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Abstract. In this article we obtain total masses of solutions to the Toda

system associated to a general simple Lie algebra with singular sources at the
origin. The determination of such total masses is one of the important steps

towards establishing the a priori bound for solutions to the mean field type

of Toda system on compact surfaces. The total mass is found to be related
to the longest element κ in the Weyl group of the corresponding Lie algebra.

This is the foundation to future work relating the local blowup masses (from

analysis) with the Weyl group.
This work generalizes the previous works in Lin, Wei and Ye [Invent. Math.

2012], Ao, Lin and Wei [Proc. Amer. Math. Soc. 2015], and Nie [Calc. Var.

PDEs. 2016] for Toda systems of types A,G2 and B,C. However, a more Lie-
theoretic method is needed here for the general case, and the method relies

heavily on the DPW method, Drinfeld-Sokolov gauge and the W -invariants.
The last crucial step for the total masses is obtained by applying the work of

Kostant [Adv. in Math. 1979] on the one dimensional Toda lattice.

1. Introduction

Let g be a complex simple Lie algebra and (aij) be its Cartan matrix of rank n.
In this paper, we consider the following open Toda system on R2 associated to g
with singular sources at the origin:

(1.1)


∆ui + 4

n∑
j=1

aije
uj = 4πγiδ0, γi > −1,∫

R2

eui dx <∞, 1 ≤ i ≤ n,

where δ0 is the Dirac measure at the origin. Here a solution means u = (u1, u2, · · · , un)
with ui ∈ C2(R2\{0}) satisfying the equation (1.1) with zero on RHS on R2\{0}
and

ui(x) = 2γi log |x|+O(1) near 0.

When the Lie algebra g = A1 = sl2 whose Cartan matrix is (2), the Toda system
becomes the Liouville equation

(1.2) ∆u+ 8eu = 4πγδ0, γ > −1,

∫
R2

eu dx <∞.

The Toda system (1.1) and the Liouville equation (1.2) arise in many physical
and geometric problems. For example, in the Chern-Simons theory, the Liouville
equation is related to the abelian gauge field theory, while the Toda system is related
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to nonabelian gauges (see [Yan01,Tar08]). We expect the work in this paper to have
applications in constructing non-topological solutions of the Chern-Simons theory.
On the geometric side, the Liouville equation is related to conformal metrics on
S2 with conical singularities whose Gaussian curvature is 1. The Toda systems are
related to holomorphic curves in projective spaces [Dol97], the infinitesimal Plücker
formulas [GH78,RS94], and harmonic maps [Gue97].

The main purpose of this paper is to study the asymptotic behavior of ui(x) or
equivalently, to compute the total mass of ui :

(1.3) σi(u) =
4

2π

∫
R2

eui dx, 1 ≤ i ≤ n.

The calculation of the total mass σi(u) plays an extremely important role in the
proof of a priori bounds of solutions of the following mean field type of Toda system
on a compact surface M :

(1.4) ∆gui +

n∑
j=1

aijρj

(
hje

uj∫
M
hjeuj

− 1

|M |

)
= 4π

N∑
j=1

γij

(
δpj −

1

|M |

)
.

One major issue of (1.4) is to establish the a priori bound for all solutions. Suppose
blow-up solutions do exist. The crucial step for studying bubbling solutions is to
calculate the local mass of such solutions near each blow-up point. This calculation
of local masses is a highly nontrivial problem. The calculation of σi(u) for an entire
solution is the first step towards solving this problem. For the An cases, the a priori
bounds have been established successfully by carrying out this strategy in [LYZ20].
The other cases will be pursued in future works.

The classification problem for the solutions to the Toda systems has a long his-
tory. For the Liouville equation (1.2), Chen and Li [CL91] classified their solutions
without the singular source, and Prajapat and Tarantello [PT01] completed the
classification with the singular source. For general An = sln+1 Toda systems, Jost
and Wang [JW02] classified the solutions without singular sources, and Ye and two
of the authors [LWY12] completed the classification with singular sources. This
later work also invented the method of characterizing the solutions by a complex
ODE involving the W -invariants of the Toda system. The work [LWY12] has also
established the nondegeneracy result for the corresponding linearized systems. The
case of G2 Toda system was treated in [ALW15]. In [Nie16], one of us generalized
the classification to Toda systems of types B and C by treating them as reductions
of type A with symmetries and by applying the results from [Nie12]. The com-
plete classification and nondegeneracy of Toda system (1.1) for general simple Lie
algebras shall be pursued in another paper.

For a solution u = (u1, u2, · · · , un) of (1.1), define

(1.5) Ui =

n∑
j=1

aijuj and γi =

n∑
j=1

aijγj for 1 ≤ i ≤ n,

where (aij) is the inverse of the Cartan matrix (aij). Then the Ui satisfy

(1.6)


Ui,zz̄ + exp

( n∑
j=1

aijUj

)
= πγiδ0,∫

R2

eui dx <∞,
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We remark that the formula ∆ = 4 ∂
∂z

∂
∂z̄ is responsible for the slightly unconven-

tional coefficient 4 on the left of (1.1), which furthermore causes the coefficient 4
in our definition of the total mass in (1.3). This coefficient can be easily dealt with
(see [Nie16, Remark 1.4]).

It turns out that the asymptotic behavior of the solution u is related to the
longest element of the Weyl group of the Lie algebra g. Let κ denote the longest
element of the Weyl group. Then −κ has the property that it permutes positive
simple roots {α1, α2, · · · , αn}, i.e., −καi is one of {α1, α2, · · · , αn}. Throughout
the paper, we use {α1, α2, · · · , αn} to denote a fixed choice of positive simple roots
of g and eαi , e−αi are the corresponding suitably chosen root vectors. The following
is the main theorem of this article.

Theorem 1.1. The solutions Ui in (1.6) satisfy that

(1.7) Ui(z) = 2(γi − 〈ωi − κωi, w0〉) log |z|+O(1), as z →∞, and

(1.8) σi(u) = 2〈ωi − κωi, w0〉.

Moreover, σi(u) is an even integer if γi ∈ Z≥0.

In Theorem 1.1, 〈·, ·〉 is the natural pairing between the real Cartan subalgebra h0

and its dual h′0 := Hom(h0,R), ωi ∈ h′0 is the i-th fundamental weight and w0 ∈ h0

is defined by (2.4) below. It is interesting that the total mass is related to the
longest element of the Weyl group. Recall that the total mass always satisfies the
Pohozaev identity. Theorem 1.1 shows that the RHS of (1.8) satisfies the Pohozaev
identity. Thus here is an example of the connection of the Pohozaev identity with
the action of Weyl group. See [LYZ20] in this aspect. This connection will be
pursued further in future works.

Recall that −καi ∈ {α1, α2, · · · , αn}. If −καi = αk, then the asymptotic behav-
ior of ui has a clean expression.

Theorem 1.2. If −καi = αk and u = (u1, u2, · · · , un) is a solution of (1.1) then

(1.9) ui = −2(2 + γk) log |z|+O(1), as z →∞.

For the sake of reference, we would like to write down all the total masses of
solutions in terms of the singular data. For the case of An, Bn, Cn and G2, they
have been given in [LWY12, ALW15, Nie16]. So we list the remaining cases in the
following statement.

Corollary 1.3. The total masses of solutions are quantized as follows:

(i) When g = Dn,

σi(u) =

{
4
∑n
j=1 a

ij(1 + γj), if n is even,

4
∑n−2
j=1 a

ij(1 + γj) + 2(ai,n−1 + ain)(2 + γn−1 + γn), if n is odd.

(ii) When g = E6,

σi(u) = 2(ai1 + ai6)(2 + γ1 + γ6) + 2(ai3 + ai5)(2 + γ3 + γ5)

+ 4ai2(1 + γ2) + 4ai4(1 + γ4)

for all 1 ≤ i ≤ 6.
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(iii) When g = F4, E7 or E8,

σi(u) = 4

n∑
j=1

aij(1 + γj)

for all 1 ≤ i ≤ n.

Remark 1.4. The entries of the inverse of the Cartan matrix of a simple Lie algebra
are all positive [LT92]. In Appendix B we have listed all the inverses of the Cartan
matrices for simple Lie algebras.

