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Summary. In this paper, we rigorously prove the existence and stability of multiple-
peaked patterns that are far from spatial homogeneity for the singularly perturbed Gierer-
Meinhardt system in a two-dimensional domain. The Green'’s function, together with its
derivatives, is linked to the peak locations and todk® eigenvalues, which vanish in

the limit. On the other hand two nonlocal eigenvalue problems (NLEPS), one of which
is new, are related to th®(1) eigenvalues. Under some geometric condition on the
peak locations, we establish a threshold behavior: If the inhibitor diffusivity exceeds the
threshold, then we get instability; if it lies below, then we get stability.
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1. Introduction

Morphogenesis is the development of an organism from a single cell. This complex
process can be understood by dividing it into several elementary steps, such as the
change of cell shapes, cell to cell interaction, growth, and cell movement. One of the
most important of these elementary steps is the formation of a spatial pattern of cell
structure, starting from an almost homogeneous cell distribution.

Turing, in his pioneering work in 1952 [29], proposed that a patterned distribution of
two chemical substances, called the morphogens, could trigger the emergence of such a
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cell structure. He also gives the following explanation for the formation of the morpho-
genetic pattern: It is assumed that one of the morphogens, the activator, diffuses slowly
and the other, the inhibitor, diffuses much faster. In the mathematical framework of a
coupled system of reaction-diffusion equations with very different diffusion coefficients,
he shows by linear stability analysis that the homogeneous state may be unstable. In par-
ticular, a small perturbation of spatially homogeneous initial data may evolve to a stable
spatially complex pattern of the morphogens.

Since the work of Turing, a lot of models have been proposed and analyzed to explore
more fully this phenomenon, which is now called Turing instability, and its implications
for the understanding of various patterns. One of the most famous of these models is the
Gierer-Meinhardt system [8], [19]. In two dimensions after rescaling and considering a
special case, it can be stated as follows:

AZ
At:GZAA_A—i_F’ A>O, II’]Q,
(GM) tH; = DAH — H + AZ, H>0 ing,
A JoH
—=—=0 onog.
av av

The unknownsA = A(x,t) andH = H(x,t) represent the concentrations of the
activator and inhibitor at a point € Q ¢ R?> and at a time > 0; A: = ijzl ad_xzz is the
i

Laplace operator ifR?; Q2 is a bounded and smooth domainRA; v = v(x) is the outer
normal atx € 9. Throughout this paper, we assume that

€K1, € does not depend anort,

7 > 0 is a fixed constant which does not dependxani, ore,

D > 0 does not depend onor t but may depend oa,

D « e, wheres > 0 is a small constant which is independentof 0.

In this paper, we further assunie— oo ase — 0 (and call this theveak coupling
case).

Numerical studies by Meinhardt [19] and more recently by Holloway [12] and Maini
and Mclnerney [18] have revealed that wheis small andD is finite, (GM) seems to
have stable stationary states with the property that the activator is mainly concentrated
in K peaks which are each placed né&adifferent points in2 whose locations satisfy
suitable conditions. Moreover, as— 0, the pattern exhibits goint condensation
phenomenon.” By this we mean that these peaks become narrower and narrower and
eventually shrink to the set of points itself. In fact, their spatial extension is of the order
O(e). We also say that the spike solutions “concentrate” at the set of points. Furthermore,
we remark that the maximum value of activator and inhibitor, respectively, diverges
to 4-o0.

Although it has been observed numerically that these patterns are stable, giving a
rigorous proof of these facts has been an open problem. Namely, how can one rigorously
construct these solutions? Where are the peaks located? Are these solutions stable?

Inthis paper we solve these questions. We explicitly give a rigorous constructon of
peaked stationary states by using the powerful method of Liapunov-Schmidt reduction.
This enables us to reduce the infinite-dimensional problem of finding an equilibrium
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state to (GM) to the finite-dimensional problem of locating Heoints at which the
spikes concentrate. We give a sufficient condition for the locations of these points in
terms of the derivatives of Green'’s function.

Furthermore, concerning stability, one has to study separately the eigenvalues of the
orderO(1), which are called “large eigenvalues,” and the eigenvalues of the oftier
which are called “small eigenvalues.” We show that the small eigenvalues are related
to the derivatives of Green'’s function and to the spike locations. Suppose these small
eigenvalues all have negative real parts andthatfarge orK > 1, then the following
result holds true and is the main contribution of this paper:

Fore « 1 there are stability thresholds

Di(e) > Dy(€) > D3(€) > --- > Dg(e) > ---,

such that
if lim ..o 2< > 1, then theK -peaked solution is stahle
and if lim,_,o 2< < 1, then theK -peaked solution is unstable.

Furthermore, we will show that

2] 1
DK(G) = m |Ogg ase — 0.
In particular, if
lim 7 =0 ase >0,
e—0 |Og =

then, for every positive integdf, the K -peaked solution is stable fersmall enough.
This recovers our earlier result in terong coupling case, [40].
We now describe the results of the paper in detail.
We first introduce a Green'’s functid@y which we need to formulate our main results.
Let Go(X, &) be the Green’s function given by

AGo(X, ) — 1. 5:(x)=0 inQ,

€2
f Go(x, &)dx =0, (1.2
Q
3G, §) _ 0 onag,
av

and let

— Go(x, §) 1.2

1 1
Ho(x.£) = 5 -log - ——

be the regular part dBo(X, &).
DenoteP € QK, whereP is arranged such that

P= (P, Ps..., Px),
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P=(PR1,PR2 fori=12... K.
For the rest of the paper we assume at A, where for§ > 0 we define

As ={(P,Pa,...,P) e QX |P — P| > 48 fori # |,

and d(P,0Q)>45 fori=12...,K} (1.3)
ForP € A;, we define,
F(P) = iHomk, Po— Y. Go(P, P, (14)
k=1 i,j=1,...K,i#]
and
M(P) = (V5F (P)). (15)

HereM (P) isa(2K) x (2K ) matrix with component%, i,k=1...,K,j, I =
1, 2 (recall thatP, ; is the j-th component o). o

Note thatF (P) € C*(Ay).

Set

1 g, 1

—, o= log —. 1.6
52 n o g . (1.6)
ThenD — +o0is equivalenttgd — 0.

The stationary system for (GM) is the following system of elliptic equations:

D:

A2
EZAA—A—'—F:O, A>O, II’IQ,
1
EAH—H-l—AZ:O, H>0 ing, (1.7
dA  9H
—=—=0 onog.
ov av

Our first theorem concerns the existenc&efpeaked solutions.

Theorem 1.1. LetP® = (P2, PY,..., P?) € A; be a nondegenerate critical point of
F(P) (defined by (1.4)). Moreover, we assume that the following technical condition
holds:

if K >1, then Iimon6 # K, (1.8)

wherer, is defined by (1.6).

Then fore sufficiently small and D= 5—12 sufficiently large, problem (1.7) has a
solution(A, H,) with the following properties:

(1) Ac(x) = &(Zszl w(x_eF>j ) + O(k(e, B))) uniformly for x € Q. Herew is the
unigue solution of the problem

Aw —w + w2 =0, w >0, inR?
(1.9

w(0) = maxer: w(y), w(y) - 0, asly| - oo,



Two-Dimensional Gierer-Meinhardt System 419

1
K €2 fRz wz(y) dy’
1 |22

e €2 [p w3(y) dy’
1 Q|

K + o €2 [ w?(y) dy’

if ne — 0,
if ne — oo, (1.10)

If r]é - 770,

and
k(e, B): = €€ B (1.11)

(By (1.10), Ke, B) = omim@, B2).)

Furthermore, PP — F’i0 ase — Oforj =1,..., K.

(2) He(x) = £.(1+ O(k(e, B))) uniformly for x € .

Remark(1.1) Condition (1.8) in Theorem 1.1 is a technical condition that is needed for
the Liapunov-Schmidt reduction process. In Appendix A we will explain how it arises.

For existence and uniqueness of the solutions of (1.9), we refer to [9] and [16]. We
also recall that

w(y) ~ ly| Y% as|y| - co. (112

Next we study the stability and instability of the-peaked solutions constructed in
Theorem 1.1. To this end, we need to study the following eigenvalue problem,

2

A

é A — e + 2,%«;56 — v p

. (10) | 171 E é :M( ) 49
¢ - (ﬁAwe - 1/’5 + 2A€¢e>

T

where (A, H,) is the solution constructed in Theorem 1.1 ande C - the set of
complex numbers.

We say that(A., H.) is linearly stable if the spectrumv (L,) of L, lies in the left
half-plane{’ € C: Re (L) < 0}. (A, H,) is calledlinearly unstable if there exists an
eigenvaluer, of £, with Re (o) > 0. (From now on, we use the notatioliisearly
stableandlinearly unstableas defined above.)

Our second main result, which is on stability, is stated as follows.

Theorem 1.2. LetP° € A be a nondegenerate critical point of(P), and fore suf-
ficiently small and D= ﬂ—lz sufficiently large, let A., H¢) be the K—peaked solutions

constructed in Theorem 1.1 whose peaks apprd¥ch
Assume (1.8) holds and further that

(%) PO is a nondegenerate local maximum point aiPF.
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Then we have
Case 1n. — O(i.e., Z2 > log?).

