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Abstract. We study some problems on self similar solutions to the Fujita equa-
tion when p > (n+2)/(n−2), especially, the characterization of constant solutions
by its energy. Motivated by recent advances in mean curvature flows, we introduce
the notion of F−functional, F -stability and entropy for solutions of supercritical
Fujita equation. Using these tools, we prove that among bounded nonzero self
similar solutions, the constant solutions have the lowest entropy. Furthermore,
there is also a gap between the entropy of constant and non-constant solutions.
As an application of these results, we prove that if p > (n+ 2)/(n− 2), then the
blow up set of type I blow up solutions is the union of a (n − 1)− rectifiable set
and a set of Hausdorff dimension at most n− 3.
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1. Introduction

Consider the Cauchy problem for the Fujita equation

∂tu = ∆u+ |u|p−1u, (F)

where p > 1, and the initial value of u is u0 ∈ L∞(Rn). It is well known (see Fujita
[19], [34]) that solutions of this problem could blow up in a finite time. Here a
solution u(x, t) is said to blow up in a finite time T if ∥u(·, t)∥∞ <∞ for any t < T ,
while

lim sup
t→T

∥u(·, t)∥∞ = ∞.

The finite time blow up is type I if

lim sup
t→T

(T − t)
1

p−1∥u(·, t)∥∞ < +∞,

and type II if

lim sup
t→T

(T − t)
1

p−1∥u(·, t)∥∞ = +∞.

If u is a finite time blow up solution of (F), a point x0 is called a blow-up point
if there exist sequences {xk} and {tk} such that

lim
k→∞

xk = x0, lim
k→∞

tk = T, lim
k→∞

|u(xk, yk)| = +∞.

The set Σ consisting of all the blow-up points is termed the blow-up set.
In a series of papers, Giga and Kohn [21, 22, 23] studied the asymptotic behavior

of blow-up solutions to (F) when 1 < p < ps(n), where

ps(n) =

{
+∞, if 1 ≤ n ≤ 2,
n+2
n−2

, if n ≥ 3.

For this purpose, they considered the self similar transform

w(y, τ) = (T − t)
1

p−1u(x, t), x = (T − t)
1
2y, T − t = e−τ .

If u satisfies (F), then w satisfies

∂τw −∆w +
y

2
· ∇w +

1

p− 1
w − |w|p−1w = 0. (RF)



ENTROPY FOR SUPERCRITICAL FUJITA EQUATION 3

The asymptotic behavior of u near a blow up point is equivalent to the large time
asymptotics of the solution to (RF).

The equation (RF) is the gradient flow of the energy functional

E(w) =

ˆ
Rn

[
1

2
|∇w|2 + 1

2(p− 1)
w2 − 1

p+ 1
|w|p+1

]
ρdy, (E)

where ρ = (4π)−n/2e−|y|2/4 is the standard Gaussian density. Thus it is monotonically
decreasing along the flow of (RF). With the help of this property, Giga and Kohn
showed that as τ → +∞, w (up to a subseqeunce of τ) converges to a stationary
solution of (RF), that is, solution to the elliptic equation

∆w − y

2
· ∇w − 1

p− 1
w + |w|p−1w = 0, in Rn. (SS)

It is clear that (SS) has three constant solutions 0,±κ, where

κ := (p− 1)−
1

p−1 .

By establishing the Pohozaev identity for bounded solutions of (SS), Giga and Kohn
[21] proved that if 1 < p < ps(n), then these are all the bounded solutions. As a
consequence of this Liouville property, Giga and Kohn [21] further showed that if
1 < p < ps(n), u is a finite time, Type I blow up solution of (F), then for any
x0 ∈ Rn,

lim
t→T

(T − t)
1
p−u(x0 + (T − t)y, t) = 0 or ± κ (1.1)

uniformly on any compact set of Rn.
Leter on, Giga-Kohn [22] (in the case of u0 ≥ 0) and Giga-Matsui-Sasayama [24]

(in the general case of sign-changing u0) proved that if 1 < p < ps(n), any finite
time blow up to the Cauchy problem of (F) is Type I. In [23], Giga and Kohn proved
the nondegeneracy of blow ups, which implies that when x0 is a blow up point, 0
cannot arise as the limit in (1.1). In [32], Merle and Zaag classified all bounded
global nonnegative solutions to (RF) defined on Rn × R in the case 1 < p < ps(n).

In view of the above mentioned results, the blow up phenomenon of (F) when
1 < p < ps(n) is well understood. If p = (n+2)/(n−2) (the critical exponent), type
II blow up solutions to (F) do exist. In [18], Filippas-Herrero-Velázquez predicted
and proved formally the existence of type II solutions. The first rigorous proof was
given by Schweyer [35] for n = 4 in the radial setting. For the remaining dimensions,
the construction of type II blow up solutions are established in [15] for n = 3, [14, 26]
for n = 5 and [27] for n = 6. On the other hand, Collot, Merle and Raphaël [10]
proved that if the energy of the initial value u0 is clsose to that of the Aubin-Talenti
solution, then (F) can only have type I blow up solution when n ≥ 7. Under the
same assumption on the dimension, Wang and Wei [40] proved that any finite time
blow up solution of (F) must be of type I provided the initial value u0 is nonnegative.

In the remaining part of the paper, it is always assumed that n ≥ 3 and p >
(n+2)/(n−2) is supercritical. In this case, we expect that there are many solutions
to (SS) (see [12]), and in general it is impossible to give a complete classification for



4 K. WANG, J. WEI, AND K. WU

all solutions. Instead, we will try to find a characterization of the constant solutions
±κ.

1.1. Setting and main results. Denote

Bn = {w : w is a nonzero bounded solution of (SS)}.

Since κ ∈ Bn, Bn ̸= ∅. Our first main result says that the constant solutions have
the lowest energy among all nonzero bounded solutions.

Theorem 1.1. If w ∈ Bn and w ̸= ±κ, then

E(w) > E(κ).

Remark 1.2. Let

E = {the set of bounded radially symmetric solutions of (SS)}.

It has been proved by Matano and Merle [31, Theorem 1.4] that

E(w) ≥ E(κ), for any w ∈ E\{0}.

Furthermore, the equality holds if and only if w = ±κ. Their proof is “parabolic”
and is based on the zero-number argument.

For each positive constant m ≥ κ, we set

Bn,m = {w ∈ Bn and ∥w∥L∞(Rn) < m.} (1.2)

Our next result indicates that not only the constant solution has the lowest energy
among functions in Bn, but there is a gap to the second lowest.

Theorem 1.3. There exists a positive constant ε depending only on n,m and p such
that if w ∈ Bn,m and w ̸= ±κ, then

E(w) > E(κ) + ε.

If p ≥ ps(n), it is known (see [11, 13]) that (F) can have type II blow up solutions.
Therefore, it is plausible to extend Theorem 1.1 to unbounded solutions of (SS). In
order to clarify this problem, we first recall the definition of suitable weak solutions
introduced in [40].

Definition 1.4 (Suitable weak ancient solution). A function u, defined on the full
parabolic cylinder Q1 := B1×(−1, 1), is a suitable weak solution if ∂tu,∇u ∈ L2(Q1),
u ∈ Lp+1(Q1), and

• u satisfies (F) in the weak sense, that is, for any η ∈ C∞
0 (Q1),ˆ

Q1

[
∂tuη +∇u · ∇η − |u|p−1uη

]
= 0; (1.3)

• u satisfies the localized energy inequality: for any η ∈ C∞
0 (Q1),ˆ

Q1

[(
|∇u|2

2
− |u|p+1

p+ 1

)
∂tη

2 − |∂tu|2η2 − 2η∂tu∇u · ∇η
]
≥ 0; (1.4)
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• u satisfies the stationary condition: for any Y ∈ C∞
0 (Q1,Rn),ˆ

Q1

[(
|∇u|2

2
− |u|p+1

p+ 1

)
divY −DY (∇u,∇u)− ∂tu∇u · Y

]
= 0. (1.5)

Definition 1.5. A function u is a suitable weak ancient solution of the equation
(F) if for each Q−

r (x0, t0) = Br(x0) × (t0 − r2, t0) ⊂ Rn × (−∞, 0), u is a suitable
weak solution of (F) in Q−

r ((x0, t0)).
Given M > 0, GM denotes the set of suitable weak ancient solutions of (F)

satisfying the following Morrey estimate: for any (x0, t0) ∈ Rn × (−∞, 0),

r
2(p+1)
p−1

−2−n
ˆ
Q−

r (x0,t0−r2)
(|∇u|2 + |u|p+1)dxdt+ r

2(p+1)
p−1

−n
ˆ
Q−

r (x0,t0−r2)
(∂tu)

2dxdt ≤M.

Definition 1.6. We set

Fn = {w : (−t)−1/(p−1)w(x/
√
−t) ∈ GM for some positive constant M}.

It is easy to check that Fn contains bounded smooth solutions of (SS). However,
a function in Fn need not to be smooth everywhere. Indeed, if n ≥ 3, p > (n +
2)/(n− 2), then

w(y) =

[
2

p− 1

(
n− 2− 2

p− 1

)] 1
p−1

|y|−
2

p−1

is a function in Fn which is not smooth. For any function w in Fn, let Reg(w) be
the regular part of w, then Reg(w) is an open subset of Rn. Let

F+
n = {w : w ∈ Fn and w ≥ 0 on Reg(w)}

Theorem 1.7. If n ≤ 3 or n ≥ 4, (n+ 2)/(n− 2) < p < (n+ 1)/(n− 3), then

E(w) ≥ E(κ)

for any w ∈ F+
n .

Compared to Theorem 1.1, the main obstruction in this case comes from solutions
to the elliptic counterpart of (F),

−∆w = |w|p−1w in Rn. (1.6)

The technical restriction on the range of p in this theorem arises from the use of some
rigidity results on homogeneous solutions to (1.6). Here a solution w is homogeneous
if

w(λx) = λ−
2

p−1w(x).

