E0[µ, µ̇]− E0[µ̄0, µ̇0]

)
+ λE0[µ, µ̇] + µE1[µ, ξ̇] +R+A

}
.

Observe that Φ0 is a nonlocal term depending on µ, µ̇ and we have

µn−3Φ0[µ̄0 + λ, bµ̇0 + λ̇](q, t)− µn−3Φ0[µ̄0, bµ̇0](q, t) = −2Aλ̇− µn−4
0 (n− 3)Bλ

which can be deduced by similar arguments as (2.28), one gets

E0[µ̄0 + λ, bµ̇0 + λ̇]− E0[µ̄0, bµ̇0]

= λ̇

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
− µn−4

0 p|Q|p−1(y)
[
(n− 3)bn−4H(q, q)λ

]
+ µn−4

0 p|Q|p−1(y)(n− 3)Bλ− p|Q|p−1(y)2Aλ̇− µn−4
0 p|Q|p−1(y)(n− 3)Bλ,

As for λE0[µ, µ̇], we have

λE0[µ, µ̇] = λλ̇

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ λb

[
µ̇0

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)

+ p|Q|p−1(y)µn−3
0

(
−bn−4H(q, q)

) ]
+ p|Q|p−1(y)bµn−3

0 Bλ

− µn−4
0 p|Q|p−1(y)f(µ−1

0 λ)λ2,

where f is smooth and bounded in its arguments.
Combine all the estimates above, we get the expansion for S(u∗A).
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Lemma 2.2. In the region |x− q| ≤ δ for a fixed small δ > 0, set µ = µ̄0 + λ with
|λ(t)| ≤ µ0(t)1+σ for some positive number σ ∈ (0, n− 4). When t is large enough,
we have the expansion of S(u∗A) as

S(u∗A)

= µ−
n+2
2

{
µ0λ̇

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2
− 2Ap|Q|p−1(y)

)
− µ0µ

n−4
0 p|Q|p−1(y)

[
(n− 3)bn−4H(q, q)λ

]
+

(
∇Q(y)− En,ky

(1 + |y|2)
n
2

)
· ξ̇ + p|Q|p−1

[
−µn−2∇H(q, q)

]
· y

+ µ2(t)ȧ1

(
−2y1

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ |y|2

(
∂

∂y1
Q(y)− En,ky1

(1 + |y|2)
n
2

))

+ µ2(t)ȧ2

(
−2y2

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ |y|2

(
∂

∂y2
Q(y)− En,ky2

(1 + |y|2)
n
2

))

+ µ2(t)θ̇12zn+1(y) +

n∑
j=3

(
µ2(t)θ̇1jzn+j+1(y) + µ2(t)θ̇2jz2n+j−1(y)

)}

+ µ−
n+2
2 λb

[
µ̇0

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)

+ p|Q|p−1(y)µn−3
0

(
− bn−4H(q, q) +B

)]

+ µ
−n+2

2
0

[
µn−4

0 p|Q|p−1(y)f1λ
2 +

f2

1 + |y|n−2
λλ̇+ µn+2

0 f3 + µn−1
0 µ̇f4

]
+ µ

−n+2
2

0

[
ξ̇ ~f1 + ξ̇ ~f2 + ξ̇ ~f3

]
+ µ

−n+2
2

0

[
µn0 g1

1 + |y|2
+
µ2n−4

0 g2

1 + |y|2
+
µn−2

0 g3

1 + |y|4
λ+

µn−1
0 ~g1

1 + |y|2
· a+

µn−2
0 ~g2

1 + |y|4
· (ξ − q)

]
,

where x = ξ+µy, f1, f2, f3,f4, ~f1, ~f2, ~f3, g1, g2, g3 and ~g1, ~g2 are smooth bounded
(vector) functions depending on the tuple of variables (µ−1

0 µ, ξ, a, θ, x).

3. The inner-outer gluing procedure

We will find a solution for (2.11) with form

u = u∗A + φ̃

when t0 is large enough, the function φ̃(x, t) is small compared to u∗A. To this aim,
we use the inner-outer gluing procedure.

Write

φ̃(x, t) = ψ(x, t) + φin(x, t) where φin(x, t) := ηR(x, t)φ̃(x, t)

with

φ̃(x, t) := µ
−n−2

2
0 φ

(
x− ξ
µ0

, t

)
, µ0(t) = bµ0(t)
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and

ηR(x, t) = η

(
|x− ξ|
Rµ0

)
.

In above, η(τ) is a (smooth) cut-off function defined on the interval [0,+∞), η(τ) =
1 for 0 ≤ τ < 1 and η(τ) = 0 for τ > 2. R is a fixed number defined as

R = tρ0 with 0 < ρ� 1. (3.1)

Under this ansatz, problem (2.11) can be written as{
∂tφ̃ = ∆φ̃+ p(u∗A)p−1φ̃+ Ñ(φ̃) + S(u∗A) in Ω× (t0,∞),

φ̃ = −u∗A in ∂Ω× (t0,∞),
(3.2)

where ÑA(φ̃) = |u∗A + φ̃|p−1(u∗A + φ̃)− p|u∗A|p−1φ̃− |u∗A|p−1u∗A, S(u∗A) = −∂tµ∗A +
∆u∗A + |u∗A|p−1u∗A. Let us write S(u∗A) as

S(u∗A) = SA + S
(2)
A

where

SA

= µ−
n+2
2

{
µ0λ̇

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2
− 2Ap|Q|p−1(y)

)
− µ0µ

n−4
0 p|Q|p−1(y)

[
(n− 3)bn−4H(q, q)λ

]
+ λb

[
µ̇0

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ p|Q|p−1(y)µn−3

0

(
− bn−4H(q, q) +B

)]

+

(
∇Q(y)− En,ky

(1 + |y|2)
n
2

)
· ξ̇ + p|Q|p−1

[
−µn−2∇H(q, q)

]
· y

+ µ2(t)ȧ1

(
−2y1

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ |y|2

(
∂

∂y1
Q(y)− En,ky1

(1 + |y|2)
n
2

))

+ µ2(t)ȧ2

(
−2y2

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ |y|2

(
∂

∂y2
Q(y)− En,ky2

(1 + |y|2)
n
2

))

+ µ2(t)θ̇12zn+1(y) +

n∑
j=3

(
µ2(t)θ̇1jzn+j+1(y) + µ2(t)θ̇2jz2n+j−1(y)

)}
.

Define

VA = p

(
|u∗A|p−1 −

∣∣∣∣µ−n−2
2 Q

(
x− ξ
µ

)∣∣∣∣p−1
)
ηR + p(1− ηR)|u∗A|p−1, (3.3)

then φ̃ satisfies problem (3.2) if
(1) ψ solves the outer problem{

∂tψ = ∆ψ + VAψ + 2∇ηR∇φ̃+ φ̃
(
∆− ∂t

)
ηR + ÑA(φ̃) + Sout, in Ω× (t0,∞),

ψ = −u∗A on ∂Ω× (t0,∞),

(3.4)
with

Sout = S
(2)
A + (1− ηR)SA. (3.5)
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(2) φ̃ solves

ηR∂tφ̃ = ηR

[
∆φ̃+ p|Qµ,ξ,θ|p−1φ̃+ p|Qµ,ξ|p−1ψ + SA

]
in B2Rµ(ξ)×(t0,∞), (3.6)

for Qµ,ξ := µ−
n−2
2 Q

(
x−ξ
µ

)
. In the self-similar form, (3.6) becomes the so-called

inner problem

µ2
0∂tφ = ∆yφ+ p|Q|p−1(y)φ+ µ

n+2
2

0 SA(ξ + µ0y, t)

+ pµ
n−2
2

0

µ2
0

µ2
|Q|p−1(

µ0

µ
y)ψ(ξ + µ0y, t) +B[φ] +B0[φ] in B2R(0)× (t0,∞),

(3.7)
where

B[φ] := µ0µ̇0

(
n− 2

2
φ+ y · ∇yφ

)
+ µ0∇φ · ξ̇ (3.8)

and

B0[φ] := p

[
|Q|p−1

(
µ0

µ
y

)
− |Q|p−1(y)

]
φ+ p

[
µ2

0|u∗A|p−1 − |Q|p−1

(
µ0

µ
y

)]
φ.

(3.9)

4. Scheme of the proof

To find a solution (φ, ψ) satisfying (3.4) and (3.7), we proceed with the following
steps.

4.1. Linear theory for (3.7). Let us rewrite problem (3.7) as

µ2
0∂tφ = ∆yφ+ p|Q|p−1(y)φ+H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t), y ∈ B2R(0),(4.1)

for t ≥ t0, where

H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ] :=µ
n+2
2

0 SA(ξ + µ0y, t) +B[φ] +B0[φ]

+ pµ
n−2
2

0

µ2
0

µ2
|Q|p−1(

µ0

µ
y)ψ(ξ + µ0y, t),

(4.2)

the terms B[φ], B0[φ] are defined in (3.8), (3.9) respectively. Using change of
variables

t = t(τ),
dt

dτ
= µ2

0(t),

(4.1) becomes

∂τφ = ∆yφ+ p|Q|p−1(y)φ+H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ)) (4.3)

for y ∈ B2R(0), τ ≥ τ0. Here τ0 the (unique) positive number such that t(τ0) = t0.
We try to find a solution φ to the following equation

∂τφ = ∆yφ+ p|Q|p−1(y)φ

+H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ)), y ∈ B2R(0), τ ≥ τ0,

φ(y, τ0) =

K∑
l=1

elZl(y), y ∈ B2R(0),

(4.4)

for suitable constants el, l = 1, · · · ,K. Here Zl are eigenfunctions associated to
negative eigenvalues of the problem

L(φ) + λφ = 0, φ ∈ L∞(Rn).
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It was proved in [15] that K is finite and Zl satisfies

Zl(x) ∼ e−
√
−λ|x|

|x|N−1
2

as |x| → ∞.

Next, we prove that (4.4) is solvable for φ, provided ψ is in suitable weighted spaces

and the parameter functions λ, ξ, a, θ are chosen so that the termH[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))
in the right hand side of (4.4) satisfies the following L2 orthogonality conditions∫

B2R

H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))zl(y)dy = 0, (4.5)

for all τ ≥ τ0, l = 0, 1, 2, · · · , 3n − 1. These conditions will impose highly nonlin-
earity to (4.4), to get a solution φ, we apply the Schauder fixed-point theorem. We
first need a linear theory for (4.4).

For R > 0 large but fixed, consider the following initial value problem
∂τφ = ∆φ+ p|Q|p−1(y)φ+ h(y, τ), y ∈ B2R(0), τ ≥ τ0,

φ(y, τ0) =

K∑
l=1

elZl(y), y ∈ B2R(0).
(4.6)

Set

ν = 1 +
σ

n− 2
,

then we have µn−2+σ
0 ∼ τ−ν . Define the weighted norm for h as

‖h‖α,ν := sup
τ>τ0

sup
y∈B2R

τν(1 + |y|α)|h(y, τ)|.

Then the following estimates for (4.6) hold.

Proposition 4.1. Suppose α ∈ (2, n− 2), ν > 0, ‖h‖2+α,ν < +∞ and∫
B2R

h(y, τ)zj(y)dy = 0 for all τ ∈ (τ0,∞), j = 0, 1, · · · , 3n− 1.

Then there exist functions φ = φ[h](y, τ) and (e1, · · · , eK) = (e1[h](τ), · · · , eK [h](τ))
satisfying (4.6). Furthermore, for τ ∈ (τ0,+∞), y ∈ B2R(0), there hold

(1 + |y|)|∇yφ(y, τ)|+ |φ(y, τ)| . τ−ν(1 + |y|)−α‖h‖2+α,ν (4.7)

and

|el[h]| . ‖h‖2+α,ν for l = 1, · · · ,K. (4.8)

Here and in the following of this paper, the symbol a . b means a ≤ Cb for some
positive constant C which is independent of t and t0. The proof of Proposition 4.1
is given in Section 5.

4.2. The orthogonality conditions (4.5). To apply Proposition 4.1, we should
choose the parameter functions λ, ξ, a and θ such that (4.5) hold.

