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Summary. In this paper, we rigorously prove the existence and stability of multiple-
peaked patterns that are far from spatial homogeneity for the singularly perturbed Gierer-
Meinhardt system in a two-dimensional domain. The Green’s function, together with its
derivatives, is linked to the peak locations and to theo(1) eigenvalues, which vanish in
the limit. On the other hand two nonlocal eigenvalue problems (NLEPs), one of which
is new, are related to theO(1) eigenvalues. Under some geometric condition on the
peak locations, we establish a threshold behavior: If the inhibitor diffusivity exceeds the
threshold, then we get instability; if it lies below, then we get stability.
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1. Introduction

Morphogenesis is the development of an organism from a single cell. This complex
process can be understood by dividing it into several elementary steps, such as the
change of cell shapes, cell to cell interaction, growth, and cell movement. One of the
most important of these elementary steps is the formation of a spatial pattern of cell
structure, starting from an almost homogeneous cell distribution.

Turing, in his pioneering work in 1952 [29], proposed that a patterned distribution of
two chemical substances, called the morphogens, could trigger the emergence of such a
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cell structure. He also gives the following explanation for the formation of the morpho-
genetic pattern: It is assumed that one of the morphogens, the activator, diffuses slowly
and the other, the inhibitor, diffuses much faster. In the mathematical framework of a
coupled system of reaction-diffusion equations with very different diffusion coefficients,
he shows by linear stability analysis that the homogeneous state may be unstable. In par-
ticular, a small perturbation of spatially homogeneous initial data may evolve to a stable
spatially complex pattern of the morphogens.

Since the work of Turing, a lot of models have been proposed and analyzed to explore
more fully this phenomenon, which is now called Turing instability, and its implications
for the understanding of various patterns. One of the most famous of these models is the
Gierer-Meinhardt system [8], [19]. In two dimensions after rescaling and considering a
special case, it can be stated as follows:

(GM)


At = ε21A− A+ A2

H
, A > 0, in Ä,

τHt = D1H − H + A2, H > 0, in Ä,
∂A

∂ν
= ∂H

∂ν
= 0 on∂Ä.

The unknownsA = A(x, t) and H = H(x, t) represent the concentrations of the
activator and inhibitor at a pointx ∈ Ä ⊂ R2 and at a timet > 0;1:=∑2

j=1
∂2

∂x2
j

is the

Laplace operator inR2;Ä is a bounded and smooth domain inR2; ν = ν(x) is the outer
normal atx ∈ ∂Ä. Throughout this paper, we assume that

ε ¿ 1, ε does not depend onx or t ,
τ ≥ 0 is a fixed constant which does not depend onx, t, or ε,
D > 0 does not depend onx or t but may depend onε,
D ¿ e

δ
ε , whereδ > 0 is a small constant which is independent ofε > 0.

In this paper, we further assumeD→∞ asε → 0 (and call this theweak coupling
case).

Numerical studies by Meinhardt [19] and more recently by Holloway [12] and Maini
and McInerney [18] have revealed that whenε is small andD is finite, (GM) seems to
have stable stationary states with the property that the activator is mainly concentrated
in K peaks which are each placed nearK different points inÄ whose locations satisfy
suitable conditions. Moreover, asε → 0, the pattern exhibits a“point condensation
phenomenon.”By this we mean that these peaks become narrower and narrower and
eventually shrink to the set of points itself. In fact, their spatial extension is of the order
O(ε). We also say that the spike solutions “concentrate” at the set of points. Furthermore,
we remark that the maximum value of activator and inhibitor, respectively, diverges
to+∞.

Although it has been observed numerically that these patterns are stable, giving a
rigorous proof of these facts has been an open problem. Namely, how can one rigorously
construct these solutions? Where are the peaks located? Are these solutions stable?

In this paper we solve these questions. We explicitly give a rigorous construction ofK -
peaked stationary states by using the powerful method of Liapunov-Schmidt reduction.
This enables us to reduce the infinite-dimensional problem of finding an equilibrium
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state to (GM) to the finite-dimensional problem of locating theK points at which the
spikes concentrate. We give a sufficient condition for the locations of these points in
terms of the derivatives of Green’s function.

Furthermore, concerning stability, one has to study separately the eigenvalues of the
orderO(1), which are called “large eigenvalues,” and the eigenvalues of the ordero(1),
which are called “small eigenvalues.” We show that the small eigenvalues are related
to the derivatives of Green’s function and to the spike locations. Suppose these small
eigenvalues all have negative real parts and thatτ is large orK > 1, then the following
result holds true and is the main contribution of this paper:

For ε ¿ 1 there are stability thresholds

D1(ε) > D2(ε) > D3(ε) > · · · > DK (ε) > · · · ,

such that

if lim ε→0
DK (ε)

D > 1, then theK -peaked solution is stable,

and if limε→0
DK (ε)

D < 1, then theK -peaked solution is unstable.

Furthermore, we will show that

DK (ε) = |Ä|
2πK

log
1

ε
asε → 0.

In particular, if

lim
ε→0

D

log 1
ε

= 0 asε → 0,

then, for every positive integerK , the K -peaked solution is stable forε small enough.
This recovers our earlier result in thestrong couplingcase, [40].

We now describe the results of the paper in detail.
We first introduce a Green’s functionG0 which we need to formulate our main results.
Let G0(x, ξ) be the Green’s function given by

1G0(x, ξ)− 1

|Ä| + δξ (x) = 0 inÄ,∫
Ä

G0(x, ξ)dx = 0,

∂G0(x, ξ)

∂ν
= 0 on∂Ä,

(1.1)

and let

H0(x, ξ) = 1

2π
log

1

|x − ξ | − G0(x, ξ) (1.2)

be the regular part ofG0(x, ξ).
DenoteP ∈ ÄK , whereP is arranged such that

P= (P1, P2, . . . , PK ),
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with

Pi = (Pi,1, Pi,2) for i = 1,2, . . . , K .

For the rest of the paper we assume thatP ∈ 3δ, where forδ > 0 we define

3δ = {(P1, P2, . . . , PK ) ∈ ÄK : |Pi − Pj | > 4δ for i 6= j,

and d(Pi , ∂Ä) > 4δ for i = 1,2 . . . , K }. (1.3)

For P ∈ 3δ, we define,

F(P) =
K∑

k=1

H0(Pk, Pk)−
∑

i, j=1,...,K ,i 6= j

G0(Pi , Pj ), (1.4)

and

M(P) = (∇2
PF(P)). (1.5)

HereM(P) is a(2K )×(2K )matrix with components∂
2F(P)

∂Pi, j ∂Pk,l
, i, k = 1, . . . , K , j, l =

1,2 (recall thatPi, j is the j -th component ofPi ).
Note thatF(P) ∈ C∞(3δ).

Set

D = 1

β2
, ηε := β2|Ä|

2π
log

1

ε
. (1.6)

ThenD→+∞ is equivalent toβ → 0.
The stationary system for (GM) is the following system of elliptic equations:

ε21A− A+ A2

H
= 0, A > 0, in Ä,

1

β2
1H − H + A2 = 0, H > 0, in Ä,

∂A

∂ν
= ∂H

∂ν
= 0 on∂Ä.

(1.7)

Our first theorem concerns the existence ofK−peaked solutions.

Theorem 1.1. Let P0 = (P0
1 , P0

2 , . . . , P0
K ) ∈ 3δ be a nondegenerate critical point of

F(P) (defined by (1.4)). Moreover, we assume that the following technical condition
holds:

if K > 1, then lim
ε→0

ηε 6= K , (1.8)

whereηε is defined by (1.6).
Then forε sufficiently small and D= 1

β2 sufficiently large, problem (1.7) has a
solution(Aε, Hε) with the following properties:

(1) Aε(x) = ξε(
∑K

j=1w(
x−Pεj
ε
) + O(k(ε, β))) uniformly for x ∈ Ǟ. Herew is the

unique solution of the problem{
1w − w + w2 = 0, w > 0, in R2,

w(0) = maxy∈R2 w(y), w(y)→ 0, as|y| → ∞, (1.9)
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ξε =



1

K

|Ä|
ε2
∫

R2 w2(y)dy
, if ηε → 0,

1

ηε

|Ä|
ε2
∫

R2 w2(y)dy
, if ηε →∞,

1

K + η0

|Ä|
ε2
∫

R2 w2(y)dy
, if ηε → η0,

(1.10)

and

k(ε, β):= ε2ξεβ
2. (1.11)

(By (1.10), k(ε, β) = O(min{ 1
log 1

ε

, β2}).)
Furthermore, Pεj → P0

j asε → 0 for j = 1, . . . , K.

(2) Hε(x) = ξε(1+ O(k(ε, β))) uniformly for x∈ Ǟ.

Remark.(1.1) Condition (1.8) in Theorem 1.1 is a technical condition that is needed for
the Liapunov-Schmidt reduction process. In Appendix A we will explain how it arises.

For existence and uniqueness of the solutions of (1.9), we refer to [9] and [16]. We
also recall that

w(y) ∼ |y|−1/2e−|y| as|y| → ∞. (1.12)

Next we study the stability and instability of theK -peaked solutions constructed in
Theorem 1.1. To this end, we need to study the following eigenvalue problem,

Lε
(
φε

ψε

)
=

ε
21φε − φε + 2

Aε
Hε

φε − A2
ε

H2
ε

ψε

1

τ

(
1

β2
1ψε − ψε + 2Aεφε

)
 = λε

(
φε

ψε

)
, (1.13)

where(Aε, Hε) is the solution constructed in Theorem 1.1 andλε ∈ C – the set of
complex numbers.

We say that(Aε, Hε) is linearly stable if the spectrumσ(Lε) of Lε lies in the left
half-plane{λ ∈ C: Re(λ) < 0}. (Aε, Hε) is calledlinearly unstable if there exists an
eigenvalueλε of Lε with Re (λε) > 0. (From now on, we use the notationslinearly
stableandlinearly unstableas defined above.)

Our second main result, which is on stability, is stated as follows.

Theorem 1.2. Let P0 ∈ 3δ be a nondegenerate critical point of F(P), and forε suf-
ficiently small and D= 1

β2 sufficiently large, let(Aε, Hε) be the K−peaked solutions

constructed in Theorem 1.1 whose peaks approachP0.
Assume (1.8) holds and further that

(∗) P0 is a nondegenerate local maximum point of F(P).
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Then we have
Case 1.ηε → 0 (i.e., 2πD

|Ä| À log 1
ε
).

If K = 1, then there exists a uniqueτ1 > 0 such that forτ < τ1, (Aε, Hε) is linearly
stable, while forτ > τ1, (Aε, Hε) is linearly unstable.

If K > 1, (Aε, Hε) is linearly unstable for anyτ ≥ 0.
Case 2.ηε →+∞ (i.e., 2πD

|Ä| ¿ log 1
ε
).

(Aε, Hε) is linearly stable for anyτ > 0.
Case 3.ηε → η0 ∈ (0,+∞) (i.e., 2πD

|Ä| ∼ 1
η0

log 1
ε
).

If K > 1 andη0 < K, then(Aε, Hε) is linearly unstable for anyτ > 0.
If η0 > K, then there exist0 < τ2 ≤ τ3 such that(Aε, Hε) is linearly stable for

τ < τ2 andτ > τ3.
If K = 1, η0 < 1, then there exist0 < τ4 ≤ τ5 such that(Aε, Hε) is linearly stable

for τ < τ4 and linearly unstable forτ > τ5.

The statement of Theorem 1.2 is rather long. Let us therefore explain the results by
the following remarks.