In polar coordinates, w is homogeneous if and only if there exists a function Φ on

the unit sphere such that w(r, θ) = r−
2

p−1Φ(θ), where Φ solves

−∆Sn−1Φ + βΦ = |Φ|p−1Φ (1.7)

with

β =
2

p− 1

(
n− 2− 2

p− 1

)
,
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For finite time blow up solutions of (F), another question that has deserved great
attention is the structure of the blow up set. In the subcritical case, Velázquez [37]
proved that if

u(x, t) ̸= κ(T − t)−
1

p−1 .

Then for any fixed R > 0, Σ ∩BR(0) is a n− 1-rectifiable set and there holds:

Hn−1(Σ ∩BR(0)) <∞,

where Hn−1 is the standard (n − 1) dimensional Hausdorff measure and BR(0) =
{x ∈ Rn : |x| < R}. As pointed out in [37], the dimension (n − 1) is optimal. For
more results on this topic, we refer to [4, 6, 30, 23, 43, 44, 17]. When the exponent
p is supercritical, we can apply Theorem 1.3 to study the structure of type I finite
blow up solutions.

Definition 1.8. For any x0, a tangent function w0 at x0 is a suitable weak solution
of (SS) such that by defining

u0(x, t) := (−t)−
1

p−1w0

(
x√
−t

)
,

there exists a sequence λi → 0+ such that

λ
− 2

p−1

i u(xi + λix, T + λ2i t) → u0(x, t) in L
p+1
loc (Rn × (−∞, 0)).

The set of tangent functions is denoted by T (x0, u).

The scaling limit in this definition is equivalent to the large time limiting behavior
of the self-similar equation (RF).

Proposition 1.9. Let n ≥ 3, p > (n+ 2)/(n− 2), u0 ≥ 0 and let

u(x, t) ̸= κ(T − t)−
1

p−1

be a solution of the equation (F) that blows up at T . Assume there is a positive
constant m > κ such that

u(x, t) ≤ m(T − t)−
1

p−1 , in Rn × (0, T ). (1.8)

For any R > 0, we set ΣR = Σ ∩BR(0). Then

(1) ΣR = Σn−1 ∪ Σn−3;
(2) Σn−1 is relatively open in Σ, and it is countably (n− 1)-rectifiable;
(3) the Hausdorff dimension of Σn−3 is at most n− 3;
(4) x0 ∈ Σn−1 if and only if T (u, x0) = {κ}.

1.2. Idea of the proof: F -functional and entropy. For a hypersurface Σ of
Euclidean space Rn+1, the entropy is defined by

λ(Σ) = sup(4πt0)
−n

2

ˆ
Σ

e
− |x−x0|

2

4t0 dx.

Here the supremum is taken over all t0 > 0 and x0 ∈ Rn+1. This quantity was
introduced by Colding -Minicozzi [7]. As a consequence of Huisken’s monotonicity
formula, it is non-increasing along the mean curvature flow, thus giving a Lyapunov
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functional. In [8], Colding– Ilmanen–Minicozzi-White proved that within the closed
smooth self-shrinking solutions of the mean curvature flow in Rn+1, not only does
the round sphere have the lowest entropy, but also there is a gap to the second
lowest. Based on this result, they conjectured that, for 2 ≤ n ≤ 6, the round sphere
minimizes the entropy among all closed hypersurfaces. Using a cleverly constructed
weak mean curvature flow that ensured the extinction time singularity was of a
special type, this conjecture was verified by Bernstein and Wang [2].

As pointed by Velázquez in [38], the structure of singularities which arise in mean
curvature flow is strikingly similar to those appearing in (F). Because of this reason,
we will borrow some ideas from [7] and [8] to consider bounded solutions of (SS).
Inspired by the program developed by Colding and Minicozzi [7, 8], we will introduce
the notation of F -functional and entropy. In the setting of (F), for a bounded C1

function w, the F -functional is defined by

Fx0,t0(w) =
1

2
(−t0)

p+1
p−1

ˆ
Rn

|∇w|2G(y − x0, t0)dy

− 1

p+ 1
(−t0)

p+1
p−1

ˆ
Rn

|w|p+1G(y − x0, t0)dy

+
1

2(p− 1)
(−t0)

2
p−1

ˆ
Rn

w2G(y − x0, t0)dy,

(1.9)

where for any (y, t) ∈ Rn × (−∞, 0),

G(y, t) = (−4πt)−
n
2 e

|y|2
4t .

In particular,

G(y,−1) = ρ(y) = (4π)−
n
2 e−

|y|2
4 .

The motivation of defining F -functional in this way comes from Giga-Kohn’s mono-
tonicity formula (see [21, Proposition 3]). The main property of these functionals is
that a bounded function is a critical point of Fx0,t0 if and only if it is the time t = t0
slice of a self similar solution of (F). Using the F−functionals, we can also define
the entropy λ(w) of a bounded smooth function to be the supremum of the Fx0,t0
functionals

λ(w) = sup
x0∈Rn,t0∈(−∞,0)

Fx0,t0(w). (1.10)

Similar to [7], we can define F -stable and entropy-stable solutions. Then under
some technical (but reasonable) conditions, we show that these two definitions are
equivalent. Using this fact, we can perturb a bounded non-constant solution of
(SS), while reducing the entropy and making the solution of (RF) starting at this
perturbed function blows up at a finite time. After that, we use an induction
argument to show that the minimizer of λ(w) among Bn is attained by the constant.
Once this is established, we will then prove by contradiction to obtain the entropy
gap (or energy gap).

Finally, we point out even though Theorem 1.1 and Theorem 1.3 suggest that the
constant solutions of (SS) serve the same role as the round sphere in mean curvature
flow, there are still some striking differences. For instance, if a mean curvature
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flow in Rn+1 starting at a closed smooth embedded hypersurface has only generic
singularities, then the round sphere is included in the lowest strata S0

1 consisting
of isolated points (see [9, Lemma 4.2]). However, for finite blow up solutions of (F),
the constant solution κ is included in the top strata Sn. This will lead to some
essential difficulties in our analysis.

Notation. Define the weighted spaces

Lqω(Rn) = {g ∈ Lqloc(R
n) :

ˆ
Rn

|g(y)|qe−
|y|2
4 dy <∞}

and

H1
ω(Rn) = {g ∈ L2

ω(Rn) : |∇g|+ |g| ∈ L2
ω(Rn)}.

The inner product on L2
ω(Rn) is given by

⟨ψ1, ψ2⟩w =

ˆ
Rn

ψ1ψ2e
− |y|2

4 dy. (1.11)

Both L2
ω(Rn) and H1

ω(Rn) are Hilbert spaces.

2. Preliminaries

In this section, we recall several results which will be used later. The first one is
[21, Proposition 1’].

Lemma 2.1. For any bounded solution w of (SS), there exists a positive constant
M ′ depending only on n, p and ∥w∥L∞(Rn) such that

|∇w|+ |∇2w|+ |∇3w| ≤M ′, in Rn

The next result is about the regularity of solutions to (SS) which satisfies a natural
decay condition at infinity.

Lemma 2.2. Assume w is a bounded solution of (SS) satisfying, for some positive
constant C,

|w(y)| ≤ C(1 + |y|)−
2

p−1 , in Rn. (2.1)

Then there exists a positive constant C1 such that

(1 + |y|)1+
2

p−1 |∇w(y)|+ (1 + |y|)2+
2

p−1 |∇2w(y)| ≤ C1, in Rn. (2.2)

Proof. Let

u(x, t) = (−t)−
1

p−1w

(
x√
−t

)
. (2.3)

Then u is a smooth, ancient self similar solution of (F).
By (2.1), u is bounded on (B2(0)\B1/4(0))× [−1, 0). Thus we get from standard

parabolic estimates (see the proof of [21, Proposition 1]) that

|∇u|+ |∇2u| ≤ C1, in (B3/2(0)\B1/2(0))× [−1/2, 0)

for some positive constant C1. After scaling back to w, this is (2.2). □

1Here we have adopted the notations in [9, Section 4]
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Next, we recall the monotonicity formula for (F), which is a reformulation of [21,
Proposition 3].

Lemma 2.3 (Monotonicity formula). Assume w is a bounded solution of (SS) and
u is defined by (2.3). For any (x, t) ∈ Rn × (−∞, 0] and T ≥ t, the function

E(s;x, T, u) =
1

2
(−s)

p+1
p−1

ˆ
Rn

|∇u(y, T + s)|2G(y − x, s)dy

− 1

p+ 1
(−s)

p+1
p−1

ˆ
Rn

|u(y, T + s)|p+1G(y − x, s)dy (2.4)

+
1

2(p− 1)
(−s)

2
p−1

ˆ
Rn

u(y, T + s)2G(y − x, s)dy

is nonincreasing with respect to s in (−∞,−(T − t)). If t < 0 and T > t, then
E(s;x, T, u) is nonincreasing with respect to s in (−∞,−(T − t)].

For any (x, t) ∈ Rn × (−∞, 0], we take T = t into (2.4). The monotonicity of E
allows us to define the density function

Θ(x, t;u) := lim
s→0

E(s;x, t, u). (2.5)

The density function defined in (2.5) satisfies the following two properties, whose
proof are standard.

Lemma 2.4. The density function Θ is upper semi-continuous in the sense that if
(xi, ti) is a sequence of points converging to (x∞, t∞), then

Θ(x∞, t∞;u) ≥ lim sup
i→∞

Θ(xi, ti;u).

Proof. For any ε > 0, choose an s < 0 such that

E(s;x∞, t∞, u) ≤ Θ(x∞, t∞;u) + ε. (2.6)

Because (xi, ti) → (x∞, t∞) and w is a bounded solution of (SS), we get from Lemma
2.1 that

lim
i→∞

E(s;xi, ti, u) = E(s;x∞, t∞, u).