If K =1, then there eX|sts a unique > 0 such that forr < 71, (A, H,) is linearly
stable, while forr > 11, (A, H,) is linearly unstable.

If K > 1, (A, Ho) is Iinearly unstable for any > 0.
Case 2.5, — + (i.e., | ° < log?l).

(A¢, Ho) is linearly stable for any > 0
Case 31 — no € (0, +00) (i.e., |Q| ~ L1ogl).

If K > landny < K, then(A., H )|sﬁlnearly unstable for any > O.

If no > K, then there exis® < 1, < 73 such that(A., H) is linearly stable for
T <1andt > 13

If K =1, no < 1, then there exidd < 14 < 15 such that(A., H,) is linearly stable
for T < 74 and linearly unstable fot > s.

The statement of Theorem 1.2 is rather long. Let us therefore explain the results by
the following remarks.

Remarks. (1.2) Assuming that condition (*) holds, then fosmall the stability behavior
of (A¢, He) can be summarized in the following table:

Case 1 Case 2 CaseB (< K) Case 31 > K)

K =1, r small stable stable stable stable
K =1, 7 finite ? stable ? ?

K =1, t large unstable stable unstable stable
K > 1, r small unstable stable unstable stable
K > 1, 7 finite unstable stable unstable ?

K > 1, 7 large unstable stable unstable stable

(1.3) The condition (*) on the locatior® arises in the study of smatb(1)) eigenval-
ues. For any bounded smooth dom&nthe functionalF (P), defined by (1.4), always
admits a global maximum at son®8 € A; (for some smalb > 0). The proof of this
fact is similar to that in the appendix in [40]. We believe thaganericdomains, this
global maximum poinP?° is nondegenerate.

It is an interesting open question to numerically compute the critical poirfeg©f
and link them explicitly to the geometry of the doma&in

We believe that for other types of critical points BfP), such as saddle points, the
solution constructed in Theorem 1.1 should be linearly unstable. We are not able to prove
this at the moment, since the operafhris not self-adjoint.

(1.4) Case 1 and Case 3 with < K resemble thehadow systemand Case 2 and
Case 3 withng > K are similar to thestrong coupling case. Theorem 1.2 contains a
new result even in the shadow system case: For the limiting nonlocal eigenvalue problem
(NLEP), we have shown the uniqueness of Hopf bifurcation 8temma 2.4); compare
[24], [34]. Note that our is fixed. If we allow T to vary with respect te, we conjecture
that there is a unique (¢) = 11 + 0(1) such that Hopf bifurcation occurs fdr,.

(1.5) We conjecture that in Case,= t3. This will imply that for anyr > 0 and
no > K, multiple spikes are stable, provided condition (*) is satisfied. (It is possible to
obtain explicit values fot, andrs. See the Remark 2.2 after the proof of Theorem 2.5.)
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(1.6) Roughly speaking, assuming that condition (*) holds andthat 1 or r is
large, then for « 1, Dk (e) = % Iog% is the critical threshold for the asymptotic
behavior of the diffusion coefficient of the inhibitor which determines the stability of
K -peaked solutions. Thus we have established a result which is similar as in the one-
dimensional case, [14], [41]. In [14] the case wheis small is studied by a matched
asymptotic analysis approach. A rigorous proof of the results of [14] is contained in [41].
A dynamics approach that covers the case of generaD but is restricted to the whole
R! or to periodic boundary conditions is contained in [6]. However, in higher dimensions
the analysis is very different because it has to reflect the geometry of the domain, which
is trivial for an interval on the real line (where the peaks are placed equidistantly).

Let us recall the result in the one-dimensional case. It is shown ([14K for2 that
the critical threshold®k (¢) = Dk are in leading order independentafMoreover,
the critical thresholds arise in the computation of the small eigenvalues. H&# in
Dk () — +o00 ase — 0. FurthermoreDx (¢) is obtained in the study of the large
eigenvalues. Since these thresholds are independent of the peak locations, they can be
studied without considering higher-order terms of the equilibrium.

(1.7) We have obtained the leading order asymptotics for the critical threBhale)
which is the order Iocj. This is true if we take sufficiently small. In practice, it will be
very useful to obtain the next order term in the asymptotic expansi@x@é), which
we believe should b&®(1).

We now comment on some related work.

Generally speaking, system (1.7) is quite difficult to solve because it has neither a
variational structure nora priori estimates. One way to study (1.7) is to examine the
so-calledshadow systemNamely, we letD — +oo first. It is known (see [15], [20],

[27]) that the study of the shadow system amounts to the study of the following single
equation forp = 2:

€2Au—Uu+uP =0, u>0, ing,

ou 1.14
— =0 onog2. ( )
dv

Equation (1.14) has a variational structure and has been studied by numerous authors.
It is known that equation (1.14) has both boundary spike solutions and interior spike
solutions. For the existence of boundary spike solutions, see [1], [10], [21], [22], [23],
[32], [37], [38], and the references therein. For the existence of interior spike solutions,
please see [11], [26], [31], [33], and the references therein. For the stability of spike
solutions, please see [2], [13], [24], [25], [34], [35]. For dynamics, we refer to [3].

Now we describe some previous results for the two-dimensional strong coupling
case, i.e., for finitdd ~ 1. In [39], we constructed single interior spike solutions to (1.7)
(without loss of generality, we assumed tliat= 1). Then in [40] we continued that
study: After constructing interidk -peaked solutions, we also proved that they are stable
for © = 0 provided that the limiting peak® = (P2, ..., P?) are a nondegenerate local
maximum point of the following functional:

K
FiP) =) Hi(R.P)— Y. GuPR,P, (115)
k=1

=1 K]
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whereG; (P, x) is Green’s function of- A 4+ 1 under the Neumann boundary condition,
i.e., G, satisfies

—AG;+ Gy =6p in Q,

G
2 onog.
v

Heresp is the Dirac delta distribution at a poift, and
Hi(P, X) = Ky(Ix = P|) — G1(P, x),

whereK1(|x]) = % log ‘71| is the fundamental solution ef A + 1 in R? with singularity
at 0.

Therefore for any finitd ~ 1, the stability ofk —peaked solutions does not depend
on D but on the peak locations only.

In the case of boundary spikes for the weak coupling case, the boundary mean curva-
ture may interact with the Green'’s function. We will study this effect in a forthcoming
paper.

Finally we remark that some of the results of Theorem 1.1 and Theorem 1.2 may be
extended to the following generalized Gierer-Meinhardt system:

AP .
A’[:EZAA—A+ m, A>O, n Q,
. A .
(Generalized GNI tH; = DAH — H + e H>0 ingQ,
oA 0oH
—=—=0 onog,
ov av

where the exponent, q, r, s) satisfy the following conditions:

(P—D(s+1)

For example, the existence result Theorem 1.1 can be applied to the above system
without any technical difficulty. For the stability result Theorem 1.2, there should be
some restrictions on the, q, r, S). See [4], [24], [25], [36], and [42] for related studies
on NLEPs. We shall leave this to further investigations.

Other work on concentrated solutions for reaction-diffusion systems includes [5],
[28], [30], and the survey [20].

The structure of the paper is as follows:

Section 2: Study of Two NLEPs
Section 3: Calculations on the Heights of the Peaks

p>1, g > 0, r >0, s> 0,

Preliminaries{

ection 4: Reduction to Finite Dimensions

Existence: Proof of Theorem 1{Jéection 5: Solving the Reduced Problem

Section 6: Study of Large Eigenvalues

Stability: Proof of Theorem 1'%Section 7: Study of Small Eigenvalues

The proof of the invertibility of the linearized operator is delayed to Appendix A.
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Throughout the pape€ > 0 is a generic constant that is independert ahdg and
may change from line to line ardds a very small but fixed constant. We always assume
thatP, P° € A;, whereA; was defined in (1.3), and thi — P°| < 45. To simplify our
notation, we use.s.t. to denote exponentially small terms in the corresponding norms;
more preciselye.s.t. = O(e~%¢). The notationA(e¢) ~ B(e) means that lim., ¢ 38 =
Co > 0, for some positive numbes.

2. Preliminaries I: Some Properties ofw and the Study of Two Nonlocal Eigenvalue
Problems (NLEPS)

Let w be the unique solution of (1.9). In this section, we study some propertiesasf
well as two NLEPs.
Let

Lop = Ap — ¢ + 2wo, ¢ € H3(R?). (2.2)

We first recall the following well-known result:
Lemma 2.1. The eigenvalue problem
Lop = nd, ¢ e HARY, (22)
admits the following set of eigenvalues

pm1>0,  pz=puz=0, pa<0,.... 2.3

The eigenfunctio®g corresponding ta.; can be made positive and radially symmetric;
the space of eigenfunctions corresponding to the eigensisie

Jw
Ko: = —,j=12. 2.4
0 Span{ayj,l } (2.4

Proof. This lemma follows from Theorem 2.1 of [17] and Lemma C of [22]. O

Next, we consider the following two nonlocal eigenvalue problems:

Loi= g -+ 206 — B0 _s0p pem2RD, 29)

Jre w?

wheren > 0, T > 0, or

where either (ay = i .
14 thAo
2(K 4+ no(1+ tX0))
(b)y = :
(K + no)(1+ Tho) _
Case (a) will be studied in Theorem 2.2 and Case (b) in Theorem 2.5.
Problem (2.5) plays the key role in the study of large eigenvalues (Section 6 below).
It is here that the critical stability thresholds arise.

whereng > 0, T > 0.
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We consider case (a) first:

Theorem 2.2. Lety = z- whereu > 0, 7 > 0, and let L be defined by (2.5).
(1) Suppose that > 1. Then there exists a unique= 1; > 0 such that forr < 13,
(2.5) admits a positive eigenvalue, and foe- 13, all nonzero eigenvalues of problem

(2.5) satisfy Rév) < 0. At = 13, L has a Hopf bifurcation.