Remarks. (1.2) Assuming that condition (*) holds, then forε small the stability behavior
of (Aε, Hε) can be summarized in the following table:

Case 1 Case 2 Case 3 (η0 < K ) Case 3 (η0 > K )

K = 1, τ small stable stable stable stable
K = 1, τ finite ? stable ? ?
K = 1, τ large unstable stable unstable stable
K > 1, τ small unstable stable unstable stable
K > 1, τ finite unstable stable unstable ?
K > 1, τ large unstable stable unstable stable

(1.3) The condition (*) on the locationsP0 arises in the study of small (o(1)) eigenval-
ues. For any bounded smooth domainÄ, the functionalF(P), defined by (1.4), always
admits a global maximum at someP0 ∈ 3δ (for some smallδ > 0). The proof of this
fact is similar to that in the appendix in [40]. We believe that ingenericdomains, this
global maximum pointP0 is nondegenerate.

It is an interesting open question to numerically compute the critical points ofF(P)
and link them explicitly to the geometry of the domainÄ.

We believe that for other types of critical points ofF(P), such as saddle points, the
solution constructed in Theorem 1.1 should be linearly unstable. We are not able to prove
this at the moment, since the operatorLε is not self-adjoint.

(1.4) Case 1 and Case 3 withη0 < K resemble theshadow system, and Case 2 and
Case 3 withη0 > K are similar to thestrong coupling case. Theorem 1.2 contains a
new result even in the shadow system case: For the limiting nonlocal eigenvalue problem
(NLEP), we have shown the uniqueness of Hopf bifurcation atτ1 (Lemma 2.4); compare
[24], [34]. Note that ourτ is fixed. If we allowτ to vary with respect toε, we conjecture
that there is a uniqueτ1(ε) = τ1+ o(1) such that Hopf bifurcation occurs forLε .

(1.5) We conjecture that in Case 3,τ2 = τ3. This will imply that for anyτ ≥ 0 and
η0 > K , multiple spikes are stable, provided condition (*) is satisfied. (It is possible to
obtain explicit values forτ2 andτ3. See the Remark 2.2 after the proof of Theorem 2.5.)
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(1.6) Roughly speaking, assuming that condition (*) holds and thatK ≥ 1 or τ is
large, then forε ¿ 1, DK (ε) = |Ä|

2πK log 1
ε

is the critical threshold for the asymptotic
behavior of the diffusion coefficient of the inhibitor which determines the stability of
K -peaked solutions. Thus we have established a result which is similar as in the one-
dimensional case, [14], [41]. In [14] the case whenτ is small is studied by a matched
asymptotic analysis approach. A rigorous proof of the results of [14] is contained in [41].
A dynamics approach that covers the case of generalτ ≥ 0 but is restricted to the whole
R1 or to periodic boundary conditions is contained in [6]. However, in higher dimensions
the analysis is very different because it has to reflect the geometry of the domain, which
is trivial for an interval on the real line (where the peaks are placed equidistantly).

Let us recall the result in the one-dimensional case. It is shown ([14]) forK ≥ 2 that
the critical thresholdsDK (ε) = DK are in leading order independent ofε. Moreover,
the critical thresholds arise in the computation of the small eigenvalues. Here inR2,
DK (ε) → +∞ asε → 0. Furthermore,DK (ε) is obtained in the study of the large
eigenvalues. Since these thresholds are independent of the peak locations, they can be
studied without considering higher-order terms of the equilibrium.

(1.7) We have obtained the leading order asymptotics for the critical thresholdDK (ε)

which is the order log1
ε
. This is true if we takeε sufficiently small. In practice, it will be

very useful to obtain the next order term in the asymptotic expansion ofDK (ε), which
we believe should beO(1).

We now comment on some related work.
Generally speaking, system (1.7) is quite difficult to solve because it has neither a

variational structure nora priori estimates. One way to study (1.7) is to examine the
so-calledshadow system. Namely, we letD → +∞ first. It is known (see [15], [20],
[27]) that the study of the shadow system amounts to the study of the following single
equation forp = 2:ε

21u− u+ up = 0, u > 0, in Ä,
∂u

∂ν
= 0 on∂Ä.

(1.14)

Equation (1.14) has a variational structure and has been studied by numerous authors.
It is known that equation (1.14) has both boundary spike solutions and interior spike
solutions. For the existence of boundary spike solutions, see [1], [10], [21], [22], [23],
[32], [37], [38], and the references therein. For the existence of interior spike solutions,
please see [11], [26], [31], [33], and the references therein. For the stability of spike
solutions, please see [2], [13], [24], [25], [34], [35]. For dynamics, we refer to [3].

Now we describe some previous results for the two-dimensional strong coupling
case, i.e., for finiteD ∼ 1. In [39], we constructed single interior spike solutions to (1.7)
(without loss of generality, we assumed thatD = 1). Then in [40] we continued that
study: After constructing interiorK -peaked solutions, we also proved that they are stable
for τ = 0 provided that the limiting peaksP0 = (P0

1 , . . . , P0
K ) are a nondegenerate local

maximum point of the following functional:

F1(P) =
K∑

k=1

H1(Pk, Pk)−
∑

i, j=1,...,K ,i 6= j

G1(Pi , Pj ), (1.15)
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whereG1(P, x) is Green’s function of−1+1 under the Neumann boundary condition,
i.e.,G1 satisfies −1G1+ G1 = δP in Ä,

∂G1

∂ν
= 0 on∂Ä.

HereδP is the Dirac delta distribution at a pointP, and

H1(P, x) = K1(|x − P|)− G1(P, x),

whereK1(|x|) = 1
2π log 1

|x| is the fundamental solution of−1+1 in R2 with singularity
at 0.

Therefore for any finiteD ∼ 1, the stability ofK−peaked solutions does not depend
on D but on the peak locations only.

In the case of boundary spikes for the weak coupling case, the boundary mean curva-
ture may interact with the Green’s function. We will study this effect in a forthcoming
paper.

Finally we remark that some of the results of Theorem 1.1 and Theorem 1.2 may be
extended to the following generalized Gierer-Meinhardt system:

(Generalized GM)


At = ε21A− A+ Ap

Hq
, A > 0, in Ä,

τHt = D1H − H + Ar

Hs
, H > 0, in Ä,

∂A

∂ν
= ∂H

∂ν
= 0 on∂Ä,

where the exponents(p,q, r, s) satisfy the following conditions:

p > 1, q > 0, r > 0, s ≥ 0,
qr

(p− 1)(s+ 1)
> 1.

For example, the existence result Theorem 1.1 can be applied to the above system
without any technical difficulty. For the stability result Theorem 1.2, there should be
some restrictions on the(p,q, r, s). See [4], [24], [25], [36], and [42] for related studies
on NLEPs. We shall leave this to further investigations.

Other work on concentrated solutions for reaction-diffusion systems includes [5],
[28], [30], and the survey [20].

The structure of the paper is as follows:

Preliminaries

{
Section 2: Study of Two NLEPs
Section 3: Calculations on the Heights of the Peaks

Existence: Proof of Theorem 1.1

{
Section 4: Reduction to Finite Dimensions
Section 5: Solving the Reduced Problem

Stability: Proof of Theorem 1.2

{
Section 6: Study of Large Eigenvalues
Section 7: Study of Small Eigenvalues

The proof of the invertibility of the linearized operator is delayed to Appendix A.
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Throughout the paper,C > 0 is a generic constant that is independent ofε andβ and
may change from line to line andδ is a very small but fixed constant. We always assume
thatP,P0 ∈ 3δ, where3δ was defined in (1.3), and that|P−P0| < 4δ. To simplify our
notation, we usee.s.t. to denote exponentially small terms in the corresponding norms;
more precisely,e.s.t. = O(e−δ/ε). The notationA(ε) ∼ B(ε)means that limε→0

A(ε)
B(ε) =

c0 > 0, for some positive numberc0.

2. Preliminaries I: Some Properties ofw and the Study of Two Nonlocal Eigenvalue
Problems (NLEPs)

Letw be the unique solution of (1.9). In this section, we study some properties ofw as
well as two NLEPs.

Let

L0φ = 1φ − φ + 2wφ, φ ∈ H2(R2). (2.1)

We first recall the following well-known result:

Lemma 2.1. The eigenvalue problem

L0φ = µφ, φ ∈ H2(R2), (2.2)

admits the following set of eigenvalues

µ1 > 0, µ2 = µ3 = 0, µ4 < 0, . . . . (2.3)

The eigenfunction80 corresponding toµ1 can be made positive and radially symmetric;
the space of eigenfunctions corresponding to the eigenvalue0 is

K0:= span

{
∂w

∂yj
, j = 1,2

}
. (2.4)

Proof. This lemma follows from Theorem 2.1 of [17] and Lemma C of [22].

Next, we consider the following two nonlocal eigenvalue problems:

Lφ:= 1φ − φ + 2wφ − γ
∫

R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2), (2.5)

where either (a)γ = µ

1+ τλ0
, whereµ > 0, τ ≥ 0, or

(b) γ = 2(K + η0(1+ τλ0))

(K + η0)(1+ τλ0)
, whereη0 > 0, τ ≥ 0.

Case (a) will be studied in Theorem 2.2 and Case (b) in Theorem 2.5.
Problem (2.5) plays the key role in the study of large eigenvalues (Section 6 below).

It is here that the critical stability thresholds arise.
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We consider case (a) first:

Theorem 2.2. Letγ = µ

1+τλ0
whereµ > 0, τ ≥ 0, and let L be defined by (2.5).

(1) Suppose thatµ > 1. Then there exists a uniqueτ = τ1 > 0 such that forτ < τ1,
(2.5) admits a positive eigenvalue, and forτ > τ1, all nonzero eigenvalues of problem
(2.5) satisfy Re(λ) < 0. At τ = τ1, L has a Hopf bifurcation.

(2) Suppose thatµ < 1. Then L admits a positive eigenvalueλ0 > 0.

Proof of Theorem 2.2.Theorem 2.2 will be proved by two lemmas below.

Lemma 2.3. If µ < 1, then L has a positive eigenvalueλ0 > 0.

Proof. By arguments similar to [4] or [42], we may assume thatφ is a radially symmetric
function, namely,φ ∈ H2

r (R
2) = {u ∈ H2(R2)|u = u(|y|)}. Let L0 be given by (2.1).

Then by Lemma 2.1,L0 is invertible inH2
r (R

2). Let us denote the inverse asL−1
0 . By

Lemma 2.1,L0 has a unique positive eigenvalueµ1. It is easy to see thatλ0 6= µ1 since∫
R2 w80 > 0.

Thenλ0 > 0 is an eigenvalue of (2.5) if and only if it satisfies the following algebraic
equation: ∫

R2
w2 = µ

1+ τλ0

∫
R2

[((L0− λ0)
−1w2)w]. (2.6)

Equation (2.6) can be simplified further to the following:

ρ(λ0):= ((µ− 1)− τλ0)

∫
R2
w2+ µλ0

∫
R2

[((L0− λ0)
−1w)w] = 0. (2.7)

Note thatρ(0) = (µ−1)
∫

R2 w
2 < 0. On the other hand, asλ0→ µ1, λ0 < µ1, we have∫

R2((L0 − λ0)
−1w)w → +∞, and henceρ(λ0) → +∞. By continuity, there exists a

λ0 ∈ (0, µ1) such thatρ(λ0) = 0. Such a positiveλ0 will be an eigenvalue ofL.

Next we consider the caseµ > 1. As in [4], we may consider radially symmetric
functions only. By Theorem 1.4 of [34], forτ = 0 (and by perturbation, forτ small), all
eigenvalues lie on the left half-plane. By [4], forτ large, there exist unstable eigenvalues.

