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Abstract

Let z ∈ H := {z = x + iy ∈ C : y > 0}, and Λ =
√

1
Im(z) (Z⊕ zZ) be the lattice

in R2 with unit area. Let θ(α; z) :=
∑

P∈Λ e
−απ‖P‖2 be the Theta function, ζ(s; z) :=∑

P∈Λ\{0}
1
‖P‖2s be the Epstein-Zeta function, and Y(α; z) :=

∑
P∈Λ\{0}

e−απ‖P‖
2

‖P‖2s be the

Coulomb potential. In this paper, we give complete classification of optimal lattice for
the difference of two Theta functions

min
z∈H

(
θ(α; z)− bθ(β; z)

)
, α, β > 0 and b ∈ R,

the difference of two Epstein-Zeta functions

min
z∈H

(
ζ(s1; z)− bζ(s2; z)

)
, s1 > s2 > 1 and b ∈ R,

and the difference of two Coulomb potentials

min
z∈H

(
Y(α; z)− bY(β; z)

)
, α, β > 0 and b ∈ R,

Our results reveal that the lowest energy lattice arrangement under the above poten-
tials undergoes a hexagonal-rhombic-square-rectangular transition. These results have
natural applications to Born-Mayer, Morse, Lennard-Jones, Buckinglam and Yukawa
(Coulomb) potentials. These potentials have strong physical backgrounds and have im-
portant applications in chemistry, materials science, molecular dynamics simulations,
etc. We give complete results for the lattice energy minimization problem in the above
cases, and completely describe optimal lattice arrangements. Furthermore we present
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a novel and unified approach through balancing the attractive and repulsive forces.
We obtain two necessary conditions for the minimizer: one is that the direction of
the energy gradient formed by the attractive force must be opposite to that formed by
the repulsive force (see (3.4) below), the other is the duality invariance (see (3.8). For
highly symmetric lattices such as hexagonal, rhombic, square and rectangular lattices,
this condition is always satisfied. However, for general oblique lattices, this condition
is difficult to satisfy and often relies on specific forms of attractive and repulsive forces.
In the analysis of the Born-Mayer, Lennard-Jones, and Yukawa potentials, we pre-
cisely verify this necessary condition to rule out the possibility of the oblique lattice.
Furthermore, by comparing the magnitudes of the attractive and repulsive forces, we
discover that the lowest energy state varies monotonically from hexagonal to rhombic
to square to rectangular, allowing us to determine the exact form of the minimizer for
specific parameters. In physics, the lowest energy state is considered to be the most
stable state. We show that the highly symmetric structure ensures that the attractive
and repulsive forces are in a balanced and stable relationship, which explains why the
lowest energy lattice always tends to be highly symmetric, especially hexagonal and
square lattices.

Keywords: Theta and Zeta functions, Lattice minimizations, Crystallization phe-
nomena, Born-Mayer potential, Lennard-Jones potential, Yukawa potential.
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1 Introduction

Crystals are the result of atoms coming together in a stable environment to form a structure
with a periodic arrangement. This structural periodicity is such that the directional indices
marking the faces of a crystal are precise integers. This fascinating attribute was first noted
by mineralogists and was subsequently verified in 1912 through experiments using X-ray
diffraction. The establishment of the atomic model for crystal structures enabled physicists
to make significant advances in the field of solid-state physics. The advent and progression
of quantum theory have profoundly impacted the development and comprehension of solid-
state physics, marking a crucial turning point in the field. This theoretical foundation
has not only enhanced our understanding of crystalline materials but has also led to the
exploration of amorphous solids and quantum fluids. Today, the scope of solid-state physics
has broadened to encompass condensed matter physics, which delves into the properties
of both crystalline and non-crystalline materials, along with quantum fluids. This area of
study stands as one of the most vibrant and expansive fields within contemporary physics,
continually pushing the boundaries of our knowledge and understanding of the physical
world.

Crystals are ideally formed by repeating groups of atoms, known as bases, arranged
uniformly in space. These groups can be mathematically represented by geometric points,
creating a structure called a lattice. A Bravais lattice is a unique, infinite collection of
discrete points that looks the same from any vantage point within the arrangement. In
three-dimensional space, there are 14 distinct Bravais lattice types, organized into seven
crystal systems: cubic, tetragonal, orthorhombic, hexagonal, rhombohedral (or trigonal),
monoclinic, and triclinic. Each Bravais lattice type has its specific arrangement and ori-
entation, defined by a unique set of lattice parameters: the lengths of the unit cell edge
(a, b, c) and the angles between them (α, β, γ). In the realm of two-dimensional space, five
Bravais lattice types are identified: square, rectangular, rhombic, hexagonal, and oblique.

Recent efforts have been focused on establishing the crystallization phenomena rigor-
ously, i.e., the fact that ground states of systems exhibit a periodic order. Understanding
why solids form crystals at absolute zero temperature and how atomic interaction dic-
tates the specific crystal shape that a material chooses is a fundamental problem. This
phenomenon has been observed numerically and experimentally in a variety of circum-
stances, but its rigorous mathematical justification appears to be extremely difficult, and
the principles at work appear to be far from fully understood (see the reviews [22, 105]).
The outcomes of physics-inspired phenomenological models are known for one-dimensional
models [13, 20, 26, 54, 74, 109, 128, 129, 130] and for some higher-dimensional cases
[44, 46, 53, 61, 88, 89, 104, 126]. Parallel to this, research into the subject using number
theory and related combinatorial approaches (see the book [92]) yields significant results
in dimensions 2 and 3 (see [11, 12, 14, 16, 18, 28, 43, 48, 49, 57, 59, 67, 73, 79, 82, 83, 84,
85, 86, 96, 102, 106, 122, 123, 124, 131]), as well as in some specific higher dimensions (cf.
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[6, 35, 38, 39, 40, 110]), which leads to the recent proof of optimality of optimum packings,
which can be viewed as a ground state energy determined by the specific potential, in
dimensions 8 and 24, see [37, 132].

The study of the two-dimensional crystal lattice plays a key role in the development of
modern science. It can help us better understand the fundamental properties of material
substances, provide insight into how different interaction forces affect the crystal structure,
and help us design and synthesize new materials with specific properties, which are widely
used in the fields of drug discovery, nanotechnology, molecular mechanics, new energy
sources and environmental science. For the five lattice types in two dimensions, we most
often study hexagonal lattice, followed by square. Classical examples of hexagonal lattices
are Graphene, Hexagonal Boron Nitride, and Transition metal disulfides (e.g. MoS2, WS2),
and square lattices are Chalcogenide structural materials and two-dimensional magnetic
materials. The discovery and application of all these materials have greatly advanced
society, but we have done relatively little research on other lattice situations. We also
do not know the principle of lattice structure generation. The study of the lowest energy
arrangement of two-dimensional lattices is crucial to explaining crystal formation and has
a wide range of applications in physics ([11, 12, 14, 15, 16, 17, 31, 34, 50, 62, 78, 92,
98, 112, 115, 117, 136]), especially condensed matter physics ([25, 30, 69, 100, 125, 135]),
superconductivity theory ([2, 32, 41, 81, 107, 108, 114, 118]), chemistry ([29, 56]), and
number theory ([22, 80, 102, 110]), etc.

In this paper, we aim to study the problem of the minimum lattice energy of poten-
tials in two dimensions. Let L := Z~u ⊕ Z~v be a two-dimensional lattice, where ~u and
~v are two linearly independent two-dimensional vectors. Let Ef [L] :=

∑
P∈L f

(
‖P‖2

)
or∑

P∈L\{0} f
(
‖P‖2

)
be the total energy of the system under the background potential f

over a periodical lattice L, where ‖ · ‖ is the Euclidean norm on R2, then the minimization
problem on lattices be written as minLEf [L], In fact, without loss of generality, we only

need to consider the lattice Λ :=
√

1
Im(z) (Z⊕ zZ) (readers can see the proof in Section 3).

For any admissible function f (the definition here is the same as in [12] Definition 2.4), we
can define its lattice energy, that is,

F(z) := Ef [Λ] =
∑
P∈Λ

f(‖P‖2) or
∑

P∈Λ\{0}

f(‖P‖2). (1.1)

In particular, for the classical physical potential, such as Theta function θ(α; z), Coulomb
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potential Y(α; z), and Epstein-Zeta function ζ(s; z), we denote them by

θ(α; z) :=
∑
P∈Λ

e−πα‖P‖
2

=
∑

(m,n)∈Z2

e
− πα

Im(z)
|mz+n|2

=
∑

(m,n)∈Z2

e
−πα

(
m2y+

(mx+n)2

y

)
,

ζ(s; z) :=
∑

P∈Λ\{0}

1

‖P‖2s
=

∑
(m,n)∈Z2\{0}

(Im(z))2s

|mz + n|2s
,

Y(α; z) :=
∑

P∈Λ\{0}

e−πα‖P‖
2

‖P‖2
=

∑
(m,n)∈Z2\{0}

e
− πα

Im(z)
|mz+n|2

(Im(z))2

|mz + n|2
.

(1.2)

Up to rotation and translation, we only need to work on the problem in the fundamental
domain DG (see Section 3). The minimizer of ζ(s; z) for a range of s was firstly studied
by the number theorist Rankin [106], and then followed by Cassels [28], Diananda [43]
and Ennola [48, 49]. They demonstrated that the minimizer of ζ(s; z) is z = ei

π
3 . In 1988,

Montgomery [96] demonstrated that the minimizer of θ(α; z) is always z = ei
π
3 for all α > 0,

thus regaining the outcomes of [28, 48, 49, 106]. In mathematical physics, Montgomery’s
Theorem [96] has significant applications in [19, 115]. By using the Hausdor-Bernstein-
Widder Theorem, Cohn and Kumar [36] extended Montgomery’s result to any completely
monotone functions, which are infinitely smooth and satisfy

(−1)jf (j)(x) > 0, j = 0, 1, 2, · · ·∞.

Besides, Sandier and Serfaty [108] studied the Coulomb potential f(·) = − log | · |, and
proved that its minimizer is still z = ei

π
3 . Coulombian renormalized energy via a regularized

procedure, which was extended to a two-component Coulombian competing system by Luo,
Ren and the second author [81].

However, in many physical models, the potential function f , which can be found in
[68], may not be completely monotone. For instance, we mention that

a. The sums of Born-Mayer potential U(r) =
∑n

i=1Bie
− r
ρi . This potential was proposed

by Born and Mayer [24] firstly in their study of the properties of ionic crystals to
model the repulsive part of the interaction between neutral atoms or molecules, where
Bi is a parameter that determines the strength of the repulsion, ρi is a parameter
related to the range of the potential, and n denotes the number of atomic molecules
in the system. In particular, the potential e−a1πr − be−a2πr (a1 > 0, a2 > 0, b ∈ R)
has received a lot of attention in [12, 82, 84, 86] as a derivation of the Theta function.
Particularly, Luo and the second author [84, 86] considered the minimization problem
of θ(α; z)−bθ(β; z) for α ≤ β, and observed that the minimizer is always z = ei

π
3 . We

will completely solve the minimization problem of θ(α; z)−bθ(β; z) in this paper, and
show that for α > β, the hexagonal-rhombic-square-rectangular transition appears
as b goes from −∞ to +∞.
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b. The Morse potential U(r) = De(1 − e−a(r−re))2. It’s named after physicist P. M.
Morse [97] and is a convenient interatomic interaction model for the potential energy
of a diatomic molecule. Here r is the distance between the atoms, re is the equilibrium
bond distance, De is the well depth, and a controls the width of the potential. We
will solve the case where re is at the origin.

c. The Lennard-Jones-type potential U (r) = 4ε
((

σ
r

)12 −
(
σ
r

)6)
, also called the (12-6)

Lennard-Jones potential. It was initially proposed by Lennard-Jones [66] to study the
thermodynamic properties of rare gases. Here, ε is the depth of the potential well, σ
is the finite distance at which the inter-particle potential is zero, and r is the distance
between the particles. It’s worth mentioning that the attractive term corresponds to
the dispersion dipole-dipole interaction. Its generalization U(r) = a2

rs2−
a1
rs1 (s2 > s1 >

0, a1, a2 > 0), also called the Mie potential [95], now are commonly used in molecular
dynamics simulations and statistical mechanics to describe the interaction between
pairs of neutral atoms or molecules and to represent the intermolecular forces. Lots
of researchers have done much valuable works (see [7, 11, 14, 16, 18, 59, 67, 85, 131]).
A numerical simulation suggests the hexagonal-rhombic-square-rectangular lattice
phase transitions, but a complete rigorous mathematical proof needs to be provided.
Therefore, this is a long-standing question. Luo and the second author [85] only
solved the case of (12-6) Lennard-Jones potential. In this paper we will solve all
cases completely.

d. The Buckingham potential U(r) = Ae
− r
ρ − C

r6
. It was proposed by Buckingham [27],

where A is a parameter related to the depth of the potential well, ρ is the range
of the potential, and C is a parameter related to the strength of the long-range
attractive dispersion forces. It is another mathematical model used to describe the
interaction between neutral atoms or molecules. Like the Lennard-Jones potential, it
is often employed to represent van der Waals interactions, but this potential is a more
sophisticated model and is characterized by an exponential term that accounts for
the short-range repulsion between particles. There are many very important physical
aspects of this potential (cf. [9, 65, 71, 90, 93, 121, 127]), but some require more
rigorous mathematical proof. The first and third author [122] gave results for this
potential.

e. The sums of screened Coulomb potential U(r) =
∑n

i=1
Zi1Zi2e

2

r e
− r
λi . It is also known

as the Yukawa potential, proposed by Bohr [23] for short atom-atom distances, where
Zi1 and Zi2 are the charges of the two particles, e is the elementary charge, r is
the separation distance between the particles, and λi is the screening length, which
determines the range of the interaction. Now it’s used widely for describing the
interaction between charged particles, typically in the context of plasma physics,
fusion research, colloidal suspensions, dusty plasmas, the Thomas-Fermi model for
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solids, or other situations where charged particles are present, see [11, 21]. We will
also give an important result for this potential.

Through the above introduction, we find that many research work (see [4, 14, 16, 18,
36, 81, 82, 83, 84, 85, 86, 87]) are concerning the energy minimization problem for non-
monotone functions. However, these problems have not been proven rigorously in math-
ematics, except some numerical simulations or experimental findings. Furthermore, these
approaches fall short of capturing the underlying mechanisms of lattice arrangement. Pre-
vious research has predominantly aimed at computing the potential for specific parameters,
with the proof process heavily dependent on sophisticated numerical techniques, making
the outcomes somewhat contingent. In this paper, we will propose a new method that first
yields necessary conditions (see (3.4) and (3.8)) for the minimizer through some interesting
observations, which reduces the problem considerably, and finally we can determine the
exact location of the minimizer. This method has strong applicability and can address
a range of issues, specifically the potentials arising from the difference between two com-
pletely monotone functions, including well-known potentials like the Lennard-Jones and
Yukawa potentials. Notably, our work is the first to give comprehensive outcomes for the
difference of two Theta functions as well as the Lennard-Jones potential. Our methodology,
to some extent, unravels why crystals adopt specific arrangements, highlighting a crucial
interplay between the attractive and repulsive forces among molecules.