(2) Suppose that < 1. Then L admits a positive eigenvalug > O.
Proof of Theorem 2.2.Theorem 2.2 will be proved by two lemmas below.
Lemma 2.3. If u < 1, then L has a positive eigenvalig > 0.

Proof. By arguments similarto [4] or [42], we may assume thata radially symmetric
function, namelyp € H2(R?) = {u € H?(R?)|u = u(|y|)}. Let Lo be given by (2.1).
Then by Lemma 2.1L ¢ is invertible in H?(R?). Let us denote the inverse ag§®. By
Lemma 2.1L ¢ has a unique positive eigenvalue. It is easy to see that # u; since
Jre w®o > 0.

Thenig > 0 is an eigenvalue of (2.5) if and only if it satisfies the following algebraic
equation:

2_ M g N-1,2
/sz =1+t /Rz[((Lo do) Tw)w]. (2.6)

Equation (2.6) can be simplified further to the following:

P00 = (=D~ ti0) [ w4 piho [ [(Lo=do) tuw] =0, @7)
R’ R
Note thato(0) = (u—1) [, w? < 0. Onthe other hand, ag — 1, 1o < w1, we have
fRz((Lo — 20)tw)w — 400, and hencev (Lg) — +oo. By continuity, there exists a
Mo € (0, 1) such thafo(Ag) = 0. Such a positive will be an eigenvalue of.. O

Next we consider the cage > 1. As in [4], we may consider radially symmetric
functions only. By Theorem 1.4 of [34], far = 0 (and by perturbation, far small), all
eigenvalues lie on the left half-plane. By [4], folarge, there exist unstable eigenvalues.

Note that the eigenvalues will not cross through zero: In fagg i 0, then we have

fRZ we
Logp — =0,
0¢ 1% fRz U)2 w
which implies that
Jre 0o
L - =0,
0 <¢ s [ w)
and hence, by Lemma 2.1,
1) fRZ w¢w € Ko.

_Mfszz
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This is impossible since is radially symmetric ang # cw forallc € R.

Thus there must be a point at whichL has a Hopf bifurcation, i.eL, has a purely
imaginary eigenvalue = +/—1«,. To prove Theorem 2.2 (1), all we need to show is
thatz; is unique. That is,

Lemma 2.4. Let u > 1. Then there exists a unique > 0 such that L has a Hopf
bifurcation.

Proof. Let .o = +/—1a, be an eigenvalue df. Without loss of generality, we may
assume thak;, > 0. (Note that—/—1«, is also an eigenvalue df.) Let¢g = (Lo —
/—1a)"tw?. Then (2.5) becomes

Jrewdo 1+ 7/ =1o,

(2.8
Jre w2 M
Letgo = ¢§ + \/—1¢('). Then from (2.8), we obtain the two equations
Jeewds _ 1 2.9)
fRZ w2 M’
Jre WA _ T 210
Jre w? H
Note that (2.9) is independent of
Let us now computg, wei. Observe thatgf, ¢g) satisfies
Logs = w® —aigg, Loy = g
SopR = a; Log) and
do = oy (L2 + o®)tw?, dX = Lo(L3 + o) tw?. (2.11)
Substituting (2.11) into (2.9) and (2.10), we obtain
JrelwLo(Ls +2“'2)71“’2] _1 (2.12)
fR? w M
fRZ[w(L‘%“‘Z'Z T (2.13)
fRz w w
f > wLo(Lngotlz)’lw2 . 3 ) f 2 wz(Lngozlz)’lw2
Leth(a)) = %.Thenmtegraﬂon by parts givase, ) = Rﬁ
Y 2V

2(L§+otlz)’2w2

fRZ w?
ho = Je o v
Jre w? ’
h(a)) — 0asa; — oo, andu > 1, there exists a uniqug > 0 such that (2.12) holds.
Substituting this unique, into (2.13), we obtain a unigue= 1; > 0.
Lemma 2.4 is thus proved. O

Note thath' (¢;) = —2« Jie < 0. So since



426 J. Wei and M. Winter

Proof. Theorem 2.2 now follows from Lemma 2.3 and Lemma 2.4. O

Remark. (2.1) Theorem 2.2 is true iRN, N < 4. The existence of a Hopf bifurcation
has been studied in [4], [24], [25], [42]. Here we have provediuthiguenessof such a
Hopf bifurcation, which is new and interesting in its own right.

Finally we study case (b), namely the following NLEP:

2(K 4+ no(1+ t20)) [re w w2

2/ p2
(K +10)(L+tho) [ro w? w®=lop, ¢ € HYR), (214

Ap — ¢+ 2wp —

where O< ng < +oocand 0< t < +o0 .
Then we have

Theorem 2.5. (1) If np < K, then fort small, problem (2.14) is stable, while feor
large it is unstable.

(2) If no > K, then there exist® < 1, < 3 such that problem (2.14) is stable for
T<T20rT > 13.

Proof. Let us set
2(K +no(1+t1))

f(zh) = . 2.1
) = K Fnodt o 215
We note that
2
lim foh) = —L — f_.
TA—>~400 K 4+ 1o

If no < K,thenby Theorem 2.2 (2), problem (2.5) with= f., has a positive eigenvalue
a1. Now by perturbation arguments (similar to those in [4]), fdarge, problem (2.14)
has an eigenvalue neay > 0. This implies that for large, problem (2.14) is unstable.
Now we show that problem (2.14) has no nonzero eigenvalues with nonnegative real
part, provided that either is small orng > K andr is large. (It is immediately seen
that f(tA) — 2astA — Oandf(tA) — 7210K > 1lastA — +o0if ng > K. Then
Theorem 2.2 should apply. The problem is that we do not have control. oHere we
provide a rigorous proof.)
We apply the following inequality (Lemma 5.1 in [34]): For any (real-valued function)

¢ € H2(R?), we have
2., 42 2 fR2w¢fR2w2¢_ Jrew? (/ )2
/R2(|v¢| + 0% = 2ug?) + 275 (e (fve) =0 @10

where equality holds if and only i is a multiple ofw.
Now letio = Ar + v/ =114, ¢ = ¢r + ~/—1¢ satisfy (2.14). Then we have

Jre ve 2
Jre w?

Log — f(z20) = hoo. 217
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Multiplying (2.17) by ¢—the conjugate function ap—and integrating oveR?, we
obtain that

we -
[ AVoi 11~ 200 = <3 [ 161 foole™ [ W2 @ap
R2 R2 fRz w R2
Multiplying (2.17) byw and integrating oveR?, we obtain that
3
/ w?p = <A0+ f(mo)—f R w2> / wé. (2.19)
R2 fRz w R2
Taking the conjugate of (2.19), we have
3
/ w?p = (/\'o+ f(t)_»o)fRz wz)/ we. (2.20)
R? fRZ w R?

Substituting (2.20) into (2.18), we have that
f(|V¢|2+|¢|2—2w|¢|2> = —)»0/ 1912 — f(zh0)
R2 R2

3 2
« ()10+ f (7o) Y ) | Je wel” (2.21)

Jre w? Jre w?

We just need to consider the real part of (2.21). Now applying the inequality (2.16) and
using (2.20), we arrive at

3 3 3
—ARZ Re(f(fko) (io+ f(rio)fsz ))—2 Re<)_»o+ f(r)_»o)fsz )+fR2w

fszZ fR2w2 fRsz’

where we recallg = Ar + ~/—1A; with Ar, A € R.
Assuming thakg > 0, then we have

fRZ w?
fRZ w?

By the usual Pohozaev’s identity for (1.9) (multiplying (1.9) pyVw(y) and inte-
grating by parts), we obtain that

/ w3=g/ w?. (2.23)
R2 R2

Substituting (2.23) and the expression (2.15) fgr 1) into (2.22), we have

| f(tho) — 112 + Re(Ao(f (tho) — 1)) < 0. (2.22)

3 - .
§|n0+ K + (110 — K)TA|*+Re ((no+ K) (1+t0) (04 K)o+ (n0— K)T|20[?) < O,
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which is equivalent to

3 3
5(1-1- 1oTAR)? + AR + (10T + T + pot?|holH)AR + (-MSTZ +pot — 7 ) A2 <0,

2
(2.29)
where we have introducedy: = ;’g;ﬁ .
If no > K (i.e.,uo > 0) andr is large, then
3 22
ot + ot — v > 0. (2.25)

2

So (2.24) does not hold farg > 0.
To consider the case wheris small, we have now derived an upper boundxfar
From (2.18), we have

x./ [¢1* = Im <—f(rxo>fR2w‘f/ w2<13>.
R? fRZw R2

4
Ml < If(tko)l,/% <c, (2.26)
RZ

whereC is independent of.
Substituting (2.26) into (2.24), we see that (2.24) cannot hold.foe= 0, if 7 is
small. 0

Hence,

Remark. (2.2) From the proof of Theorem 2.5, it is possible to obtain explicit values
for t, andzs. (In fact, from (2.25), we obtain a value fos. From (2.26) and (2.24), we
obtain a value fory.)

