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Abstract. We study the quantitative stability for the classical Brezis-Nirenberg problem as-

sociated with the critical Sobolev embedding H1
0 (Ω) ↪→ L

2n
n−2 (Ω) in a smooth bounded domain

Ω ⊂ Rn (n ≥ 3). To the best of our knowledge, this work presents the first quantitative stability
result for the Sobolev inequality on bounded domains. A key discovery is the emergence of un-
expected stability exponents in our estimates, which arise from the intricate interaction among
the nonnegative solution u0 and the linear term λu of the Brezis–Nirenberg equation, bubble
formation, and the boundary effect of the domain Ω. One of the main challenges is to capture
the boundary effect quantitatively, a feature that fundamentally distinguishes our setting from
the Euclidean case treated in [20, 31, 22] and the smooth closed manifold case studied in [15].
In addressing a variety of difficulties, our proof refines and streamlines several arguments from
the existing literature while also resolving new analytical challenges specific to our setting.

1. Introduction

1.1. Backgrounds. The Brezis-Nirenberg problem is one of the most celebrated problems in
nonlinear analysis. It is formulated as

−∆u− λu = up in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where λ ∈ R, p := 2∗ − 1 = n+2
n−2 , and Ω ⊂ Rn (n ≥ 3) is a smooth bounded domain.1 Equation

(1.1) was first introduced by Brezis and Nirenberg in their groundbreaking work [11], which is
closely linked to the critical Sobolev embedding via the Rayleigh quotient

Qλ(u) :=

∫
Ω(|∇u|2 − λu2)dx

∥u∥2
Lp+1(Ω)

, u ∈ H1
0 (Ω) \ {0},

with associated energy threshold

Sλ := inf
u∈H1

0 (Ω)\{0}
Qλ(u).

When λ = 0, the constant S0 coincides with the best constant of the Sobolev inequality in Rn

S0

(∫
Rn

|u|p+1dx

) 2
p+1

≤
∫
Rn

|∇u|2dx for all u ∈ D1,2(Rn), (1.2)
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Ω and u = 0 on ∂Ω. This paper is primarily concerned with its non-negative solutions, that is, solutions to (1.1).
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where D1,2(Rn) is the closure of the space C∞
c (Rn) with respect to the norm ∥∇u∥L2(Rn). It

is well-known that S0 is achieved if and only if u is a constant multiple of the Aubin-Talenti
bubbles [3, 55] defined as

Uδ,ξ(x) = an

(
δ

δ2 + |x− ξ|2

)n−2
2

, ξ ∈ Rn, δ > 0, an = (n(n− 2))
n−2
4 . (1.3)

The selection of the dimensional constant an guarantees that U := U1,0 solves the associated
Euler-Lagrange equation

−∆u = |u|p−1u in Rn. (1.4)

In view of the Sobolev inequality, all solutions to (1.4) are critical points of the energy functional

J(u) =
1

2

∫
Rn

|∇u|2dx− 1

p+ 1

∫
Rn

|u|p+1dx for u ∈ D1,2(Rn),

and all Aubin-Talenti bubbles share the same energy level: J(Uδ,ξ) =
1
nS

n
2
0 .

A key role is played by the critical parameter

λ∗ := inf{λ > 0 : Sλ < S0}. (1.5)

In their seminal work [11], Brezis and Nirenberg demonstrated that for n ≥ 4, positive solutions
exist for all λ ∈ (0, λ1), where λ∗ = 0 and λ1 is the first Dirichlet eigenvalue of −∆ on Ω. In
dimension n = 3, they showed that λ∗ > 0, and established existence results for λ ∈ (λ∗, λ1). On
the unit ball Ω = B(0, 1), explicit computation yields λ∗ = λ1/4. Nonexistence results emerge
from various mechanisms: Testing the equation against the first eigenfunction eliminates the
possibility of positive solutions when λ ≥ λ1, and Pohozaev’s identity [51] prohibits nontrivial
solutions for λ ≤ 0 in star-shaped domains. Conversely, Bahri and Coron [4] illustrated that
certain topological features can allow for existence even at λ = 0.

Apart from these existence results, the Brezis-Nirenberg problem (1.1) serves as a fundamental
model for understanding bubbling phenomena in nonlinear PDEs. When λ is properly chosen,
solutions exhibit rich concentration behaviors. Early contributions by Han [36] and Rey [52]
characterized single-bubble blow-up profiles for n ≥ 4, which was extended to the case n = 3 by
Druet [27]. The existence of single- or multi-bubble solutions concentrating at distinct isolated
points was studied by Rey [52] and Musso and Pistoia [46] for n ≥ 5, and by Musso and Salazar
[47] for n = 3, and by Pistoia, Rago, and Vaira [50] for n = 4. Furthermore, Cao, Luo, and Peng
[12] studied the number of concentrated solutions for n ≥ 6, Druet and Laurain [29] examined the
Pohozaev obstruction for n = 3, and König and Laurain [41, 42] conducted a fine multi-bubbles
analysis for n ≥ 3. In addition, it is worth noting that, to the best of our knowledge, the existence
of positive cluster or tower solutions for the lower-dimensional Brezis–Nirenberg problem remains
an open question, while the nonexistence of such solutions for the higher-dimensional case (n ≥ 5)
in symmetric domains, as λ → 0, was established by Cerqueti [14]. This problem appears to
be even more challenging than the sign-changing case, which has been extensively studied. For
the results concerning sign-changing solutions, we refer interested readers to the recent papers
[44, 54] and the references therein.

In this paper, we aim to investigate the quantitative stability of the Brezis-Nirenberg problem,
a topic that has attracted considerable attention of researchers, with numerous generalizations
and refinements in various directions.

One prominent line of research concerns the stability of functional inequalities. The study
of sharp functional inequalities naturally proceeds through three stages: Identifying optimal
constants, characterizing extremal functions, and understanding quantitative stability. Once
extremal functions are established, a fundamental question arises: How does the deficit–the
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difference between the two sides of the inequality at the sharp constant–influence the distance
to the set of extremals? This stability question was initially posed by Brezis and Lieb [10] and
subsequently resolved for the critical Sobolev inequality (1.2) by Bianchi and Egnell [7], who
provided a quantitative estimate regarding the distance to Aubin-Talenti bubbles in D1,2(Rn).
Extending the Bianchi-Egnell stability result to general Lp-Sobolev inequalities has required
the development of novel techniques, with major contributions from Cianchi, Figalli, Maggi,
Neumayer, Pratell and Zhang [19, 32, 33, 34]. Related advances have been developed for a
variety of Sobolev-type inequalities [25, 26, 56, 58], and so on. Furthermore, a recent progress has
also been achieved in geometric contexts, including product spaces [35] and general Riemannian
manifolds [30, 49, 48, 1, 8]. Notably, König’s recent breakthroughs [38, 39, 40] on the attainability
of the sharp Bianchi-Egnell constant represent a significant milestone in the pursuit of optimal
stability constants.

Another significant direction focuses on stability through the viewpoint of the Euler–Lagrange
equation induced by a sharp inequality. This perspective refines the classical concentration–
compactness principle (refer to Theorem A) by providing explicit convergence rates. In a seminal
work [20], Ciraolo, Figalli, and Maggi established the sharp stability result near a single-bubble
for the Sobolev inequality in dimensions n ≥ 3, with extensions to multiple-bubble configurations
by Figalli and Glaudo [31] and Deng, Sun, and Wei [22]. Specifically, suppose that ν ∈ N and u is

a nonnegative element in D1,2(Rn) with (ν− 1
2)S

n/2
0 ≤ ∥u∥2D1,2(Rn) ≤ (ν+ 1

2)S
n/2
0 and sufficiently

small Γ(u) := ∥∆u+u
n+2
n−2 ∥(D1,2(Rn))−1 . Then there is a constant C > 0 depending only on n and

ν such that

∥∥∥∥∥u−
ν∑

i=1

Ui

∥∥∥∥∥
D1,2(Rn)

≤ C


Γ(u) if n ≥ 3, ν = 1 (by Ciraolo, Figalli and Maggi [20]),

Γ(u) if 3 ≤ n ≤ 5, ν ≥ 2 (by Figalli and Glaudo [31]),

Γ(u)| log Γ(u)|
1
2 if n = 6, ν ≥ 2 (by Deng, Sun, and Wei [22]),

Γ(u)
n+2

2(n−2) if n ≥ 7, ν ≥ 2 (by Deng, Sun, and Wei [22])

(1.6)

for some bubbles U1, . . . , Uν and this estimate is optimal. These results have been further gener-
alized to a broad range of inequalities, including the fractional Sobolev inequality [2, 23, 16], the
Caffarelli-Kohn-Nirenberg inequality [56, 59], the logarithmic Sobolev inequality [57], Sobolev
inequalities involving p-Laplacian [21, 45], the subcritical case [18], as well as settings on the
hyperbolic spaces [5, 6] and general Riemannian manifolds [15, 17], and so forth.

Beyond their intrinsic interest, quantitative stability estimates have powerful applications in
nonlinear PDE dynamics, such as the asymptotic behavior of solutions to the Keller-Segel system
[13] and the fast diffusion equation [20, 31, 23, 43].

Our present work is interested in the latter direction, devoted to the quantitative stability of
almost solutions to the Euler-Lagrange equation associated with the inequality H1

0 (Ω) ↪→ L2∗(Ω)
in bounded domains Ω. We begin with a well-known global compactness result associated with
the functional corresponding to (1.1), commonly referred to as Struwe’s decomposition. This
result was established in [53, Proposition 2.1], [9, Theorem 2] and [4, Proposition 4], which we
restate below.

Theorem A. Let Ω be a smooth open bounded domain in Rn with n ≥ 3 and λ1 > 0 be the first
eigenvalue of −∆ with Dirichlet boundary condition in Ω. For λ ∈ (0, λ1), we endow the Sobolev
space H1

0 (Ω) with the norm

∥u∥H1
0 (Ω) :=

[∫
Ω

(
|∇u|2 − λu2

)
dx

] 1
2

,

and denote by (H1
0 (Ω))

∗ its dual space.
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Let {um}m∈N be a sequence of nonnegative functions in H1
0 (Ω) such that

∥um∥H1
0 (Ω) ≤ C0 and ∥∆um + λum + upm∥(H1

0 (Ω))∗ → 0 as m → ∞

for some constant C0 > 0. Then, up to a subsequence, there exist a nonnegative function

u0 ∈ C∞(Ω), an integer ν ∈ N ∪ {0} satisfying ν ≤ C2
0S

−n/2
0 , and a sequence of parameters

{(δ1,m, . . . , δν,m, ξ1,m, . . . , ξν,m)}m∈N ⊂ (0,∞)ν × Ων such that the followings hold:

- u0 is a smooth solution to (1.1). By the strong maximum principle, we have either u0 > 0
or u0 = 0 in Ω.

- For all 1 ≤ i ̸= j ≤ ν, we have that δi,m → 0 and

d(ξi,m, ∂Ω)

δi,m
→ ∞,

δi,m
δj,m

+
δj,m
δi,m

+
|ξi,m − ξj,m|2

δi,mδj,m
→ ∞ as m → ∞.

- It holds that ∥∥∥∥um −
(
u0 +

ν∑
i=1

Uδi,m,ξi,m

)∥∥∥∥
H1

0 (Ω)

→ 0 as m → ∞.

1.2. Main results. Our objective is to derive a quantitative version of above decomposition.
To this end, we consider the following two auxiliary equations:{

−∆u = Up
δ,ξ in Ω,

u = 0 on ∂Ω,
(1.7)

and {
−∆u− λu = Up

δ,ξ in Ω,

u = 0 on ∂Ω.
(1.8)

Before presenting our main results, we introduce the following assumption:

Assumption B. Given any open bounded set Ω ⊂ Rn with n ≥ 3 and any λ ∈ (0, λ1). Suppose
that a nonnegative function u in H1

0 (Ω) satisfies∥∥∥∥u−
(
u0 +

ν∑
i=1

Uδ̃i,ξ̃i

)∥∥∥∥
H1

0 (Ω)

≤ ε0 (1.9)

for some small ε0 > 0 and ν ∈ N. Here, u0 is a solution of (1.1) and (δ̃i, ξ̃i) ∈ (0,∞)×Ω satisfies

max
i=1,...,ν

δ̃i + max
i=1,...,ν

δ̃i

d(ξ̃i, ∂Ω)
≤ ε0

and

max


(
δ̃i

δ̃j
+

δ̃j

δ̃i
+

|ξ̃i − ξ̃j |2

δ̃iδ̃j

)−n−2
2

: i, j = 1, . . . , ν, i ̸= j

 ≤ ε0.

If u0 > 0 in Ω, we further assume that u0 is non-degenerate in the sense that the only
H1

0 (Ω)-solution to ∆ϕ+ λϕ+ pup−1
0 ϕ = 0 in Ω is identically zero in Ω. For later use, we define

Γ(u) := ∥∆u+ λu+ up∥(H1
0 (Ω))∗ .

We note that the condition maxi
δ̃i

d(ξ̃i,∂Ω)
≤ ε0 admits two possibilities: Either ξ̃i is away from

∂Ω or close to ∂Ω. Accordingly, we divide our main results into two theorems.

Our first theorem addresses the case where ξ̃i is away from the boundary of Ω, covering both
single and multi-bubble cases.
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Theorem 1.1. Let λ∗ ≥ 0 be the number in (1.5) and φ3
λ(x) = H3

λ(x, x) be the function defined
by (2.4) below. Under the Assumption B, we further assume the followings:

- Each ξ̃i lies on a compact set of Ω for i = 1, . . . , ν.
- If n = 3 and u0 > 0, then λ ∈ (λ∗, λ1), which ensures the existence of such u0.

- If n = 3, u0 = 0, and ν ≥ 2, then λ ∈ (λ∗, λ1) and φ3
λ(ξ̃i) < 0 for each i = 1, . . . , ν.2

Then, by possibly reducing ε0 > 0, one can find a large constant C = C(n, ν, λ, u0,Ω) > 0 and
functions PU1 := PUδ1,ξ1 , . . . , PUν := PUδν ,ξν satisfying (1.7) if either [n = 3, 4 and u0 > 0] or
n ≥ 5, and satisfying (1.8) if n = 3, 4 and u0 = 0, such that∥∥∥∥u−

(
u0 +

ν∑
i=1

PUi

)∥∥∥∥
H1

0 (Ω)

≤ Cζ(Γ(u)), (1.10)

where ζ ∈ C0([0,∞)) satisfies

ζ(t) =


t if [n = 3, 4, ν ≥ 1] or [n = 5, ν ≥ 1, u0 > 0] or [n ≥ 7, ν = 1],

t
3
4 if [n = 5, ν ≥ 1, u0 = 0],

t| log t|
1
2 if [n = 6, ν ≥ 1],

t
n+2

2(n−2) if [n ≥ 7, ν ≥ 2]

(1.11)

for t > 0.
The estimate above is optimal in the sense that the function ζ cannot be improved.

Before we proceed further, we leave some remarks.

Remark 1.2.

(1) Compared to the Euclidean case summarized in (1.6), the new exponents appear when
[n = 5, u0 = 0, ν ≥ 1] or [n = 6, ν = 1].

(2) Solutions to certain specific perturbation of the equation ∆u+λu+up = 0 in Ω cannot exhibit
boundary blow-up, thereby fulfilling the first additional assumption in Theorem 1.1. Moreover,
in some cases, only one of the conditions u0 = 0 or ν = 0 is permitted; refer to e.g. [41, 28].

(3) When u0 > 0, the non-degeneracy assumption on u0 is generic; see [37, Lemma 4.9]. In the
case u0 = 0 and n = 3 or 4, defining PUi via solutions to (1.8) rather than (1.7) turns out to
be more natural; see Subsection 1.3(2). Similar observation was made in constructing positive
solutions to the Brezis-Nirenberg-type problem in low dimensions; see e.g. [24].

(4) For n = 3, u0 = 0, and ν ≥ 2, we use the condition φ3
λ(ξ̃i) < 0 so that no sign competition

occurs between the terms
∫
Ω I2PZ0

j in Lemma 2.8 and
∫
Ω I3PZ0

j in Lemma 2.7.

(5) If n = 5, u0 = 0, and ν ≥ 1, the linear term λu is the dominant factor determining ζ(t) = t3/4

in (1.11). In this case, one may instead choose the projected bubble PUδ,ξ as in (1.8) rather
than (1.7). Since (1.8) already incorporates the effect of the linear term, it leads to the stability

function ζ(t) = t, as opposed to t3/4, and this improved rate can again be shown to be sharp.
Such a sensitive dependence on the choice of the test function is a distinctive characteristic of the
Brezis-Nirenberg problem in Ω, and does not appear in the Euclidean setting or in the Yamabe
problem.

Our second main result concerns the boundary effect when ξ̃i may approach ∂Ω. We fully
characterize the single-bubble case in this setting.

2Druet [27] proved that the number λ∗ in (1.5) can be characterized as λ∗ = sup{λ > 0 : minΩ φ3
λ > 0}.
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Theorem 1.3. Under the Assumption B, we further assume that ν = 1, ξ̃1 ∈ Ω, and λ ∈
(λ∗, λ1) when n = 3 and u0 > 0. Then, by possibly reducing ε0 > 0, one can find a large constant
C = C(n, λ, u0,Ω) > 0 and a function PU1 := PUδ1,ξ1 satisfying (1.7) if either [n = 4, 5 and
u0 > 0] or n ≥ 6, and satisfying (1.8) if either n = 3 and [n = 4, 5 and u0 = 0], such that

∥u− (u0 + PU1)∥H1
0 (Ω) ≤ Cζ(Γ(u)), (1.12)

where ζ ∈ C0([0,∞)) satisfies

ζ(t) =


t if n = 3 or [n = 4, u0 = 0],

t
n−2
n−1 if [n = 4, u0 > 0] or n = 5,

t| log t|
1
2 if n = 6,

t
n+2

2(n−1) if n ≥ 7

(1.13)

for t > 0. The above estimate is also optimal.

Remark 1.4.

(1) Even in single-bubble case, the surprising new exponents in (1.13) emerge due to the possi-

bility d(ξ̃1, ∂Ω) → 0. This phenomenon occurs exclusively in domains with nonempty boundary.
The multi-bubble case remains an open problem due to a serious technical issue. See Subsection
1.3(7).

(2) Unlike in Theorem 1.1, we choose PU1 to satisfy (1.8) for the cases [n = 3, u0 > 0] or
[n = 5, u0 = 0] to avoid difficulties arising from the boundary effects. We believe that this
choice is nearly unavoidable.

(3) Similar to Remark 1.2(5), when [n = 4, u0 > 0] or [n = 5, u0 > 0], choosing PUδ,ξ as
in (1.8) again yields the optimal stability function ζ(t) = t. In both cases, the sharp stability
function depends explicitly on the choice of the projected bubble PUδ,ξ within the framework of
this theorem.

As an application of Theorem 1.3 and Struwe’s profile decomposition Theorem A, we obtain
the following corollary.

Corollary 1.5. Let S0 > 0 be the sharp Sobolev constant in (1.2). We assume that every positive
solution to (1.1) is non-degenerate.

If u is a nonnegative function in H1
0 (Ω) with

∥u∥2H1
0 (Ω) ≤

3

2
S

n
2
0 , (1.14)

then there exists a constant C > 0 depending only on n, λ,Ω such that

inf

{∥∥∥∥u−
(
u0 +

ν∑
i=1

PUδi,ξi

)∥∥∥∥
H1

0 (Ω)

: u0 solves (1.1), PUδi,ξi ∈ B, ν = 0, 1

}
≤ Cζ(Γ(u)),

where ζ(t) satisfies (1.13) for t ∈ [0,∞) and

B :=
{
PUδ,ξ : PUδ,ξ satisfies (1.7) for n ≥ 6 or [n = 4, 5, u0 > 0]

and satisfies (1.8) for n = 3 or [n = 4, 5, u0 = 0], (δ, ξ) ∈ (0,∞)× Ω
}
.

Here
∑0

i=1 PUδi,ξi = 0.
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Remark 1.6. In this corollary, we modify the class of admissible functions u in (1.9) to those
with uniformly bounded energy as in (1.14). This necessitates assuming the non-degeneracy for
all positive solutions to (1.1), since u0 cannot be determined a priori. The proof proceeds by
contradiction, following an argument similar to that in [15, Section 6], and is therefore omitted.

1.3. Comments on the proof. Our proof is primarily inspired by the approaches developed
in [20, 31, 22, 15, 16]. To clarify the new technical challenges involved in our setting, we begin by
outlining a general strategy for proving quantitative stability of sharp inequalities in the critical
point setting:

(i) The starting point is that the infimum inf ∥u− (u0 +
∑ν

i=1 Vδ̃i,ξ̃i
)∥H1 can be achieved by

Vδi,ξi where Vδ,ξ is an appropriate bubble-like function, then ρ := u− (u0 +
∑ν

i=1 Vδi,ξi)
satisfies an auxiliary equation (e.g. (2.1)) along with certain orthogonality conditions, at
least in a Hilbert space framework.

(ii) By testing the equation of ρ with ρ itself, one can derive a rough estimate ∥ρ∥H1 ≲
∥f∥H−1 + ∥I∥H−1 where f := −∆u − λu − up, and I is an error term (in our setting,
I := I1 + I2 + I3 given by (2.2)). While this estimate may not be sufficient to achieve a
sharp stability function ζ, it can be often improved through a linear theory. In fact, the
linear theory provides a pointwise estimate of the main part ρ0 of ρ, leading to a refined
estimate of the form ∥ρ∥H1 ≲ ∥f∥H−1 + J1 where J1 is a small quantity.

(iii) By choosing suitable test functions originated from bubbles (see Subsection 1.3(7) below),
one can find another small quantity J2 such that J2 ≲ ∥f∥H−1 . If one can determine

a function ζ̃ such that J1 ≲ ζ̃(J2), the final stability function will be determined as

ζ(t) := max{t, ζ̃(t)} for small t > 0.
(iv) Once one finds special parameters (δi, ξi) and functions ρ and f satisfying ∥ρ∥H1 ≳

ζ(∥f∥H−1), then the nonnegative function u∗ = (u0 +
∑ν

i=1 Vδi,ξi + ρ)+ usually provides
an optimal example.

Although our proof could follow the procedures outlined above, several non-trivial and novel
challenges arise in our specific setting. We now present the new strategies devised to overcome
or mitigate these difficulties.

(1) Due to the presence of u0 and the linear term λu, more precise computations are needed for
the interactions among bubbles with various powers, as well as those between a bubble and u0,
for all dimensions n ≥ 3.

(2) The selection of bubble-like functions is subtle. For our problem, depending on the dimension
n and the solution u0 of (1.1), we make appropriate use of two different projected bubbles given
by (1.7) and (1.8).

Let us explain why we must define PUi via solutions of (1.8) in deducing Theorem 1.1 for
n = 3 or 4 and u0 = 0:

If n = 3 and u0 = 0, then the function PUi defined via (1.7) fails to produce any quantitative
estimates even in the single-bubble case due to the excessive size of ∥Uδ,ξ∥L6/5(Ω).