Let us fix a σ ∈ (0, n − 4). Given h(t) : (t0,∞) → Rk and δ > 0, the weighted
L∞ norm is defined as

‖h‖δ := ‖µ0(t)−δh(t)‖L∞(t0,∞).
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In what follows, α is always a positive constant such that α > 2 and α− 2 is small
enough. Also assume the parameter functions λ, ξ, a, θ, λ̇, ξ̇, ȧ and θ̇ satisfy the
following constraints,

‖λ̇(t)‖n−3+σ + ‖ξ̇(t)‖n−3+σ + ‖ȧ(t)‖n−4+σ + ‖θ̇(t)‖n−4+σ ≤
c

Rα−2
, (4.9)

‖λ(t)‖1+σ + ‖ξ(t)− q‖1+σ + ‖a(t)‖σ + ‖θ(t)‖σ ≤
c

Rα−2
, (4.10)

here c is a positive constant which is independent of R, t and t0. Let us define the
norm ‖φ‖n−2+σ,α of φ as the least number M > 0 such that

(1 + |y|)|∇yφ(y, t)|+ |φ(y, t)| ≤M µn−2+σ
0

1 + |y|α
(4.11)

and ‖ψ‖∗∗,β,α is the least M > 0 such that

|ψ(x, t)| ≤M t−β

1 + |y|α−2
, y =

|x− ξ|
µ

(4.12)

holds. Here β = n−2
2(n−4) + σ

n−4 . We suppose φ and ψ satisfy

‖φ‖n−2+σ,α ≤ ct−ε0 (4.13)

and

‖ψ‖∗∗,β,α ≤
ct−ε0

Rα−2

for some small ε > 0, respectively.
Then we have the following result.

Proposition 4.2. (4.5) is equivalent to

λ̇+
1 + (n− 4)

(n− 4)t
λ = Π0[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

ξ̇l = Πl[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t), l = 1, · · · , n,

θ̇12 = µ−1
0 Πn+1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

ȧ1 = µ−1
0 Πn+2[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

ȧ2 = µ−1
0 Πn+3[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

θ̇1l = µ−1
0 Πn+l+1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t), l = 3, · · · , n

θ̇2l = µ−1
0 Π2n+l−1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t), l = 3, · · · , n.

(4.14)

The terms in the right hand side of (4.14) can be written as

Π0[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t) =
t−ε0

Rα−2
µn−3+σ

0 (t)f0(t) +
t−ε0

Rα−2

Θ0

[
λ̇, ξ̇, µ0ȧ, µ0θ̇, µ

n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t)

and for l = 1, · · · , 3n− 1,

Πl[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t)

= µn−2
0 cl

[
bn−2∇H(q, q)

]
+ µn−2+σ

0 (t)fl(t) +
t−ε0

Rα−2

Θl

[
λ̇, ξ̇, µ0ȧ, µ0θ̇, µ

n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t),
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where cl are suitable constants, fl(t) and Θl[· · · ](t) (l = 0, ·, 3n − 1) are bounded
smooth functions for t ∈ [t0,∞).

The proof of Proposition 4.2 is given in Section 6.

4.3. The outer problem. Let us consider the out problem (3.4),
∂tψ = ∆ψ + VAψ + 2∇ηR∇φ̃+ φ̃

(
∆− ∂t

)
ηR

+ ÑA(φ̃) + Sout, in Ω× (t0,∞),

ψ = −u∗A on ∂Ω× (t0,∞), ψ(t0, ·) = ψ0 in Ω,

(4.15)

with a smooth and small initial datum ψ0.
To apply the Schauder fixed-point theorem to (4.15) and get a solution ψ, we

first consider the corresponding linear problem
∂tψ = ∆ψ + VAψ + f(x, t) in Ω× (t0,∞),

ψ = g on ∂Ω× (t0,∞),

ψ(t0, ·) = h in Ω,

(4.16)

where f(x, t), g(x, t) and h(x) are smooth functions, Vµ,ξ is defined in (3.3). We
denote ‖f‖∗,γ,2+α as the least M > 0 such that

|f(x, t)| ≤M µ−2t−γ

1 + |y|2+ς
, y =

x− ξ
µ

(4.17)

for given ς, γ > 0. Then the following a priori estimate holds for problem (4.16).

Proposition 4.3. Suppose ‖f‖∗,γ,2+ς < +∞ for some constants ς, γ > 0, 0 < ς �
1, ‖h‖L∞(Ω) < +∞ and ‖τγg(x, τ)‖L∞(∂Ω×(t0,∞)) < +∞. Let φ = ψ[f, g, h] be the
unique solution of (4.16), then there exists δ = δ(Ω) > 0 small such that, for all
(x, t), one has

|ψ(x, t)| . ‖f‖∗,γ,2+ς
t−γ

1 + |y|ς
+ e−δ(t−t0)‖h‖L∞(Ω)

+ t−γ‖τγg(x, τ)‖L∞(∂Ω×(t0,∞)), y =
x− ξ
µ

(4.18)

and

|∇ψ(x, t)| . ‖f‖∗,γ,2+ς
µ−1t−γ

1 + |y|ς+1
for |y| ≤ R. (4.19)

The proof is the same as Lemma 4.1 in [2], so we omit it. This result will be
applied to problem (4.15), as a first step, we establish the following estimates for

f [ψ](x, t) = 2∇ηR∇φ̃+ φ̃
(
∆− ∂t

)
ηR + ÑA(φ̃) + Sout.

Proposition 4.4. We have

(1)

|Sout(x, t)| .
t−ε0

Rα−2

µ−2µ
n−2
2 +σ

0 (t)

1 + |y|α
, (4.20)

(2)∣∣∣2∇ηR∇φ̃+ φ̃
(
∆− ∂t

)
ηR

∣∣∣ . 1

Rα−2
‖φ‖n−2+σ,α

µ−2µ
n−2
2 +σ

0 (t)

1 + |y|α
, (4.21)
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(3)

ÑA(φ̃) .
t−ε0 (‖φ‖2n−2+σ,α + ‖ψ‖2∗∗,β,α)

1

Rα−2

µ−2µ
n−2
2 +σ

0 (t)

1 + |y|α
, when 6 ≥ n,

t−ε0 (‖φ‖pn−2+σ,α + ‖ψ‖p∗∗,β,α)
1

Rα−2

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |y|α
, when 6 < n.

(4.22)

The proof of Proposition 4.4 is given in Section 7.

4.4. Proof of Theorem 1.1: solving the inner-outer gluing system. Let us
formulate the whole problem into a fixed point problem.

Fact 1. Let h be a function satisfying ‖h‖n−3+σ . 1
Rα−2 . The solution for

λ̇+
1 + (n− 4)

(n− 4)t
λ = h(t) (4.23)

can be expressed as follows

λ(t) = t−
1+(n−4)
(n−4)

[
d+

∫ t

t0

τ
1+(n−4)
(n−4) h(τ)dτ

]
, (4.24)

with d be an arbitrary constant. Therefore, it holds that

‖t
1+σ
n−4λ(t)‖L∞(t0,∞) . t

− (n−4)−σ
n−4

0 d+ ‖h‖n−3+σ

and

‖λ̇(t)‖n−3+σ . t
− (n−4)−σ

n−4

0 d+ ‖h‖n−3+σ.

Set Λ(t) = λ̇(t), then we have

Λ +
1

t

1 + (n− 4)

(n− 4)

∫ ∞
t

Λ(s)ds = h(t), (4.25)

which defines a bounded linear operator L1 : h → Λ associating the solution Λ of
(4.25) to any h satisfying ‖h‖n−3+σ < +∞. Moreover, the operator L1 is continuous
between the space L∞(t0,∞) endowed with the ‖ · ‖n−3+σ-topology.

For any h : [t0,∞)→ Rn with ‖h‖n−3+σ < +∞, the solution of

ξ̇ = µn−2
0 c

[
bn−2∇H(q, q)

]
+ h(t) (4.26)

can be written as

ξ(t) = ξ0(t) +

∫ ∞
t

h(s)ds, (4.27)

where

ξ0(t) = q + c
[
−bn−2∇H(q, q)

] ∫ ∞
t

µn−2
0 (s)ds.

Thus
|ξ(t)− q| . t−

2
n−4 + t−

1+σ
n−4 ‖h‖n−3+σ

and
‖ξ̇ − ξ̇0‖n−3+σ . ‖h‖n−3+σ.

Define Ξ(t) = ξ̇(t)− ξ̇0, then (4.27) defines a continuous linear operator L2 : h→ Ξ
in the ‖ · ‖n−3+σ-topology.

Similarly, from Proposition 4.2, we can define L3 : h → Γ := ȧ(t) and L4 : h →
Υ := θ̇(t) which are continuous linear operators in the ‖ · ‖n−4+σ-topology.
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Note that (λ, ξ, a, θ) is a solution of (4.14) if (Λ = λ̇(t), Ξ = ξ̇(t) − ξ̇0(t),

Γ := ȧ(t), Υ := θ̇(t)) is a fixed point of the following problem

(Λ,Ξ,Γ,Υ) = T0(Λ,Ξ,Γ,Υ) (4.28)

where

T0 : =
(
L1(Π̂1[Λ,Ξ,Γ,Υ, φ, ψ],L2(Π̂2[Λ,Ξ,Γ,Υ, φ, ψ]),

L3(Π̂3[Λ,Ξ,Γ,Υ, φ, ψ],L4(Π̂4[Λ,Ξ,Γ,Υ, φ, ψ]
)

:=
(
Ā1(Λ,Ξ,Γ,Υ, φ, ψ), Ā2(Λ,Ξ,Γ,Υ, φ, ψ), Ā3(Λ,Ξ,Γ,Υ, φ, ψ),

Ā4(Λ,Ξ,Γ,Υ, φ, ψ)
)

with

Π̂l[Λ,Ξ,Γ,Υ, φ, ψ] := Πl

[∫ ∞
t

Λ, q +

∫ ∞
t

Ξ, µ0

∫ ∞
t

Γ,

∫ ∞
t

Υ,Λ,Ξ, µ0Γ,Υ, φ, ψ

]
for l = 0, 1, · · · , 3n− 1.

Fact 2. Proposition 4.1 tells us that there exists a linear operator T1 associating
to the solution of (4.6) for any function h(y, τ) with ‖h‖2+α,ν-bounded. Thus the
solution of problem (4.3) is a fixed point of the problem

φ = T1(H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))). (4.29)

Fact 3. Proposition 4.3 defines a linear operator T2 which associates any given
functions f(x, t), g(x, t) and h(x) to the corresponding solution ψ = T2(f, g, h) for
problem (4.16). Denote ψ1(x, t) := T2(0,−u∗A, ψ0). From (2.39), (2.18) and (2.38),
∀x ∈ ∂Ω, one has

|u∗A(x, t)| . µ
n+2
2

0 (t).

From Lemma 4.3,

|ψ1| . e−δ(t−t0)‖ψ0‖L∞(Rn) + t−βµ0(t0)2−σ where β =
n− 2

2(n− 4)
+

σ

n− 4
.

Therefore, ψ+ψ1 is a solution to (4.15) if ψ is a fixed point of the following operator

A(ψ) := T2(f [ψ], 0, 0),

with

f [ψ] = 2∇ηR∇φ̃+ φ̃
(
∆− ∂t

)
ηR + ÑA(φ̃) + Sout. (4.30)

That is to say, we have to solve the fixed point problem

ψ = T2(f [ψ], 0, 0) (4.31)

From Fact 1-3, to prove Theorem 1.1, we should solve the following fixed point
problem with unknowns (φ, ψ, λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇),

(Λ,Ξ,Γ,Υ) = T0(Λ,Ξ,Γ,Υ),

φ = T1(H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))),

ψ = T2(f(ψ), 0, 0).

(4.32)

where

f(ψ) = 2∇ηR∇φ̃+ φ̃
(
∆− ∂t

)
ηR + ÑA(φ̃) + Sout.
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To find a fixed point, we will use the Schauder fixed-point theorem in the set

B =

{
(φ, ψ, λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇) : Rα−2‖λ̇(t)‖n−3+σ +Rα−2‖ξ̇(t)‖n−3+σ

+Rα−2‖ȧ(t)‖n−4+σ +Rα−2‖θ̇(t)‖n−4+σ +Rα−2‖λ(t)‖1+σ

+Rα−2‖ξ(t)− q‖1+σ +Rα−2‖a‖σ +Rα−2‖θ‖σ + tε0R
α−2‖ψ‖∗∗,β,α

+ tε0‖φ‖n−2+σ,α ≤ c

}

for some large but fixed positive constant c.
Let

K := max{‖f0‖n−3+σ, ‖f1‖n−3+σ, · · · , ‖f3n−1‖n−3+σ}

where f0, f1, · · · , f3n−1 are the functions defined in Lemma 4.2. Then we have∣∣∣tn−3+σ
n−4 Āi(Λ,Ξ,Γ,Υ, φ, ψ)

∣∣∣
. t
− (n−4)−σ

n−4

0 d+
1

Rα−2
‖φ‖n−2+σ,a +

1

Rα−2
‖ψ‖∗∗,β,α +

K

Rα−2

+
1

Rα−2
‖Λ‖n−3+σ +

1

Rα−2
‖Ξ‖n−3+σ

Thus, for d satisfying t
− (n−4)−σ

n−4

0 d < K
Rα−2 , T0(B) ⊂ B (choose the constant ρ in (3.1)

sufficiently small).
On the set B, it is clear that∣∣∣H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))

∣∣∣ . t−ε0

µn−2+σ
0

1 + |y|2+α

From Proposition 4.1, T1(B) ⊂ B holds.
Similarly, Proposition 4.4 ensures that T2(B) ⊂ B. Therefore the operator T

defined in (4.32) maps the set B into itself. Since λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ and ψ
decay uniformly when t → +∞, this fact combines with the standard parabolic
estimate ensures that T is compact. By the Schauder fixed-point theorem, we
conclude that (4.32) has a fixed point in B. That is to say, we find a solution to the
system of outer problem (3.4) and inner problem (3.7), which provides a solution
to (1.1). This completes the proof of Theorem 1.1.