3. Preliminaries Il: Calculating the Heights of the Peaks

In this section we formally calculate the heights of the peaks as needed in the sections
below. In particular, we introduce the scdlegiven in (1.10). It is found that in the
leading order the heights depend on the number of peaks but not on their locations. This
is a leading order asymptotic statement that is valicfes 0 andD — oc.

Forg > 0, letGgz(x, £) be the Green’s function given by

AGg —B%Gg+8: =0 inQ,
G 31
2~ 0 onog. R
av
Let Go(X, &) be the Green’s function given by (1.1). Then we can derive a relation
betweenGg andGg as follows. From (3.1), we get

f Gp(x, &) dx = 2.
Q
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Set
B2 =
Gg(x, &) = ﬁ + Gg(x, §). 3.2
Then
_ 2A 1 .

AGﬂ—ﬂGﬂ—@—F(SE:O inQ,

/Gﬂ(x,g)dx=o, 3.3

Q

G

226 _ ¢ onog.

av
(1.1) and (3.3) imply that

Gp(x, &) = Go(x, &) + O(8%)

in the operator norm of?(Q) — H?(Q). (Note that the embedding d42(Q) into
L°° () is compact.) Hence,

-2

Gy(x, &) = %' 1 Go(x, £) + O(B?) (3.4)

in the operator norm of 2(Q) — H?(Q).
We define cut-off functions as follows: Let be a smooth cut-off function which is
equal to 1 inB;(0) and equal to 0 irR? \ B,(0). LetP € Ay. Introduce

X — P .
Xe.p, (X) = x 5 , X € Q, j=1...,K. 3.5

Let us assume that a multiple spike soluti@q, H,) of (1.7) is given by the following
ansatz:

X — P

{Ae(x) ~ Y ( p i ) Xe,Pe (X)),
He(PiE) ~ ge,i,

(3.6)

wherew is the unique solution of (1.9§;,i =1, ..., K are the heights of the peaks,
to be determined later, af = (P;,..., Pg) € A; are the locations ok peaks. Then
we can make the following calculations. In Sections 4 and 5, we will rigorously prove
Theorem 1.1, which includes the asymptotic relations given in (3.6) with suitable error
estimates.

Then from the equation fatl,,

AH, — B?H, + p*A? =0,
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we get by using (3.4),

H(P) = / Gy (P, £)B2A2(E) dE

B2 € 2 - 2 2 E_PJ'E
= ﬁ+GO(F> LE)+0(BY) ) B2 D 82w — ) +est. | d
=1

L € 4 - 2 .2 é—Pf
= / (@‘l—ﬂ GO(P E)‘Fo(ﬂ )) Z&,jw ( c )+e.5.t. d%'
j=1

Thus,

K 2 €
2 € 2 2 p2 € 2(§—PR
.—_E Si— dy+ &7 /G P, ( )d
§ j:lf,,ml /sz (dy+§&58 ; o(P%, &w . §

K
+) &2,0(B%). 3.7)
j=1

Using the expansion fdgg in (3.7) gives

£—Pf
x w2< - ) ds+;sf,jowzez>

—XK: /2d+2ﬂ22|03/2d
=D &gy | wrmdy+lioetlogZ | wiydy

+ Zsﬁ, jO(B%e?). (38)
j=1
Note thatHy € C2(Q2 x Q).
Define
EilQ|
i = — . 3.9
Eei 2 [ uw? (3.9)
Then (3.8) is equivalent to
A~ K ~ A K A
Ei=) B +&m+) E20B). i=1...K, (3.10
j=1 j=1
where we recall from (1.6) that
21Q 1
= BeIS2| loq =

2 €
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We assume that as— 0, the heights of the spikes are asymptotically equal, i.e.,

lim 2L =1, fori # j. (3.11)

(The case ohsymmetric patternswill be discussed elsewhere.)
We solve (3.10) in three cases.

Case 1. — O:
Then from (3.10), we get

. 1 .
b= 00, i=1..K (3.12)

This is clearly equivalent to

1 19

e Jre w?(y) dy

1+0®), i=1...,K. (3.13)

Case 2. — o<
Then from (3.10) we get

K
Ei=nél+) &,00),
j=1

and so, in the same way as in Case 1, it follows that

S (o)
i=————— 1+ 0| — N =1...,K. 3.14
S e [ Ay dy e ! 3.19

Case 3. —> 1o (0 < ng < 00):
Then from (3.10) we get

K
i = L+ noE2 + ) &2+ ) E2,0(8).
1

i# i=
This implies
ba= o mbk= @+ O(Y),  i=1...K
’ ' K +no
or, equivalently,
Ee = 2l _aq o), i=1... K. (3.15

~ K + 10 €2 [ w?
Note that in all three cases the heights satisfy the relation

€ci = &(1+ O(h(e, B))). i=1....K,
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whereé, is given in (1.10) of Theorem 1.1 and

TNe If Ne —> O»
he,B)={n-*  if ne—> oo, (3.16)
B2 if ne — no.

The analysis in this section calculates the height of the peaks under the assumption
that their shape is given. In the next two sections, we provide a rigorous proof for the
existence of equilibrium states.

4. Existence |: Reduction to Finite Dimensions

Let us start to prove Theorem 1.1.

The first step is to choose a good approximation to an equilibrium state. The second
stepisto use the Liapunov-Schmidt process to reduce the problem to a finite dimensional
problem. The last step is to solve the reduced problem. Such a procedure has been used
in the study of Gierer-Meinhardt system in tsieong coupling case [39], [40].

Motivated by the results in Section 3, we rescale

X = €Y, X e Q, y € Q. = {yley € @}, 4.1

A 1
Aly) = E—A(GY) y € Q,

1
HXx) = —H(X), X €€,
&e
whereg, is given in (1.10). o
Then an equilibrium solutioA, H) has to solve the following rescaled Gierer-
Meinhardt system:

. A2
A A— A+ ﬁzo, y€§2€, (42)
AH — B2H + B2 A2 = X e Q.

(This rescaling is chosen to achiede= O(1), H = O(1) in terms of the maximum
values.) A A
For afunctionA e H(L,), let T[ A] be the unique solution of the following problem:

AT[A]
v

N

AT[A] — B2T[A] + B%.A>=0 ing,

=0 onog. 4.3)

In other words, we have

TIAI(x) = fg Gy(x, £)p2. A2 (é) d&. (4.4)
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System (4.2) is equivalent to the following equation in operator form:

=0, HZ(Q2) x H3(Q2) — L%(Q) x LA(Q), (4.5

. A H
S{(A’H):(sl( ))

S(A H)
where

. . . A2
Si(A H) = AyA—A—i-ﬁ: HA(Q0) x HR(Q) — L),

S(AH) = AxH - B2H + B2 A% HE(Q0) x H{(Q) — LX)
Here the indexN indicates that the functions satisfy the Neumann boundary conditions

A N

A oH
— =0, yonog,, — =0, Xxo0niQ.
av v

LetP € A; and

PA
we,j (y) =w <y - :]> Xe,Pj (Gy), y € Qes (46)

wherew is the unique solution of (1.9) angd p was defined in (3.5).
We choose our approximate solutions as follows:

K
A=Y wei(y),  Hep00:=T[Apl(0), x=eyeQ.  (47)
j=1

Note thatH, p satisfies

0 = AxHep — BPHep + BPEAZ,

K
= AxH.p — B?Hcp + B2 Z wf,j +esit.
=1

Hence,
‘ 3
Hep(P)) = /32&/ Gﬂ(x,é)wa.j <E> dé +esit.
Q j=1
Similar to the computation in Section 2 (using the definition (1.1G) hfwe obtain
Hep(P) = 14 O(h(e, B)), j=1...,K. (4.8)
We insert our ansatz (4.7) into (4.5) and calculate

S(Acp, Hep) =0, 4.9
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A2
Sl(Ae,Pa Hg’P) = AyAGP_ AeP+ Hg
€,P
K P] PJ
- Z Ayw|y——) = y— —
j=1 € €
K
+Zw2<y__1> Hp +est
j=1
K
:ZwZ(y_ >(H 1) +est
j=1
K
= ZwZ (y _J> (Hp(P) =1
=1
K ) PJ . 1
+j;w (y_ ?)(HQP(X)— H A(P)) +est. (4.10)
On the other hand, we calculate fpe=1, . . ., K andx = P + €z, |ez| < é:

Hop(P +€2) — Hop(P) = ﬁZ/Q[Gﬂm- bez,8) — Gy(P,, £)] A2 i

ﬂstfQ[Gﬂ(Pj +€2,&) — Gp(Py, £)]w? &

+ﬁ2&/9[e,g<a bez.£) — Gy(P. £)]
X waJdé +est.