It is a well known fact that equation (1.6) is an integrable system [LS92]. From
this point of view, Theorem 1.1 connects analysis of nonlinear PDEs with the theory
of integrable systems. Our proof of Theorem 1.1 takes two advantages from the
integrable system: the standard DPW method [DPW98] and the Drinfeld-Sokolov
gauge [DS84]. The DPW method is the step to explain why (1.6) is an integrable
system, that is, solutions can be obtained from some holomorphic data. The DPW
method has been discovered in [DPW98] and developed into a very powerful method
for some integrable systems related to nonlinear elliptic equations. We refer the
reader to [DPW98] and [GIL15] and the references therein for the DPW method
and its applications. However, our case is simpler because the open Toda system
only requires the standard decomposition of Lie groups, not loop groups. In any
case, the DPW method could give us a local solution. On the other hand the
well known Drinfeld-Sokolov gauge [DS84] yields the so called W -invariants, which
are differential polynomials of the solutions (see section 4). More important is that
these W -invariants are rational functions with poles only at the origin. For the case
of An, Bn, Cn and G2, the complete set of W -invariants gives rise to a Fuchsian
differential operator of one complex variable [BFO+90]. However, this does not
hold for other simple Lie algebras. These W -invariants are still essential in our
approach. Indeed, applying W -invariants, our solutions can globally be expressed
in terms of representations of the Lie algebra. To write down the statement we
need to introduce the following notations.

Let G be a connected complex Lie group whose Lie algebra is g. The classical
Iwasawa decomposition says that G = KAN (see Appendix subsection A.1) with
K maximally compact, A abelian and N nilpotent. It is well known that the groups
A and N are simply connected.

Let Vi be the i-th fundamental representation of g and denote the highest weight
vector by |i〉. Let V ∗i be the dual right representation of g and choose the lowest
weight vector denoted by by 〈i| so that 〈i||i〉 = 1. A fact in representation theory
is that all the representations of g can be lifted to G if G is simply connected. In
particular, we can lift all the fundamental representations to A and N. Therefore
the pairing 〈i|g|i〉, g ∈ AN is well defined.

Theorem 1.5. Let Φ : C\R≤0 → N be the unique solution of

(1.10)


Φ−1(z)Φz(z) =

n∑
i=1

zγie−αi on C\R≤0

lim
z→0

Φ(z) = Id,

where Id ∈ G is the identity element. Then all the solutions to (1.6) are

(1.11) Ui(z) = − log〈i|Φ∗gΦ|i〉+ 2γi log |z|, 1 ≤ i ≤ n,
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where g is of the form g = C∗Λ2C,C ∈ N and Λ ∈ A, and ∗ is defined in (A.1).

However, our main concern is the asymptotic behavior of Ui at ∞. It seems
that the expression (1.11) is not explicit enough to serve our purpose. Inspired by
Kostant’s work [Kos79], we find that the suitable expression can be written as an

infinite series in the universal enveloping algebra of n− (i.e., an element of D̂(N)
introduced in [Kos79]). Using this expression, we could obtain the asymptotic of
the R.H.S of (1.11) to prove Theorem 1.1.

The paper is organized as follows. Because of its importance to the analysis of
Toda systems, we first prove Theorem 1.1 in section 2 assuming Theorem 1.5. A
crucial coefficient is assured nonzero by [Kos79] (see (2.19),(2.20)). In section 3,
we prove that any solution of (1.6) locally can be expressed by some holomorphic
data, and this process also explains why (1.6) is called an integrable system (other
methods can be found in [CW87], [Uhl89], [LS92]). Together with W -invariants
obtained by Drinfeld-Sokolov gauge, we prove Theorem 1.5 in sections 4, 5, and 6.
The W -invariants play the major role in the process from the local expression to the
global one. It is expected that the W -invariants has more applications to studying
(1.6) with many singular points. In section 4 we introduce the W -invariants for
equation (1.6) in a general domain and obtain some explicit form for the case with
single singularity in section 5. Finally, Theorem 1.5 is proved in section 6. We give
two Appendices. Among other things, Appendix A gives very brief explanation of
some basic terminologies from representation theory of Lie algebra and Lie group,
which is needed in section 3 and all subsequent sections. In Appnedix B we list all
the Cartan matrices for simple Lie algebras and their inverse matrices.

Acknowledgment. D. Karmakar acknowledges the support of the Department of
Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.01-0520.
The most part of this work was completed while D. Karmakar was a post doctoral
student at CASTS, National Taiwan University during the period August 2016-
July 2017. He deeply acknowledges the financial support, friendly environment and
the warm hospitality of the institution. Z. Nie acknowledges the Simons Foundation
through Grant #430297. The research of J. Wei is partially supported by NSERC
of Canada. We thank Prof. L. Fehér for very useful correspondences on section 4.

2. Proof of Theorem 1.1

In this section we will prove Theorem 1.1 and Theorem 1.2 by assuming Theorem
1.5.

Let us first introduce our basic setup in Lie algebras and representation theory.
More details on representation theory can be found in Appendix A. Let g be the
complex simple Lie algebra for our Toda system (1.1). Let h be a fixed Cartan
subalgebra, whose dimension n is the rank of g. Let g = h ⊕ ⊕α∈∆gα be the root
space decomposition of g with respect to h, where ∆ denotes the set of roots. The
roots are linear functionals on the Cartan subalgebra h, and for Xα ∈ gα and H ∈ h,
we have [H,Xα] = α(H)Xα.

Let ∆ = ∆+ ∪ ∆− be a fixed decomposition of the set of roots into the sets
of positive and negative roots, and let Π = {α1, α2, · · · , αn} be the set of positive
simple roots.
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It is known that dimC gα = 1 for all α ∈ ∆, and we choose a Chevalley basis
{eα ∈ gα, α ∈ ∆;hαi ∈ h, 1 ≤ i ≤ n} (see [Hum78, Theorem 25.2]). Then we have

[eαi , e−αj ] = δijhαi , αi(hαi) = 2.

Furthermore, the Cartan matrix (aij) of g is defined by

(2.1) aij = αi(hαj ), 1 ≤ i, j ≤ n.

Note that the real Cartan subalgebra is

h0 = {H ∈ h |α(H) ∈ R,∀α ∈ ∆} = ⊕ni=1Rhαi .

Let h′0 := Hom(h,R) denote the dual space of h0 and let 〈·, ·〉 denote the pairing of
h′0 and h0.

We introduce the following subalgebras of g

(2.2) n− = ⊕α∈∆+g−α, n+ = ⊕α∈∆+gα.

We also introduce the following subspace (from the principal grading (A.10) of g)

(2.3) g−1 = ⊕ni=1g−αi .

This section is divided into 3 subsections. In the first two subsections we in-
troduce some notations and definitions and develop the necessary ingredients, and
finally in the last subsection we give the proof of our main theorems.

2.1. Notations. Following [LWY12], we denote

µi = γi + 1 > 0, 1 ≤ i ≤ n.

Inspired by [Kos79] we introduce the following element

(2.4) w0 =

n∑
i=1

µiEi ∈ h0,

where Ei =
∑n
k=1 a

kihαk . The elements Ej and w0 satisfy the properties

(2.5) αi(Ej) = 〈αi, Ej〉 = δij and αi(w0) = 〈αi, w0〉 = µi.

We also introduce

ζ(z) =

n∑
i=1

zγie−αi ∈ g−1

ξ(z) = zζ(z) =

n∑
i=1

zµie−αi ∈ g−1,

(2.6)

where z ∈ C\R≤0 and we use the principal branch for the power functions. To
find the explicit expression for Φ in (1.10), we introduce the following setup after
[Kos79].

Let S be the set of all finite sequences

(2.7) s = (i1, i2, · · · , ik), 1 ≤ ij ≤ n, k ∈ N.
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We denote by |s| the length k of the element s ∈ S. For s ∈ S, we introduce

ϕ(s) =

|s|∑
j=1

αij ∈ h′0,

ϕ(s, w0) = ϕ(s)(w0) = 〈ϕ(s), w0〉 =

|s|∑
j=1

µij > 0.

(2.8)

Note that in the last equality we have used the property (2.5). For |s| = 0, we
define ϕ(s) = 0.

For 0 ≤ j ≤ |s| − 1, let sj ∈ S be the sequence obtained from s by “cutting off”
the first j terms (different from [Kos79])

(2.9) sj = (ij+1, · · · , i|s|),

and define

p(s, w0) =

|s|−1∏
j=0

〈ϕ(sj), w0〉 = (µi1 + · · ·+ µik) · · · (µik−1
+ µik)µik .

We also define p(s, w0) = 1 when |s| = 0. Clearly when |s| ≥ 1, we have

(2.10) p(s, w0) = ϕ(s, w0) p(s1, w0).

Let U(n−) be the universal enveloping algebra of n− introduced in (2.2). For
convenience, write e−i = e−αi for 1 ≤ i ≤ n. For s ∈ S as in (2.7), define

(2.11) e−s = e−ik · · · e−i2e−i1 .

We note that the ξ in (2.6) is

(2.12) ξ(z) =

n∑
i=1

zϕ((i),w0)e−(i),

where the s are the simplest (i) for 1 ≤ i ≤ n.