Note that the eigenvalues will not cross through zero: In fact, ifλ0 = 0, then we have

L0φ − µ
∫

R2 wφ∫
R2 w2

w2 = 0,

which implies that

L0

(
φ − µ

∫
R2 wφ∫
R2 w2

w

)
= 0,

and hence, by Lemma 2.1,

φ − µ
∫

R2 wφ∫
R2 w2

w ∈ K0.
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This is impossible sinceφ is radially symmetric andφ 6= cw for all c ∈ R.
Thus there must be a pointτ1 at whichL has a Hopf bifurcation, i.e.,L has a purely

imaginary eigenvalueα = √−1αI . To prove Theorem 2.2 (1), all we need to show is
thatτ1 is unique. That is,

Lemma 2.4. Let µ > 1. Then there exists a uniqueτ1 > 0 such that L has a Hopf
bifurcation.

Proof. Let λ0 =
√−1αI be an eigenvalue ofL. Without loss of generality, we may

assume thatαI > 0. (Note that−√−1αI is also an eigenvalue ofL.) Let φ0 = (L0 −√−1αI )
−1w2. Then (2.5) becomes∫

R2 wφ0∫
R2 w2

= 1+ τ√−1αI

µ
. (2.8)

Let φ0 = φR
0 +
√−1φ I

0. Then from (2.8), we obtain the two equations∫
R2 wφ

R
0∫

R2 w2
= 1

µ
, (2.9)

∫
R2 wφ

I
0∫

R2 w2
= ταI

µ
. (2.10)

Note that (2.9) is independent ofτ .
Let us now compute

∫
R2 wφ

R
0 . Observe that(φR

0 , φ
I
0) satisfies

L0φ
R
0 = w2− αI φ

I
0, L0φ

I
0 = αI φ

R
0 .

SoφR
0 = α−1

I L0φ
I
0 and

φ I
0 = αI (L

2
0+ α2

I )
−1w2, φR

0 = L0(L
2
0+ α2

I )
−1w2. (2.11)

Substituting (2.11) into (2.9) and (2.10), we obtain∫
R2[wL0(L2

0+ α2
I )
−1w2]∫

R2 w2
= 1

µ
, (2.12)

∫
R2[w(L2

0+ α2
I )
−1w2]∫

R2 w2
= τ

µ
. (2.13)

Leth(αI ) =
∫

R2 wL0(L2
0+α2

I )
−1w2∫

R2 w
2

. Then integration by parts givesh(αI ) =
∫

R2 w
2(L2

0+α2
I )
−1w2∫

R2 w
2

.

Note thath
′
(αI ) = −2αI

∫
R2 w

2(L2
0+α2

I )
−2w2∫

R2 w
2

< 0. So since

h(0) =
∫

R2 w(L
−1
0 w2)∫

R2 w2
= 1,

h(αI )→ 0 asαI →∞, andµ > 1, there exists a uniqueαI > 0 such that (2.12) holds.
Substituting this uniqueαI into (2.13), we obtain a uniqueτ = τ1 > 0.

Lemma 2.4 is thus proved.
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Proof. Theorem 2.2 now follows from Lemma 2.3 and Lemma 2.4.

Remark. (2.1) Theorem 2.2 is true inRN, N ≤ 4. The existence of a Hopf bifurcation
has been studied in [4], [24], [25], [42]. Here we have proved theuniquenessof such a
Hopf bifurcation, which is new and interesting in its own right.

Finally we study case (b), namely the following NLEP:

1φ − φ + 2wφ − 2(K + η0(1+ τλ0))

(K + η0)(1+ τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2), (2.14)

where 0< η0 < +∞ and 0≤ τ < +∞ .
Then we have

Theorem 2.5. (1) If η0 < K, then forτ small, problem (2.14) is stable, while forτ
large it is unstable.

(2) If η0 > K, then there exists0 < τ2 ≤ τ3 such that problem (2.14) is stable for
τ < τ2 or τ > τ3.

Proof. Let us set

f (τλ) = 2(K + η0(1+ τλ))
(K + η0)(1+ τλ) . (2.15)

We note that

lim
τλ→+∞

f (τλ) = 2η0

K + η0
=: f∞.

If η0 < K , then by Theorem 2.2 (2), problem (2.5) withµ = f∞ has a positive eigenvalue
α1. Now by perturbation arguments (similar to those in [4]), forτ large, problem (2.14)
has an eigenvalue nearα1 > 0. This implies that forτ large, problem (2.14) is unstable.

Now we show that problem (2.14) has no nonzero eigenvalues with nonnegative real
part, provided that eitherτ is small orη0 > K andτ is large. (It is immediately seen
that f (τλ) → 2 asτλ → 0 and f (τλ) → 2η0

η0+K > 1 asτλ → +∞ if η0 > K . Then
Theorem 2.2 should apply. The problem is that we do not have control onτλ. Here we
provide a rigorous proof.)

We apply the following inequality (Lemma 5.1 in [34]): For any (real-valued function)
φ ∈ H2

r (R
2), we have∫

R2
(|∇φ|2+ φ2− 2wφ2)+ 2

∫
R2 wφ

∫
R2 w

2φ∫
R2 w2

−
∫

R2 w
3

(
∫

R2 w2)2

(∫
R2
wφ

)2

≥ 0, (2.16)

where equality holds if and only ifφ is a multiple ofw.
Now letλ0 = λR+

√−1λI , φ = φR+
√−1φI satisfy (2.14). Then we have

L0φ − f (τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ. (2.17)
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Multiplying (2.17) by φ̄—the conjugate function ofφ—and integrating overR2, we
obtain that∫

R2
(|∇φ|2+ |φ|2− 2w|φ|2) = −λ0

∫
R2
|φ|2− f (τλ0)

∫
R2 wφ∫
R2 w2

∫
R2
w2φ̄. (2.18)

Multiplying (2.17) byw and integrating overR2, we obtain that∫
R2
w2φ =

(
λ0+ f (τλ0)

∫
R2 w

3∫
R2 w2

)∫
R2
wφ. (2.19)

Taking the conjugate of (2.19), we have∫
R2
w2φ̄ =

(
λ̄0+ f (τ λ̄0)

∫
R2 w

3∫
R2 w2

)∫
R2
wφ̄. (2.20)

Substituting (2.20) into (2.18), we have that∫
R2
(|∇φ|2+ |φ|2− 2w|φ|2) = −λ0

∫
R2
|φ|2− f (τλ0)

×
(
λ̄0+ f (τ λ̄0)

∫
R2 w

3∫
R2 w2

)
| ∫R2 wφ|2∫

R2 w2
. (2.21)

We just need to consider the real part of (2.21). Now applying the inequality (2.16) and
using (2.20), we arrive at

−λR ≥ Re

(
f (τλ0)

(
λ̄0+ f (τ λ̄0)

∫
R2 w

3∫
R2 w2

))
−2 Re

(
λ̄0+ f (τ λ̄0)

∫
R2 w

3∫
R2 w2

)
+
∫

R2 w
3∫

R2 w2
,

where we recallλ0 = λR+
√−1λI with λR, λI ∈ R.

Assuming thatλR ≥ 0, then we have∫
R2 w

3∫
R2 w2

| f (τλ0)− 1|2+ Re(λ̄0( f (τλ0)− 1)) ≤ 0. (2.22)

By the usual Pohozaev’s identity for (1.9) (multiplying (1.9) byy · ∇w(y) and inte-
grating by parts), we obtain that∫

R2
w3 = 3

2

∫
R2
w2. (2.23)

Substituting (2.23) and the expression (2.15) forf (τλ) into (2.22), we have

3

2
|η0+K +(η0−K )τλ|2+Re((η0+K )(1+τ λ̄0)((η0+K )λ̄0+(η0−K )τ |λ0|2)) ≤ 0,
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which is equivalent to

3

2
(1+ µ0τλR)

2+ λR+ (µ0τ + τ + µ0τ
2|λ0|2)λR+

(
3

2
µ2

0τ
2+ µ0τ − τ

)
λ2

I ≤ 0,

(2.24)
where we have introducedµ0:= η0−K

η0+K .
If η0 > K (i.e.,µ0 > 0) andτ is large, then

3

2
µ2

0τ
2+ µ0τ − τ ≥ 0. (2.25)

So (2.24) does not hold forλR ≥ 0.
To consider the case whenτ is small, we have now derived an upper bound forλI .
From (2.18), we have

λI

∫
R2
|φ|2 = Im

(
− f (τλ0)

∫
R2 wφ∫
R2 w2

∫
R2
w2φ̄

)
.

Hence,

|λI | ≤ | f (τλ0)|
√∫

R2 w4∫
R2 w2

≤ C, (2.26)

whereC is independent ofλ0.
Substituting (2.26) into (2.24), we see that (2.24) cannot hold forλR ≥ 0, if τ is

small.

Remark. (2.2) From the proof of Theorem 2.5, it is possible to obtain explicit values
for τ2 andτ3. (In fact, from (2.25), we obtain a value forτ3. From (2.26) and (2.24), we
obtain a value forτ2.)

3. Preliminaries II: Calculating the Heights of the Peaks

In this section we formally calculate the heights of the peaks as needed in the sections
below. In particular, we introduce the scaleξε given in (1.10). It is found that in the
leading order the heights depend on the number of peaks but not on their locations. This
is a leading order asymptotic statement that is valid forε → 0 andD→∞.

Forβ > 0, letGβ(x, ξ) be the Green’s function given by1Gβ − β2Gβ + δξ = 0 inÄ,
∂Gβ

∂ν
= 0 on∂Ä.

(3.1)

Let G0(x, ξ) be the Green’s function given by (1.1). Then we can derive a relation
betweenGβ andG0 as follows. From (3.1), we get∫

Ä

Gβ(x, ξ)dx = β−2.
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Set

Gβ(x, ξ) = β−2

|Ä| + Gβ(x, ξ). (3.2)

Then 

1Ḡβ − β2Ḡβ − 1

|Ä| + δξ = 0 inÄ,∫
Ä

Ḡβ(x, ξ)dx = 0,

∂Ḡβ

∂ν
= 0 on∂Ä.

(3.3)

(1.1) and (3.3) imply that

Ḡβ(x, ξ) = G0(x, ξ)+ O(β2)

in the operator norm ofL2(Ä) → H2(Ä). (Note that the embedding ofH2(Ä) into
L∞(Ä) is compact.) Hence,

Gβ(x, ξ) = β−2

|Ä| + G0(x, ξ)+ O(β2) (3.4)

in the operator norm ofL2(Ä)→ H2(Ä).

We define cut-off functions as follows: Letχ be a smooth cut-off function which is
equal to 1 inB1(0) and equal to 0 inR2 \ B2(0). Let P ∈ 3δ. Introduce

χε,Pj (x) = χ
(

x − Pj

δ

)
, x ∈ Ä, j = 1, . . . , K . (3.5)

Let us assume that a multiple spike solution(Aε, Hε) of (1.7) is given by the following
ansatz: Aε(x) ∼

∑K
i=1 ξε,iw

(
x − Pε

i

ε

)
χε,Pεi (x),

Hε(Pε
i ) ∼ ξε,i ,

(3.6)

wherew is the unique solution of (1.9),ξε,i , i = 1, . . . , K are the heights of the peaks,
to be determined later, andPε = (Pε

1 , . . . , Pε
K ) ∈ 3δ are the locations ofK peaks. Then

we can make the following calculations. In Sections 4 and 5, we will rigorously prove
Theorem 1.1, which includes the asymptotic relations given in (3.6) with suitable error
estimates.

Then from the equation forHε ,

1Hε − β2Hε + β2A2
ε = 0,
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we get by using (3.4),

Hε(P
ε
i ) =

∫
Ä

Gβ(P
ε
i , ξ)β

2A2
ε(ξ)dξ

=
∫
Ä

(
β−2

|Ä| +G0(P
ε
i , ξ)+O(β2)

)
β2

(
K∑

j=1

ξ2
ε, jw

2

(
ξ − Pε

j

ε

)
+ e.s.t.

)
dξ

=
∫
Ä

(
1

|Ä| +β
2G0(P

ε
i , ξ)+O(β4)

)( K∑
j=1

ξ2
ε, jw

2

(
ξ − Pε

j

ε

)
+ e.s.t.