1#]
— k(. B) / '5' w2(£)dg
IF(P) 2
— ke, B) (k; 9P ezk/RZw )
+ O(eB%k(e, B)12)), (4.11)

wherek(e, 8) is given by (1.11), andr (P) is defined at (1.4).
Substituting (4.11) into (4.10), we have the following key estimate:

Lemmad4.l. Forx = P, +€z,|ez| < §, we have
Si(Acp, Hep) = S11+ Si2, (4.12

where

S11(2)=K(e, B)(He.p (P})) 2 ( /R 2 w2> w?(2) (eVp, F(P) - 2+ O(ep?lz])), (4.13)
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and

S12(2) = k(e, Bw?(2)R(|2)) + O(ek(e, B)B%I2), (4.14)

where R]z|) is a radially symmetric function with the property that/B) = O(log(1+

1z]))-
Furthermore, $(Acp, Hep) = est.for |x — P >4, j=1,2,...,K.

The above estimates will be very important in the following calculations, where (4.5)

is solved exactly.
Now we study the linearized operator defined by

Ee,P: = S; (AG’P> s
He,P

Lep: H3(R20) x H3(R) — L3(Q) x LA(Q),

wheree > Ois small,P € A;.

Set
Kep:i= span{ 8A€,|F:|j =1....K, | = 1,2} c HZ(R0),
).
and
Cepi= span{ 88'2)‘:“ =1...,K, 1 =1, 2} C L2(Q0).

L..p is not uniformly invertible inc andg due to the approximate kernel,
Kepi=Kep ® {0} C HJ(Q0) x HI(Q). (4.15)

We choose the approximate cokernel as follows:

Cep:=Cep @ {0} C L3(R0) x L3(Q). (4.16)

We then define
Kipi= K @ HA(Q) C HE(Q0) x HE(Q), 4.17)
Cloi=Clo® L2(Q) C L%(Q.) x LA(Q), (4.18)

WhereCG{P andKe{P denote the orthogonal complement with the scalar product (e, )
in H3 () andL?(,), respectively.

Let 7. p denote the projection ih?(22.) x L2(Q) ontocjp. (Here the second com-
ponent of the projection is the identity map.) We are going to show that the equation

Acp+ D p
€ ’ " ]=0 4.19
Tepo S (He,pwg,p) (4.19
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q)e,P(y)

has the unique solutioB, p =
\Ije,P(X)

) € Kpif €, g are small enough.

Set
Lep=mcpo Eg,p: Kip — Cj:p (4.20

As a preparation, in the following two propositions we show the invertibility of the
corresponding linearized operatoy p.

Proposition 4.2. Assume that (1.8) holds. LEt p be given in (4.20). There exist pos-
itive constantg, 8, C such that for alk € (0, €), 8 € (0, B),

ILepZliLzyxLz@ = CllZHz@)xH2@)> (4.21)

for arbitrary P € As, & € Klp.

Proposition 4.3. Assume that (1.8) holds. There exist positive consérﬁssuch that
forall € € (0,€), B € (0, B), the mapL, p is surjective for arbitraryP € Aj.

The proofs of Propositions 4.2 and 4.3 are delayed to Appendix A.
Now we are in a position to solve the equation

Apt+o\
TpoS (He.p . w) -0 (4.22)

Sinceﬁe,pl,cip is invertible (call the inversél;%,), we can rewrite (4.22) as

S = (L homep) <& (ﬁ;)) — (LEomep)(Nep(D) = Mcp(S), (423

Y = ¢ ,

()
Acpt+¢ Acp Acp\ | o

s _ , _g s ’

& (He,P + 1#) & (He,F‘> : (HG,P> |:w:|

and the operatoW. p is defined by (4.23) foE € H3(Q.) x H3 (). We are going to
show that the operatavl, p is a contraction on

where

Nep(S) =

By = {2 € HZ(Qe) x HAQ)IZ llnzo)xHa@) < 1} (4.24)
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if n is small enough. We have by Lemma (4.1) and Propositions 4.2 and 4.3 that

IMe p(E) lh2@)xH2@) < C (||7Te,PO Ne.p(Z) L2 xL2@)

Acp
Tep © & (H
VA IR

< C(cmn + ke, B)),
whereC > 0 is independent af > 0 andc(n) — 0 asp — 0. Similarly we show

+

[Mcp(2) — M p(Z) 12, xH2@) < CCIIE — ' lnz@,)xH2(@)»

wherec(n) — 0 asp — 0. If we choose; small enough, theM, p is a contraction on
B..,. The existence of a fixed poitsi p plus an error estimate now follows from the
Contraction Mapping Principle. Moreovex, p is a solution of (4.23).

We have thus proved

Lemma 4.4. There exis€ >_OE > 0 such that for every triplée, 8, P) with 0 <
€ <€ 0 < B < B,P € A; there exists a uniquéd, p, Ve p) € ICE{P satisfying

Acp+D.p
' ’ e C.pand
s((foris)) e

[(Pc.p, Ve p)llH2)xH2@) < CK(e, B). (4.25

More refined estimates fd, p are needed. We recall th&t can be decomposed into
the two partsS; ; andS; », where$§, 1 is in leading order an odd function ar$l, is in
leading order a radially symmetric function. Similarly, we can decomgdoge

Lemma 4.5. Let &, p be defined in Lemma 4.4. Then fo=x B, + €z, [ez| < §, we
have

Sep=Pp1+ Pcpo, (4.26)

whered, p; is a radially symmetric function in z and

®cp1 = O(ek(e, B)) in HF (). (4.27)

Proof. Let §v]: = S (v, T[v]). We first solve
K P.
SAp+ Pcpal — APl + D Sio (y - ?J) € Cep, (4.28)
j=1

for (I)eyp,z € KEJ:P
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Then we solve

K
P.
JAcp+ Pep2+ Pep1]l — JAp + Pep2] + Z Si1 (y - ?J) €eCep, (429

=1

for q>e,P,1 € K:,_P'

Using the same proof as in Lemma 4.4, both equations (4.28) and (4.29) have unique
solutions fore < 1. By uniquenessp.p = ®.p1+ Pcp2. SinceS 1 = §; + S,
where|| S, [z, = O(ek(e, B)) andSt,; € CLp, itis easy to see thait, p1 and® p.»
have the required properties. O

5. Existence II: The Reduced Problem
In this section, we solve the reduced problem and prove Theorem 1.1.

Let P° be a nondegenerate critical point®tP).
By Lemma 4.4, foreach e B;(P°), there exists a unique solutio®, p, . p) € ’Cip

such that
Acp+Pcp Ve,p
, Py _ : C.p.
& (HG,P+ \I'Ie,P) ( O ) © P

Our ideais to find® = P* € Bs(P°) such that

Acp+ P p
’ ’ 1L Cep. 51
& <H€,P+\DG,P) P ( )
Let
d
WejI(P) = k(E ’3)/ <Sl(AeP+q)e P H€P+\I’€ P) aAPGP) (52)
K

i=1...,K, i=12

W.(P): = W 1.1(P), ..., W, k.2(P)). (5-3)

Here we recalk(e, 8) = €?BE&..

Note thatW, (P) is a map which is continuous iR, and our problem is reduced to
finding a zero of the vector field/, (P).

Let

Qep ={yley+ P € Q}. (5.4)
We calculate the asymptotic expansiorVidf; ; (P),

dA.p

/&(Aepmep,Hepwsp)
3P]|

k(6 B)

= [A(Ae,P + ®cp) — (Acp+ Dep) +
2

(Acp+ d>e,P)2] 0A.p
k(e, B)

He,P‘i“Ijs,P 8F)JI
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_ 1 (Acp+ ®cp)®] 0Ap
= ke B |:A(A6,P + Pcp) — (Acp+ Pcp) + Hop :| oP.,
f |:(A€P+Cbs p)? (Ae,P+cDe,P)2:| AP

k(E B) Hep + Wep Hep P,
= l1+ 1y,

wherel; andl, are defined at the last equality.
For 1, we have by Lemma 4.5,

1 (A<P+q>eP)2:| 0A.p
I = A +¢)€ - +CD€ + - - -
1 ke p) (/Q [ (Acp P — (Acp P) Hop(P) aP.,
(Acp + ®c p)? 0A.p
— | PP (Hep— Hep(P +o(1
o pr(Fﬁ) (Hep — Hep(P))) P,,) D
- T ‘/ [A(we | + ®ep) — (W j + Pep) + (we | + @ )2]8“)“
- 6k(6,/3) o We, €,P We, j €,P We, j €,P y|
(We,j + Pep2)?(Y) dwe,j ()
He.p(P +ey)— Hep(P)) 2
+/s; ] (Hop(P))2 (He.p(Pj+€y) D) ay; Y>
+ 0(1).