2.2. Supplementary lemmas. Now we are going to prove a formula which will
be used later. Recall that elements e−s as defined in (2.11) belong to U(n−). Let
H ∈ h, then we claim that [H, e−s] = −〈ϕ(s), H〉e−s. Indeed,

[H, e−s] =

|s|∑
j=1

e−i|s|e−i|s|−1
· · · e−ij+1

[H, e−ij ]e−ij−1
· · · e−i1 ,

=

|s|∑
j=1

e−i|s|e−i|s|−1
· · · e−ij+1

(−αij (H)e−ij )e−ij−1
· · · e−i1 ,

=

− |s|∑
j=1

αij (H)

 e−i|s|e−i|s|−1
· · · e−ij+1e−ije−ij−1 · · · e−i1 ,

= −〈ϕ(s), H〉e−s.

(2.13)

Lemma 2.1. Let V be a finite dimensional representation of g, then there exists a
positive integer k such that e−sv = 0, for all v ∈ V whenever |s| ≥ k.
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Proof. Since every finite dimensional representation of g can be decomposed as a
direct sum of irreducible representations, without loss of generality we can assume
V is irreducible. We can further decompose V as a direct sum of its weight spaces.
Therefore, it is enough to prove the lemma for a weight vector. Let vβ be a weight
vector corresponding to the weight β. Then using (2.13) we see that

H(e−sv
β) = [H, e−s]v

β + e−sHv
β ,

= −〈ϕ(s), H〉e−svβ + e−s〈β,H〉vβ

= 〈−ϕ(s) + β,H〉(e−svβ).

If |s| 6= |s′| and e−sv
β 6= 0, e−s′v

β 6= 0 then −ϕ(s) + β and −ϕ(s′) + β are different
weights because ϕ(s) and ϕ(s′) are different as elements in h′0. Since there are only
finitely many weights we have e−sv

β = 0, if |s| is large. This completes the proof
of the lemma. �

Define formally, the operator

(2.14) Y(z) =
∑
s∈S

zϕ(s,w0)

p(s, w0)
e−s, for z ∈ C\R≤0.

Define the action of Y(z) on a finite dimensional representation space V by

(2.15) Y(z)v =
∑
s∈S

zϕ(s,w0)

p(s, w0)
(e−sv), for v ∈ V, z ∈ C\R≤0.

By Lemma 2.1, we see that the sum in (2.15) is a finite sum and hence Y(z)v is
well defined for all v ∈ V and z ∈ C\R≤0. The next proposition shows that this
Y(z) is identical with Φ(z) as an operator acting on V .

Proposition 2.2. Let V be a finite dimensional representation of g. Then the
action of Φ(z) on V coincides with the action of Y(z) on V, for all z ∈ C\R≤0,
where Φ is defined as in (1.10).

Proof. We will show that the right action of Φ(z) and Y(z) on V ∗ are the same,
and then the proposition follows because

〈w,Φ(z)v〉 = 〈wΦ(z), v〉 = 〈wY(z), v〉 = 〈w,Y(z)v〉

for all v ∈ V,w ∈ V ∗ and z ∈ C\R≤0.
Now we show that wΦ(z) = wY(z) for all w ∈ V ∗, z ∈ C\R≤0. From (1.10) it

follows that wΦ : C\R≤0 → V ∗ satisfies the ODE

∂z(wΦ(z)) = (wΦ(z))ζ, for z ∈ C\R≤0,

wΦ(0) = w.

Therefore it is enough to show that wY(z) satisfies the same ODE with the same
initial condition.

Since ϕ(s, w0) > 0, the initial value wY(0) equals to w. Moreover,

∂z(wY(z)) =
∑
s∈S

ϕ(s, w0)zϕ(s,w0)−1

p(s, w0)
(we−s),

=
1

z

∑
|s|≥1

zϕ(s,w0)

p(s1, w0)
(we−s)

(2.16)
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by (2.10). For s ∈ S and 1 ≤ i ≤ n, define ti = (i, s). Then from (2.8) and (2.12)
we have

zϕ(s,w0)

p(s, w0)
(we−s)ξ =

n∑
i=1

zϕ(ti,w0)

p(s, w0)
(we−ti),

=

n∑
i=1

zϕ(ti,w0)

p((ti)1, w0)
(we−ti).

Therefore summing over all s ∈ S we get

(wY(z))ξ =
∑
|s|≥1

zϕ(s,w0)

p(s1, w0)
(we−s).

Therefore (2.16) implies that ∂z(wY(z)) = 1
z (wY(z))ξ = (wY(z))ζ, and hence

completes the proof. �

Remark 2.3. It can be shown that the Φ defined by a system of ODE from (1.10) is
also uniquely characterized by the following algebraic condition inspired by [Kos79]:{

Φ−1w0Φ = w0 − ξ,
Φ(0) = Id.

Next we will use this explicit expression for Φ in Proposition 2.2 to prove our
main Theorem 1.1.

2.3. Proofs of Theorems. Let λ be a dominant integral weight and let V λ be the
corresponding irreducible representation. Let κ be the longest Weyl group element
which maps positive roots to negative roots. Then κλ is the lowest weight of V λ.
In the following calculations, we use the Hermitian metric {·, ·} on V λ which is
invariant under the compact subgroup Ks of Gs (see (A.7)). It also follows from
the construction of {·, ·} that the weight vectors belonging to different weight spaces
in V λ are orthogonal with respect to {·, ·}. Choose vectors vλ in Vλ and vκλ in Vκλ
in the one dimensional highest and lowest weight spaces such that

{vλ, vλ} = 1, {vκλ, vκλ} = 1.

(One can choose vκλ to be s0(κ)vλ, where s0(κ) ∈ Gs induces the longest Weyl
element κ. See [Kos79, Eq. (5.2.10)].)

With the notation (2.8) and (2.11), the vector e−sv
λ is a weight vector with

weight −ϕ(s) + λ. Since different weight spaces are orthogonal, by Proposition 2.2
we have

(2.17)
{

Φvλ, vκλ
}

=

∑
s∈Sλ

cs,λ
p(s, w0)

 z〈λ−κλ,w0〉,

where Sλ = {s ∈ S| − ϕ(s) + λ = κλ}, and cs,λ = {e−svλ, vκλ}.

Proof of Theorem 1.1 and Corollary 1.3.

Proof. To show the asymptotic behavior of (1.7) we prove

(2.18) e−Ui = |z|−2γi |z|2〈ωi−κωi,w0〉 (ci + o(1)) , as z →∞,
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where ci > 0. From (1.11) and (A.8), we get

e−Ui = |z|−2γi〈i|Φ∗C∗Λ2CΦ|i〉 = |z|−2γi {ΛCΦvωi ,ΛCΦvωi} .

Now we know that

{ΛCΦvωi ,ΛCΦvωi} =
∑
v

|{ΛCΦvωi , v}|2 ,

where the sum ranges over an orthonormal basis of the i-th fundamental represen-
tation Vi consisting of weight vectors.

Let vβ be a weight vector corresponding to a weight β. Then from (A.7) we get{
ΛCΦvωi , vβ

}
=
{

Φvωi , C∗Λvβ
}

= eβ(H)
{

Φvωi , C∗vβ
}
,

where Λ = exp(H) with H ∈ h0. Since C∗ ∈ N+, the subgroup of G corresponding
to n+, we can write C∗vβ = vβ + wβ , where wβ belongs to the direct sum of
the weight spaces with weights strictly larger that β, that is, wβ ∈ ⊕α∈∆+Vi,β+α.
Therefore, we have{

ΛCΦvωi , vβ
}

= eβ(H)
[{

Φvωi , vβ
}

+
{

Φvωi , wβ
}]
.

Now, if e−sv
ωi 6= 0, then it is a weight vector with weight −ϕ(s) + ωi and since

two weight vectors belonging to two different weight spaces are orthogonal, using
Proposition 2.2, we see that the highest power of z in

{
ΛCΦvωi , vβ

}
is equal to the

power of z in
{

Φvωi , vβ
}
, which is z〈ωi−β,w0〉, provided its coefficient is nonzero.

To prove this we write wβ =
∑
α∈∆+ cαv

β+α, where vβ+α ∈ Vβ+α and cα ∈ C.
Then using Proposition 2.2 we see that

{Φvωi , vβ} =

 ∑
−ϕ(s)+ωi=β

{e−svωi , vβ}
p(s, w0)

 z〈ωi−β,w0〉,

and

{Φvωi , wβ} =
∑
α∈∆+

cα

 ∑
−ϕ(s)+ωi=β+α

{e−svωi , vβ+α}
p(s, w0)

 z〈ωi−β−α,w0〉.