If n = 4, u0 = 0, and ν = 1, then such a definition yields a valid but a non-sharp estimate.
If n = 4, u0 = 0, and ν ≥ 2, then the use of the above-defined PUi fails completely, because

the interaction terms
∫
UiUj are not negligible compared to the presumably dominant term

maxi
∫
U2
i .

In Lemmas 2.1 and B.1, we rigorously analyze the behavior of the function PUδ,ξ defined via
(1.8), which may be independent of interests.
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As previously noted, there seems be no results on positive cluster or tower solutions for the low-
dimensional Brezis-Nirenberg problem. Our calculations take into account all possible bubbles
and may be helpful for constructing such solutions, should they exist.

(3) In [22, 16], the authors employed a pointwise estimate across all bubble configurations for
the main part of ρ in all dimensions n ≥ 6. Our proof of stability estimates (1.10) shows that
such an estimate is required only when n = 6 in our setting and [22, 16]. For the optimality
proof, a pointwise estimate for the main part of ρ is still needed in many other dimensions, but
only for specific configurations. This insight simplifies the technical aspects of the argument (cf.
[22, Lemmas 4.1, 4.2]). See Section 3, Subsection 4.2.

(4) To develop the linear theory for n = 6 in Section 3, we make extensive use of the repre-
sentation formula, which offers a unified and simplified proof compared to approaches based on
the maximum principle (cf. [22, Lemma 5.1]). This idea was initially developed in our previ-
ous work [16], where we studied the quantitative stability of the fractional Sobolev inequality

Ḣs(Rn) ↪→ L
2n

n−2s (Rn) of all orders s ∈ (0, n2 ).

(5) In Step (ii), many seminal works in the critical regime (see [20, 31, 22] and their generaliza-
tions, e.g., [6, 15, 16]) devote substantial effort to deriving appropriate coercivity inequalities. In
[22, Section 6], such inequalities play a crucial role in deducing a Sobolev norm estimate for the
term ρ1 := ρ − ρ0. In contrast, our approach provides a direct derivation of the Sobolev norm
estimate for ρ1 based solely on blow-up analysis (refer to Subsection 4.1). As a result, the proof
avoids coercivity inequalities entirely, greatly simplifying the argument again.

(6) Regarding the sharpness of our results, we conduct a comprehensive analysis of all admissible
forms of the function ζ, dealing with the linear (ζ(t) = t) and sublinear (ζ(t) ≫ t) regimes
through two distinct strategies. In the linear case, sharpness is verified by constructing a smooth
perturbation of u0 +

∑ν
i=1 PUi. For the sublinear case, a more delicate analysis is required for

the multiple bubble scenario whose idea differs from that in Rn, and it is important to identify
which of the dominant factors–interactions among u0, the boundary effect, the bubbles, and the
linear term λu–govern the exponent of ζ.

(7) In the proof of Theorem 1.3, the scenario in which d(ξ, ∂Ω) is small introduces a crucial
challenge: The projection of I1 + I2 + I3 in the direction of the dilation derivative δi∂δiVi of the
bubble-like function Vi has a negative leading term of the form −δn−2/d(ξ, ∂Ω)n−2; see (5.4). In
the single-bubble case, we address this projection by carefully analyzing all possible scenarios,
as detailed in Section 5. The reason that one primarily uses δi∂δiVi as a test function in both
Euclidean and manifold settings–instead of using a spatial derivative δi∂ξki

Vi–is that the latter

generally lead to weaker estimates. However, in our setting, it is sometimes necessary to consider
the projections of I1 + I2 + I3 in the direction δi∂ξki

Vi, since the dilation projection may suffer

from sign cancellations among its leading-order terms, weakening their overall effect. As such,
precise term-by-term estimates like (5.4) and (5.5) are indispensable.

In the multi-bubble case ν ≥ 2, these challenges become significantly more difficult. We
currently lack a clear strategy to effectively handle the competition between the negative term
involving d(ξi, ∂Ω) and the interaction between different bubbles. Additionally, integrals such as∫
Ω[(PUi)

p − Up
i ]Uj for i ̸= j and

∫
Ω[(
∑ν

i=1 PUi)
p −

∑ν
i=1(PUi)

p]PZ0
j (when n ≥ 3), and cross

terms like Uiw
in
3j and Uiw

out
3j (when n = 6, cf. Definition 3.1) in the linear theory, pose formidable

analytical obstacles.

Our structure of this paper is described as follows: In Section 2, we present some necessary
estimates for proving our main theorems. In Section 3, we improve the estimate for the main
part of ρ when n = 6 based on a linear theory. In Sections 4 and 5, we provide the detailed proofs
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of Theorem 1.1 and Theorem 1.3, respectively. In Appendix A, we include several elementary
estimates that are frequently used throughout the main text. In Appendix B, we give a proof
for an important lemma used in Section 5.

Notations. Here, we list some notations that will be frequently used later.

- N denotes the set of positive integers.

- Let (A) be a condition. We set 1(A) = 1 if (A) holds and 0 otherwise.

- For x ∈ Ω and r > 0, we write B(x, r) = {ω ∈ Ω : |ω − x| < r} and B(x, r)c = {ω ∈ Ω :
|ω − x| ≥ r}.

- We use the Japanese bracket notation ⟨x⟩ =
√
1 + |x|2 for x ∈ Rn.

- Unless otherwise stated, C > 0 is a universal constant that may vary from line to line and even
in the same line. We write a1 ≲ a2 if a1 ≤ Ca2, a1 ≳ a2 if a1 ≥ Ca2, and a1 ≃ a2 if a1 ≲ a2 and
a1 ≳ a2.

2. Setting and analysis of bubbles

2.1. Problem setting. By (1.9), there exist parameters (δ1, . . . , δν , ξ1, . . . , ξν) ⊂ (0,∞)ν × Ων

and ε1 > 0 small such that ε1 → 0 as ε0 → 0,∥∥∥∥u−
(
u0 +

ν∑
i=1

PUi

)∥∥∥∥
H1

0 (Ω)

= inf

{∥∥∥∥u−
(
u0 +

ν∑
i=1

PUδ̃i,ξ̃i

)∥∥∥∥
H1

0 (Ω)

:
(
δ̃i, ξ̃i

)
∈ (0,∞)× Ω, i = 1, . . . , ν

}
≤ ε1,

where PUi = PUδi,ξi , and

max
i

δi +max
i

δi
d(ξi, ∂Ω)

≤ ε1,

as well as

max

{(
δi
δj

+
δj
δi

+
|ξi − ξj |2

δiδj

)−n−2
2

: i, j = 1, . . . , ν

}
≤ ε1.

Throughout the paper, we write κi :=
δi

d(ξi,∂Ω) .

Setting σ :=
∑ν

i=1 PUi, ρ := u− (u0 + σ), and f := −∆u− λu− up, we have
−∆ρ− λρ− p(u0 + σ)p−1ρ = f + I0[ρ] + I1 + I2 + I3 in Ω,

ρ = 0 on ∂Ω,〈
ρ, PZk

i

〉
H1

0 (Ω)
:=

∫
Ω
∇ρ · ∇PZk

i − λρPZk
i = 0 for i = 1, . . . , ν and k = 0, . . . , n,

(2.1)

where

PZ0
i := δi

∂PUi

∂δi
, PZk

i := δi
∂PUi

∂ξki
for k = 1, . . . , n,

I0[ρ] := |u0 + σ + ρ|p−1(u0 + σ + ρ)− (u0 + σ)p − p(u0 + σ)p−1ρ,

I1 := (u0 + σ)p − up0 − σp,

I2 := σp −
ν∑

i=1

(PUi)
p, and I3 :=

ν∑
i=1

[∆PUi + λPUi + (PUi)
p] .

(2.2)

We recall a well-known non-degeneracy result: Given any δ > 0 and ξ = (ξ1, . . . , ξn) ∈ Rn,
the solution space of the linear problem

−∆v = pUp−1
δ,ξ v in Rn, v ∈ D1,2(Rn)
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is spanned by the functions

Z0
δ,ξ := δ

∂Uδ,ξ

∂δ
and Zk

δ,ξ := δ
∂Uδ,ξ

∂ξk
for k = 1, . . . , n.

We rewrite Ui := Uδi,ξi , Z
k := Zk

1,0, and Zk
i := Zk

δi,ξi
for i = 1, . . . , ν and k = 0, . . . , n.

Let us define four quantities
qij :=

[
δi
δj

+
δj
δi

+
|ξi − ξj |2

δiδj

]−n−2
2

, Q := max{qij : i, j = 1, . . . , ν} ≤ ε1,

Rij := max

{√
δi
δj
,

√
δj
δi
,
|ξi − ξj |√

δiδj

}
≃ q

− 1
n−2

ij , R :=
1

2
minRij .

(2.3)

2.2. Expansions of PUδ,ξ. Given the projected bubbles PUδ,ξ via either (1.7) or (1.8), we
expand them.

Lemma 2.1. Suppose that x, ξ ∈ Ω and δ > 0 is small. Then, 0 < PUδ,ξ ≤ Uδ,ξ in Ω, and for
any τ ∈ (0, 1), the following holds:

PUδ,ξ(x) = Uδ,ξ(x)− anδ
n−2
2 H(x, ξ) +O

(
δ

n+2
2 d(ξ, ∂Ω)−n

)
provided n ≥ 3 and PUδ,ξ is given by equation (1.7), and

PUδ,ξ(x)= Uδ,ξ(x) +
λ

2
anδ

n−2
2


−|x− ξ| if n = 3

− log |x− ξ| if n = 4
1

|x−ξ| − 4λ|x− ξ| if n = 5

− δ
n−2
2 anH

n
λ (x, ξ) + δ2−

n−2
2 Dn

(
x− ξ

δ

)

+

{
O(δ

5
2
−τ ) if n = 3, 5

O(δ3−τ ) if n = 4

}
+O

(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
provided n = 3, 4, 5 and PUδ,ξ is given by equation (1.8). Here, an = (n(n− 2))

n−2
4 (see (1.3)),

the function H(x, y) satisfies {
−∆xH(x, y) = 0 in Ω,

H(x, y) = 1
|x−y|n−2 on ∂Ω,

the function H3
λ(x, y) satisfies{

∆xH
3
λ(x, y) + λH3

λ(x, y) = −λ2

2 |x− y| in Ω,

H3
λ(x, y) =

1
|x−y| −

λ
2 |x− y| on ∂Ω,

(2.4)

the function H4
λ(x, y) satisfies{

∆xH
4
λ(x, y) + λH4

λ(x, y) = λ log |x− y| in Ω,

H4
λ(x, y) =

1
|x−y|2 − λ

2 log |x− y| on ∂Ω,
(2.5)

and the function H5
λ(x, y) satisfies{

∆xH
5
λ(x, y) + λH5

λ(x, y) = −λ2

2 |x− y| in Ω,

H5
λ(x, y) =

1
|x−y|3 + λ

2
1

|x−y| −
λ2

2 |x− y| on ∂Ω,
(2.6)

for each fixed y ∈ Ω. Besides, the function Dn = Dn(z) satisfies−∆Dn = λan

[
1

(1+|z|2)
n−2
2

− 1
|z|n−2

]
in Rn,

Dn ≈ |z|−(n−2)| log |z|| as |z| → ∞.
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Proof. The inequality 0 < PUδ,ξ ≤ Uδ,ξ in Ω holds by the maximum principle.
The proof for the case where PUδ,ξ satisfies (1.7), or it satisfies (1.8) with n = 3, can be

found in [52, Proposition 1] or [24, Lemma 2.2], respectively. Here, we provide a proof for PUδ,ξ

satisfying (1.8) that applies to n = 3, 4, 5 simultaneously.
Let Gλ(x, y) be the Green’s function of −∆−λ in Ω ⊂ Rn with Dirichlet boundary condition,

which solves {
−∆xGλ(x, y)− λGλ(x, y) = δy in Ω,

Gλ(x, y) = 0 on ∂Ω
(2.7)

in the sense of distributions. The function Gλ(x, y) is symmetric with respect to the two variables
x and y. Also, one can write

Gλ(x, y) =
1

(n− 2)|Sn−1|

[
1

|x− y|n−2
−Hλ(x, y)

]
,

where |Sn−1| is the surface area of the unit sphere Sn−1 in Rn and Hλ solves{
∆xHλ(x, y) + λHλ(x, y) = λ 1

|x−y|n−2 in Ω,

Hλ(x, y) =
1

|x−y|n−2 on ∂Ω.

We decompose Hλ(x, y) as

Hλ(x, y) =


λ
2 |x− y| if n = 3
λ
2 log |x− y| if n = 4

−λ
2

1
|x−y| + 2λ2|x− y| if n = 5

+Hn
λ (x, y)

and apply elliptic regularity theory to ensure that Hn
λ (x, y) ∈ C1,α(Ω× Ω) for any α ∈ (0, 1).

Next, we define

Sδ,ξ(x) = PUδ,ξ − Uδ,ξ + anδ
n−2
2 Hλ(x, ξ)− D̃n(x).

Here, D̃n(x) := δ2−
n−2
2 Dn(

x−ξ
δ ) so that

−∆D̃n = λan

[(
δ

δ2+|x−ξ|2

)n−2
2 − δ

n−2
2

|x−ξ|n−2

]
in Ω,

D̃n ≈ δ2+
n−2
2

|x−ξ|n−2

∣∣∣log |x−ξ|
δ

∣∣∣ on ∂Ω.

By observing that

Sδ,ξ(x) = −an

[(
δ

δ2 + |x− ξ|2

)n−2
2

− δ
n−2
2

|x− ξ|n−2

]
− D̃n(x) for x ∈ ∂Ω,

we obtain ∆Sδ,ξ + λSδ,ξ = λD̃n in Ω,

Sδ,ξ = O

(
δ2+

n−2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ,∂Ω)
δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
on ∂Ω.

We notice that

|Dn(z)| ≃


|z| if n = 3,

| log |z|| if n = 4,

|z|−1 if n = 5

as |z| → 0.
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Thus, elliptic estimates yield that ∥D̃3∥Lt ≲ δ
3
2
+ 3

t for any t > 3, ∥D̃4∥Lt ≲ δ1+
4
t for any t > 2,

and ∥D̃5∥Lt ≲ δ
1
2
+ 5

t for any t ∈ (52 , 5). Thus, we conclude for any τ ∈ (0, 1),

∥Sδ,ξ∥L∞(Ω) = O

({
δ

5
2
−τ if n = 3, 5

δ3−τ if n = 4

}
+ δ2+

n−2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
,

which completes the proof. □

Remark 2.2.

(1) To construct solutions to the Brezis-Nirenberg problem via a perturbative approach, addi-
tional information about Hn

λ (x, y) might be necessary. However, since the coefficient λ is fixed
in this paper, the C1,α regularity suffices for our purpose.

(2) Define φn
λ(x) := Hn

λ (x, x) for n = 3, 4, 5 and φ(x) := H(x, x) for n ≥ 3. Indeed, it is not
difficult to realize that φn

λ ∈ C∞(Ω) for n = 3, 4, 5 and φ ∈ C∞(Ω) for n ≥ 3. When d(x, ∂Ω) is
small enough, the following estimates hold:{

φn
λ(x) if n = 3, 4, 5

φ(x) if n ≥ 3

}
=

1

(2d(x, ∂Ω))n−2
[1 +O(d(x, ∂Ω))],{

|∇φn
λ(x)| if n = 3, 4, 5

|∇φ(x)| if n ≥ 3

}
=

2(n− 2)

(2d(x, ∂Ω))n−1
[1 +O(d(x, ∂Ω))].

(2.8)

We postpone their proofs to Appendix B.

Corollary 2.3. Suppose that x, ξ ∈ Ω and δ > 0 is small. For any τ ∈ (0, 1), it holds that

PZ0
δ,ξ(x) = Z0

δ,ξ(x)−
n− 2

2
anδ

n−2
2 H(x, ξ) +O

(
δ

n+2
2 d(ξ, ∂Ω)−n

)
provided n ≥ 3 and PUδ,ξ is given by equation (1.7), and

PZ0
δ,ξ(x)= Z0

δ,ξ(x) +
n− 2

4
λanδ

n−2
2


−|x− ξ| if n = 3

− log |x− ξ| if n = 4
1

|x−ξ| − 4λ|x− ξ| if n = 5

− n− 2

2
anδ

n−2
2 Hn

λ (x, ξ)

+δ∂δ

[
δ2−

n−2
2 Dn(

x− ξ

δ
)

]
+

{
O(δ

5
2
−τ ) if n = 3, 5

O(δ3−τ ) if n = 4

}

+O

(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
provided n = 3, 4, 5 and PUδ,ξ is given by equation (1.8).

Proof. We can argue as in the proof of Lemma 2.1. We omit the details. □

Corollary 2.4. Suppose that x, ξ ∈ Ω, δ > 0 is small, and k = 1, . . . , n. For any τ ∈ (0, 1), it
holds that

PZk
δ,ξ(x) = Zk

δ,ξ(x)− anδ
n
2 ∂ξkH(x, ξ) +O

(
δ

n+2
2 d(ξ, ∂Ω)−n

)
provided n ≥ 3 and PUδ,ξ is given by equation (1.7), and

PZk
δ,ξ(x)= Zk

δ,ξ(x) + anδ
n
2


λ

2

(x− ξ)k

|x− ξ| if n = 3

λ

2

(x− ξ)k

|x− ξ|2 if n = 4

− δ
n
2 an∂ξkH

n
λ (x, ξ) + δ∂ξk

[
δ2−

n−2
2 Dn

(
x− ξ

δ

)]

+


O(δ

5
2
−τ ) +O

(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
if n = 3

O(δ3−τ ) +O

(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2)

∣∣∣∣ log d(ξ, ∂Ω)

δ

∣∣∣∣+ d(ξ, ∂Ω)−n

])
if n = 4
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provided n = 3, 4 and PUδ,ξ is given by equation (1.8). Furthermore, if n = 5 and PUδ,ξ is given
by equation (1.8), then

PZk
δ,ξ(x) = Zk

δ,ξ(x) + anδ
n
2

[
λ

2

(x− ξ)k

|x− ξ|3
+ 2λ2 (x− ξ)k

|x− ξ|

]
− δ

n
2 an∂ξkH

n
λ (x, ξ)

+ δ∂ξk

[
δ2−

n−2
2 Dn

(
x− ξ

δ

)]
+ δ∂ξkSδ,ξ(x),

where the function Sδ,ξ satisfies

∥δ∂ξkSδ,ξ∥Lt(Ω) ≲ δ
1
2
+ 5

t +O
(
δ

n+2
2

[
d(ξ, ∂Ω)−(n−2) + δd(ξ, ∂Ω)−(n+1)

])
for any t ∈ (53 ,

5
2).

3

Proof. We notice that

|∇Dn(z)| ≃


| log |z|| if n = 3,

|z|−1 if n = 4,

|z|−2 if n = 5

as |z| → 0, and |∇Dn(z)| ≃ |z|−(n−2) as |z| → ∞.

Thus, elliptic estimates yield that ∥δ∂ξkD̃3∥Lt ≲ δ
3
2
+ 3

t for any t > 3, ∥δ∂ξkD̃4∥Lt ≲ δ1+
4
t for any

t ∈ (2, 4), and ∥δ∂ξkD̃5∥Lt ≲ δ
1
2
+ 5

t for any t ∈ (53 ,
5
2). Using these results, we employ the same

strategy in the proof of Lemma 2.1. □

2.3. L
2n
n+2 (Ω)-norm estimates for the terms I1, I2, and I3. We recall the quantities I1, I2,

and I3 from (2.2). We estimate their L
2n
n+2 (Ω)-norms.

Lemma 2.5. For each i ∈ {1, . . . , ν}, we assume that PUi = PUδi,ξi satisfies (1.7) if n ≥ 5 or
[n = 3, 4 and u0 > 0], and satisfies (1.8) if n = 3, 4 and u0 = 0. Then it holds that

∥I1∥
L

p+1
p (Ω)

+ ∥I2∥
L

p+1
p (Ω)

+ ∥I3∥
L

p+1
p (Ω)

≲



0 if n = 3, u0 = 0

max
i

δ2i | log δi| if n = 4, u0 = 0

max
i

δ
n−2
2

i if [n = 3, 4 and u0 > 0] or n = 5

max
i

δ2i | log δi|
2
3 if n = 6

max
i

δ2i , if n ≥ 7


+


max

i
κn−2
i if n = 3, 4, 5

max
i

κ4
i | log κi|

2
3 if n = 6

max
i

κ
n+2
2

i if n ≥ 7

+


Q if n = 3, 4, 5

Q| logQ|
2
3 if n = 6

Q
n+2

2(n−2) if n ≥ 7

1{ν≥2}

provided ϵ1 > 0 is small.

Proof. We begin by introducing an elementary inequality: For fixed m ∈ N, s > 1, and any
a1, . . . , am ≥ 0, it holds that

0 ≤

(
m∑
i=1

ai

)s

−
m∑
i=1

asi ≲
∑
i ̸=j

[
(ai + aj)

s − asi − asj
]
≲


∑
i ̸=j

as−1
i aj if s > 2,∑

i ̸=j

min{as−1
i aj , aia

s−1
j } if s ≤ 2.

3We have not deduced a pointwise estimate of |δ∂ξkSδ,ξ| for this case. Its Lt-estimate is sufficient for later use.



14 HAIXIA CHEN, SEUNGHYEOK KIM, AND JUNCHENG WEI

From this, we derive that

0 ≤ I1 + I2 ≲
ν∑

i=1

(Up−1
i + Uj) +

∑
i ̸=j

Up−1
i Uj for n = 3, 4, 5. (2.9)

We next consider the cases n ≥ 6. Fixing any i ∈ {1, . . . , ν}, we decompose I1 into three
parts:

I1 = I11 + I12 + I13,
where

I11 := (u0 + PUi)
p − up0 − (PUi)

p,

I12 := (u0 + σ)p − (u0 + PUi)
p −

(∑
j ̸=i

PUj

)p

,

I13 := (PUi)
p +

(∑
j ̸=i

PUj

)p

− σp.

Considering the relationship between u0 and Ui in different regions, i.e., u0 ≲ Ui when |x− ξi| ≤√
δi and u0 ≳ Ui when |x− ξi| ≥

√
δi, we obtain that

|I11| ≲ min{u0(PUi)
p−1, up−1

0 PUi} ≲ Up−1
i 1|x−ξi|≤

√
δi
+ Ui1|x−ξi|≥

√
δi
.

Similarly, we have

|I12| ≲
∑
j ̸=i

min
{
(u0 + PUi)

p−1PUj , (u0 + PUi)(PUj)
p−1
}

≲
∑
j ̸=i

[
min{Up−1

i Uj , U
p−1
j Ui}1|x−ξi|≤

√
δi
+min{Uj , U

p−1
j }1|x−ξi|≥

√
δi

]
.