Let
Γa := {z ∈ H : Re(z) = 0, Im(z) ≥ 1},

Γb :=
{
z ∈ H : |z| = 1, Im(z) ∈

[√
3

2 , 1
]}

,

Γc :=
{
z ∈ H : Re(z) = 1

2 , Im(z) ≥
√

3
2

}
.

Our first main result concerns the difference of two Theta functions:

Theorem 1.1. For any α > 1, 1
α ≤ λ < 1, we consider the minimization problem:

min
z∈H

(θ(α; z)− bθ(λα; z)) . (1.3)

Then

1. for any b ∈ (−∞,
√
λ), the minimizer of (1.3) only occurs on the curve Γa ∪ Γb.

Moreover, the minimizer monotonically follows on this curve from ei
π
3 to i and then

from i to infinity, as b goes from −∞ to
√
λ.

2. for any b ∈ [
√
λ,+∞), (1.3) doesn’t have any minimizer.
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Figure 1: Schematic diagram of Γa, Γb and Γc.

Corollary 1.2. For any α > 0, β > 0, we denote bα,β =
√

β
α . Then the minimization

problem:
min
z∈H

(θ(α; z)− bθ(β; z)) (1.4)

has the following solutions:

1. if |lnα| ≤ |lnβ|, when b ∈ (−∞, bα,β], the minimizer is ei
π
3 ; when b ∈ (bα,β,+∞),

the (1.4) doesn’t have any minimizer.

2. if |lnα| > |lnβ|, when b ∈ (−∞, bα,β), the minimizer only occurs on the curve Γa∪Γb.
Moreover, the minimizer is monotonically moving along this curve from ei

π
3 to i and

then from i to infinity, as b goes from −∞ to bα,β; when b ∈ [bα,β,+∞), (1.4) doesn’t
have any minimizer.

Corollary 1.3. For any αi, βj , ci, dj > 0, where i = 1, 2, · · · , n and j = 1, 2, · · · ,m, we
consider the minimization problem:

min
z∈H

 n∑
i=1

ciθ(αi; z)−
m∑
j=1

djθ(βj ; z)

 . (1.5)

Denote by

a = min{| lnα1|, | lnα2|, · · · , | lnαn|}, A = max{| lnα1|, | lnα2|, · · · , | lnαn|},

b = min{| lnβ1|, | lnβ2|, · · · , | lnβm|}, B = max{| lnβ1|, | lnβ2|, · · · , | lnβm|}.

The followings hold:

1. When
∑n

i=1
ci√
αi
−
∑m

j=1
dj√
βj
< 0, (1.5) doesn’t have the minimizer.
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2. When
∑n

i=1
ci√
αi
−
∑m

j=1
dj√
βj
> 0, if A ≤ b, the minimizer of (1.5) is ei

π
3 .

3. When
∑n

i=1
ci√
αi
−
∑m

j=1
dj√
βj
> 0, if a ≥ B, the minimizer of (1.5) only occurs on

the curve Γa ∪ Γb.

Remark 1.4. Luo and the second author [84, 86] only solved the lattice energy minimization
problem of the Born-Mayer potential (1.4) for α ≤ β. In the present paper, we give a
complete result, which can also be seen as the answer to Morse potential when re is at
the origin. Moreover, Corollary 1.3 discusses the case of multiple Born-Mayer potential
composites, offering insights into conclusions for more complex and generalized cases.

Next, we present the relevant conclusions of the well-known Lennard-Jones potential.

Theorem 1.5. For any s1 > s2 > 1, and any b ∈ R, the minimizer of

min
z∈H

(
ζ(s1; z)− bζ(s2; z)

)
(1.6)

only occurs on the curve Γa ∪ Γb. Moreover, the minimizer monotonically follows on this
curve from ei

π
3 to i and then from i to infinity, as b goes from −∞ to +∞.

Corollary 1.6. For any s1 > s2 > · · · > sn > t1 > t2 > · · · > tm > 1, and ai, bj > 0, the
minimizer of

min
z∈H

 n∑
i=1

ajζ(si, z)−
m∑
j=1

bjζ(tj , z)

 (1.7)

only occurs on the curve Γa ∪ Γb.

Remark 1.7. Luo and the second author [85] solved the minimization problem of Lennard-
Jones potential (1.6) for the specific case s1 = 6 and s2 = 3. Bétermin [16] solved the case
when π−s1Γ(s1)s1 ≤ π−s2Γ(s2)s2. Here we give a complete classification, which can also
be seen as an answer to the question raised by Bétermin ([17], Remark 4.3). Moreover,
Corollary 1.6 examined the case of multiple Leonard-Jones potential complexes, provid-
ing potential conclusions for a broader and more intricate scenario. This conclusion is
interesting and readers can go to Section 2 for a detailed explanation.

Next, we state the main results in the case of the Yukawa potential.

Theorem 1.8. For any α ≥ 1, 0 < β < α, the minimization problem:

min
z∈H

(Y(α; z)− bY(β; z)) (1.8)

has the following conclusions:
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1. for any b ∈ (−∞, 1), the minimizer only occurs on the curve Γa ∪ Γb. Moreover,
the minimizer monotonically follows on this curve from ei

π
3 to i and then from i to

infinity, as b goes from −∞ to 1;

2. for any b ∈ [1,+∞), (1.8) doesn’t have any minimizer.

Corollary 1.9. For any α > 0, β > α, we consider the minimization problem:

min
z∈H

(Y(α; z)− bY(β; z)) . (1.9)

Then

1. for any b ∈ (−∞, 1], the minimizer is ei
π
3 .

2. for any b ∈ (1,+∞), (1.9) doesn’t have any minimizer.

Remark 1.10. The first and third author [79] solved the problem for the Yukawa potential

when α ≤ β. Bétermin [16] solved the case when b(bα+β(1−b)π)
α(b+(1−b)π) e

(1− β
α

)( 1
b
−1)π ≥ 1. Here,

we consider the Yukawa potential when α > β. Moreover, by numerical calculation, there

exists γ = 0.6894 · · · , when β < α < γ, the function ∂
∂α

(
∂
∂y
Y(α;z)

∂
∂x
Y(α;z)

)
is always positive, then

the minimizer only occurs on Γc. For example, the minimizer of Y(0.6; z) − 0.91Y(0.4; z)
is 0.5 + i4.2363 · · · . We conjecture that for any α, β, b, the minimizer only occurs on
Γa ∪ Γb ∪ Γc.

Indeed, by Hausdorff-Bernstein-Widder Theorem [10], for any adimissible and com-
pletely monotonic function f , we have f(r) =

∫ +∞
0 e−rtµf (t) dt, where µf (t) is the inverse

Laplace transform of f with µf (t) ≥ 0. To simplify writing, we denote µ̂f (t) := π · µf (πt).
Therefore, our conclusions can be generalized to more general situations below.

Theorem 1.11. For any completely monotonic function f1 =
∫ +∞

0 e−πrtµ̂f1(t) dt, f2 =∫ +∞
0 e−πrtµ̂f2(t) dt, if

µ̂f1 (t)+ 1
t
µ̂f1 ( 1

t
)

µ̂f2 (t)+ 1
t
µ̂f2 ( 1

t
)

is strictly monotonically increasing/decreasing for t ∈
(1,+∞), then the minimizer of

min
z∈H

(F1(z)− bF2(z))

only occurs on the curve (Γa ∪Γb)/ Γc. Moreover, the minimizer monotonically follows on
this curve from ei

π
3 to infinity, as b changes from −∞ to +∞.

Remark 1.12. It is a new approach to get the result of the minimization problem by proving
the formula (4.5). Excluding the possibility of the minimizer being in the interior of DG by
comparing the difference between attraction and repulsion. Besides, this method is highly
flexible, and on the basis of the formula (4.5), related results for Lennard-Jones potential
and Yukawa potential can be easily proved.
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The remaining part of this paper is organized as follows: In Section 2, we will present
some applications and implications of our conclusions. In Section 3, we show some pre-
liminaries and construct two necessary conditions, which are crucial for the proof of the
main theorems. In Section 4, we prove the Theorem 1.1, which is the core proof of the
paper. In section 5, we use Theorem 1.1 to prove Corollaries 1.2-1.3. In Section 6, we use
Chebyshev’s inequality and establish the relationship between general completely mono-
tone functions and the Theta function to prove the Theorems 1.5-1.11. First-time readers
can skip the tedious computational proofs in Section 4 and focus on seeing how Sections 5
and 6 use the conclusions of Section 4 to complete the proofs of other potentials.

2 Remarks and Applications

This section consists of two main parts. We first present the role of the complete solution of
the Lennard-Jones potential problem in probing the results of neutral atomic and molecular
materials. Secondly, we give possible physical explanations for specific crystal arrangements
based on the new methods used.

2.1 Lennard-Jones (Mie) potential

The Lennard-Jones potential has a wide range of applications in theoretical chemistry,
physics, and materials science. It is primarily used to characterize non-bonded interactions
between neutral atoms and molecules. It is commonly used to model interactions between
atoms of noble gases, to perform molecular dynamics simulations of proteins, peptides,
and other biological macromolecules, to study the properties of carbon-based nanomate-
rials (e.g. carbon nanotubes, fullerenes, and graphene), and to perform equation-of-state
calculations on simple molecular liquids (e.g. methane) and gases [42, 52, 55, 75, 101, 137].

The Mie potential was initially proposed by the German physicist Gustav Mie [95],
which is the generalized case of the Lennard-Jones potential (yet the history of intermolec-
ular potentials is more complicated [51]), and can be written as

V (r) =
n

n−m

( n
m

) m
n−m

ε
[(σ
r

)n
−
(σ
r

)m]
.

The (12-6) Lennard-Jones potential is the most widely used. However, many cases do
not fulfill the (12-6) form. In high-pressure physics and complex fluids, the Mie potential
can better simulate molecular behavior in these environments by adjusting the values of
n and m. Therefore, many scientific experiments have been conducted to study the Mie
potential [3, 63, 64, 72, 99, 103, 111, 120, 133], and experimental measurements have led
to the conclusion that for many cases the most accurate form is not (12-6). For example,
the results could be accurately reproduced by (n-6) Mie potentials with n = 8 for H2 [1],
n = 11 for Ne [116], n = 12.085 for Ar [45], n = 13 for Xe [116], and n = 14 for Kr
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[94], etc. The article [119] emphasized that the general applicability of classical nucleation
theory has been repeatedly called into question, and conjectured that improvement of the
existing interatomic potentials will enable the precise study of real systems of practical
significance. This article [8] emphasized several times that Lennard-Jones parameters need
to be reparametrized for different scenarios. Determining the Lennard-Jones parameters
for different cases is still an open problem.

Molecular interactions vary significantly across different materials and environments,
necessitating the use of distinct m and n values in the Lennard-Jones potential to accurately
capture the real interactions. It is worth noting that, because of the inherent errors in
experimental measurements, the actual values of both m and n may not be integers, and
any perturbation will cause a change in the coefficients. Therefore, an exclusive focus
on the traditional (12-6) Lennard-Jones potential falls short of offering a comprehensive
understanding of these physical phenomena. Compared with the result in [16, 85], our
Theorem 1.5 gives a complete result for all s1 > s2 > 1, which can deal with all cases and
overcome the bias caused by errors. This is a complete and rigorous proof that the crystal
arrangement under Lennard-Jones potential shows a hexagonal-rhombic-square-rectangular
lattice phase transition as the lattice parameter changes. Our results are consistent with
Landau’s theory. When a phase transition occurs, the symmetry is broken. If we take
the length and angle of the lattice as the order parameters, we can see that the order
parameters increase when the symmetry decreases. Moreover, based on our conclusions, it
is easy to find the exact location of the minimizer for any particular bit potential.

For many more complex cases, we need to use a mixed Lennard-Jones potential to
characterize the interactions between particles. For instance, to describe the interaction
between a carbon atom in the polyatomic ion and a buffer gas helium atom in fullerene
C60, Mason and Schamp [91] defined the (12-6-4) potential by

V (r) =
a1

r12
− a2

r6
− a3

r4
. (2.1)

To describe the interactions of metal ions in highly charged systems, and to reproduce the
hydration free energies and the ion-oxygen distance, Li, Song, and Merz [76, 77] also used
the (12-6-4) potential (2.1). To describe rare gases, Klein and Hanley [58, 70] proposed the
(m-6-8) potential, that is

V (r) =
a1

rm
− a2

r6
− a3

r8
,

where m > 8. Our Corollary 1.6 gives a complete result for all these cases.

2.2 Explanations

The specific form of the crystal arrangement is due to a variety of factors, such as chemical
bonding, non-bonding interactions, ambient temperature, etc. Among them there are also
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many differences in non-bonding interactions between different particles, van der Waals
forces, electrostatic interactions, hydrogen bonding, π − π interactions, and hydrophobic
interactions are all common forms of non-bonding interactions.

Without considering the effects of chemical bonding, we can generalize these forces
into attractive and repulsive forces. This arrangement of crystals is a natural consequence
of a substance reaching a state of minimum energy and maximum stability under given
conditions. We conjecture that the specific form of the lattice arrangement is determined
by the relationship between attractive and repulsive forces. Once the lattice arrangement
reaches a steady state, the gradient of the potential energy with respect to the position
should be 0. This implies that the gradient of the potential energy posed by the attractive
force and the repulsive force, respectively, should be in exactly the opposite direction (that
is F (z) = 0, see (3.4)). However, due to the different forms of attractive and repulsive
forces, the above conditions are very difficult to satisfy for most lattice arrangements, which
explains why the oblique lattice is a very rare form. The proof in this paper focuses on the
interrelationship between attractive and repulsive forces, and finds that the direction of
the gradient of both of them is always opposite when the lattice arrangement is hexagonal,
rhombic, square or rectangular, and the possibility of any other arrangement is very low.
This is also in line with our intuitive idea that the structures with high symmetry are more
stable.

It is also important to note here that even if the potential energy gradients of the
repulsive and attractive forces are opposite, the point is not necessarily a local energy
minimum, which also depends on the lattice parameter, which is represented in this paper
by the parameter b. Especially, in Lennard-Jones potential, b is related to effective particle
diameter. When b is not too large, the crystal always remains hexagonal, and when b is
within a certain range, the crystal remains square. However, only when b is a specific value,
does the crystal exhibit a specific rhombic or rectangular lattice. This also explains why
hexagonal lattices are the most common case and square lattices the second most common.
The rhombic and rectangular are highly unstable for perturbations of b and exist for a
relatively short period.