Since 〈α,w0〉 > 0, for any α ∈ ∆+ (by (2.5)) the conclusion follows. Thus we
have proved that for vβ ∈ Vβ the highest power of z in {ΛCΦvωi , vβ} is at most

z〈ωi−β,w0〉. Now κωi is the lowest weight and all other weights β are of the form
β = κωi +

∑n
j=1 njαj , with nj ∈ N ∪ {0} and at least one nj > 0. Therefore,

〈ωi − β,w0〉 < 〈ωi − κωi, w0〉 for all weights β 6= κωi, and hence the leading term

in
∑
v |{ΛCΦvωi , v}|2 corresponds to the leading term in |{ΛCΦvωi , vκωi}|2 . From

(2.17), we have

{Φvωi , vκωi} =

( ∑
s∈Sωi

cs,ωi
p(s, w0)

)
z〈ωi−κωi,w0〉.

The coefficient
∑
s∈Sωi

cs,ωi
p(s,w0) is considered in [Kos79, Eq (5.95)]. (Note our dif-

ferent convention in (2.9) for sj , so our s corresponds to the s̄ there). It is shown
in [Kos79, Proposition 5.5.1] that there exists an element d(w) depending on w0
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such that d(w) ∈ H0, the real Cartan subgroup of G corresponding to h0, and in
[Kos79, Proposition 5.9.1] that

(2.19)
∑
s∈Sωi

cs,ωi
p(s, w0)

= ±d(w)−κωi .

Here again if d(w) = exp(H1) with H1 ∈ h0, d(w)−κωi is defined by

(2.20) d(w)−κωi = e−κωi(H1) > 0.

Therefore,

{ΛCΦvωi ,ΛCΦvωi} = eκωi(H) ({Φvωi , vκωi}+ lower order terms) ,

and hence (2.18) holds with

(2.21) ci =
(
eκωi(H)

)2
( ∑
s∈Sωi

cs,ωi
p(s, w0)

)2

> 0.

Now integrating (1.6) and using (1.7), we have

4

∫
R2

eui dx = 4πγi − lim
R→∞

∫
∂BR

∂Ui
∂ν

ds

= 4π〈ωi − κωi, w0〉,

and hence σi(u) = 2〈ωi − κωi, w0〉. This proves (1.8).
By the definition of the Weyl group and that ωi belongs to the dominant chamber

of the integral weight lattice, it is known that ωi − κωi belongs to the root lattice,
that is, there exist nij ∈ Z≥0 such that ωi − κωi =

∑n
j=1 nijαj . Then if γj ∈ Z≥0,

we have

σi(u) = 2〈ωi − κωi, w0〉 = 2

n∑
j=1

nij(1 + γj)

is an even integer.
For concreteness and to prove Corollary 1.3, we also proceed as follows. Using

ωi =
∑n
j=1 a

ijαj we get

(2.22) 2〈ωi − κωi, w0〉 = 2

n∑
j=1

aij〈αj − καj , w0〉.

Since −κ permutes the simple roots {α1, α2, · · · , αn},−καi = αk for some αk. In
order to prove that σi(u) is an even integer when γi ∈ Z≥0 we need to compute the
−καi, 1 ≤ i ≤ n.

Except for the three cases An, E6 and Dn(with n odd), −κ = Id. Therefore using
the property (2.5) we get from (2.22)

σi(u) = 4

n∑
j=1

aij〈αj , w0〉 = 4

n∑
j=1

aij(1 + γj),

except for the Lie algebras An, E6 and Dn(with n odd). Now we see that except
for the Lie algebras mentioned above, 2aij ∈ N for all 1 ≤ i, j ≤ n (see Appendix
B). This proves that σi(u) is an even integer if γi ∈ Z≥0 except for those three Lie
algebras.

For the An case

−καi = αn+1−i, 1 ≤ i ≤ n,
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so that we have

σi(u) = 2

n∑
j=1

aij(2 + γj + γn+1−j) = 2

n∑
j=1

(aij + ai,n+1−j)(1 + γj), 1 ≤ i ≤ n.

The inverse Cartan matrix for An satisfies aij + ai,n+1−j ∈ N (see Appendix B)
and hence this proves the result for the An case.

For the Dn case with n odd, we have

−καn−1 = αn, −καn = αn−1, −καi = αi, 1 ≤ i ≤ n− 2,

that is, −κ permutes the last two roots and preserves the others. This proves (i)
of Corollary 1.3. We can easily check that for Dn (with n odd), ai,n−1 + ain ∈ N
and 2aij ∈ N for all 1 ≤ i ≤ n, 1 ≤ j ≤ n − 2, and hence proves that σi(u) ∈ 2N
provided γi ∈ Z≥0, 1 ≤ i ≤ n.

For E6 we have

−κα1 = α6, − κα6 = α1,

−κα3 = α5, − κα5 = α3,

−κα2 = α2, − κα4 = α4.

This then proves (ii) of Corollary 1.3. The inverse Cartan matrix for E6 satisfies
ai1 + ai6, ai3 + ai5, ai2, ai4 ∈ N, and hence σi(u) ∈ 2N if γi ∈ Z≥0.

This completes the proof of Theorem 1.1 together with Corollary 1.3. �

Proof of Theorem 1.2.

Proof. Since ui =
∑n
j=1 aijUj , γi =

∑n
j=1 aijγ

j , αi =
∑n
j=1 aijωj , and 〈αi, w0〉 =

µi, and assuming that −καi = αk for some 1 ≤ k ≤ n, we see that

ui =

n∑
j=1

aijUj = 2(γi − 〈αi − καi, w0〉) log |z|+O(1)

= 2(γi − µi − µk) log |z|+O(1),

= −2(2 + γk) log |z|+O(1), as z →∞.

This is (1.9) and completes the proof. �

3. The DPW method and Local solutions

In this section, we show that any solution to the Toda system (1.6) locally comes
from holomorphic data. Our approach follows [GL14], [LS79]. In [GL14], a similar
process was applied for the periodic Toda systems by the Iwasawa decomposition
for loop groups.

For simplicity, we introduce the notation C∗ = C\{0} and also recall g−1 from
(2.3) and the decomposition g = n−

⊕
n+

⊕
h in view of (2.2). Before we proceed

we would like to mention a few words about the Gauss decomposition of Lie groups,
which is one main ingredient of our proof.

Let G be a connected complex Lie group whose Lie algebra is g. Let H be the
Cartan subgroup of G corresponding to h. Denote the subgroups of G corresponding
to n− and n+ by N− and N+ respectively. The Gauss decomposition (see [LS92]
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and [Kos79, Eq. (2.4.4)]) says that there exists an open and dense subset Gr of G,
called the regular part, such that

(3.1) Gr = N−HN+ = N−N+H.

We note that HN+ = N+H because hnh−1 ∈ N+, where h ∈ H and n ∈ N+.
Clearly Gr contains the identity element of G. Now if L ∈ N− then L∗ ∈ N+ (see
(A.1)). Since the groups N+ and N− are simply connected the quantity 〈i|L∗L|i〉
is well defined.

Theorem 3.1. Let U = (U1, U2, · · · , Un) be a solution to (1.6) and z0 ∈ C∗. Then
the following results hold:

(i) There exist holomorphic maps η and L from a neighborhood D of z0 to
g−1 and N− such that

(3.2) L−1(z)Lz(z) = η(z) :=
n∑
i=1

fi(z)e−αi , L(z0) = Id,

and fi(z) 6= 0 in D.
(ii) Each component of U can be written as:

(3.3) Ui = − log〈i|L∗L|i〉+

n∑
j=1

aij log |fj |2, z ∈ D.

Proof. With out loss of generality we can assume z0 = 1. Define

A = −
n∑
i=1

1
2Ui,zhαi +

n∑
i=1

exp
(

1
2

n∑
j=1

aijUj

)
e−αi ,(3.4)

then

Aθ =

n∑
i=1

1
2Ui,z̄hαi −

n∑
i=1

exp
(

1
2

n∑
j=1

aijUj

)
eαi ,(3.5)

where θ is defined in (A.3). Eq. (1.6) has the following zero-curvature equation on
C∗

[∂z +A, ∂z̄ +Aθ] = 0, that is,(3.6)

−Az̄ + (Aθ)z + [A,Aθ] = 0.

The zero-curvature equation can also be written as the Maurer-Cartan equation

dω +
1

2
[ω, ω] = 0

for the following Lie algebra valued differential form

ω = Adz +Aθdz̄ ∈ Ω1(C∗, g).

With dz = dx1 + i dx2 and dz̄ = dx1 − i dx2, it is also

ω = (A+Aθ)dx1 + i(A−Aθ)dx2.

Since the Cartan involution θ on g is conjugate linear, we see that the zero curvature
connection ω takes value in the fixed subalgebra gθ = k. Therefore by [Sha97,
Theorems 6.1 and 7.14], there exists a map from the simply-connected domain

F : C\R≤0 → K ⊂ G
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to the compact subgroup K = Gθ such that

(3.7)

{
F−1dF = ω

F (1) = Id.