)
dξ.

Thus,

ξε,i =
K∑

j=1

ξ2
ε, j

ε2

|Ä|
∫

R2
w2(y)dy+ ξ2

ε,iβ
2
∫
Ä

G0(P
ε
i , ξ)w

2

(
ξ − Pε

i

ε

)
dξ

+
K∑

j=1

ξ2
ε, j O(β

2ε2). (3.7)

Using the expansion forG0 in (3.7) gives

ξε,i =
K∑

j=1

ξ2
ε, j

ε2

|Ä|
∫

R2
w2(y)dy+ ξ2

ε,iβ
2
∫
Ä

(
1

2π
log

1

|Pε
i − ξ |

− H0(P
ε
i , ξ)

)

× w2

(
ξ − Pε

i

ε

)
dξ +

K∑
j=1

ξ2
ε, j O(β

2ε2)

=
K∑

j=1

ξ2
ε, j

ε2

|Ä|
∫

R2
w2(y)dy+ ξ2

ε,i

β2

2π
ε2 log

1

ε

∫
R2
w2(y)dy

+
K∑

j=1

ξ2
ε, j O(β

2ε2). (3.8)

Note thatH0 ∈ C2(Ǟ×Ä).
Define

ξε,i = ξ̂ε,i |Ä|
ε2
∫

R2 w2
. (3.9)

Then (3.8) is equivalent to

ξ̂ε,i =
K∑

j=1

ξ̂2
ε, j + ξ̂2

ε,i ηε +
K∑

j=1

ξ̂2
ε, j O(β

2), i = 1, . . . , K , (3.10)

where we recall from (1.6) that

ηε = β2|Ä|
2π

log
1

ε
.
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We assume that asε → 0, the heights of the spikes are asymptotically equal, i.e.,

lim
ε→0

ξε,i

ξε, j
= 1, for i 6= j . (3.11)

(The case ofasymmetric patternswill be discussed elsewhere.)
We solve (3.10) in three cases.

Case 1:ηε → 0:
Then from (3.10), we get

ξ̂ε,i = 1

K
+ O(ηε), i = 1, . . . , K . (3.12)

This is clearly equivalent to

ξε,i = 1

K

|Ä|
ε2
∫

R2 w2(y)dy
(1+ O (ηε)), i = 1, . . . , K . (3.13)

Case 2:ηε →∞:
Then from (3.10) we get

ξ̂ε,i = ηεξ̂2
ε,i +

K∑
j=1

ξ̂2
ε, j O(1),

and so, in the same way as in Case 1, it follows that

ξε,i = |Ä|
ηεε2

∫
R2 w2(y)dy

(
1+ O

(
1

ηε

))
, i = 1, . . . , K . (3.14)

Case 3:ηε → η0 (0< η0 <∞):
Then from (3.10) we get

ξ̂ε,i = (1+ η0)ξ̂
2
ε,i +

∑
j 6=i

ξ̂2
ε, j +

K∑
j=1

ξ̂2
ε, j O(β

2).

This implies

ξ̂ε,1 = · · · = ξ̂ε,K = 1

K + η0
(1+ O(β2)), i = 1, . . . , K

or, equivalently,

ξε,i = 1

K + η0

|Ä|
ε2
∫

R2 w2
(1+ O(β2)), i = 1, . . . , K . (3.15)

Note that in all three cases the heights satisfy the relation

ξε,i = ξε(1+ O(h(ε, β))), i = 1, . . . , K ,
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whereξε is given in (1.10) of Theorem 1.1 and

h(ε, β) =


ηε if ηε → 0,

η−1
ε if ηε →∞,
β2 if ηε → η0.

(3.16)

The analysis in this section calculates the height of the peaks under the assumption
that their shape is given. In the next two sections, we provide a rigorous proof for the
existence of equilibrium states.

4. Existence I: Reduction to Finite Dimensions

Let us start to prove Theorem 1.1.
The first step is to choose a good approximation to an equilibrium state. The second

step is to use the Liapunov-Schmidt process to reduce the problem to a finite dimensional
problem. The last step is to solve the reduced problem. Such a procedure has been used
in the study of Gierer-Meinhardt system in thestrong couplingcase [39], [40].

Motivated by the results in Section 3, we rescale

x = εy, x ∈ Ä, y ∈ Äε = {y|εy ∈ Ä}, (4.1)

Â(y) = 1

ξε
A(εy), y ∈ Äε,

Ĥ(x) = 1

ξε
H(x), x ∈ Ä,

whereξε is given in (1.10).
Then an equilibrium solution(Â, Ĥ) has to solve the following rescaled Gierer-

Meinhardt system:1y Â− Â+ Â2

Ĥ
= 0, y ∈ Äε,

1x Ĥ − β2Ĥ + β2ξε Â2 = 0, x ∈ Ä.
(4.2)

(This rescaling is chosen to achieveÂ = O(1), Ĥ = O(1) in terms of the maximum
values.)

For a functionÂ ∈ H1(Äε), letT [ Â] be the unique solution of the following problem:

1T [ Â] − β2T [ Â] + β2ξε Â2 = 0 inÄ,
∂T [ Â]

∂ν
= 0 on∂Ä. (4.3)

In other words, we have

T [ Â](x) =
∫
Ä

Gβ(x, ξ)β
2ξε Â2

(
ξ

ε

)
dξ. (4.4)
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System (4.2) is equivalent to the following equation in operator form:

Sε(Â, Ĥ) =
(

S1(Â, Ĥ)

S2(Â, Ĥ)

)
= 0, H2

N(Äε)× H2
N(Ä)→ L2(Äε)× L2(Ä), (4.5)

where

S1(Â, Ĥ) = 1y Â− Â+ Â2

Ĥ
: H2

N(Äε)× H2
N(Ä)→ L2(Äε),

S2(Â, Ĥ) = 1x Ĥ − β2Ĥ + β2ξε Â2: H2
N(Äε)× H2

N(Ä)→ L2(Ä).

Here the indexN indicates that the functions satisfy the Neumann boundary conditions

∂ Â

∂ν
= 0, y on ∂Äε,

∂ Ĥ

∂ν
= 0, x on ∂Ä.

Let P ∈ 3δ and

wε, j (y):= w
(

y− Pj

ε

)
χε,Pj (εy), y ∈ Äε, (4.6)

wherew is the unique solution of (1.9) andχε,Pj was defined in (3.5).
We choose our approximate solutions as follows:

Aε,P(y):=
K∑

j=1

wε, j (y), Hε,P(x):= T [ Aε,P](x), x = εy ∈ Ä. (4.7)

Note thatHε,P satisfies

0 = 1x Hε,P− β2Hε,P+ β2ξεA2
ε,P

= 1x Hε,P− β2Hε,P+ β2ξε

K∑
j=1

w2
ε, j + e.s.t.

Hence,

Hε,P(Pj ) = β2ξε

∫
Ä

Gβ(x, ξ)
K∑

j=1

w2
ε, j

(
ξ

ε

)
dξ + e.s.t.

Similar to the computation in Section 2 (using the definition (1.10) ofξε), we obtain

Hε,P(Pj ) = 1+ O(h(ε, β)), j = 1, . . . , K . (4.8)

We insert our ansatz (4.7) into (4.5) and calculate

S2(Aε,P, Hε,P) = 0, (4.9)
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S1(Aε,P, Hε,P) = 1y Aε,P− Aε,P+
A2
ε,P

Hε,P

=
K∑

j=1

[
1yw

(
y− Pj

ε

)
− w

(
y− Pj

ε

)]

+
K∑

j=1

w2

(
y− Pj

ε

)
H−1
ε,P + e.s.t.

=
K∑

j=1

w2

(
y− Pj

ε

)
(H−1

ε,P − 1)+ e.s.t.

=
K∑

j=1

w2

(
y− Pj

ε

)
(H−1

ε,P(Pj )− 1)

+
K∑

j=1

w2

(
y− Pj

ε

)
(H−1

ε,P(x)− H−1
ε,P(Pj ))+ e.s.t. (4.10)

On the other hand, we calculate forj = 1, . . . , K andx = Pj + εz, |εz| < δ:

Hε,P(Pj + εz)− Hε,P(Pj ) = β2
∫
Ä

[Gβ(Pj + εz, ξ)− Gβ(Pj , ξ)]ξεA2
ε,Pdξ

= β2ξε

∫
Ä

[Gβ(Pj + εz, ξ)− Gβ(Pj , ξ)]w
2
ε, j dξ

+ β2ξε

∫
Ä

[Gβ(Pj + εz, ξ)− Gβ(Pj , ξ)]

×
∑
l 6= j

w2
ε,l dξ + e.s.t.

= k(ε, β)
∫

R2

1

2π
log

|ζ |
|z− ζ |w

2(ζ )dζ

− k(ε, β)

(
2∑

k=1

∂F(P)
∂Pj,k

εzk

∫
R2
w2

)
+ O(εβ2k(ε, β)|z|), (4.11)

wherek(ε, β) is given by (1.11), andF(P) is defined at (1.4).
Substituting (4.11) into (4.10), we have the following key estimate:

Lemma 4.1. For x = Pj + εz, |εz| < δ, we have

S1(Aε,P, Hε,P) = S1,1+ S1,2, (4.12)

where

S1,1(z)=k(ε, β)(Hε,Pj (Pj ))
−2

(∫
R2
w2

)
w2(z)

(
ε∇Pj F(P) · z+ O(εβ2|z|)) , (4.13)
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and

S1,2(z) = k(ε, β)w2(z)R(|z|)+ O(εk(ε, β)β2|z|), (4.14)

where R(|z|) is a radially symmetric function with the property that R(|z|) = O(log(1+
|z|)).

Furthermore, S1(Aε,P, Hε,P) = e.s.t. for |x − Pj | ≥ δ, j = 1,2, . . . , K.

The above estimates will be very important in the following calculations, where (4.5)
is solved exactly.

Now we study the linearized operator defined by

L̃ε,P:= S′ε

(
Aε,P
Hε,P

)
,

L̃ε,P: H2
N(Äε)× H2

N(Ä)→ L2(Äε)× L2(Ä),

whereε > 0 is small,P ∈ 3̄δ.
Set

Kε,P:= span

{
∂Aε,P
∂Pj,l

| j = 1, . . . , K , l = 1,2

}
⊂ H2

N(Äε),

and

Cε,P:= span

{
∂Aε,P
∂Pj,l

| j = 1, . . . , K , l = 1,2

}
⊂ L2(Äε).

L̃ε,P is not uniformly invertible inε andβ due to the approximate kernel,

Kε,P:= Kε,P⊕ {0} ⊂ H2
N(Äε)× H2

N(Ä). (4.15)

We choose the approximate cokernel as follows:

Cε,P:= Cε,P⊕ {0} ⊂ L2(Äε)× L2(Ä). (4.16)

We then define

K⊥ε,P:= K⊥ε,P⊕ H2
N(Ä) ⊂ H2

N(Äε)× H2
N(Ä), (4.17)

C⊥ε,P:= C⊥ε,P⊕ L2(Ä) ⊂ L2(Äε)× L2(Ä), (4.18)

whereC⊥ε,P andK⊥ε,P denote the orthogonal complement with the scalar product ofL2(Äε)

in H2
N(Äε) andL2(Äε), respectively.

Let πε,P denote the projection inL2(Äε)× L2(Ä) ontoC⊥ε,P. (Here the second com-
ponent of the projection is the identity map.) We are going to show that the equation

πε,P ◦ Sε

(
Aε,P+8ε,P

Hε,P+9ε,P

)
= 0 (4.19)
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has the unique solution6ε,P =
(
8ε,P(y)

9ε,P(x)

)
∈ K⊥ε,P if ε, β are small enough.