Our research points the way to the discovery of new two-dimensional materials. In
addition to the common hexagonal lattice, the new two-dimensional materials may be
square, rectangular, or rhombic in structure. Our research also provides new directions for
material synthesis, as the hexagonal lattice is recognized as the most stable lattice, and
scientists can synthesize more stable materials by adjusting the attractive and repulsive
forces.
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3 Preliminaries

In this section, we present the relation between minimizers and lattice shapes, and some
group invariance of Ef [L], followed by its corresponding fundamental domain.

Firstly, we fix the parametrization of a lattice in R2 (cf. [11]). Let the lattice L =
Z~u ⊕ Z~v be spanned by two linearly independent two-dimensional vectors ~u, ~v. Without
losing generality, we can fix the cell area of the lattice to be 1, namely, |~u ∧ ~v| = 1. Up to
rotations and translations, one can set ~u = 1√

y (1, 0), and ~v = 1√
y (x, y), where y > 0. In

this way, |~u ∧ ~v| = 1, ~v = z~u where z = x+ iy ∈ H, and we denote Λ =
√

1
y (Z⊕ zZ).

In particular, z = ei
π
3 corresponds to hexagonal lattice, z = i corresponds to square

lattice, z = eiθ, θ ∈
(
0, π2

)
corresponds to rhombic lattice, and z = iy, y > 1 corresponds

to (strict) rectangular lattice.

Let S denote the modular group

S := SL2(Z) =

{(
a b
c d

)
, ad− bc = 1, a, b, c, d ∈ Z

}
.

We use the following definition of the fundamental domain which is slightly different from
the classical definition (see [96]):

Definition 3.1. (page 108, [47]). The fundamental domain associated to group G is a
connected domain D satisfying

1. for any z ∈ H, there exists an element π ∈ G such that π(z) ∈ D;

2. suppose z1, z2 ∈ D and π (z1) = z2 for some π ∈ G, then z1 = z2 and π = ±Id.

By Definition 3.1, the fundamental domain associated to the modular group S is

DS :=
{
z ∈ H : |z| > 1,−1

2 < x < 1
2

}
,

which is open. Note that the fundamental domain can be an open set, see [5] for instance.
Next, we introduce another group G related to the functional F(z). The generators of the
group G are given by

τ 7→ −1

τ
, τ 7→ τ + 1, τ 7→ −τ̄ .

It is easy to see that the fundamental domain associated with group G, denoted by DG , is

DG :=
{
z ∈ H : |z| > 1, 0 < x < 1

2

}
.

Therefore, we have the following lemma.

Lemma 3.2. For any admissible function f , γ ∈ G, and z ∈ H, we have

F(z) = F(γ(z)).
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By this lemma, we can reduce the problem from z ∈ H to DG .
When f is a compeletly monotonic function, by a result in [36], the minimizer of F(z) is

ei
π
3 . This paper will focus on the situation about the potential being the difference of two

completely monotonic functions. To this end, we will first study the properties of Theta
function

θ(α; z) =
∑
P∈Λ

e−πα|P|
2

=
∑

(m,n)∈Z2

e
− πα

Im(z)
|mz+n|2

=
∑

(m,n)∈Z2

e
−πα

(
m2y+

(mx+n)2

y

)
. (3.1)

By the Chowla-Selberg formula [33, 113], we have the following lemma.

Lemma 3.3. The Theta function can be rewritten to the following form:

θ(α; z) =

√
y

α

(
2

∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e−
1
α
πn2y + 1 + 4

∞∑
m=1

∞∑
n=1

e−απm
2ye−

1
α
πn2y cos(2πmnx)

)

=

√
y

α

2
∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e−
1
α
πn2y + 1 + 4

∞∑
n=1

∑
d|n

e
−πy

(
αd2+ n2

αd2

)
cos(2πnx)


= 2

√
y

α

∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e
−απn

2

y + 4

√
y

α

∞∑
n=1

∑
d|n

e
−πy

(
αd2+ n2

αd2

)
cos(2πnx) + 1.

(3.2)

Remark 3.4. We give an alternative form of Theta function, which is crucial for our com-
putations. The two different forms describe the effect of the parameters α and y on the
Theta function respectively. The original form (3.1) shows that the higher order power
terms decay exponentially as α becomes larger. The new form (3.2) clearly shows that
the higher order terms decay exponentially as y gets larger. Notice that ∂

∂yθ(α; i) = 0 and
hence we have the following interesting identity:∑

m∈Z

∑
n∈Z

e−π(αm2+n2

α
) = 2π

∑
m∈Z

∑
n∈Z

(αm2 +
n2

α
)e−π(αm2+n2

α
).

Proof. Note that the convergence of the function, the various orders of summation and
transformation that we perform on m and n, as well as the derivative operation on the
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parameters x and y, are all valid. So we have

θ(α; z) =

∞∑
m=−∞

∞∑
n=−∞

e
−απ

(
(mx+n)2

y
+m2y

)

=
∑
m∈Z

e−απm
2y
∑
n∈Z

e
−απ (mx+n)2

y

=
∑
m∈Z

e−απm
2y ·
√
y

α

∑
n∈Z

e−
1
α
πn2y cos(2πmnx)

=

√
y

α

(
2

∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e−
1
α
πn2y + 1 + 4

∞∑
m=1

∞∑
n=1

e−απm
2ye−

1
α
πn2y cos(2πmnx)

)

=

√
y

α

2

∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e−
1
α
πn2y + 1 + 4

∞∑
n=1

∑
d|n

e
−πy

(
αd2+ n2

αd2

)
cos(2πnx)


= 2

√
y

α

∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e
−απn

2

y + 4

√
y

α

∞∑
n=1

∑
d|n

e
−πy

(
αd2+ n2

αd2

)
cos(2πnx) + 1,

where the third and the last equality are derived from the Poisson summation formula.
(We refer to the book [134]).

Next, we present some properties of completely monotone functions and some properties
of the potential formed by the difference of two completely monotone functions.

Lemma 3.5. For any completely monotone functions f1 and f2, let Fi(z) = Efi [Λ] be the
lattice energy, where i = 1, 2. Then for any z ∈ DG, we have

∂

∂y
Fi(z) > 0 and

∂

∂x
Fi(z) < 0. (3.3)

Moreover, if the minimizer of F1(z) − bF2(z) only occurs on the curve Γa ∪ Γb, then the
minimizer monotonically follows on this curve from ei

π
3 to i and then from i to infinity,

as b becomes larger. We call this the hexagonal-rhombic-square-rectangular lattice phase
transition.

Proof. By [36] and [96] , (3.3) holds. For any b2 > b1, let the minimizer be z1 and z2

respectively. We have

F1(z1)− b1F2(z1)− (b2 − b1)F2(z2)

≤F1(z2)− b1F2(z2)− (b2 − b1)F2(z2)

=F1(z2)− b2F2(z2)

≤F1(z1)− b2F2(z1)

=F1(z1)− b1F2(z1)− (b2 − b1)F2(z1).
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Then we have
F2(z1) ≤ F2(z2).

This with (3.3) proves the lemma.

Considering any admissible functions f1 and f2, let f = f1 − bf2, and F(z) = F1(z)−
bF2(z) be the formula used to express the energy. In fact, for such a potential, the condi-
tions for the existence of its minimizer are very demanding. We will obtain the necessary
conditions for z ∈ DG to be a minimizer from two different perspectives (see (3.4) and (3.8)
below). An important consequence of these conditions is to exclude the interior minimizers.

Let

F (z) :=
∂

∂y
F1(z) · ∂

∂x
F2(z)− ∂

∂x
F1(z) · ∂

∂y
F2(z). (3.4)

We will show that F (z) = 0 is a necessary condition. The physical meaning of this equation
is that the gradient directions of attraction and repulsion are exactly opposite. To simplify
the exposition, we introduce the following notation,

Γf := {z ∈ DG : F (z) = 0},

ΓT := Γa ∪ Γb ∪ Γc, and ΓF := {z ∈ DG : F (z) = 0} .

Lemma 3.6. For any b ∈ R, the minimizer of the energy F(z) = F1(z) − bF2(z) only
occurs on the curve Γf .

Proof. It is easy to see that for any z ∈ Γa ∪ Γc,
∂
∂xF1(z) = ∂

∂xF2(z) = 0, which implies

that F = 0. When z ∈ Γb, notice that ∂
∂rF1(z) = ∂

∂rF2(z) = 0, it’s easy to check that
F = 0. Therefore, we call ΓT the set of trivial zero points, which is independent of f .

On the other hand, if z ∈ DG is the minimizer, then

∂

∂x
F(z) =

∂

∂x
F1(z)− b ∂

∂x
F2(z) = 0,

∂

∂y
F(z) =

∂

∂y
F1(z)− b ∂

∂y
F2(z) = 0,

this implies that z ∈ ΓF .

More properties related to this function are given in the following proposition.

Proposition 3.7. Here are some conditions to exclude minimizers.

1. For any z0 ∈ Γa\{i}, if F (z)
sin(2πx)

∣∣∣
z=z0

> 0, then z0 can not be the minimizer;

2. For any z0 ∈ Γb\{ei
π
3 , i}, if F (z)

r2−1

∣∣∣
z=z0

> 0, then z0 can not be the minimizer;
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3. For any z0 ∈ Γc\{ei
π
3 }, if F (z)

sin(2πx)

∣∣∣
z=z0

< 0, then z0 can not be the minimizer;

4. For any z0 ∈ ΓF , if z0 is an isolated zero, and ∂
∂xF1(z0) · ∂

∂xF2(z0) · ∂
∂yF1(z0) ·

∂
∂yF2(z0) 6= 0, then z0 can not be the minimizer.

Proof. If z0 ∈ Γa is the minimizer for some b0, then(
∂

∂y
F1(z)− b0

∂

∂y
F2(z)

) ∣∣∣∣∣
z=z0

= 0.

It is easy to see that
∂
∂x
F1(z)

sin(2πx) and
∂
∂x
F2(z)

sin(2πx) are both well-defined in DG . Then

b0
∂
∂xF2(z)− ∂

∂xF1(z)

sin(2πx)

∣∣∣∣∣
z=z0

> 0.

By the continuity of the above function, there exists a neighborhood U = B(z0, r0) ∩ DG
such that

∂

∂x
F1(z)− b0

∂

∂x
F2(z) < 0,

which is a contradiction.
If z0 ∈ Γb is the minimizer for some b0, then(

∂

∂θ
F1(z)− b0

∂

∂θ
F2(z)

) ∣∣∣∣∣
z=z0

= 0.

Notice that

F =
∂

∂y
F1(z) · ∂

∂x
F2(z)− ∂

∂x
F1(z) · ∂

∂y
F2(z)

=
∂

∂θ
F1(z) · ∂

∂r
F2(z)− ∂

∂r
F1(z) · ∂

∂θ
F2(z).

Using the same method, we can deduce that

∂
∂rF1(z)− b0 ∂

∂rF2(z)

r2 − 1

∣∣∣∣∣
z=z0

< 0

By the continuity of the above function, then there exists a neighborhood U = B(z0, r0)∩DG
such that

∂

∂r
F1(z)− b0

∂

∂r
F2(z) < 0,

which is a contradiction.
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If z0 ∈ Γc is the minimizer for some b0, using the same method, we can prove that there
exists a neighborhood U = B(z0, r0) ∩ DG such that

∂

∂x
F1(z)− b0

∂

∂x
F2(z) > 0,

which is also a contradiction.
If z0 ∈ ΓF and it is an isolated zero, without losing generality, we can assume that

there exists a deleted neighborhood U1 ⊂ DG , such that F (z) > 0 for any z ∈ U . That is

F (z) =
(
∂
∂yF1(z)− b0 ∂

∂yF2(z)
)
∂
∂xF2(z)−

(
∂
∂xF1(z)− b0 ∂

∂xF2(z)
)
∂
∂yF2(z) > 0. (3.5)

On the other hand, z0 is the minimizer of F1(z) − b0F2, by Taylor’s expansion, we know
that there exists a neighborhood U2 such that(

∂
∂yF1(z)− b0 ∂

∂yF2(z)
)

(y − y0) +
(
∂
∂xF1(z)− b0 ∂

∂xF2(z)
)

(x− x0) ≥ 0 (3.6)

holds for any z ∈ U2. It’s not hard to find a deleted neighborhood U3 such that both of
the above inequalities are satisfied at the same time. If ∂

∂xF2(z0) 6= 0, and ∂
∂yF2(z0) 6= 0,

without lossing generality, assume ∂
∂xF2(z0) < 0, and ∂

∂yF2(z0) > 0 we can find a deleted
negihberhood U4 such that

∂

∂x
F2(z) < 0 and

∂

∂y
F2(z) > 0.

Then for any z ∈ U5 = U4 ∩ {(x, y) ∈ DG : (x− x0) > 0, and (y − y0) > 0}

∂

∂x
F2(z)(y − y0) < 0 and

∂

∂x
F2(z)(x− x0) < 0.

∂

∂y
F2(z)(x− x0) > 0 and

∂

∂y
F2(z)(y − y0) > 0.

Multiplying (3.5) and (3.6) gives

I :=

(
∂

∂y
F1(z)− b0

∂

∂y
F2(z)

)2 ∂

∂x
F2(z)(y − y0)

−
(
∂

∂x
F1(z)− b0

∂

∂x
F2(z)

)2 ∂

∂y
F2(z) (x− x0)

+

(
∂

∂y
F1(z)− b0

∂

∂y
F2(z)

)(
∂

∂x
F1(z)− b0

∂

∂x
F2(z)

)
∂

∂x
F2(z)(x− x0)

−
(
∂

∂y
F1(z)− b0

∂

∂y
F2(z)

)(
∂

∂x
F1(z)− b0

∂

∂x
F2(z)

)
∂

∂y
F2(z)(y − y0) ≥ 0.

(3.7)
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Let

X :=

(
∂

∂x
F1(z)− b0

∂

∂x
F2(z)

)
and Y :=

(
∂

∂y
F1(z)− b0

∂

∂y
F2(z)

)
.

If XY < 0 holds for all z ∈ U5, then X > 0, Y < 0, or X < 0, Y > 0. However,
by (3.5) and (3.6), when z ∈ ∂U5 ∩ {(x, y) ∈ DG : x = x0}, X < 0, meanwhile, when
z ∈ ∂U5 ∩ {(x, y) ∈ DG : y = y0}, Y < 0. This implies that XY < 0 can not hold for all
z ∈ U5. If XY ≥ 0, by (3.5), we get X2 +Y 2 6= 0, then I < 0, which contradicts with (3.7).

Proposition 3.8. If f1 and f2 are two completely monotonic functions, the above proper-
ties can be simplified as follows.