In addition,

|I13|+ I2 ≲
∑
j ̸=i

min{Up−1
i Uj , U

p−1
j Ui}.

By introducing the rescaled variable xi := δ−1
i (x − ξi), we further obtain a pointwise estimate

for I1 + I2 with the aid of [22, Proposition 3.4]:

I1 + I2

≲
ν∑

i=1

min{Ui, U
p−1
i }1{u0>0} +

∑
j ̸=i

min{Up−1
i Uj , U

p−1
j Ui}1{ν≥2}

≲
ν∑

i=1

 δ−2
i

⟨xi⟩4
1{|xi|≤δi

−1/2} +
δ
−n−2

2
i

⟨xi⟩n−21{|xi|≥δi
−1/2}

1{u0>0}

+


ν∑

i=1

[
δ−4
i

R−4

⟨xi⟩4
1{|xi|<R2}(x) + δ−4

i

R−2

|xi|5
1{|xi|≥R2}(x)

]
if n = 6

ν∑
i=1

[
δ
−n+2

2
i

R2−n

⟨xi⟩4
1{|xi|<R}(x) + δ

−n+2
2

i

R−4

|xi|n−2
1{|xi|≥R}(x)

]
if n ≥ 7

1{ν≥2}.

(2.10)

Employing (2.9) and (2.10), we perform direct computations to find

∥I1∥
L

p+1
p (Ω)

+ ∥I2∥
L

p+1
p (Ω)
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≲


max

i
δ

n−2
2

i if n = 3, 4, 5

max
i

δ2i | log δi|
2
3 if n = 6

max
i

δ
n+2
4

i if n ≥ 7

1{u0>0} +


Q if n = 3, 4, 5

Q| logQ|
2
3 if n = 6

Q
n+2

2(n−2) if n ≥ 7

1{ν≥2}. (2.11)

Now, we analyze the term I3. By applying Lemma 2.1, we observe that

∥(PUi − Ui)U
p−1
i ∥

L
p+1
p (Ω)

≲ ∥(PUi − Ui)U
p−1
i ∥

L
p+1
p (B(ξi,d(ξi,∂Ω)))

+ ∥Up
i ∥

L
p+1
p (B(ξi,d(ξi,∂Ω))c)

(2.12)

≲



max
i

κn−2
i if n = 3 or [n = 4, each PUi satisfies (1.7)] or n = 5,

max
i

(
δ2i | log δi|+ κ2i

)
if n = 4 and each PUi satisfies (1.8),

max
i

κ4i | log κi|
2
3 if n = 6,

max
i

κ
n+2
2

i if n ≥ 7

=: J1.

Using estimate (A.1) and Lemma A.2, we obtain

∥I3∥
L

p+1
p (Ω)

≲ max
i

∥(PUi − Ui)U
p−1
i ∥

L
p+1
p (Ω)

+max
i

∥(PUi − Ui)
p−1Ui∥

L
p+1
p (Ω)

+ λmax
i

∥Ui∥
L

p+1
p (Ω)

1{each PUi satisfies (1.7)}

≲ J1 +


max

i
δ

n−2
2

i if n = 3, 4, 5

max
i

δ2i | log δi|
2
3 if n = 6

max
i

δ2i if n ≥ 7

1{each PUi satisfies (1.7)}.

(2.13)

By collecting estimates (2.11) and (2.13), we conclude the proof. □

2.4. Projections of I1, I2, and I3 onto the PZ0
j -direction. Given j = 1, . . . , ν, we evaluate

the integrals
∫
Ω I1PZ0

j ,
∫
Ω I2PZ0

j , and
∫
Ω I3PZ0

j , which correspond to the projections of I1, I2,
and I3 onto the directions of PZ0

j , respectively.

Lemma 2.6. Assume that u0 > 0. Moreover, when n = 3, each PUi satisfies (1.7) or (1.8),
and when n ≥ 4, each PUi satisfies (1.7). For any j ∈ {1, . . . , ν}, it holds that

∫
Ω
I1PZ0

j = anu0(ξj)δ
n−2
2

j + o(Q) +


O(max

i
δi) if n = 3

O(max
i

δ2i | log δi|) if n = 4

O(max
i

δ2i ) if n = 5

1{p>2}

+O

(
max

i
δ

n
2
i +max

i
κni

)
,

(2.14)

where an := p
∫
Rn U

p−1Z0 > 0.

Proof. By (A.3), there exists a constant η > 0 such that

I1 =
[
pu0σ

p−1 +O(u20σ
p−2)1{p>2} +O (up0)

]
1∪ν

i=1B(ξi,η
√
δi)

+
[
pup−1

0 σ +O(up−2
0 σ2)1{p>2} +O(σp)

]
1∩ν

i=1B(ξi,η
√
δi)c

.
(2.15)
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The remainder of the proof is split into two steps.

Step 1. It follows from |PZ0
j | ≲ Uj , Lemma 2.1, Corollary 2.3, and Young’s inequality that∣∣∣∣ ∫

B(ξj ,d(ξj ,∂Ω))

[
(PUj)

p−1PZ0
j − Up−1

j Z0
j

] ∣∣∣∣
≲
∫
B(ξj ,d(ξj ,∂Ω))

(|PUj − Uj |+ |PZ0
j − Z0

j |)U
p−1
j +

∫
B(ξj ,d(ξj ,∂Ω))

|PUj − Uj |p−1Uj

≲ δ
n−2
2

j κ2j ≲ δ
n
2
j + κnj .

Therefore,

p

∫
∪ν
i=1B(ξi,η

√
δi)

u0(PUj)
p−1PZ0

j

= p

∫
B(ξj ,d(ξj ,∂Ω))

u0(PUj)
p−1PZ0

j +O

(∫
B(ξj ,d(ξj ,∂Ω))c

Up
j

)

= pδ
n−2
2

j

[
u0(ξj)

∫
Rn

Up−1Z0 +O

(∫
B(0,κ−1

j )
|δjy|2Up(y)dy

)]
+O

(
δ

n
2
j + κnj

)
= anδ

n−2
2

j u0(ξj) +O
(
δ

n
2
j + κnj

)
.

(2.16)

We claim that∣∣∣∣∫
Ω
u0
[
σp−1 − (PUj)

p−1
]
PZ0

j

∣∣∣∣ ≲∑
i ̸=l

∫
Ω
Up−1
i Ul = o(Q) +O

(
max

i
δ

n
2
i

)
. (2.17)

The inequality immediately follows from (A.2). To analyze the equality, we set zij := δ−1
i (ξj−ξi)

and dij := |ξi − ξj |. We distinguish three cases based on the value of Rij .

Case 1: Suppose that Rij =
dij√
δiδj

. Then, it holds that dij ≥ δi and (
√
δiδj/dij)

n−2 ≃ qij ≤ Q.

In view of Lemma A.4, we confirm that

∫
Ω
Up−1
i Uj ≲


δiδ

1
2
j d

−1
ij if n = 3

δ2i δjd
−2
ij log

(
2 + dijδ

−1
i

)
if n = 4

δ2i δ
n−2
2

j d−2
ij if n ≥ 5

 = O

(
max

i
δ

n
2
i

)
+ o(Q).

Case 2: Suppose that Rij =
√

δi
δj
. Then, it holds that dij ≤ δi, i.e., |zij | ≤ 1, and (

δj
δi
)
n−2
2 ≃

qij ≤ Q. Therefore,∫
Ω
Up−1
i Uj ≲

∫
Ω

(
δi

δ2i + |x− ξi|2

)2
(

δj
δ2j + |x− ξj |2

)n−2
2

dx

≲ δ
n−2
2

j

∫
B(0,Cδ−1

i )

1

(1 + |y|2)2
dy

[(
δj
δi
)2 + |y − zij |2]

n−2
2

≲ δ
n−2
2

j

(
1 +

∫ Cδ−1
i

2
t−3dt

)
≃ δ

n−2
2

j = o(Q).
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Case 3: Suppose that Rij =
√

δj
δi
. Then, it holds that dij ≤ δj and ( δiδj )

n−2
2 ≃ qij ≤ Q. We

divide the domain Ω into B(ξi,
√
δi) and (B(ξi,

√
δi))

c, and compute∫
B(ξi,

√
δi)

Up−1
i Uj ≲

δn−2
i

δ
n−2
2

j

∫
B(0,δ

−1/2
i )

1

(1 + |y|2)2
dy

[1 + ( δiδj |y − zij |)2]
n−2
2

≲
δn−2
i

δ
n−2
2

j

(
1 +

∫ δ
−1/2
i

1
tn−5dt

)
= o(Q)

and∫
B(ξi,

√
δi)c

Up−1
i Uj ≲ δ2i δ

n−2
2

j

∫
B(0,

√
δi)c

1

|y|4
1

|y − (ξj − ξi)|n−2
dy ≲ δiδ

n−2
2

j = O

(
max

i
δ

n
2
i

)
.

These estimates justify (2.17).

Step 2. Applying |PZ0
j | ≲

∑ν
i=1 Ui, we observe

∫
Ω
u20σ

p−2
∣∣PZ0

j

∣∣1{p>2} ≲
ν∑

i=1

∫
Ω
Up−1
i 1{p>2} ≲


max

i
δi if n = 3,

max
i

δ2i | log δi| if n = 4,

max
i

δ2i if n = 5.

(2.18)

Furthermore, since u0(x) ≲ Ui(x) for x ∈ B(ξi, η
√
δi), we infer from (2.17) that∫

∪ν
i=1B(ξi,η

√
δi)

up0|PZ0
j | ≲

∫
B(ξj ,η

√
δj)

Uj +
∑
i ̸=j

∫
B(ξi,η

√
δi)

Up−1
i Uj

= O

(
max

i
δ

n
2
i

)
+ o(Q).

(2.19)

We also estimate the integrals over the exterior region:∫
∩ν
i=1B(ξi,η

√
δi)c

up−2
0 σ2|PZ0

j |1{p>2} ≲
ν∑

i=1

∫
B(ξi,η

√
δi)c

U3
i 1{p>2}

≲

max
i

δ
3
2
i | log δi| if n = 3,

max
i

δ
n
2
i if n = 4, 5

(2.20)

and ∫
∩ν
i=1B(ξi,η

√
δi)c

(up−1
0 σ + σp)|PZ0

j | ≲
ν∑

i=1

∫
B(ξi,η

√
δi)c

(U2
i + Up

i ) ≲ max
i

δ
n
2
i . (2.21)

Combining estimates (2.16)–(2.21), we conclude the proof of (2.14). □

Lemma 2.7. For any j ∈ {1, . . . , ν}, it holds that

∫
Ω
I3PZ0

j =


−δjcnφ(ξj) +O(κ3j ) +O(δj) if n = 3

−δ2j cnφ(ξj) +O(κ4j ) +O(δ2j | log δj |) if n = 4

λbnδ
2
j − δn−2

j cnφ(ξj) +O
(
δ2jκ

n−4
j

)
+O(κnj ) if n ≥ 5

 (2.22)
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+



O(max

i
δi) if n = 3

O(max
i

δ2i | log δi|) if n = 4

o(max
i

δ2i ) if n ≥ 5

+ o(Q)

1{ν≥2, each ξi is in a compact set of Ω}

provided n ≥ 3 and each PUi satisfies (1.7), and

∫
Ω
I3PZ0

j =

{
−c3φ

3
λ(ξj)δj +O(δ2j ) +O(κ3j ) if n = 3

b4λδ
2
j | log δj | − c4δ

2
jφ

4
λ(ξj)− 96|S3|λδ2j +O(δ3j ) +O(κ4j ) if n = 4

}
(2.23)

+

O(max
i

δ2i ) if n = 3

O(max
i

δ3i | log δi|) if n = 4

+ o(Q)

1{ν≥2, each ξi is in a compact set of Ω}

provided n = 3, 4 and each PUi satisfies (1.8). Here, b4 := 3
√
2
∫
R4 U

p−1Z0 > 0, bn :=∫
Rn UZ0 > 0 for n ≥ 5, and cn := anp

∫
Rn U

p−1Z0 > 0.

Proof. We present the proof by dividing it into two steps.

Step 1. Assuming that each PUi satisfies (1.7), we assert that

∫
Ω

ν∑
i=1

λPUiPZ0
j =


O(max

i
δi) + o(Q)1{ν≥2} if n = 3,

O(max
i

δ2i | log δi|) + o(Q)1{ν≥2} if n = 4,

λbnδ
2
j +O

(
δ2jκ

n−4
j

)
+ o(Q+max

i
δ2i )1{ν≥2} if n ≥ 5.

(2.24)

To verify (2.24), we first estimate

∫
Ω
PUjPZ0

j =


O(δj) if n = 3,

O(δ2j | log δj |) if n = 4,

bnδ
2
j +O

(
δ2jκ

n−4
j

)
if n ≥ 5.

Indeed, for the case n ≥ 5, we have∣∣∣∣ ∫
B(ξj ,d(ξj ,∂Ω))c

PUjPZ0
j

∣∣∣∣ ≲ δ2jκ
n−4
j

and

∫
B(ξj ,d(ξj ,∂Ω))

PUjPZ0
j =

∫
B(ξj ,d(ξj ,∂Ω))

UjZ
0
j +O

 δ
n−2
2

j

d(ξj , ∂Ω)n−2
· δ

n+2
2

j

∫
B(0,κ−1

j )
U


= bnδ

2
j +O

(
δ2jκ

n−4
j

)
.

(2.25)

It remains to estimate the interaction terms
∫
Ω UiUj for 1 ≤ i ̸= j ≤ ν provided ν ≥ 2. As in

(2.17), we separate the analysis into three cases.
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Case 1: Suppose that Rij =
dij√
δiδj

. We verify that

∫
Ω
UiUj ≲ δ

n−2
2

i δ
n−2
2

j ×


1 if n = 3

1 + | log dij | if n = 4

d
−(n−4)
ij if n ≥ 5

≃


O(max

i
δi) if n = 3,

O(max
i

δ2i | log δi|) if n = 4,

max
i

δ2iQ
n−4
n−2 = o(max

i
δ2i ) if n ≥ 5.

(2.26)

Case 2: Suppose that Rij =
√

δj
δi
. We evaluate

∫
Ω
UiUj ≲

∫
Ω

(
δi

δ2i + |x− ξi|2

)n−2
2

(
δj

δ2j + |x− ξj |2

)n−2
2

dx

≲ δ
n+2
2

−(n−2)

j δ
n−2
2

i

∫
B(0,Cδ−1

j )

1

(1 + |y|2)
n−2
2

dy

[( δiδj )
2 + |y − ξi−ξj

δj
|2]

n−2
2

≲ δ2j
δ

n−2
2

i

δ
n−2
2

j

(
1 +

∫ Cδ−1
j

2
t−(n−3)dt

)
= o(Q).

(2.27)

Here, we used |ξi − ξj | ≤ δj .

Case 3: Suppose that Rij =
√

δi
δj
. We can similarly estimate as above to deduce∫

Ω
UiUj = o(Q). (2.28)

This concludes the proof of (2.24).

Step 2. We claim that∫
Ω

ν∑
i=1

[(PUi)
p − Up

i ]PZ0
j = −δn−2

j cnφ(ξj) +O(κnj )

+

[
O(max

i
δn−1
i ) + o(Q)

]
1{ν≥2, each ξi is in a compact set of Ω}

provided n ≥ 3 and PUi satisfies (1.7) for each i = 1, . . . , ν, and∫
Ω

ν∑
i=1

[(PUi)
p − Up

i ]PZ0
j

=

{
−c3φ

3
λ(ξj)δj +O(δ2j ) +O(κ3j ) if n = 3

b4λδ
2
j | log δj | − c4δ

2
jφ

4
λ(ξj)− 96|S3|λδ2j +O(δ3j ) +O(κ4j ) if n = 4

}

+

O(max
i

δ2i ) if n = 3

O(max
i

δ3i | log δi|) if n = 4

+ o(Q)

1{ν≥2, each ξi is in a compact set of Ω}

provided n = 3, 4 and PUi satisfies (1.8) for each i = 1, . . . , ν.

To prove this, we decompose the domain by Ω = B(ξj , d(ξj , ∂Ω)) ∪ [Ω \B(ξj , d(ξj , ∂Ω))].
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First, we observe that∣∣∣∣∣
∫
Ω\B(ξj ,d(ξj ,∂Ω))

[(PUj)
p − Up

j ]PZ0
j

∣∣∣∣∣ ≲
∫
B(0,κ−1

j )c
Up+1 ≲ κnj . (2.29)

Suppose that PUi satisfies (1.7) for each i = 1, . . . , ν. By Lemma 2.1, Corollary 2.3, and (A.3),
we obtain∫

B(ξj ,d(ξj ,∂Ω))
[(PUj)

p − Up
j ]PZ0

j

= p

∫
B(ξj ,d(ξj ,∂Ω))

(PUj − Uj)U
p−1
j PZ0

j +O

(∫
B(ξj ,d(ξj ,∂Ω))

(PUj − Uj)
2Up−2

j |PZ0
j |

)
1{p>2}

+O

(∫
B(ξj ,d(ξj ,∂Ω))

|PUj − Uj |p|PZ0
j |

)
= −δn−2

j cnφ(ξj) +O(κnj ). (2.30)

Suppose next that n = 3, 4 and PUi satisfies (1.8) for each i = 1, . . . , ν. Noticing that

p

∫
B(ξj ,d(ξj ,∂Ω))

δ
2−n−2

2
j Dn

(
· − ξj
δj

)
Up−1
j Z0

j = δ2j

∫
B(0,κ−1

j )
(−∆Dn)Z

0

+ δ2jO

(∫
∂B(0,κ−1

j )

∂Dn

∂ν
|Z0|dS +

∫
∂B(0,κ−1

j )

∣∣∣∣∂Z0

∂ν
Dn

∣∣∣∣dS
)

= δ2j

∫
B(0,κ−1

j )
(−∆Dn)Z

0 +O
(
δnj + κnj

)
,

(2.31)

where ∂
∂ν denotes the outward normal derivative and dS is the surface measure, we deduce∫
B(ξj ,d(ξj ,∂Ω))

[(PUj)
p − Up

j ]PZ0
j

= −δ
1
2
j a3pH

3
λ(ξj , ξj)

∫
B(ξj ,d(ξj ,∂Ω))

Up−1
j Z0

j − λ

2
anδ

1
2
j

∫
B(ξj ,d(ξj ,∂Ω))

|x− ξj |(Up−1
j Z0

j )(x)dx

+ λa23pδ
2
j

∫
B(0,κ−1

j )

[
1√

1 + |z|2
− 1

|z|

]
|z|2 − 1

(1 + |z|2)
3
2

dz +O(δ3−τ
j ) +O(κ3j )

= −c3δjφ
3
λ(ξj) +O(δ2j ) +O(κ3j ) for n = 3, (2.32)

and ∫
B(ξj ,d(ξj ,∂Ω))

[(PUj)
p − Up

j ]PZ0
j

=
λ

2
a4δj | log δj |p

∫
B(ξj ,d(ξj ,∂Ω))

Up−1
j Z0

j − λ

2
a4pδ

2
j

∫
B(0,κ−1

j )
log |x|(U2Z0)(x)dx (2.33)

+ λa24pδ
2
j

∫
B(0,κ−1

j )

[
1

1 + |z|2
− 1

|z|2

]
|z|2 − 1

(1 + |z|2)2
dz − δja4pH

4
λ(ξj , ξj)

∫
B(ξj ,d(ξj ,∂Ω))

Up−1
j Z0

j

+O(δ3j ) +O(κ4j )

= b4λδ
2
j | log δj | − c4δ

2
jφ

4
λ(ξj)− 96|S3|λδ2j +O(δ3j ) +O(κ4j ) for n = 4.
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Here, we used∫
R4

log |z| |z|2 − 1

(1 + |z|2)4
dz =

|S3|
8

and

∫
R4

[
1

1 + |z|2
− 1

|z|2

]
|z|2 − 1

(1 + |z|2)2
dz = 0.

Finally, we assume that ν ≥ 2 and each ξ1, . . . , ξν is in a compact set of Ω. Given 1 ≤ i ̸= j ≤ ν,
we infer from (2.17) that∣∣∣∣ ∫

Ω
[(PUi)

p − Up
i ]PZ0

j

∣∣∣∣ ≲ δ
n−2
2

i

∫
B(ξi,d(ξi,∂Ω))

Up−1
i Uj = O(max

i
δn−1
i ) + o(Q) (2.34)

provided n ≥ 3 and each PUi satisfies (1.7), and∣∣∣∣ ∫
Ω
[(PUi)

p − Up
i ]PZ0

j

∣∣∣∣ ≲
{
O(δ

1
2
i ) if n = 3

O(δi| log δi|) if n = 4

}
×
∫
B(ξi,d(ξi,∂Ω))

Up−1
i Uj

=

O(max
i

δ2i ) if n = 3

O(max
i

δ3i | log δi|) if n = 4

+ o(Q)

(2.35)

provided n = 3, 4 and each PUi satisfies (1.8). Here, we used∫
Ω

∣∣∣∣log ∣∣∣∣x− ξi
δi

∣∣∣∣∣∣∣∣ (Up−1
i Uj)(x)dx = o(Q+max

i
δ2i ) for n = 4,

which can be argued as (2.17), and∫
Ω

∣∣∣∣δ2−n−2
2

i Dn

(
· − ξi
δi

)∣∣∣∣Up−1
i Uj ≲ ∥Up−1

i Uj∥
L

p+1
p (Ω)

∥∥∥∥δ2−n−2
2

i Dn

(
· − ξi
δi

)∥∥∥∥
Lp+1(Ω)

≲ δ2iQ

for n = 3, 4.
This completes the proof of the claim. □

Lemma 2.8. Assume that ν ≥ 2 and each of the ξ1, . . . , ξν lies on a compact set of Ω. For any
j ∈ {1, . . . , ν}, it holds that∫

Ω
I2PZ0

j =
∑
i ̸=j

dn

(
q
− 2

n−2

ij − 2
δj
δi

)
q

n
n−2

ij + o(Q)

+



O(max
i

δn−2
i ) if n ≥ 3, each PUi satisfies (1.7),∑

i ̸=j

[−b3λ|ξj − ξi| − c3H
3
λ(ξi, ξj)]δ

1
2
i δ

1
2
j 1{

Rij=
|ξi−ξj |√

δiδj

} + o(max
i

δi) if n = 3, each PUi satisfies (1.8),∑
i ̸=j

[−b4λ log |ξj − ξi| − c4H
4
λ(ξi, ξj)]δiδj1{

Rij=
|ξi−ξj |√

δiδj

} + o(max
i

δ2i | log δi|) if n = 4, each PUi satisfies (1.8),

where dn > 0 and b3 :=
1
2a3p

∫
R3 U

p−1Z0 > 0, provided qij in (2.3) is small.