Set

Lε,P = πε,P ◦ L̃ε,P:K⊥ε,P→ C⊥ε,P. (4.20)

As a preparation, in the following two propositions we show the invertibility of the
corresponding linearized operatorLε,P.

Proposition 4.2. Assume that (1.8) holds. LetLε,P be given in (4.20). There exist pos-
itive constantsε, β,C such that for allε ∈ (0, ε), β ∈ (0, β),

‖Lε,P6‖L2(Äε)×L2(Ä) ≥ C‖6‖H2(Äε)×H2(Ä), (4.21)

for arbitrary P ∈ 3δ,6 ∈ K⊥ε,P.

Proposition 4.3. Assume that (1.8) holds. There exist positive constantsε, β such that

for all ε ∈ (0, ε), β ∈ (0, β), the mapLε,P is surjective for arbitraryP ∈ 3̄δ.

The proofs of Propositions 4.2 and 4.3 are delayed to Appendix A.
Now we are in a position to solve the equation

πε,P ◦ Sε

(
Aε,P+ φ
Hε,P+ ψ

)
= 0. (4.22)

SinceLε,P|K⊥
ε,P

is invertible (call the inverseL−1
ε,P), we can rewrite (4.22) as

6 = −(L−1
ε,P ◦ πε,P)

(
Sε

(
Aε,P
Hε,P

))
− (L−1

ε,P ◦ πε,P)(Nε,P(6)) ≡ Mε,P(6), (4.23)

where

6 =
(
φ

ψ

)
,

Nε,P(6) = Sε

(
Aε,P+ φ
Hε,P+ ψ

)
− Sε

(
Aε,P
Hε,P

)
− S′ε

(
Aε,P
Hε,P

)[
φ

ψ

]
,

and the operatorMε,P is defined by (4.23) for6 ∈ H2
N(Äε)× H2

N(Ä). We are going to
show that the operatorMε,P is a contraction on

Bε,η ≡ {6 ∈ H2(Äε)× H2(Ä)|‖6‖H2(Äε)×H2(Ä) < η}, (4.24)
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if η is small enough. We have by Lemma (4.1) and Propositions 4.2 and 4.3 that

‖Mε,P(6)‖H2(Äε)×H2(Ä) ≤ C

(
‖πε,P ◦ Nε,P(6)‖L2(Äε)×L2(Ä)

+
∥∥∥∥∥πε,P ◦ Sε

(
Aε,P
Hε,P

)∥∥∥∥∥
L2(Äε)×L2(Ä)

)
≤ C(c(η)η + k(ε, β)),

whereC > 0 is independent ofη > 0 andc(η)→ 0 asη→ 0. Similarly we show

‖Mε,P(6)− Mε,P(6
′)‖H2(Äε)×H2(Ä) ≤ Cc(η)‖6 −6′‖H2(Äε)×H2(Ä),

wherec(η)→ 0 asη→ 0. If we chooseη small enough, thenMε,P is a contraction on
Bε,η. The existence of a fixed point6ε,P plus an error estimate now follows from the
Contraction Mapping Principle. Moreover,6ε,P is a solution of (4.23).

We have thus proved

Lemma 4.4. There existε > 0, β > 0 such that for every triple(ε, β, P) with 0 <
ε < ε, 0 < β < β, P ∈ 3δ there exists a unique(8ε,P, 9ε,P) ∈ K⊥ε,P satisfying

Sε

((
Aε,P+8ε,P

Hε,P+9ε,P

))
∈ Cε,P and

‖(8ε,P, 9ε,P)‖H2(Äε)×H2(Ä) ≤ Ck(ε, β). (4.25)

More refined estimates for8ε,P are needed. We recall thatS1 can be decomposed into
the two partsS1,1 andS1,2, whereS1,1 is in leading order an odd function andS1,2 is in
leading order a radially symmetric function. Similarly, we can decompose8ε,P:

Lemma 4.5. Let8ε,P be defined in Lemma 4.4. Then for x= Pi + εz, |εz| < δ, we
have

8ε,P = 8ε,P,1+8ε,P,2, (4.26)

where8ε,P,2 is a radially symmetric function in z and

8ε,P,1 = O(εk(ε, β)) in H2
N(Äε). (4.27)

Proof. Let S[v]:= S1(v, T [v]). We first solve

S[ Aε,P+8ε,P,2] − S[ Aε,P] +
K∑

j=1

S1,2

(
y− Pj

ε

)
∈ Cε,P, (4.28)

for 8ε,P,2 ∈ K⊥ε,P.
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Then we solve

S[ Aε,P+8ε,P,2+8ε,P,1] − S[ Aε,P+8ε,P,2] +
K∑

j=1

S1,1

(
y− Pj

ε

)
∈ Cε,P, (4.29)

for 8ε,P,1 ∈ K⊥ε,P.
Using the same proof as in Lemma 4.4, both equations (4.28) and (4.29) have unique

solutions forε ¿ 1. By uniqueness,8ε,P = 8ε,P,1 + 8ε,P,2. SinceS1,1 = S0
1,1 + S⊥1,1,

where‖S0
1,1‖H2(Äε) = O(εk(ε, β)) andS⊥1,1 ∈ C⊥ε,P, it is easy to see that8ε,P,1 and8ε,P,2

have the required properties.

5. Existence II: The Reduced Problem

In this section, we solve the reduced problem and prove Theorem 1.1.
Let P0 be a nondegenerate critical point ofF(P).
By Lemma 4.4, for eachP ∈ Bδ(P0), there exists a unique solution(8ε,P, ψε,P) ∈ K⊥ε,P

such that

Sε

(
Aε,P+8ε,P

Hε,P+9ε,P

)
=
(
vε,P

0

)
∈ Cε,P.

Our idea is to findP= Pε ∈ Bδ(P0) such that

Sε

(
Aε,P+8ε,P

Hε,P+9ε,P

)
⊥ Cε,P. (5.1)

Let

Wε, j,i (P): = 1

k(ε, β)

∫
Äε

(
S1(Aε,P+8ε,P, Hε,P+9ε,P)∂Aε,P

∂Pj,i

)
, (5.2)

j = 1, . . . , K , i = 1,2,

Wε(P): = (Wε,1,1(P), . . . ,Wε,K ,2(P)). (5.3)

Here we recallk(ε, β) = ε2βξε .
Note thatWε(P) is a map which is continuous inP, and our problem is reduced to

finding a zero of the vector fieldWε(P).
Let

Äε,Pj = {y|εy+ Pj ∈ Ä}. (5.4)

We calculate the asymptotic expansion ofWε, j,i (P),

1

k(ε, β)

∫
Äε

S1(Aε,P+8ε,P, Hε,P+9ε,P)∂Aε,P
∂Pj,i

= 1

k(ε, β)

∫
Äε

[
1(Aε,P+8ε,P)− (Aε,P+8ε,P)+ (Aε,P+8ε,P)

2

Hε,P+9ε,P

]
∂Aε,P
∂Pj,i
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= 1

k(ε, β)

∫
Äε

[
1(Aε,P+8ε,P)− (Aε,P+8ε,P)+ (Aε,P+8ε,P)

2

Hε,P

]
∂Aε,P
∂Pj,i

+ 1

k(ε, β)

∫
Äε

[
(Aε,P+8ε,P)

2

Hε,P+9ε,P −
(Aε,P+8ε,P)

2

Hε,P

]
∂Aε,P
∂Pj,i

= I1+ I2,

whereI1 and I2 are defined at the last equality.
For I1, we have by Lemma 4.5,

I1 = 1

k(ε, β)

(∫
Äε

[
1(Aε,P+8ε,P)− (Aε,P+8ε,P)+ (Aε,P+8ε,P)

2

Hε,P(Pj )

]
∂Aε,P
∂Pj,i

−
∫
Äε

(Aε,P+8ε,P)
2

H2
ε,P(Pj )

(Hε,P− Hε,P(Pj ))
∂Aε,P
∂Pj,i

)
+ o(1)

= 1

εk(ε, β)

(
−
∫
Äε,Pj

[1(wε, j +8ε,P)− (wε, j +8ε,P)+ (wε, j +8ε,P)
2]
∂wε, j

∂yi

+
∫
Äε,Pj

(wε, j +8ε,P,2)
2(y)

(Hε,P(Pj ))2
(Hε,P(Pj+εy)−Hε,P(Pj ))

∂wε, j (y)

∂yi
dy

)
+ o(1).

Note that by Lemma 4.5,∫
Äε,Pj

[18ε,P−8ε,P+ 2wε, j8ε,P]
∂wε, j

∂yi

=
∫
Äε,Pj

8ε,P,1
∂

∂yi
[1w − w + w2] + o(εk(ε, β))

= o(εk(ε, β)), (5.5)∫
Äε,Pj

(8ε,P)
2∂wε, j

∂yi
=
∫
Äε,Pj

(8ε,P,1)
2∂wε, j

∂yi
= o(εk(ε, β)). (5.6)

Now by (4.11), (5.5), and (5.6),

I1 = o(1)− 1

εk(ε, β)

∫
Äε,Pj

w2
ε, j (y)(Hε,P(Pj + εy)− Hε,P(Pj ))

∂wε, j (y)

∂yi
dy

= o(1)+
2∑

k=1

∂F(P)
∂Pj,k

∫
R2
w2yk

∂w

∂yi

∫
R2
w2

= o(1)+ ∂F(P)
∂Pj,i

∫
R2
w2yi

∂w

∂yi

∫
R2
w2

= o(1)− 1

3

∫
R2
w3
∫

R2
w2∂F(P)

∂Pj,i
. (5.7)
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Similar to the estimate forI1, we obtain that forI2,

I2 = 1

k(ε, β)

∫
Äε

[
(Aε,P+8ε,P)

2

Hε,P+9ε,P −
(Aε,P+8ε,P)

2

Hε,P

]
∂Aε,P
∂Pj,i

= − 1

k(ε, β)

∫
Äε

(Aε,P+8ε,P)
2

H2
ε,P

9ε,P
∂Aε,P
∂Pj,i

+ o(1)

= − 1

εk(ε, β)

∫
Äε,Pj

1

3

∂w3
ε, j

∂yi
(9ε,P−9ε,P(Pj ))+ o(1). (5.8)

Now we recall that9ε,P satisfies

19ε,P− β29ε,P+ 2β2ξεAε,P8ε,P+ β2ξε8
2
ε,P = 0.

Similar computations as those leading to (4.11) show that

9ε,P(Pj + εy)−9ε,P(Pj ) =
∫
Ä

(Gβ(Pj + εy, ξ)− Gβ(Pj , ξ))β
2ξε

×
(

2Aε,P

(
ξ

ε

)
8ε,P

(
ξ

ε

)
+82

ε,P

(
ξ

ε

))
dξ

= o(εk(ε, β)|∇Pj F(P)| |y|)+ k(ε, β)R1(|y|), (5.9)

whereR1(|y|) is a radially symmetric function.
Substituting (5.9) into (5.8), we obtain that

I2 = o(1). (5.10)

Combining the estimates forI1 and I2, we obtain

Wε(P) = c0∇PF(P)+ o(1),

wherec0 = − 1
3

∫
R2 w

3
∫

R2 w
2 6= 0. Hereo(1) is a continuous function ofP, which goes

to 0 asε → 0.
At P0, we have∇P|P=P0 F(P0) = 0,det(∇P∇P|P=P0(F(P0))) 6= 0. Then, sinceWε is

continuous and forε, β small enough maps ballsBδ(P0) into (possibly larger) balls, the
standard Brouwer’s fixed point theorem shows that forε ¿ 1 there exists aPε such that
Wε(Pε) = 0 andPε → P0.

Thus we have proved the following proposition.

Proposition 5.1. For ε sufficiently small, there exist pointsPε with Pε → P0 such that
Wε(Pε) = 0.