1. For any z0 ∈ Γa\{i}, if there exists a deleted neighberhood U such that F (z)
sin(2πx) > 0

holds for all z ∈ U ∩ DG, then z0 can not be the minimizer;

2. For any z0 ∈ Γb\{ei
π
3 , i}, if there exists a deleted neighberhood U such that F (z) > 0

holds for all z ∈ U ∩ DG, then z0 can not be the minimizer;

3. For z0 = i, if there exists a deleted neighberhood U such that F (z)
(y2−1) sin(2πx)

> 0 holds

for all z ∈ U ∩ DG, then z0 can not be the minimizer;

4. For any z0 ∈ Γc\{ei
π
3 }, if there exists a deleted neighberhood U such that F (z)

sin(2πx) < 0

holds for all z ∈ U ∩ DG, then z0 can not be the minimizer;

5. For any z0 ∈ ΓF , if z0 is an isolated zero, then z0 can not be the minimizer.

Proof. By Lemma 3.3, we know that

θ(α; z) = 2

√
y

α

∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e
−απn

2

y + 4

√
y

α

∞∑
n=1

∑
d|n

e
−πy

(
αd2+ n2

αd2

)
cos(2πnx) + 1.

Simultaneous partial derivatives for both sides of the above equation give

∂

∂x
θ(α; z) = −8π

√
y

α

∞∑
n=1

∑
d|n

e
−πy

(
αd2+ n2

αd2

)
n sin(2πnx).

Consider the polar coordinate form,

θ(α; z) =

+∞∑
m=−∞

+∞∑
n=−∞

e−απ(m
2r 1

sin θ
+n2 1

r
1

sin θ
+2mn cos θ

sin θ ).
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Taking the partial derivative on both sides of the above equation, we have

∂

∂r
θ(α; z) = −απ

(
m2

sin θ
− n2

r2 sin θ

) +∞∑
m=−∞

+∞∑
n=−∞

e−απ(m
2r 1

sin θ
+n2 1

r
1

sin θ
+2mn cos θ

sin θ ).

By a simple observation and calculation, we can get

∂
∂xθ(α; z)

sin(2πx)
and

∂
∂rθ(α; z)

r2 − 1

are well-defined in DG . By Lemma 3.5, if f is completely monotonic function, we have
∂
∂xF(z) < 0 and ∂

∂yF(z) > 0 for any z ∈ DG . Using the same method as in the proof of
Proposition 3.7, we can get a similar solution.

Up to this point, we have obtained a very important conclusion, a necessary condition
for determining whether z is the minimizer or not. Next, we will introduce another new
perspective and give another important observation.

Remark 3.9. If z ∈ DG is the minimizer, by the group action G, we know that z
|z|2 must be

the minimizer too.

Figure 2: Schematic diagram of the relationship between z and z
|z|2 .

Let

Fx(z) :=
∂

∂x
F1(z) · ∂

∂x
F2(

z

|z|2
)− ∂

∂x
F2(z) · ∂

∂x
F1(

z

|z|2
). (3.8)

We will show that Fx(z) = 0 is an another necessary condition, which implies the symmetric
geometric relationship of the lattice. We call this the duality invariance.
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Lemma 3.10. If z is the minimizer of F(z) = F1(z) − bF2(z), then we have Fx(z) = 0.
Moreover, if f1 and f2 are two completely monotonic functions, for any z0 ∈ Γc\{ei

π
3 }, if

there exists a deleted neighberhood U such that Fx(z)

sin2(2πx)
< 0 holds for all z ∈ U ∩DG, then

z0 can not be the minimizer.

Proof. For any F(z) = F1(z)− bF2(z), it’s obvious that if z it the minimizer, there exists

∂

∂x
F(z) =

∂

∂x
F1(z)− b ∂

∂x
F2(z) = 0,

meanwhile,
∂

∂x
F(

z

|z|2
) =

∂

∂x
F1(

z

|z|2
)− b ∂

∂x
F2(

z

|z|2
) = 0,

which shows Fx(z) = 0. Moreover, if z0 ∈ Γc\{ei
π
3 } with Fx(z)

sin2(2πx)
< 0 is the minimizer of

F1(z)− b0F2(z), we have

∂
∂xF(z)

sin(2πx)
=

∂
∂xF1(z)

sin(2πx)
− b0

∂
∂xF2(z)

sin(2πx)
>

∂
∂xF1( z

|z|2 )

sin(2πx)
− b0

∂
∂xF2( z

|z|2 )

sin(2πx)
= 0,

which contradicts the minimizer.

4 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1, which is also the main theorem of this article.
By Proposition 3.8 and Lemma 3.10, if we can prove that for any α > 1, 1

α ≤ λ < 1 and
z ∈ DG , the following inequalities either

∂

∂y
θ(α; z) · ∂

∂x
θ(λα; z)− ∂

∂x
θ(α; z) · ∂

∂y
θ(λα; z) < 0 (4.1)

or
∂

∂x
θ(α; z) · ∂

∂x
θ(λα;

z

|z|2
)− ∂

∂x
θ(α;

z

|z|2
) · ∂
∂x
θ(λα; z) < 0, (4.2)

holds, then the Theorem 1.1 follows naturally. By [96], we have ∂
∂yθ(α; z) > 0 holds for any

α > 0 and z ∈ DG , and ∂
∂xθ(α; z) < 0 holds for any α > 0 and z ∈ {0 ≤ x ≤ 0.5, y ≥ 0.5}.

When z ∈ DG , the inequality (4.1) can be equal to

∂
∂yθ(α; z)

∂
∂xθ(α; z)

−
∂
∂yθ(λα; z)

∂
∂xθ(λα; z)

< 0.

Then we only need to prove for any α ≥ 1,

∂

∂α

(
∂
∂yθ(α; z)

∂
∂xθ(α; z)

)
< 0.
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When z ∈ DG ∩ {y ≤ 1.5}, the inequality (4.2) can be equal to

∂
∂xθ(α; z)
∂
∂xθ(α; z

|z|2 )
−

∂
∂xθ(λα; z)
∂
∂xθ(λα; z

|z|2 )
< 0.

Then we only need to prove for any α ≥ 1,

∂

∂α

(
∂
∂xθ(α; z)
∂
∂xθ(α; z

|z|2 )

)
< 0.

For the convenience of the following proof, we introduce the following notation.

Fα,z :=

∂2

∂α∂yθ(α; z)

∂
∂yθ(α; z)

−
∂2

∂α∂xθ(α; z)
∂
∂xθ(α; z)

, (4.3)

Fα,z,y :=

∂2

∂α∂yθ(α; z)

∂
∂yθ(α; z)

and Fα,z,x := −
∂2

∂α∂xθ(α; z)
∂
∂xθ(α; z)

. (4.4)

With the above analysis, we only need to prove that

Lemma 4.1. For any α ≥ 1, when z ∈ DG ∩ {y ≥ 1.5}, we have

∂

∂α

(
∂
∂yθ(α; z)

∂
∂xθ(α; z)

)
< 0. (4.5)

When z ∈ DG ∩ {y ≤ 1.5}, we have

∂

∂α

(
∂
∂xθ(α; z)
∂
∂xθ(α; z

|z|2 )

)
< 0. (4.6)

Remark 4.2. In fact, through numerical simulations we know that (4.5) and (4.6) hold
for any z ∈ DG . Notice that when z ∈ DG ∩ {r = 1}, the function Fα,z = 0, and when
r → ∞, z

|z|2 → 0, which create difficulties in estimating around that point. Therefore, in

the pursuit of a rigorous and concise mathematical proof, we divide the region into two
parts. The proof of Lemma 4.1 is contained in the following two subsections 4.1 and 4.2.

4.1 z ∈ DG ∩ {y ≥ 1.5}

Lemma 4.3. For any α ≥ 1, z ∈ DG ∩ {y ≥ 1.5}, we have Fα,z > 0.

Remark 4.4. Notice that ∂
∂yθ(α; z) > 0 and ∂

∂xθ(α; z) < 0, it’s easy to see that (4.5) is
equivalent to Fα,z > 0. We will estimate these Fα,z,x and Fα,z,y separately.
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Proof. We divide the proof into three cases, each using different expressions and different
computations. In Case 1, we consider the situation when y

α ≥
1
2 and α ≥ 3. In Case 2, we

consider the situation when α ≤ 3. In Case 3, we consider the situation when y
α ≤

1
2 , i.e.,

α
y ≥ 2.

Case 1. y
α ≥

1
2 and α ≥ 3.

The constraint y
α ≥

1
2 is designed to handle the case where y is relatively large. We

utilize a suitable expression (3.2) to ensure that when y is larger, the higher-order power
terms that follow are smaller. In this case, we will show that the function 1

1− 1
α2
Fα,z > 0.

Dividing Fα,z by 1 − 1
α2 is partly for the convenience of the computational process, and

partly to make the connection with Case 2. By Lemma 3.3, we have

θ(α; z) =

√
y

α

(
2
∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e−
1
α
πn2y + 1 + 4

∞∑
m=1

∞∑
n=1

e−απm
2ye−

1
α
πn2y cos(2πmnx)

)
.

We will estimate 1
1− 1

α2
Fα,z,x, 1

1− 1
α2
Fα,z,y separately. First, by direct calculation, we

obtain that

1

1− 1
α2

Fα,z,x −
1

1− 1
α2

1

2α

=πy ·
∑+∞

m=1

∑+∞
n=1mn(n2 − 1

α2m
2)e−πy(αn2+ 1

α
m2) sin(2πmnx)∑+∞

m=1

∑+∞
n=1mne

−πy(αn2+ 1
α
m2) sin(2πmnx)

1

1− 1
α2

=πy ·

1 +
1

1− 1
α2

∑+∞
m=1

∑+∞
n=1mn((n2 − 1)− 1

α2 (m2 − 1))e−πy(α(n2−1)+ 1
α

(m2−1)) sin(2πmnx)
sin(2πx)∑+∞

m=1

∑+∞
n=1mne

−πy(α(n2−1)+ 1
α

(m2−1)) sin(2πmnx)
sin(2πx)

 .

(4.7)
Next, we estimate the second part of the above function to verify that it’s relatively small.
Indeed, we have

+∞∑
m=1

+∞∑
n=1

mne−πy(α(n2−1)+ 1
α

(m2−1)) sin(2πmnx)

sin(2πx)

≥ 1−
∑
mn≥2

mne−πy(α(n2−1)+ 1
α

(m2−1))

∣∣∣∣sin(2πmnx)

sin(2πx)

∣∣∣∣
≥ 1−

∑
mn≥2

m2n2e−π( 9
2

(n2−1)+ 1
2

(m2−1)),

(4.8)
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and ∣∣∣∣∣
+∞∑
m=1

+∞∑
n=1

mn((n2 − 1)− 1

α2
(m2 − 1))e−πy(α(n2−1)+ 1

α
(m2−1)) sin(2πmnx)

sin(2πx)

∣∣∣∣∣
≤

+∞∑
m=1

+∞∑
n=1

m2n2((n2 − 1) +
1

α2
(m2 − 1))e−πy(α(n2−1)+ 1

α
(m2−1))

≤
+∞∑
m=1

+∞∑
n=1

m2n2((n2 − 1) +
1

9
(m2 − 1))e−π( 9

2
(n2−1)+ 1

2
(m2−1)).

(4.9)

We deduce 1
1− 1

α2
≤ 1

1− 1
9

by α ≥ 3. This with (4.8) and (4.9) yields

1

1− 1
α2

Fα,z,x −
1

1− 1
α2

1

2α
≥ πy · (1− 0.015) = 0.985πy. (4.10)

Applying a similar method to Fα,z,y, since this equation is complex, we introduce a
new symbolic notation to estimate the numerator and denominator separately. By direct
calculation, we get

1

1− 1
α2

Fα,z,y +
1

1− 1
α2

1

2α
= πy · N

D
· 1

1− 1
α2

, (4.11)

where

N =− 3
+∞∑
n=1

n2e−απn
2y +

3

α2

+∞∑
n=1

n2e−
1
α
πn2y + 2απy

+∞∑
n=1

n4e−απn
2y − 2

α3
πy

+∞∑
n=1

n4e−
1
α
πn2y

− 6
+∞∑
m=1

+∞∑
n=1

(n2 − 1

α2
m2)e−πy(αn2+ 1

α
m2) cos(2πmnx)

+ 4πy
+∞∑
m=1

+∞∑
n=1

(n2 − 1

α2
m2)(αn2 +

1

α
m2)e−πy(αn2+ 1

α
m2) cos(2πmnx),

(4.12)
and

D =
1

2
+

+∞∑
n=1

e−απn
2y +

+∞∑
n=1

e−
1
α
πn2y − 2απy

+∞∑
n=1

n2e−απn
2y − 2

α
πy

+∞∑
n=1

n2e−
1
α
πn2y

+ 2

+∞∑
m=1

+∞∑
n=1

e−πy(αn2+ 1
α
m2) cos(2πmnx)

− 4πy

+∞∑
m=1

+∞∑
n=1

(αn2 +
1

α
m2)e−πy(αn2+ 1

α
m2) cos(2πmnx).

(4.13)
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A simple monotonicity analysis, with an appropriate estimate of each part, yields

D ≥ 1

2
+

+∞∑
n=1

(1− 2

α
πn2y)e−

1
α
πn2y − 2απy

+∞∑
n=1

n2e−απn
2y

− 2
+∞∑
m=1

+∞∑
n=1

e−πy(αn2+ 1
α
m2) − 4πy

+∞∑
m=1

+∞∑
n=1

(αn2 +
1

α
m2)e−πy(αn2+ 1

α
m2)

≥ 1

2
+

+∞∑
n=1

(1− πn2)e−
1
2
πn2 − 9π

+∞∑
n=1

n2e−
9
2
πn2

− 2
+∞∑
m=1

+∞∑
n=1

e−π( 9
2
n2+ 1

2
m2) − 4π

+∞∑
m=1

+∞∑
n=1

(
9

2
n2 +

1

2
m2)e−π( 9

2
n2+ 1

2
m2)

≥ 0.0331,

(4.14)

and

N ≥ 1

α2
(3− 2π

y

α
)e−π

y
α +

1

α2

+∞∑
n=2

(3− 2π
y

α
n2)n2e−

y
α
πn2 − 3

+∞∑
n=1

n2e−απn
2y

− 6

+∞∑
m=1

+∞∑
n=1

(n2 +
1

α2
m2)e−πy(αn2+ 1

α
m2)

− 4πy
+∞∑
m=1

+∞∑
n=1

(n2 +
1

α2
m2)(αn2 +

1

α
m2)e−πy(αn2+ 1

α
m2)

≥ 1

9
(3− 5)e−π

5
2π +

1

9

+∞∑
n=2

(3− 2π
1

2
n2)n2e−

1
2
πn2 − 3

+∞∑
n=1

n2e−
9
2
πn2

− 6
+∞∑
m=1

+∞∑
n=1

(n2 +
1

9
m2)e−π( 9

2
n2+ 1

2
m2)

− 4π
+∞∑
m=1

+∞∑
n=1

(n2 +
1

9
m2)(

9

2
n2 +

1

2
m2)e−π( 9

2
n2+ 1

2
m2)

≥− 0.0263.