By the monotocinity formula,

Θ(xi, ti, u) ≤ E(s;xi, ti, u).

Therefore
lim sup
i→∞

Θ(xi, ti, u) ≤ E(s;x∞, t∞, u).

Combining this inequality with (2.6), we get

lim sup
i→∞

Θ(xi, ti, u) ≤ Θ(x∞, t∞;u) + 2ε

Letting ε→ 0, we get the desired claim. □

Lemma 2.5. For any (x0, t0) ∈ Rn × (−∞, 0], we have Θ(x0, t0;u) ≤ Θ(0, 0;u).
If Θ(x0, t0;u) = Θ(0, 0;u), then u is backward self similar with respect to (x0, t0).
Moreover, for any a ∈ R and (x, t) ∈ Rn × (−∞, 0),

u(ax0 + x, a2t0 + t) = u(x, t).
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Proof. Define the blow down sequence of u at (x0, t0) by

uλ(x, t) = λ
2

p−1u(x0 + λx, t0 + λ2t),

where λ → +∞. Since w is a bounded solution of (SS) and u is backward self
similar with respect to (0, 0),

uλ(x, t) = u(λ−1x0 + x, λ−2t0 + t) → u(x, t)

locally uniformly in Rn× (−∞, 0). This uniform convergence implies that for s < 0,

Θ(0, 0;u) ≡ E(s; 0, 0, u) = lim
λ→+∞

E(s; 0, 0, uλ) = lim
λ→+∞

E(λ2s;x0, t0, u) (2.7)

= lim
τ→−∞

E(τ ;x0, t0, u) ≥ Θ(x0, t0;u).

Here in the last inequality we have used the monotonicity formula at (x0, t0).
Assume that Θ(x0, t0;u) = Θ(0, 0;u). For any a > 0, we have

Θ(ax0, a
2t0;u) = Θ(x0, t0;u) = Θ(0, 0;u).

Thus u is backward self similar with respect to (ax0, a
2t0). Since u is also backward

self similar with respect to (0, 0), for any λ > 0, we have

u(ax0 + x, a2t0 + t) = λ
2

p−1u(ax0 + λx, a2t0 + λ2t) = u(λ−1ax0 + x, λ−2a2t0 + t).

Since u is smooth, for any (x, t) ∈ Rn × (−∞, 0),

lim
λ→+∞

u(λ−1ax0 + x, (aλ)−2t0 + t) = u(x, t).

Thus

u(ax0 + x, a2t0 + t) = u(x, t).

The case a < 0 can be obtained by a change of variables. □

Remark 2.6. According to the definition in [41, Section 8], the density function
Θ(x, t;u) is a backward conelike function.

We also need the following Liouville type result.

Theorem 2.7. If n ≤ 2 or n ≥ 3, 1 < p ≤ (n+2)/(n−2), if w is a bounded solution
or w ∈ Fn, then w = 0 or w = ±κ.

Proof. As mentioned in the introduction, for bounded solutions, Giga and Kohn [21,
Theorem 1] obtained the Pohozaev identity

0 =

(
n

p+ 1
+

2− n

2

) ˆ
Rn

|∇w|2e−
|y|2
4 dy +

1

2

(
1

2
− 1

p+ 1

) ˆ
Rn

|y|2|∇w|2e−
|y|2
4 dy.

This identity follows from integration by parts. For functions in Fn, we can obtain
the same identity by plugging suitable vector fields into the stationary condition
(1.5).

Because the coefficients in Pohozaev identity are all nonnegative, it implies ∇w =
0. Hence w must be a constant solution. □
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3. First variation of the F -functional

In this section, we will derive the first variation formula for the F -functional
defined in (1.9). Then we will use the first variation formula to give a variational
characterization of bounded solutions of (SS).

3.1. The general first variation formula. The following first variation formula
holds for any bounded smooth function.

Lemma 3.1 (The first variation formula). Let w be a bounded smooth function.
Assume ϕ ∈ C∞

0 (Rn), x(s) and t(s) are variations such that

x(0) = x0, t(0) = t0, x′(0) = y0, t′(0) = h.

Then

d

ds
Fx(s),t(s)(w + sϕ)|s=0

=− p+ 1

2(p− 1)
(−t0)

2
p−1h

ˆ
Rn

|∇w|2G(y − x0, t0)dy

+
1

p− 1
(−t0)

2
p−1h

ˆ
Rn

|w|p+1G(y − x0, t0)dy

− 1

(p− 1)2
(−t0)

2
p−1

−1h

ˆ
Rn

w2G(y − x0, t0)dy

+ (−t0)
p+1
p−1

ˆ
Rn

(∇w · ∇ϕ)G(y − x0, t0)dy

− (−t0)
p+1
p−1

ˆ
Rn

|w|p−1wϕG(y − x0, t0)dy

+
1

(p− 1)
(−t0)

2
p−1

ˆ
Rn

wϕG(y − x0, t0)dy

+
1

2
(−t0)

p+1
p−1

ˆ
Rn

|∇w|2G(y − x0, t0) (3.1)

×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy

− 1

p+ 1
(−t0)

p+1
p−1

ˆ
Rn

|w|p+1G(y − x0, t0)

×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy

+
1

2(p− 1)
(−t0)

2
p−1

ˆ
Rn

w2G(y − x0, t0)

×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy.
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Proof. By the definition of the F -functional in (1.9), we have

Fx(s),t(s)(w + sϕ) =
1

2
[−t(s)]

p+1
p−1

ˆ
Rn

|∇(w + sϕ)|2G(y − x(s), t(s))dy

− 1

p+ 1
[−t(s)]

p+1
p−1

ˆ
Rn

|w + sϕ|p+1G(y − x(s), t(s))dy

+
1

2(p− 1)
[−t(s)]

2
p−1

ˆ
Rn

(w + sϕ)2G(y − x(s), t(s))dy.

Because

d

ds

[
(−4πt(s))−

n
2 e

|x(s)−y|2
4t(s)

]
=[−4πt(s)]−

n
2 e

|x(s)−y|2
4t(s)

[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
,

we get

d

ds
Fx(s),t(s)(w + sϕ)

=− p+ 1

2(p− 1)
[−t(s)]

2
p−1 t′(s)

ˆ
Rn

|∇w + s∇ϕ|2G(y − x(s), t(s))dy

+
1

p− 1
[−t(s)]

2
p−1 t′(s)

ˆ
Rn

|w + sϕ|p+1G(y − x(s), t(s))dy

− 1

(p− 1)2
[−t(s)]

2
p−1

−1t′(s)

ˆ
Rn

(w + sϕ)2G(y − x(s), t(s))dy

+ [−t(s)]
p+1
p−1

ˆ
Rn

(∇w + s∇ϕ) · ∇ϕG(y − x(s), t(s))dy

− [−t(s)]
p+1
p−1

ˆ
Rn

|w + sϕ|p−1(w + sϕ)ϕG(y − x(s), t(s))dy

+
1

p− 1
[−t(s)]

2
p−1

ˆ
Rn

(w + sϕ)ϕG(y − x(s), t(s))dy

+
1

2
[−t(s)]

p+1
p−1

ˆ
Rn

|∇w + s∇ϕ|2G(y − x(s), t(s))

×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy

− 1

p+ 1
[−t(s)]

p+1
p−1

ˆ
Rn

|w + sϕ|p+1G(y − x(s), t(s))

×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy

+
1

2(p− 1)
[−t(s)]

2
p−1

ˆ
Rn

(w + sϕ)2G(y − x(s), t(s))

×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy.
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Plugging s = 0 into the above formula, we get the desired formula. □

Definition 3.2. Let w be a bounded smooth function. If for all variations x(s), t(s)
and ϕ ∈ C∞

0 (Rn), we have

d

ds
Fx(s),t(s)(w + sϕ)|s=0 = 0,

then we say that w is a critical point of the functional Fx0,t0.

3.2. Critical points of F -functional are self similar solutions. In this section,
we will prove that w is a critical point of Fx0,t0 if and only if it is the time −t0 slice
of a self similar solution of (F), which blows up at the point x0 and time 0.

Proposition 3.3. A bounded smooth function w is a critical point of Fx0,t0 if and
only if w is a solution to the equation

∆w +
y − x0
2t0

· ∇w +
1

(p− 1)t0
w + |w|p−1w = 0, in Rn. (3.2)

Proof. By the definition of the F -functional, it is easy to check that

Fx0,t0(w) = F0,−1(wx0,t0),

where

wx0,t0(y) = (−t0)
1

p−1w(x0 +
√
−t0y).

Notice that wx0,t0 satisfies (3.2) if and only if w satisfies (SS). Therefore, it is
sufficient to prove Proposition 3.3 for x0 = 0 and t0 = −1.

First assume w is a critical point of F0,−1. Taking x0 = 0, t0 = −1, y0 = 0 and
h = 0 in (3.1), we see that for any ϕ ∈ C∞

0 (Rn),

0 =

ˆ
Rn

∇w · ∇ϕρdy + 1

p− 1

ˆ
Rn

wϕρdy −
ˆ
Rn

|w|p−1wϕρdy. (3.3)

Thus

0 =

ˆ
Rn

[
1

ρ
div(ρ∇w)− 1

p− 1
w + |w|p−1w

]
ϕρdy.

It follows that w satisfies (3.2).
Next, assume w is a solution of (3.2) with x0 = 0, t0 = −1. We need to show that

for any y0, h and ϕ ∈ C∞
0 (Rn),

d

ds
Fx(s),t(s)(w + sϕ)|s=0 = 0.