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1.By Proposition 5.1, there existsPε → P0 such thatWε(Pε) = 0.
In other words,S1(Aε,Pε +8ε,Pε , Hε,Pε +9ε,Pε ) = 0. Let Aε = ξε(Aε,Pε +8ε,Pε ), Hε =
ξε(Hε,Pε + 9ε,Pε ). It is easy to see thatHε = ξεT [ Aε,Pε + 8ε,Pε ] > 0. HenceAε ≥ 0.
By the Maximum Principle,Aε > 0. Therefore(Aε, Hε) satisfies Theorem 1.1.
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6. Stability Analysis I: Study of Large Eigenvalues

We consider the stability of(Aε, Hε) constructed in Theorem 1.1.
Linearizing the system (GM) around the equilibrium states(Aε, Hε), we obtain the

following eigenvalue problem:
1yφε − φε + 2

Aε
Hε

φε − A2
ε

H2
ε

ψε = λεφε,
1

β2
1ψε − ψε + 2Aεφε = τλεψε.

(6.1)

HereD = 1
β2 , λε is some complex number and

φε ∈ H2
N(Äε), ψε ∈ H2

N(Ä). (6.2)

Let

Âε = ξ−1
ε Aε = Aε,Pε +8ε,Pε , Ĥε = ξ−1

ε Hε = Hε,Pε +9ε,Pε . (6.3)

Then (6.1) becomes
1yφε − φε + 2 Âε

Ĥε

φε − Â2
ε

Ĥ2
ε

ψε = λεφε,
1

β2
1ψε − ψε + 2ξε Âεφε = τλεψε.

(6.4)

In this section, we study the large eigenvalues, i.e., we assume that|λε | ≥ c > 0 for
ε small. Furthermore, we may assume that(1+ τ)c < 1

2. If Re(λε) ≤ −c, we are done.
(Thenλε is a stable large eigenvalue.) Therefore we may assume that Re(λε) ≥ −c
and for a subsequenceε → 0, λε → λ0 6= 0. We shall derive the limiting eigenvalue
problem which reduces to NLEPs.

The key references are Theorem 2.2 and Theorem 2.5.
The second equation in (6.4) is equivalent to

1ψε − β2(1+ τλε)ψε + 2β2ξε Âεφε = 0. (6.5)

We introduce the following:

βλε = β
√

1+ τλε, (6.6)

where in
√

1+ τλε we take the principal part of the square root. (This means that the
real part of

√
1+ τλε is positive, which is possible because Re(1+ τλε) ≥ 1

2.)
Let us assume that

‖φε‖H2(Äε) = 1. (6.7)

We cut offφε as follows: Introduce

φε, j (y) = φε(y)χε,Pεj (εy), (6.8)
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whereχε,Pεj (x) was introduced in (3.5).
From (6.4) using Lemma 4.4 and Re(λε) ≥ −c and the exponential decay ofw (see

(1.12)), it follows that

φε =
K∑

j=1

φε, j + e.s.t. in H2(Äε). (6.9)

Then by a standard procedure, we extendφε, j to a function defined onR2 such that

‖φε, j ‖H2(R2) ≤ C‖φε, j ‖H2(Äε), j = 1, . . . , K .

Since‖φε‖H2(Äε) = 1, ‖φε, j ‖H2(Äε) ≤ C. By taking a subsequence ofε, we may also
assume thatφε, j → φj asε → 0 in H1(R2) for j = 1, . . . , K .

We have by (6.5)

ψε(x) =
∫
Ä

2β2ξεGβλε
(x, ξ)Âε

(
ξ

ε

)
φε

(
ξ

ε

)
dξ. (6.10)

At x = Pε
i , i = 1, . . . , K , we calculate

ψε(P
ε
j ) = 2β2

∫
Ä

Gβλε
(Pε

i , ξ)

K∑
j=1

ξεw

(
ξ − Pε

j

ε

)
φε, j

(
ξ

ε

)
dξ + e.s.t.

= 2β2
∫
Ä

(
(βλε )

−2

|Ä| + G0(P
ε
i , ξ)+ O(|βλε |2)

)

×
K∑

j=1

ξεw

(
ξ − Pε

j

ε

)
φε, j

(
ξ

ε

)
dξ + e.s.t.

= 2
∫
Ä

(
1

|Ä|(1+ τλε) + β
2G0(P

ε
i , ξ)+ O(|βλε |4)

)
× ξεw

(
x − Pε

i

ε

)
φε,i

(
ξ

ε

)
dξ

+ 2
∑
j 6=i

∫
Ä

(
1

|Ä|(1+ τλε) + β
2G0(P

ε
i , Pε

j )+ O(|βλε |4)
)

× ξεw
(
ξ − Pε

j

ε

)
φε, j

(
ξ

ε

)
dξ

=
(

2
K∑

j=1

1

|Ä|(1+ τλε)ξεε
2
∫

R2
w(y)φε, j (y)dy

+ 2ξε
β2

2π
ε2 log

1

ε

∫
R2
w(y)φε,i (y)dy+ O(|βλε |2ξεε2)

)
. (6.11)

We distinguish the same three cases as in Section 3.
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Case 1:ηε → 0
We get from (6.11):

ψε(P
ε
i ) = 2

K∑
j=1

1

|Ä|(1+ τλε)ξεε
2
∫

R2
wφε, j (1+ o(1)). (6.12)

Substituting (6.12) into the first equation (6.4), lettingε → 0, and using (3.13), we arrive
at the following nonlocal eigenvalue problem (NLEP):

1φi − φi + 2wφi −
2
∑K

j=1

∫
R2 wφj

K (1+ τλ0)
∫

R2 w2
w2 = λ0φi , i = 1, . . . , K . (6.13)

If K = 1, by Theorem 2.2, problem (6.13) is stable ifτ < τ1, which implies that the
large eigenvalues of (6.4) are stable.

If τ > τ1, by Theorem 2.2, problem (6.13) has an eigenvalueλ0 with Re (λ0) ≥
a0 > 0 for somea0. We now claim that problem (6.4) also admits an eigenvalueλε with
λε = λ0+ o(1), which implies that problem (6.4) is unstable. To this end, we follow the
argument given in Section 2 of [4], where the following eigenvalue problem was studied:ε

21h− h+ pup−1
ε h− qr

s+ 1+ τλε

∫
Ä

ur−1
ε h∫

Ä
ur
ε

up
ε = λεh in Ä,

h = 0 on∂Ä,

(6.14)

whereuε is a solution of the single equation{
ε21uε − uε + up

ε = 0 inÄ,

uε > 0 inÄ, uε = 0 on∂Ä.

Here 1< p < N+2
N−2 if N ≥ 3, and 1< p < +∞ if N = 1,2, qr

(s+1)(p−1) > 1, and

Ä ⊂ RN is a smooth bounded domain.
If uε is a single interior peak solution, then it can be shown ([34]) that the limiting

eigenvalue problem is a NLEP,

1φ − φ + pwp−1φ − qr

s+ 1+ τλ0

∫
RN w

r−1φ∫
RN wr

wp = λ0φ, (6.15)

wherew is the corresponding ground state solution inRN :

1w − w + wp = 0, w > 0 in RN, w = w(|y|) ∈ H1(RN).

Dancer in [4] showed that ifλ0 6= 0, Re(λ0) > 0 is an unstable eigenvalue of (6.15),
then there exists an eigenvalueλε of (6.14) such thatλε → λ0.

We now follow his idea. Letλ0 6= 0 be an eigenvalue of problem (6.13) with Re(λ0) >

0. We first note that from the equation forψε , we can expressψε in terms ofφε . Now
we write the first equation forφε as follows:

φε = Rε(λε)
[

2
Âε

Ĥε

φε − Â2
ε

Ĥ2
ε

ψε

]
, (6.16)
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whereRε(λε) is the inverse of−1+ (1+ λε) in H2
N(Äε) (which exists if Re(λε) > −1

or Im(λε) 6= 0) andψε = F [φε ] is given by (6.10), whereF is a compact operator of
φε . The important thing is thatRε(λε) is a compact operator ifε is sufficiently small.
The rest of the argument follows exactly that in [4]. For the sake of limited space, we
omit the details here.

This finishes the caseK = 1.
If K > 1, problem (6.13) admits a positive eigenvalue: We can choose, for example,

φ1 = −φ2 = 80, φ3 = · · · = φK = 0, λ0 = µ1,

where80 is the principal eigenfunction ofL0 given in Lemma 2.1.
By the same argument as in the unstable eigenvalue case forK = 1, we conclude

that there is an eigenvalue of (6.4) with positive real part. Thus this corresponds to the
“shadow” system case: All multiple-peaked solutions are unstable.

Case 2:ηε →∞
In this case, similar to Case 1, we get from (6.11),

ψε(P
ε
i ) = 2ξε

ηε

|Ä|ε
2
∫

R2
wφε,i (1+ o(1)), (6.17)

and, for anyτ ≥ 0, in the limitε → 0 we obtain the following NLEP:

1φi − φi + 2wφi −
2
∫

R2 wφi∫
R2 w2

w2 = λ0φi , i = 1, . . . , K . (6.18)

By Theorem 2.2, (6.18) has only stable eigenvalues.
In conclusion, if ηε →∞, then the large eigenvalues of aK -peaked solution are all

stable. This is similar to the “strong coupling” system case.
Case 3:ηε → η0

Similar to Case 1, we get from (6.11),

ψε(P
ε
i ) =

(
2

K∑
j=1

1

|Ä|(1+ τλ0)
ξεε

2
∫

R2
wφε, j

+ 2ξε
η0

|Ä|ε
2
∫

R2
wφε,i

)
(1+ o(1)), (6.19)

and in the limitε → 0, we obtain the following nonlocal eigenvalue problem (NLEP):

1φi − φi + 2wφi

− 2[(1+ η0(1+ τλ0))
∫

R2 wφi +
∑

j 6=i

∫
R2 wφj ]

(K + η0)(1+ τλ0)
∫

R2 w2
w2 = λ0φi , i = 1, . . . , K .

(6.20)
Let

G =


1+ η0(1+ τλ0) 1 · · · 1

1 1+ η0(1+ τλ0) · · · 1
...

...

1 · · · · · · 1+ η0(1+ τλ0)

 .
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G is symmetric and the eigenvalues ofG are given by

ρ1 = . . . = ρK−1 = η0(1+ τλ0), ρK = K + η0(1+ τλ0).

Let P be an orthogonal matrix such that

PGP−1 =


η0(1+ τλ0) 0 · · · 0

0 η0(1+ τλ0) · · · 0

0 · · · η0(1+ τλ0) 0

0 · · · 0 K + η0(1+ τλ0)

.
From (6.20), using the notation

8 =


φ1

...

φK

,
we get

18−8+ 2w8− 2G
∫

R2 8w

(K + η0)(1+ τλ0)
∫

R2 w2
w2 = λ08.

Let P8 = 8̄. Then we get

18̄− 8̄+ 2w8̄− 2

(K + η0)(1+ τλ0)
∫

R2 w2

×


η0(1+ τλ0) 0 · · · 0

0 η0(1+ τλ0) · · · 0

0 · · · η0(1+ τλ0) 0

0 · · · 0 K + η0(1+ τλ0)


×
[∫

R2
w8̄

]
w2 = λ08̄,

and, written in components,

18̄i − 8̄i + 2w8̄i − 2ρi

(K + η0)(1+ τλ0)
∫

R2 w2

[∫
R2
w(y)8̄i (y)dy

]
w2 = λ08̄i ,

i = 1, . . . , K . (6.21)

For i = 1, . . . , K − 1, (6.21) becomes

18̄i − 8̄i + 2w8̄i − 2η0

(K + η0)
∫

R2 w2

[∫
R2
w(y)8̄i (y)dy

]
w2 = λ08̄i ,

i = 1, . . . , K − 1. (6.22)
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For i = K , (6.21) becomes

18̄K − 8̄K + 2w8̄K − 2(K + η0(1+ τλ0))

(K + η0)(1+ τλ0)
∫

R2 w2

[∫
R2
w(y)8̄K (y)dy

]
w2 = λ08̄K .