(4.15)

Together with (4.11), (4.14) and (4.15), we have

1

1− 1
α2

Fα,z,y +
1

1− 1
α2

1

2α
≥ −0.7946πy. (4.16)

Therefore, conbining (4.10) and (4.16), we have 1
1− 1

α2
Fα,z > 0.

Case 2. 1 ≤ α < 3.
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It is not difficult to see that Fα,z,x = Fα,z,y = 0 for α = 1. So the term 1
1− 1

α2
becomes

very important to our estimate. By calculation, we can obtain the same expression as in the
above case, but this time we have to estimate the numerator and denominator separately,
especially the numerator, in more detail,

1

1− 1
α2

Fα,z,x −
1

1− 1
α2

1

2α

=πy ·
∑+∞

m=1

∑+∞
n=1mn(n2 − 1

α2m
2)e−πy(αn2+ 1

α
m2) sin(2πmnx)∑+∞

m=1

∑+∞
n=1mne

−πy(αn2+ 1
α
m2) sin(2πmnx)

1

1− 1
α2

=πy ·

1 +
1

1− 1
α2

∑+∞
m=1

∑+∞
n=1mn((n2 − 1)− 1

α2 (m2 − 1))e−πy(α(n2−1)+ 1
α

(m2−1)) sin(2πmnx)
sin(2πx)∑+∞

m=1

∑+∞
n=1mne

−πy(α(n2−1)+ 1
α

(m2−1)) sin(2πmnx)
sin(2πx)

 .

(4.17)

The part of the denominator is relatively simple. By using
∣∣∣ sin(2πmnx)

sin(2πx)

∣∣∣ ≤ mn, we have

+∞∑
m=1

+∞∑
n=1

mne−πy(α(n2−1)+ 1
α

(m2−1)) sin(2πmnx)

sin(2πx)

≥ 1−
∑
mn≥2

mne−πy(α(n2−1)+ 1
α

(m2−1))

∣∣∣∣sin(2πmnx)

sin(2πx)

∣∣∣∣
≥ 1−

∑
mn≥2

m2n2e−π( 3
2

(n2−1)+ 1
2

(m2−1))

≥ 0.9640.

(4.18)

We carefully estimate the numerator and divide it into two parts of which the smaller part
can be roughly estimated. First, we have the following two estimates.

12 ·
e−3απy − 1

α2 e
− 3
α
πy

1− 1
α2

≥ 12 ·
e−3απy − 1

α2 e
− 3
α
πy

1− 1
α2

∣∣∣∣
y=1.5,α=3

≥ −0.01348, (4.19)

and ∣∣∣∣∣e−απy − e−
1
α
πy

1− 1
α2

∣∣∣∣∣ ≤ 0.234. (4.20)
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Then we have∑+∞
m=1

∑+∞
n=1mn((n2 − 1)− 1

α2 (m2 − 1))e−πy(α(n2−1)+ 1
α

(m2−1)) sin(2πmnx)
sin(2πx)

1− 1
α2

= 6 ·
e−3απy − 1

α2 e
− 3
α
πy

1− 1
α2

sin(4πx)

sin(2πx)

+
∑
mn≥3

mn(m2 − 1)e−πy(α(n2−1)+ 1
α

(m2−1)) sin(2πmnx)

sin(2πx)

−
∑
mn≥3

mn(m2 − 1)
−eπy(α(m2−1)+ 1

α
(n2−1)) − e−πy(α(n2−1)+ 1

α
(m2−1))

1− 1
α2

sin(2πmnx)

sin(2πx)

≥ 12 ·
e−3απy − 1

α2 e
− 3
α
πy

1− 1
α2

−
∑
m·n≥3

m2n2(m2 − 1)e−πy(α(n2−1)+ 1
α

(m2−1))

−
∑
mn≥3

m2n2(m2 − 1)

∣∣∣∣∣−eπy(α(m2−1)+ 1
α

(n2−1)) − e−πy(α(n2−1)+ 1
α

(m2−1))

1− 1
α2

∣∣∣∣∣ .

(4.21)

By using xn − yn = (x− y)(xn−1 + xn−2y + · · ·+ yn−1), we have∑+∞
m=1

∑+∞
n=1mn((n2 − 1)− 1

α2 (m2 − 1))e−πy(α(n2−1)+ 1
α

(m2−1) sin(2πmnx)
sin(2πx)

1− 1
α2

≥− 0.013475− 5.4684× 10−4.

(4.22)

(4.22) together with (4.17), (4.18), yields

1

1− 1
α2

Fα,z,x −
1

1− 1
α2

1

2α
≥ πy · (1− 0.015) = 0.985πy. (4.23)

Next, we begin to estimate Fα,z,y. Dividing the numerator and denominator into two
pieces each according to the major and minor components. By direct calculation, we have

1

1− 1
α2

Fα,z,y +
1

1− 1
α2

1

2α
= πy · N1 +N2

D1 +D2
, (4.24)

where

N1 =− 3

2∑
n=1

n2 e
−απn2y − 1

α2 e
− 1
α
πn2y

1− 1
α2

+ 2απy

2∑
n=1

n4 e
−απn2y − 1

α4 e
− 1
α
πn2y

1− 1
α2

, (4.25)
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N2 =− 3

+∞∑
n=3

n2 e
−απn2y − 1

α2 e
− 1
α
πn2y

1− 1
α2

+ 2απy

+∞∑
n=3

n4 e
−απn2y − 1

α4 e
− 1
α
πn2y

1− 1
α2

− 6

+∞∑
m=1

+∞∑
n=1

m2e−πy(αn2+ 1
α
m2) cos(2πmnx)

− 6
+∞∑
m=1

+∞∑
n=1

m2 e
−πy(αm2+ 1

α
n2) − e−πy(αn2+ 1

α
m2)

1− 1
α2

cos(2πmnx)

+ 4α(1 +
1

α2
)πy

+∞∑
m=1

+∞∑
n=1

m4e−πy(αn2+ 1
α
m2) cos(2πmnx)

+ 4απy
+∞∑
m=1

+∞∑
n=1

m4 e
−πy(αm2+ 1

α
n2) − e−πy(αn2+ 1

α
m2)

1− 1
α2

cos(2πmnx),

(4.26)

and

D1 =
1

2
+

2∑
n=1

e−απn
2y +

2∑
n=1

e−
1
α
πn2y − 2απy

2∑
n=1

n2e−απn
2y − 2

α
πy

2∑
n=1

n2e−
1
α
πn2y.

(4.27)

D2 =
+∞∑
n=3

e−απn
2y +

+∞∑
n=3

e−
1
α
πn2y − 2απy

+∞∑
n=3

n2e−απn
2y − 2

α
πy

+∞∑
n=3

n2e−
1
α
πn2y

+ 2

+∞∑
m=1

+∞∑
n=1

e−πy(αn2+ 1
α
m2) cos(2πmnx)

− 4πy

+∞∑
m=1

+∞∑
n=1

(αn2 +
1

α
m2)e−πy(αn2+ 1

α
m2) cos(2πmnx).

(4.28)

By direct calculation, we obtain

N1

D1

=
−3
∑2

n=1 n
2 e
−απn2y− 1

α2
e−

1
απn

2y

1− 1
α2

+ 2απy
∑2

n=1 n
4 e
−απn2y− 1

α4
e−

1
απn

2y

1− 1
α2

1
2 +

∑2
n=1 e

−απn2y +
∑2

n=1 e
− 1
α
πn2y − 2απy

∑2
n=1 n

2e−απn2y − 2
απy

∑2
n=1 n

2e−
1
α
πn2y

≥
−3
∑2

n=1 n
2 e
−απn2y− 1

α2
e−

1
απn

2y

1− 1
α2

+ 2απy
∑2

n=1 n
4 e
−απn2y− 1

α4
e−

1
απn

2y

1− 1
α2

1
2 +

∑2
n=1 e

−απn2y +
∑2

n=1 e
− 1
α
πn2y − 2απy

∑2
n=1 n

2e−απn2y − 2
απy

∑2
n=1 n

2e−
1
α
πn2y

∣∣∣∣
y=1.5,α=3

≥ − 0.3794.
(4.29)
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We estimate the remaining terms as follows

D2 ≥− 2απy
+∞∑
n=3

n2e−απn
2y − 2

α
πy

+∞∑
n=3

n2e−
1
α
πn2y

− 2
+∞∑
m=1

+∞∑
n=1

e−πy(αn2+ 1
α
m2)

− 4πy
+∞∑
m=1

+∞∑
n=1

(αn2 +
1

α
m2)e−πy(αn2+ 1

α
m2).

(4.30)

Furthermore, observe that ∣∣∣∣∣e−απy − e−
1
α
πy

1− 1
α2

∣∣∣∣∣ ≤ 0.234. (4.31)

We have

N2 ≥2απy
+∞∑
n=3

n4 e
−απn2y − 1

α4 e
− 1
α
πn2y

1− 1
α2

− 6

+∞∑
m=1

+∞∑
n=1

m2e−πy(αn2+ 1
α
m2)

− 6

+∞∑
m=1

+∞∑
n=1

m2

∣∣∣∣∣e−πy(αm2+ 1
α
n2) − e−πy(αn2+ 1

α
m2)

1− 1
α2

∣∣∣∣∣
− 4(α+

1

α
)πy

+∞∑
m=1

+∞∑
n=1

m4e−πy(αn2+ 1
α
m2)

− 4απy
+∞∑
m=1

+∞∑
n=1

m4

∣∣∣∣∣e−πy(αm2+ 1
α
n2) − e−πy(αn2+ 1

α
m2)

1− 1
α2

∣∣∣∣∣ .

(4.32)

By the monotonicity of D1, D2, N1, N2 with αy ≥ 1.5 and y
α ≥ 0.5, we can get∣∣∣∣N2

N1

∣∣∣∣ ≤ 0.0424 and

∣∣∣∣D2

D1

∣∣∣∣ ≤ 0.0092.

This together with (4.24) and (4.29) shows

1

1− 1
α2

Fα,z,y +
1

1− 1
α2

1

2α
≥ −πy · 0.3794 · (1 + 0.0424)

1− 0.0092
≥ −0.3992πy. (4.33)

Therefore, (4.23) and (4.33) yield

1

1− 1
α2

Fα,z > 0. (4.34)
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Case 3. y
α <

1
2 .

In this case, the constraint α
y > 2 is designed to handle the case where α is relatively

large. We make use of a suitable expression (1.2) to ensure that when α is larger, the
higher-order power terms that follow are smaller. Recall that

θ(α; z) =
∑

(m,n)∈Z2

e
−πα(m2y+

(mx+n)2

y
)
.

By direct calculation, we have

Fα,z,y −
1

α

= −
π
∑

(m,n)∈Z2(m2y − (mx+n)2

y )(m2y + (mx+n)2

y )e
−πα(m2y+

(mx+n)2

y
)

∑
(m,n)∈Z2(m2y − (mx+n)2

y )e
−πα(m2y+

(mx+n)2

y
)

=− π

y

2 +
∑

(m,n)∈Z2\{(0,±1)}(m
2y2 − (mx+ n)2)(m2y2 + (mx+ n)2)e

−πα(m2y+
(mx+n)2−1

y
)

2 +
∑

(m,n)∈Z2\{(0,±1)}(m
2y2 − (mx+ n)2)e

−πα(m2y+
(mx+n)2−1

y
)

.

(4.35)
Notice that ∑

(m,n)∈Z2\{(0,±1)}

(m2y2 − (mx+ n)2)e
−πα(m2y+

(mx+n)2−1
y

)

≥ − 2
+∞∑
n=2

n2e
−πα(n

2−1
y

) − 2
+∞∑
m=1

(m2x2)e
−πα(m2y+m2x2−1

y
)

− 4
+∞∑
m=1

+∞∑
n=1

(m2x2 + n2)e
−πα(m2y+m2x2+n2−1

y
)
cosh(2πmn

α

y
x)

+ 4

+∞∑
m=1

+∞∑
n=1

(2mnx)e
−πα(m2y+m2x2+n2−1

y
)
sinh(2πmn

α

y
x)

≥ − 2

+∞∑
n=2

n2e
−πα(n

2−1
y

) − 2

+∞∑
m=1

y

απ
e
−πα(m2y− 1

y
)−1

− 4
+∞∑
m=1

+∞∑
n=1

n2e
−πα(m2y+n2−1

y
)
cosh(πmn

α

y
)

≥ − 9× 10−4,

(4.36)
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and ∑
(m,n)∈Z2\{(0,±1)}

(m2y2 − (mx+ n)2)(m2y2 + (mx+ n)2)e
−πα(m2y+

(mx+n)2−1
y

)

≤ 2

+∞∑
m=1

+∞∑
n=−∞

m4y4e−παm
2ye
−παn

2−1
y ≤ 0.004.

(4.37)

We have

Fα,z,y −
1

α
≥ −π

y

2 + 0.004

2− 9× 10−4
≥ −1.0025 · π

y
. (4.38)

On the other hand, we have

Fα,z,x +
1

α

=
π
∑

(m,n)∈Z2 m(mx+ n)(m2y + (mx+n)2

y )e
−πα(m2y+

(mx+n)2

y
)

∑
(m,n)∈Z2 m(mx+ n)e

−πα(m2y+
(mx+n)2

y
)

=πy +
π
∑

(m,n)∈Z2 m(mx+ n)((m2 − 1)y + (mx+n)2

y )e
−πα(m2y+

(mx+n)2

y
)

∑
(m,n)∈Z2 m(mx+ n)e

−πα(m2y+
(mx+n)2

y
)

.

(4.39)

We find that the denominator tends to 0 as x tends to 0 and 0.5, which causes a lot of
difficulties in our estimate. The previous expression (3.2) can be solved by dividing by
sin(2πx), but this one doesn’t seem to have good properties, so we need to consider it in
two parts and analyze the parts closer to 0 and closer to 0.5 separately.

a. x ∈ [0, 0.3].
Notice that as x tends to 0 the function also tends to 0, which is very bad for our

estimate. So we have to transform the function appropriately, dividing the numerator and
denominator by x to remove this effect. After that, we can achieve our goal by roughly
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estimating the higher-order power terms. We have

1

2x

∑
(m,n)∈Z2

m(mx+ n)e
−πα(m2y+

(mx+n)2

y
)

=

+∞∑
m=1

+∞∑
n=−∞

m2e
−π α

y
(m2y2+m2x2+n2+2mnx)

−
+∞∑
m=1

+∞∑
n=1

mne
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x

≥
1∑

n=−1

e
−π α

y
(y2+x2+n2+2nx) − e−π

α
y

(y2+x2+1−2x) 1− e−4π α
y
x

x

−
∑
mn≥2

mne
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x
.