This is equivalent to the requirement that

0 =− p+ 1

2(p− 1)
h

ˆ
Rn

|∇w|2ρdy + h

p− 1

ˆ
Rn

|w|p+1ρdy

− h

(p− 1)2

ˆ
Rn

w2ρdy +

ˆ
Rn

(∇w · ∇ϕ)ρdy

+
1

p− 1

ˆ
Rn

wϕρdy −
ˆ
Rn

|w|p−1wϕdy (3.4)
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+
1

2

ˆ
Rn

|∇w|2
[
nh

2
+
y · y0
2

− h|y|2

4

]
ρdy

− 1

p+ 1

ˆ
Rn

|w|p+1

[
nh

2
+
y · y0
2

− h|y|2

4

]
ρdy

+
1

2(p− 1)

ˆ
Rn

w2

[
nh

2
+
y · y0
2

− h|y|2

4

]
ρdy.

Multiplying both sides of (SS) by ρw and integrating by parts, we get

0 =

ˆ
Rn

|∇w|2ρdy −
ˆ
Rn

|w|p+1ρdy +
1

p− 1

ˆ
Rn

w2ρdy. (3.5)

By [21, Formula (3,17)], we have

0 =
2− n

2

ˆ
Rn

|∇w|2ρdy − n

2(p− 1)

ˆ
Rn

w2ρdy

+
n

p+ 1

ˆ
Rn

|w|p+1ρdy +
1

4

ˆ
Rn

|y|2|∇w|2ρdy (3.6)

+
1

4(p− 1)

ˆ
Rn

|y|2w2ρdy − 1

2(p+ 1)

ˆ
Rn

|y|2|w|p+1ρdy.

For i = 1, 2, · · ·n, multiplying both sides of (3.2) by ρwi and integrating by parts,
we get

0 =−
ˆ
Rn

∇w · ∇wiρdy −
1

p− 1

ˆ
Rn

wiwρdy +

ˆ
Rn

|w|p−1wwiρdy

=− 1

2

ˆ
Rn

(|∇w|2)iρdy −
1

2(p− 1)

ˆ
Rn

(w2)iρdy +
1

p+ 1

ˆ
Rn

(|w|p+1)iρdy

=
1

4

ˆ
Rn

yi|∇w|2ρdy +
1

4(p− 1)

ˆ
Rn

yiw
2ρdy − 1

2(p+ 1)

ˆ
Rn

yi|w|p+1ρdy.

It follows that for any y0 ∈ Rn,

0 =

ˆ
Rn

[
1

2
|∇w|2 + 1

2(p− 1)
w2 − 1

p+ 1
|w|p+1

]
(y · y0)ρdy. (3.7)

Combining (3.3), (3.5), (3.6) and (3.7) in the way

(3.3)− h

p− 1
(3.5)− h

2
(3.6) +

1

2
(3.7),

we see that (3.4) holds. So w is a critical point of Fx0,t0 . □

4. Second variation of the F -functional

In this section, we will derive the second variation formula of the F -functional for
simultaneous variations in all three parameters w, x0 and t0. In particular, when w
is a bounded solution of (SS), we will use our calculation to formulate a notion of
stability.
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4.1. The general second variation formula.

Lemma 4.1. Let w be a bounded smooth function. If x(s) and t(s) are variations
such that

x(0) = x0, t(0) = t0, x′(0) = y0, t′(0) = h

and x′′(0) = y′0, t
′′(0) = h′, then

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=
p+ 1

2(p− 1)
(−t0)−1+ 2

p−1

[
t0h

′ +
2

p− 1
h2
]ˆ

Rn

|∇w|2G(y − x0, t0)dy

− 1

p− 1
(−t0)−1+ 2

p−1

[
t0h

′ +
2

p− 1
h2
] ˆ

Rn

|w|p+1G(y − x0, t0)dy

− 1

(p− 1)2
(−t0)−2+ 2

p−1

[
−t0h′ +

p− 3

p− 1
h2
]ˆ

Rn

w2G(y − x0, t0)dy

− 2(p+ 1)

p− 1
(−t0)

2
p−1h

ˆ
Rn

(∇w · ∇ϕ)G(y − x0, t0)dy

+
2(p+ 1)

p− 1
(−t0)

2
p−1h

ˆ
Rn

|w|p−1wϕG(y − x0, t0)dy

− 4

(p− 1)2
(−t0)

2
p−1

−1h

ˆ
Rn

wϕG(y − x0, t0)dy

− p+ 1

p− 1
(−t0)

2
p−1h

ˆ
Rn

|∇w|2G(y − x0, t0)

×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy

+
2

p− 1
(−t0)

2
p−1h

ˆ
Rn

|w|p+1G(y − x0, t0)

×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy

− 2

(p− 1)2
(−t0)

2
p−1

−1h

ˆ
Rn

w2G(y − x0, t0)

×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy

+ (−t0)
p+1
p−1

ˆ
Rn

|∇ϕ|2G(y − x0, t0)dy

− p(−t0)
p+1
p−1

ˆ
Rn

|w|p−1ϕ2G(y − x0, t0)dy

+
1

p− 1
(−t0)

2
p−1

ˆ
Rn

ϕ2G(y − x0, t0)dy

+ 2(−t0)
p+1
p−1

ˆ
Rn

(∇w · ∇ϕ)G(y − x0, t0)
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×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy

− 2(−t0)
p+1
p−1

ˆ
Rn

|w|p−1wϕG(y − x0, t0)

×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy

+
2

p− 1
(−t0)

2
p−1

ˆ
Rn

wϕG(y − x0, t0)

×
[
−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]
dy

+
1

2
(−t0)

p+1
p−1

ˆ
Rn

|∇w|2G(y − x0, t0)

×
{[

−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]2
− nh′t0 − nh2

2t20

+
[|y0|2 + (x0 − y) · y′0]t0 − h(x0 − y) · y0

2t20

− [h′|x0 − y|2 + 2h(x0 − y) · y0]t0 − 2h2|x0 − y|2

4t30

}
dy

− 1

p+ 1
(−t0)

p+1
p−1

ˆ
Rn

|w|p+1G(y − x0, t0)

×
{[

−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]2
− nh′t0 − nh2

2t20

+
[|y0|2 + (x0 − y) · y′0]t0 − h(x0 − y) · y0

2t20

− [h′|x0 − y|2 + 2h(x0 − y) · y0]t0 − 2h2|x0 − y|2

4t30

}
dy

+
1

2(p− 1)
(−t0)

2
p−1

ˆ
Rn

w2G(y − x0, t0)

×
{[

−nh

2t0
+

(x0 − y) · y0
2t0

− h|x0 − y|2

4t20

]2
− nh′t0 − nh2

2t20

+
[|y0|2 + (x0 − y) · y′0]t0 − h(x0 − y) · y0

2t20

− [h′|x0 − y|2 + 2h(x0 − y) · y0]t0 − 2h2|x0 − y|2

4t30

}
dy.

Proof. After some computations, we get

d2

ds2
Fx(s),t(s)(w + sϕ)
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=
p+ 1

2(p− 1)
[−t(s)]−1+ 2

p−1

[
t(s)t′′(s) +

2

p− 1
(t′(s))2

]
×
ˆ
Rn

|∇w + s∇ϕ|2G(y − x(s), t(s))dy

− 1

p− 1
[−t(s)]−1+ 2

p−1

[
t(s)t′′(s) +

2

p− 1
(t′(s))2

]
×
ˆ
Rn

|w + sϕ|p+1G(y − x(s), t(s))dy

− 1

(p− 1)2
[−t(s)]−2+ 2

p−1

[
p− 3

p− 1
(t′(s))2 − t(s)t′′(s)

]
×
ˆ
Rn

(w + sϕ)2G(y − x(s), t(s))dy

− 2(p+ 1)

p− 1
[−t(s)]

2
p−1 t′(s)

ˆ
Rn

(∇w + s∇ϕ) · ∇ϕG(y − x(s), t(s))dy

+
2(p+ 1)

p− 1
[−t(s)]

2
p−1 t′(s)

ˆ
Rn

|w + sϕ|p−1(w + sϕ)ϕG(y − x(s), t(s))dy

− 4

(p− 1)2
[−t(s)]

2
p−1

−1t′(s)

ˆ
Rn

(w + sϕ)ϕG(y − x(s), t(s))dy

− p+ 1

p− 1
[−t(s)]

2
p−1 t′(s)

ˆ
Rn

|∇w + s∇ϕ|2G(y − x(s), t(s))

×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy

+
2

p− 1
[−t(s)]

2
p−1 t′(s)

ˆ
Rn

|w + sϕ|p+1G(y − x(s), t(s))

×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy

− 2

(p− 1)2
[−t(s)]

2
p−1

−1t′(s)

ˆ
Rn

(w + sϕ)2G(y − x(s), t(s))

×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy

+ [−t(s)]
p+1
p−1

ˆ
Rn

|∇ϕ|2G(y − x(s), t(s))dy

− p[−t(s)]
p+1
p−1

ˆ
Rn

|w + sϕ|p−1ϕ2G(y − x(s), t(s))dy

+
1

p− 1
[−t(s)]

2
p−1

ˆ
Rn

ϕ2G(y − x(s), t(s))dy

+ 2[−t(s)]
p+1
p−1

ˆ
Rn

(∇w + s∇ϕ) · ∇ϕG(y − x(s), t(s))
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×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy

− 2[−t(s)]
p+1
p−1

ˆ
Rn

|w + sϕ|p−1(w + sϕ)ϕG(y − x(s), t(s))

×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy

+
2

p− 1
[−t(s)]

2
p−1

ˆ
Rn

(w + sϕ)ϕG(y − x(s), t(s))

×
[
−nt

′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]
dy

+
1

2
[−t(s)]

p+1
p−1

ˆ
Rn

|∇w + s∇ϕ|2G(y − x(s), t(s))

×
{[

−nt
′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]2
− nt′′(s)t(s)− nt′(s)t′(s)

2t2(s)

+
[|x′(s)|2 + (x(s)− y) · x′′(s)]t(s)− t′(s)(x(s)− y) · x′(s)

2t2(s)

− [t′′(s)|x(s)− y|2 + 2t′(s)(x(s)− y) · x′(s)]t(s)− 2t′(s)t′(s)|x(s)− y|2

4t3(s)

}
dy

− 1

p+ 1
[−t(s)]

p+1
p−1

ˆ
Rn

|w + sϕ|p+1G(y − x(s), t(s))

×
{[

−nt
′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]2
− nt′′(s)t(s)− nt′(s)t′(s)

2t2(s)

+
[|x′(s)|2 + (x(s)− y) · x′′(s)]t(s)− t′(s)(x(s)− y) · x′(s)

2t2(s)

− [t′′(s)|x(s)− y|2 + 2t′(s)(x(s)− y) · x′(s)]t(s)− 2t′(s)t′(s)|x(s)− y|2

4t3(s)

}
dy

+
1

2(p− 1)
[−t(s)]

2
p−1

ˆ
Rn

(w + sϕ)2G(y − x(s), t(s))

×
{[

−nt
′(s)

2t(s)
+

(x(s)− y) · x′(s)
2t(s)

− t′(s)|x(s)− y|2

4t2(s)

]2
− nt′′(s)t(s)− nt′(s)t′(s)

2t2(s)

+
[|x′(s)|2 + (x(s)− y) · x′′(s)]t(s)− t′(s)(x(s)− y) · x′(s)

2t2(s)

− [t′′(s)|x(s)− y|2 + 2t′(s)(x(s)− y) · x′(s)]t(s)− 2t′(s)t′(s)|x(s)− y|2

4t3(s)

}
dy.