Therefore,

(3.8) F−1Fz = A, F−1Fz̄ = Aθ.

For a small neighbourhood D of 1, the map F has the following Gauss decom-
position

(3.9) F = LM exp(H)

where L : D → N−, M : D → N+, H =
∑n
i=1 bihαi : D → h and exp : h → H

is the exponential map to the Cartan subgroup. From F (1) = Id in (3.7), we see
clearly that L(1) = Id.

Now we show that L is holomorphic in D. By the second equation in (3.8), we
have

exp(−H)M−1(L−1Lz̄)M exp(H) + exp(−H)M−1Mz̄ exp(H) +Hz̄ = Aθ.

In view of (3.5), the components in n− = ⊕α∈∆+g−α of the above equation give

(3.10) L−1Lz̄ = 0,

and then the components in h give

bi,z̄ = 1
2Ui,z̄, 1 ≤ i ≤ n.

Thus we see that bi,zz̄ = 1
2Ui,zz̄. Taking the conjugate, we also have b̄i,zz̄ = 1

2Ui,zz̄
since Ui is real. Therefore,

(bi + b̄i)zz̄ = Ui,zz̄.

Hence we have, for 1 ≤ i ≤ n,

(3.11) bi(z) + b̄i(z) = Ui(z)− pi(z)

for some real-valued harmonic function pi in D.
By the first equation in (3.8), we have

(3.12) exp(−H)M−1(L−1Lz)M exp(H) + exp(−H)M−1Mz exp(H) +Hz = A.

Since A ∈ g−1⊕ h by (3.4), we see that L−1Lz ∈ g−1. We denote it by η and write
it out in terms of the basis

(3.13) L−1(z)Lz(z) = η(z) =

n∑
i=1

fi(z)e−αi .

Then the fis are holomorphic by (3.10). Furthermore, by (3.4) the component of

A in g−1 is
∑n
i=1 exp

(
1
2

∑n
j=1 aijUj

)
e−αi . We also see that

the component of the LHS of (3.12) in g−1 = exp(−H)(L−1Lz) exp(H)

= exp(−H)

( n∑
i=1

fi(z)e−αi

)
exp(H) =

n∑
i=1

fi(z)e
αi(H)e−αi .

Comparing the components in g−1 from both sides of (3.12) we see that the fi in
(3.13) are nowhere zero in D. Thus we have shown (3.2).
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Now following the physicists notation, we denote by |i〉 a highest weight vector
in the ith fundamental representation Vi of g, and 〈i| a lowest weight vector in its
dual right representation such that 〈i|Id|i〉 = 1. The action of g on Vi is

X|i〉 = 0, if X ∈ n+,(3.14)

hαj |i〉 = δij .

From (3.9), we have

L = F exp(−H)M−1.

Therefore using the ∗ operation in (A.1), we have

(3.15) 〈i|L∗L|i〉 = 〈i|(M−1)∗ exp(−H̄)F ∗F exp(−H)M−1|i〉

=
〈
i
∣∣∣ exp

(
−

m∑
j=1

(bj + b̄j)hαj

)∣∣∣i〉 = e−(bi+b̄i),

where we have used the following facts. First, by F ∈ K we have F ∗F = Id.
Secondly, sinceM−1 ∈ N+ by (3.14) we haveM−1|i〉 = |i〉. Similarly, (M−1)∗ ∈ N−
and 〈i| is a lowest weight vector, so 〈i|(M−1)∗ = 〈i|.

Eq. (3.15) actually shows that 〈i|L∗L|i〉 is real. Therefore by (3.11),

(3.16) Ui = − log〈i|L∗L|i〉+ pi.

Now we show that for the above Ui to satisfy (1.6) with L from (3.13), we must
have

pi =

n∑
j=1

aij log |fj(z)|2.

This follows from [LS92, §4.1.2] using the so-called Jacobi identity from [LS92,
§1.6.4]. The identity says that for a general element g ∈ Gs, the simply-connected
Lie group with Lie algebra g, we have

(3.17) 〈i|g|i〉〈i|eαige−αi |i〉 − 〈i|ge−αi |i〉〈i|eαig|i〉 =
∏
j 6=i

〈j|g|j〉−aij .

From (3.16) and that pi is harmonic, we have

(3.18) Ui,zz̄ = −〈i|L
∗L|i〉〈i|L∗L|i〉zz̄ − 〈i|L∗L|i〉z〈i|L∗L|i〉z̄

〈i|L∗L|i〉2
.

Now by (3.10) and (3.13), we have

〈i|L∗L|i〉z = 〈i|L∗Lη|i〉 = fi(z)〈i|L∗Le−αi |i〉,

where we have used that for the ith fundamental representation we have e−αj |i〉 = 0
for j 6= i (see Eq. (A.6)). Taking the ∗ operation and noting (A.1), (3.13) also gives

(L∗)z̄(L
∗)−1 = η∗ =

n∑
i=1

fi(z)eαi .

Therefore, similarly we have

〈i|L∗L|i〉z̄ = 〈i|η∗L∗L|i〉 = fi(z)〈i|eαiL∗L|i〉.

Furthermore, we have

〈i|L∗L|i〉zz̄ = |fi|2〈i|eαiL∗Le−αi |i〉.
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Now applying the Jacobi identity (3.17) to (3.18) with g = L∗L and using aii = 2
we get

Ui,zz̄ = −|fi|2
n∏
j=1

〈j|L∗L|j〉−aij

By (3.16), this is

Ui,zz̄ = −|fi|2 exp
( n∑
j=1

aijUj −
n∑
j=1

aijpj

)
= − exp

(
log |fi|2 −

n∑
j=1

aijpj

)
exp

( n∑
j=1

aijUj

)
.

Therefore for the Ui to satisfy (1.6), we need log |fi|2 −
∑n
j=1 aijpj = 0. This gives

pi =

n∑
j=1

aij log |fj |2

and proves the formula (3.3). �

Remark 3.2. A holomorphic map η : D → g−1 as in (3.2) in a simply-connected
domain D also gives rise to a solutions U = (U1, U2, · · · , Un) to the Toda system
(1.6) in D.

Indeed, if η(z) =
∑n
i=1 fi(z)e−αi , z ∈ D, with fi(z) 6= 0 in D for all 1 ≤ i ≤ n,

we can construct a L : D → G by solving the ODE: L−1(z)Lz(z) = η(z), z ∈ D.
Here L(z0) need not have to satisfy L(z0) = Id. Now construct Ui as in (3.3). Then
we can easily check that Ui, 1 ≤ i ≤ n, satisfies the Toda system (1.6) in the same
way as above, where again the important point is the Jacobi identity (3.17).

Corollary 3.3. The components Ui in any solution U = (U1, . . . , Un) of the Toda
system (1.6) are real analytic in C∗.

Proof. Since the fi and L in (3.3) are holomorphic and the fi are nowhere zero
in a neighbourhood of z0, it follows that the RHS of (3.3) is real analytic in a
neighbourhood of z0 ∈ C∗. Therefore for any z0 ∈ C∗, by Theorem 3.1, Ui is real
analytic in a neighbourhood of z0. This proves the corollary. �

From now on we always assume D in Theorem 3.1 is a neighbourhood of 1 in
C\R≤0.

4. W -Invariants of the Toda systems

In this section, we will introduce W -invariants of Toda systems. Then we present
a result relating the W -invariants with the local solutions (3.3) from the last section.

By definition, a W -invariant (also called a characteristic integral) for the Toda
system (1.6) is a polynomial in the ∂kzUi for k ≥ 1 and 1 ≤ i ≤ n whose derivative
with respect to z̄ is zero if U = (U1, . . . , Un) is a solution.

For the Liouville equation the W -invariant is

(4.1) W = Uzz − U2
z ,

and it is meromorphic since Wz̄ = 0 for a solution U . Furthermore, plugging in the
local solution U(z) = log

[
|f ′(z)|/(1 + |f(z)|2)

]
, where f is holomorphic and the
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derivative f ′ is nowhere zero, we have

(4.2) W =
1

2

(
f ′′′

f ′
− 3

2

(f ′′
f ′

)2
)
,

that is, the W -invariant of the local solution becomes one half of the Schwarzian
derivative of the developing map f of the solution U. We aim to generalize such
results to general Toda systems in this section.

For a general Toda system associated to a simple Lie algebra of rank n, there are
n basic W -invariants (see [FF96]) so that the other W -invariants are differential
polynomials in these. For Lie algebras of type of An, Bn, Cn and G2, more concrete
expressions of W-invariant similar to (4.1) have been obtained in [LWY12] and
[Nie14]. In this section following [Nie14], we will obtain the W -invariants for a
general simple Lie algebra by applying the Drinfeld-Sokolov [DS84] gauge directly
to the solution Ui.