(4.40)

For ease of writing, we introduce the following notation

D1 :=
1∑

n=−1

e
−π α

y
(y2+x2+n2+2nx) − e−π

α
y

(y2+x2+1−2x) 1− e−4π α
y
x

x
,

D2 :=−
∑
mn≥2

mne
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x
.

(4.41)

Notice that
1− e−4π α

y
mnx

x
≤ 4π

α

y
mn,

and
m2x2 + n2 − 2mnx ≥ n2 −mn.

By direct calculation, it’s easy to get∣∣∣∣D2

D1

∣∣∣∣ ≤ 5× 10−4. (4.42)
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Using the same method to the numerator, we have

1

2x

∑
(m,n)∈Z2

m(mx+ n)((m2 − 1)y2 + (mx+ n)2)e
−πα(m2y+

(mx+n)2

y
)

=

+∞∑
m=1

+∞∑
n=−∞

m2((m2 − 1)y2 +m2x2 + n2 + 2mnx)e
−π α

y
(m2y2+m2x2+n2+2mnx)

−
+∞∑
m=1

+∞∑
n=1

mn((m2 − 1)y2 +m2x2 + n2 − 2mnx)e
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x

+
+∞∑
m=1

+∞∑
n=1

4m2n2e
−π α

y
(m2y2+m2x2+n2+2mnx)

≥
1∑

n=−1

(x2 + n2 + 2nx)e
−π α

y
(y2+x2+n2+2nx) − (x2 + 1− 2x)e

−π α
y

(y2+x2+1−2x) 1− e−4π α
y
x

x

+ 4e
−π α

y
(y2+x2+1+2x)

−
∑
mn≥2

mn((m2 − 1)y2 +m2x2 + n2 − 2mnx)e
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x
.

(4.43)
Denote

N1 :=

1∑
n=−1

(x2 + n2 + 2nx)e
−π α

y
(y2+x2+n2+2nx) − (x2 + 1− 2x)e

−π α
y

(y2+x2+1−2x) 1− e−4π α
y
x

x

+ 4e
−π α

y
(y2+x2+1+2x)

,

N2 :=−
∑
mn≥2

mn((m2 − 1)y2 +m2x2 + n2 − 2mnx)e
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x
.

(4.44)
It is easy to get ∣∣∣∣N2

N1

∣∣∣∣ ≤ 5× 10−4. (4.45)

Since U1 and N1 are both simple functions, it’s easy to see the monotonicity and estimate
upper and lower bounds. We have

N1

D1
=
x3 + (x− 1)3e

−πα 1−2x
y + (x+ 1)3e

−πα 1+2x
y

x+ (x− 1)e
−πα 1−2x

y + (x+ 1)e
−πα 1+2x

y

≥ −0.0373. (4.46)
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Combining (4.39), (4.42), (4.45) and (4.46), we get

Fα,z,x +
1

α
≥ πy +

π

y

N1 +N2

D1 +D2
≥ πy +

π

y

N1

D1

1 +
∣∣∣N2
N1

∣∣∣
1−

∣∣∣D2
D1

∣∣∣ ≥ 0.98πy. (4.47)

b. x ∈ [0.3, 0.5].
This situation is similar to the previous one. We need to eliminate the effect of the func-

tion tending to 0 as x tends to 0.5, which can be accomplished by dividing the numerator
and denominator by 1− 2x.

1

2(1− 2x)

∑
(m,n)∈Z2

m(mx+ n)e
−πα(m2y+

(mx+n)2

y
)

=
1

1− 2x

+∞∑
m=1

+∞∑
n=−∞

m(mx+ n)e
−πα(m2y+

(mx+n)2

y
)

=
∑

m≡1 mod 2

+∞∑
n=0

m(n+
1

2
+
m

2
−mx)e

−π α
y

(m2y2+(mx−m
2

+ 1
2

+n)2) 1− e−π
α
y
m(2n+1)(1−2x)

1− 2x

+
∑

m≡0 mod 2

+∞∑
n=1

m(n+
m

2
−mx)e

−π α
y

(m2y2+(mx−m
2

+n)2) 1− e−π
α
y

2mn(1−2x)

1− 2x

−
∑

m≡1 mod 2

+∞∑
n=0

m2e
−π α

y
(m2y2+(mx−m

2
+ 1

2
+n)2)

− 1

2

∑
m≡0 mod 2

m2e
−π α

y
(m2y2+m2(x− 1

2
)2)

−
∑

m≡0 mod 2

+∞∑
n=1

m2e
−π α

y
(m2y2+(mx−m

2
+n)2)

≥
1∑

n=0

(n+ 1− x)e
−π α

y
(y2+(x+n)2) 1− e−π

α
y

(2n+1)(1−2x)

1− 2x
−

1∑
n=0

e
−π α

y
(y2+(x+n)2)

−
+∞∑
n=2

e
−π α

y
(y2+(x+n)2) − 1

2

+∞∑
m=2

m2e
−π α

y
m2y2

+∞∑
n=−∞

e
−π α

y
n2

.

(4.48)
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Using the same method to the numerator, we have

1

2(1− 2x)

∑
(m,n)∈Z2

m(mx+ n)
(
(m2 − 1)y2 + (mx+ n)2

)
e
−πα(m2y+

(mx+n)2

y
)

=
∑

m≡1 mod 2

+∞∑
n=0

m(n+
1

2
+
m

2
−mx)

(
(m2 − 1)y2 + (mx− m

2
+

1

2
+ n)2

)
e
−π α

y
(m2y2+(mx−m

2
+ 1

2
+n)2)

· 1− e−π
α
y
m(2n+1)(1−2x)

1− 2x

−
∑

m≡1 mod 2

+∞∑
n=0

m2(2n+ 1)(n+
1

2
+
m

2
−mx)e

−π α
y

(m2y2+(mx−m
2
− 1

2
−n)2)

+
∑

m≡0 mod 2

+∞∑
n=1

m(n+
m

2
−mx)

(
(m2 − 1)y2 + (mx− m

2
+ n)2

)
e
−π α

y
(m2y2+(mx−m

2
+n)2)

· 1− e−π
α
y

2mn(1−2x)

1− 2x

−
∑

m≡0 mod 2

+∞∑
n=1

2m2n(n+
m

2
−mx)e

−π α
y

(m2y2+(mx−m
2
−n)2)

−
∑

m≡1 mod 2

+∞∑
n=0

m2
(
(m2 − 1)y2 + (mx− m

2
+

1

2
+ n)2

)
e
−π α

y
(m2y2+(mx−m

2
+ 1

2
+n)2)

− 1

2

∑
m≡0 mod 2

m2((m2 − 1)y2 +m2(x− 1

2
)2)e

−π α
y

(m2y2+m2(x− 1
2

)2)

−
∑

m≡0 mod 2

+∞∑
n=1

m2
(
(m2 − 1)y2 + (mx− m

2
+ n)2

)
e
−π α

y
(m2y2+(mx−m

2
+n)2)

≥ (1− x)x2e
−π α

y
(y2+x2) 1− e−π

α
y

(1−2x)

1− 2x
− (1− x)e

−π α
y

(y2+(x−1)2) − x2e
−π α

y
(y2+x2)

−
+∞∑
n=1

(2n+ 1)(n+ 1− x)e
−π α

y
(m2y2+(x+n−1)2) −

+∞∑
n=1

(x+ n)2e
−π α

y
(y2+(x+n)2)

−
+∞∑
m=2

m2(m2 − 1)y2e
−π α

y
m2y2

+∞∑
n=−∞

(n2 + 1)e
−π α

y
n2

.

(4.49)
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Let

D1 :=

1∑
n=0

(n+ 1− x)e
−π α

y
(y2+(x+n)2) 1− e−π

α
y

(2n+1)(1−2x)

1− 2x
−

1∑
n=0

e
−π α

y
(y2+(x+n)2)

,

D2 :=−
+∞∑
n=2

e
−π α

y
(y2+(x+n)2) − 1

2

+∞∑
m=2

m2e
−π α

y
m2y2

+∞∑
n=−∞

e
−π α

y
n2

,

N1 :=(1− x)x2e
−π α

y
(y2+x2) 1− e−π

α
y

(1−2x)

1− 2x
− (1− x)e

−π α
y

(y2+(x−1)2) − x2e
−π α

y
(y2+x2)

,

N2 :=−
+∞∑
n=1

(2n+ 1)(n+ 1− x)e
−π α

y
(m2y2+(x+n−1)2) −

+∞∑
n=1

(x+ n)2e
−π α

y
(y2+(x+n)2)

−
+∞∑
m=2

m2(m2 − 1)y2e
−π α

y
m2y2

+∞∑
n=−∞

(n2 + 1)e
−π α

y
n2

.

(4.50)
It’s easy to see that

N1

D1
=
x3 + (x− 1)3e

−πα 1−2x
y

x+ (x− 1)e
−πα 1−2x

y

≥ −0.0032. (4.51)

By direct calculation, we have∣∣∣∣N2

N1

∣∣∣∣ ≤ 5× 10−4, and

∣∣∣∣D2

D1

∣∣∣∣ ≤ 5× 10−4. (4.52)

Above all, we get

Fα,z,x +
1

α
≥ πy +

π

y

N1 +N2

D1 +D2
≥ πy +

π

y

N1

D1

1 +
∣∣∣N2
N1

∣∣∣
1−

∣∣∣D2
D1

∣∣∣ ≥ 0.98πy. (4.53)

Therefore, (4.38), (4.47) and (4.53) yield

Fα,z > 0. (4.54)

For now, we have finished the Lemma 4.3

4.2 z ∈ DG ∩ {y < 1.5}

Lemma 4.5. For any α > 1 and z ∈ {0 < x < 0.5, 0.6 ≤ y < 1.5}, we have

∂

∂y
Fα,z,x > 0 and

∂

∂y
Fα,z,x +

1√
3

∂

∂x
Fα,z,x > 0. (4.55)
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Remark 4.6. Notice that ∂
∂xθ(α; z) < 0 for any z ∈ {0 ≤ x ≤ 0.5, y ≥ 0.5}, (4.6) is

equivalent to
∂2

∂α∂xθ(α; z)
∂
∂xθ(α; z)

−
∂2

∂α∂xθ(α; z
|z|2 )

∂
∂xθ(α; z

|z|2 )
< 0. (4.56)

Equation (4.55) leads to
∂

∂r
Fα,z,x > 0, (4.57)

which leads to (4.56) holding true. Indeed, by numerical calculation, we can get ∂
∂xFα,z,x >

0. Since ∂
∂xFα,z,x = 0 for x = 0 and x = 0.5, which causes difficulties in our calculations,

so we retreat to the next best thing and get the result we want by proving (4.55).

Proof. Notice that when α = 1, we have ∂
∂xFα,z,x = ∂

∂yFα,z,x = Fα,z,x = 0. To eliminate
this effect, we need to split the proof into two parts.

Case 1. α ≥ 2.
In this situation, we must use form (1.2) to estimate the function. We still split it into

two parts as before.

Case 1.1. x ∈ [0, 0.3].
To eliminate the effect of the function tending to 0 as x tends to 0, we have

Fα,z,x = − 1

α
− ∂

∂α
log g, (4.58)

where g can be written as follows

g :=
1

2x

∑
(m,n)∈Z2

m(mx+ n)e
−πα(m2y+

(mx+n)2

y
)

=
1

x

+∞∑
m=1

+∞∑
n=−∞

m(mx+ n)e
−πα(m2y+

(mx+n)2

y
)

=
+∞∑
m=1

+∞∑
n=−∞

m2e
−π α

y
(m2y2+m2x2+n2+2mnx)

−
+∞∑
m=1

+∞∑
n=1

mne
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x
.

(4.59)

It is easy to see that

∂

∂y
Fα,z,x =

∂
∂yg ·

∂
∂αg −

∂2

∂α∂yg · g
g2

, (4.60)
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and
∂

∂x
Fα,z,x =

∂
∂xg ·

∂
∂αg −

∂2

∂α∂xg · g
g2

. (4.61)

By direct calculation, we have

− y

π

∂g

∂α

=

+∞∑
m=1

+∞∑
n=−∞

m2(m2y2 +m2x2 + n2 + 2mnx)e
−π α

y
(m2y2+m2x2+n2+2mnx)

+
+∞∑
m=1

+∞∑
n=1

4m2n2e
−π α

y
(m2y2+m2x2+n2+2mnx)

−
+∞∑
m=1

+∞∑
n=1

mn(m2y2 +m2x2 + n2 − 2mnx)e
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x
,

(4.62)
and

− 1

πα

∂g

∂y

=
+∞∑
m=1

+∞∑
n=−∞

2m4e
−π α

y
(m2y2+m2x2+n2+2mnx)

+

+∞∑
m=1

+∞∑
n=1

mn(m2y2 +m2x2 + n2 − 2mnx)e
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x
· 1

y2

−
+∞∑
m=1

+∞∑
n=−∞

m2(m2y2 +m2x2 + n2 + 2mnx)e
−π α

y
(m2y2+m2x2+n2+2mnx) · 1

y2

−
+∞∑
m=1

+∞∑
n=1

2m3ne
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x

−
+∞∑
m=1

+∞∑
n=1

4m2n2e
−π α

y
(m2y2+m2x2+n2+2mnx) · 1

y2
,

(4.63)
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and

y

π2α
(
∂2g

∂y∂α
− 1

α

∂g

∂y
)

=
+∞∑
m=1

+∞∑
n=−∞

2m4(m2y2 +m2x2 + n2 + 2mnx)e
−π α

y
(m2y2+m2x2+n2+2mnx)

+

+∞∑
m=1

+∞∑
n=1

mn(m2y2 +m2x2 + n2 − 2mnx)2e
−π α

y
(m2y2+m2x2+n2−2mnx) · 1− e−4π α

y
mnx

x
· 1

y2

+

+∞∑
m=1

+∞∑
n=1

8m4n2e
−π α

y
(m2y2+m2x2+n2+2mnx)

−
+∞∑
m=1

+∞∑
n=−∞

m2(m2y2 +m2x2 + n2 + 2mnx)2e
−π α

y
(m2y2+m2x2+n2+2mnx) · 1

y2

−
+∞∑
m=1

+∞∑
n=1

2m3n(m2y2 +m2x2 + n2 − 2mnx)e
−π α

y
(m2y2+m2x2+n2−2mnx) 1− e−4π α

y
mnx

x

−
+∞∑
m=1

+∞∑
n=1

8m2n2(m2y2 +m2x2 + n2)e
−π α

y
(m2y2+m2x2+n2+2mnx) · 1

y2
.