Proof. Adapting the proof of [22, Lemma 2.1], and employing Lemma 2.1, Corollary 2.3, (2.34)–
(2.35), and [22, Lemma A.2], we discover∫

Ω
I2PZ0

j

=
∑
i ̸=j

p

∫
Ω
(PUj)

p−1PUiPZ0
j 1{ν≥2} + o(Q)

=
∑
i ̸=j

∫
Rn

Up
i δj

∂Uj

∂δj
+ p

∑
i̸=j

∫
Ω

(PUj)
p−1(PUi − Ui)PZ0

j +O

∑
i̸=j

∫
Ω

(PUj)
p−1PUi|PZ0

j − Z0
j |

+ o(Q)
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=
∑
i ̸=j

dn

(
q
− 2

n−2

ij − 2
δj
δi

)
q

n
n−2

ij + o(Q) (2.36)

+



O(max
i

δn−2
i ) if n ≥ 3, each PUi satisfies (1.7),

p
∑
i ̸=j

∫
Ω
(PUi − Ui)U

p−1
j Z0

j + o(max
i

δi) if n = 3, each PUi satisfies (1.8),

p
∑
i ̸=j

∫
Ω
(PUi − Ui)U

p−1
j Z0

j + o(max
i

δ2i | log δi|) if n = 4, each PUi satisfies (1.8).

Next, we only need to estimate p
∫
Ω(PUi − Ui)U

p−1
j Z0

j if i ̸= j when n = 3, 4 and each PUi

satisfies (1.8).

If Rij =
√

δi
δj

or
√

δj
δi
, by integrating by part, we have from (2.27)–(2.28) that

p

∫
Ω
(PUi − Ui)U

p−1
j Z0

j =

∫
Ω
(PUi − Ui)(−∆PZ0

j − λPZ0
j )

=

∫
Ω
λUiPZ0

j +O

(
δ

n−2
2

i δ
n−2
2

j

)
= o(Q).

If Rij =
|ξi−ξj |√

δiδj
, by Taylor’s expansion, we deduce

p

∫
Ω
(PUi − Ui)U

p−1
j Z0

j

=

{
[−b3λ|ξj − ξi| − c3H

3
λ(ξi, ξj)]δ

1
2
i δ

1
2
j + o(Q+maxi δi) if n = 3,

[−b4λ log |ξj − ξi| − c4H
4
λ(ξi, ξj)]δiδj + o(Q+maxi δ

2
i | log δi|) if n = 4.

Here, we used

δ
1
2
i

∫
B(ξj ,c)

||x− ξi| − |ξj − ξi||Up
j (x)dx = o(Q+max

i
δi) for n = 3,

δi

∫
B(ξj ,c)

| log |x− ξi| − log |ξj − ξi||Up
j (x)dx = o(Q+max

i
δ2i | log δi|) for n = 4,∫

Ω

∣∣∣∣δiD4

(
· − ξi
δi

)∣∣∣∣Up
j ≲

∥∥∥∥δiD4

(
· − ξi
δi

)∥∥∥∥
L4(Ω)

≲ δ2i for n = 4

to achieve the last equality, where c > 0 is a small constant independent of δj for j = 1, . . . , ν.
This finishes the proof. □

3. Linear theory and an improved estimate for n = 6

In Section 4, we will derive an H1
0 (Ω)-norm estimate for ρ of the form

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1∥
L

p+1
p (Ω)

+ ∥I2∥
L

p+1
p (Ω)

+ ∥I3∥
L

p+1
p (Ω)

.

When n = 6, this estimate is coarse and requires refinement. In the remainder of this section, we
develop a suitable linear theory for n = 6, which enables the derivation of a pointwise estimate
and an improved H1

0 (Ω)-norm bound for the main part of ρ. In what follows, we assume that
each of the ξ1, . . . , ξν lies on a compact set of Ω if ν ≥ 2.
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Definition 3.1. For each i ∈ {1, . . . , ν}, recall the rescaled variable xi := δ−1
i (x− ξi) ∈ δ−1

i (Ω−
ξi). We introduce the weighted norms

∥h∥∗∗ := sup
x∈Ω

|h(x)|
V (x)

, ∥ρ∥∗ := sup
x∈Ω

|ρ(x)|
W (x)

,

where the weights V (x) and W (x) are defined by

V (x) :=

ν∑
i=1

(
v1i(x) + [vin2i(x) + vout2i (x)]1{ν≥2} + [vin3i(x) + vout3i (x)]1{ν=1}

)
,

W (x) :=

ν∑
i=1

(
w1i(x) + [win

2i(x) + wout
2i (x)]1{ν≥2} + [win

3i(x) + wout
3i (x)]1{ν=1}

)
.

The component functions are given explicitly as follows:

v1i(x) :=
δ−2
i

⟨xi⟩4
, w1i(x) :=

1

⟨xi⟩2
,

vin2i(x) :=
δ−4
i R−4

⟨xi⟩4
1{|xi|<R2}, win

2i(x) :=
δ−2
i R−4

⟨xi⟩2
1{|xi|<R2},

vout2i (x) :=
δ−4
i R−2

|xi|5
1{|xi|≥R2}, wout

2i (x) :=
δ−2
i R−2

|xi|3
1{|xi|≥R2},

vin3i(x) :=
δ−4
i κ4i
⟨xi⟩4

1{|xi|≤κ−1
i }, win

3i(x) :=
δ−2
i κ4i
⟨xi⟩2

1{|xi|≤κ−1
i },

vout3i (x) :=
δ−2
i κ3i
|xi|5

1{|xi|≥κ−1
i }, wout

3i (x) :=
δ−2
i κ3i
|xi|3

1{|xi|≥κ−1
i }.

Consider the equation
(−∆− λ)ρ0 − 2(u0 + σ)ρ0 = I1 + I2 + I31 + I0[ρ0] +

ν∑
i=1

6∑
k=0

cki (−∆− λ)PZk
i in Ω ⊂ R6,

ρ0 = 0 on ∂Ω, c01, . . . , c
6
ν ∈ R,〈

ρ0, PZk
i

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , 6

(3.1)
where

I31 :=
ν∑

i=1

[
λPUi +

(
a6δ

2
i φ(ξi)Ui1{|xi|≤κ−1

i } + [(PUi)
2 − U2

i ]1{|xi|≥κ−1
i }

)
1{ν=1}

]
.

In Propositions 3.2 and 3.3, we will prove the existence of ρ0, its pointwise estimate and the
H1

0 (Ω)-norm estimate.

We start with a linear theory.

Proposition 3.2. Given any h ∈ (H1
0 (Ω))

∗ with ∥h∥∗∗ ≤ C. There exist a constant C =
C(ν, λ, u0,Ω) > 0, ρ0 ∈ H1

0 (Ω) and numbers {cki }{i=1,...,ν, k=0,...,6} such that
(−∆− λ)ρ0 − 2(u0 + σ)ρ0 = h+

ν∑
i=1

6∑
k=0

cki (−∆− λ)PZk
i in Ω ⊂ R6,

ρ0 = 0 on ∂Ω, c01, . . . , c
6
ν ∈ R,〈

ρ0, PZk
i

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , 6

(3.2)
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satisfying

∥ρ0∥∗ ≤ C∥h∥∗∗ (3.3)

provided ϵ1 > 0 is small.

Subsequently, we utilize Proposition 3.2 along with the Banach Fixed-point theorem to derive
the following existence result.

Proposition 3.3. Assume that ϵ1 > 0 is small enough. Equation (3.1) admits a unique solution
ρ0 ∈ H1

0 (Ω) such that

∥ρ0∥∗ ≤ C, (3.4)

where C > 0 depends only on ν, λ, u0 and Ω. Moreover,

∥ρ0∥H1
0 (Ω) ≤ C

[
max

i
δ2i | log δi|

1
2 +max

i
κ4i | log κi|

1
21{ν=1} +Q| logQ|

1
2

]
. (3.5)

To establish Proposition 3.2, we need two preliminary lemmas.

Lemma 3.4. For each j ∈ {1, . . . , ν} and k ∈ {0, 1, . . . , n}, there exists a constant C > 0
depending only on ν, λ, u0 and Ω such that

|ckj | ≤ C[o(∥ρ0∥∗) + ∥h∥∗∗] ·
[
Q1{ν≥2} + δ2j + κ4j1{ν=1}

]
(3.6)

provided ϵ1 > 0 is small.

Proof. For each j ∈ {1, . . . , ν}, we assert that∣∣∣∣∫
Ω
(λ+ 2(u0 + σ)− 2PUj)ρ0PZk

j

∣∣∣∣ ≲ ∫
Ω
|ρ0|Uj +

∫
Ω

∑
i ̸=j

UiUj |ρ0|1{ν≥2} = o(Q+ δ2j ). (3.7)

Note that∫
Ω
|ρ0|Uj ≲ ∥ρ0∥∗

[∥∥∥∥ ν∑
i=1

(win
2i +wout

2i )

∥∥∥∥
L3(Ω)

∥Uj∥
L

3
2 (Ω)

+

∫
Ω
(win

3j +wout
3j )Uj1{ν=1} +

ν∑
i=1

∫
Ω
w1iUj

]
.

By Young’s inequality,∥∥∥∥ ν∑
i=1

(win
2i + wout

2i )

∥∥∥∥
L3(Ω)

∥Uj∥
L

3
2 (Ω)

≲ Q| logQ|
1
3 · δ2j | log δj |

2
3

≲ Q2| logQ|
2
3 + δ4j | log δj |

4
3 = o(Q+ δ2j )

(3.8)

and ∫
Ω
(win

3j + wout
3j )Uj1{ν=1} ≲ δ2jκ

4
j | log κj |+ δ2jκ

4
j = o(δ2j ). (3.9)

Let us prove that ∫
Ω

ν∑
i=1

w1iUj1{u0>0} = o(Q+ δ2j ). (3.10)

If i = j, it holds that ∫
Ω
w1jUj ≲ δ4j | log δj |. (3.11)

If i ̸= j, we have∫
Ω
w1iUj ≲

∫
Ω

δ2i
δ2i + |x− ξi|2

(
δj

δ2j + |x− ξj |2

)2

(3.12)
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≲



δ2i δ
2
j (1 + | log |ξi − ξj ||) if Rij =

|ξi−ξj |√
δiδj

δ2i δ
2
j

∫
B(0,δ−1

i )

1

1 + |y|2
dy

[(
δj
δi
)2 + |y − zij |2]2

if Rij =
√

δi
δj

δ6i
δ2j

∫
B(0,δ

−1/2
i )

1

1 + |y|2
dy

[1 + ( δi
δj
|y − zij |)2]2

+ δ2i δ
2
j

∫
√

δi≤|x|≤C

1

|x− ξi|2
dx

|x− ξj |4
if Rij =

√
δj
δi

≲



δ2j δ
2
i | log δi| if Rij =

|ξi−ξj |√
δiδj

δ2i δ
2
j

(
1 +

∫ δ−1
i

2

t−1dt

)
≲ δ2j δ

2
i | log δi| if Rij =

√
δi
δj

δ6i
δ2j

(
1 +

∫ δ
−1/2
i

1

t3dt

)
+ δ2i δ

2
j | log δi| ≲ δ2iQ+ δ2j δ

2
i | log δi| if Rij =

√
δj
δi


= o(Q+ δ2j ).

As a result, (3.10) is valid.
Next, let us verify that∫

Ω

∑
i ̸=j

UiUj |ρ0|1{ν≥2} ≲

∥∥∥∥ ν∑
i=1

(vin2i + vout2i )

∥∥∥∥
L

3
2 (Ω)

∥∥∥∥ ν∑
i=1

(win
2i + wout

2i )

∥∥∥∥
L3(Ω)

+
∑
i ̸=j

∫
Ω
UiUjw1i +

∑
i ̸=j

∫
Ω
UiUjw1j +

∑
i ̸=j, j ̸=l,

i ̸=l

UiUjw1l

≃ Q2| logQ|+ o(Q) = o(Q).

Here, we used that∫
Ω

∑
i ̸=j, j ̸=l,

i ̸=l

UiUjw1l ≲
∫
Ω

∑
i ̸=j, j ̸=l,

i ̸=l

UiUjUl

≲
∑

i ̸=j, j ̸=l,
i ̸=l

∥UiUj∥
1
2

L
3
2 (Ω)

∥UiUl∥
1
2

L
3
2 (Ω)

∥UjUl∥
1
2

L
3
2 (Ω)

≲ Q
3
2 | logQ|.

Arguing as in (3.12), one can verify that for i ̸= j,∫
Ω
UiUjw1i ≲

∫
Ω

δ4i
(δ2i + |x− ξi|2)3

(
δj

δ2j + |x− ξj |2

)2

dx

≲



δ4i δ
2
j

|ξi − ξj |4
log

(
2 +

|ξi − ξj |
δi

)
if Rij =

|ξi−ξj |√
δiδj

δ2j

∫
B(0,δ−1

i )

1

(1 + |y|2)3
dy

[(
δj
δi
)2 + |y − zij |2]2

if Rij =
√

δi
δj

δ4i
δ2j

∫
B(0,δ−1

i )

1

(1 + |y|2)3
dy

[1 + ( δi
δj
|y − zij |)2]2

if Rij =
√

δj
δi



≲


δ2i | log δi|R−4

ij if Rij =
|ξi−ξj |√

δiδj

δ2i R−4
ij if Rij =

√
δi
δj

δ2i | log δi|R−4
ij if Rij =

√
δj
δi

 = o(Q),

and similarly, ∫
Ω
UiUjw1j = o(Q).

All the above estimates imply that (3.7) holds true.
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Furthermore, by (3.8)-(3.11), we have∣∣∣∣ ∫
Ω
(PUjPZk

j − UjZ
k
j )ρ0

∣∣∣∣ ≲ ∥ρ0∥∗
[

δ2j
d(ξj , ∂Ω)4

∫
Ω
(w1j + win

3j + wout
3j )Uj1{ν=1} (3.13)

+ δ2j

∫
Ω
Uj

ν∑
i=1

(w1i + win
2i + wout

2i )1{ν≥2, each ξi is in a compact set of ∂Ω}

]
= o(∥ρ0∥∗(Q+ δ2j + κ4j1{ν=1})).

Finally, we claim that∣∣∣∣ ∫
Ω
hPZk

j

∣∣∣∣ ≲ ∫
Ω
V Uj ≲ ∥h∥∗∗

(
Q+ δ2j + κ4j1{ν=1}

)
. (3.14)

A direct computation gives∫
Ω
v1jUj ≃ δ2j ,

∫
Ω
(vin2j + vout2j )Uj ≃ Q,

∫
Ω
(vin3j + vout3j )Uj1{ν=1} ≃ κ4j .

Assume that i ̸= j. From (2.26)–(2.28), we see that∫
Ω
v1iUj ≲

∫
Ω
UiUj ≲

δ2j
δ2i

|ξi−ξj |2 if Rij =
|ξi−ξj |√

δiδj

o(Q) if Rij =
√

δi
δj

or
√

δj
δi

 ≲ δ2j + o(Q).

Similarly to (3.12), we obtain∫
Ω
vin2iUj ≲

∫
Ω
δ−4
i

R−4

⟨xi⟩4
1{|xi|<R2}(x)

(
δj

δ2j + |x− ξj |2

)2

dx

≲


δ2jR−4

|ξi−ξj |2 if Rij =
|ξi−ξj |√

δiδj
δ2j
δ2i

R−4
(
1 +

∫ R2

2 t−3dt
)

if Rij =
√

δi
δj

δ2i
δ2j

R−4
(
1 +

∫ R2

2 tdt
)

if Rij =
√

δj
δi

 ≲ R−4 ≃ Q,

and ∫
Ω
vout2i Uj ≲

∫
Ω
δ−4
i

R−2

|xi|5
1{|xi|≥R2}(x)

(
δj

δ2j + |x− ξj |2

)2

dx

≲


δ2jR−4

|ξi−ξj |2 if Rij =
|ξi−ξj |√

δiδj

δ−2
i δ2jR

−2
∫
{t≥R2} t

−4dt if Rij =
√

δi
δj

δ2i
δ2j

R−2
∫
{t≥R2} 1dt if Rij =

√
δj
δi

 ≲ R−4 ≃ Q.

Thus, the claim (3.14) holds as desired.

Consequently, by testing the linearized equation (3.2) against the functions PZk
j and using

(3.7), (3.13), and (3.14), we obtain (3.6). □

Lemma 3.5. For any x ∈ Ω and sufficiently large M > 1, the following inequality holds:∫
Ω

1

|x− ω|4
(σW ) (ω)dω
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≲
ν∑

i=1

(
win
2i + wout

2i

) [
M8 log(2+|xi|)

⟨xi⟩
1{|xi|<R2} +M8 log |xi|

|xi|
1{|xi|≥R2} +M4R−2 +maxi δiM

4 +M−1
]

+

ν∑
i=1

[
R−2 +M−2 +

log(2 + |xi|)
⟨xi⟩2

]
w1i +

ν∑
i=1

[
win
3i

log(2 + |xi|)
⟨xi⟩

+ wout
3i

log |xi|
|xi|

]
1{ν=1} (3.15)

=: W (x).

Proof. Without loss of generality, we can assume that δi ≥ δj for 1 ≤ i ̸= j ≤ ν. We recall the

notations xi = δ−1
i (x− ξi) and zij = δ−1

i (ξj − ξi).
We first consider the cross terms involving w1i, namely, Uiw1j and Ujw1i. We will show that

Ujw1i ≲
ν∑

i=1

[v1i
(
R−2 +M−2

)
+ (vin2i + vout2i )max

i
δiM

4] (3.16)

by dividing two cases.

Case 1: Suppose that |ξi − ξj | ≤ Mδi. Then
√

δi
δj

≤ R ≤ M
√

δi
δj

and w1i ≲ 1.

If
|x−ξj |

δj
≤ R2, then |x− ξj | ≤ M2δi, leading to

Ujw1i ≲ vin2jδ
2
jR

4 ≲ vin2jδ
2
iM

4.

If
|x−ξj |

δj
≥ R2, then |x− ξj | ≥ δi, resulting in

Ujw1i ≲ vout2j δjR
2 ≲ vout2j δiM

2.

Case 2: Suppose that |ξi − ξj | ≥ Mδi. Then, R =
|ξi−ξj |√

δiδj
.

When |x− ξi| ≥ |ξi−ξj |
2 , then

Ujw1i ≲ v1j
δ2i

|ξi − ξj |2
≲ v1jM

−2.

When |x− ξi| ≤ |ξi−ξj |
2 , then |x− ξj | ≳ |ξi−ξj |

2 . Using δj ≤ δi, we deduce

Ujw1i ≲ v1i(δ
2
i + |x− ξi|2)

δ2j
|ξi − ξj |4

≲ v1iR
−2.

We turn to handling Uiw1j . Applying Young’s inequality and using δj ≤ δi once again, we
obtain

Uiw1j ≲
δj
δi

δ4i
(δ2i + |x− ξi|2)3

+
δ4j

(δ2j + |x− ξj |2)3
≲

δ−2
i

⟨xi⟩4
w1i +

δ−2
j

⟨xj⟩4
w1j . (3.17)

By adapting the arguments from [22, Lemma 4.2], we establish the following estimates:

Ujw
in
2i ≲ R−2

(
vin2j + vout2j + vin2i

)
, (3.18)

Ujw
out
2i ≲ R−2

(
vin2j + vout2j + vout2i

)
, (3.19)

Uiw
in
2j ≲ ⟨zij⟩−2 (vin2i + vin2j

)
+ R−2 ⟨zij⟩−1 vout2i , (3.20)

Uiw
out
2j ≲ ⟨zij⟩−1 vin2i + R−2vout2i + ⟨zij⟩−2 vout2j , (3.21)

and

Ui

(
win
2j + wout

2j

)
≲

[(
δj
δi

)2
+ ϑ2

]
vout2j if |xi − zij | ≤ ϑ, (3.22)
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win
2j + wout

2j ≲ ⟨zij⟩5 ϑ−3
(
win
2i + wout

2i

)
if |xi − zij | ≥ ϑ (3.23)

for any ϑ ∈ (0, 1).

Lastly, letting ωi :=
ω−ξi
δi

, we check that∫
Ω

1

|x− ω|4
[v1i + vin2i + vout2i + vin3i + vout3i ](ω)dω ≤ C(w1i + win

2i + wout
2i + win

3i + wout
3i )

and ∫
Ω

1

|x− ω|4
δ−2
i

⟨ωi⟩4
[w1i + win

2i + wout
2i + win

3i + wout
3i ](ω)dω

≤ C

[
log(2 + |xi|)

⟨xi⟩2
w1i +

log(2 + |xi|)
⟨xi⟩

(win
2i + win

3i) +
log |xi|
|xi|

(wout
2i + wout

3i )

]
.

Now, taking the above estimates yields (3.15). □

We are ready to complete the proof of Propositions 3.2 and 3.3.

Proof of Proposition 3.2. Once (3.3) is established, the Fredholm alternative principle will give
us the existence and uniqueness of solution ρ0 to (3.2) for a given h with ∥h∥∗∗ < ∞. As a
consequence, it is sufficient to prove (3.3).

We argue by contradiction. Suppose that there exist parameters {(δi,m, ξi,m)}m∈N, functions

{ρ0,m}m∈N and {hm}m∈N, and numbers {cki,m}m∈N such that ξi,m ∈ Ω, d(ξi,m, ∂Ω) ≳ 1 if ν ≥ 2,

δi,m + κi,m + ∥hm∥∗∗ → 0 as m → ∞, and ∥ρ0,m∥∗ = 1 for all m ∈ N,

where κi,m :=
δi,m

d(ξi,m,∂Ω) .

We also assume that these sequences satisfy
(−∆− λ)ρ0,m − 2(u0 + σm)ρ0,m = hm +

ν∑
i=1

6∑
k=0

cki,m(−∆− λ)PZk
i,m in Ω ⊂ R6,

ρ0,m = 0 on ∂Ω, c01,m, . . . , c6ν,m ∈ R,〈
ρ0,m, PZk

i,m

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , 6,

(3.24)

where PUi,m = PUδi,m,ξi,m . Moreover, let Vm, Wm, Wm, Qm, and Rm denote the functions and

quantities corresponding to V , W , W , Q, and R, respectively, where (δi, δj , ξi, ξj) are replaced
by (δi,m, δj,m, ξi,m, ξj,m); see Definition 3.1, (3.15), and (2.3).

By virtue of (3.6) and Definition 3.1, we observe∫
Ω

1

|x− ω|4

∣∣∣∣ 6∑
k=0

ν∑
i=1

cki,m(−∆− λ)PZk
i,m

∣∣∣∣(ω)dω
≲
∫
Ω

1

|x− ω|4
6∑

k=0

ν∑
i=1

cki,m
(
U2
i,m + Ui,m

)
(ω)dω ≲

6∑
k=0

ν∑
i=1

|cki,m|Ui,m

≲
6∑

k=0

ν∑
i=1

[
δ2i,mδ−2

i,mw1i,m +QmR4
m(win

2i,m + wout
2i,m) + κ4

i,mκ−4
i,m(win

3i,m + wout
3i,m)

]
(o(∥ρ0,m∥∗) + ∥hm∥∗∗)

= om(1)Wm(x).