Let φ(z) = (φ1(z), φ2(z), · · · , φn(z)) be a smooth (not necessarily holomorphic)
function defined on a domain Ω ⊂ C. A differential polynomial in φi is a polynomial
in the φi, 1 ≤ i ≤ n, and their derivatives ∂kzφi of finite orders. We will denote a
differential polynomial in the φi by S([φ1], [φ2], · · · , [φn]) or simply by S(φ).

To obtain the W -invariants, we conjugate (3.6) by exp
(

1
2

∑n
i=1 Uihαi

)
to arrive

at another zero-curvature representation of the Toda system (1.6):[
∂z + ε−

n∑
i=1

Ui,zhαi , ∂z̄ −
n∑
i=1

euieαi

]
= 0,

where ε =
∑n
i=1 e−αi ∈ g−1 and ui =

∑n
j=1 aijUj . (The current zero-curvature

equation has different signs from the version in [Nie14], but all results there continue
to hold for the current version.)

Let s be a Kostant slice of g, that is, a homogeneous subspace s with respect to
the principal grading (A.10) such that

(4.3) g = [ε, g]⊕ s.

Then it is known [Kos63] that s ⊂ n+ in (2.2) and dim s = n. Let {sj}nj=1 be a
homogeneous basis of s ordered with nondecreasing gradings from (A.10).

We first state the following lemma about the existence and uniqueness of the
so-called Drinfeld-Sokolov gauge.

Lemma 4.1. For 1 ≤ i ≤ n, let φi be smooth functions on a domain Ω ⊂ C.

(i) There exists a unique map M̃ : Ω→ N+ and smooth functions Wj(φ), 1 ≤
j ≤ n, such that

(4.4) M̃
(
∂z + ε−

n∑
i=1

φi hαi

)
M̃−1 = ∂z + ε+

n∑
j=1

Wj(φ)sj .

Furthermore, there is a differential polynomial Sj depending only on the
slice basis of g such that

Wj(φ) = Sj([φ1], [φ2], · · · , [φn]) = Sj(φ).

(ii) If the φi are holomorphic in Ω, then so is M̃.
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(iii) If φi = Ui,z where Ui is a solution of (1.6) in Ω, then

(4.5) Wj = Sj([U1,z], [U2,z], · · · , [Un,z])

is holomorphic.

We refer the reader to [DS84, Proposition 6.1] for a proof of (i) and to [Nie14]
for a proof of (iii). Furthermore, (ii) follows directly from the construction for (i).
We also refer to [FOR+92] for the application of the Drinfeld-Sokolov gauge to the
W -algebras.

From now on, we fix a solution U = (U1, U2, · · · , Un) of (1.6), and let Wj be
given by (4.5) for z ∈ C∗. The set of Wj is called the W -invariants of the solution
U. Here is the main result in this section which relates the W -invariants with the
holomorphic functions fi in η from (3.2) for local solutions.

Theorem 4.2. Let U be a solution of (1.6) and the holomorphic data of U(z), z ∈
D, be given as in (3.2). Then there exists a unique map M1 : D̃ → N+, defined in

a subdomain D̃ ⊂ D, such that

(4.6) M1

(
∂z + ε−

n∑
i=1

Fihαi

)
M−1

1 = ∂z + ε+

n∑
j=1

Wjsj z ∈ D̃,

where

(4.7) Fi =

n∑
j=1

aij∂z log fj =

n∑
j=1

aij
f ′j
fj
.

Proof. Our proof follows the general approach in [FWB+89,BFO+90,FOR+92] of
treating Toda theories as conformally reduced WZNW theories. For that purpose,
we choose

(4.8) Q1 = exp
(
−

n∑
k=1

( n∑
j=1

akj log fj
)
hαk

)
: D → H,

where H is the Cartan subgroup of G. Note that a single-valued branch of log fj
can be chosen since D is simply-connected. Since [hαk , e−αi ] = −aike−αi by (2.1),
we have

Q−1
1 e−αiQ1 = exp

(
−

n∑
k=1

( n∑
j=1

akj log fj
)
aik

)
e−αi

= exp
(
− log fi

)
e−αi =

1

fi
e−αi .

(4.9)

It is also clear that

(4.10) Q−1
1 ∂zQ1 = −

n∑
i=1

( n∑
j=1

aij∂z log fj
)
hαi = −

n∑
i=1

Fihαi .

Define

Ψ = Q∗1L
∗LQ1.

Then by (3.2), and the above,

(4.11) Ψ−1Ψz = (LQ1)−1(LQ1)z = Q−1
1 L−1LzQ1 +Q−1

1 ∂zQ1 = ε−
n∑
i=1

Fihαi .
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This quantity Ψ−1Ψz is called the current of Ψ and is denoted by J in the works
[FWB+89, BFO+90, FOR+92], and the requirement that its component in n− is ε
is the key idea in these works.

Furthermore, since Q1|i〉 = exp(−
∑n
j=1 a

ij log fj)|i〉, the local solutions in (3.3)
have the following neat form

(4.12) Ui = − log〈i|Q∗1L∗LQ1|i〉 = − log〈i|Ψ|i〉.

Now Ψ has Gauss decomposition (3.1) in a domain D̃ ⊂ D:

(4.13) Ψ = Ψ−Ψ0Ψ+, Ψ± ∈ N±,Ψ0 ∈ H.

Then clearly Ui = − log〈i|Ψ0|i〉 in D̃. Therefore, we see that

(4.14) Ψ0 = exp
(
−

n∑
i=1

Uihαi

)
, Ψ−1

0 Ψ0,z = −
n∑
i=1

Ui,zhαi .

Plugging (4.13) in (4.11), we get

(4.15) Ψ−1
+ Ψ+,z+Ψ−1

+ Ψ−1
0 Ψ0,zΨ++Ψ−1

+ Ψ−1
0 Ψ−1

− Ψ−,zΨ0Ψ+ = ε−
n∑
i=1

Fihαi in D̃.

Comparing the components of the above equality in n−, we see that

Ψ−1
0 Ψ−1

− Ψ−,zΨ0 = ε.

Also in view of (4.14), Eq. (4.15) becomes

Ψ−1
+ Ψ+,z + Ψ−1

+

(
ε−

n∑
i=1

Ui,zhαi

)
Ψ+ = ε−

n∑
i=1

Fihαi in D̃.

We owe this important equality to [FOR+92, Eq. (2.14a)]. Therefore,

(4.16) Ψ+

(
∂z + ε−

n∑
i=1

Fihαi

)
Ψ−1

+ = ∂z + ε−
n∑
i=1

Ui,zhαi in D̃.

By Lemma 4.1, we see that (4.6) holds with M1 = M̃0Ψ+, where M̃0 = M̃ |D̃, M̃ :
C\{0} → N+ is the unique map satisfying (4.4) with φi = Ui,z. Since the Fi are
holomorphic, we see that M1 is holomorphic by Lemma 4.1 (ii) although neither
Ψ+ nor M0 is holomorphic. �

5. Applying the finite integral condition to W -invariants

In this section, we adapt the analytical estimates from [BM91,LWY12] to deter-
mine the simple forms of the W -invariants of our solutions to (1.6). This explicit
form is crucial to derive Theorem 1.5 in the next section.

We define the weight of ∂kzUi to be k. For a differential monomial in the Ui,
we call by its degree the sum of the weights multiplied by the algebraic degrees of
the corresponding factors. For example the above W = Uzz − U2

z in (4.1) for the
Liouville equation has a homogeneous degree 2.

Proposition 5.1. The W -invariants for the Toda system (1.6) are

(5.1) Wj =
wj
zdj

, z ∈ C∗, 1 ≤ j ≤ n,

where the dj are the homogeneous degrees of the differential polynomials Sj and the
wj are constants.
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Proof. This proof is an adaption of the proof in [LWY12] of the corresponding
assertion in their Eq. (5.9).

Following [LWY12, Eq. (5.10)], introduce

(5.2) Vi = Ui − 2γi log |z|, 1 ≤ i ≤ n.

Then system (1.6) becomes
∆Vi = −4|z|2γi exp

( n∑
j=1

aijVj

)
,∫

R2

|z|2γi exp
( n∑
j=1

aijVj

)
dx <∞.