(6.23)
If K > 1 and 2η0

K+η0
< 1 (i.e., η0 < K ), then by Theorem 2.2, problem (6.22)

is unstable for allτ ≥ 0, which implies that problem (6.4) is linearly unstable for
all τ ≥ 0.

If K ≥ 1 and 2η0

K+η0
> 1, or what is equivalent,η0 > K , then by Theorem 2.2, problem

(6.22) is stable. By Theorem 2.5, problem (6.23) is stable if 0≤ τ < τ2 or τ > τ3 for
suitableτ2 ≤ τ3.

If K = 1 andη0 < 1, we only have problem (6.23). By Theorem 2.5, problem (6.23)
is stable if 0≤ τ < τ4 and unstable forτ > τ5, for suitableτ4 ≤ τ5.

This finishes the proof of Theorem 1.2 in the large eigenvalue case.

7. Stability Analysis II: Study of Small Eigenvalues

We now study (6.4) for small eigenvalues. Namely, we assume thatλε → 0 asε → 0.
We will show that the small eigenvalues are related to the matrixM(P0) given in (1.5).

Let us assume that condition (*) holds true. That is, all eigenvalues of the matrix
M(P0) are negative. Our main result in this section says that ifλε → 0, then

λε ∼ ε2k(ε, β)σ0, (7.1)

whereσ0 is an eigenvalue ofM(P0). From (7.1), we see that all small eigenvalues ofLε
are stable, provided that condition (*) holds.

Again let (Aε, Hε) be the equilibrium state of (1.7) which has been rigorously con-
structed in Theorem 1.1 and(Âε, Ĥε) be the rescaled solution given by (6.3).

We cut off Âε as follows:

Âε, j (y) = χε,Pεj (εy)Âε(y), j = 1, . . . , K , (7.2)

whereχε,Pεj was defined in (3.5).
Then it is easy to see that

Âε(y) =
K∑

j=1

Âε, j (y)+ e.s.t. in H2(Äε). (7.3)

We now give a formal argument which should explain to the reader our choice of
decomposition ofφε , which will be given in (7.8) below. Later, in Step 1 of the proof, it
will be shown that this choice gives the correct answer in leading order.

In Section 6, we have derived three NLEPs: (6.13), (6.18), (6.21). Let us now set
λ0 = 0 in (6.13). We have that

1φi − φi + 2wφi −
2
∑K

j=1

∫
R2 wφj

K
∫

R2 w2
w2 = 0, i = 1, . . . , K ,
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which is equivalent to

L0

(
φi −

2
∑K

j=1

∫
R2 wφj

K
∫

R2 w2
w

)
= 0, i = 1, . . . , K ,

whereL0 is defined at (2.1). By Lemma 2.1, we have

φi −
2
∑K

j=1

∫
R2 wφj

K
∫

R2 w2
w ∈ span

{
∂w

∂yj
, j = 1,2

}
, i = 1, . . . , K . (7.4)

Multiplying (7.4) byw and integrating overR2 and summing up, we have

K∑
j=1

∫
R2
wφj = 0,

and hence

φj ∈ K0 = span

{
∂w

∂yk
, k = 1,2

}
, j = 1, . . . , K . (7.5)

Settingλ0 = 0 in (6.18) and (6.21) and using the technical condition (1.8), we also
obtain (7.5). We omit the details. (Please see Appendix A for similar arguments.)

(7.5) suggests that, at least formally, we should have

φε ∼
K∑

j=1

2∑
k=1

aj,k
∂w

∂yk

(
y− Pε

j

ε

)
, (7.6)

whereaj,k are some constant coefficients.

Next we find a good approximation of∂w
∂yk
(y− Pεj

ε
).

Note thatÂε, j (y) ∼ w(y− Pεj
ε
) in H2(Äε), andÂε, j satisfies

1y Âε, j − Âε, j + (Âε, j )
2

Ĥε

+ e.s.t. = 0.

Thus ∂ Âε, j
∂yk

satisfies

1y
∂ Âε, j
∂yk
− ∂ Âε, j

∂yk
+ 2Âε, j

Ĥε

∂ Âε, j
∂yk
− ε (Âε, j )

2

Ĥ2
ε

∂ Ĥε

∂xk
+ e.s.t. = 0, (7.7)

and we have∂ Âε, j
∂yk
= (1+ o(1)) ∂w

∂yk
(y− Pεj

ε
).

We now decompose

φε =
K∑

j=1

2∑
k=1

aεj,k
∂ Âε, j
∂yk
+ φ⊥ε (7.8)
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with complex numbersaεj,k, where

φ⊥ε ⊥ K̃ε := span

{
∂ Âε, j
∂yk
| j = 1, . . . , K , k = 1,2

}
⊂ H2

N(Äε). (7.9)

Our main idea is to show that this is a good choice because the errorφ⊥ε is small in
a suitable norm and thus can be neglected. Then we obtain algebraic equations foraεj,k
that are related to the matrixM(P0).

Accordingly, we decomposeψε

ψε(x) =
K∑

j=1

2∑
k=1

aεj,kψε, j,k + ψ⊥ε , (7.10)

whereψε, j,k is the unique solution of the problem
1

β2
1xψε, j,k − (1+ τλε)ψε, j,k + 2ξε Âε, j

∂ Âε, j
∂yk

= 0 inÄ,

∂ψε, j,k

∂ν
= 0 on∂Ä,

(7.11)

andψ⊥ε satisfies
1

β2
1xψ

⊥
ε − (1+ τλε)ψ⊥ε + 2ξε Âεφ

⊥
ε = 0 inÄ,

∂ψ⊥ε
∂ν
= 0 on∂Ä.

(7.12)

Suppose that‖φε‖H2(Äε) = 1. Then|aεj,k| ≤ C, since

aεj,k =
∫
Äε
φε

∂ Âε, j
∂yk∫

R2

(
∂w
∂y1

)2 + o(1).

Substituting the decompositions ofφε andψε into (6.4), we have

ε

K∑
j=1

2∑
k=1

aεj,k
(Âε, j )2

(Ĥε)2

[
−1

ε
ψε, j,k + ∂ Ĥε

∂xk

]
+ e.s.t.

+1yφ
⊥
ε − φ⊥ε + 2

Âε

Ĥε

φ⊥ε −
(Âε)2

(Ĥε)2
ψ⊥ε − λεφ⊥ε

= λε
K∑

j=1

2∑
k=1

aεj,k
∂ Âε, j
∂yk

in Äε. (7.13)

Set

I3:= ε
K∑

j=1

2∑
k=1

aεj,k
(Âε, j )2

(Ĥε)2

[
−1

ε
ψε, j,k + ∂ Ĥε

∂xk

]
, (7.14)
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and

I4:= 1yφ
⊥
ε − φ⊥ε + 2

Âε

Ĥε

φ⊥ε −
(Âε)2

(Ĥε)2
ψ⊥ε − λεφ⊥ε . (7.15)

We divide our proof into two steps.
Step 1:Estimates forφ⊥ε .

The main contribution of this step is to obtain good error bounds forφ⊥ε .
We use equation (7.13). Sinceφ⊥ε ⊥ K̃ε , then similar to the proof of Proposition 4.2,

it follows that

‖φ⊥ε ‖H2(Äε) ≤ C‖I3‖L2(Äε). (7.16)

Let us now computeI3.
Let ξε andk(ε, β) be the same as in Theorem 1.1, then we calculate that forx ∈

Bδ(Pε
l ):

∂ Ĥε

∂xk
(x) = ξεβ

2
∫
Ä

∂

∂xk
Gβ(x, ξ)

(
Âε

(
ξ

ε

))2

dξ

= ξεβ
2

(∫
Ä

∂

∂xk
(K0(|x − ξ |)− H0(x, ξ))

(
Âε,l

(
ξ

ε

))2

dξ

+
∫
Ä

∑
s6=l

∂

∂xk
G0(x, ξ)

(
Âε,s

(
ξ

ε

))2

dξ + O(β4ε2)

)
,

and by (3.4),

ψε,l ,k(x) = 2β2ξε

∫
Ä

Gβλε
(x, z)Âε,l

∂ Âε,l
∂yk

dz

= εξεβ
2
∫
Ä

(K0(|x − ξ |)− H0(x, ξ)+ O(β2))
∂

∂ξk
(Âε,l )

2 dξ.

Thus forx ∈ Bδ(Pε
l ), we have

∂ Ĥε

∂xk
(x)− 1

ε
ψε,l ,k(x)

= ξεβ
2

[(∫
Ä

[
∂

∂xk
K0(|x − ξ |)

(
Âε,l

(
ξ

ε

))2

−K0(|x − ξ |) ∂
∂ξk

(
Âε,l

(
ξ

ε

))2
]

dξ

)

−
∫
Ä

[
∂

∂xk
H0(x, ξ)

(
Âε,l

(
ξ

ε

))2

− H0(x, ξ)
∂

∂ξk

(
Âε,l

(
ξ

ε

))2
]

dξ

+
∫
Ä

∑
s6=l

∂

∂xk
G0(x, ξ)

(
Âε,s

(
ξ

ε

))2

dξ + O(ε2β4)

]
.

Using the fact that

∂

∂xk
K0(|x − ξ |)+ ∂

∂ξk
K0(|x − ξ |) = 0, for x 6= ξ, (7.17)



450 J. Wei and M. Winter

and integrating by parts, we get

∂ Ĥε

∂xk
(x)− 1

ε
ψε,l ,k(x) = k(ε, β)

∫
R2
w2

(
− ∂

∂xk
Fl (x)+ o(ε)

)
, (7.18)

where

Fl (x) = H0(x, Pε
l )−

∑
j 6=l

G0(x, Pε
j ). (7.19)

Observe that
∂

∂xm
Fl (x)|x=Pεl

= o(1),

sincePε → P0 andP0 is a critical point ofF(P).
Hence, we have

‖I3‖L2(Äε) = o

(
εk(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)
, (7.20)

and

‖φ⊥ε ‖H2(Äε) ≤ C‖I3‖L2(Äε) = o

(
εk(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)
. (7.21)

Using the equation forψ⊥ε and (7.21), we obtain that

ψ⊥ε (x) = o

(
εk(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)
. (7.22)

We calculate∫
Äε

(
I4
∂ Âε,l
∂ym

)
dξ =

∫
Äε

(
Â2
ε,l

H2
ε

(
ε
∂ Ĥε

∂xm
φ⊥ε −

∂ Âε,l
∂ym

ψ⊥ε

))
dξ − λε

∫
Äε

φ⊥ε
∂ Âε,l
∂ym

=
∫
Äε,Pε

l

Â2
ε,l

Ĥ2
ε

(
ε
∂ Ĥε

∂xm
(Pε

l + εy)− ε
∂ Ĥε

∂xm
(Pε

l )

)
φ⊥ε

+
∫
Äε,Pε

l

Â2
ε,l

Ĥ2
ε

(
ε
∂ Ĥε

∂xm
(Pε

l )

)
φ⊥ε

−
∫
Äε,Pε

l

Â2
ε,l

Ĥ2
ε

∂ Âε,l
∂ym

(ψ⊥ε (P
ε
l + εy)− ψ⊥ε (Pε

l )) dξ

− λε
∫
Äε

φ⊥ε
∂ Âε,l
∂ym

= o

(
ε2k(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)
, (7.23)
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by using (7.12) and the estimate

∂ Ĥε

∂xm
= O(k(ε, β)) in Ä.

Step 2:Algebraic equations foraεj,k.
This step gives us algebraic equations foraεj,k.