5. Proof of Proposition 4.1

In the following, we assume that h = h(y, τ) is a function defined on Rn which is
zero outside the ball B2R(0) for all τ > τ0. As a first step to the proof of proposition
4.1, we have the following

Lemma 5.1. Suppose α ∈ (2, n− 2), ν > 0, ‖h‖2+α,ν < +∞ and∫
Rn
h(y, τ)zj(y)dy = 0 for all τ ∈ (τ0,∞), j = 0, 1, · · · , 3n− 1.
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Then for any τ1 > τ0 large enough, the solution (φ(y, τ), c1(τ), · · · , cK(τ)) to the
following problem

∂τφ = ∆φ+ p|Q|p−1(y)φ+ h(y, τ)−
K∑
l=1

cl(τ)Zl(y), y ∈ Rn, τ ≥ τ0,∫
Rn
φ(y, τ)Zl(y)dy = 0 for all τ ∈ (τ0,+∞), l = 1, · · · ,K,

φ(y, τ0) = 0, y ∈ Rn,

(5.1)

satisfies

‖φ(y, τ)‖α,τ1 . ‖h‖2+α,τ1 (5.2)

and ∀l = 1, · · · ,K,

|cl(τ)| . τ−νRα‖h‖2+α,τ1 for τ ∈ (τ0, τ1).

Here ‖h‖b,τ1 := supτ∈(τ0,τ1) τ
ν‖(1 + |y|b)h‖L∞(Rn).

Proof. (5.1) is equivalent to
∂τφ = ∆φ+ p|Q|p−1(y)φ+ h(y, τ)−

K∑
l=1

cl(τ)Zl(y), y ∈ Rn, τ ≥ τ0,

φ(y, τ0) = 0, y ∈ Rn
(5.3)

with cl(τ) given by the following relation

cl(τ)

∫
Rn
|Zl(y)|2dy =

∫
Rn
h(y, τ)Zl(y)dy, l = 1, · · · ,K.

Then

|cl(τ)| . τ−νRα‖h‖2+α,τ1 (5.4)

holds for τ ∈ (τ0, τ1). Therefore we are left with the proof of (5.2) for the solution
φ of equation (5.3). Inspired by Lemma 4.5 of [3], the linear theory of [31] and [41],
we use the blowing-up argument.

First, we have Claim: given τ1 > τ0, ‖φ‖α,τ1 < +∞ holds. Indeed, given R0 > 0,
the standard parabolic theory ensures that there is a constant K1 = K1(R0, τ1) such
that

|φ(y, τ)| ≤ K1 in BR0
(0)× (τ0, τ1].

Let us fix R0 > 0 large enough and take K2 > 0 large enough, then K2ρ
−α is a

super-solution of (5.3) when ρ > R0. Therefore, for any τ1 > 0, |φ| ≤ 2K2ρ
−α and

‖φ‖α,τ1 < +∞. Next, we prove the following identities,∫
Rn
φ(y, τ)zj(y)dy = 0 for all τ ∈ (τ0, τ1), j = 0, 1, · · · , 3n− 1 (5.5)

and ∫
Rn
φ(y, τ)Zl(y)dy = 0 for all τ ∈ (τ0, τ1), l = 1, · · · ,K. (5.6)

Indeed, (5.6) follows from the definition of cl(τ). Let us test (5.3) with zjη, where

η(y) = η0(|y|/R̃), j = 0, 1, · · · , 3n− 1, R̃ is a positive constant and η0 is a smooth
cut-off function defined by

η0(r) =

{
1, for r < 1,

0, for r > 2.
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Then we have∫
Rn
φ(·, τ)zjη =

∫ τ

0

ds

∫
Rn

(φ(·, s)L0[ηzj ] + hzjη −
K∑
l=1

cl(s)Zlzjη).

Furthermore, ∫
Rn

(
φL0[ηzj ] + hzjη −

K∑
l=1

cl(s)Zlzjη

)
=

∫
Rn
φ

(
zj∆η + 2∇η∇zj

)
− hzj(1− η) +

K∑
l=1

cl(s)Zlzj(1− η)

= O(R̃−ε)

holds uniformly on τ ∈ (τ0, τ1) for a small positive number ε. Letting R̃ → +∞,
we get (5.5). Finally, we claim that when τ1 > τ0 is large enough, for any solution
φ of (5.3) satisfying ‖φ‖α,τ1 < +∞, (5.5) and (5.6), there holds

‖φ‖α,τ1 . ‖h‖2+α,τ1 . (5.7)

This proves (5.2).
To prove estimate (5.7), we use the contradiction arguments. Suppose there are

sequences τk1 → +∞ and φk, hk, ckl (l = 1, · · · ,K) satisfying the following parabolic
problem

∂τφk = ∆φk + p|Q|p−1(y)φk + hk −
K∑
l=1

ckl (s)Zl(y), y ∈ Rn, τ ≥ τ0,∫
Rn
φk(y, τ)zj(y)dy = 0 for all τ ∈ (τ0, τ

k
1 ), j = 0, 1, · · · , 3n− 1,∫

Rn
φk(y, τ)Zl(y)dy = 0 for all τ ∈ (τ0, τ1), l = 1, · · · ,K,

φk(y, τ0) = 0, y ∈ Rn

and
‖φk‖α,τk1 = 1, ‖hk‖2+α,τk1

→ 0. (5.8)

By (5.4), we obtain supτ∈(τ0,τk1 ) τ
νckl (τ) → 0, l = 1, . . . ,K. First, we claim that

the following holds
sup

τ0<τ<τk1

τν |φk(y, τ)| → 0 (5.9)

uniformly on compact subsets of Rn. Indeed, if for some |yk| ≤M , τ0 < τk2 < τk1 ,

(τk2 )ν |φk(yk, τ
k
2 )| ≥ 1

2
,

then we have τk2 → +∞. Now, define

φ̃n(y, τ) = (τk2 )νφn(y, τk2 + τ).

Then

∂τ φ̃k = L[φ̃k] + h̃k −
K∑
l=1

c̃kl (τ)Zl(y) in Rn × (τ0 − τk2 , 0],
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with h̃k → 0, c̃kl → 0 (l = 1, · · · ,K) uniformly on compact subsets in Rn× (−∞, 0],
moreover, we have

|φ̃k(y, τ)| ≤ 1

1 + |y|α
in Rn × (τ0 − τk2 , 0].

Using the dominant convergence theorem and the fact that α ∈ (2, n− 2), φ̃k → φ̃

uniformly on compact subsets in Rn × (−∞, 0] for a function φ̃ 6= 0 satisfying

∂τ φ̃ = ∆φ̃+ p|Q|p−1(y)φ̃ in Rn × (−∞, 0],∫
Rn
φ̃(y, τ)zj(y)dy = 0 for all τ ∈ (−∞, 0], j = 0, 1, · · · , 3n− 1,∫

Rn
φ̃(y, τ)Zl(y)dy = 0 for all τ ∈ (−∞, 0], l = 1, · · · ,K,

|φ̃(y, τ)| ≤ 1

1 + |y|α
in Rn × (−∞, 0],

φ̃(y, τ0) = 0, y ∈ Rn.

(5.10)

Now we claim that φ̃ = 0, which contradicts to the fact that φ̃ 6= 0. Standard
parabolic regularity tells us that φ̃(y, τ) is C2,% for some % ∈ (0, 1). Then a scaling
argument shows that

(1 + |y|)|∇φ̃|+ |φ̃τ |+ |∆φ̃| . (1 + |y|)−2−α.

Differentiating (5.10) with respect to τ , we have ∂τ φ̃τ = ∆φ̃τ + p|Q|p−1(y)φ̃τ and

(1 + |y|)|∇φ̃τ |+ |φ̃ττ |+ |∆φ̃τ | . (1 + |y|)−4−α.

Furthermore, it holds that

1

2
∂τ

∫
Rn
|φ̃τ |2 +B(φ̃τ , φ̃τ ) = 0,

where

B(φ̃, φ̃) =

∫
Rn

[
|∇φ̃|2 − p|Q|p−1(y)|φ̃|2

]
dy.

Since
∫
Rn φ̃(y, τ)zj(y)dy = 0 and

∫
Rn φ̃(y, τ)Zl(y)dy = 0 hold ∀τ ∈ (−∞, 0], j =

0, 1, · · · , 3n− 1, l = 1, · · · ,K, we have B(φ̃, φ̃) ≥ 0. Note that∫
Rn
|φ̃τ |2 = −1

2
∂τB(φ̃, φ̃).

Combine the above facts, we get,

∂τ

∫
Rn
|φ̃τ |2 ≤ 0,

∫ 0

−∞
dτ

∫
Rn
|φ̃τ |2 < +∞.

Hence φ̃τ = 0. Thus φ̃ is independent of τ , L[φ̃] = 0. Since φ̃ is bounded, from

the nondegeneracy of L, φ̃ is a linear combination of the kernel functions zj , j =

0, 1, · · · , 3n−1. But
∫
Rn φ̃zj = 0, j = 0, 1, · · · , 3n−1, we get φ̃ = 0, a contradiction.

Therefore (5.9) holds.
From (5.8), there exists a sequence yk with |yk| → +∞ such that

(τk2 )ν(1 + |yk|α)|φk(yk, τ
k
2 )| ≥ 1

2
.
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Let

φ̃k(z, τ) := (τk2 )ν |yk|αφk(yk + |yk|z, |yk|2τ + τk2 ),

then

∂τ φ̃k = ∆φ̃k + akφ̃k + h̃k(z, τ),

with

h̃k(z, τ) = (τk2 )ν |yk|2+αhk(yk + |yk|z, |yk|2τ + τk2 ).

From the assumptions on hk, one gets

|h̃k(z, τ)| . o(1)|ŷk + z|−2−α((τk2 )−1|yk|2τ + 1)−ν

with

ŷk =
yk
|yk|
→ −ê

and |ê| = 1. Hence h̃k(z, τ)→ 0 uniformly on compact subsets in Rn\{ê}×(−∞, 0].

ak has the same property as h̃k(z, τ). Furthermore, |φ̃k(0, τ0)| ≥ 1
2 and

|φ̃k(z, τ)| . |ŷk + z|−α
(
(τk2 )−1|yk|2τ + 1

)−ν
.

Hence one may assume φ̃k → φ̃ 6= 0 uniformly on compact subsets in Rn \ {ê} ×
(−∞, 0] for φ̃ satisfying

φ̃τ = ∆φ̃ in Rn \ {ê} × (−∞, 0] (5.11)

and

|φ̃(z, τ)| ≤ |z − ê|−α in Rn \ {ê} × (−∞, 0]. (5.12)

Similar to Lemma 5.2 of [41], functions φ̃ satisfying (5.11) and (5.12) is zero, which

is a contradiction to the fact that φ̃ 6= 0. This concludes the validity of (5.7).
Indeed, set

u(ρ, t) = (ρ2 + Ct)−α/2 +
ε

ρn−2
.

Then

−ut + ∆u < (ρ2 + Ct)−α/2−1[α(α+ 2− n) +
C

2
α] < 0, if α < n− 2− C

2
.

For any α < n − 2, we can always find a fixed C > 0 such that α < n − 2 − C
2 .

Hence u(|z − ê|, τ + M) is a positive super-solution of (5.12) in (0,∞) × [−M, 0].

Via the comparison principle, |φ̃(z, τ)| ≤ 2u(|z − ê|, τ +M). Letting M → +∞ we
get

|φ̃(z, τ)| ≤ 2ε

|z − ê|n−2
.

Since ε > 0 is arbitrary, we conclude that φ̃ = 0. The proof is completed. �

Proof of Proposition 4.1. First let us consider the following problem
∂τφ = ∆φ+ p|Q|p−1(y)φ+ h(y, τ)−

K∑
l=1

cl(τ)Zl, y ∈ Rn, τ ≥ τ0,

φ(y, τ0) = 0, y ∈ Rn.

Let (φ(y, τ), c1(τ), · · · , cK(τ)) be the unique solution to problem (5.1). By Lemma
5.1, for τ1 > τ0 large enough, there hold

|φ(y, τ)| . τ−ν(1 + |y|)−α‖h‖2+α,τ1 for all τ ∈ (τ0, τ1), y ∈ Rn
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and

|cl(τ)| ≤ τ−νRα‖h‖2+α,τ1 for all τ ∈ (τ0, τ1), l = 1, · · · ,K.