(3.25)

Here, om(1) → 0 as m → ∞, and we exploit the precise estimate of cki presented in (3.6) to
deduce the second inequality.
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Given the nondegeneracy and boundedness of u0, we know the Green’s function of the operator
−∆−λ−2u0 with Dirichlet boundary condition is bounded by C0

1
|x−y|4 for some constant C0 > 0.

Combining this fact with ∥hm∥∗∗ = om(1) and (3.25), one has

|ρ0,m(x)| ≤ C0

∫
Ω

1

|x− ω|4
(σm|ρ0,m|) (ω)dω + om(1)Wm(x). (3.26)

To complete the proof, we will prove that for any given τ ∈ (0, 1), there exists a number mτ ∈ N
depending on τ such that

m ≥ mτ ⇒ C0

∫
Ω

1

|x− ω|4
(σm|ρ0,m|) (ω)dω ≤ τWm(x) for all x ∈ Ω. (3.27)

Without loss of generality, we may assume that{
δ1,m ≥ δ2,m ≥ · · · ≥ δν,m for all m ∈ N,
either lim

m→∞
zij,m = zij,∞ ∈ R6 or lim

m→∞
|zij,m| → ∞,

where zij,m := δ−1
i,m(ξj,m − ξi,m) ∈ R6. We define

D(i) :=
{
j ∈ {1, . . . , ν} : i < j and lim

m→∞
|zij,m| ∈ R

}
and xi,m := δ−1

i,m(x− ξi,m) ∈ δ−1
i,m(Ω− ξi,m). For large L > 1 and small ε ∈ (0, 1), we introduce

Ωi,m := {x ∈ Ω : |xi,m| ≤ L, |xi,m − zij,m| ≥ ε for all j ∈ D(i)}
and

Ai,m :=
⋃

j∈D(i)

[
{x ∈ Ω : |xi,m − zij,m| < ε} \

⋃
ℓ∈D(i)

{x ∈ Ω : |xℓ,m| ≤ L}
]
.

Using these definitions, we decompose Ω into three disjoint subsets:

Ω = ΩExt ∪ ΩCore ∪ ΩNeck,
4

where

ΩExt :=
ν⋂

i=1

{x ∈ Ω : |xi,m| > L}, ΩCore :=
ν⋃

i=1

Ωi,m, ΩNeck :=
ν⋃

i=1

Ai,m.

Subsequently, we express

C0

∫
Ω

1

|x− ω|4
(σm|ρ0,m|) (ω)dω = C0

(∫
ΩExt

+

∫
ΩCore

+

∫
ΩNeck

)
1

|x− ω|4
(σm|ρ0,m|) (ω)dω

=: IExt(x) + ICore(x) + INeck(x) for all x ∈ Ω.

Owing to (3.26) and (3.15), we have

|ρ0,m(x)| ≤ CC0Wm(x) + om(1)Wm(x) for x ∈ Ω.

Thus, there exists suitable constants L,M > 0 such that

M8L−1 logL+M4R−2
m +M−1 +max

i
δi,mM4 ≲ c0,m,

where c0,m > 0 is sufficiently small, which leads to

|ρ0,m(x)| ≤ (CC0c0,m + om(1))Wm(x) for x ∈ ΩExt. (3.28)

4If ν = 1, then ΩNeck = ∅ and ΩCore = {x ∈ Ω : |x1,m| ≤ L}. For ν ≥ 2, we essentially use the bubble-tree
structure introduced by [22, Subsection 4.2].
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Then, using (3.15) again, we arrive at

IExt(x) ≤ (CC0c0,m + om(1))CC0Wm(x) ≤ τ

3
Wm(x) (3.29)

for m ∈ N large enough.

If we establish

|ρ0,m(x)| = om(1)Wm(x) for x ∈ ΩCore, (3.30)

it will follow from (3.15) and Wm ≲ Wm again that

ICore(x) ≤ om(1)C0

∫
ΩCore

1

|x− ω|4
(σmWm) (ω)dω ≤ τ

3
Wm(x) (3.31)

for m ∈ N large enough.
In the following, we derive (3.30). Because of ∥ρ0,m∥∗ = 1 and (3.28), there exist i0 ∈ {1, . . . , ν}

and x̄m ∈ B(ξi0,m, δi0,mL) such that

|ρ0,m(x̄m)| ≥ 1

2
Wm(x̄m) (3.32)

for m ∈ N large enough. Denoting ρ̄0,m(y) := Wm(x̄m)−1ρ0,m(δi0,my + ξi0,m), we observe that∑ν
i=1w1i,m(δi0,my + ξi0,m)

Wm(x̄m)
≲

〈
x̄m − ξi0,m

δi0,m

〉2

≲ L2

and
w3i0,m(δi0,my + ξi0,m)

Wm(x̄m)
1{ν=1} ≲ 1.

Arguing as Case 2 in [22, Lemma 5.1], we also have that given κ > 2max{L, ε−1},

|ρ̄0,m(y)| ≲ L2 +
∑

j∈D(i0)

1

|y − zi0j,m|3
1{ν≥2}

for y ∈ Kκ :=
{
y ∈ R6 : |y| ≤ κ and |y − zi0j,∞| ≥ κ−1 for j ∈ D(i0)

}
,

and so there exists ρ̄0,∞ ∈ D1,2(R6) such that, up to subsequence,

ρ̄0,m → ρ̄0,∞ in C0
loc(R6 \ Z̄∞) as m → ∞,

where Z̄∞ := {zi0j,∞, j ∈ D(i0)}.5 From (3.24), we obtain that

−∆ρ̄0,∞ = pUp−1ρ̄0,∞ in R6 \ Z̄∞, (3.33)

|ρ̄0,∞(y)| ≲ L2 +
∑

j∈D(i0)

1

|y − zi0j,∞|3
1{ν≥2} for R6 \ Z̄∞, (3.34)

∫
R6

ρ̄0,∞Up−1Zk = 0 for k = 0, 1, . . . , 6. (3.35)

We claim each singularity zi0j,∞ of ρ̄0,∞ is removable if ν ≥ 2. Inequality (3.34) implies that
ρ̄0,∞ ≲ 1 if |y − zi0j,∞| ≥ 1 > 0 for each j ∈ D(i0). So it suffices to prove that

|ρ̄0,∞(y)| ≲ 1 if y ∈ B(zi0j,∞, 1) for any j. (3.36)

5If ν = 1, then Z̄∞ = ∅.
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We choose a small number c > 0 such that c ≤ min{1
2 |zi0j1,∞ − zi0j2,∞| : j1 ̸= j2, j1, j2 ∈ D(i0)}.

Then

|ρ̄0,∞(y)| ≲ 1 +
∑

j∈D(i0)

∫
B(zi0j,∞,c)

1

|y − ω|4
1

(1 + |ω|2)2
1

|ω − zi0j,∞|3
dω1{ν≥2}

≲ 1 +
∑

j∈D(i0)

1

|y − zi0j,∞|
1{ν≥2}.

(3.37)

Applying (3.37) again, we deduce (3.36). Thus, ρ̄0,∞ can be extended to a function in L∞(Rn)
satisfying equation (3.33) in Rn. By the orthogonality conditions (3.35), we conclude that ρ̄0,∞ =
0, contradicting (3.32). As a result, (3.30) and so (3.31) are established.

The only remaining task is to estimate INeck for ν ≥ 2. We claim that

C0

ν∑
i=1

∫
Ai,m

1

|x− ω|4

(
σm

ν∑
j=1

w1j,m

)
(ω)dω ≤ τ

6
Wm(x) (3.38)

for m ∈ N large enough. We write xji,m := δ−1
i,m(x − ξj,m), ωi,m := δ−1

i,m(ω − ξi,m), and ωji,m :=

δ−1
i,m(ω − ξj,m). Also, we set C∗ := 1 + max{|zij | : i, j = 1, . . . , ν, j ∈ D(i)}. A straightforward

computation with the choice L′ ≥ 2C∗ yields that∫
Ai,m

1

|x− ω|4
δ−2
i,m

⟨ωi,m⟩6
dω ≲

∑
j∈D(i)

∫
B(ξj,m,δi,mε)\

⋃
ℓ∈D(i) B(ξℓ,m,δℓ,mL)

1

|x− ω|4
δ−2
i,m

⟨ωi,m⟩6
dω

≲


ε6
∑

j∈D(i)

1

|xji,m|4
if |x− ξj,m| ≥ δi,mL′

ε2 if 2ϵδi,m ≤ |x− ξj,m| ≤ δi,mL′

ε2 if |x− ξj,m| ≤ 2ϵδi,m

≲



ε6(L′)−2 1

|xi,m|2
if |x− ξj,m| ≥ δi,mL′

ε2[1 + (L′ + C∗)
2]

1

⟨xi,m⟩2
if 2ϵδi,m ≤ |x− ξj,m| ≤ δi,mL′

ε2[1 + (2ϵ+ C∗)
2]

1

⟨xi,m⟩2
if |x− ξj,m| ≤ 2ϵδi,m

≲ ε2L′2Wm(x),

(3.39)

where we used

|xji,m|
2

≲ |xji,m| − |zij,m| ≤ |xi,m| ≤ |xji,m|+ |zij,m| ≲ 3|xji,m|
2

for |xji,m| ≥ L′ ≳ 2|zij,m|

to get the third inequality.
Additionally, we conduct computations∫

Ai,m

∑
l∈D(i)

1

|x− ω|4
δ−2
l,m

⟨ωl,m⟩6
dω ≲ L−2

∑
l∈D(i)

∫
Ω

1

|x− ω|4
δ−2
l,m

⟨ωl,m⟩4
dω ≲ L−2Wm(x)

and ∫
Ai,m

∑
l∈{δ−1

l,m≪δ−1
i,m, lim

m→∞
|zil,m|∈R}

1

|x− ω|4
δ−2
l,m

⟨ωl,m⟩6
dω
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≲
∑

l∈{δ−1
l,m≪δ−1

i,m, lim
m→∞

|zil,m|∈R}

(
δi,m
δl,m

)2 ∑
j∈D(i)

∫
B(0,ϵ)

1

|xji,m − ωji,m|4
dωji,m ≲ om(1)Wm(x),

where we adapted the strategy in (3.39) to obtain the last inequality.
In addition, we analyze∫

Ai,m

∑
l∈{ lim

m→∞
|zil,m|=∞}

1

|x− ω|4
δ−2
l,m

⟨ωl,m⟩6
dω

≲
∑

l∈{ lim
m→∞

|zil,m|=∞}

∫
B(ξi,m,δi,mL)

δ−2
i,m|zil,m|−2 1

|x− ω|4
1

⟨ωl,m⟩4
dω ≲ om(1)Wm(x).

By recalling (3.16) and (3.17), and taking proper ε, L′, L and m, we obtain (3.38) for m ∈ N
large enough.

On the other hand, using (3.18)–(3.23) and applying an analogous argument as above, we
demonstrate that

C0

∫
ΩNeck

1

|x− ω|4

[
σm

ν∑
j=1

(
win
2j,m + wout

2j,m

) ]
(ω)dω ≤ τ

6
Wm(x) (3.40)

for m ∈ N large enough.
It follows from (3.38) and (3.40) that

INeck(x) ≤
τ

3
Wm(x) (3.41)

for m ∈ N large enough.

Now, estimate (3.27) is a consequence of (3.29), (3.31), and (3.41). We complete the proof. □

Proof of Proposition 3.3. The proof follows the spirit of the argument used in [22, Proposition
5.4]. We initiate by checking the uniform bound

∥I1 + I2 + I31∥∗∗ ≤ C,

which is a direct consequence of the estimates established in (2.10), (2.8), and Lemma 2.1.
Denoting

h := I1 + I2 + I31 + I0[ρ0]
and realizing the estimates

w2
1i

v1i
≲ δ4i ,

(win
3i)

2

vin3i
≲ κ4i ,

(wout
3i )2

vout3i

≲ κ3i
1

|xi|
1{|xi|≥κ−1

i } ≲ κ4i ,

one can invoke Proposition 3.2 and the Banach fixed-point theorem to achieve the existence of a
solution ρ0 to (3.1) satisfying (3.4). Next, we test equation (3.1) against ρ0. From

∥W∥L3(Ω) ≲ max
i

δ2i | log δi|
1
3 +max

i
κ4i |log κi|

1
3 1{ν=1} +Q| logQ|

1
3 ,

∥V ∥
L

3
2 (Ω)

≲ max
i

δ2i | log δi|
2
3 +max

i
κ4i |log κi|

2
3 1{ν=1} +Q| logQ|

2
3 ,

we have

∥ρ0∥2H1
0 (Ω) ≤

∫
Ω
2(u0 + σ)ρ20 + (|I1|+ |I2|+ |I31|+ |I0[ρ0]|) |ρ0|

≲ ∥ρ0∥2∗
∫
Ω
2(u0 + σ)W 2 + ∥ρ0∥∗

∫
Ω
VW + ∥ρ0∥3∗

∫
Ω
W 3
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≲ ∥W∥2L3(Ω) + ∥V ∥
L

3
2 (Ω)

∥W∥L3(Ω)

≲ max
i

δ4i | log δi|+max
i

κ8i | log κi|1{ν=1} +Q2| logQ|,

yielding (3.5). This completes the proof. □

4. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into two parts: In Subsection 4.1, we prove that (1.10)
holds. In Subsection 4.2, we show that this estimate is optimal.

4.1. Proof of estimate (1.10). If n = 6, we set ρ0 by (3.1) when n = 6. If n = 3, 4, 5 or n ≥ 7,
we set ρ0 = 0. Define also ρ1 := ρ− ρ0. In light of (2.1) and (3.1), the function ρ1 satisfies the
following boundary value problem

(−∆− λ)ρ1 − [(u0 + σ + ρ0 + ρ1)
p − |u0 + σ + ρ0|p−1(u0 + σ + ρ0)]

=


f + I1 + I2 + I3 if n ̸= 6,

f + (I3 − I31)−
ν∑

i=1

6∑
k=0

cki (−∆− λ)PZk
i if n = 6

in Ω,

ρ1 = 0 on ∂Ω,〈
ρ1, PZk

i

〉
H1

0 (Ω)
= 0 for all i = 1, . . . , ν and k = 0, . . . , n.

(4.1)

Next, we establish the H1
0 (Ω)-norm estimate of ρ1.

Proposition 4.1. Assume that ϵ1 > 0 is small enough. There exists a constant C > 0 depending
only on n, ν, λ, u0, and Ω that

∥ρ1∥H1
0 (Ω) ≤ C

[
∥f∥(H1

0 (Ω))∗ +

(
∥I1∥

L
p+1
p (Ω)

+ ∥I2∥
L

p+1
p (Ω)

+ ∥I3∥
L

p+1
p (Ω)

)
1{n̸=6}

+ ∥I3 − I31∥
L

p+1
p (Ω)

1{n=6} +

ν∑
i=1

6∑
k=0

|cki |1{n=6}

]
.

(4.2)

To obtain analogous estimates to (4.2) in [22, 15, 16], the authors decomposed ρ1 into smaller
pieces by introducing auxiliary parameters, and analyzed each part relying on a coercivity in-
equality. See Subsection 1.3(5) for a prior discussion. Our argument in this paper is direct. We
first derive an H1

0 (Ω)-norm estimate for the solution to the associated linear problem, whose
proof is based on a blow-up argument.

Lemma 4.2. Let λ ∈ (0, λ1) and Π⊥ : H1
0 (Ω) → span{PZk

i : i = 1, . . . , ν and k = 0, . . . , n}⊥ ⊂
H1

0 (Ω) be the projection operator. For any functions ϱ ∈ H1
0 (Ω) and h ∈ (H1

0 (Ω))
∗ satisfying

ϱ−Π⊥[(−∆− λ)−1(p(u0 + σ)p−1)] = Π⊥[(−∆− λ)−1(h)] in Ω,

ϱ = 0 on ∂Ω,〈
ϱ, PZk

i

〉
= 0 for i = 1, . . . , ν and k = 0, . . . , n,

it holds that
∥ϱ∥H1

0 (Ω) ≲ ∥h∥(H1
0 (Ω))∗ . (4.3)

Proof. We proceed by contradiction. Suppose that there exist sequences of parameters {(δi,m, ξi,m)}m∈N,
and functions {ϱm}m∈N and {hm}m∈N such that{

max
i

δi,m +max
i

κi,m + ∥hm∥(H1
0 (Ω))∗ → 0 as m → ∞,

∥ϱm∥H1
0 (Ω) = 1 for all m ∈ N,

(4.4)
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and
ϱm − (−∆− λ)−1[p(u0 + σm)p−1ϱm] = Π⊥[(−∆− λ)−1hm] +

ν∑
i=1

n∑
k=0

µk
i,mPZk

i,m in Ω,

ϱm = 0 on ∂Ω,〈
ϱm, PZk

i,m

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, 1, . . . , n.

(4.5)

Here, PUi,m := PUδi,m,ξi,m , PZ0
i,m := δi,m

∂PUi,m

∂δi,m
, and PZk

i,m := δi,m
∂PUi,m

∂ξki,m
. Besides, µk

i,m ∈ R
denote Lagrange multipliers.

First, we observe that

∥Π⊥[(−∆− λ)−1hm]∥H1
0 (Ω) ≲

∥∥∥∥∥(−∆− λ)−1hm +

ν∑
i=1

n∑
k=0

∫
Ω hmPZk

i,m

∥PZk
i,m∥H1

0 (Ω)

· PZk
i,m

∥∥∥∥∥
H1

0 (Ω)

≲ ∥hm∥(H1
0 (Ω))∗ +

ν∑
i=1

n∑
k=0

∣∣∣∣∫
Ω
hmPZk

i,m

∣∣∣∣
≲ ∥hm∥(H1

0 (Ω))∗ .

(4.6)

Second, we verify that
ν∑

i=1

n∑
k=0

|µk
i,m| = om(1) (4.7)

where om(1) → 0 as m → ∞.
For this aim, we test (4.5) with PZq

j,m for each j ∈ {1, . . . , ν} and q ∈ {0, 1, . . . , n}. We only
need to focus on∣∣∣∣∫

Ω

[
(−∆− λ)ϱm − p(u0 + σm)p−1ϱm

]
PZq

j,m

∣∣∣∣
≲

∣∣∣∣∫
Ω

[
(−∆− λ)PZq

j,m − p(PUj,m)p−1PZq
j,m

]
ϱm

∣∣∣∣
+

∫
Ω

[
σp−1
m − (PUj,m)p−1

]
|ϱm||PZq

j,m|1{ν≥2} +

∫
Ω

[
(u0 + σm)p−1 − σp−1

m

]
|ϱm|Uj,m.

(4.8)

We now estimate each of the integrals on the right-hand side of (4.8).
It holds that∣∣∣∣∫

Ω

[
(−∆− λ)PZq

j,m − p(PUj,m)p−1PZq
j,m

]
ϱm

∣∣∣∣ ≲ ∥ϱm∥H1
0 (Ω)

×
[∥∥∥(PUj,m)p−1PZq

j,m − Up−1
j,m Zq

j,m

∥∥∥
L

p+1
p (Ω)

+ ∥Uj,m∥
L

p+1
p (Ω)

1{each PUj,m satisfies (1.7)}

]
.

Arguing as in (2.12) and (2.13), we deduce∥∥∥[(PUj,m)p−1 − Up−1
j,m

]
PZq

j,m

∥∥∥
L

p+1
p (Ω)

+
∥∥∥Up−1

j,m (PZq
j,m − Zq

j,m)
∥∥∥
L

p+1
p (Ω)

≲ J1,m,

where J1,m is the quantity J1 in (2.12) with (δi, δj , ξi, ξj) replaced by (δi,m, δj,m, ξi,m, ξj,m).
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Also, by applying the inequality |PZq
j | ≲ PUj (which directly comes from the maximum

principle) for n ≥ 6, (A.1), (A.2), and Hölder’s inequality, we obtain∫
Ω

[
σp−1 − (PUj,m)p−1

]
|ϱm||PZq

j,m|

≲



∫
Ω

∑
i ̸=j

[
(PUj,m)p−2PUi,m + (PUi,m)p−1

]
|ϱm||PZq

j,m| if n = 3, 4, 5,∫
Ω

[
σp−1PUj,m − (PUj,m)p

]
|ϱm| ≲

∫
Ω

[
σp −

ν∑
i=1

(PUi,m)p

]
|ϱm| if n ≥ 6

≲


∑
i ̸=j

∥Up−1
i,m Uj,m∥

L
p+1
p (Ω)

∥ϱm∥H1
0 (Ω) if n = 3, 4, 5,∑

i ̸=j

∥∥∥min{Up−1
i,m Uj,m, Up−1

j,m Ui,m}
∥∥∥
L

p+1
p (Ω)

∥ϱm∥H1
0 (Ω) if n ≥ 6.

On the other hand, using (A.2), we have∫
Ω

[
(u0 + σm)p−1 − σp−1

m

]
|ϱm|Uj,m ≲

∫
Ω

[
(u0σ

p−2
m 1{u0>0,p>2} + up−1

0 1{u0>0}

]
|ϱm|Uj,m

≲ ∥Uj,m∥
L

p+1
p (Ω)

1{u0>0} +

ν∑
i=1

∥Up−1
i,m ∥

L
p+1
p (Ω)

1{u0>0,p>2}.

Therefore,∣∣∣∣ ∫
Ω

[
(−∆− λ)ϱm − p(u0 + σm)p−1ϱm

]
PZq

j,m

∣∣∣∣
≲ ∥ϱm∥H1

0 (Ω)

[
∥Uj,m∥

L
p+1
p (Ω)

1{u0>0}∪{each PUj,m satisfies (1.7)} +

ν∑
i=1

∥Up−1
i,m ∥

L
p+1
p (Ω)

1{u0>0,p>2}

+


∑
i ̸=j

∥Up−1
i,m Uj,m∥

L
p+1
p (Ω)

if n = 3, 4, 5∑
i ̸=j

∥∥∥min{Up−1
i,m Uj,m, Up−1

j,m Ui,m}
∥∥∥
L

p+1
p (Ω)

if n ≥ 6

1{ν≥2} + J1,m


= om(1), (4.9)

where the last equality follows from Lemmas A.2 and A.3, (2.10), (2.11), and ∥ϱm∥H1
0 (Ω) = 1.

Third, we assert that{
ϱm ⇀ 0 weakly in H1

0 (Ω),

ϱm → 0 strongly in Ls(Ω) for s ∈ (1, 2∗)
as m → ∞.

Since ∥ϱm∥H1
0 (Ω) = 1, there exists ϱ∞ ∈ H1

0 (Ω) such that{
ϱm ⇀ ϱ∞ weakly in H1

0 (Ω),

ϱm → ϱ∞ strongly in Ls(Ω) for s ∈ (1, 2∗)
as m → ∞,

along a subsequence. Given any χ ∈ C∞
c (Ω), we test (4.5) with χ and passing to the limit

m → ∞. We can derive from (A.2) and Lemma A.5 that∣∣∣∣ ∫
Ω

[
(u0 + σm)p−1 − up−1

0

]
ϱmχ

∣∣∣∣ ≲ ∫
Ω

[
σp−1
m + up−2

0 σm1{p>2}

]
|ϱmχ|
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≲ ∥σp−1
m ∥

L
p+1
p (Ω)

+ ∥σm∥
L

p+1
p (Ω)

1{p>2} = om(1).