As γi > −1, applying Brezis-Merle’s argument in [BM91], we have that Vi ∈ C0,α

on C for some α ∈ (0, 1) and that they are upper bounded over C. Therefore we
can express Vi by the integral representation formula, and we have for k ≥ 1

∂kzVi(z) = O(1 + |z|2+2γi−k) near 0,

∂kzVi(z) = O(|z|−k) near ∞.
(5.3)

Therefore from (5.2), we have for k ≥ 1

∂kzUi(z) = O(|z|−k) near 0,

∂kzUi(z) = O(|z|−k) near ∞.
(5.4)

By Wj,z̄ = 0 and that Wj has degree dj , we see from the above estimates that
zdjWj is holomorphic and bounded on C∗. Therefore zdjWj = wj is a constant by
the Liouville theorem, and so (5.1) holds. �

Remark 5.2. It is known from [FF96] and also clear from (4.5) that the homogeneous
degree dj of Sj is the same as the degree of the corresponding primitive adjoint-
invariant function of the Lie algebra g [Kos59]. We call such degrees the degrees of
the simple Lie algebra and we have listed them in Appendix subsection A.3.

Theorem 5.3. The W -invariants Wj for the Toda system (1.6) are also computed
by

(5.5) M2

(
∂z + ε−

n∑
i=1

γi

z
hαi

)
M−1

2 = ∂z + ε+

n∑
j=1

Wjsj ,

where M2 : C∗ → N+ is unique and holomorphic.

Proof. By (5.2),

Ui,z = Vi,z + ∂z(2γ
i log |z|) = Vi,z +

γi

z
.

From (5.1), Wj =
wj

zdj
. Since γi > −1, by (5.3) and (5.4) for the orders at 0, we see

that all the terms involving ∂kzVi will not appear in the final form of Wj since their
orders of pole are not high enough. Therefore in terms of (4.5), we have

(5.6) Wj = Sj([U1,z], · · · , [Un,z]) = Sj

([γ1

z

]
, · · · ,

[γn
z

])
, 1 ≤ j ≤ n,

where we recall that the brackets indicate that the Sj are differential polynomials
and depend on the derivatives of the arguments.
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By Lemma 4.1, there exists a unique holomorphic M2 : C∗ → N+ such that

M2

(
∂z + ε−

n∑
i=1

γi

z
hαi

)
M−1

2 = ∂z + ε+

n∑
j=1

W̃jsj ,

where

W̃j = Sj

([γ1

z

]
, · · · ,

[γn
z

])
= Wj , 1 ≤ j ≤ n,

by (5.6). �

6. The holomorphic functions in the local solutions

The W -invariants play essential roles in our approach of classifying the solutions.
The work [LWY12] classified the solutions to the Toda systems of type An by
relating them to an ODE whose coefficients are the W -invariants. In this section,
we will use the W -invariants to largely restrict the holomorphic functions fi(z) in
the local solutions (3.3) to be fi(z) = zγi as long as we allow some constant group
element.

Theorem 6.1. Let Ui be the solution of (1.6), then

(6.1) Ui(z) = − log〈i|Φ∗g∗gΦ|i〉+ 2γi log |z|, 1 ≤ i ≤ n, z ∈ C\R≤0.

where Φ satisfies (1.10) and g ∈ G is a constant group element.

Proof. Set

(6.2) Q2 = exp
(
−

n∑
k=1

(γk log z)hαk

)
: C\R≤0 → H.

Then similarly to (4.9) and (4.10), we get using (1.10)

(6.3) (ΦQ2)−1(ΦQ2)z = Q−1
2

( n∑
i=1

zγie−αi

)
Q2 +Q−1

2 Q2,z = ε−
n∑
i=1

γi

z
hαi .

Let M = M−1
2 M1 : D → N+, where M1 and M2 are from Theorems 4.2 and 5.3.

Then

M
(
∂z + ε−

n∑
i=1

Fihαi

)
M−1 = ∂z + ε−

n∑
i=1

γi

z
hαi ,

which is

ε−
n∑
i=1

Fihαi = M−1
(
ε−

n∑
i=1

γi

z
hαi

)
M +M−1Mz.

This and (6.3) imply that

(ΦQ2M)−1(ΦQ2M)z = M−1
(
ε−

n∑
i=1

γi

z
hαi

)
M +M−1Mz

= ε−
n∑
i=1

Fihαi = (LQ1)−1(LQ1)z,

by (4.11). Thus [(ΦQ2M)(LQ1)−1]z = 0. Since both ΦQ2M and LQ1 are holomor-
phic, we have

(6.4) LQ1 = gΦQ2M,

where g ∈ G is a constant element.
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Therefore by (4.12), (6.4) and (6.2), the solution Ui of (1.6) becomes

Ui(z) = − log〈i|Q∗1L∗LQ1|i〉 = − log〈i|M∗Q∗2Φ∗g∗gΦQ2M |i〉
= − log〈i|Φ∗g∗gΦ|i〉+ 2γi log |z|, z ∈ D.

(6.5)

By Corollary 3.3, Ui is real analytic. Since both sides of (6.5) are real analytic
functions defined on C\R≤0, (6.5) holds in C\R≤0. �

Proof of Theorem 1.5.

Proof. We write the Iwasawa decomposition (A.2) for the constant element g ∈ G
as

g = FΛC

with F ∈ K, Λ ∈ A and C ∈ N . Then using F ∗F = Id and Λ∗ = Λ the solution
(6.1) becomes (1.11). This completes the proof. �

Appendix A. Background on Lie algebras and representation theory

A.1. Iwasawa decomposition. Let ∗ : g→ g be the conjugate-linear transforma-
tion defined by

(A.1) ∗|h0
= Id|h0

, e∗α = e−α, α ∈ ∆.

Let G be a connected complex Lie group whose Lie algebra is g. Then we have
the following Iwasawa decomposition [Kna02, Theorem 6.46]

(A.2) G = KAN,

where K is a maximal compact subgroup, A is an abelian subgroup corresponding
to h0, and N is the nilpotent subgroup corresponding to n = n− . The subgroups A
and N are simply-connected. An element F belongs to K if and only if F ∗F = Id,
where ∗ is lifted from g to G.

The following Cartan involution θ : g→ g defined by

(A.3) θ(X) = Xθ = −X∗, X ∈ g

is very important, since it satisfies θ([X,Y ]) = [θ(X), θ(Y )]. Then K is character-
ized as the fixed point set Gθ in G under the lifted action of θ and its Lie algebra
is k = gθ (see [Kna02, Theorem 6.31]).

A.2. Basic representation theory. The integral weight lattice of g is ΛW =
{β ∈ h′0 |β(hαi) ∈ Z, ∀1 ≤ i ≤ n}. An integral weight β is called dominant if
β(hαi) ≥ 0 for all 1 ≤ i ≤ n. The weight lattice is a lattice generated by the
fundamental weights ωi for 1 ≤ i ≤ n satisfying

ωi(hαj ) = δij .

An irreducible representation ρ of g on a finite-dimensional complex vector space
V has the weight space decomposition V = ⊕Vβ , where β ∈ ΛW and Vβ = {v ∈
V | ρ(H)(v) = β(H)v, ∀H ∈ h}. We have

(A.4) ρ(gα)Vβ ⊂ Vα+β .

A basic theorem states that if ρ is an irreducible representation, then there exists a
unique highest weight λ with a one-dimensional highest weight space Vλ such that
ρ(n+)Vλ = 0. All the weights of V are of the form λ −

∑n
i=1miαi, where the mi

are nonnegative integers.
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The Theorem of the Highest Weight [Kna02, Theorem 5.5] asserts that up to
equivalence, the irreducible finite-dimensional complex representations of g stand
in one-one correspondence with the dominant integral weights which sends an irre-
ducible representation to its highest weight. We denote the irreducible representa-
tion space corresponding to a dominant weight λ by V λ.

There is a canonical pairing between the dual space V ∗ = Hom(V,C) and V
denoted by 〈w, v〉 ∈ C with v ∈ V and w ∈ V ∗. V ∗ has a right representation ρ∗ of
g defined by

(A.5) 〈wρ∗(X), v〉 = 〈w, ρ(X)v〉, X ∈ g.

The representation corresponding to the ith fundamental weight ωi is called the
ith fundamental representation of g, which we denote by Vi. We choose a highest
weight vector in Vi, and following the physicists [LS92] we called it by |i〉. We
choose a vector 〈i| in the lowest weight space in V ∗i and require that 〈i|Id|i〉 = 1
for the identity element Id ∈ G. For simplicity, we will omit the notation ρ for the
representation.

We have (see [LS92, Eq. (1.4.19)])

(A.6) X|i〉 = 0, ∀X ∈ n+; hαj |i〉 = δij |i〉; and e−αj |i〉 = 0, ∀j 6= i.

That is, in the ith fundamental representation, only e−αi may bring the highest
weight vector down. Similarly we have 〈i|Y = 0 for Y ∈ n−, and 〈i|eαj = 0 if j 6= i.