From the assumptions of the proposition, for an arbitrary τ1, ‖h‖2+α,ν < +∞ and
‖h‖2+α,τ1 ≤ ‖h‖2+α,ν hold. Therefore, one has

|φ(y, τ)| . τ−ν(1 + |y|)−α‖h‖2+α,ν for all τ ∈ (τ0, τ1), y ∈ Rn

and

|cl(τ)| ≤ τ−νRα‖h‖2+α,ν for all τ ∈ (τ0, τ1), l = 1 · · · ,K.

From the arbitrariness of τ1, we have

|φ(y, τ)| . τ−ν(1 + |y|)−α‖h‖2+α,ν for all τ ∈ (τ0,+∞), y ∈ Rn

and

|cl(τ)| ≤ τ−νRα‖h‖2+α,ν for all τ ∈ (τ0,+∞), l = 1 · · · ,K.

Using the parabolic regularity results and a scaling argument, we get (4.7) and
(4.8). �

6. Proof of Proposition 4.2

The following integral identities will be useful in the computation of this section.

Lemma 6.1. As k → +∞, for j = 0, · · · , 3n− 1, we have∫
Rn

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
zj(y)dy =

a0,0 +O(k−1) if j = 0 ,

O(k−1) if j 6= 0,

∫
Rn

(
∂

∂y1
Q(y)− En,ky1

(1 + |y|2)
n
2

)
zj(y)dy =


a1,1 +O(k−1) if j = 1 ,

a1,n+2 +O(k−1) if j = n+ 2,

O(k−1) if j 6= 1, n+ 2,

∫
Rn

(
∂

∂y2
Q(y)− En,ky2

(1 + |y|2)
n
2

)
zj(y)dy =


a2,2 +O(k−1) if j = 2 ,

a2,n+3 +O(k−1) if j = n+ 3,

O(k−1) if j 6= 2, n+ 3.

For i = 3, · · · , n, j = 0, · · · , 3n− 1, we have∫
Rn

(
∂

∂yi
Q(y)− En,kyi

(1 + |y|2)
n
2

)
zj(y)dy =

ai,i +O(k−1) if j = i ,

O(k−1) if j 6= i.

Furthermore,∫
Rn
zn+1(y)zj(y)dy =

an+1,n+1 +O(k−1) if j = n+ 1 ,

O(k−1) if j 6= n+ 1,
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Rn

(
−2y1

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ |y|2

(
∂

∂y1
Q(y)− En,ky1

(1 + |y|2)
n
2

))
zj(y)dy

=


an+2,1 +O(k−1) if j = 1 ,

an+2,n+2 +O(k−1) if j = n+ 2 ,

O(k−1) if j 6= 1, n+ 2,∫
Rn

(
−2y2

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
+ |y|2

(
∂

∂y2
Q(y)− En,ky2

(1 + |y|2)
n
2

))
zj(y)dy

=


an+3,2 +O(k−1) if j = 2 ,

an+3,n+3 +O(k−1) if j = n+ 3 ,

O(k−1) if j 6= 2, n+ 3.

For i = 3, · · · , n,∫
Rn
zn+i+1(y)zj(y)dy =

an+i+1,n+i+1 +O(k−1) if j = n+ i+ 1 ,

O(k−1) if j 6= n+ i+ 1,

∫
Rn
z2n+i−1(y)zj(y)dy =

a2n+i−1,2n+i−1 +O(k−1) if j = 2n+ i− 1 ,

O(k−1) if j 6= 2n+ i− 1.

In the above, ai,j are positive constants depending on n and k, the matrices(
a1,1 a1,n+2

an+2,1 an+2,n+2

)
,

(
a2,2 a2,n+3

an+3,2 an+3,n+3

)
are invertible.

The proof of this lemma is given in the Appendix.

6.1. The equation for λ. We consider (4.5) for l = 0.

Lemma 6.2. When l = 0, (4.5) is equivalent to

λ̇+
1 + (n− 4)

(n− 4)t
λ+O

(
1

k

)
ξ̇ +O

(
1

k

)
µ0 (ȧ1 + ȧ2)

+O

(
1

k

)
µ0

θ̇12 +

n∑
j=3

(θ̇1j + θ̇2j)

 = Π0[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t).

(6.1)

The right hand side term of (6.1) can be expressed as

Π0[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t) =
t−ε0

Rα−2
µn−3+σ

0 (t)f0(t) +
t−ε0

Rα−2
×

Θ0

[
λ̇, ξ̇, µ0ȧ, µ0θ̇, µ

n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t)

where f0(t) and Θ0[· · · ](t) are bounded smooth functions for t ∈ [t0,∞).
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Proof. We compute∫
B2R

H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))z0(y)dy,

where H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ)) is defined in (4.2). Write

µ
n+2
2

0 SA(ξ + µ0y, t)

=

(
µ0

µ

)n+2
2

[µ0S1(z, t) + λbS2(z, t) + µS3(z, t) + µ2S4(z, t) + µ2S5(z, t)]z=ξ+µy

+

(
µ0

µ

)n+2
2

µ0[S1(ξ + µ0y, t)− S1(ξ + µy, t)]

+

(
µ0

µ

)n+2
2

λb[S2(ξ + µ0y, t)− S2(ξ + µy, t)]

+

(
µ0

µ

)n+2
2

µ[S3(ξ + µ0y, t)− S3(ξ + µy, t)]

+

(
µ0

µ

)n+2
2

µ2[S4(ξ + µ0y, t)− S4(ξ + µy, t)]

+

(
µ0

µ

)n+2
2

µ2[S5(ξ + µ0y, t)− S5(ξ + µy, t)],

(6.2)
where

S1(z) = λ̇

z0

(
z − ξ
µ

)
−
Dn,k

(
2−

∣∣∣ z−ξµ ∣∣∣2)(
1 +

∣∣∣ z−ξµ ∣∣∣2)n
2
− 2Ap|Q|p−1

(
z − ξ
µ

)
− µn−4

0 p|Q|p−1

(
z − ξ
µ

)[
(n− 3)bn−4H(q, q)λ

]
,

S2(z) = µ̇0

z0

(
z − ξ
µ

)
−
Dn,k

(
2−

∣∣∣ z−ξµ ∣∣∣2)(
1 +

∣∣∣ z−ξµ ∣∣∣2)n
2


+ p|Q|p−1

(
z − ξ
µ

)
µn−3

0

(
− bn−4H(q, q) +B

)
,

S3(z) =

∇Q
(
z − ξ
µ

)
−

En,k
z−ξ
µ(

1 +
∣∣∣ z−ξµ ∣∣∣2)n

2

 · ξ̇
+ p|Q|p−1

(
z − ξ
µ

)[
−µn−2∇H(q, q)

]
·
(
z − ξ
µ

)
,
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S4(z) = ȧ1

−2

(
z − ξ
µ

)
1

z0

(
z − ξ
µ

)
−
Dn,k(2−

∣∣∣ z−ξµ ∣∣∣2)(
1 +

∣∣∣ z−ξµ ∣∣∣2)n
2



+

∣∣∣∣z − ξµ
∣∣∣∣2
 ∂

∂y1
Q

(
z − ξ
µ

)
−

En,k

(
z−ξ
µ

)
1(

1 +
∣∣∣ z−ξµ ∣∣∣2)n

2




+ ȧ2

−2

(
z − ξ
µ

)
2

z0

(
z − ξ
µ

)
−
Dn,k(2−

∣∣∣ z−ξµ ∣∣∣2)(
1 +

∣∣∣ z−ξµ ∣∣∣2)n
2



+

∣∣∣∣z − ξµ
∣∣∣∣2
 ∂

∂y2
Q

(
z − ξ
µ

)
−

En,k

(
z−ξ
µ

)
2(

1 +
∣∣∣ z−ξµ ∣∣∣2)n

2




and

S5(z) = zn+1

(
z − ξ
µ

)
θ̇12 +

n∑
j=3

(
zn+j+1

(
z − ξ
µ

)
θ̇1j + z2n+j−1

(
z − ξ
µ

)
θ̇2j

)
.

Direct computations yield that∫
B2R

S1(ξ + µy)z0(y)dy = (2Ac1 + c2)(1 +O(R2−n) +O(R−2))λ̇

+ c1(1 +O(R−2))µn−4
0

[
(n− 3)bn−4H(q, q)λ

]
,

∫
B2R

S2(ξ + µy)z0(y)dy = O(R2−n +R−2)µn−3
0 ,

∫
B2R

S3(ξ + µy)z0(y)dy = O

(
1

k

)
ξ̇ +O(1 +R−2)µn−2

0 ,

∫
B2R

S4(ξ + µy)z0(y)dy = O

(
1

k

)
(ȧ1 + ȧ2) ,

and ∫
B2R

S5(ξ + µy)z0(y)dy = O

(
1

k

)θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

) .
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Since µ0

µ = (1 + λ
µ0

)−1, for l = 1, 2, 3, 4, 5, we have the following estimates∫
B2R

[Sl(ξ + µ0y, t)− Sl(ξ + µy, t)]z0(y)dy

= g(t,
λ

µ0
)λ̇+ g(t,

λ

µ0
)ξ̇ + g(t,

λ

µ0
) (ȧ1 + ȧ2)

+ g(t,
λ

µ0
)

θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

)
+ g(t,

λ

µ0
)µn−4

0

λ+ (ξ − q) + a1 + a2 + θ12 +

n∑
j=3

(θ1j + θ2j)


+ µn−3+σ

0 f(t),

where f and g are smooth, bounded functions satisfying g(·, s) ∼ s as s→ 0. Thus

c

(
µ

µ0

)n+2
2

µ−1
0

∫
B2R

µ
n+2
2

0 SA(ξ + µ0y, t)z0(y)dy

=

[
λ̇+

1 + (n− 4)

(n− 4)t
λ

]
+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
ξ̇

+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
µ (ȧ1 + ȧ2)

+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
µ

θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

)
+ g(t,

λ

µ0
)µn−4

0

λ+ (ξ − q) + µa1 + µa2 + µθ12 + µ

n∑
j=3

(θ1j + θ2j)


for smooth bounded functions g satisfying g(·, s) ∼ s as s→ 0.

Let us compute the term

pµ
n−2
2

0 (1 +
λ

µ0
)−2

∫
B2R

|Q|p−1(
µ0

µ
y)ψ(ξ + µ0y, t)z0(y)dy.

Its principal part is I :=
∫
B2R
|Q|p−1(y)ψ(ξ + µ0y, t)z0(y)dy. From (4.12), we have

I =
t−ε0

Rα−2µ
n−2
2 +σ

0 f(t) for a smooth bounded function f .
Furthermore, we have∫

B2R

B[φ](y, t)z0(y)dy =
t−ε0

Rα−2

[
µn−3+σ

0 (t)`[φ](t) + ξ̇`[φ](t)
]

and ∫
B2R

B0[φ](y, t)z0(y)dy =
t−ε0

Rα−2
µn−2+σ

0 g

(
λ

µ0

)
[φ](t)

for smooth bouned function g(s) with g(s) ∼ s (s → 0) and `[φ](t) is bounded
smooth in t.

Combine the above estimations, we have the validity of the lemma. �
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6.2. The equation for ξ. Now we compute (4.5) for l = 1, · · · , n.

Lemma 6.3. For l = 1, (4.5) is equivalent to

a1,1ξ̇1 + an+2,1µ0ȧ1 +O

(
1

k

)
λ̇+O

(
1

k

)
µ0ȧ2

+O

(
1

k

)
µ0

θ̇12 +

n∑
j=3

(θ̇1j + θ̇2j)

 = Π1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t).

(6.3)

For l = 2, (4.5) is equivalent to

a2,2ξ̇2 + an+3,2µ0ȧ2 +O

(
1

k

)
λ̇+O

(
1

k

)
µ0ȧ1

+O

(
1

k

)
µ0

θ̇12 +

n∑
j=3

(θ̇1j + θ̇2j)

 = Π2[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t).

(6.4)

For l = 3, · · · , n, (4.5) is equivalent to

ξ̇l +O

(
1

k

)
λ̇+O

(
1

k

)
µ0 (ȧ1 + ȧ2) +O

(
1

k

)
µ0

θ̇12 +

n∑
j=3

(θ̇1j + θ̇2j)


= Πl[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t).

(6.5)

For l = 1, · · · , n,

Πl[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t)

= µn−2
0 cl

[
bn−2∇H(q, q)

]
+ µn−2+σ

0 (t)f(t) +
t−ε0

Rα−2
Θl[

λ̇, ξ̇, µ0ȧ, µ0θ̇, µ
n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t),

where cl is a positive constant, f(t) and Θl are smooth bounded for t ∈ [t0,∞).