Note that by Lemma 4.5,

ow
/ [Acbe,P - q’e,P + 2we,j qDe,P] 3 =l
Q

= / q>€,p,1i[Aw —w + w?] + o(ek(e, B))
Qe py ayl
= o(ek(e, B)), (5.5)

0We.
o, py2 el :/ . 20
/Qe,p, (Pe.p) oy, - (Pep1) Yi

Now by (4.11), (5.5), and (5.6),

— o(ek(e, B)). (5.6)

aws I(Y)

= o)~ o ﬁ)f w2, (y)(Hep(P, + €) — Hep(P)

IF(P) L 2
o(1 —
()+Z 9P sz ykayi sz

oF(P) ow
wly, — 2
R Jre i

1 IF(P)
= o) —= 3f 2 ) 5.7
ol 3/R2w sz aP, (5.7)

= o1 +
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Similar to the estimate fol;,, we obtain that foi ,

L — 1 / |:(A6,P + @ p)? _ (Ap+ (DE,P)Z} A p
27 ke B) Ja,
1

He,P‘i“Ds,P He,P anI
+ ®,p)2 9
_ (Acp i e.P) v, Ae,P+O(1)
ke, B) Ja. HZp P
1 10w?,
= S—L(Wep— W p(P)) +0O(D). (5.8)

ke, B) Jo,, 3 9y,
Now we recall thaW, p satisfies
ALIje,P - :BZ\IJEP + 2132%‘5 Ae,PCDeP + ‘BZEECDE,P =0.

Similar computations as those leading to (4.11) show that

Uop(P + €y) — W p(P)) = /Q(Gﬁ(Pj ey, &) — Gy(PL )%

el (€) e ()

= o(ek(e, B)IVR F(P)I1YD + ke, BH)R(YD,  (5.9)

whereR;(]y]) is a radially symmetric function.
Substituting (5.9) into (5.8), we obtain that

l, = o(1). (5.10)
Combining the estimates fdg andl,, we obtain
W, (P) = coVpF(P) + 0(1),

whereco = — 3 [, w® [ w? # 0. Hereo(1) is a continuous function d?, which goes
toOase — 0.

At P°, we haveVp|p_po F (P%) = 0, det(VpVp|p_po(F (P%))) # 0. Then, sinca\. is
continuous and fo¢, 8 small enough maps bal; (P°) into (possibly larger) balls, the
standard Brouwer’s fixed point theorem shows thatfex 1 there exists & such that
W, (P¢) = 0 andP¢ — P°.

Thus we have proved the following proposition.

Proposition 5.1. For e sufficiently small, there exist poirs with P¢ — P° such that
W, (P¥) = 0.

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1.By Proposition 5.1, there exis® — PP such that\, (P¢) = 0.
In other words 5y (Ac pc + @ pe, Hepe +We pe) = 0. LetA. = & (Acpe +Pep), He =
E(Hepe + W, pe). It is easy to see that, = £, T[Ac.pc + O pc] > 0. HenceA, > 0.
By the Maximum PrincipleA. > 0. Thereforg A, H,) satisfies Theorem 1.1. 0O
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6. Stability Analysis I: Study of Large Eigenvalues
We consider the stability afA., H.) constructed in Theorem 1.1.

Linearizing the system (GM) around the equilibrium statas, H.), we obtain the
following eigenvalue problem:

A A?
Aygbe — ¢ + 2_¢e - _Zwe = de@e,
H. H
1 € (6.1)
EAWG - We + 2A€¢e = tkel”e-
HereD = ﬁ—lz, Ac IS some complex number and
¢ € HA(Q0), Ve € HR(). (6.2)
Let
Ac=&1A = Acp + @ep, He = 67 THe = Hepe + W pe. (6.3)
Then (6.1) becomes
. A2
Ayd’e - ¢s + 2%(#6 - HA—ezwe = )“€¢E7
L € (6.9)
?Awe - WG + 2$€A€¢€ = T)\'EI/IG'

In this section, we study the large eigenvalues, i.e., we assumg.that ¢ > 0 for
€ small. Furthermore, we may assume ttlat r)c < % If Re(r.) < —c, we are done.
(Then ), is a stable large eigenvalue.) Therefore we may assume that)Re —c
and for a subsequenee— 0, A, — Ao # 0. We shall derive the limiting eigenvalue
problem which reduces to NLEPs.

The key references are Theorem 2.2 and Theorem 2.5.

The second equation in (6.4) is equivalent to

AYe — B2+ ta) Ve + 2% Acpe = 0. (6.5)

We introduce the following:

ﬁAE = ,3\/ 14 1A, (66)

where iny/1+ tA. we take the principal part of the square root. (This means that the
real part of\/1 + tA. is positive, which is possible because Ret ti.) > %.)
Let us assume that

Pellhzy = 1. (6.7)
We cut off¢, as follows: Introduce

Pe.i(Y) = Pe(Y) Xe P (€Y), (6.8)
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wherey, p<(X) was introduced in (3.5).
From (6.4) using Lemma 4.4 and R¢) > —c and the exponential decay of (see
(1.12)), it follows that

K
P =) ¢ejtest inHA L. (6.9)
=1

Then by a standard procedure, we extengl to a function defined oR? such that

l9e.illnzre) = Clige,j Iz, j=1..., K.

Sincel|gcllnz,) = 1, 19e,j lH2,) < C. By taking a subsequence of we may also
assume thap. ;| — ¢j ase —» 0inHY(R?® for j =1,..., K.
We have by (6.5)

o) = /Q 262Gy (x. £)A. (é) ¢ (é) de. (6.10)

Atx =P i =1, ..., K, we calculate
ve(P) = 2/32/9(3/3;%('316,5)]2;&10 <E _6Pj6>¢e,j (%) dé +est.
= 2/32/ (% +Go(P*. £) + O(lﬁxe|2)>
)¢ej (§> d¢ + est.

sté (

= 1 e .
- 2/9<|Q|(1+m ;T A°Co(R". 6) + Ol | ))
2 € € 4
i ;/ <|9|(1+ )»)+ﬁGO(Pi’Pi)+O(|,3AE|)>
— P¢
X Ecw (g J>¢e,j <§> dg
€ €
K
( Z;|sz|(1+ k) /sz(y)@,j(y)dy

2 1
+2&ﬂ—e Iog;/RZw(y)abe,i(y)dij O(|ﬂxe|2§e€2))- (6.11)

We distinguish the same three cases as in Section 3.
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Caseln. — 0
We get from (6.11):

ve(P) = /Rz woe, i (1+0(D)). (6.12)

Z |Q|(1+ TA )

Substituting (6.12) into the first equation (6.4), letting> 0, and using (3.13), we arrive
at the following nonlocal eigenvalue problem (NLEP):

2 Zszl Jre W
K (14 tho) [ w?

If K =1, by Theorem 2.2, problem (6.13) is stable ik t;, which implies that the
large eigenvalues of (6.4) are stable.

If ¢ > 11, by Theorem 2.2, problem (6.13) has an eigenvalgiavith Re (Ag) >
ap > 0 for someay. We now claim that problem (6.4) also admits an eigenvalueith
Ae = 2o+ 0(1), which implies that problem (6.4) is unstable. To this end, we follow the
argument given in Section 2 of [4], where the following eigenvalue problem was studied:

AP — i + 2w — w? = Ao, i=1,...,K. (6.13)

r—1
ar oUW Mo h ina.
S+1+7he [oul € (6.14)

e2Ah—h+ puPth—
h=0 ondQ,

whereu, is a solution of the single equation

€2Au, —u. +uP =0 ing,
u >0inQ, uu=0 o0nog.

Here 1< p < N2 if N > 3,and 1< p < oo if N = 1.2, g > 1. and
Q ¢ RN is a smooth bounded domain.

If u. is a single interior peak solution, then it can be shown ([34]) that the limiting
eigenvalue problem is a NLEP,

qr Jrw w'

¢ b
= Ao, 6.1
STittie [aw w ) (6.15

Ap— ¢+ pwPlp —

wherew is the corresponding ground state solutiorRit:
Aw—w4+wP =0, w>0 inRN, w = w(ly]) € HY(RVY).

Dancer in [4] showed that Xy # 0, Re(1p) > 0 is an unstable eigenvalue of (6.15),
then there exists an eigenvalueof (6.14) such that, — Aq.

We now follow hisidea. Let ## 0 be an eigenvalue of problem (6.13) withRg) >
0. We first note that from the equation fgg, we can expresg. in terms of¢.. Now
we write the first equation fap,. as follows:

A A
e — Re )"e ZT € Ae 6.16
¢ (Xe) |: H€¢ wa :| (6.16)
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whereR. (i) isthe inverse oA + (1+ A.) in H,?,(Qe) (which exists if Rér.) > —1
or Im(ix.) # 0) andy. = F[¢.] is given by (6.10), wheré- is a compact operator of
¢.. The important thing is thaR. (1.) is a compact operator  is sufficiently small.
The rest of the argument follows exactly that in [4]. For the sake of limited space, we
omit the details here.
This finishes the casé = 1.
If K > 1, problem (6.13) admits a positive eigenvalue: We can choose, for example,

$1 = —¢2 = Do, p3=---=¢x =0, Ao = p1,

where®, is the principal eigenfunction df, given in Lemma 2.1.

By the same argument as in the unstable eigenvalue casé ferl, we conclude
that there is an eigenvalue of (6.4) with positive real part. Thus this corresponds to the
“shadow” system case: All multiple-peaked solutions are unstable.

Case 2:n, — o0

In this case, similar to Case 1, we get from (6.11),

Ve (PS) = 26, L 62/ woc i (1+ 0(1)), (6.17)
12| Jre
and, for anyr > 0, in the limite — O we obtain the following NLEP:
2 2 i .
Agi — ¢i + 2w —sz:koqﬁi, i=1,...,K. (6.18)
Jre w?

By Theorem 2.2, (6.18) has only stable eigenvalues.