This fact and (4.4)–(4.7) imply that{
(−∆− λ)ϱ∞ = pup−1

0 ϱ∞ in Ω,

ϱ∞ = 0 on ∂Ω,

which together with the non-degeneracy of u0 yields ϱ∞ = 0 in Ω.

Let us now fix an index j ∈ {1, . . . , ν}, and define the rescaled function

ϱ̃j,m(y) := δ
n−2
2

j,m ϱm
(
δj,my + ξj,m

)
for any y ∈ Ω− ξj,m

δj,m

for all sufficiently large m ∈ N. We extend ϱ̃j,m(y) to Rn by setting it to zero outside its original
domain. We will show that{

ϱ̃j,m ⇀ 0 weakly in D1,2(Rn),

ϱ̃j,m → 0 strongly in Ls
loc(Rn) for s ∈ (1, 2∗)

as m → ∞. (4.10)

Because ∥ϱm∥H1
0 (Ω) = 1, the sequence {ϱ̃j,m}n∈N is uniformly bounded in D1,2(Rn), and so there

exists ϱ̃j,∞ ∈ D1,2(RN ) such that{
ϱ̃j,m ⇀ ϱ̃j,∞ weakly in D1,2(Rn),

ϱ̃j,m → ϱ̃j,∞ strongly in Ls
loc(Rn) for s ∈ (1, 2∗)

as m → ∞,

up to a subsequence. Given a function χ ∈ C∞
c (Rn), we set

χ̃j,m(x) = δ
2−n
2

j,m χ
(
δ−1
j,m(x− ξj,m)

)
for x ∈ Ω.

After testing (4.5) with χ̃j,m, the only technical point we encounter is to derive∫
Ω
(u0 + σm)p−1ϱmχ̃j,m =

∫
Rn

Up−1ϱ̃j,∞χ+ om(1) (4.11)

as m → ∞.
Indeed, direct calculations give us that∫

Ω
(PUj,m)p−1ϱmχ̃j,m =

∫
Ω−ξj,m
δj,m

Up−1ϱ̃j,mχ+O

(
κ

n−2
n

j,m

)
=

∫
Rn

Up−1ϱ̃j,∞χ+ om(1),

because∫
Ω

∣∣∣(PUj,m)p−1 − Up−1
j,m

∣∣∣ p+1
p−1

≲
∥∥∥|PUj,m − Uj,m|Up−2

j,m 1{p>2}

∥∥∥ p+1
p−1

L
p+1
p−1 (B(ξj,m,d(ξj,m,∂Ω))

+ ∥|PUj,m − Uj,m|p+1∥L1(B(ξj,m,d(ξj,m,∂Ω))

+

∫
B(ξj,m,d(ξj,m,∂Ω))c

Up+1
j,m ≲ κ

n−2
2

j,m ,

(4.12)

while we know∫
Ω
up−1
0 ϱmχ̃j,m ≃ δ2j,m

∫
supp(χ)

up−1
0 (ξj,m + δj,my)(ϱ̃j,mχ)(y)dy = om(1)
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thanks to the boundedness of u0. Furthermore, for 1 ≤ i ̸= j ≤ ν,∣∣∣∣∫
Ω
(PUi,m)p−1ϱmχ̃j,m

∣∣∣∣ ≲
∥∥∥∥∥
[
δ

n−2
2

j,m Ui,m (ξj,m + δj,m·)
]p−1

∥∥∥∥∥
L

p+1
p (supp(χ))

= om(1),

since(
δj,m
δi,m

) 4n
n+2

∫
supp(χ)

dy(
1 +

( δj,m
δi,m

|y − zij.m|
)2) 4n

n+2

≲



(
δj,m
δi,m

)− 4n
n+2

|zij,m|−
8n
n+2 if |zij,m| → ∞,(

δj,m
δi,m

) 4n
n+2

−n ∫
|z|≤

δj,m
δi,m

1

(1 + |z|)
8n
n+2

dz if |zij,m| is bounded, δi,m ≪ δj,m,

(
δj,m
δi,m

) 4n
n+2

if |zij,m| is bounded, δi,m ≫ δj,m

≲



R
− 8n

n+2

ij,m if |zij,m| → ∞,(
δj,m
δi,m

) 4n
n+2

−n
[
1{p>2} +

∣∣∣∣log δj,m
δi,m

∣∣∣∣1{p=2} +

(
δj,m
δi,m

)n− 8n
n+2

1{p<2}

]
if |zij,m| is bounded, δi,m ≪ δj,m,(

δj,m
δi,m

) 4n
n+2

if |zij,m| is bounded, δi,m ≫ δj,m,

where Rij,m is the quantity introduced in (2.3) with (ξi, ξj , δi, δj) replaced by (ξi,m, ξj,m, δi,m, δj,m).
By (A.1), and Lemmas A.2 and A.3, we also have that∫

Ω
(PUj,m)p−2

(
u0 +

∑
i ̸=j

PUi,m

)
|ϱmχ̃j,m|1{p>2}

≲

[∑
i ̸=j

∥Ui,mUp−2
j,m ∥

L
p+1
p−1 (Ω)

+max
i

∥Up−2
i,m ∥

L
p+1
p−1 (Ω)

]
1{p>2} = om(1).

Combining the above calculations, we derive (4.11).
Taking m → ∞, we observe from (4.5) that−∆ϱ̃j,∞ = pUp−1ϱ̃j,∞ in Rn, ϱ̃j,∞ ∈ D1,2(Rn),∫

Rn

∇ϱ̃j,∞ · ∇Zk = 0 for all k = 0, . . . , n.

The nondegeneracy of U implies that ϱ̃j,∞ = 0, yielding (4.10).

Finally, we will prove
lim

m→∞
∥ϱm∥H1

0 (Ω) = 0. (4.13)

Since (4.13) contradicts (4.4), we will be able to conclude that (4.3) must hold.
To deduce (4.13), we test (4.5) with ϱm. Then, we only have to consider∫

Ω
(u0 + σm)p−1ϱ2m ≲

∫
Ω
up−1
0 ϱ2m +

ν∑
i=1

∫
Ω
(PUi,m)p−1ϱ2m

≲ om(1) +

∫
Rn

Up−1ϱ̃2i,m +O

(
max

i
κ

n−2
n

i,m

)
∥ϱm∥2H1

0 (Ω)

= om(1).
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Here, we employed (4.12) and the facts that ϱm → 0 strongly in L2(Ω) and ϱ̃2i,m ⇀ 0 weakly in

L
n

n−2 (Rn). We are done. □

Proof of Proposition 4.1. We set

h1 :=
[
(u0 + σ + ρ0 + ρ1)

p − |u0 + σ + ρ0|p−1(u0 + σ + ρ0)− p|u0 + σ + ρ0|p−1ρ1
]

+ p
[
|u0 + σ + ρ0|p−1 − (u0 + σ)p−1

]
ρ1

+


f + I1 + I2 + I3 if n ̸= 6,

f + (I3 − I31)−
ν∑

i=1

6∑
k=0

cki (−∆− λ)PZk
i if n = 6.

From (4.1), we have
ρ1 −Π⊥[(−∆− λ)−1(p(u0 + σ)p−1ρ1)] = Π⊥[(−∆− λ)−1h1] in Ω,

ρ1 = 0 on ∂Ω,〈
ρ1, PZk

i

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , n.

By making use of (4.3), (A.2), (A.3) and Hölder’s inequality

∥ρ1∥H1
0 (Ω)

≲ ∥f∥(H1
0 (Ω))∗ + ∥ρ1∥2H1

0 (Ω)1{p>2} + ∥ρ1∥pH1
0 (Ω)

+
(
∥ρ0∥H1

0 (Ω)1{p>2} + ∥ρ0∥p−1
H1

0 (Ω)

)
∥ρ1∥H1

0 (Ω)

+


∥I1∥

L
p+1
p (Ω)

+ ∥I2∥
L

p+1
p (Ω)

+ ∥I3∥
L

p+1
p (Ω)

if n ̸= 6,

∥I3 − I31∥
L

p+1
p (Ω)

+
ν∑

i=1

6∑
k=0

|cki | if n = 6.

Since p > 1 and ∥ρ0∥H1
0 (Ω) = oϵ1(1), we immediately deduce (4.2). □

Corollary 4.3. For each i = 1, . . . , ν, we assume that PUi satisfies (1.7) if n ≥ 5 or [n = 3, 4
and u0 > 0], and satisfies (1.8) if n = 3, 4 and u0 = 0. We define

J11(δ1, . . . , δν) :=



max
i

δi if n = 3 and u0 = 0,

max
i

δ2i | log δi| if n = 4 and u0 = 0,

max
i

δ
n−2
2

i if [n = 3, 4 and u0 > 0] or n = 5,

max
i

δ2i | log δi|
1
2 if n = 6,

max
i

δ2i if n ≥ 7,

J12(κ1, . . . , κν) :=



max
i

κn−2
i if n = 3, 4, 5,

κ41 |log κ1|
1
2 if n = 6 and ν = 1,

max
i

κ4i |log κi|
2
3 if n = 6 and ν ≥ 2, 6

max
i

κ
n+2
2

i if n ≥ 7,
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and

J13(Q) :=


Q if n = 3, 4, 5

Q| logQ|
1
2 if n = 6

Q
n+2

2(n−2) if n ≥ 7

1{ν≥2}.

Then

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + J11(δ1, . . . , δν) + J12(κ1, . . . , κν) + J13(Q). (4.14)

Proof. The result is a consequence of (3.5) and (4.2). □

Proposition 4.4. For each i = 1, . . . , ν, we assume that PUi satisfies (1.7) if n ≥ 5 or [n = 3, 4
and u0 > 0], and satisfies (1.8) if n = 3, 4 and u0 = 0. We set

J21(δ1, . . . , δν) :=



max
i

δi if n = 3 and u0 = 0,

max
i

δ2i | log δi| if n = 4 and u0 = 0,

max
i

δ
n−2
2

i if n = 3, 4, 5 and u0 > 0,

max
i

δ2i if [n = 5 and u0 = 0] or n ≥ 6,

and J23(Q) := Q1{ν≥2}. If each ξ1, . . . , ξν lies on a compact set of Ω, then it holds that

J21(δ1, . . . , δν) + J23(Q) ≲ ∥f∥(H1
0 (Ω))∗ . (4.15)

Proof. Let j ∈ {1, . . . , ν} be fixed. By testing (2.1) with PZ0
j , we obtain∫

Ω
I1PZ0

j +

∫
Ω
I2PZ0

j +

∫
Ω
I3PZ0

j = −
∫
Ω
fPZ0

j −
∫
Ω
I0[ρ]PZ0

j

+

∫
Ω

[
(−∆− λ)ρ− p(u0 + σ)p−1ρ

]
PZ0

j .

As in (4.9), we apply Lemmas A.2–A.3 and (4.14), and the assumption that ξi lies on a compact
set of Ω for i = 1, . . . , ν to deduce∣∣∣∣ ∫

Ω

[
(−∆− λ)ρ− p(u0 + σ)p−1ρ

]
PZ0

j

∣∣∣∣
≲ ∥ρ∥H1

0 (Ω)

[
∥Uj∥

L
p+1
p (Ω)

1{u0>0}∪{PUj satisfies (1.7)} +

ν∑
i=1

∥Up−1
i ∥

L
p+1
p (Ω)

1{u0>0,p>2}

+


∑
i ̸=j

∥Up−1
i Uj∥

L
p+1
p (Ω)

if n = 3, 4, 5∑
i ̸=j

∥∥∥min{Up−1
i Uj , U

p−1
j Ui}

∥∥∥
L

p+1
p (Ω)

if n ≥ 6

1{ν≥2}


= o(J21(δ1, . . . , δν) + J23(Q)).

6The bound for n = 6 and ν ≥ 2 may not be optimal. We present it here for the sake of completeness.
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Using (A.5) and the fact that |PZ0
j | ≤

∑ν
i=1 Ui, we also know that

∣∣∣∣ ∫
Ω
I0[ρ]PZ0

j

∣∣∣∣ ≲

∫
Ω
min{σp−2ρ2, |ρ|p}|PZ0

j | if 1 < p < 2,∫
Ω

(
σp−2ρ2 + |ρ|p

)
|PZ0

j | if p ≥ 2

≲
∫
Ω

ν∑
i=1

Up−1
i |ρ|2 + ∥ρ∥p

H1
0 (Ω)

1{p>2} ≲ ∥ρ∥2H1
0 (Ω).

(4.16)

Without loss of generality, one may assume that δ1 ≥ δ2 ≥ · · · ≥ δν . By employing Lemmas
2.6–2.8 together with an, bn > 0, d(ξi, ∂Ω) ≳ 1, −φ3

λ(ξi) > 0 provided n = 3, u0 = 0, and ν ≥ 2,
and

dnqij +


∑
i ̸=j

[−b3λ|ξj − ξi| − c3H
3
λ(ξi, ξj)]δ

1
2
i δ

1
2
j if n = 3∑

i ̸=j

[−b4λ log |ξj − ξi| − c4H
4
λ(ξi, ξj)]δiδj if n = 4

1{
n=3,4, and u0=0 and qij=

(
|ξi−ξj |√

δiδj

)2−n} ≃ qij ,

we adopt the same reasoning as in [22, Lemma 2.3] (which is based on mathematical induction)
to achieve

J23(Q) ≲ ∥f∥(H1
0 (Ω))∗ + o(J21(δ1, . . . , δν)). (4.17)

Then, one may take the test function PZ0
1 , where δ1 = maxi δi, to prove

J21(δ1, . . . , δν) ≲ ∥f∥(H1
0 (Ω))∗ +

∣∣∣∣ ∫
Ω
I2PZ0

1

∣∣∣∣+ o(J21(δ1, . . . , δν) + J23(Q))

≲ ∥f∥(H1
0 (Ω))∗ + o(J21(δ1, . . . , δν) + J23(Q)).

(4.18)

Here, we used
∣∣ ∫

Ω I2PZ0
1

∣∣ ≲ Q, which comes from (2.36) and Lemma A.3.
Putting (4.17) and (4.18), we establish (4.15), concluding the proof. □

We are now in a position to establish estimate (1.10).

Proof of Estimate (1.10). Since d(ξi, ∂Ω) ≳ 1, we have

J12(κ1, . . . , κν) ≲ J11(δ1, . . . , δν).

From (4.14) and (4.15), one can identify two optimal functions ζ̃1(t) and ζ̃3(t) of the form
ta| log t|b, with a > 0 and b ≥ 0 (b = 0 unless n = 6), such that

J11(δ1, . . . , δν) ≲ ζ̃1(J21(δ1, . . . , δν)) and J13(Q) ≲ ζ̃3(J23(Q)).

Recognizing that ζ̃1(t) and ζ̃3(t) are non-decreasing for t > 0, we obtain

∥ρ∥H1
0 (Ω) ≲ max

{
∥f∥(H1

0 (Ω))∗ , ζ̃1(∥f∥(H1
0 (Ω))∗), ζ̃3(∥f∥(H1

0 (Ω))∗)
}
= ζ(∥f∥(H1

0 (Ω))∗),

where ζ(t) is the function introduced in (1.11). □

4.2. Sharpness of estimate (1.10). Let us divide it into two cases.

Case 1: We prove the optimality of (1.10) when [n = 3, 4, ν ≥ 1], or [n = 5, ν ≥ 1, u0 > 0] or
[n ≥ 7, ν = 1]. In this case, we have that ζ(t) = t.

We select numbers δ = δi ∈ (0, 1) for each i ∈ {1, . . . , ν} and points ξi ∈ Ω such that
d(ξi, ∂Ω) ≳ 1 and |ξi − ξj | ≳ 1 for all distinct indices 1 ≤ i ̸= j ≤ ν. Under these conditions, it
holds that Q ≃ δn−2 · 1ν≥2.
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Taking

ϵ ≃


δ if n = 3 and u0 = 0,

δ2| log δ| if n = 4 and u0 = 0,

δ
n−2
2 if n = 3, 4, 5 and u0 > 0,

δ2 if n ≥ 7 and ν = 1,

and using |PZk
i | ≤ CPUi in Ω, we construct a nonnegative function of the form

ϕδ =
ν∑

i=1

PUi +
ν∑

i=1

n∑
k=0

βk
i PZk

i ,

where βk
i = oδ(1),

〈
ϕδ, PZk

i

〉
= 0 for each i = 1, . . . , ν and k = 0, 1, . . . , n, and ∥ϕδ∥H1

0 (Ω) ≃ 1.

Letting ρ := ϵϕδ, we define u∗ := u0 +
∑ν

i=1 PUi + ρ so that u∗ = 0 on ∂Ω. Then we set

f := −∆u∗ − λu∗ − up−1
∗ = −∆ρ− λρ− p

(
u0 +

ν∑
i=1

PUi

)p−1

ρ+ I1 + I2 + I3 + I0[ρ]

where I1, I2, I3, and I0[ρ] are defined as in (2.2) with parameters (δi, ξi) satisfying the above
conditions. By Lemmas 2.1 and 2.5, we have that ∥ρ∥H1

0 (Ω) ≃ ϵ and

∥f∥(H1
0 (Ω))∗ ≲ ∥ρ∥H1

0 (Ω) + ∥ρ∥min{2,p}
H1

0 (Ω)
+ ∥I1∥

L
p+1
p (Ω)

1{u0 ̸=0} + ∥I2∥
L

p+1
p (Ω)

1{ν≥2} + ∥I3∥
L

p+1
p (Ω)

≃ ϵ ≃ ∥ρ∥H1
0 (Ω).

Proceeding as in Step 2 of [15, Subsection 5.1], we deduce that

inf
(δ̃i,ξ̃i)∈(0,1)×Ω,

i=1,...,ν

∥∥∥u∗ − (u0 + ν∑
i=1

PUδ̃i,ξ̃i

)∥∥∥
H1

0 (Ω)
≳ ∥ρ∥H1

0 (Ω),

thereby establishing the optimality of (1.10).

Case 2: We prove the optimality of (1.10) when [n = 5, ν ≥ 1, u0 = 0] or [n = 6, ν ≥ 1] or
[n ≥ 7, ν ≥ 2]. In this case, we have that ζ(t) ≫ t. The proof is split into three steps.

Step 1. We select δ = δi ∈ (0, 1) and ξi ∈ Ω such that d(ξi, ∂Ω) ≳ 1 and |ξi − ξj | ≃ δb for

each i ̸= j, where i, j ∈ {1, . . . , ν} and b ∈ [0, 1). This choice ensures that Q ≃ δ(1−b)(n−2). We
impose a further restriction b ∈ (n−4

n−2 , 1) for n ≥ 7, and set b = 0 in dimensions n = 5, 6.
We now consider the function ρ solving the boundary value problem

−∆ρ− λρ− p(u0 + σ)p−1ρ = I1 + I2 + I3 + I0[ρ] +
ν∑

i=1

n∑
k=0

c̃ki (−∆− λ)PZk
i in Ω,

ρ = 0 on ∂Ω, c̃ki ∈ R for i = 1, . . . , ν and k = 0, . . . , n,〈
ρ, PZk

i

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , n,

(4.19)
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where PZk
i , I1, I2, I3, and I0[ρ] are defined as in (2.2) with parameters (δi, ξi) satisfying the

above conditions. We set f :=
∑n

k=0

∑ν
i=1 c̃

k
i (−∆− λ)PZk

i . Then

∥f∥(H1
0 (Ω))∗ ≲

n∑
k=0

ν∑
i=1

|c̃ki |

≲ ς1(δ) :=

{
δ2 if [n = 5, u0 = 0, ν ≥ 1] or [n = 6, ν ≥ 1],

δ(1−b)(n−2) if n ≥ 7 and ν ≥ 2.

(4.20)

By applying Lemmas 4.2, 2.5 and (4.20), we see that

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1∥
L

p+1
p (Ω)

+ ∥I2∥
L

p+1
p (Ω)

+ ∥I3∥
L

p+1
p (Ω)

≲


δ

3
2 if n = 5, u0 = 0, and ν ≥ 1,

δ2| log δ|
2
3 if n = 6 and ν ≥ 1,

δ
(1−b)(n+2)

2 if n ≥ 7 and ν ≥ 2.

(4.21)

We now decompose ρ = ρ̃0 + ρ̃1, where the functions ρ̃0 and ρ̃1 satisfy

−∆ρ̃0 − λρ̃0 − p(u0 + σ)p−1ρ̃0 = I11{n≥6, u0>0} + I21{n≥6, ν≥2}

+
ν∑

i=1

λPUi1{n=5,6} + I0[ρ̃0] +
ν∑

i=1

n∑
k=0

c̄ki (−∆− λ)PZk
i

in Ω,

ρ̃0 = 0 on ∂Ω, c̄ki ∈ R for i = 1, . . . , ν and k = 0, . . . , n,〈
ρ̃0, PZk

i

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , n,

and

−∆ρ̃1 − λρ̃1 − p(u0 + σ)p−1ρ̃1 = I21{n=5, u0=0, ν≥2} +
ν∑

i=1

(∆PUi + PUp
i )

+

ν∑
i=1

λPUi1{n≥7} + I0[ρ]− I0[ρ̃0] +
ν∑

i=1

n∑
k=0

(c̃ki + c̄ki )(−∆− λ)PZk
i

in Ω,

ρ̃1 = 0 on ∂Ω,〈
ρ̃1, PZk

i

〉
H1

0 (Ω)
= 0 for i = 1, . . . , ν and k = 0, . . . , n,

respectively. By realizing |I1 + I2 +
∑ν

i=1 λPUi| ≲
∑ν

i=1 Ui for n = 6 (since |ξi − ξj | ≳ 1) and
recalling (2.10), one can deduce a coefficient bound

n∑
k=0

ν∑
i=1

|c̄ki | ≲ ς1(δ) (4.22)

and a pointwise estimate for ρ̃0:

|ρ̃0|(x) ≲ W̃ (x). (4.23)

Here,

w̃in
1i(x) :=

1

⟨xi⟩2
1{|xi|≤δ−1/2}, w̃out

1i (x) :=
δ−

n−6
2

⟨xi⟩n−41{|xi|≥δ−1/2},

w̃in
2i(x) :=

δ(
1
2
−b)(n−2)

⟨xi⟩2
1{

|xi|<min
i ̸=j

|ξi−ξj |
2δ

}, w̃out
2i (x) :=

δ4(1−b)−n−2
2

|xi|n−4
1{

|xi|≥min
i̸=j

|ξi−ξj |
2δ

},
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w̃3i(x) :=
δ−

n−6
2

⟨xi⟩n−4 ,

and

W̃ (x) :=
ν∑

i=1

[
w̃in
1i + w̃out

1i

]
(x)1{n≥7, u0>0} +

ν∑
i=1

[
w̃in
2i + w̃out

2i

]
(x)1{n≥7, ν≥2} +

ν∑
i=1

w̃3i(x)1{n=5,6}.