Proof. We compute∫
B2R

H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))zl(y)dy,

where H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ)) is defined in (4.2). Expand µ
n+2
2

0 SA(ξ +
µ0y, t) as (6.2), by direct computations, we have∫

B2R

S1(ξ + µy)zl(y)dy = O

(
1

k

)(
λ̇+ µn−4

0 λ
)
,

∫
B2R

S2(ξ + µy)zl(y)dy = O

(
1

k

)(
µ̇0 + µn−3

0

)
,∫

B2R

S3(ξ + µy)zl(y)dy = (1 +O(R−n))al,lξ̇l

− (1 +O(R−2))p

∫
Rn
|Q|p−1ylzl(y)dyµn−2∇H(q, q),
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B2R

S4(ξ + µy)zl(y)dy =
an+2,1(1 +O(R4−n))ȧ1 +O

(
1
k

)
(1 +O(R4−n))ȧ2 if l = 1 ,

an+2,2(1 +O(R4−n))ȧ2 +O
(

1
k

)
(1 +O(R4−n))ȧ1 if l = 2 ,

O
(

1
k

)
(1 +O(R4−n)) (ȧ1 + ȧ2) if l = 3, · · · , n

and ∫
B2R

S5(ξ + µy)zl(y)dy = O

(
1

k

)θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

) .

Since µ0

µ = (1 + λ
µ0

)−1, for j = 1, 2, 3, 4, 5, we have∫
B2R

[Sj(ξ + µ0y, t)− Sj(ξ + µy, t)]zl(y)dy

= g(t,
λ

µ0
)λ̇+ g(t,

λ

µ0
)ξ̇ + g(t,

λ

µ0
) (ȧ1 + ȧ2)

+ g(t,
λ

µ0
)

θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

)
+ g(t,

λ

µ0
)µn−4

0

λ+ (ξ − q) + a1 + a2 + θ12 +

n∑
j=3

(θ1j + θ2j)


+ µn−3+σ

0 f(t),

where f and g are smooth, bounded functions satisfying g(·, s) ∼ s as s→ 0. Thus

c

(
µ

µ0

)n+2
2

µ−1
0

∫
B2R

µ
n+2
2

0 SA(ξ + µ0y, t)zl(y)dy

=

[
ξ̇ +
−p
∫
Rn |Q|

p−1ylzl(y)dy∫
Rn |zl|2dy

bn−2µn−2
0

]
+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
ξ̇

+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
µ0 (ȧ1 + ȧ2)

+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
µ0

θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

)
+ g(t,

λ

µ0
)µn−4

0

λ+ (ξ − q) + µ0a1 + µ0a2 + µ0θ12 + µ0

n∑
j=3

(θ1j + θ2j)

 ,

for smooth bounded functions g satisfying g(·, s) ∼ s as s→ 0.
The computations for the term

pµ
n−2
2

0 (1 +
λ

µ0
)−2

∫
B2R

|Q|p−1(
µ0

µ
y)ψ(ξ + µ0y, t)zl(y)dy,

B[φ] and B0[φ] are similar to that of Lemma 6.2. �
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6.3. The equation for θ12. Now we compute (4.5) for l = n+ 1.

Lemma 6.4. For l = n+ 1, (4.5) is equivalent to

µ0θ̇12 +O

(
1

k

)
λ̇+O

(
1

k

)
ξ̇ +O

(
1

k

)
µ0 (ȧ1 + ȧ2) +O

(
1

k

)
µ0

 n∑
j=3

θ̇1j + θ̇2j


= Πn+1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

(6.6)

Πn+1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t) = µn−2+σ
0 (t)f(t) +

t−ε0

Rα−2
Θn+1[

λ̇, ξ̇, µ0ȧ, µ0θ̇, µ
n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t),

where f(t) and Θn+1 are smooth bounded for t ∈ [t0,∞).

Proof. We compute∫
B2R

H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))zn+1(y)dy,

where H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ)) is defined in (4.2). Expand µ
n+2
2

0 SA(ξ +
µ0y, t) as (6.2), by direct computations, we have∫

B2R

S1(ξ + µy)zn+1(y)dy = O

(
1

k

)(
λ̇+ µn−4

0 λ
)
,∫

B2R

S2(ξ + µy)zn+1(y)dy = O

(
1

k

)(
µ̇0 + µn−3

0

)
,∫

B2R

S3(ξ + µy)zn+1(y)dy = O

(
1

k

)
ξ̇ +O(1 +R−1)µn−2

0 ,∫
B2R

S4(ξ + µy)zn+1(y)dy = O

(
1

k

)
(1 +O(R−2)) (ȧ1 + ȧ2)

and∫
B2R

S5(ξ + µy)zn+1(y)dy = an+1,n+1(1 +O(R2−n))θ̇12 +O

(
1

k

) n∑
j=3

(
θ̇1j + θ̇2j

)
.

Since µ0

µ = (1 + λ
µ0

)−1, for j = 1, 2, 3, 4, 5, we have∫
B2R

[Sl(ξ + µ0y, t)− Sl(ξ + µy, t)]zn+1(y)dy

= g(t,
λ

µ0
)λ̇+ g(t,

λ

µ0
)ξ̇ + g(t,

λ

µ0
) (ȧ1 + ȧ2)

+ g(t,
λ

µ0
)

θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

)
+ g(t,

λ

µ0
)µn−4

0

λ+ (ξ − q) + a1 + a2 + θ12 +

n∑
j=3

(θ1j + θ2j)


+ µn−3+σ

0 f(t),
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where f and g are smooth, bounded functions satisfying g(·, s) ∼ s as s→ 0. Thus

c

(
µ

µ0

)n+2
2

µ−1
0

∫
B2R

µ
n+2
2

0 SA(ξ + µ0y, t)zn+1(y)dy

= µ0θ̇12 +

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
ξ̇

+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
µ0 (ȧ1 + ȧ2)

+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
µ0

n∑
j=3

(
θ̇1j + θ̇2j

)

+ g(t,
λ

µ0
)µn−4

0

λ+ (ξ − q) + µ0a1 + µ0a2 + µ0θ12 + µ0

n∑
j=3

(θ1j + θ2j)

 ,

for smooth bounded functions g satisfying g(·, s) ∼ s as s→ 0.
The computations for the term

pµ
n−2
2

0 (1 +
λ

µ0
)−2

∫
B2R

|Q|p−1(
µ0

µ
y)ψ(ξ + µ0y, t)zn+1(y)dy,

B[φ] and B0[φ] are similar to that of Lemma 6.2. �

6.4. The equation for a1 and a2. Now we compute (4.5) for l = n+ 2, n+ 3.

Lemma 6.5. For l = n+ 2, n+ 3, (4.5) is equivalent to

a1,n+2ξ̇1 + an+2,n+2µ0ȧ1 +O

(
1

k

)
λ̇+O

(
1

k

)
ξ̇ +O

(
1

k

)
µ0ȧ2

+O

(
1

k

)
µ0

θ̇12 +

n∑
j=3

(θ̇1j + θ̇2j)

 = Πn+2[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

(6.7)

a2,n+3ξ̇2 + an+3,n+3µ0ȧ2 +O

(
1

k

)
λ̇+O

(
1

k

)
ξ̇ +O

(
1

k

)
µ0ȧ1

+O

(
1

k

)
µ0

θ̇12 +

n∑
j=3

(θ̇1j + θ̇2j)

 = Πn+3[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

(6.8)

Πn+2[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t) = µn−2+σ
0 (t)f(t) +

t−ε0

Rα−2
Θn+2[

λ̇, ξ̇, µ0ȧ, µ0θ̇, µ
n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t),

Πn+3[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t) = µn−2+σ
0 (t)f(t) +

t−ε0

Rα−2
Θn+3[

λ̇, ξ̇, µ0ȧ, µ0θ̇, µ
n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t),

where f(t) and Θn+2, Θn+3 are smooth bounded functions for t ∈ [t0,∞).

Proof. We compute∫
B2R

H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ))zn+2(y)dy,
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where H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](y, t(τ)) is defined in (4.2). Expand µ
n+2
2

0 SA(ξ +
µ0y, t) as (6.2), by direct computations, we have∫

B2R

S1(ξ + µy)zn+2(y)dy = O

(
1

k

)(
λ̇+ µn−4

0 λ
)
,∫

B2R

S2(ξ + µy)zn+2(y)dy = O

(
1

k

)(
µ̇0 + µn−3

0

)
,∫

B2R

S3(ξ + µy)zn+2(y)dy = a2,n+2ξ̇ +O(1 + logR)µn−2
0 ,∫

B2R

S4(ξ + µy)zn+2(y)dy = an+2,n+2ȧ1 +O

(
1

k

)
(1 +O(R−2))ȧ2,

∫
B2R

S5(ξ + µy)zn+2(y)dy = O

(
1

k

)θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

) .

Since µ0

µ = (1 + λ
µ0

)−1, for l = 1, 2, 3, 4, 5, we have∫
B2R

[Sl(ξ + µ0y, t)− Sl(ξ + µy, t)]zn+2(y)dy

= g(t,
λ

µ0
)λ̇+ g(t,

λ

µ0
)ξ̇ + g(t,

λ

µ0
) (ȧ1 + ȧ2)

+ g(t,
λ

µ0
)

θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

)
+ g(t,

λ

µ0
)µn−4

0

λ+ (Rθξ − q) + a1 + a2 + θ12 +

n∑
j=3

(θ1j + θ2j)


+ µn−3+σ

0 f(t),

where f and g are smooth, bounded functions satisfying g(·, s) ∼ s as s→ 0. Thus

c

(
µ

µ0

)n+2
2

µ−2
0

∫
B2R

µ
n+2
2

0 SA(ξ + µ0y, t)zn+2(y)dy

= a2,n+3ξ̇ + an+2,n+2µ0ȧ1

+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
ξ̇ +

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
µ0ȧ2

+

(
O

(
1

k

)
+ t−ε0 g(t,

λ

µ0
)

)
µ0

θ̇12 +

n∑
j=3

(
θ̇1j + θ̇2j

)
+ g(t,

λ

µ0
)µn−4

0

λ+ (ξ − q) + µ0a1 + µ0a2 + µ0θ12 + µ0

n∑
j=3

(θ1j + θ2j)

 ,

for smooth bounded functions g satisfying g(·, s) ∼ s as s→ 0.
The computations for the term

pµ
n−2
2

0 (1 +
λ

µ0
)−2

∫
B2R

|Q|p−1(
µ0

µ
y)ψ(ξ + µ0y, t)zn+2(y)dy,
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B[φ] and B0[φ] are similar to that of Lemma 6.2. This proves (6.7). The proof of
(6.8) is similar. �

6.5. The equation for θ1l and θ2l, l = 3, · · · , n. Now we compute (4.5) for
l = n+ 4, · · · , 3n− 1.

Lemma 6.6. For l = 3, · · · , n, (4.5) is equivalent to

µ0θ̇1l +O

(
1

k

)
λ̇+O

(
1

k

)
ξ̇ +O

(
1

k

)
µ0 (ȧ1 + ȧ2)

+O

(
1

k

)
µ0

θ̇12 +
∑
j 6=l

θ̇1j +

n∑
j=3

θ̇2j

 = Πn+l+1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

(6.9)

µ0θ̇2l +O

(
1

k

)
λ̇+O

(
1

k

)
ξ̇ +O

(
1

k

)
µ0 (ȧ1 + ȧ2)

+O

(
1

k

)
µ0

θ̇12 +
∑
j 6=l

θ̇2j +

n∑
j=3

θ̇1j

 = Π2n+l−1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

(6.10)

Πn+l+1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t) = µn−2+σ
0 (t)f(t) +

t−ε0

Rα−2
Θn+l+1[

λ̇, ξ̇, µ0ȧ, µ0θ̇, µ
n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t),

Π2n+l−1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t) = µn−2+σ
0 (t)f(t) +

t−ε0

Rα−2
Θ2n+l−1[

λ̇, ξ̇, µ0ȧ, µ0θ̇, µ
n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t),

where f(t) and Θn+l+1, Θ2n+l−1 are smooth bounded for t ∈ [t0,∞).

The proof is similar to Lemma 6.4. Since the matrices(
a1,1 a1,n+2

an+2,1 an+2,n+2

)
,

(
a2,2 a2,n+3

an+3,2 an+3,n+3

)
are invertible, equations (6.3), (6.4), (6.7) and (6.8) can be decoupled by inverting
the coefficient matrices. Combine Lemmas 6.3, 6.4, 6.5, 6.6 and 6.1, we get the
result of Proposition 4.2.

7. Proof of Proposition 4.4

Proof of (4.20). Let us recall from (3.5) that

Sout = S
(2)
A + (1− ηR)SA.