In conclusion, if . — oo, then the large eigenvalues oKapeaked solution are all
stable. This is similar to the “strong coupling” system case.

Case 3:n. — no

Similar to Case 1, we get from (6.11),

K

€y __ 1 2 .
Ye(P) = (2_2 St [ v

i=1

+ zggﬂezf w¢€,i> 1+ o(1)), (6.19)
1] Jee
and in the limite — 0, we obtain the following nonlocal eigenvalue problem (NLEP):
Adi — ¢ + 2w

_ AQH o+ tho)) Jee w + gt Je 0Ol 5 b, i=1.... K.
(K 4+ n0)(1+ tho) [re w?
(6.20)

Let
1+ no(14 tho) 1 1
1 1+n0Q+7tho) --- 1

1 s 14 ol +Th)
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G is symmetric and the eigenvalues@®tre given by

p1=...= pk-1=no(l+ tAo), ok = K +no(1+ 7ho).

Let P be an orthogonal matrix such that

no(1+ tho) 0 0
0 1 A 0
pGp-1— no(1+ tho)
0 no(1+ tho) 0
0 0 K 4+ no(1+ tXo)

From (6.20), using the notation

we get

2G [ Qw
(K +n0)(1+ 7t20) fRz w?

AP — &+ 2wd — w? = Ao®.

Let P® = ®. Then we get

AD — &+ 20d 2
(K +n0)(1+ o) [ w?
no(1+ tho) 0 0
» 0 no(1+ tio) 0
0 no(1+ ko) 0
0 0 K + no(1+ Tho)

X /wCT):|w2=kod_>,
LJR?

and, written in components,

20i
(K 4+ n0)(1+ tho) [ w?

AD| — O + 2w d; — |:/ w(y) i (y) dY] w? = Ao®;,
R2
i=1,...,K. (6.21)
Fori=1,...,K —1,(6.21) becomes

2no

AD, — & 4+ 2wd — — M0
L YK +n0) [ w?

[fR w(y)&(y)dy} w? = Ao,

i=1..., K-1 (6.22)
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Fori = K, (6.21) becomes

2(K + no(1+ tAg))

A®P — Py +2wdk —
o T K F o)L+ Tho) [ w2

|;/R2 w(y) Pk (Y) dY} w? = APk .

(6.23)

If K > 1 and 21‘; < 1 (i.e.,, o < K), then by Theorem 2.2, problem (6.22)
is unstable for all > 0, which implies that problem (6.4) is linearly unstable for
allz > 0.

If K > 1andK2’70 > 1, orwhatis equivalenyy > K, then by Theorem 2.2, problem
(6.22) is stable. By Theorem 2.5, problem (6.23) is stableif ®@ < 1, or t > 3 for
suitabler, < t3.

If K =1andny < 1, we only have problem (6.23). By Theorem 2.5, problem (6.23)
is stable if 0< t < 74 and unstable for > t5, for suitablers < 7s.

This finishes the proof of Theorem 1.2 in the large eigenvalue case.

7. Stability Analysis II: Study of Small Eigenvalues

We now study (6.4) for small eigenvalues. Namely, we assumeithat 0 ase — 0.
We will show that the small eigenvalues are related to the m&tR®) given in (1.5).

Let us assume that condition (*) holds true. That is, all eigenvalues of the matrix
M (PP) are negative. Our main result in this section says that if> 0, then

re ~ €2k(e, B)oo, (7.0

whereoy is an eigenvalue o1 (P°). From (7.1), we see that all small eigenvalue£pf
are stable, provided that condition (*) holds.

Again let (A., H,) be the equilibrium state of (1.7) which has been rigorously con-
structed in Theorem 1.1 arid\., H,) be the rescaled solution given by (6.3).

We cut off A, as follows:

Ai) = xep DAY,  j=1....K, (7.2)

wherey.. pe Was defined in (3.5).
Then itis easy to see that

K
=> Aj(y)+est. inHA(Q). (7.3

=1

We now give a formal argument which should explain to the reader our choice of
decomposition o, , which will be given in (7.8) below. Later, in Step 1 of the proof, it
will be shown that this choice gives the correct answer in leading order.

In Section 6, we have derived three NLEPs: (6.13), (6.18), (6.21). Let us now set
Ao = 01in (6.13). We have that

ZZK—lfR2w¢J
Agi — -+2w-—]_—w2:0, i=1...,K,
o — i oi K [ w?
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which is equivalent to

23K wo;
Lo qbi—ww =0, i=1...K,
Kfsz
wherel  is defined at (2.1). By Lemma 2.1, we have
ZZijl Jre Wi ow
- — span{ —,j =1, 2¢, i=1,...,K.
P T K ez VP {ayj : }

Multiplying (7.4) by w and integrating oveR? and summing up, we have

K
Z/ wej =0,
j=1 /R

and hence

9
queKo:span{—w,k:l,Z}, i=1..., K.
Yk

447

(7.4

(7.5)

Settingrio = 0 in (6.18) and (6.21) and using the technical condition (1.8), we also
obtain (7.5). We omit the details. (Please see Appendix A for similar arguments.)

(7.5) suggests that, at least formally, we should have

wherea; \ are some constant coefficients.
. . . P
_
Next we find a good approximation éfiyk y—-25.

Note thatA, ; (y) ~ w(y — g) in H2(Q,), andA, ; satisfies

A A (Ae )

€

Thus L satisfies

3 AA;  2A.; dA. 2 9H,
Ay A _ Roj | 2R Ry (Aep) +est. =0,
Yk Yk Ho 9y H2 DX

and we hav@T (1+0(1)) g;,” (y-— Pé)
We now decompose

(7.6

(7.7)

(7.8)
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with complex numberafk, where

¢ L K.:=span aA;‘j

3 |j=1,...,K,k=1,2}CH,%,(QE). (7.9)
k

Our main idea is to show that this is a good choice because theggrrisrsmall in
a suitable norm and thus can be neglected. Then we obtain algebraic equatiafys for
that are related to the matri (P°).

Accordingly, we decomposg,

K 2
V) =YY @ Ve i+ v (7.10)

=1 k=1

where. ; « is the unique solution of the problem

1 IA, .
_2Axwe,jk 1+ 7he )¢e]k+2€eAe] ) =0 InQ,
p ; Yk (7.11)
Weik _g ona,
ov

andyt satisfies

At — A+ a0yl + 26 Ag =0 inQ,
awi
v
Suppose thafee ||Hzq,) = 1. Then|af_k| < C, since

g o
a f“ 2 e 4 o).

U k()

Substituting the decompositions ¢f and . into (6.4), we have

ﬁ p? (7.12)

=0 onog.

K 2 A
=iy Y a 0AI i Q.. (7.13)

Set

K 2 A 2 q
_ ¢ (Acj) 1 dH.
=€) Y ai (&’)2 [—;m,,—,w axk] (7.14)
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and

. Ae (Ae)
4= Ay = 98+ 200 — W Rl (7.15
We divide our proof into two steps.
Step 1:Estimates fogp..
The main contribution of this step is to obtain good error bounds for

We use equation (7.13). Singg: L K., then similar to the proof of Proposition 4.2,
it follows that
o Ihz@. < ClllallLz,)- (7.16)
Let us now computés.
Let & andk(e, B) be the same as in Theorem 1.1, then we calculate that fer

By (R):
_eg2 [ O i (6))
= e [ oean (A () o
2
Y (/ e (Kollx = £1) = Hox.£) (/& (5)) d
+ [ 3 5Goix, s>< ( )) d$+0(ﬂ4ez)>
s#
and by (3.4),

Vel k(X) = 2ﬂ2§€/ Gﬁ (X, Z)Ad%dz

et p? fg (Ko(IX — &]) — Ho(x, &) + oosz))@(Ae D2 dE.
Thus forx € Bs(P¢), we have

8H

= &p? [(/Q [aikamx ~e (A (%))Z—Kmx ~ehp (A (é))z] ds)
() - ()]

~ & 4
/Za_kGO(X &) (Acs (;)) ds + O(e2p )}

S#|
Using the fact that

0 0
a—Ko(IX—§|)+¥Ko(IX—EI)— . forx #§, (7.17)
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and integrating by parts, we get

"‘de@)—JqGﬁ)/‘ <———FKX%+O&3> (7.18)
where
Fi(x) = Ho(x, P) = Y Go(x, PY). (7.19)
i
Observe that

ﬂFI (X)) [x= P =0(1),

sinceP* — P? andP? is a critical point ofF (P).
Hence, we have

K 2
N3llLe@,) =0 (ek(e A Z |afk|), (7.20)
=1

and

K 2
¢ Iz, < Clllslliz@,) =0 (ek(e, B D & k|) (7.22)

i=1 k=1

Using the equation fog ! and (7.21), we obtain that

K 2
Y (x) = o ke, )ZZ|afk|) (7.22)

j=1 k=1

(
(S =)o Lo
(

IH.
— (P tey) —ep = (Pf)> i

We calculate

L () : (

qu, 8H
+f96vpf |_A|62 ) -

€ a €
—f 'ﬁ(¢ (Rf +€y) — Y- (RY)) de
QeP

H2 9Ym

Y
— A / o aﬁf'

=0 <62k(€, B) Z Z |ajik|> , (7.23)
j=1 k=1
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by using (7.12) and the estimate

~

oH,
0Xm

= O(k(e, B)) in .