Moreover, we observe

∥ρ̃1∥H1
0 (Ω) ≲

∥∥∥∥∥I21{n=5, u0=0, ν≥2} +
ν∑

i=1

(
∆PUi + PUp

i + λPUi1{n≥7}
)∥∥∥∥∥

L
p+1
p (Ω)

≲


δ3 if n = 5, u0 = 0, ν ≥ 2,

δ4| log δ|
2
3 if n = 6, ν ≥ 1,

δ2 if n ≥ 7, ν ≥ 2.

(4.24)

Combining these computations and adapting the approach of Proposition 4.1, we reach the
improved estimate

∥ρ∥H1
0 (Ω) ≲ ς2(δ) :=


δ

3
2 if n = 5, u0 = 0, ν ≥ 1,

δ2| log δ|
1
2 if n = 6, ν ≥ 1,

δ
(1−b)(n+2)

2 if n ≥ 7, ν ≥ 2.

Step 2. We now establish the lower bound

∥ρ∥H1
0 (Ω) ≳ ς2(δ), (4.25)

which in turn implies

∥ρ∥H1
0 (Ω) ≳ ζ(∥f∥H−1(Ω)).

Testing equation (4.19) against ρ and applying Holder’s inequality yield

∥ρ∥2H1
0 (Ω) =

∫
Ω
p(u0 + σ)p−1ρ2 +

∫
Ω
(I1 + I2 + I3 + I0[ρ])ρ

≥
∫
Ω

(
I11{n≥6, u0>0} + I21{n≥6, ν≥2} +

ν∑
i=1

λPUi1{n=5,6}

)
ρ̃0 + o

(
ς2(δ)

2
)

=: J2 + o
(
ς2(δ)

2
)
,

where we have invoked (2.11), (2.13), (4.24), (4.21), and the bound |I0[ρ]ρ| ≲ |ρ|min{p+1,3}.
Let Gλ be defined as (2.7) for n ≥ 3. We recall the integral representation of ρ̃0 given by

ρ̃0(x) =

∫
Ω
Gλ(x, y)

[
p(u0 + σ)p−1ρ̃0 + I11{n≥6, u0>0} + I21{n≥6, ν≥2}

+

ν∑
i=1

λPUi1{n=5,6} + I0[ρ̃0] +
ν∑

i=1

n∑
k=0

c̄ki (−∆− λ)PZk
i

]
and the lower bound estimate of Gλ:

Gλ(x, y) ≳
1

|x− y|n−2
.
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We also introduce the quantities

J21 :=


∫
Ω

ν∑
i=1

λPUi(x)

∫
Ω
Gλ(x, ω)

ν∑
j=1

λPUj(ω)dxdω if n = 5, 6,∫
Ω
I2(x)

∫
Ω
Gλ(x, ω)I2(ω)dxdω if n ≥ 7,

and

J22 :=

∫
Ω

(
I11{n≥6, u0>0} + I21{n≥6, ν≥2} +

ν∑
i=1

λPUi1{n=5,6}

)
(x)

∫
Ω

Gλ(x, ω)[p(u0 + σ)p−1ρ̃0](ω)dxdω.

Then, by appealing to the inequality ∥ρ̃0∥H1
0 (Ω) ≲ ς2(δ), (4.22), (2.11), (2.13), and the non-

negativity of the functions I1, I2 and λPUi, we obtain

J2 ≳ J21 + J22

+O

(∥∥∥∥I11{n≥6, u0>0} + I21{n≥6, ν≥2} +

ν∑
i=1

λPUi1{n=5,6}

∥∥∥∥
L

p+1
p (Ω)

(
∥ρ̃0∥2H1

0 (Ω) +

ν∑
i=1

n∑
k=0

|c̃ki |

))
= J21 + J22 + o

(
ς2(δ)

2
)
.

Assume that n = 5, 6. A direct computation shows∫
Ω

ν∑
i=1

PUi(x)

∫
Ω
Gλ(x, ω)

ν∑
j=1

PUj(ω)dxdω

≳
∫
Ω

ν∑
i,j=1

(
δ

δ2 + |x− ξi|2

)n−2
2 δ

n−2
2

(δ2 + |x− ξj |2)
n−4
2

≃

{
δ3 if n = 5,

δ4| log δ| if n = 6.

(4.26)

Assume that n ≥ 7 and ν ≥ 2. If |x1| ≲ 1
2δ

b−1, then |x2| ≤ |x1| + |ξ1−ξ2|
δ ≲ δb−1. From this, we

derive

I2 = σp −
ν∑

i=1

(PUi)
p ≳ (PU1)

p−1PU2

and

Up−1
1 U2 ≳

δ−2

⟨x1⟩4
δ−

n−2
2

⟨x2⟩n−2 ≳
δ−2

⟨x1⟩4
δ−

n−2
2 δ(1−b)(n−2) ≳

δ(
1
2
−b)(n−2)−2

⟨x1⟩4
.

As a consequence, we have

J21 =

∫
Ω
I2(x)

∫
Ω
Gλ(x, ω)I2(ω)dxdω

≳ δ(2−2b)(n−2)

∫
{|x1|≲ 1

2
δb−1}

∫
{|ω1|< 1

2
|x1|}

1

⟨x1⟩4
1

|x1 − ω1|n−2

1

⟨ω1⟩4
dx1dω1 + o(δ(1−b)(n+2))

≳ δ(2−2b)(n−2)

∫
{|x1|≲ 1

2
δb−1}

1

⟨x1⟩6
dx1 + o(δ(1−b)(n+2)) ≳ δ(1−b)(n+2),

(4.27)
where ω1 := δ−1

1 (ω − ξ1).
We next estimate J22. We denote

ṽinji :=
δ−2
i

⟨xi⟩2
w̃in
ji , ṽoutji :=

δ−2
i

⟨xi⟩2
w̃out
ji for j = 1, 2, ṽ3i :=

δ−2
i

⟨xi⟩2
w̃3i,
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and

Ṽ :=

ν∑
i=1

[
(ṽin1i + ṽout1i )1{n≥7, u0>0} + (ṽin2i + ṽout2i )1{n≥7, ν≥2} + ṽ3i1{n=5,6}

]
.

Recalling (2.10), we easily observe that∣∣∣∣I11{n≥6, u0>0} + I21{n≥6, ν≥2} +

ν∑
i=1

λPUi1{n=5,6}

∣∣∣∣ ≲ Ṽ ,

which implies

J22 ≲
∫
Ω
Ṽ (x)

∫
Ω

1

|x− ω|n−2
[(1{u0>0} + σp−1)|ρ̃0|](ω)dωdx. (4.28)

Hence, it suffices to estimate the right-hand side of (4.28).
It holds that

∥Ṽ ∥
L

p+1
p (Ω)

≲

{
δ2| log δ|

2
3 if n = 6,

δ
(1−b)(n+2)

2 if n ≥ 7,

and ∥∥w̃in
1i

∥∥
L

p+1
p (Ω)

+
∥∥w̃out

1i

∥∥
L

p+1
p (Ω)

≲ δ
n+2
4 if n ≥ 7, ∥w̃3i∥

L
p+1
p (Ω)

≲ δ2 if n = 6,

∥∥w̃in
2i

∥∥
L

p+1
p (Ω)

+
∥∥w̃out

2i

∥∥
L

p+1
p (Ω)

≲ δ
(1−b)(n+2)

2
+2 if n ≥ 7.

By these bounds and the Hardy-Littlewood-Sobolev inequality, we have∫
Ω
Ṽ (x)

∫
Ω

1

|x− ω|n−2
|ρ̃0|(ω)dxdω1{u0>0} ≲ ∥Ṽ ∥

L
p+1
p (Ω)

· ∥W̃∥
L

p+1
p (Ω)

= o

({
δ4| log δ| if n = 6,

δ(1−b)(n+2) if n ≥ 7

})
.

(4.29)

In the following, we estimate the integral
∫
Ω

1
|x−ω|n−2 (σ

p−1|ρ̃0|)(ω)dω by dividing cases accord-

ing to the dimension.
We redefine W as

W (x) :=


ν∑

i=1

w̃3j
log(2 + |xi|)

⟨xi⟩2
if n = 5, 6,

ν∑
i=1

[
(w̃in

1i + w̃in
2i)

1

⟨xi⟩2
+ (w̃out

1i + w̃out
2i )

log(2 + |xi|)
⟨xi⟩2

]
if n ≥ 7.

(1) When n = 5, 6, we notice from Young’s inequality that

Up−1
i w̃3j ≲

[
δ2+

4
n

(δ2 + |x− ξi|2)2

]n
4

+

[
δ

n−2
2

− 4
n

(δ2 + |x− ξj |2)
n−4
2

] n
n−4

≲
δ−2

⟨xi⟩4
w̃3i +

δ−2

⟨xj⟩4
w̃3j .

for any i, j ∈ {1, . . . , ν}. Therefore,∫
Ω

1

|x− ω|n−2
(σp−1|ρ̃0|)(ω)dω ≲ W (x).

(2) Assume that n ≥ 7.
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Suppose that |x− ξj | ≤
√
δ. If we also have |x− ξi| ≤

√
δ, then Young’s inequality yields

Up−1
i w̃in

1j ≲

[
δ

8
3

(δ2 + |x− ξi|2)2

] 3
2

+

[
δ

4
3

δ2 + |x− ξj |2

]3
≲

1

⟨xi⟩2
ṽin1i +

1

⟨xj⟩2
ṽin1j

for any i, j ∈ {1, . . . , ν}. If |x − ξi| ≥
√
δ is valid, then using the inequalities δ

δ2+|x−ξi|2 ≲ 1 ≲
δ

δ2+|x−ξj |2 , we find

Up−1
i w̃in

1j ≲
δ3

(δ2 + |x− ξj |2)2
≲ δṽin1j .

Suppose next that |x− ξj | ≥
√
δ. If we also have |x− ξi| ≥

√
δ, then Young’s inequality again

gives

Up−1
i w̃out

1j ≲
1

⟨xi⟩2
ṽout1i +

1

⟨xj⟩2
ṽout1j ≲ δ

(
ṽout1i + ṽout1j

)
.

If |x− ξi| ≤
√
δ is valid, noting that w̃out

1j ≲ δ, we also have

Up−1
i w̃out

1j ≲ δṽin1i.

Moreover, if |xj | ≤ |ξi−ξj |
2δ and |xi| ≥ |ξi−ξj |

2δ ≥ |xj |, then

Up−1
i w̃in

2j ≲ δ2(1−b)ṽin2j .

Suppose that |xj | ≥ |ξi−ξj |
2δ so that 1+ |xi| ≤ |xj |+ |ξi−ξj |

δ +1 ≲ |xj |. If we also have |xi| ≤ |ξi−ξj |
2δ ,

then

Up−1
i w̃out

2j ≲
δ−2

⟨xi⟩6
δ4(1−b)−n−2

2
+(1−b)(n−6) =

1

⟨xi⟩2
vin2i.

If |xi| ≥ |ξi−ξj |
2δ holds, then by Young’s inequality,

Up−1
i w̃out

2j ≲

(
ṽout2i

⟨xi⟩2

)n−4
n

(
ṽout2j

⟨xj⟩2

) 4
n

≲
1

⟨xi⟩2
ṽout2i +

1

⟨xj⟩2
ṽout2j .

Putting the estimates above together, we conclude∫
Ω

1

|x− ω|n−2
(σp−1|ρ̃0|)(ω)dω

≲
∫
Ω

1

|x− ω|n−2

ν∑
i=1

[(
1

⟨xi⟩2
+ δ

)(
ṽin1i + ṽout1i

)
+

(
1

⟨xi⟩2
+ δ2(1−b)

)(
ṽin2i + ṽout2i

)]
dx

≲ W (x) +
[
δ2(1−b) + δ

]
W̃ (x).
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Now, if we select L > 0 satisfying {|xi| ≤ L} ∩ {|xj | ≤ L} = ∅ for 1 ≤ i ̸= j ≤ ν and

L−1 ≳ δ2(1−b) + δ, then∫
Ω
Ṽ (x)

∫
Ω

1

|x− ω|n−2
(σp−1|ρ̃0|)(ω)dωdx

≲
∫
Ω
Ṽ (x)

[
W (x)1∪ν

i=1{|xi|≤L} + L−1W̃ (x)1∩ν
i=1{|xi|≥L}

]
dx

≲
ν∑

i=1

∫
{|xi|≤L}

[
δ(1−2b)(n−2)−2

⟨xi⟩8
1{n≥7, ν≥2} +

δ−2 log(2 + |xi|)
⟨xi⟩8

1{n≥7, u0>0}

+
δ(

1
2
−b)(n−2)−2 log(2 + |xi|)

⟨xi⟩8
1{n≥7, u0>0, ν≥2} +

δ4−n log(2 + |xi|)
⟨xi⟩2n−4 1{n=5,6}

]
dx

+ L−1∥Ṽ ∥
L

p+1
p (Ω)

∥W̃∥Lp+1(Ω)

≲

{
δ4 if n = 5, 6

δ(2−2b)(n−2) if n ≥ 7 and ν ≥ 2

}
+ L−1ς2(δ)

2.

(4.30)

Estimates (4.26)–(4.29), along with (4.30) for L > 0 large enough, imply the validity of (4.25).

Step 3. Let u♯ := u0 +
∑ν

i=1 PUi + ρ, (u♯)± := max{±u♯, 0}, and u∗ := (u♯)+.

Observe that{
(−∆− λ)u♯ = |u♯|p−1u♯ +

∑n
k=0

∑ν
i=1 c̃

k
i (−∆− λ)PZk

i in Ω,

u♯ = 0 on ∂Ω.
(4.31)

Assuming that ξ̃i satisfies the assumption of Theorem 1.1, we introduce

d∗(u) := inf

{∥∥∥u−
(
u0 +

ν∑
i=1

PUδ̃i,ξ̃i

)∥∥∥
H1

0 (Ω)
:
(
δ̃i, ξ̃i

)
∈ (0,∞)× Ω, i = 1, . . . , ν

}
.

Arguing as in Case 1, we can verify

d∗(u♯) ≳ ∥ρ∥H1
0 (Ω) ≃ ς2(δ). (4.32)

Testing (4.31) with (u♯)− gives

∥(u♯)−∥2 = ∥(u♯)−∥p+1
Lp+1(Ω)

+

∫
Ω

n∑
k=0

ν∑
i=1

c̃ki (−∆− λ)PZk
i (u♯)−.

Using the estimate 0 ≤ (u♯)− ≲ |ρ|, we get

∥(u♯)−∥2 ≲ ∥ρ∥p+1
H1

0 (Ω)
+

∫
Ω

n∑
k=0

ν∑
i=1

|c̃ki ||(−∆− λ)PZk
i ||ρ| = o(1),

and since

∥(u♯)−∥p+1
Lp+1(Ω)

≲ ∥(u♯)−∥p+1
H1

0 (Ω)
= o

(
∥(u♯)−∥2H1

0 (Ω)

)
,
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we obtain

∥(u♯)−∥2 ≲
n∑

k=0

ν∑
i=1

|c̃ki |
[∫

Ω
|(−∆− λ)PZk

i ||ρ̃0|+ ∥ρ̃1∥H1
0 (Ω)

]

≲
n∑

k=0

ν∑
i=1

|c̃ki |
[ ∫

Ω
(Up

i + Ui)
ν∑

j=1

[(
w̃in
1j + w̃out

1j

)
1{n≥7, u0>0}

+
(
w̃in
2j + w̃out

2j

)
1{n≥7, ν≥2} + w̃3j1{n=5,6}

]
+ ∥ρ̃1∥H1

0 (Ω)

]
≲ ς1(δ)

2.

Here, the last inequality holds thanks to the following estimates: If n = 5 or 6, then∫
Ω
w̃3i(U

p
i + Ui) ≲

{
δ2 if n = 5,

δ4| log δ| if n = 6,

and for 1 ≤ i ̸= j ≤ ν,∫
Ω
w̃3j(U

p
i + Ui) ≲ δ

n−2
2

∫
B(ξj ,

|ξi−ξj |
2

)
w̃3j + δ

n−2
2

∫
B(ξi,

|ξi−ξj |
2

)
(Up

i + Ui) + δn−2 ≃ δn−2.

If n ≥ 7, then ∫
Ω
w̃in
1i(U

p
i + Ui) ≲ δ

n−2
2 ,

∫
Ω
w̃out
1i (Up

i + Ui) ≲ δ
n+2
2 ,∫

Ω
w̃in
2i(U

p
i + Ui) ≲ δ(1−b)(n−2),

∫
Ω
w̃out
2i (Up

i + Ui) ≲ δ(1−b)(n−2)+2,

and for 1 ≤ i ̸= j ≤ ν,∫
Ω
w̃in
1j(U

p
i + Ui) =

(∫
|xj |≤

|ξi−ξj |
2δ

+

∫
|ξi−ξj |

2δ
≤|xj |≤δ−1/2

)
w̃in
1j(U

p
i + Ui) ≲ δ2(1−b)+n−2

2 ,

∫
Ω
w̃out
1j (Up

i + Ui) ≲ δ

∫
Ω
(Up

i + Ui) ≲ δ
n
2 ,∫

Ω
w̃in
2j(U

p
i + Ui) ≲ δ

(1−2b)(n−2)
2

∫
Ω
w̃in
2j ≲ δ(1−b)(n−2)+2,∫

Ω
w̃out
2j (Up

i + Ui) ≲ δ(1−b)n−n−2
2

∫
Ω
(Up

i + Ui) ≲ δ(1−b)n.

Therefore, by combining estimates (4.20), (4.32) and (4.33), we infer

d∗(u∗) ≳ d∗(u♯)− ∥(u♯)−∥ ≳ ∥ρ∥H1
0 (Ω) ≃ ς2(δ).

Moreover,

Γ(u∗) ≲ Γ̃(u♯) + ∥(u♯)−∥ ≲ ς1(δ),

where Γ̃(u♯) := ∥∆u♯+λu♯+ |u♯|p−1u♯∥H−1(Ω) ≲ ς1(δ). In conclusion, we obtain a function u∗ ≥ 0
satisfying

d∗(u∗) ≳ ζ(Γ(u∗)),

thereby establishing the optimality of (1.10).



SHARP QUANTITATIVE STABILITY ESTIMATES FOR BREZIS-NIRENBERG PROBLEM 49

5. Proof of Theorem 1.3

In this section, we investigate the single-bubble case (ν = 1), allowing the distance between
ξ1 and ∂Ω to be arbitrarily small, and prove Theorem 1.3. We assume that the function PU1

satisfies (1.8) when n = 3 or [n = 4, 5, u0 = 0], and satisfies (1.7) when [n = 4, 5, u0 > 0] or
n ≥ 6; see Remark 1.4(2).

We first examine the case when n = 5 and PU1 satisfies (1.8). By Lemma 2.1, Corollary 2.3,
and (2.31), we have

∥I3∥
L

p+1
p (Ω)

≲ ∥(PU1 − U1)U
p−1
1 ∥

L
p+1
p (Ω)

≲ δ
3
2
1

(∥∥∥∥ 1

| · −ξ1|
Up−1
1

∥∥∥∥
L

p+1
p (Ω)

+ |φ5
λ(ξ1)|∥U

p−1
1 ∥

L
p+1
p (Ω)

)

+

∥∥∥∥δ1/21 D5

(
· − ξ1
δ1

)
Up−1
1

∥∥∥∥
L

p+1
p (Ω)

≲ δ21 + κ31

(5.1)

and∫
B(ξ1,d(ξ1,∂Ω))

[(PU1)
p − Up

1 ]PZ0
1 =

λ

2
a5δ

3
2
1 p

∫
B(ξ1,d(ξ1,∂Ω))

1

|x− ξ1|
(Up−1

1 Z0
1 )(x)dx

+ λa25pδ
2
1

∫
B(0,κ−1

1 )

[
1

(1 + |z|2)
3
2

− 1

|z|3

]
|z|2 − 1

(1 + |z|2)
5
2

dz

− δ
3
2
1 a5pH

5
λ(ξ1, ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

Up−1
1 Z0

1dx+O(δ31) +O(κ51)

= b̄5λδ
2
1 − c5δ

3
1φ

5
λ(ξ1) +O(δ31) +O(κ51). (5.2)

Here,

b̄5 :=
a5
2

∫
R5

1

|z|
(Up−1Z0)(z)dz + a25p

∫
R5

[
1

(1 + |z|2)
3
2

− 1

|z|3

]
|z|2 − 1

(1 + |z|2)
5
2

dz > 0

and c5 := a5p
∫
R5 U

p−1Z0 > 0.
Combining (5.1) with (4.14), we obtain

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ +



δ1 if n = 3 and u0 = 0

δ21 | log δ1| if n = 4 and u0 = 0

δ
n−2
2

1 if n = 3, 4, 5 and u0 > 0

δ21 | log δ1|
1
2 if n = 6

δ21 if [n = 5, u0 = 0] or n ≥ 7


+


κn−2
1 if n = 3, 4, 5

κ41| log κ1|
1
2 if n = 6

κ
n+2
2

1 if n ≥ 7

 .

(5.3)

Also, applying (2.14), (2.22)–(2.23), and (5.2), we deduce∫
Ω
(I1 + I3)PZ0

1
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=

anu0(ξ1)δ n−2
2

1 +


O(δ1) if n = 3

O(δ21 | log δ1|) if n = 4

O(δ21) if n = 5

1{p>2} +O
(
δ

n
2
1 + κn1

)1{u0>0} (5.4)

+



−c3φ
3
λ(ξ1)δ1 +O(δ21) +O(κ31) if n = 3,

b4λδ
2
1 | log δ1| − c4δ

2
1φ

4
λ(ξ1)− 96|S3|λδ21 +O(δ31) +O(κ41) if n = 4 and u0 = 0,

−δ21c4φ(ξ1) +O(δ21 | log δ1|) +O(κ41) if n = 4 and u0 > 0,

b̄5λδ
2
1 − c5δ

3
1φ

5
λ(ξ1) +O(δ31) +O(κ51) if n = 5 and u0 = 0,

λbnδ
2
1 − δn−2

1 cnφ(ξ1) +O
(
δ21κ

n−4
1

)
+O(κn1 ) if [n = 5, u0 > 0] or n ≥ 6.

As mentioned earlier, certain cancellations between terms with opposite signs may occur in
(5.4). To handle this issue, we establish an estimate for the projection of the term I1 + I3 onto
the direction of spatial derivatives of PU1, as stated in the following lemma.