(4.64)
Similarly, we get

− y

πα

∂

∂x
g

=
+∞∑
m=1

+∞∑
n=−∞

m2(2m2x+ 2mn)e
−π α

y
(m2y+m2x+n2+2mnx)

−
+∞∑
m=1

+∞∑
n=1

mn(2m2x− 2mn)e
−π α

y
(m2y+m2x+n2−2mnx) 1− e−4π α

y
mnx

x

+
y

πα

+∞∑
m=1

+∞∑
n=1

mne
−π α

y
(m2y+m2x+n2−2mnx)

(
1− e−4π α

y
mnx

x

)′
x

,

(4.65)
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and

y2

π2α
(
∂2

∂α∂x
g − 1

α

∂

∂x
g)

=
+∞∑
m=1

+∞∑
n=−∞

m2(2m2x+ 2mn)(m2y +m2x+ n2 + 2mnx)e
−π α

y
(m2y+m2x+n2+2mnx)

−
+∞∑
m=1

+∞∑
n=1

m2(2m2x− 2mn)(m2y +m2x+ n2 − 2mnx)e
−π α

y
(m2y+m2x+n2−2mnx) 1− e−4π α

y
mnx

x

+

+∞∑
m=1

+∞∑
n=1

4m2n2(2m2x− 2mn)e
−π α

y
(m2y+m2x+n2+2mnx)

+
y2

π2α2

+∞∑
m=1

+∞∑
n=1

mne
−π α

y
(m2y+m2x+n2−2mnx)

(
1− e−4π α

y
mnx

x

)′
x

+
y

πα

+∞∑
m=1

+∞∑
n=1

mn(m2y +m2x+ n2 − 2mnx)e
−π α

y
(m2y+m2x+n2−2mnx)

(
1− e−4π α

y
mnx

x

)′
x

+
+∞∑
m=1

+∞∑
n=1

16m3n3e
−π α

y
(m2y+m2x+n2+2mnx)

.

(4.66)
Notice that

1− e−4π α
y
mnx

x
≤ 4π

α

y
mn and

(
1− e−4π α

y
mnx

x

)′
x

≥ −8π2α
2

y2
m2n2. (4.67)

It can be seen that when m, n is relatively large, the items have exponential decay, so
we can divide them into major and minor parts, the value of the major part is carefully
calculated, and the remaining part can be roughly estimated. Indeed we only need to
analyze the item satisfying m2 + n2 ≤ 2 carefully. Let

g = g1 + g2, (4.68)

where

g1 :=

+1∑
n=−1

e
−π α

y
(y2+x2+n2+2nx) − e−π

α
y

(y2+x2+1−2x) 1− e−4π α
y
x

x
, (4.69)

and g2 is the remaining term. Similarly, we denote

∂

∂α
g = gα,1 + gα,2 and

∂

∂y
g = gy,1 + gy,2 and

∂

∂x
g = gx,1 + gx,2.

∂2

∂α∂x
g = gαx,1 + gαx,2 and

∂2

∂α∂y
g = gαy,1 + gαy,2.

41



Therefore, we have

∂

∂y
g · ∂

∂α
g − ∂2

∂α∂y
g · g = gy,1 · gα,1 − gαy,1 · g1 +Ry, (4.70)

and
∂

∂x
g · ∂

∂α
g − ∂2

∂α∂x
g · g = gx,1 · gα,1 − gαx,1 · g1 +Rx, (4.71)

where Ry and Rx are the remaining items which are relatively small. Since g1 is a combi-
nation of simple functions, we can compute it directly by analyzing the monotonicity,

− ∂2

∂α∂y
log g1 =

gy,1 · gα,1 − gαy,1 · g1

g2
1

≥ gy,1 · gα,1 − gαy,1 · g1

g2
1

∣∣∣∣
0.3,0.6,2

≥ 0.6138π, (4.72)

and
gx,1 · gα,1 − gαx,1 · g1 ≥ 0. (4.73)

By direct calculation, we get∣∣∣∣g2

g1

∣∣∣∣ ≤ 5× 10−5 and

∣∣∣∣Ryg2
1

∣∣∣∣ ≤ 0.002π and

∣∣∣∣Rxg2
1

∣∣∣∣ ≤ 0.001π. (4.74)

Therefore,
∂

∂y
Fα,z,x ≥

(
gy,1 · gα,1 − gαy,1 · g1

g2
1

−
∣∣∣∣Ryg2

1

∣∣∣∣) 1

1 +
∣∣∣g2g1 ∣∣∣ ≥ 0.6π, (4.75)

and
∂

∂x
Fα,z,x ≥

(
gx,1 · gα,1 − gαx,1 · g1

g2
1

−
∣∣∣∣Rxg2

1

∣∣∣∣) 1

1−
∣∣∣g2g1 ∣∣∣ ≥ −0.01π. (4.76)

Case 1.2. x ∈ [0.3, 0.5].
In this case, the method is the same as before. We replace g by h. Because the methods

are similar, we omit the detailed steps and only show the main results. We have

Fα,z,x = − 1

α
− ∂

∂α
log h, (4.77)
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where

h :=
1

2(1− 2x)

∑
(m,n)∈Z2

m(mx+ n)e
−πα(m2y+

(mx+n)2

y
)

=
1

1− 2x

+∞∑
m=1

+∞∑
n=−∞

m(mx+ n)e
−πα(m2y+

(mx+n)2

y
)

=
∑

m≡1 mod 2

+∞∑
n=0

m(n+
1

2
+
m

2
−mx)e

−π α
y

(m2y2+(mx−m
2

+ 1
2

+n)2) 1− e−π
α
y
m(2n+1)(1−2x)

1− 2x

+
∑

m≡0 mod 2

+∞∑
n=1

m(n+
m

2
−mx)e

−π α
y

(m2y2+(mx−m
2

+n)2) 1− e−π
α
y

2mn(1−2x)

1− 2x

−
∑

m≡1 mod 2

+∞∑
n=0

m2e
−π α

y
(m2y2+(mx−m

2
+ 1

2
+n)2)

− 1

2

∑
m≡0 mod 2

+∞∑
n=0

m2e
−π α

y
(m2y2+m2(x− 1

2
)2)

−
∑

m≡0 mod 2

+∞∑
n=1

m2e
−π α

y
(m2y2+(mx−m

2
+n)2)

.

(4.78)
We choose m = 1 and n = 0 to be the major part, that is

h = h1 + h2, (4.79)

where

h1 := (1− x)x2e
−π α

y
(y2+x2) 1− e−π

α
y

(1−2x)

1− 2x
− (1− x)e

−π α
y

(y2+x2)
, (4.80)

and h2 is the remaining term. Similarly, we have

− ∂2

∂α∂y
log h1 =

hy,1 · hα,1 − hαy,1 · h1

h2
1

≥ hy,1 · hα,1 − hαy,1 · h1

h2
1

∣∣∣∣
0.5,0.6,2

≥ 0.2282π, (4.81)

and
hx,1 · hα,1 − hαx,1 · h1 ≥ 0. (4.82)

By direct calculation, we have∣∣∣∣h2

h1

∣∣∣∣ ≤ 8× 10−5 and

∣∣∣∣Ryh2
1

∣∣∣∣ ≤ 0.003π and

∣∣∣∣Rxh2
1

∣∣∣∣ ≤ 0.001π (4.83)
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Therefore, we have

∂

∂y
Fα,z,x ≥

(
hy,1 · hα,1 − hαy,1 · h1

h2
1

−
∣∣∣∣Ryh2

1

∣∣∣∣) 1

1 +
∣∣∣h2h1 ∣∣∣ ≥ 0.2π, (4.84)

and
∂

∂x
Fα,z,x ≥

(
hx,1 · hα,1 − hαx,1 · h1

h2
1

−
∣∣∣∣Rxh2

1

∣∣∣∣) 1

1−
∣∣∣h2h1 ∣∣∣ ≥ −0.01π. (4.85)

Case 2. 1 < α ≤ 2.
In this case, we need to using form (3.2), and divide it by 1 − 1

α2 to remove the effect
of α = 1. We write that

1

1− 1
α2

Fα,z,x =
1

1− 1
α2

1

2α
− 1

1− 1
α2

∂

∂α
log k, (4.86)

where

k :=
+∞∑
m=1

+∞∑
n=1

mne−πy(αn2+ 1
α
m2) sin(2πmnx)

sin(2πx)
. (4.87)

By direct calculation, it is easy to find that

− 1

πy

1

1− 1
α2

∂

∂α
k =

+∞∑
m=1

+∞∑
n=1

m3ne−πy(αn2+ 1
α
m2) sin(2πmnx)

sin(2πx)

+
+∞∑
m=1

+∞∑
n=1

m3n
e−πy(αm2+ 1

α
n2) − e−πy(αn2+ 1

α
m2)

1− 1
α2

sin(2πmnx)

sin(2πx)
,

(4.88)

and
∂

∂y
k = −π

+∞∑
m=1

+∞∑
n=1

mn(αn2 +
1

α
m2)e−πy(αn2+ 1

α
m2) sin(2πmnx)

sin(2πx)
, (4.89)

and
∂

∂x
k =

+∞∑
m=1

+∞∑
n=1

mne−πy(αn2+ 1
α
m2)

(
sin(2πmnx)

sin(2πx)

)′
x

, (4.90)

and
1

π2y

1

1− 1
α2

(
∂2

∂α∂y
k − 1

y

∂

∂α
k)

=α(1 +
1

α2
)

+∞∑
m=1

+∞∑
n=1

m5ne−πy(αn2+ 1
α
m2) sin(2πmnx)

sin(2πx)

+ α

+∞∑
m=1

+∞∑
n=1

m5n
e−πy(αm2+ 1

α
n2) − e−πy(αn2+ 1

α
m2)

1− 1
α2

sin(2πmnx)

sin(2πx)
,

(4.91)
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and

− 1

πy

1

1− 1
α2

∂2

∂α∂x
k

=
+∞∑
m=1

+∞∑
n=1

m3ne−πy(αn2+ 1
α
m2)

(
sin(2πmnx)

sin(2πx)

)′
x

+
+∞∑
m=1

+∞∑
n=1

m3n
e−πy(αm2+ 1

α
n2) − e−πy(αn2+ 1

α
m2)

1− 1
α2

(
sin(2πmnx)

sin(2πx)

)′
x

.

(4.92)

Notice that ∣∣∣∣(sin(2πmnx)

sin(2πx)

)′
x

∣∣∣∣ ≤ πmn. (4.93)

We take the terms satisfying mn ≤ 3 be the major part, that is

k = k1 + k2, (4.94)

where

k1 := e−πy(α+ 1
α

) + 2(e−πy(4α+ 1
α

) + e−πy(α+ 4
α

))
sin(4πx)

sin(2πx)
+ 3(e−πy(9α+ 1

α
) + e−πy(α+ 9

α
))

sin(6πx)

sin(2πx)
,

(4.95)
and k2 is the remaining term. Similarly, we have

− ∂2

∂α∂y
log k1 =

ky,1 · kα,1 − kαy,1 · k1

k2
1

≥ ky,1 · kα,1 − kαy,1 · k1

k2
1

∣∣∣∣
0.5,0.6,1

≥ 0.2791π, (4.96)

and
kx,1 · kα,1 − kαx,1 · k1 ≥ 0. (4.97)

By direct calculation, we obtain∣∣∣∣k2

k1

∣∣∣∣ ≤ 3× 10−4 and

∣∣∣∣Ryk2
1

∣∣∣∣ ≤ 0.006π and

∣∣∣∣Rxk2
1

∣∣∣∣ ≤ 0.004π. (4.98)

Therefore, we have

∂

∂y
Fα,z,x ≥

(
ky,1 · kα,1 − kαy,1 · k1

k2
1

−
∣∣∣∣Ryk2

1

∣∣∣∣) 1

1 +
∣∣∣k2k1 ∣∣∣ ≥ 0.2π, (4.99)

and
∂

∂x
Fα,z,x ≥

(
kx,1 · kα,1 − kαx,1 · k1

k2
1

−
∣∣∣∣Rxk2

1

∣∣∣∣) 1

1−
∣∣∣k2k1 ∣∣∣ ≥ −0.01π. (4.100)

Now, we have completed the proof of Lemma 4.5.
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5 Proof of Corollaries 1.2-1.3

We will use (4.5) and (4.6) several times in this section and in subsequent proofs. Without
loss of generality, we may assume that (4.5) holds for any z ∈ DG , since it is a very simple
operation to replace (4.5) with (4.6), when z ∈ DG ∩ {y ≤ 1.5}.

5.1 Proof of Corollary 1.2

Lemma 5.1. When | lnα| ≤ | lnβ|, b ∈ (bα,β,+∞), or | lnα| > | lnβ|, b ∈ [bα,β,+∞), the
(1.4) doesn’t have any minimizer.

Proof. Note that

θ(α; z) =

√
y

α

2
∞∑
n=1

e−απn
2y + 2

∞∑
n=1

e−
1
α
πn2y + 1 + 4

∞∑
n=1

∑
d|n

e
−πy

(
αd2+ n2

αd2

)
cos(2πnx)

 .

(5.1)
When y → +∞

θ(α; iy)− bθ(β; iy)→
√
y

α
(1 + 2e−απy + 2e−

1
α
πy)− b

√
y

β
(1 + 2e−βπy + 2e

− 1
β
πy

). (5.2)

When | lnα| ≤ | lnβ|, b ∈ (bα,β,+∞), or | lnα| > | lnβ|, b ∈ [bα,β,+∞), the above equation
tends to −∞, then (1.4) doesn’t have any minimizer.

Lemma 5.2. If | lnα| > | lnβ|, b ∈ (−∞, bα,β), the minimizer of (1.4) only occurs on the
curve Γa ∪ Γb.

Proof. When α > β ≥ 1, by Theorem 1.1, we know that the minimizer only occurs on the
curve Γa ∪ Γb. Since θ( 1

α ; z) = αθ(α; z), the cases 0 < α < β ≤ 1, 0 < β ≤ 1 ≤ 1
β < α,

0 < α < 1 ≤ β < 1
α can be easily changed to the first case.

Lemma 5.3. If | lnα| ≤ | lnβ|, b ∈ (−∞, bα,β], the minimizer of (1.4) is ei
π
3 .

Proof. We only need to discuss the case 1 ≤ α < β. By (4.5), we can get the minimizer
only on the curve Γc. Moreover, in the course of the proof in the previous section we can
easily obtain that Fα,z,y < − 1

2α , then we have

∂

∂α

(
ln

(
∂

∂y
θ(α; z)

))
=

∂2

∂α∂yθ(α; z)

∂
∂yθ(α; z)

< − 1

2α
. (5.3)

Integrating from α to β on both sides gives

∂
∂yθ(β; z)

∂
∂yθ(α; z)

<

√
α

β
, (5.4)
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which implies for any b ∈ (−∞, bα,β], there exists

∂

∂y
(θ(α; z)− bθ(β; z)) > 0. (5.5)

Therefore, the minimizer is ei
π
3 .