The proof is finished by substituting s = 0 into the above formula. □

If x(0) = 0, t(0) = −1, then the second variation formula has a simpler appear-
ance.
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Lemma 4.2. Let w be a bounded smooth function. If x(s), t(s) are variations such
that

x(0) = 0, t(0) = −1, x′(0) = y0, t′(0) = h

and x′′(0) = y′0, t
′′(0) = h′, then

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=
p+ 1

2(p− 1)

(
−h′ + 2

p− 1
h2
) ˆ

Rn

|∇w|2ρdy

− 1

p− 1

(
−h′ + 2

p− 1
h2
) ˆ

Rn

|w|p+1ρdy

− 1

(p− 1)2

(
h′ +

p− 3

p− 1
h2
) ˆ

Rn

w2ρdy

− 2(p+ 1)

p− 1
h

ˆ
Rn

(∇w · ∇ϕ)ρdy

+
2(p+ 1)

p− 1
h

ˆ
Rn

|w|p−1wϕρdy − 4

(p− 1)2
h

ˆ
Rn

wϕρdy

− p+ 1

p− 1
h

ˆ
Rn

|∇w|2ρ
[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+
2

p− 1
h

ˆ
Rn

|w|p+1ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy (4.1)

− 2

(p− 1)2
h

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+

ˆ
Rn

|∇ϕ|2ρdy − p

ˆ
Rn

|w|p−1ϕ2ρdy +
1

p− 1

ˆ
Rn

ϕ2ρdy

+ 2

ˆ
Rn

(∇w · ∇ϕ)ρ
[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

− 2

ˆ
Rn

|w|p−1wϕρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+
2

p− 1

ˆ
Rn

wϕρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+
1

2

ˆ
Rn

|∇w|2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh′ + nh2

2

+
−|y0|2 + y · y′0 + hy · y0

2
− h′|y|2 − 2hy · y0 + 2h2|y|2

4

}
dy

− 1

p+ 1

ˆ
Rn

|w|p+1ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh′ + nh2

2
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+
−|y0|2 + y · y′0 + hy · y0

2
− h′|y|2 − 2hy · y0 + 2h2|y|2

4

}
dy

+
1

2(p− 1)

ˆ
Rn

w2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh′ + nh2

2

+
−|y0|2 + y · y′0 + hy · y0

2
− h′|y|2 − 2hy · y0 + 2h2|y|2

4

}
dy.

4.2. The second variation of self similar solutions. In this subsection, we will
specialize our calculations from the previous subsection to the case where w satisfies
(SS). In this case, by using (SS), the second order variation formula can be simplified
further.

Theorem 4.3. Let x(s), t(s) be variations of 0,−1 with x′(0) = y0, t
′(0) = h and

x′′(0) = y′0, t
′′(0) = h′. If w is a bounded solution of (SS), then for any ϕ ∈ C∞

0 (Rn),

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=

ˆ
Rn

[
|∇ϕ|2 + 1

p− 1
ϕ2ρdy − p|w|p−1ϕ2

]
ρdy

+ h

ˆ
Rn

(
2

p− 1
w + y · ∇w

)
ϕρdy −

ˆ
Rn

ϕ(∇w · y0)ρdy (4.2)

− 1

2

ˆ
Rn

|∇w · y0|2ρdy − h2
ˆ
Rn

(
1

p− 1
w +

y

2
· ∇w

)2

ρdy.

In particular, we have

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

≤
ˆ
Rn

[
|∇ϕ|2 + 1

p− 1
ϕ2ρdy − p|w|p−1ϕ2

]
ρdy (4.3)

+ h

ˆ
Rn

(
2

p− 1
w + y · ∇w

)
ϕρdy −

ˆ
Rn

ϕ(∇w · y0)ρdy.

The proof will be given in Appendix A.
The second variation formula above allows us to formulate a notion of stability.

Definition 4.4. Let w be a bounded solution of (SS). If for every ϕ ∈ H1
w(Rn),

there exists variations x(s), t(s) with

x(0) = 0, t(0) = −1, x′(0) = y0, t
′(0) = h, x′′(0) = y′0, t

′′(0) = h′

such that
d2

ds2
Fx(s),t(s)(w + sϕ)|s=0 ≥ 0,

then we say that w is F -stable.
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Roughly speaking, a bounded solution of (SS) is F -stable if modulo translations
and dilations, the second derivative of the F -functional is non-negative for all vari-
ations at the given solution.

Remark 4.5. From [21], we know that the energy functional of (SS) is E(w) defined
in (E). Thus at first it seems natural to define a notion of stability as follows: w is
stable if for any ϕ ∈ C∞

0 (Rn), the quadratic form

Q(ϕ, ϕ) =

ˆ
Rn

(
|∇ϕ|2 + 1

(p− 1)
ϕ2 − p|w|p−1ϕ2

)
ρdy

is nonnegative definite. However, it is easy to check that if we use this definition,
then any nonzero self similar solution is unstable. Therefore, this kind of stability
can not provide any useful information.

5. Characterization of the constant solution

Our next objective is to classify F -stable self similar solutions. Before doing this,
we first prove a result on the constant solutions of (SS).

Proposition 5.1. Let w be a bounded solution of (SS), then w is the constant
solution of (SS) if and only if the function

Λ(w)(y) =
2

p− 1
w(y) + y · ∇w(y) (5.1)

does not change sign in Rn.

Remark 5.2. In a recent paper [5], Choi and Huang proved a similar result for
smooth linearly stable self-similar solutions 2 of the equation (F) under an integral
condition for all p > 1.

In order to prove Proposition 5.1, we need some results concerning the linear
operator

Lψ = −∆ψ +
y

2
· ∇ψ +

1

p− 1
ψ − p|w|p−1ψ, (LO)

where w is a bounded solution of (SS). Recall that λ ∈ R is an eigenvalue of L if
there is a non-zero function f ∈ H1

ω(Rn) such that Lf = λf . The operator L is
self adjoint in L2

ω(Rn) with domain D(L) := H1
ω(Rn). Since the natural embedding

ι : H1
ω(Rn) ↪→ L2

ω(Rn) is compact, standard spectral theory gives the following
corollary.

Corollary 5.3. Assume w is a bounded solution of (SS) and L is defined by (LO).
Then

(1) L has a sequence of eigenvalues λ1 < λ2 ≤ · · · → +∞.
(2) There is an orthogonal basis {fk} for L2

w(Rn), where all of fk are eigenfunc-
tions of L.

2The precise definition of linearly stable self similar solution can be found in [5, Definition 2.1].



22 K. WANG, J. WEI, AND K. WU

(3) The smallest eigenvalue λ1 is simple, which can be characterized by

λ1 = inf
ψ∈H1

w(Rn)\{0}

´
Rn

(
|∇ψ|2 + 1

p−1
ψ2 − p|w|p−1ψ2

)
ρdy´

Rn ψ2ρdy
. (5.2)

(4) Any eigenfunction associated to λ1 does not change sign.

The next lemma shows that the operator L has two explicit eigenfunctions which
are induced by scaling and translations.

Lemma 5.4. If w is a bounded solution of the equation (SS), then

Lwi = −1

2
wi, i = 1, 2, · · · , n, (5.3)

L
(

2

p− 1
w + y · ∇w

)
= −

(
2

p− 1
w + y · ∇w

)
. (5.4)

Proof. Since w satisfies (SS), for i = 1, 2, · · · , n,

∆wi −
y

2
· ∇wi −

1

2
wi −

1

p− 1
wi + p|w|p−1wi = 0.

This is just (5.3).
To show (5.4), consider the variation wλ(y) = λ2/(p−1)w(λy). Since w satisfies

(SS), wλ satisfies

∆wλ −
λ2

2
y · ∇wλ −

λ2

p− 1
wλ + |wλ|p−1wλ = 0. (5.5)

Taking derivative with respect to λ at λ = 1, we obtain

0 =∆

(
2

p− 1
w + y · ∇w

)
− y

2
· ∇
(

2

p− 1
w + y · ∇w

)
− 1

p− 1

(
2

p− 1
w + y · ∇w

)
+ p|w|p−1

(
2

p− 1
w + y · ∇w

)
−
(

2

p− 1
w + y · ∇w

)
,

(5.6)

which is (5.4). □

With Corollary 5.3 and Lemma 5.4 in hand, we now have all of the tools to prove
Proposition 5.1.

Proof of Proposition 5.1. If w is the constant solution of (SS), then it is clear that
either Λ(w) ≡ 0 or

Λ(w)(y) = ±2

(
1

p− 1

) p
p−1

.