Lemma 5.1. For any k ∈ {1, . . . , n}, there exists a constant en > 0 such that

∣∣∣∣ ∫
Ω
(I1 + I3)PZk

1

∣∣∣∣ = (1 + o(1))enδ
n−1
1 ×


∣∣∣∣∂φn

λ

∂ξk1
(ξ1)

∣∣∣∣ if n = 3 or [n = 4, 5, u0 = 0]∣∣∣∣ ∂φ∂ξk1 (ξ1)
∣∣∣∣ if [n = 4, 5, u0 > 0] or n ≥ 6



+



O(δ31) if n = 3, 4, 5 and u0 = 0,

O(δ
3
2
1 | log δ1|) if n = 3 and u0 > 0,

O(δ21 | log δ1|) if n = 4 and u0 > 0,

O(δ21d(ξ1, ∂Ω) + δ
n
2
1 ) if n = 5 and u0 > 0,

O(δ
n
2
1 ) if n ≥ 6.

(5.5)

Proof. By using Corollary 2.4, we obtain∫
B(ξ1,d(ξ1,∂Ω))

u0(PU1)
p−1PZk

1 =
∂u0

∂ξk1
(ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

(x− ξ1)
k(Up−1

1 Zk
1 )(x)dx+O

(
δ

n
2
1 + κn1

)
= O

(
δ

n
2
1 + κn1

)
for n ≥ 3 (cf. (2.16)).

Let us refine estimate (2.18) for the cases n = 3, 5 and u0 > 0. If n = 5 and u0 > 0, then we
have ∫

B(ξ1,η
√
δ1)

u20(PU1)
p−2|PZk

1 | ≲
∫
B(ξ1,d(ξ1,∂Ω))

Up−1
1 +

∫
B(ξ1,d(ξ1,∂Ω))c

Up+1
1

≲ δ21d(ξ1, ∂Ω) + κn1 .

Suppose that n = 3 and u0 > 0. Applying (A.4), we expand I1 by

I1 =
[
pu0(PU1)

p−1 +
p(p− 1)

2
u20(PU1)

p−2 +O(u30(PU1)
p−3) +O (up0)

]
1B(ξ1,η

√
δ1)

+
[
pup−1

0 PU1 +O(up−2
0 (PU1)

2)1{p>2} +O((PU1)
p)
]
1B(ξ1,η

√
δ1)c

.

Also, we have∫
B(ξ1,η

√
δ1)

u20(PU1)
p−2PZk

1 = 2(1 + o(1))u0(ξ1)
∂u0

∂ξk1
(ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

(x− ξ1)
k(Up−2

1 Zk
1 )(x)dx
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+O

 δ
1
2
1

d(ξ1, ∂Ω)

∫
B(ξ1,d(ξ1,∂Ω))

Up−2
1

+

∫
B(ξ1,d(ξ1,∂Ω))c

Up+1
1

≲ δ21 | log δ1|+ δ1κ1| log κ1|+ κn1

and ∫
B(ξ1,η

√
δ1)

u30(PU1)
p−3|PZk

1 | ≲
∫
B(ξ1,η

√
δ1)

Up−2
1 ≲ δ

3
2
1 | log δ1|.

By combining the above estimates with (2.15) and (2.19)–(2.21), we conclude

∫
Ω
I1PZk

1 =



O(δ

3
2
1 | log δ1|) if n = 3

O(δ21 | log δ1|) if n = 4

O(δ21d(ξ1, ∂Ω)) if n = 5

1{p>2} +O
(
δ

n
2
1 + κn1

)1{u0>0}. (5.6)

On the other hand, arguing as in (2.29)–(2.33) and (5.2), we can find a constant en > 0 such
that∫

Ω
[(PU1)

p − Up
1 ]PZk

1

=



−δ
n−2
2

1 anp
∂φn

λ

∂ξk1
(ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

(x− ξ1)
k(Up−1

1 Zk
1 )(x)dx+O(δ31) +O(κn1 )

if n = 3 or [n = 4, 5, u0 = 0]

−δ
n−2
2

1 anp
∂φ

∂ξk1
(ξ1)

∫
B(ξ1,d(ξ1,∂Ω))

(x− ξ1)
k(Up−1

1 Zk
1 )(x)dx+O(κn1 )

if [n = 4, 5, u0 > 0] or n ≥ 6

=


−(1 + o(1))enδ

n−1
1

∂φn
λ

∂ξk1
(ξ1) +O(δ31) +O(κn1 ) if n = 3 or [n = 4, 5, u0 = 0],

−(1 + o(1))enδ
n−1
1

∂φ

∂ξk1
(ξ1) +O(κn1 ) if [n = 4, 5, u0 > 0] or n ≥ 6.

(5.7)

Here, we also used Corollary 2.4.
Moreover, we see from (2.24) and (2.25) that∫

Ω
λPU1PZk

11{PU1 satisfies (1.7)} =

{
O(δ21 | log δ1|) if n = 4 and u0 > 0,

O
(
δ

n
2
1 + κn1

)
if [n = 5, u0 > 0] or n ≥ 6.

(5.8)

Consequently, (5.5) follows immediately from (5.6)–(5.8). □

Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Throughout the proof, we keep in mind (2.8).

Step 1. Let us prove estimate (1.12).

By testing (2.1) with PZk
1 for k ∈ {0, 1, . . . , n}, arguing as in (4.9), and using (4.16), we obtain∣∣∣∣ ∫

Ω
(I1 + I3)PZk

1

∣∣∣∣
=

∣∣∣∣− ∫
Ω
fPZk

1 −
∫
Ω
I0[ρ]PZk

1 +

∫
Ω

[
(−∆− λ)ρ− p(u0 + PU1)

p−1ρ
]
PZk

1

∣∣∣∣
≲ ∥f∥(H1

0 (Ω))∗ + ∥ρ∥2H1
0 (Ω) + ∥ρ∥H1

0 (Ω)

[
∥[(PU1)

p−1 − Up−1
1 ]PZk

1 ∥
L

p+1
p (Ω)

(5.9)



52 HAIXIA CHEN, SEUNGHYEOK KIM, AND JUNCHENG WEI

+ ∥Up−1
1 (PZk

1 − Zk
1 )∥

L
p+1
p (Ω)

+ ∥U1∥
L

p+1
p (Ω)

+ ∥Up−1
1 ∥

L
p+1
p (Ω)

1{u0>0, p>2}

]
.

Having (5.3)-(5.5) in mind, we proceed by distinguishing several cases according to the dimension
n and the function u0.

Case 1: Assume that n ≥ 7.
We consider the following subcases:

• If bnλδ
2
1 > cnφ(ξ1)δ

n−2
1 , we have that δ21 ≲ ∥f∥(H1

0 (Ω))∗ .

- When δ21 ≳ κ
n+2
2

1 , it follows that ∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + δ21 . Hence, ∥ρ∥H1
0 (Ω) ≲

∥f∥(H1
0 (Ω))∗ .

- When δ21 ≲ κ
n+2
2

1 , it follows that ∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + κ
n+2
2

1 . Hence, ∥ρ∥H1
0 (Ω) ≲

∥f∥
n+2

2(n−2)

(H1
0 (Ω))∗

.

• If bnλδ
2
1 < cnφ(ξ1)δ

n−2
1 , we have that κn−2

1 ≲ ∥f∥(H1
0 (Ω))∗ and ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ +

κ
n+2
2

1 . Thus, ∥ρ∥H1
0 (Ω) ≲ ∥f∥

n+2
2(n−2)

(H1
0 (Ω))∗

.

• If bnλδ
2
1 = cnφ(ξ1)δ

n−2
1 , we have that ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ + κ

n+2
2

1 . It follows from

(5.5) and (5.9) that κn−1
1 ≲ ∥f∥(H1

0 (Ω))∗ + δ
n+2
n−2

+2

1 . Consequently, ∥ρ∥H1
0 (Ω) ≲ ∥f∥

n+2
2(n−1)

(H1
0 (Ω))∗

.

Case 2: Assume that n = 6.

• If anu0(ξ1)δ
2
1 + b6λδ

2
1 ̸= c6φ(ξ1)δ

4
1 , we have that

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ | log ∥f∥(H1
0 (Ω))∗ |

1
2 .

• If a6u0(ξ1)δ
2
1 + b6λδ

2
1 = c6φ(ξ1)δ

4
1 , a cancellation happens in (5.4), which leads to

I1 + I3 = 2(u0(x)− u0(ξ1))PU1 + 2(PU1 − U1)U1 + 2a6φ(ξ1)δ
2
1PU1.

Therefore,

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1 + I3∥
L

p+1
p (Ω)

≲ ∥f∥(H1
0 (Ω))∗ + δ31 + κ51.

Applying (5.5) and (5.9), we find that κ51 ≃ δ
5
2
1 ≲ ∥f∥(H1

0 (Ω))∗ + δ41 | log δ1|, and so

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ .

Case 3: Assume that n = 3, 4, 5 and u0 = 0.

• If n = 3 and u0 = 0, we have that ∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ .

• Assume that n = 4 and u0 = 0.
– If b4λδ

2
1 | log δ1| ≠ c4φ

4
λ(ξ1)δ

2
1 , we have that ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ .

– If b4λδ
2
1 | log δ1| = c4φ

4
λ(ξ1)δ

2
1 , we have that

I3 = (PU1)
p − Up

1 − pλδ1| log δ1|Up−1
1 + pa4δ1φ

4
λ(ξ1)U

p−1
1 .

Therefore,

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1 + I3∥
L

p+1
p (Ω)

≲ ∥f∥(H1
0 (Ω))∗ + δ21 .

Applying (5.4) and (5.9), we find that |
∫
Ω I3PZ0

1 | ≃ δ21 ≲ ∥f∥(H1
0 (Ω))∗ + δ31 , and so

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ .

• Assume that n = 5 and u0 = 0.
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– If b̄5λδ
2
1 ̸= c5φ

5
λ(ξ1)δ

3
1 , we have the same estimate as above.

– If b̄5λδ
2
1 = c5φ

5
λ(ξ1)δ

3
1 , we have that ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ + δ21 . By Corollary 2.4,

the inequality

∥Up−1
1 δ1∂ξk1

Sδ1,ξ1∥
L

p+1
p (Ω)

≲ ∥Up−1
1 ∥L5(Ω)∥δ1∂ξk1Sδ1,ξ1∥L2(Ω) ≲ δ21 ,

(5.5), and (5.9), one derives that κ41 ≃ δ
8
3
1 ≲ ∥f∥(H1

0 (Ω))∗+δ
7
2
1 , which gives ∥ρ∥H1

0 (Ω) ≲

∥f∥
3
4

(H1
0 (Ω))∗

.

Case 4: Assume that n = 3, 4, 5 and u0 > 0.

• If anu0(ξ1)δ
n−2
2

1 ̸= cnδ
n−2
1

{
φ3
λ(ξ1) if n = 3

φ(ξ1) if n = 4, 5

}
, we obtain that ∥ρ∥H1

0 (Ω) ≲ ∥f∥(H1
0 (Ω))∗ .

• If anu0(ξ1)δ
n−2
2

1 = cnδ
n−2
1

{
φ3
λ(ξ1) if n = 3

φ(ξ1) if n = 4, 5

}
, the expansion

I1 + I3 = (u0 + PU1)
p − up0 − (PU1)

p − pu0(ξ1)(PU1)
p−1 + (PU1)

p − Up
1

+ panδ
n−2
2

1

{
φ3
λ(ξ1) if n = 3

φ(ξ1) if n = 4, 5

}
(PU1)

p−1 + λPU11{n=4,5}

gives

∥ρ∥H1
0 (Ω) ≲ ∥f∥(H1

0 (Ω))∗ + ∥I1 + I3∥
L

p+1
p (Ω)

≲ ∥f∥(H1
0 (Ω))∗ +

{
δ1 if n = 3,

δ
n−2
2

1 if n = 4, 5.

Besides, making use of (5.5) and (5.9), we know that

κn−1
1 ≃ δ

n−1
2

1 ≲ ∥f∥(H1
0 (Ω))∗ +

{
δ

3
2
1 if n = 3,

δn−2
1 if n = 4, 5.

We conclude

∥ρ∥H1
0 (Ω) ≲

∥f∥(H1
0 (Ω))∗ if n = 3 and u0 > 0,

∥f∥
n−2
n−1

(H1
0 (Ω))∗

if n = 4, 5 and u0 > 0.

This completes the derivation of (1.12).

Step 2. We prove the optimality of (1.12).

Case 1: Assume that ζ(t) = t.
One can treat this case as in Case 1 of Subsection 4.2, by choosing a point ξ1 ∈ Ω and setting

ϵ ≃

{
δ1 if n = 3

δ21 | log δ1| if n = 4 and u0 = 0

}
+ κn−2

1 .

Case 2: Assume that ζ(t) ≫ t.
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Let us choose δ1 > 0 and ξ1 ∈ Ω satisfying the following conditions
anu0(ξ1)δ

n−2
2

1 = cnφ(ξ1)δ
n−2
1 if n = 4, 5 and u0 > 0,

b̄5λδ
2
1 = c5φ

5
λ(ξ1)δ

3
1 if n = 5 and u0 = 0,

a6u0(ξ1)δ
2
1 + b6λδ

2
1 > cnφ(ξ1)δ

4
1 if n = 6,

bnλδ
2
1 = cnφ(ξ1)δ

n−2
1 if n ≥ 7.

(5.10)

We now consider a function ρ solving the following linearized problem
−∆ρ− λρ− p(u0 + PU1)

p−1ρ = I1 + I3 + I0[ρ] +
n∑

k=0

c̃k1(−∆− λ)PZk
1 in Ω,

ρ = 0 on ∂Ω, c̃k1 ∈ R for k = 0, . . . , n,〈
ρ, PZk

1

〉
H1

0 (Ω)
= 0 for k = 0, . . . , n.

where I1, I3, and I0[ρ] are defined as in (2.2) with (δ1, ξ1) satisfying (5.10).
Denote f :=

∑n
k=0 c̃

k
1(−∆− λ)PZk

1 . Using (5.4) and (5.5), we obtain

∥f∥(H1
0 (Ω))∗ ≲ |c̃01|+ max

k∈{1,...,n}
|c̃k1|

≲

∣∣∣∣ ∫
Ω
(I1 + I3)PZ0

1

∣∣∣∣+ max
k∈{1,...,n}

∣∣∣∣ ∫
Ω
(I1 + I3)PZk

1

∣∣∣∣
≲

{
κn−1
1 if [n = 4, u0 > 0], or n = 5, or n ≥ 7,

δ21 if n = 6.

It follows that

∥ρ∥H1
0 (Ω) ≲ ς3(δ) :=


δ

n−2
2

1 if n = 4, 5 and u0 > 0,

δ21 if n = 5 and u0 = 0,

δ21 | log δ1|
1
2 if n = 6,

κ
n+2
2

1 if n ≥ 7.

On the other hand, we can deduce a lower bound estimate

∥ρ∥2H1
0 (Ω)

≳


∫
Ω

∫
Ω
(λPU1)(x)

1

|x− ω|n−2
(λPU1)(ω)dxdω if [n = 4, 5, u0 > 0] or n = 6,∫

Ω

∫
Ω
[(PU1)

p − Up
1 ](x)

1

|x− ω|n−2
[(PU1)

p − Up
1 ](ω)dxdω if [n = 5, u0 = 0] or n ≥ 7

≳ (ς3(δ))
2.

We set u∗ := (u0+PU1+ ρ)+. Then, by proceeding as in Case 2 of Subsection 4.2, we finish the
proof. □

Remark 5.2. Assume that ν ≥ 2. Arguing as above, one can find a nonnegative function
u∗ ∈ H1

0 (Ω) with δi = δj and |ξi − ξj | ≳ 1 for 1 ≤ i ̸= j ≤ ν such that

inf

{∥∥∥u∗ − (u0 + ν∑
i=1

PUδ̃i,ξ̃i

)∥∥∥
H1

0 (Ω)
:
(
δ̃i, ξ̃i

)
∈ (0,∞)× Ω, i = 1, . . . , ν

}
≳ ζ(u∗),

where ζ is given by (1.13), except for the cases [n = 3, u0 > 0] and [n = 4, u0 = 0]. In these
exceptional cases, additional technical difficulties arise.
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Appendix A. Some useful estimates

Lemma A.1. Let a, b > 0. Then the following estimates hold:

|(a+ b)s − as − bs| ≲

{
min{as−1b, abs−1} if 1 ≤ s ≤ 2,

as−1b+ abs−1 if s > 2.
(A.1)

Moreover, we have the following asymptotic expansions:

(a+ b)s − as = O(as−1b)1s>1 +O(bs) for s > 0, (A.2)

(a+ b)s = as + sas−1b+O(as−2b2)1s>2 +O(bs) for s > 1, (A.3)

(a+ b)s = as + sas−1b+
p(p− 1)

2
as−2b2 +O(as−3b3)1s>3 +O(bs) for s > 2. (A.4)

For any a > 0, b ∈ R such that a+ b ≥ 0 and 1 < s < 2, it holds that∣∣(a+ b)s − as − sas−1b
∣∣ ≲ min

{
as−2|b|2, |b|s

}
. (A.5)

Lemma A.2. Let s > 0 and Uδ,ξ be the bubble defined in (1.3). Then

∫
Ω
U s
δ,ξ ≲


δ

n−2
2

s if 0 < s < n
n−2 ,

δ
n
2 | log δ| if s = n

n−2 ,

δn−
n−2
2

s if s > n
n−2 .

Lemma A.3. Let Uδi,ξi and Uδj ,ξj be the bubbles for 1 ≤ i ̸= j ≤ ν. If s, t ≥ 0 satisfy s+ t = 2∗,
then for any fixed τ > 0, we have∫

Rn

U s
δi,ξi

U t
δj ,ξj

≲

{
q
min{s,t}
ij if |s− t| ≥ τ,

q
n

n−2

ij | log qij | if s = t,

provided qij in (2.3) is sufficiently small.

Proof. See [15, Lemma A.3]. □

Lemma A.4. Suppose α > 0. Then

∫
Ω

1

|x− z|n−2

(
δ

δ2 + |z − ξ|2

)α
2

dz ≲



δ
α
2 if 0 < α < 2,

δ(1 + | log |x− ξ||) if α = 2,

δ
α
2 (δ2 + |x− ξ|2)−

α−2
2 if 2 < α < n,

δ
n
2 (δ2 + |x− ξ|2)−

n−2
2 log(2 + |x− ξ|δ−1) if α = n,

δn−α
2 (δ2 + |x− ξ|2)−

n−2
2 if α > n.

Proof. It follows from direct computations. □

Appendix B. Proof of (2.8)

Lemma B.1. Let φn
λ(x) := Hn

λ (x, x) for n = 3, 4, 5, where Hn
λ (x, y) satisfies equations (2.4)–

(2.6). If d(x, ∂Ω) is small, then we have
φn
λ(x) =

1

(2d(x, ∂Ω))n−2
(1 +O(d(x, ∂Ω))) ,

|∇φn
λ(x)| =

2(n− 2)

(2d(x, ∂Ω))n−1
(1 +O(d(x, ∂Ω))) .
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Proof. Since Ω is a smooth domain, there exists d0 > 0 such that for every x ∈ Ω with d(x, ∂Ω) <
d0, there exists a unique x′ ∈ ∂Ω such that d(x, ∂Ω) = |x − x′|. By an appropriate translation
and rotation, we may assume without loss of generality that x = (0, d), x′ = 0, and the boundary
near the origin is locally given by a C2 function ϕ with ϕ(0) = 0, ∇ϕ(0) = 0. Specifically,

∂Ω ∩B(0, τ) = {y = (y′, yn) ∈ Rn : yn = ϕ(y′)} ∩B(0, τ),

Ω ∩B(0, τ) = {y ∈ Rn : yn > ϕ(y′)} ∩B(0, τ)

for some small τ > 0. Let x′′ = (0,−d) be the reflection of x across the boundary. For sufficiently
small d, x′′ ̸∈ Ω, and the function 1

|y−x′′|n−2 is harmonic in Ω. Define

Fn
λ (y) := Hn

λ (y, x)−



1

|y − x′′|n−2
− λ

2 |y − x′′| if n = 3,

1

|y − x′′|n−2
− λ

2
log |x′′ − y| if n = 4,

1

|y − x′′|n−2
+

λ

2

1

|x′′ − y|
− 2λ2|y − x′′| if n = 5.

Then Fn
λ satisfies {

∆yF
n
λ + λFn

λ = fn
λ in Ω,

Fn
λ = gnλ on ∂Ω,

where

fn
λ (y) :=


−λ2

2 (|y − x| − |y − x′′|) if n = 3,

−λ log |x− y| − λ2

2
log |x′′ − y| if n = 4,

−2λ2|y − x|+ 2λ3|x′′ − y| if n = 5,

and

gnλ(y)

:=



1

|y − x|n−2
− 1

|y − x′′|n−2
− λ

2
(|y − x| − |y − x′′|) if n = 3,

1

|y − x|n−2
− 1

|y − x′′|n−2
− λ

2
(log |x− y| − log |x′′ − y|) if n = 4,

1

|y − x|n−2
− 1

|y − x′′|n−2
+

λ

2

(
1

|x− y|
− 1

|x′′ − y|

)
− 2λ2(|y − x| − |y − x′′|) if n = 5.

For y ∈ ∂Ω ∩B(0, τ), we have the Taylor expansions

|y − x| =
√
|y|2 + d2 − 2dyn =

√
|y|2 + d2

(
1 +O

(
dyn

|y|2 + d2

))
,

∣∣y − x′′
∣∣ =√|y|2 + d2 + 2dyn =

√
|y|2 + d2

(
1 +O

(
dyn

|y|2 + d2

))
,

where we used the smoothness of ϕ. Since |yn| = |ϕ(y′)| = O(|y′|2), we observe

1

|y − x|n−2
− 1

|y − x′′|n−2
= (|y|2 + d2)−

n−2
2 O

(
dyn

|y|2 + d2

)
= (|y|2 + d2)−

n−2
2 O(d) = O(d−n+3).
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Similarly, 
|y − x| − |y − x′′| = O(1) for n = 3, 5,

log |y − x| − log |y − x′′| = O(1) for n = 4,
1

|y−x| −
1

|y−x′′| = O(1) for n = 5.

For y ∈ ∂Ω∩ (Rn\B(0, τ)), the above differences are also uniformly bounded. In other words,

∥gnλ∥L∞(∂Ω) = O(d−n+3).

In particular, ∥fn
λ ∥Lt(Ω) ≲ 1 for any t > n. By standard elliptic estimates, we obtain

∥Fn
λ ∥L∞(Ω) = O(d−n+3).

Hence, evaluating at x, we get

φn
λ(x) = Hn

λ (x, x) =


1

|y−x′′|n−2 − λ
2 |y − x′′| if n = 3

1
|y−x′′|n−2 − λ

2 log |x
′′ − y| if n = 4

1
|y−x′′|n−2 + λ

2
1

|x′′−y| − 2λ2|y − x′′| if n = 5

+O(d−n+3)

=
1

(2d(x, ∂Ω))n−2
(1 +O(d(x, ∂Ω))).

The estimate for |∇φn
λ(x)| follows analogously by applying interior gradient estimates under the

same reflections. □

Remark B.2. The estimate for φ in (2.8) follows with slight modifications to the above proof.
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