From (2.40) and Lemma 2.2, in the region |x − q| > δ with δ > 0, we have the
following estimate for Sout,

|Sout(x, t)| . µ
n−2
2

0 (µ2
0 + µn−4

0 ) . µmin(n−4,2)−(α−2)−σ
0 (t0)

µ−2µ
n−2
2 +σ

0

1 + |y|α
. (7.1)

In the region |x− q| ≤ δ with δ > 0 sufficiently small, Lemma 2.2 tells us that∣∣∣S(2)
A (x, t)

∣∣∣ . µ−n+2
2

0

µn0
1 + |y|2

. µ2−(α−2)−σ
0 (t0)

µ−2µ
n−2
2 +σ

0

1 + |y|α
. (7.2)
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By the definition of ηR, if |x− ξ| > µ0R, (1− ηR) 6= 0. Therefore we have

|(1− ηR)SA| .
(

1

Rn−2−α +
1

R4−α

)
1

Ra−2

µ−2µ
n−2
2 +σ

0

1 + |y|α
. (7.3)

Here the decaying assumptions (4.9) and (4.10) are used, respectively. This proves
the validity of (4.20).

Proof of (4.21). For the term 2∇ηR∇φ̃, recalling that

φ̃(x, t) := µ
−n−2

2
0 φ

(
x− ξ
µ0

, t

)

and the assumptions (4.11) and (4.13), we have

∣∣∣(∇ηR · ∇φ̃) (x, t)
∣∣∣

.
η′(
∣∣∣x−ξRµ0

∣∣∣)
Rµ0

µ
−n−2

2
0

|∇yφ|
µ0

.
η′(
∣∣∣x−ξRµ0

∣∣∣)
Rµ2

0

µ
n−2
2 +σ

0

(1 + |y|1+α)
‖φ‖n−2+σ,α

.
1

Ra−2
‖φ‖n−2+σ,α

µ−2µ
n−2
2 +σ

0

(1 + |y|α)
,

(7.4)

where, in the region η′(
∣∣∣x−ξRµ0

∣∣∣) 6= 0, (1 + |y|) ∼ R, y = x−ξ
µ0

. As for the second term

φ̃
(
∆− ∂t

)
ηR, by direct computations, we have

∣∣∣φ̃(∆− ∂t)ηR∣∣∣ .
∣∣∣∆η (∣∣∣x−ξRµ0

∣∣∣)∣∣∣
R2µ2

0

µ
−n−2

2
0 |φ|

+

∣∣∣∣η′(∣∣∣∣x− ξRµ0

∣∣∣∣)( |x− ξ|Rµ2
0

µ̇0 +
1

Rµ0
ξ̇

)∣∣∣∣µ−n−2
2

0 |φ|.

(7.5)

From the definition of φ̃, we have the following estimate for the first term in the
right hand side of (7.5),

∣∣∣∆η (∣∣∣x−ξRµ0

∣∣∣)∣∣∣
R2µ2

0

µ
−n−2

2
0 |φ| .

∣∣∣∆η (∣∣∣x−ξRµ0

∣∣∣)∣∣∣
R2µ2

0

µ
n−2
2 +σ

0

(1 + |y|α)
‖φ‖n−2s+σ,α

.
1

Ra−2
‖φ‖n−2+σ,α

µ−2µ
n−2
2 +σ

0 (t)

1 + |y|α
,

(7.6)
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here the fact that
∣∣∣∆η (∣∣∣x−ξRµ0

∣∣∣)∣∣∣ ∼ 1
1+| yR |2

was used. From (4.9), we estimate the

second term in the right hand side of (7.5) as∣∣∣∣∣η′
(∣∣∣∣x− ξRµ0

∣∣∣∣)
(
|x− ξ|µ̇0 + µ0ξ̇

Rµ2
0

)∣∣∣∣∣µ−n−2
2

0 |φ|

.

∣∣∣η′ (∣∣∣x−ξRµ0

∣∣∣)∣∣∣
R2µ2

0

(µn−2
0 R2 + µn−2+σ

0 R)µ
−n−2

2
0 |φ|

.
1

Rα−2
‖φ‖n−2+σ,α

µ−2µ
n−2
2 +σ

0 (t)

1 + |y|α
.

(7.7)

From (7.4)-(7.7), we obtain (4.21).
Proof of (4.22). Since p− 2 ≥ 0 when n ≤ 6, we have the following

ÑA(ψ + ψ1 + ηRφ̃) . |u
∗
A|p−2

[
|ψ|2 + |ψ1|2 + |ηRφ̃|2

]
, when 6 ≥ n,

|ψ|p + |ψ1|p + |ηRφ̃|p, when 6 < n.

(7.8)

When 6 ≥ n, there hold

∣∣∣(u∗A)p−2(ηRφ̃)2
∣∣∣ . µ

3n
2 −5+2σ

0

1 + |y|2α
‖φ‖2n−2+σ,α

. µn−2+σ
0 Rα−2‖φ‖2n−2+σ,α

1

Rα−2

µ−2µ
n−2
2 +σ

0

1 + |y|α

and ∣∣(u∗A)p−2ψ2
∣∣ . µ− 6−n

2
0

t−2β

1 + |y|2(α−2)
‖ψ‖2∗∗,β,α

. Rα−2µn−4+σ+α−2
0 ‖ψ‖2∗∗,β,α

1

Rα−2

µ−2
j t−β

1 + |y|α
.

When 6 < n, one has

∣∣∣ηRφ̃∣∣∣p . µ
(n−2

2 +σ)p
0

1 + |y|αp
‖φ‖pn−2+σ,α

. µ2+(p−1)σ
0 Rα−2µ2

0‖φ‖
p
n−2+σ,α

1

Rα−2

µ−2µ
n−2
2 +σ

0

1 + |y|α

and

|ψ|p . t−pβ

1 + |y|p(α−2)
‖ψ‖p∗∗,β,α

. µ4(1+ σ
n−2 )+p(α−2)−αRα−2‖ψ‖p∗∗,β,α

1

Rα−2

µ−2
j µ

n−2
2 +σ

0

1 + |y|α
.

The estimate for ψ1 is similar. This proves (4.22). �
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8. Stability result in dimension 5 and 6.

In dimension 5 and 6, we have p − 1 = 4
n−2 ≥ 1. In this case, all the equations

can be solved by the Contraction Mapping Theorem since the operators T0, T1 and
T2 are Lipschitz continuous with respect to the parameter functions. Therefore,
Theorem 1.1 can be proved by the Contraction Mapping Theorem arguments in
dimension 5 and 6, moreover, we have the following stability result.

Theorem 8.1. Assume k0 is a sufficiently large integer, n = 5, 6 and q is a point
in Ω, then the conclusion of Theorem 1.1 holds when k ≥ k0. Furthermore, there
exists a sub-manifold M with codimension K in C1(Ω) containing uq(x, 0) such
that, if u0 ∈M and is sufficiently close to uq(x, 0), the solution u(x, t) to (1.1) still
has the form

u(x, t) = λ̃(t)−
n−2
2

(
Qk

(
x− ξ̃(t)
λ̃(t)

)
+ ϕ̃(x, t)

)
,

where q̃ = limt→+∞ ξ̃(t) is close to q.

Recalling that K is the dimension of the space V := {f ∈ Ḣ1(Rn)|〈Lf, f〉 < 0}
and L is defined in (1.10). The proof is similar to [2] and [31], so we give a sketch
here. We divide the whole process into three steps.

Step 1. Solving the outer problem (4.15).

Proposition 8.1. Assume λ, ξ, a, θ, λ̇, ξ̇, ȧ and θ̇ satisfy (4.9) and (4.10), φ
satisfies (4.13), ψ0 ∈ C2(Ω) and

‖ψ0‖L∞(Ω) + ‖∇ψ0‖L∞(Ω) ≤
t−ε0

Rα−2
.

Then (4.15) has a unique solution ψ = Ψ[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ], for y = x−ξ
µ0

, there

exist small constants σ > 0 and ε > 0 such that

|ψ(x, t)| . t−ε0

Rα−2

µ
n−2
2 +σ

0 (t)

1 + |y|α−2
+ e−δ(t−t0)‖ψ0‖L∞(Ω)

and

|∇ψ(x, t)| . t−ε0

Rα−2

µ−1µ
n−2
2 +σ

0 (t)

1 + |y|α−1
for |y| ≤ R

hold. Here R is defined in (3.1).

Proposition 8.1 is a direct consequence of Proposition 4.3, Proposition 4.4 and
the Contraction Mapping Theorem, whose proof we omit here. This result indicates
that for any small initial datum ψ0, (4.15) has a solution ψ. Moreover, the following

proposition clarifies the dependence of Ψ[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ] on the parameter

functions λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ which is proved by estimating, for instance,

∂φΨ[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ][φ̄] = ∂sΨ[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ+ sφ̄]|s=0

as a bounded linear operator between weighted parameter spaces. For simplicity,
the above operator is denoted by ∂φΨ[φ̄]. Similarly, we define ∂λΨ[λ̄], ∂ξΨ[ξ̄],

∂aΨ[ā], ∂θΨ[θ̄], ∂λ̇Ψ[ ˙̄λ], ∂ξ̇Ψ[ ˙̄ξ], ∂ȧΨ[ ˙̄a] and ∂θ̇Ψ[ ˙̄θ].
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Proposition 8.2. Under the assumptions of Proposition 8.1, Ψ depends smoothly
on the parameter functions λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, for y = x−ξ

µ0
, there hold

∣∣∂λΨ[λ̄]
∣∣ . t−ε0

Rα−2
‖λ̄‖1+σ

µ
n−2
2 −1

0 (t)

1 + |y|α−2
, (8.1)

∣∣∂ξΨ[ξ̄]
∣∣ . t−ε0

Rα−2

(
‖ξ̄‖1+σ

µ
n−2
2 −1

0 (t)

1 + |y|α−2

)
,

|∂aΨ[ā]| . t−ε0

Rα−2

(
‖ā‖σ

µ
n−2
2 −2

0 (t)

1 + |y|α−2

)
,

∣∣∂θΨ[θ̄]
∣∣ . t−ε0

Rα−2

(
‖θ̄‖σ

µ
n−2
2 −2

0 (t)

1 + |y|α−2

)
,

∣∣∂ξ̇Ψ[ ˙̄ξ](x, t)
∣∣ . t−ε0

Rα−2
‖ ˙̄ξ(t)‖n−3+σ

(
µ
−n−6

2 −1+σ
0 (t)

1 + |y|α−2

)
,

∣∣∂λ̇Ψ[ ˙̄λ](x, t)
∣∣ . t−ε0

Rα−2
‖ ˙̄λ(t)‖n−3+σ

(
µ
−n−6

2 −1+σ
0 (t)

1 + |y|α−2

)
,

∣∣∂ȧΨ[ ˙̄a](x, t)
∣∣ . t−ε0

Rα−2
‖ ˙̄a(t)‖n−4+σ

(
µ
−n−6

2 −2+σ
0 (t)

1 + |y|α−2

)
,

∣∣∂θ̇Ψ[ ˙̄θ](x, t)
∣∣ . t−ε0

Rα−2
‖ ˙̄θ(t)‖n−4+σ

(
µ
−n−6

2 −2+σ
0 (t)

1 + |y|α−2

)
and ∣∣∂φΨ[φ̄](x, t)

∣∣ . 1

Rα−2
‖φ̄(t)‖n−2+σ,α

(
µ
n−2
2 +σ

0 (t)

1 + |y|α−2

)
.

Proof. We prove (8.1). Decompose the term ∂λΨ[λ̄](x, t) = Z1 + Z with Z1 =
T2(0,−∂λu∗A[λ̄], 0), where T2 is defined by Proposition 4.3. Then Z is a solution of
the following problem
∂tZ = ∆Z + VAZ + ∂λVA[λ̄]ψ + ∂λÑA

(
ψ + φin

)
[λ̄] + ∂λSout[λ̄] in Ω× (t0,∞),

Z = 0 in ∂Ω× (t0,∞),

Z(·, t0) = 0 in Ω.

(8.2)
For any x ∈ ∂Ω, ∣∣∂λu∗A[λ̄](x, t)

∣∣ . µn2−1+σ
0 (t)|λ̄(t)|

. µ
n
2 +2σ
0 (t)‖λ̄(t)‖1+σ.

(8.3)

From (8.3) and Proposition 4.3, we obtain

|Z1(x, t)| . t−ε0

Rα−2

(
‖λ̄(t)‖1+σ

µ
n−2
2 −1

0 (t)

1 + |y|α−2

)
.