Thus Λ(w) does not change sign in Rn.
Next, we prove that if Λ(w) does not change sign, then w is the constant solution

of (SS).
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Assume that Λ(w) does not change sign. By Lemma 5.4 and the strong maximum
principle, either Λ(w) ≡ 0 or up to a sign, Λ(w) is positive in Rn. If the first case
holds (Λ(w) ≡ 0), then w is a 2/(p− 1)− homogeneous solution of (1.6). Since we
have assumed that w is bounded, then w is smooth in Rn. The homogeneity then
implies that w ≡ 0.
If the second case holds, then we know from Lemma 5.4 and the last statement in

Corollary 5.3 that −1 is the smallest eigenvalue of the operator L defined in (LO).
Therefore, for any ϕ ∈ H1

w(Rn),

0 ≤
ˆ
Rn

|∇ϕ|2ρdy + 1

p− 1

ˆ
Rn

ϕ2ρdy − p

ˆ
Rn

|w|p−1ϕ2ρdy +

ˆ
Rn

ϕ2ρdy. (5.7)

By taking ϕ = w into (5.7), we get

0 ≤
ˆ
Rn

|∇w|2ρdy + 1

p− 1

ˆ
Rn

w2ρdy − p

ˆ
Rn

|w|p+1ρdy +

ˆ
Rn

w2ρdy. (5.8)

Multiplying both sides of (SS) by wρ and integrating by parts, we get

0 =

ˆ
Rn

|∇w|2ρdy + 1

p− 1

ˆ
Rn

w2ρdy −
ˆ
Rn

|w|p+1ρdy. (5.9)

Combining (5.8) and (5.9), we obtain

(1− p)

ˆ
Rn

|w|p+1ρdy +

ˆ
Rn

w2ρdy ≥ 0. (5.10)

On the other hand, we get from (5.9) that

(1− p)

ˆ
Rn

|w|p+1ρdy +

ˆ
Rn

w2ρdy = −(p− 1)

ˆ
Rn

|∇w|2ρdy ≤ 0. (5.11)

Hence

(1− p)

ˆ
Rn

|w|p+1ρdy +

ˆ
Rn

w2ρdy = 0. (5.12)

Plugging (5.12) into (5.9), we getˆ
Rn

|∇w|2ρdy = 0. (5.13)

Thus w is a constant function. □

Remark 5.5. The proof of Proposition 5.1 indicates that a much more suitable
choice to define “Morse index” of solutions of (SS) is the number of eigenvalues of
L less than 1.

Remark 5.6. If we do not assume w is a bounded solution of (SS), then

w(y) =

[
2

p− 1
(n− 2− 2

p− 1
)

] 1
p−1

|y|−
2

p−1

is a solution of (SS) with Λ(w)(y) ≡ 0 on Rn\{0}.
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6. Classification of F -stable self similar solutions

In this section, we will combine the second variation formula and the characteri-
zation of the constant solution to give a complete classification of F -stable bounded
self similar solutions.

Theorem 6.1. If w is a bounded solution of (SS) and it is not the constant solution,
then w is not F -stable.

Proof. If w is not the constant solution of (SS), then the function Λ(w) defined in
(5.1) can not vanish identically. By Lemma 5.4, Λ(w) is an eigenfunction of L with
eigenvalue −1. By Proposition 5.1, Λ(w) must changes sign. Then the last point in
Corollary 5.3 implies that −1 is not the smallest eigenvalue of L. Thus λ1 < −1 and
there exists a positive, first eigenfunction f . Since L is self-adjoint in the weighted
space H1

w(Rn), f is orthogonal to the eigenfunctions with different eigenvalues. In
particular, we have ˆ

Rn

(
2

p− 1
w + y · ∇w

)
fρdy = 0 (6.1)

and for any y0 ∈ Rn ˆ
Rn

(∇w · y0)fρdy = 0. (6.2)

Substituting (6.1) and (6.2) into (4.3) gives

d2

ds2
Fx(s),t(s)(w + sf)|s=0

=

ˆ
Rn

(
|∇f |2 + 1

p− 1
f 2 − p|w|p−1f 2

)
ρdy

+ h

ˆ
Rn

(
2

p− 1
w + y · ∇w

)
fρdy −

ˆ
Rn

f(∇w · y0)ρdy (6.3)

− 1

2

ˆ
Rn

|∇w · y0|2ρdy − h2
ˆ
Rn

(
1

p− 1
w +

y

2
· ∇w)2ρdy

≤− λ1

ˆ
Rn

f 2ρdy.

It follows that
d2

ds2
Fx(s),t(s)(w + sf)|s=0 < 0

for any choice of h and y0. By the definition, w is not F -stable. □

Remark 6.2. In the proof of Theorem 6.1, the variation we can choose is not
unique. Indeed, assume f is the first positive eigenfunction of L and ξ is a small
positive constant which will be determined later. Let us take ϕ = f + ξ into the
second variation formula. Without loss of generality, we may normalize f so that´
Rn f

2ρdy = 1. Then

d2

ds2
Fx(s),t(s)(w + s(f + ξ))|s=0
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=

ˆ
Rn

(
|∇f |2 + 1

p− 1
f 2 − p|w|p−1f 2

)
ρdy

+
2ξ

p− 1

ˆ
Rn

fρdy +
ξ2

p− 1

ˆ
Rn

ρdy

− 2pξ

ˆ
Rn

|w|p−1fρdy − pξ2
ˆ
Rn

|w|p−1ρdy (6.4)

− ξ

ˆ
Rn

(∇w · y0)ρdy −
1

2

ˆ
Rn

|∇w · y0|2ρdy

+ 2hξ

ˆ
Rn

(
1

p− 1
w +

y

2
· ∇w

)
ρdy − h2

ˆ
Rn

(
1

p− 1
w +

y

2
· ∇w

)2

ρdy

≤λ1
ˆ
Rn

f 2ρdy +
3(p+ 1)

p− 1
(ξ2 + ξ).

If we choose ξ so that
3(p+ 1)

p− 1
(ξ2 + ξ) < λ1,

then we still have
d2

ds2
Fx(s),t(s)(w + s(f + ξ))|s=0 < 0

for any choice of h and y0.

In view of Theorem 6.1, it is natural to ask whether the constant solution is F -
stable. By the second variation formula, it is clear that the zero solution is F -stable.
Next, we will show if w = ±κ, then the only way to decrease the F0,1 functional is
to translate in space; this will not be used elsewhere.

Proposition 6.3. If w = ±κ, then for any function ϕ ∈ H1
w(Rn) satisfyingˆ

Rn

yiϕρdy = 0, i = 1, 2, · · ·n,

there exist y0, h such that

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0 ≥ 0.

To prove this proposition, we need some information on the eigenvalues of the
operator L0 defined by

L0ψ = −∆ψ +
y

2
· ∇ψ.

Lemma 6.4. The eigenvalues of the operator L0 are given by

λk = |α|/2, α = (α1, α2, · · · , αn),
where αi is a nonnegative integer for 1 ≤ i ≤ n.

Proof of Proposition 6.3. We consider only the positive case, that is,

w = κ =

(
1

p− 1

) 1
p−1

.
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Plugging this into (4.2), we have

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=

ˆ
Rn

|∇ϕ|2ρdy −
ˆ
Rn

ϕ2ρdy +
2hw

p− 1

ˆ
Rn

ϕρdy − h2w2

(p− 1)2

ˆ
Rn

ρdy

(6.5)

Take a constant a so that ˆ
Rn

(ϕ− a)ρdy = 0 (6.6)

and let ϕ0(y) = ϕ(y)− a. Then

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=

ˆ
Rn

|∇ϕ0|2ρdy −
ˆ
Rn

ϕ2
0ρdy

+ 2
h

p− 1

(
1

p− 1

) 1
p−1

a− h2

(p− 1)2

(
1

p− 1

) 2
p−1

− a2

=−

[
h

p− 1

(
1

p− 1

) 1
p−1

− a

]2
+

ˆ
Rn

|∇ϕ0|2ρdy −
ˆ
Rn

ϕ2
0ρdy.

If we choose h so that
h

p− 1

(
1

p− 1

) 1
p−1

− a = 0,

then Lemma 6.4 implies

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0 ≥ 0.

The proof of Proposition 6.3 is thus complete. □

7. Entropy

The entropy λ(w) of a bounded smooth function w is defined to be

λ(w) = sup
x0∈Rn,t0∈(−∞,0)

Fx0,t0(w).

Remark 7.1. The notion of entropy is used by Colding and Minicozzi (see [7]) in
mean curvature flow to classify generic singularities. This quantity can be used to
measure the complexity of self shrinkers.

As discussed in [7], the advantage of the entropy functional is that it is invariant
under dilations, rotations, or translations of w. The main disadvantage of the en-
tropy is that for a variation ws, it need not depend smoothly on s. To deal with
this, we define the definition of entropy stable as follows.

Definition 7.2. A bounded function w is entropy stable if it is a local minimum for
the entropy functional.
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7.1. The entropy is achieved for bounded self similar solutions. Although
in the definition of entropy, the supremum is over a noncompact space-time domain,
the next lemma shows that for a bounded solution of (SS), the function (x0, t0) →
Fx0,t0(w) has a global maximum at x0 = 0, t0 = −1.

Lemma 7.3. If w is a bounded solution of (SS), then λ(w) is achieved at (0,−1).