Multiplying both sides of (7.13) by∂ Âε,l
∂ym

and integrating overÄε , we obtain

r.h.s. = λε

K∑
j=1

2∑
k=1

aεj,k

∫
Äε

∂ Âε, j
∂yk

∂ Âε,l
∂ym

= λε

K∑
j=1

2∑
k=1

aεj,kδj l δkm

∫
R2

(
∂w

∂y1

)2

dy(1+ o(1))

= λεa
ε
l ,m

∫
R2

(
∂w

∂y1

)2

dy(1+ o(1)),

and by (7.18) and (7.23),

l .h.s. = ε

K∑
j=1

2∑
k=1

aεj,k

∫
Äε,Pε

l

(Âε, j )2

(Ĥε)2

[
−1

ε
ψε, j,k + ∂ Ĥε

∂xk

]
∂ Âε,l
∂ym

+
∫
Äε

(
I4
∂ Âε,l
∂ym

)
dξ

= ε

K∑
j=1

2∑
k=1

aεj,k

∫
Äε,Pε

l

(Âε, j )2

(Ĥε)2

[
−1

ε
ψε, j,k + ∂ Ĥε

∂xk

]
∂ Âε,l
∂ym

+ o

(
ε2k(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)
. (7.24)

Using (7.18), we obtain

l .h.s. = εk(ε, β)
K∑

j=1

2∑
k=1

aεj,k

∫
Äε

(Âε, j )2

(Ĥε)2

(
− ∂

∂xk
Fj (x)

)
∂ Âε,l
∂xm

+ o

(
ε2k(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)

= ε2k(ε, β)
∫

R2
w2 ∂w

∂ym
ym

K∑
j=1

2∑
k=1

aεj,k

(
− ∂

∂Pε
l ,m

∂

∂Pε
j,k

F(Pε)

)

+ o

(
ε2k(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)
. (7.25)
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Note that ∫
R2
w2 ∂w

∂ym
ym = −1

3

∫
R2
w3.

Thus we have

l .h.s. = ε2k(ε, β)

3

(∫
R2
w3

) K∑
j=1

2∑
k=1

aεj,k

(
∂

∂Pε
l ,m

∂

∂Pε
j,k

F(Pε)

)

+ o

(
ε2k(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)
. (7.26)

Combining thel .h.s. andr.h.s, we have

ε2k(ε, β)

3

(∫
R2
w3

) K∑
j=1

2∑
k=1

aεj,k

(
∂

∂Pε
l ,m

∂

∂Pε
j,k

F(Pε)

)

+ o

(
ε2k(ε, β)

K∑
j=1

2∑
k=1

|aεj,k|
)
= λεaεl ,m

∫
R2

(
∂w

∂y1

)2

dy(1+ o(1)). (7.27)

From (7.27), we see that the small eigenvalues withλε → 0 satisfy|λε | ∼ ε2k(ε, β).
Furthermore,

λε

ε2k(ε, β)
→

∫
R2 w

3

3
∫

R2(
∂w
∂y1
)2dy

σ0,

asε → 0, whereσ0 is an eigenvalue of the matrixM(P0), andPε → P0 asε → 0. (The
vector Eaε = (aε1,1,a

ε
1,2, . . . ,a

ε
K ,2)

T approaches an eigenvector ofM(P0) correspond-
ing to σ0.) By condition (*), the matrixM(P0) is negative definite, and it follows that
Re(λε) < 0. Therefore, the small eigenvaluesλε are stable for (6.4) ifε is small enough.

Completion of the proofs of Theorem 1.2.Theorem 1.2 now follows from Section 6 and
Section 7.

8. Discussion

Let us discuss what has been achieved in this paper and which important questions
are still left open. We have investigated the Gierer-Meinhardt system, which is a very
important reaction-diffusion system within the class of Turing systems. We study the
weak coupling case, i.e., the diffusion coefficientD of the inhibitor tends to infinity,
for small diffusion coefficientε2 of the activator. In a bounded domain, we rigorously
prove existence of multipeaked solutions and are able to locate the peaks in terms of the
Green’s function and its derivatives.

Furthermore, we derive rigorous results on linear stability. There areo(1) eigenvalues
which are given to leading order in terms of the Green’s function and its derivatives and
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are implicitly linked to the spike locations. It would be desirable to find conditions on the
small eigenvalues which are not given in terms of the Green’s function and its derivatives
but explicitly in terms of the domainÄ.

On the other hand, there are alsoO(1) eigenvalues which are given as eigenvalues
of related nonlocal eigenvalue problems inR2. For many cases, we can show that these
O(1) eigenvalues lie on the left or right half of the complex plane. Some of the cases—
in particular, in the borderline caseηε → K and in the case thatτ is finite—are still
missing.

There are no results in either the weak or the strong coupling case on the dynamics of
the full Gierer-Meinhardt system in a two-dimensional domain. Furthermore, there are no
results at all about the existence or stability ofK -peaked solutions in a three-dimensional
domain. These important questions are still open.

9. Appendix A: Invertibility of the Linearized Operator and the Proofs of Propo-
sitions 4.2 and 4.3

In this appendix we prove Propositions 4.2 and 4.3. This establishes the invertibility of
the linearized operator.

Proof of Proposition 4.2.We follow the Liapunov-Schmidt reduction method, which
has been used in [7] and [37]. Suppose that (4.21) is false. Then there exist sequences
{εk}, {βk}, {Pk}, and{6k} with

εk > 0, εk → 0, βk > 0, βk → 0, Pk ∈ 3δ,

6k =
(
φk(y)

ψk(x)

)
∈ K⊥εk,Pk

such that

‖Lεk,Pk6k‖L2(Äεk )×L2(Ä)→ 0, (9.1)

‖6k‖H2(Äεk )×H2(Ä) = 1, k = 1, 2, . . . . (9.2)

Written explicitly, we have the following situation:

1yφk − φk + 2Aεk,Pk H−1
εk,Pk

φk − A2
εk,Pk

H−2
εk,Pk

ψk = f 1
k + f 2

k , (9.3)

where

‖ f 1
k ‖L2(Äεk )

→ 0, f 2
k ∈ C⊥εk,Pk

,

1xψk − β2
kψk + 2β2

kξεk Aεk,Pkφk = gk, (9.4)

‖gk‖L2(Ä)→ 0, φk ∈ K⊥εk,Pk
, (9.5)

‖φk‖2H2(Äεk )
+ ‖ψk‖2H2(Ä) = 1. (9.6)
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We now show that this is impossible. To simplify notation, we setAk = Aεk,Pk , Äk =
Äεk , ξk = ξεk .

In the first step of the proof, we show that the linearized problem given by (9.3),
(9.4) tends to a limit problem asε → 0. This analysis is very similar to the one given
in Section 6 in the caseλ0 = 0. In fact, the analysis in Section 6 also covers this case
(but does not give the leading order of theo(1) eigenvalues and their eigenfunctions).
Therefore we may introduceφεk, j , j = 1, . . . , K as before by cut-off and extension.

If we decompose

φk =
K∑

j=1

φk, j + φk,K+1,

it is easy to see thatφk,K+1 = o(1) in H2(Äk) because it satisfies the equation

1yφk,K+1− φk,K+1 = o(1) in H2(Äk).

This implies

φk,K+1 = o(1) in H2(Äk).

We define9k,i for i = 1, . . . , K + 1 by

1x9k,i − β2
k9k,i + 2β2

kξε,k Aεk,Pkφk,i = 0,
∂9k,i

∂ν
= 0 on∂Ä.

Note that as‖gk‖L2(Ä)→ 0, we have

‖ψk −
K+1∑
k=1

ψk,i ‖H2(Ä)→ 0.

Sinceφk,K+1 = o(1) in H2(Äk), we also have‖ψk,K+1‖H2(Ä) = o(1).
Lettingk→∞, it can be shown as in Section 6 that

φεk, j → φj in H2(R2).

Then fori = 1, . . . , K we have

φi ∈
{
φ ∈ H2(R2) |

∫
R2
φ
∂w

∂yj
dy= 0, j = 1,2

}
= K⊥0 ,

andφi has to satisfy the following nonlocal linear problem:
Case 1:ηε → 0

1φi − φi + 2wφi −
2
∑K

j=1

∫
R2 wφj

K
∫

R2 w2
w2 ∈ C⊥0 . (9.7)

Case 2:ηε →∞

1φi − φi + 2wφi −
2
∫

R2 wφi∫
R2 w2

w2 ∈ C⊥0 . (9.8)
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Case 3:ηε → η0

1φi − φi + 2wφi −
2[(1+ η0)

∫
R2 wφi +

∑
j 6=i

∫
R2 wφj ]

(K + η0)
∫

R2 w2
w2 ∈ C⊥0 , (9.9)

where

C0:= span

{
∂w

∂yj
, j = 1,2

}
,

andK⊥0 , C⊥0 denotes the orthogonal complement with respect to the scalar product of
L2(R2) in the spaceH2(R2) andL2(R2), respectively.

After transforming the functions(φ1, . . . , φK ) in Case 3 in the same way as in Sec-
tion 6 (i.e., diagonalizing the matrixG) and in Case 1 diagonalizing the matrix

H =


1 1 · · · 1

1 1 · · · 1
...

...
...

...

1 1 · · · 1

 ,

we get the following decoupled equations forφi :

1yφi − φi + 2wφi − 2ρi

∫
R2 wφi∫
R2 w2

w ∈ C⊥0 , (9.10)

where

ρi =


0, . . . ,0, K in Case 1,

1, . . . ,1 in Case 2,
η0

K + η0
, . . . ,

η0

K + η0
, 1 in Case 3.

SinceL0w = w2, (9.10) can be written as

(1y − 1+ 2w)

(
φi − 2ρi

∫
R2 wφi∫
R2 w2

w

)
∈ C⊥0 .

Since the operator

L0 = 1y − 1+ 2w: K⊥0 → C⊥0
is one-to-one map with bounded inverse (by Lemma 2.1), we have

φi − 2ρi

∫
R2 wφi∫

R2 w
= 0. (9.11)

Now we multiply byw and integrate. This gives

(1− 2ρi )

∫
R2
wφi = 0. (9.12)
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If ρi 6= 1
2, then by (9.12), ∫

R2
wφi = 0,

which implies that

L0φi = 0, i = 1, . . . , K ,

and by Lemma 2.1 that

φi ∈ K0, i = 1, . . . , K .

Therefore by (9.11),

φi = 0, i = 1, . . . , K .

Now we can explain why Remark (1.1) is important: It is easy to see thatρi = 1
2 for

somei if and only K > 1 andη0 = K . In this case, the method of Liapunov-Schmidt
reduction is not readily applicable.

By taking the limit in (9.4), we see that this impliesψi → 0 in H2(Ä).
Furthermore, the assumption (9.6) implies that

K∑
i=1

(‖φi ‖2H2(R2) + ‖ψi ‖2H2(Ä)) = 1.

This contradictsφi = ψi = 0, and the proof of Proposition 4.2 is completed.

Proof of Proposition 4.3.We just need to show that the conjugate operator ofLε,P
(denoted byL∗ε,P) is injective fromK⊥ε,P to C⊥ε,P. Suppose not. Then there existφ ∈
K⊥ε,P, ψ ∈ W2,t

N (Ä) such that

1yφ − φ + 2Aε,PH−1
ε,Pφ + 2ξεβ

2Aε,Pψ ∈ C⊥ε,P,

1xψ − β2ψ − A2
ε,PH−2

ε,Pφ = 0,

‖φ‖2H2(Äε)
+ ‖ψ‖2H2(Ä) = 1.

Similar to the proof of Proposition 4.2, we obtain

Lε,Pφ + o(1) ∈ C⊥ε,P, φ ∈ K⊥ε,P.

By Proposition 4.2,‖φ‖H2(Äε) = o(1), and hence‖ψ‖H2(Ä) = o(1). This is a contradic-
tion, and the proof of Proposition 4.3 is finished.
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