To prove the estimation for Z, which can be viewed as a fixed point for the
operator

A(Z) = T2 (g, 0, 0) (8.4)
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with

g = ∂λVA[λ̄]ψ + ∂λÑA
(
ψ + φin

)
[λ̄] + ∂λSout[λ̄],

we estimate ∂λSout[λ̄] first. In the region |x− q| > δ, from (2.40), (4.9) and (4.10),
we have ∣∣∂λSout[λ̄](x, t)

∣∣ . µn−2
2 −1

0 f(x, µ−1
0 µ, ξ, a, θ)|λ̄(t)|

.
t−ε0

Rα−2

(
‖λ̄(t)‖1+σ

µ
n−2
2 −1

0 (t)

1 + |y|α−2

)
,

where the function f is smooth and bounded depending on (x, µ−1
0 µ, ξ, a, θ). In the

region |x− q| ≤ δ, from (2.42), we have

∂λS(u∗A)[λ̄](x, t) = ∂λS(uA)[λ̄](x, t)(1 + µ0f(x, µ−1
0 µ, ξ, a, θ)),

where the function f is smooth and bounded depending on (x, µ−1
0 µ, ξ, a, θ). Dif-

ferentiating (2.19) with respect to λ, easy but long computations yield that

∣∣∂λS(uA)[λ̄]
∣∣ . t−ε0

Rα−2

(
‖λ̄(t)‖1+σ

µ
n−2
2 −1

0 (t)

1 + |y|α−2

)
. (8.5)

By the definition of Sout together with (8.5), we obtain

∣∣∂λSout[λ̄](x, t)
∣∣ . t−ε0

Rα−2

(
‖λ̄(t)‖1+σ

µ
n−2
2 −1

0 (t)

1 + |y|α−2

)
.

Now we estimate the other terms of g. When n = 5, 6, we have

∂λVA[λ̄](x, t) =p(p− 1)

[
|u∗A|p−3u∗A∂λu

∗
A[λ̄]

− ηR
∣∣∣µ−n−2

2 Q(y)
∣∣∣p−3

µ−
n−2
2 Q(y)∂λ

(
µ−

n−2
2 Q(y)

)
[λ̄]

]
.

Since
∣∣∣∂λ(µ−n−2

2 Q(y)
)∣∣∣ . µ−1

0

∣∣∣µ−n−2
2 Q (y)

∣∣∣ and β = n−2
2(n−4) + σ

n−4 , we obtain

∣∣∂λVA[λ̄]ψ(x, t)
∣∣ . ‖ψ‖∗∗,β,α t−ε0

Rα−2
‖λ̄(t)‖1+σ

µ−2µ
n−2
2 −1+σ

0

1 + |y|α
.

Similarly, we estimate the term p(p− 1)|u∗A|p−3u∗A(ψ + φin)∂λu
∗
A[λ̄] as

∣∣p(p− 1)|u∗A|p−3u∗A(ψ + φin)∂λu
∗
A[λ̄]

∣∣ . t−ε0

Rα−2
‖λ̄‖1+σ

µ−2µ
n−2
2 −1+σ

0

1 + |y|α

when n = 5, 6. The last term p
[∣∣u∗A + ψ + φin

∣∣p−1
u∗A − |u∗A|

p−1
u∗A

]
can be esti-

mated analogously.
In the set of functions satisfying

|Z(x, t)| ≤M t−ε0

Rα−2
‖λ̄‖1+σ

µ
n−2
2 −1

0

1 + |y|α−2

for a fixed large constant M , the operator A defined in (8.4) has a fixed point.
Indeed, A is a contraction map when R is large in terms of t0. Hence (8.1) holds.
The proof of the other estimates are similar, we omit them. �
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Substituting the solution ψ = Ψ[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ] of (4.15) given by Proposi-
tion 8.1 into (3.7), the full problem becomes

µ2
0∂tφ = ∆yφ+ p|Q|p−1(y)φ+H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ](y, t), y ∈ B2R(0).(8.6)

Similar to Section 4.1, using change of variables

t = t(τ),
dt

dτ
= µ2

0(t),

(8.6) reduces to

∂τφ = ∆yφ+ p|Q|p−1(y)φ+H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ](y, t(τ))

for y ∈ B2R(0), τ ≥ τ0, τ0 is the unique positive number such that t(τ0) = t0. We
try to find a solution φ to the equation

∂τφ = ∆yφ+ p|Q|p−1(y)φ

+H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ](y, t(τ)), y ∈ B2R(0), τ ≥ τ0,

φ(y, τ0) =

K∑
l=1

e0lZl(y), y ∈ B2R(0),

(8.7)

for some suitable constants e0l, l = 1, · · · ,K. To apply the linear theory Proposition
4.1, the parameter functions λ, ξ, a, θ need to satisfy the following orthogonality
conditions∫

B2R

H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ](y, t(τ))zl(y)dy = 0, l = 0, 1, · · · , 3n− 1. (8.8)

Step 2. Choosing the parameter functions. By the Lipschitz properties
for Ψ = Ψ[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ] given by Proposition 8.2, Proposition 4.2 can be
strengthened as

Proposition 8.3. (8.8) is equivalent to

λ̇+
1 + (n− 4)

(n− 4)t
λ = Π0[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

ξ̇l = Πl[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t), l = 1, · · · , n,

θ̇12 = µ−1
0 Πn+1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

ȧ1 = µ−1
0 Πn+2[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

ȧ2 = µ−1
0 Πn+3[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t),

θ̇1l = µ−1
0 Πn+l+1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t), l = 3, · · · , n,

θ̇2l = µ−1
0 Π2n+l−1[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t), l = 3, · · · , n.

(8.9)

The terms in the right hand side of the above system can be expressed as

Π0[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t) =
t−ε0

Rα−2
µn−3+σ

0 (t)f0(t) +
t−ε0

Rα−2
×

Θ0

[
λ̇, ξ̇, µ0ȧ, µ0θ̇, µ

n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t)
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and for j = 1, · · · , 3n− 1,

Πj [λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ, ψ](t)

= µn−2
0 cj

[
bn−2∇H(q, q)

]
+ µn−2+σ

0 (t)fj(t) +
t−ε0

Rα−2
×

Θj

[
λ̇, ξ̇, µ0ȧ, µ0θ̇, µ

n−4
0 (t)λ, µn−4

0 (ξ − q), µn−3
0 a, µn−3

0 θ, µn−3+σ
0 φ, µ

n−2
2 +σ

0 ψ
]

(t),

where fj(t) and Θj [· · · ](t) (j = 0, · · · , 3n − 1) are bounded smooth functions for
t ∈ [t0,∞), cj (j = 0, · · · , 3n− 1) are suitable constants. Moreover, we have∣∣∣Θj [λ̇1](t)−Θj [λ̇2](t)

∣∣∣ . t−ε0

Rα−2
|λ̇1(t)− λ̇2(t)|∣∣∣Θj [ξ̇1](t)−Θj [ξ̇2](t)

∣∣∣ . t−ε0

Rα−2
|ξ̇1(t)− ξ̇2(t)|,∣∣∣Θj [µ0ȧ

(1)
1 ](t)−Θj [µ0ȧ

(2)
1 ](t)

∣∣∣ . t−ε0

Rα−2
µ0|ȧ(1)

1 (t)− ȧ(2)
1 (t)|,∣∣∣Θj [µ0ȧ

(1)
2 ](t)−Θj [µ0ȧ

(2)
2 ](t)

∣∣∣ . t−ε0

Rα−2
µ0|ȧ(1)

2 (t)− ȧ(2)
2 (t)|,∣∣∣Θj [µ0θ̇1](t)−Θj [µ0θ̇2](t)

∣∣∣ . t−ε0

Rα−2
µ0|θ̇1(t)− θ̇2(t)|,

∣∣Θj [µ
n−4
0 λ1](t)−Θj [µ

n−4
0 λ2](t)

∣∣ . t−ε0

Rα−2
|λ1(t)− λ2(t)|,

∣∣Θj [µ
n−4
0 (ξ1 − q)](t)−Θj [µ

n−4
0 (ξ2 − q)](t)

∣∣ . t−ε0

Rα−2
|ξ1(t)− ξ2(t)|,∣∣∣Θj [µ

n−3
0 a

(1)
1 ](t)−Θj [µ

n−3
0 a

(2)
1 ](t)

∣∣∣ . t−ε0

Rα−2
µ0|a(1)

1 (t)− a(2)
1 (t)|,∣∣∣Θj [µ

n−3
0 a

(1)
2 ](t)−Θj [µ

n−3
0 a

(2)
2 ](t)

∣∣∣ . t−ε0

Rα−2
µ0|a(1)

2 (t)− a(2)
2 (t)|,

∣∣Θj [µ
n−3
0 θ1](t)−Θj [µ

n−3
0 θ2](t)

∣∣ . t−ε0

Rα−2
µ0|θ1(t)− θ2(t)|,

∣∣Θ[µn−3+σ
0 φ1](t)−Θ[µn−3+σ

0 φ2](t)
∣∣ . t−ε0

Rα−2
‖φ1(t)− φ2(t)‖n−2+σ,α.

System (8.9) is solvable for λ, ξ, a, θ satisfying (4.9) and (4.10). Indeed, we have

Proposition 8.4. (8.9) has a solution λ = λ[φ](t), ξ = ξ[φ](t), a = a[φ](t) and
θ = θ[φ](t) satisfying estimates (4.9) and (4.10). Moreover, for t ∈ (t0,∞), there
hold

µ
−(1+σ)
0 (t)

∣∣λ[φ1](t)− λ[φ2](t)
∣∣ . t−ε0

Rα−2
‖φ1 − φ2‖n−2+σ,α,

µ
−(1+σ)
0 (t)

∣∣ξ[φ1](t)− ξ[φ2](t)
∣∣ . t−ε0

Rα−2
‖φ1 − φ2‖n−2+σ,α,

µ−σ0 (t)
∣∣a[φ1](t)− a[φ2](t)

∣∣ . t−ε0

Rα−2
‖φ1 − φ2‖n−2+σ,α,

µ−σ0 (t)
∣∣θ[φ1](t)− θ[φ2](t)

∣∣ . t−ε0

Rα−2
‖φ1 − φ2‖n−2+σ,α.
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Using Proposition 8.2, the proof of Proposition 8.3 and 8.4 is similar to that
of [2] and [31], we omit it.

Step 3. Gluing: the inner problem. After choosing parameter functions
λ = λ[φ](t), ξ = ξ[φ](t), a = a[φ](t) and θ = θ[φ](t) such that (8.8) hold, we solve
problem (8.7) in the class of functions with ‖φ‖n−2+σ,α bounded. Problem (8.7) is
a fixed point of

φ = A1(φ) := T2(H[λ, ξ, a, θ, λ̇, ξ̇, ȧ, θ̇, φ]).

It is easy to see that ∣∣∣H[λ, ξ, λ̇, ξ̇, φ](y, t)
∣∣∣ . t−ε0

µn−2+σ
0

1 + |y|2+α
(8.10)

and ∣∣∣H[φ(1)]−H[φ(2)]
∣∣∣ (y, t) . t−ε0 ‖φ(1) − φ(2)‖n−2+σ,α (8.11)

hold. From (8.10) and (8.11), A1 has a fixed point φ in the set of functions
‖φ‖n−2s+σ,α ≤ ct−ε0 for suitable large constant c > 0. From the Contraction
Mapping Theorem, we obtain a solution to (2.11). Then the rest argument to
the stability part of Theorem 8.1 is the same as [2], we omit it.

9. Appendix

9.1. Proof of Lemma 6.1. Let us recall from [9] and [32] that

Qk(x) = U(x)−
k∑
j=1

Uj(x) + φ̃(x) with U(x) =

(
2

1 + |x|2

)n−2
2

and

Uj(x) = ζ
−n−2

2

k U(ζ−1
k (x− ξj)).

Here ζk is a positive constant satisfying ζk ∼ k−2, ξj =
√

1− ζ2
k(nj , 0), nj =

(cos θj , sin θj , 0), θj = 2π
k (j − 1) and φ̃ is a small term than U(x) −

∑k
j=1 Uj(x).

Let us introduce the functions

Z0(x) =
n− 2

2
U(x) +∇U(x) · x,

π0(x) =
n− 2

2
φ̃(x) +∇φ̃(x) · x

and

Zα(x) =
∂

∂xα
U(x), πα(x) =

∂

∂xα
φ̃(x) for α = 1, . . . , n.

For l = 1, . . . , k, define

Z0l(x) =
n− 2

2
Ul(x) +∇Ul(x) · (x− ξl),

From (1.11) and (1.12),

z0(x) = Z0(x)−
k∑
l=1

[
Z0l(x) +

√
1− ζ2

k cos θl
∂

∂x1
Ul(x)

+
√

1− ζ2
k sin θl

∂

∂x2
Ul(x)

]
+ π0(x).
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For l = 1, . . . , k, define

Z1l(x) =
√

1− ζ2
k

[
cos θl

∂

∂x1
Ul(x) + sin θl

∂

∂x2
Ul(x)

]
,

Z2l(x) =
√

1− ζ2
k

[
− sin θl

∂

∂x1
Ul(x) + cos θl

∂

∂x2
Ul(x)

]
,

Zαl(x) =
∂

∂xα
Ul(x), for α = 3, . . . , n.