Step 2: Algebraic equations foay .
This step gives us algebraic equationsdpy.

Multiplying both sides of (7.13) by and integrating ove2,, we obtain

K o I
6 aAe,j A
rhs = i E > aj’k/Q ™

dYm

dw \?
< S — | dy(1+o(1
22 /R <8y1> y(1+0(1))

dw\ 2
= Al — ] dyd 1)),
& /RZ (E)yl) y(1+o0(D)

Il

>

m
[~
[~
R
=
=9

>

=~

3

K
l.hss. = ¢ Z

2 A 2 a3 A
. (Acj) 1 dOH: [ A
a ~ ——Ve ikt
k; bk ‘/S:ZEP (He)z |: Ew b 8Xk:| 8ym

K 2
+0 (ezk(e, B) Z > |a;k|) . (7.24)

K 2 A )2 P dA
l.hs. = ek(é,ﬂ)zzafk/ (':fj))z (—a—xij(X)) ai:

ow K 2 0 0
2 2 € 3
= €K, — E E a, | ——— FP
€kie. p) sz 8ymym- Lk( aplfmapje,k ( )>

j=1 k=1

K 2
+0 <62k(€, B> > |ajﬁk|>. (7.25)
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Note that

Thus we have

_ €%k(e, B) 3\ v

l.hs = T(/Rw )21:
K 2

+0 (ezk(e, B) ZZ |a;k|) . (7.26)

Combining thd .h.s. andr.h.s, we have

e2K(e, B) 3) T O d ’
3 (/ )ZX;ak 9P DPE, F(P)

=1k

K 2 9 2
+o(e2k<e,ﬂ)ZZ| Jk|> = A8 m fR (8—;"1) dy(1+o(1). (7.27)
i 1 ?

From (7.27), we see that the small eigenvalues with> 0 satisfy|A.| ~ €?k(e, B).
Furthermore,

Ae Jre w®
€%k(e, B) 3fR2(§w)2dy

ase — 0, whereoy is an eigenvalue of the matriM (P°), andP¢ — P° ase — 0. (The
vectord® = (af,,a$,,....ag ,)' approaches an eigenvector Mf(P°) correspond-
ing to o¢.) By condition (*), the matrixM (P°) is negative definite, and it follows that
Re(re) < 0. Therefore, the small eigenvaluesare stable for (6.4) i is small enough.

Completion of the proofs of Theorem 1.Zheorem 1.2 now follows from Section 6 and
Section 7. 0O

8. Discussion

Let us discuss what has been achieved in this paper and which important questions
are still left open. We have investigated the Gierer-Meinhardt system, which is a very
important reaction-diffusion system within the class of Turing systems. We study the
weak coupling case, i.e., the diffusion coefficidhtof the inhibitor tends to infinity,
for small diffusion coefficient? of the activator. In a bounded domain, we rigorously
prove existence of multipeaked solutions and are able to locate the peaks in terms of the
Green’s function and its derivatives.

Furthermore, we derive rigorous results on linear stability. There@yeeigenvalues
which are given to leading order in terms of the Green’s function and its derivatives and
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are implicitly linked to the spike locations. It would be desirable to find conditions on the
small eigenvalues which are not given in terms of the Green'’s function and its derivatives
but explicitly in terms of the domaige.

On the other hand, there are al®gl) eigenvalues which are given as eigenvalues
of related nonlocal eigenvalue problemsRA. For many cases, we can show that these
0O(1) eigenvalues lie on the left or right half of the complex plane. Some of the cases—
in particular, in the borderline casg — K and in the case that is finite—are still
missing.

There are no results in either the weak or the strong coupling case on the dynamics of
the full Gierer-Meinhardt system in a two-dimensional domain. Furthermore, there are no
results at all about the existence or stabilityjkepeaked solutions in a three-dimensional
domain. These important questions are still open.

9. Appendix A: Invertibility of the Linearized Operator and the Proofs of Propo-
sitions 4.2 and 4.3

In this appendix we prove Propositions 4.2 and 4.3. This establishes the invertibility of
the linearized operator.

Proof of Proposition 4.2. We follow the Liapunov-Schmidt reduction method, which
has been used in [7] and [37]. Suppose that (4.21) is false. Then there exist sequences
{ec}, {Bd}, (P}, and{Zi} with

e > 0, ex — 0, Bk > 0, Bk — 0, Px € As,
oY) n
Xy = e K
‘ (wx)) P

”EGk.PkEk”LZ(QEk)xLZ(Q) — 0, (9.2)
I ZkllHz@q ) xH2@) = 1, k=12 .... (9.2)

such that

Written explicitly, we have the following situation:

Ay — ¢+ 2Aq p H b bk — AL p Ho ' o= o+ 2, (9.3
where
Iz, = 0. f2eCls,
Axi — BEVK + 2Be A pedk = Gk (9.4)
9ll2@) — O, Pk € K, p,- (9.5

9wl iz, ) + 1VklFz) = 1. (9.6)
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We now show that this is impossible. To simplify notation, weAet A, p,, Qk =
Qekv Sk = gek-

In the first step of the proof, we show that the linearized problem given by (9.3),
(9.4) tends to a limit problem as— 0. This analysis is very similar to the one given
in Section 6 in the casky = 0. In fact, the analysis in Section 6 also covers this case
(but does not give the leading order of th@l) eigenvalues and their eigenfunctions).
Therefore we may introdueg, ;, j =1, ..., K as before by cut-off and extension.

If we decompose

K
B= Y bj+ kit
=1

i
it is easy to see thafi k11 = 0(1) in H?() because it satisfies the equation
Ay +1 = Prk+1=0(1) in HA().
This implies
Pk =0(1) in HA().
We defineyy; fori =1,...,K +1by

oWy i
av

AxWhi — B2V + 282 kAc ki = 0, =0 onoQ.

Note that ad/g«ll 2 — 0, we have

K+1

Iy — > Yillnz) — O.
k=1

Sincegk k +1 = 0(1) in H2(Qy), we also have Yy k 11|z = 0(1).
Lettingk — oo, it can be shown as in Section 6 that

bej — ¢ in HA(R?).
Thenfori =1, ..., K we have
b € {¢ e HX(RY) |/ 6 dy—0, | =1,2} _ ke,
R2 3yj

andg; has to satisfy the following nonlocal linear problem:
Caselp. — 0

25K oo wey
Adi — @i + 2wy —szeqﬁ 9.7
R2

Case 2., — o0

A+ 2wn — 2R PP 2 o ©9.8)

Jre w?
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Case 3:n. — no

2[(1 + 1o) fRz weo; + Zj;éi fRz w¢j]
(K +10) [re w?

AP — ¢i + 2w — w? e Cy, 9.9

where
0
Co:= span{—w, j= 1,2},
Y

andKg, Cy denotes the orthogonal complement with respect to the scalar product of
L2(R?) in the spaceH?(R?) andL?(R?), respectively.

After transforming the function&p, . .., ¢x) in Case 3 in the same way as in Sec-
tion 6 (i.e., diagonalizing the matri%) and in Case 1 diagonalizing the matrix

1
1
H= ) ,
11 1
we get the following decoupled equations &gr
W
Aypi — i + 2wei — 2p; Jee ¢;| w e Cy, (9.10
Jrew
where
0,...,0, K in Case 1,
s=qL-1 in Case 2,
o o 1 in Case 3
K +no K+no

SinceLow = w?, (9.10) can be written as

f 2 Wi
(Ay =1+ 2w) <¢i — 20 ;Rz 2 w) € Col.

Since the operator
Lo=Ay—1+2w:Ky — Cq

is one-to-one map with bounded inverse (by Lemma 2.1), we have

fRz waei

Jrew

Now we multiply byw and integrate. This gives

i — 2pi =0. (9.11)

(1 — 2,0i)/ w¢i =0. (912)
R2
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/ we; =0,
RZ

If pi # 3, then by (9.12),

which implies that

Logi =0, i=1,...,K,

and by Lemma 2.1 that
¢i € Ko, i=1...,K.

Therefore by (9.11),
¢ =0, i=1,...,K.

Now we can explain why Remark (1.1) is important: It is easy to seedghat % for
somei if and only K > 1 andno = K. In this case, the method of Liapunov-Schmidt
reduction is not readily applicable.

By taking the limit in (9.4), we see that this impligg — 0 in H2(Q).

Furthermore, the assumption (9.6) implies that

K
> i1z me) + 1 F2i0)) = 1.
i=1
This contradictg; = v; = 0, and the proof of Proposition 4.2 is completed. O

Proof of Proposition 4.3. We just need to show that the conjugate operatol of
(denoted byc; ;) is injective fromK, to C1p. Suppose not. Then there existe

Kip, ¥ € W' () such that
Ayp — ¢ +2ApH 3o + 26 7 A pr
Axy — B2y — AZpH 26 = 0,
¢ 1@, + 1V 2@ = 1
Similar to the proof of Proposition 4.2, we obtain
Lepg +0(1) € Cp, ¢ € Klp.

By Proposition 4.2|¢ || nz,) = 0(1), and hencéy/ ||z = 0(1). This is a contradic-
tion, and the proof of Proposition 4.3 is finished. O

1
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