Let Gs be the simply connected Lie group with Lie algebra g. Let V be a finite
dimensional, irreducible representation of g. To lift the representation to Gs, first
we need to define the representation in a neighborhood of the identity. Since in a
neighborhood of the identity any element of Gs can be uniquely written as eX for
some X ∈ g, we can simply define

eXv = exp(X)v, v ∈ V,

where exp(X) =
∑∞
k=0

Xk

k! . Then using the simply connectedness of Gs, extend the
map to any point of Gs by using a path joining the identity and the point. Then
one can show that the definition is independent of the choice of the path and the
map defined this way is indeed a representation of Gs.

The universal enveloping algebra of g is defined as

U(g) = T (g)/J,

where T (g) = ⊕∞k=0T
k(g) is the tensor algebra, and J is the two-sided ideal gen-

erated by all elements of the form X ⊗ Y − Y ⊗ X − [X,Y ] with X and Y in g.
A representation of g also leads to a representation for the universal enveloping
algebra U(g) [Kna02]. Similarly, we can define the universal enveloping algebra of
a subalgebra of g, for example U(n−) for n−.

For µ, ν ∈ U(g) and g ∈ Gs, 〈i|νgµ|i〉 denotes the pairing of 〈i|ν in V ∗i with
g(µ|i〉) in Vi.

In our main Theorem 1.5, we can work with a general Lie group G whose Lie
algebra is g instead of only the simply-connected Gs. The reason is that the simply-
connected compact subgroup Ks of Gs is used only in passing. Our results are
expressed using N and A, and they are simply-connected and the same for a general
G and for the simply-connected Gs.

There is a more concrete realization of the dual V ∗i in A.5. By the unitary trick,
there exists a Hermitian form {·, ·} on Vi (conjugate linear in the second position)
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invariant under the compact group Ks of a simply-connected Gs. The important
property of this Hermitian form is that [Kos79, Eq. (5.11)]

(A.7) {gu, v} = {u, g∗v}, g ∈ Gs, u, v ∈ Vi.

Choose vωi ∈ Vi to be a highest weight vector for the ith fundamental repre-
sentation, and we require that {vωi , vωi} = 1. Then the term in (1.11) is, with
g = ΛCΦ,

(A.8) 〈i|g∗g|i〉 = {g∗gvωi , vωi} = {gvωi , gvωi} > 0.

The Weyl group W of a Lie algebra g is the finite group generated by the reflec-
tions in the simple roots on h′0

si(β) = β − β(hαi)αi, 1 ≤ i ≤ n.

In the Weyl group, there is a unique element κ ∈W that is the longest element in
the sense that when one writes it as a product of the simple reflections it has the
maximal length.

The weights of the irreducible representation V λ with a highest weight λ are
invariant under the Weyl group, and its lowest weight is κλ [Kos79, Eq. (5.2.10)].

A.3. Principal grading and degrees of primitive adjoint-invariant func-
tions. Using Ej from (2.5), define the so-called principal grading element

(A.9) E0 =

n∑
j=1

Ej ∈ h0, such that αi(E0) = 1, for 1 ≤ i ≤ n.

Define gj = {x ∈ g | [E0, x] = jx}. Then

(A.10) g =
⊕
j

gj

is the principal grading of g.
The degrees of the primitive homogeneous adjoint-invariant functions of the sim-

ple Lie algebras are listed as follows

Lie algebras degrees
An 2, 3, · · · , n+ 1
Bn 2, 4, · · · , 2n
Cn 2, 4, · · · , 2n
Dn 2, 4, · · · , 2n− 2, n
G2 2, 6
F4 2, 6, 8, 12
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
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Appendix B. Cartan matrices for simple Lie algebras and their
inverse matrices

There are four infinite series of classical complex simple Lie algebras and five
exceptional Lie algebras with the following Cartan matrices

An = sln+1 :

 2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1
−1 2

 , Bn = so2n+1 :

 2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −2
−1 2

 ,

Cn = sp2n :

 2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1
−2 2

 , Dn = so2n :


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1 −1
−1 2
−1 2

 ,

G2 :

(
2 −1
−3 2

)
, F4 :

( 2 −1
−1 2 −2
−1 2 −1
−1 2

)
,

E6 :

 2 −1
2 −1

−1 2 −1
−1 −1 2 −1

−1 2 −1
−1 2

 , E7 :


2 −1

2 −1
−1 2 −1
−1 −1 2 −1

−1 2 −1
−1 2 −1
−1 2

 ,

E8 :


2 −1

2 −1
−1 2 −1
−1 −1 2 −1

−1 2 −1
−1 2 −1
−1 2 −1
−1 2

 .

In the above, the labelling of the roots for the exceptional Lie algebras follows
[Kna02, pp 180-1]. We require that n ≥ 2 for Bn and Cn, and n ≥ 3 for Dn.
Furthermore, we have the following isomorphisms

B2
∼= C2, D3

∼= A3.

The inverse of the Cartan matrices have the following form:

An :


n
n+1

n−1
n+1

n−2
n+1 ···

2
n+1

1
n+1

n−1
n+1

2n−2
n+1

2n−4
n+1 ···

4
n+1

2
n+1

n−2
n+1

2n−4
n+1

3n−6
n+1 ···

6
n+1

3
n+1

...
...

...
. . .

...
...

2
n+1

4
n+1

6
n+1 ···

2n−2
n+1

n−1
n+1

1
n+1

2
n+1

3
n+1 ···

n−1
n+1

n
n+1

 , Bn :


1 1 1 ··· 1 1
1 2 2 ··· 2 2
1 2 3 ··· 3 3
...
...
...
. . .

...
...

1 2 3 ··· n−1 n−1
1
2 1 3

2 ···
n−1
2

n
2

 ,

Cn :


1 1 1 ··· 1 1

2
1 2 2 ··· 2 1
1 2 3 ··· 3 3

2

...
...
...
. . .

...
...

1 2 3 ··· n−1 n−1
2

1 2 3 ··· n−1 n
2

 , Dn :


1 1 1 ··· 1 1

2
1
2

1 2 2 ··· 2 1 1
1 2 3 ··· 3 3

2
3
2

...
...
...
. . .

...
...

...
1 2 3 ··· n−2 n−2

2
n−2
2

1
2 1 3

2 ···
n−2
2

n
4

n−2
4

1
2 1 3

2 ···
n−2
2

n−2
4

n
4

 ,

G2 : ( 2 1
3 2 ) , F4 :

(
2 3 4 2
3 6 8 4
2 4 6 3
1 2 3 2

)
,

E6 :


4
3 1 5

3 2 4
3

2
3

1 2 2 3 2 1
5
3 2 10

3 4 8
3

4
3

2 3 4 6 4 2
4
3 2 8

3 4 10
3

5
3

2
3 1 4

3 2 5
3

4
3

 , E7 :


2 2 3 4 3 2 1
2 7

2 4 6 9
2 3 3

2
3 4 6 8 6 4 2
4 6 8 12 9 6 3
3 9

2 6 9 15
2 5 5

2
2 3 4 6 5 4 2
1 3

2 2 3 5
2 2 3

2

 ,
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E8 :


4 5 7 10 8 6 4 2
5 8 10 15 12 9 6 3
7 10 14 20 16 12 8 4
10 15 20 30 24 18 12 6
8 12 16 24 20 15 10 5
6 9 12 18 15 12 8 4
4 6 8 12 10 8 6 3
2 3 4 6 5 4 3 2

 .
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Ser. Ştiinţ. Mat. 30 (1992), no. 1, 17–23.
[Nie12] Zhaohu Nie, Solving Toda field theories and related algebraic and differential proper-

ties, J. Geom. Phys. 62 (2012), no. 12, 2424–2442.

[Nie14] , On characteristic integrals of Toda field theories, J. Nonlinear Math. Phys.
21 (2014), no. 1, 120–131.

[Nie16] , Classification of solutions to Toda systems of types C and B with singular

sources, Calc. Var. Partial Differential Equations 55 (2016), no. 3, 55:53.
[Nie17] , Toda field theories and integral curves of standard differential systems, Jour-

nal of Lie Theory 27 (2017), no. 2, 377–395.

[PT01] J. Prajapat and G. Tarantello, On a class of elliptic problems in R2: symmetry and
uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 4, 967–985.

[RS94] Alexander V. Razumov and Mikhail V. Saveliev, Differential geometry of Toda sys-
tems, Comm. Anal. Geom. 2 (1994), no. 3, 461–511.

[Sha97] R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166,

Springer-Verlag, New York, 1997. Cartan’s generalization of Klein’s Erlangen pro-
gram; With a foreword by S. S. Chern.

[Tar08] Gabriella Tarantello, Selfdual gauge field vortices, Progress in Nonlinear Differential

Equations and their Applications, 72, Birkhäuser Boston, Inc., Boston, MA, 2008. An
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