Proof. For any bounded solution of (SS), set u(x, t) = (−t)−1/(p−1)w(x/
√
−t). It

follows from Lemma 2.3 that for any (x, t) ∈ Rn × (−∞, 0) and T > t,

E(s;x, T, u) =
1

2
(−s)

p+1
p−1

ˆ
Rn

|∇u(y, T + s)|2G(y − x, s)dy

− 1

p+ 1
(−s)

p+1
p−1

ˆ
Rn

|u(y, T + s)|p+1G(y − x, s)dy

+
1

2(p− 1)
(−s)

2
p−1

ˆ
Rn

u(y, T + s)2G(y − x, s)dy

is nonincreasing with respect to s in (−∞,−(T − t)]. By the definition of u, we have

E(s;x, T, u) =
1

2

(
s

T + s

) p+1
p−1
ˆ
Rn

|∇w(y)|2G

(
y − x√

−(T + s)
,− s

T + s

)
dy

− 1

p+ 1

(
s

T + s

) p+1
p−1
ˆ
Rn

|w(y)|p+1G

(
y − x√

−(T + s)
,− s

T + s

)
dy

+
1

2(p− 1)

(
s

T + s

) 2
p−1
ˆ
Rn

w(y)2G

(
y − x√

−(T + s)
,− s

T + s

)
dy

=F x√
−(T+s)

,− s
T+s

(w).

We take

T − t = 1, x = x0

√
− 1

t0
, T = 1 +

1

t0
.

Since E(s;x, t, u) is nonincreasing with respect to s in (−∞,−1], we have

E(−1;x, T, u) = Fx0,t0(w) ≤ lim
s→−∞

E(s;x, T, u) = F0,−1(w).

Since (x0, t0) ∈ Rn × (−∞, 0) can be arbitrary, we conclude that λ(w) achieves its
maximum at (0,−1). □

By the definition of the energy E(w) and the F -functional, we have E(w) =
F0,−1(w). Hence Lemma 7.3 implies the following corollary.

Corollary 7.4. If w is a bounded solution of (SS), then λ(w) = E(w).

Lemma 7.3 only tells us the location where the F -functional achieves the maxi-
mum. For applications later, we also need to show that if w is a bounded solution
of (SS) and

∇w · y0 ̸= 0, for any y0 ∈ Rn\{0}, (7.1)
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then (x0, t0) → Fx0,t0(w) has a strict global maximum at x0 = 0, t0 = −1. The
condition (7.1) says that w is not a solution of (SS) in low dimensions.

Lemma 7.5. Suppose w is a bounded solution of (SS) satisfying (7.1). Then for
every ε > 0 sufficiently small, there exists δ > 0 such that

sup{Fx0,t0(w) : |x0|+ | log(−t0)| > ε} ≤ λ(w)− δ. (7.2)

Proof. Since w satisfies (SS), we know from Proposition 3.3 that w is a critical point
of the F0,1-functional. Moreover, using the second variation formula with ϕ ≡ 0, we
see the second derivative of Fx(s),t(s)(w) at s = 0 along the paths

x(s) = sy0, t(s) = −(1 + sh)

is given by

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=− 1

2

ˆ
Rn

|∇w · y0|2ρdy − h2
ˆ
Rn

(
1

p− 1
w +

y

2
· ∇w

)2

ρdy.

This quantity is clearly non-positive. Moreover, it equals 0 only if

h = 0, ∇w · y0 ≡ 0

or

∇w · y0 ≡ 0,
1

p− 1
w +

y

2
· ∇w ≡ 0.

If y0 ̸= 0 and ∇w · y0 ≡ 0, then we get a contradiction with the assumption (7.1).
If y0 = 0 and h ̸= 0, then

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0 = 0

implies
1

p− 1
w +

y

2
· ∇w ≡ 0.

In particular, w is 2/(p − 1)−homogeneous. Since we have assumed that w is a
bounded solution of (SS), it is only possible that w ≡ 0, which contradicts our
assumption that w is not translation invariant in any direction again.
We conclude from the above analyses that the second derivative at (0, 1) is strictly

negative. As a consequence, the function (x0, t0) → Fx0,t0(w) has a strict local
maximum at (0, 1). Thus for every ε > 0 sufficiently small there exists δ > 0 such
that

max
(x,t)∈{|x|+| log(−t)|=ε}

Fx,t(w) < λ(w)− δ.

For every (x0, t0) satisfying |x0| + | log(−t0)| > ε, it follows from the proof of
Lemma 7.3 that for every s < −1,

Fx0,t0(w) ≤ F x0√
t0+1+t0s

,− st0
t0+1+t0s

(w). (7.3)
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Since

lim
s→−∞

x0√
t0 + 1 + t0s

= 0

and

lim
s→−∞

− st0
t0 + 1 + t0s

= −1,

there exists s̃ such that(
x0√

t0 + 1 + t0s̃
,− st0

t0 + 1 + t0s̃

)
∈ {|x|+ | log(−t)| = ε}.

By (7.3), we know that Fx0,t0(w) ≤ λ(w)− δ. Hence (7.2) holds. □

7.2. The equivalence of F -stability and entropy-stability. Our next objective
is to prove that if w is a bounded non-constant solution of (SS) and there exists a
positive constant C such that

|w(y)| ≤ C(1 + |y|)−
2

p−1 , in Rn, (7.4)

then F -stability and entropy stability are equivalent. In the course of the proof, we
need a result concerning the first eigenfunction of the operator L defined in (LO).

Lemma 7.6. Assume w is a bounded non-constant solution of (SS). Let λ1 be the
first eigenvalue of L, and f be a positive eigenfunction associated to λ1. Then there
exists a positive constant C such that

(1 + |y|)
2p
p−1 |f(y)|+ (1 + |y|)

2p
p−1

+1|∇f(y)| ≤ C, in Rn. (7.5)

Proof. Since w is a bounded non-constant solution of (SS), λ1 < −1. Hence (7.4)
implies there exists a positive constant R such that that

− 2p

p− 1

(
n− 2− 2p

p− 1

)
|y|−2 + 1 + p|w|p−1 + λ1 < 0, in Rn\BR(0). (7.6)

By taking R large enough, we may also assume that

− 1

p− 1
+ p|w|p−1 + λ1 < 0, in Rn\BR(0). (7.7)

By standard elliptic regularity theory (see [25]), there exists a positive constant M
such that

|f | < MR− 2p
p−1 , in BR. (7.8)

For any k ≥ 1, consider the Dirichlet problem
∆gk − y

2
· ∇gk − 1

p−1
gk + p|w|p−1gk + λ1gk = 0, in BR+k\BR,

gk = f, on ∂BR,

gk =M |y|−
2p
p−1 , on ∂BR+k,

(7.9)

Since we have assumed that (7.7) holds, the zeroth order term of the second order
elliptic equation in (7.9) is negative. Observe that

(L+ λ1)|y|−
2p
p−1 =

[
− 2p

p− 1

(
n− 2− 2p

p− 1

)
|y|−2 + 1 + p|w|p−1 + λ1

]
|y|−

2p
p−1 .
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Thus, it follows from (7.6), [25, Theorem 8.3] and the maximum principle that for
any k ≥ 1, (7.9) has a unique smooth solution gk, which is bounded above by
M |y|−(2p)/(p+1). By using the maximum principle again, gk is also bounded below by
0. Letting k → ∞, we get from the Arzelá-Ascoli theorem that {gk} (after passing
to a subsequence) converges to some function g∞ in C2

loc(Rn\BR), where{
∆g∞ − y

2
· ∇g∞ − 1

p−1
g∞ + p|w|p−1g∞ + λ1g∞ = 0, in Rn\BR,

g∞ = f, on ∂BR.
(7.10)

Moreover,

|g∞| ≤M |y|−
2p
p−1 , in Rn\BR. (7.11)

Multiplying both sides of (7.10) by g∞ρ and integrating over Rn\BR, we getˆ
Rn\BR

|∇g∞|2ρdy <∞. (7.12)

We claim that g∞ = f .
Indeed, by denoting h := f − g∞, then h satisfies{

∆h− y
2
· ∇h− 1

p−1
h+ p|w|p−1h+ λ1h = 0, in Rn\BR,

h = 0, on ∂BR.
(7.13)

Let ϕk be a smooth cutoff function such that ϕk = 1 in Bk, ϕk = 0 outsider B2k and
|∇ϕk| ≤ C/k. Multiplying both sides of (7.13) by hϕ2

kρ and integrating by parts,
we get

0 =−
ˆ
Rn\BR

|∇h|2ϕ2
kρdy −

1

p− 1

ˆ
Rn\BR

h2ϕ2
kρdy

+ p

ˆ
Rn\BR

|w|p−1h2ϕ2
kρdy + λ1

ˆ
Rn\BR

h2ϕ2
kρdy

− 2

ˆ
Rn\BR

hϕk∇h · ∇ϕkρdy.

(7.14)

Recall that we have assumed that (7.7) holds, soˆ
Rn\BR

|∇h|2ϕ2
kρdy ≤ −2

ˆ
Rn\BR

hϕk∇h · ∇ϕkρdy.

This yields ˆ
Rn\BR

|∇h|2ϕ2
kρdy ≤ C

ˆ
Rn

h2|∇ϕk|2ρdy,

where C is a positive constant independent of R. Letting k → ∞, we conclude thatˆ
Rn\BR

|∇h|2ρdy = 0.

Hence h = 0 and the claim is proved.
By (7.8) and (7.11), there exists a positive constant C such that

|f | ≤ C(1 + |y|)−
2p
p−1 , in Rn. (7.15)
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Let

u(x, t) = (−t)−
1

p−1w

(
x√
−t

)
, f̃(x, t) = (−t)λ1−

1
p−1f

(
x√
−t

)
.

Then f̃ satisfies

∂tf̃ = ∆f̃ + p|u|p−1f̃ , in Rn × (−∞, 0).

Combining (7.4), (7.15) and parabolic estimates, we see there exists a positive con-
stant C depending only on n, p, w and f such that

|∇f̃(x, t)|+ |∇2f̃(x, t)| ≤ C(−t)λ1+1, in (B2(0)\B1/4(0))× (−2, 0). (7.16)

This implies

(1 + |y|)
2p
p−1

+1|∇f |+ (1 + |y|)
2p
p−1

+2|∇2f | ≤ C, in Rn\B1. (7.17)

By (7.15) and (7.17), we see (7.5) holds. □

Now we can prove the main result in this section.