5.2 Proof of Corollary 1.3

Proof of Coroally 1.3. Observe that when y → +∞, θ(α; z) →
√

y
α , so if

∑n
i=1

ci√
αi
−∑m

j=1
dj√
βj
< 0,

n∑
i=1

ciθ(αi; z)−
m∑
j=1

djθ(βj ; z)→ −∞,

which implies that (1.5) does not have any minimizer. By (4.5), we have

∂
∂yθ(A; z)

∂
∂xθ(A; z)

<

∂
∂y

∑n
i=1 ciθ(αi; z)

∂
∂x

∑n
i=1 ciθ(αi; z)

<

∂
∂yθ(a; z)

∂
∂xθ(a; z)

, (5.6)

and
∂
∂yθ(B; z)

∂
∂xθ(B; z)

<

∂
∂y

∑n
i=1 ciθ(αi; z)

∂
∂x

∑n
i=1 ciθ(αi; z)

<

∂
∂yθ(b; z)

∂
∂xθ(b; z)

. (5.7)

Then by Proposition 3.8 if a ≥ B, the minimizer only occurs on Γa ∪ Γb. If A ≤ b, the
minimizer only occurs on Γc. Moreover, since for any α > 1,

∂

∂α
log

∂

∂y
θ(α; z) < − 1

2α
, (5.8)

we have
∂

∂y
θ(αi; z) >

√
b

αi

∂

∂y
θ(b; z), (5.9)

and
∂

∂y
θ(βj ; z) <

√
b

βj

∂

∂y
θ(b; z). (5.10)

Therefore, we have

∂

∂y

 n∑
i=1

ciθ(αi; z)−
m∑
j=1

djθ(βj ; z)

 ≥
 n∑
i=1

ci

√
b

αi
−

m∑
j=1

dj

√
b

βj

 ∂

∂y
θ(b; z) > 0.

(5.11)
In this case, the minimizer is ei

π
3 . �
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6 Proof of Theorems 1.5-1.11

We begin this section with an important lemma. By using the continuous version of
Chebyshev’s sum inequality [60], we have the following lemma.

Lemma 6.1. For any non-negative function g(x), and any non-decreasing, non-negative
functions w1(x), w2(x), we have∫ b

a
w1 · w2 · g dx ·

∫ b

a
g dx ≥

∫ b

a
w1 · g dx ·

∫ b

a
w2 · g dx. (6.1)

Remark 6.2. Indeed, the above lemma also holds when g is non-negative and w1, w2 are
both non-increasing or both non-decreasing.

6.1 Lennard Jones potential

In this section, we prove the results of Lennard-Jones potential. By using the Laplace
transform, we have

ζ(s; z) =
πs

Γ(s)

∫ ∞
0

(θ(α; z)− 1)αs−1 dα

=
πs

Γ(s)

(∫ ∞
1

(θ(α; z)− 1)(αs−1 + α−s) dα+
1

s− 1
− 1

s

)
.

(6.2)

It is easy to see that

∂
∂y ζ(s; z)

∂
∂xζ(s; z)

=

∂
∂y

∫ +∞
0 θ(α; z)αs−1 dα

∂
∂x

∫∞
0 θ(α; z)αs−1 dα

=

∫ +∞
1

∂
∂yθ(α; z)(αs−1 + α−s) dα∫∞

1
∂
∂xθ(α; z)(αs−1 + α−s) dα

. (6.3)

Lemma 6.3. For any α > 1 and s > 1, we have

∂2

∂α∂s
log(αs−1 + α−s) > 0.

Proof. By direct calculation, we have

α2(αs−1 + α−s)2 ∂2

∂α∂s
log(αs−1 + α−s) = 2(2s− 1) logα+ α2s−1 − α−2s+1. (6.4)

It is easy to see that the above function is increasing for s and α respectively. Therefore,

2(2s−1) logα+α2s−1−α−2s+1 ≥ 2(2s−1) logα+α2s−1−α−2s+1|s=1,α=1 = 0. (6.5)

By using Lemma 6.3, we immediately obtain the following fact.
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Lemma 6.4. For any s1 > s2 > 1, the function

αs1−1 + α−s1

αs2−1 + α−s2
(6.6)

is increasing for α ∈ (1,+∞).

Based on this fact, we will prove the following lemma, which is the key to prove Theorem
1.5.

Lemma 6.5. For any s1 > s2 > 1, we have

∂
∂y

∫ +∞
1 θ(α; z)(αs1−1 + α−s1) dα

∂
∂x

∫∞
1 θ(α; z)(αs1−1 + α−s1) dα

<

∂
∂y

∫ +∞
1 θ(α; z)(αs2−1 + α−s2) dα

∂
∂x

∫∞
1 θ(α; z)(αs2−1 + α−s2) dα

. (6.7)

Proof. This is equivalent to proving∫ +∞

1

αs1−1 + α−s1

αs2−1 + α−s2
·

∂
∂yθ(α; z)

− ∂
∂xθ(α; z)

·
(
− ∂

∂x
θ(α; z)(αs2−1 + α−s2)

)
dα

·
∫ +∞

1

(
− ∂

∂x
θ(α; z)(αs2−1 + α−s2)

)
dα

>

∫ +∞

1

αs1−1 + α−s1

αs2−1 + α−s2
·
(
− ∂

∂x
θ(α; z)(αs2−1 + α−s2)

)
dα

·
∫ +∞

1

∂
∂yθ(α; z)

− ∂
∂xθ(α; z)

·
(
− ∂

∂x
θ(α; z)(αs2−1 + α−s2)

)
dα.

(6.8)

By Lemma 6.1 and (4.5), the proof is complete.

This also means that (6.3) is decreasing for s. By Proposition 3.8, Corollary 1.6 then
follows.

6.2 Yukawa potential

In this section, we prove the theorems about the Yukawa potential. By Laplace transform,
we have

e−παr

r
=

∫ +∞

πα
e−sr ds = π

∫ +∞

α
e−πsr ds. (6.9)

Therefore, for any α > 0,

Y(α; z) = π

∫ +∞

α
θ(s; z)− 1 ds. (6.10)

Furthermore, if α < 1, it can be rewritten by

Y(α; z) = π

(∫ +∞

1
θ(s; z)− 1 ds+

∫ 1
α

1

(
θ(s; z)− 1

)1

s
ds+ α− logα− 1

)
. (6.11)
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Lemma 6.6. For β > α and b > 1, or β < α and b ≥ 1, the (1.8) doesn’t have any
minimizer. In other cases it does have a minimizer.

Proof. It is easy to see that when y → +∞, we have

Y(α;x+ iy) =
∑

(m,n)∈Z2\{0}

e
−πα

(
m2y+

(mx+n)2

y

)

m2y + (mx+n)2

y

→ 2y

+∞∑
n=1

1

n2
e
−πα (mx+n)2

y ∼ π2

3
y. (6.12)

Then if b > 1,
Y(α; iy)− bY(β; iy)→ −∞, (6.13)

which means the (1.8) does not have any minimizer. If b < 1,

Y(α; iy)− bY(β; iy)→ +∞, (6.14)

which means the (1.8) does have a minimizer. If b = 1,

Y(α; z)− Y(β; z) = π

∫ β

α
θ(t; s) dt.

The conclusion is obvious.

Lemma 6.7. For any β > α > 0, b ∈ (−∞, 1], the minimizer of (1.8) is ei
π
3 .

Proof. By the relation between θ(α; z) and Y(α; z), we get the following facts directly.

∂

∂α
Y(α; z) = −πθ(α; z). (6.15)

Using this, we obtain
∂2

∂α∂x
Y(α; z) = −π ∂

∂x
θ(α; z) > 0, (6.16)

and
∂2

∂α∂y
Y(α; z) = −π ∂

∂y
θ(α; z) < 0. (6.17)

Therefore, for any β > α > 0, and 0 < b ≤ 1, we have

∂

∂y
Y(α; z)− b ∂

∂y
Y(β; z) >

∂

∂y
Y(α; z)− b ∂

∂y
Y(α; z) ≥ 0. (6.18)

∂

∂x
Y(α; z)− b ∂

∂x
Y(β; z) <

∂

∂x
Y(α; z)− b ∂

∂x
Y(α; z) ≤ 0. (6.19)

This implies that the minimizer is ei
π
3 .

50



Lemma 6.8. For α ≥ 1 with α ≥ β, the minimizer of (1.8) only occurs on the curve
Γa ∪ Γb.

Proof.

Y(α; z)− bY(β; z) = π

∫ +∞

α
θ(s; z)− 1 ds− bπ

∫ +∞

β
θ(s; z)− 1 ds

= (1− b)π
∫ +∞

α
θ(s; z)− 1 ds− bπ

∫ α

β
θ(s; z)− 1 ds.

(6.20)

When α > β ≥ 1, (4.5) yields

∂
∂y

∫ +∞
α θ(s; z)− 1 ds

∂
∂x

∫ +∞
α θ(s; z)− 1 ds

=

∫ +∞
α

∂
∂yθ(s; z) ds∫ +∞

α
∂
∂xθ(s; z) ds

<

∂
∂yθ(α; z)

∂
∂xθ(α; z)

<

∫ α
β

∂
∂yθ(s; z) ds∫ α

β
∂
∂xθ(s; z) ds

=

∂
∂y

∫ α
β θ(s; z)− 1 ds

∂
∂x

∫ α
β θ(s; z)− 1 ds

.

(6.21)

By Proposition 3.8, we obtain that the minimizer of (1.8) only occurs on the curve Γa∪Γb.
When α ≥ 1

β > 1 > β,∫ α

β
θ(s; z)− 1 ds =

∫ α

1
θ(s; z)− 1 ds+

∫ 1

β
θ(s; z)− 1 ds

=

∫ α

1
θ(s; z)− 1 ds+

∫ 1
β

1

1

s

(
θ(s; z)− 1

)
ds+ β − log β − 1.

(6.22)

Using (4.5) again, we get

∂
∂y

∫ +∞
α θ(s; z) ds

∂
∂x

∫ +∞
α θ(s; z) ds

<

∂
∂yθ(α; z)

∂
∂xθ(α; z)

<

∂
∂y

∫ α
β θ(s; z) ds

∂
∂x

∫ α
β θ(s; z) ds

. (6.23)

By Proposition 3.8 again, we get the same conclusion.
When 1

β > α > 1 > β,

∫ α

β
θ(s; z)− 1 ds =

∫ α

1
θ(s; z)− 1 ds+

∫ 1
β

1

(
θ(s; z)− 1

)1

s
ds+ β − log β − 1

=

∫ α

1
θ(s; z)− 1 ds+

∫ α

1

(
θ(s; z)− 1

)1

s
ds+

∫ 1
β

α

(
θ(s; z)− 1

)1

s
ds+ β − log β − 1.

(6.24)∫ +∞

α
θ(s; z) ds =

∫ 1
β

α
θ(s; z) ds+

∫ +∞

1
β

θ(s; z) ds. (6.25)
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By Lemma 6.1, we have

∂
∂y

∫ 1
β
α θ(s; z) ds

∂
∂x

∫ 1
β
α θ(s; z) ds

<

∂
∂y

∫ 1
β
α θ(s; z)1

s ds

∂
∂x

∫ 1
β
α θ(s; z)1

s ds

. (6.26)

By (4.5), we get
∂
∂y

∫ +∞
1
β

θ(s; z) ds

∂
∂x

∫ +∞
1
β

θ(s; z) ds
<

∂
∂y

∫ 1
β
α θ(s; z) ds

∂
∂x

∫ 1
β
α θ(s; z) ds

. (6.27)

Using the same analysis on [1, α], we get

∂
∂y

∫ 1
β
α θ(s; z)1

s ds

∂
∂x

∫ 1
β
α θ(s; z)1

s ds

<

∂
∂y

∫ α
1 θ(s; z) ds

∂
∂x

∫ α
1 θ(s; z) ds

<

∂
∂y

∫ α
1 θ(s; z)1

s ds

∂
∂x

∫ α
1 θ(s; z)1

s ds
. (6.28)

Combining (6.26), (6.27) and (6.28), we have

∂
∂y

∫ +∞
α θ(s; z)− 1 ds

∂
∂x

∫ +∞
α θ(s; z)− 1 ds

<

∂
∂y

∫ α
β θ(s; z)− 1 ds

∂
∂x

∫ α
β θ(s; z)− 1 ds

. (6.29)

Other cases are obvious.

6.3 Other potentials

Proof of Theorem 1.11. By Laplace transform, we have

Fi(z) =

∫ +∞

1
θ(t; z)(µ̂fi(t) +

1

t
µ̂fi(

1

t
)) dt, (6.30)

which can be rewritten as

Fi(z) =

∫ +∞

1
(θ(t; z)− 1)(µ̂fi(t) +

1

t
µ̂fi(

1

t
)) dt+

∫ +∞

1
(
1

t
− 1

t2
)µ̂fi(

1

t
) dt. (6.31)

Moreover, we have

∂
∂yFi(z)
∂
∂xFi(z)

=

∂
∂y

∫ +∞
1 θ(t; z)(µ̂fi(t) + 1

t µ̂fi(
1
t )) dt

∂
∂x

∫ +∞
1 θ(t; z)(µ̂fi(t) + 1

t µ̂fi(
1
t )) dt

. (6.32)
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Without loss of generality, we can assume
µ̂f1 (t)+ 1

t
µ̂f1 ( 1

t
)

µ̂f2 (t)+ 1
t
µ̂f2 ( 1

t
)

is increasing for t ∈ (1,+∞). Then

by Lemma 6.1, we have∫ +∞

1

∂
∂yθ(t; z)

− ∂
∂xθ(t; z)

µ̂f1(t) + 1
t µ̂f1(1

t )

µ̂f2(t) + 1
t µ̂f2(1

t )

(
− ∂

∂x
θ(t; z)(µ̂f2(t) +

1

t
µ̂f2(

1

t
))

)
dt

·
∫ +∞

1

(
− ∂

∂x
θ(t; z)(µ̂f2(t) +

1

t
µ̂f2(

1

t
))

)
dt

>

∫ +∞

1

µ̂f1(t) + 1
t µ̂f1(1

t )

µ̂f2(t) + 1
t µ̂f2(1

t )

(
− ∂

∂x
θ(t; z)(µ̂f2(t) +

1

t
µ̂f2(

1

t
))

)
dt

·
∫ +∞

1

∂
∂yθ(t; z)

− ∂
∂xθ(t; z)

(
− ∂

∂x
θ(t; z)(µ̂f2(t) +

1

t
µ̂f2(

1

t
))

)
dt.

(6.33)

Shifting terms gives

∂
∂y

∫ +∞
1 θ(t; z)(µ̂f1(t) + 1

t µ̂f1(1
t )) dt

∂
∂x

∫ +∞
1 θ(t; z)(µ̂f1(t) + 1

t µ̂f1(1
t )) dt

<

∂
∂y

∫ +∞
1 θ(t; z)(µ̂f2(t) + 1

t µ̂f2(1
t )) dt

∂
∂x

∫ +∞
1 θ(t; z)(µ̂f2(t) + 1

t µ̂f2(1
t )) dt

, (6.34)

which finishes the proof. �
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