Then we have

z0(x) = Z0(x)−
k∑
l=1

[Z0l(x) + Z1l(x)] + π0(x), (9.1)

z1(x) = Z1(x)−
k∑
l=1

∂

∂x1
Ul(x) + π1(x)

= Z1(x)−
k∑
l=1

[cos θlZ1l(x)− sin θlZ2l(x)]√
1− ζ2

k

+ π1(x),

(9.2)

z2(x) = Z2(x)−
k∑
l=1

∂

∂x2
U2(x) + π2(x)

= Z2(x)−
k∑
l=1

[sin θlZ1l(x) + cos θlZ2l(x)]√
1− ζ2

k

+ π2(x),

(9.3)

and

zα(x) = Zα(x)−
k∑
l=1

Zαl + πα(x) for α = 3, · · · , n. (9.4)

Moreover, the following identities hold,

zn+1(x) =

k∑
l=1

Z2l(x) + x2π1(x)− x1π2(x), (9.5)

zn+2(x) =

k∑
l=1

√
1− ζ2

k cos θlZ0l(x)−
k∑
l=1

√
1− ζ2

k cos θlZ1l(x)

− 2x1π0(x) + |x|2π1(x),

(9.6)

zn+3(x) =

k∑
l=1

√
1− ζ2

k sin θlZ0l(x)−
k∑
l=1

√
1− ζ2

k sin θlZ1l(x)

− 2x2π0(x) + |x|2π2(x),

(9.7)

zn+α+1(x) =
√

1− ζ2
k

k∑
l=1

cos θlZαl(x) + x1πα(x), for α = 3, . . . , n, (9.8)

z2n+α−1(x) =
√

1− ζ2
k

k∑
l=1

sin θlZαl(x) + x2πα(x), for α = 3, . . . , n. (9.9)

Then we have the following estimations,
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Lemma 9.1.∫
Rn
Zαl(x)Z0(x)dx =

∫
Rn
Z2

0 (x)dx+O(k−1) if α = 0, l = 0,

= O(k−1) otherwise,

(9.10)

∫
Rn
Zαl(x)Zβ(x)dx =

∫
Rn
Z2

1 (x)dx+O(k−1) if α = β ∈ {1, · · · , n}, l = 0,

= O(k−1) otherwise,

(9.11)∫
Rn
Zαl(x)Z0j(x)dx =

∫
Rn
Z2

0 (x)dx+O(k−1) if α = 0, l = j,

= O(k−1) otherwise,

(9.12)

∫
Rn
Zαl(x)Zβj(x)dx =

∫
Rn
Z2

1 (x)dx+O(k−1) if α = β ∈ {1, · · · , n}, l = j,

= O(k−1) otherwise,

(9.13)∫
Rn

|x|2 − 2

(1 + |x|2)
n−2
2 +1

Zβj(x)dx

=


∫
Rn

(|x|2 − 2)

(1 + |x|2)
n−2
2 +1

Z0(x)dx+O(k−1) if β = 0, j = 0,

O(k−1) otherwise,

(9.14)

∫
Rn

xi

(1 + |x|2)
n−2
2 +1

Zβj(x)dx

=


∫
Rn

xi

(1 + |x|2)
n−2
2 +1

Zi(x)dx+O(k−1) if β = 0, j = i ∈ {1, · · · , n},

O(k−1) otherwise.

(9.15)

Proof. We prove (9.12). Let η > 0 be a small fixed real number independent from
k. Then∫

Rn
Zαl(x)Z0j(x)dx =

∫
B(ξl,

η
k )

Zαl(x)Z0l(x)dx+

∫
Rn\B(ξl,

η
k )

Zαl(x)Z0j(x)dx

:= i1 + i2.

Change of variable via x = ξl + ζky, we obtain

i1 =

∫
B(0, η

kζk
)

Zα(x)Z0(x)dx

=

(∫
Rn
Z2

0 (x)dx+O((ζkk)n)

)
if α = 0,

= 0 if α 6= 0.

As for the term i2, decompose

i2 =

∫
Rn\∪kj=1B(ξj ,

η
k )

Zαl(x)Z0j(x)dx+
∑
j 6=l

∫
B(ξj ,

η
k )

Zαl(x)Z0j(x)dx = i21 + i22.
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i21 can be estimated as

|i21| ≤ Cζn−2
k

∫ ∞
{|x|≥ ηk }

1

|x|2n−4
dx = Cζn−2

k

∫ ∞
η
k

rn−1

r2n−4
dr

≤ Cζn−2
k kn−4 = O

(
1

k

)
.

And

|i22| ≤ C
∑
j 6=l

∫
B(ξj ,

η
k )

ζ
n−2
2

k

|x− ξl|n−2
Z0j(x)dx ≤ Cζ

n−2
2

k kn−2

∫ η
k

0

rn−1

rn−2
dr

≤ Cζ
n−2
2

k kn−4 ≤ Cζk = O

(
1

k

)
,

where C are generic positive constants independent of k. Hence we have (9.12).
The proofs of (9.10), (9.11), (9.13), (9.14) and (9.15) are similar, we omit them.
This concludes the proof. �

Then Lemma 6.1 follows from Lemma 9.1, (9.1)-(9.9) and Proposition 2.1 of [32]
by long but easy estimates.

9.2. Proof of (2.30). First, we claim that∫
Rn
|Q|p−1(y)Z0(y)dy =

∫
Rn
Up−1(y)Z0(y)dy +O

(
1

ks

)
(9.16)

for some small s > 0. Indeed, we have∫
Rn
|Q|p−1(y)Z0(y)dy

=

∫
Rn

∣∣∣∣∣∣U(y)−
k∑
j=1

Uj(y) + φ̃(y)

∣∣∣∣∣∣
p−1

Z0(y)dy

=

∫
Rn
Up−1(y)Z0(y)dy + (p− 1)

∫
Rn
Up−2(y)

∣∣∣∣∣∣−
k∑
j=1

Uj(y) + φ̃(y)

∣∣∣∣∣∣Z0(y)dy

+O

 k∑
j=l

∫
Rn
|Uj |p−1(y)Z0(y)dy

+O

(∫
Rn
|φ̃(y)|p−1(y)Z0(y)dy

)

=

∫
Rn
Up−1(y)Z0(y)dy +O

 k∑
j=1

∫
Rn
Up−2(y)Uj(y)Z0(y)dy


+O

 k∑
j=l

∫
Rn
|Uj |p−1(y)Z0(y)dy

+O

(∫
Rn
|φ̃(y)|p−1(y)Z0(y)dy

)

+O

(∫
Rn
Up−2(y)

∣∣∣φ̃(y)
∣∣∣Z0(y)dy

)
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and ∫
Rn
|Uj |p−1(y)Z0(y)dy = 4

∫
Rn

ζ2
k

(ζ2
k + |y − ξj |2)2

Z0(y)dy

= 4ζn−2
k

∫
Rn

1

(1 + |z|2)2
Z0(ζkz + ξj)dy

≤ Cζn−2
k

∫
Rn

1

(1 + |z|2)2

1

|ζkz + ξj |n−2 dy

= Cζn−2
k

∫
|z|≤ 1

2ζk

1

(1 + |z|2)2

1

|ζkz + ξj |n−2 dy

+ Cζn−2
k

∫
|z|≥ 1

2ζk

1

(1 + |z|2)2

1

|ζkz + ξj |n−2 dy

= Cζn−2
k

∫
|z|≤ 1

2ζk

1

(1 + |z|2)2

1

|ξj |n−2

(
1 +O

(
ζkz

|ξj |

))
dy

+ Cζn−2
k

∫
|z|≥ 1

2ζk

1

(1 + |z|2)2

1

|ζkz|n−2

(
1 +O

(
|ξj |
ζkz

))
dy

= O
(
ζ2
k

)
= O

(
1

k4

)
,

∫
Rn
Up−2(y)Uj(y)Z0(y)dy ≤ C

∫
Rn

ζ
n−2
2

k

(ζ2
k + |y − ξj |2)

n−2
2

1

(1 + |y|)4
dy

= Cζ
n
2 +1

k

∫
Rn

1

(1 + |z|2)
n−2
2

1

(1 + |ζkz + ξj |)4
dy

≤ Cζ
n
2 +1

k

∫
Rn

1

(1 + |z|2)
n−2
2

1

|ζkz + ξj |4
dy

= Cζ
n
2 +1

k

∫
|z|≤ 1

2ζk

1

(1 + |z|2)
n−2
2

1

|ζkz + ξj |4
dy

+ Cζ
n
2 +1

k

∫
|z|≥ 1

2ζk

1

(1 + |z|2)
n−2
2

1

|ζkz + ξj |4
dy

= Cζ
n
2 +1

k

∫
|z|≤ 1

2ζk

1

(1 + |z|2)
n−2
2

1

|ξj |4

(
1 +O

(
ζkz

|ξj |

))
dy

+ Cζ
n
2 +1

k

∫
|z|≥ 1

2ζk

1

(1 + |z|2)
n−2
2

1

|ζkz|4

(
1 +O

(
|ξj |
ζkz

))
dy

= O
(
ζ
n
2−1

k

)
,∫

Rn
|φ̃(y)|p−1(y)Z0(y)dy = O

(
k−

n
q

4
n−2

∫
Rn

1

(1 + |y|)n+2
dy

)
= O

(
k−

n
q

4
n−2

)
,∫

Rn
Up−2(y)

∣∣∣φ̃(y)
∣∣∣Z0(y)dy = O

(
k−

n
q

∫
Rn

1

(1 + |y|)n+2
dy

)
= O

(
k−

n
q

)
hold. (9.16) follows from the above estimates. Similarly, we have∫

Rn
|Q|p−1(y)Z0l(y)dy =

∫
Rn
|Ul|p−1(y)Z0l(y)dy +O

(
1

k1+s

)
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and ∫
Rn
|Q|p−1(y)Z1l(y)dy =

∫
Rn
|Ul|p−1(y)Z1l(y)dy +O

(
1

k1+s

)
.

Moreover,

−p
∫
Rn
Up−1(y)Z0(y)dy =

n− 2

2

∫
Rn
Up(y)dy > 0,

−p
∫
Rn
|Ul|p−1(y)Z0l(y)dy = ζ

n
2−1

k

(
−p
∫
Rn
Up−1(y)Z0(y)dy

)
= ζ

n
2−1

k

n− 2

2

∫
Rn
Up(y)dy,

∫
Rn
|Ul|p−1(y)Z1l(y)dy = 0.

Then from (9.1),

− p
∫
Rn
|Q|p−1(y)z0(y)dy

= −p
∫
Rn
|Q|p−1(y)Z0(y)dy + p

k∑
l=1

∫
Rn
|Q|p−1(y)Z0l(y)dy

+ p

k∑
l=1

∫
Rn
|Q|p−1(y)Z1l(y)dy − p

∫
Rn
π0(y)Z0l(y)dy

= −p
∫
Rn
Up−1(y)Z0(y)dy + p

k∑
l=1

∫
Rn
|Ul|p−1(y)Z0l(y)dy

+ p

k∑
l=1

∫
Rn
|Ul|p−1(y)Z1l(y)dy − p

∫
Rn
π0(y)Z0l(y)dy +O

(
1

ks

)
= (1 + kζ

n
2−1

k )
n− 2

2

∫
Rn
Up(y)dy +O

(
1

ks

)
which is positive when k is large. This proves c1 > 0 when k0 is large enough.

Finally, we prove c2 > 0. From (9.1), z0(y)− Dn,k(2−|y|2)

(1+|y|2)
n
2

can be written as

z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

=

(
Z0(y)− n− 2

2

αn(2− |y|2)

(1 + |y|2)
n
2

)

−
k∑
l=1

(
Z0l(y)− ζ

n−2
2

k fn
(2− |y|2)

(1 + |y|2)
n
2

)

−
k∑
l=1

Z1l(y) + π0(y)− o(1)hn
(2− |y|2)

(1 + |y|2)
n
2
, (k → +∞).
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Direct computation yields that∫
Rn

(
Z0(y)− n− 2

2

αn(2− |y|2)

(1 + |y|2)
n
2

)
z0(y)dy

=

∫
Rn

(
Z0(y)− n− 2

2

αn(2− |y|2)

(1 + |y|2)
n
2

)
Z0(y)dy +O

(
1

k

)
= αn

n− 2

2

√
π2−nΓ

(
n
2 − 1

)
Γ
(
n+1

2

) +O

(
1

k

)
,

k∑
l=1

∫
Rn

(
Z0l(y)− ζ

n−2
2

k fn
(2− |y|2)

(1 + |y|2)
n
2

)
z0(y)dy = O

(
1

k

)
,

k∑
l=1

∫
Rn
Z1l(y)z0(y)dy = O

(
1

k

)
,

k∑
l=1

∫
Rn

(
π0(y)− o(1)hn

(2− |y|2)

(1 + |y|2)
n
2

)
z0(y)dy = O

(
1

k

)
.

Therefore,∫
Rn

(
z0(y)− Dn,k(2− |y|2)

(1 + |y|2)
n
2

)
z0(y)dy = αn

n− 2

2

√
π2−nΓ

(
n
2 − 1

)
Γ
(
n+1

2

) +O

(
1

k

)
which is positive when k is large enough. Hence c2 > 0 if k0 is sufficiently large.
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