Theorem 7.7. If w is a bounded non-constant solution of (SS) satisfying (7.4),
then there is a variation ws with w0 = w such that

λ(ws) < λ(w)

for all s ̸= 0. In particular, w is not entropy stable.

Proof. Take the one-parameter variation ws = w + sf for s ∈ [−2ε, 2ε], where f is
the positive, first eigenfunction of the operator L defined in (LO).

By the proof of Theorem 6.1, we know that for any x(s) and t(s) with x(0) = 0
and t(0) = −1,

d2

ds2
Fx(s),t(s)(ws)|s=0 < 0. (7.18)

We will use this to prove that w is not entropy stable. For this purpose, we define
a function G : Rn × R− × [−2ε, 2ε] → R to be

G(x0, t0, s) = Fx0,t0(ws). (7.19)

We will show that there exists some ε1 > 0 such that if s ̸= 0 and |s| ≤ ε1, then

λ(ws) := sup
x0∈Rn,t0∈(−∞,0)

G(x0, t0, s) < G(0,−1, 0) = F0,−1(w) = λ(w). (7.20)

This will give the desired variation ws.
The proof of (7.20) is divided into the following seven steps.
Step 1: G has a strict local maximum at (0,−1, 0).
Since w is a bounded solution of the equation (SS), it follows from Proposition

3.3 that ∇G vanishes at (0,−1, 0). Given y0 ∈ Rn, a ∈ R and b ∈ R\{0}, the second
derivative of G(sy0,−(1 + as), bs) at s = 0 is just

d2

ds2
G(sy0,−(1 + as), bs)|s=0 = b2

d2

ds2
Fx(s),t(s)(ws)|s=0

with

x(s) = s
y0
b
, t(s) = −

(
1 +

a

b
s
)
.



32 K. WANG, J. WEI, AND K. WU

Thus

d2

ds2
G(sy0,−(1 + as), bs)|s=0

=− 1

2b2

ˆ
Rn

|∇w · y0|2ρdy −
a2

b2

ˆ
Rn

(
1

p− 1
w +

y

2
· ∇w

)2

ρdy.

Similar to the reasoning used in the proof of Lemma 7.5, it is negative. In other
words, the Hessian of G at (0,−1, 0) is negative definite. It follows that G has a
strict local maximum at (0,−1, 0).

As a consequence, there exists ε2 ∈ (0, ε) such that

G(x0, t0, s) < G(0,−1, 0) (7.21)

provided that 0 < |x0|2 + | log(−t0)|2 + s2 < ε22.
Step 2: |∂sG| is bounded on Rn × R− × [−2ε, 2ε].
By the definition of G and the first variation formula, we have

∂sG(x0, t0, s) =(−t0)
p+1
p−1

ˆ
Rn

(∇w · ∇f)G(y − x0, t0)dy

− (−t0)
p+1
p−1

ˆ
Rn

|w + sf |p−1(w + sf)fG(y − x0, t0)dy

+
1

(p− 1)
(−t0)

2
p−1

ˆ
Rn

fwG(y − x0, t0)dy.

(7.22)

The first two integrals can be estimated as follows. By Lemma 2.2 and Lemma
7.6,

|∇w(y)| ≤ C(1 + |y|)−
p+1
p−1 , |∇f(y)| ≤ C(1 + |y|)−

2p
p−1

−1.

Hence

|∇w(y)||∇f(y)| ≤ C(1 + |y|)−
4p
p−1

≤ C(1 + |y|)−2 p+1
p−1 (because

4p

p− 1
> 2

p+ 1

p− 1
)

≤ C|y|−2 p+1
p−1 .

Similarly, because

|w(y)| ≤ C(1 + |y|)−
2

p−1 , 0 ≤ f(y) ≤ C(1 + |y|)−
2p
p−1 ,

we also have
|w(y) + sf(y)|pf(y) ≤ C|y|−2 p+1

p−1 .

Because p is supercritical, we have

2
p+ 1

p− 1
< n,

which implies that |y|−2 p+1
p−1 is locally integrable on Rn.

Then the integral we want to estimate is controlled by

(−t0)
p+1
p−1

ˆ
Rn

|y|−2 p+1
p−1 (−4πt0)

−n
2 exp

(
|x0 − y|2

4t0

)
dy
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=(4π)−
n
2

ˆ
Rn

|z|−2 p+1
p−1 exp

(
−1

4

∣∣∣∣ x0√
−t0

− z

∣∣∣∣2
)
dz (by letting z = y/

√
−t0)

≤C(n)
(
1 +

|x0|√
−t0

)−2 p+1
p−1

≤C(n).

In the above, to estimate the last integral, we consider two cases separately, |x0|/
√
−t0 ≤

10 and |x0|/
√
−t0 > 10. For the first case, the integral is bounded by a di-

mensional constant C(n), by using the local integrability of |z|−2 p+1
p−1 and the de-

cay of the exponential function at infinity. For the second case, the integral can
be estiamted by decomposing Rn into two domains, B|x0|/(2

√
−t0)(x0/

√
−t0) and

Rn \B|x0|/(2
√
−t0)(x0/

√
−t0).

As above, the third integral in (7.22) is controlled by

(−t0)
2

p−1

ˆ
Rn

(1 + |y|)−2 p+1
p−1 (−4πt0)

−n
2 exp

(
|x0 − y|2

4t0

)
dy

= (−t0)
2

p−1

ˆ
Rn

(
1 +

√
−t0|z|

)−2 p+1
p−1 (4π)−

n
2 exp

(
−1

4

∣∣∣∣ x0√
−t0

− z

∣∣∣∣2
)
dz.

If |t0| ≤ 1, this integral is bounded by
ˆ
Rn

exp

(
−1

4

∣∣∣∣ x0√
−t0

− z

∣∣∣∣2
)
dz ≤ C(n).

If |t0| ≥ 1, this integral is bounded by

(−t0)−1

ˆ
Rn

|z|−2 p+1
p−1 exp

(
−1

4

∣∣∣∣ x0√
−t0

− z

∣∣∣∣2
)
dz.

As in the first case, it is bounded by a dimensional constant C(n).
Step 3: Because G(x0, t0, 0) = Fx0,t0(w) and G(0,−1, 0) = F0,−1(w) = λ(w), by

Lemma 7.5, G(x0, t0, 0) has a strict global maximum at (0,−1). In fact, there exists
a positive constant δ > 0 such that

G(x0, t0, 0) < G(0,−1, 0)− δ (7.23)

for all x0, t0 satisfying ε22/4 < x20 + (log(−t0))2.
By Step 2, we have

G(x0, t0, s) ≤ G(x0, t0, 0) + C(n)|s|.
Combining this inequality with (7.23), we see for all x0, t0 satisfying ε22/4 < x20 +
(log(−t0))2, there exist ε3 > 0 such that for any |s| < ε2,

G(x0, t0, s) ≤G(x0, t0, 0) + C(n)|s|
≤G(0,−1, 0)− δ + C(n)ε3

<λ(w).
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Combining this fact with the result in Step 1, we finish the proof. □

8. The energy of self similar solutions with a natural decay

In this section, we turn our attention to the energy of functions in Bn. We will
prove that if w ∈ Bn and there exists a positive constant C such that (7.4) holds,
i.e.

|w(y)| ≤ C(1 + |y|)−
2

p−1 , in Rn,

then E(w) > E(κ) strictly.

Lemma 8.1 (Blow up criteria). Let w be a solution of (RF). Assume for any
M > 0, there exists a positive constant C(M) such that

|w| ≤ C(M) in Rn × [0,M ].

Let

I(w(τ)) = −2E(w(·, τ)) + p− 1

p+ 1

[ˆ
Rn

w2(·, τ)ρdy
] p+1

2

.

If

I(w(τ0)) > 0

for some τ0 ∈ (0,∞), then w blows up at some finite time.

Proof. This is exactly [33, Proposition 2.1]. □

Lemma 8.2. Suppose

• w is a bounded solution of the equation (SS) such that (7.4) holds;
• f is the positive, first eigenfunction of the linearized operator L at w.

There exists a positive constant s∗ such that if 0 < s < s∗, then

∆(w + sf)− y

2
· ∇(w + sf)− 1

p− 1
(w + sf) + |w + sf |p−1(w + sf) > 0, in Rn.

Proof. By the assumptions, we have

∆(w + sf)− y

2
· ∇(w + sf)− 1

p− 1
(w + sf) + |w + sf |p−1(w + sf)

=|w + sf |p−1(w + sf)− |w|p−1w − sp|w|p−1f − sλ1f

with λ1 being the first eigenvalue of L. Take the decomposition

Rn = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4,

where
Ω1 ={x ∈ Rn : w(x) ≥ 0},
Ω2 ={x ∈ Rn : w(x) < 0, w(x) + sf(x) ≥ 0},

Ω3 =

{
x ∈ Rn : w(x) + sf(x) < 0, |w(x)| < (

−λ1
p

)
1

p−1

}
,

Ω4 =

{
x ∈ Rn : w(x) + sf(x) < 0, |w(x)| ≥ (

−λ1
p

)
1

p−1

}
.
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Case 1. For any a ≥ 0, b ≥ 0, we have (a+ b)p ≥ ap + pap−1b. Therefore,

|w + sf |p−1(w + sf)− |w|p−1w − sp|w|p−1f − sλ1f > 0, in Ω1.

Case 2. If x ∈ Ω2, then |w(x)| ≤ sf(x) and

|w(x) + sf(x)|p−1(w(x) + sf(x))− |w(x)|p−1w(x) ≥ 0. (8.1)

By Lemma 7.6, f is bounded in Rn. Hence there exists a positive constant s∗,1 such
that

p|w(x)|p−1 < −λ1
provided that 0 < s < s∗,1. Combining this with (8.1), we have

|w + sf |p−1(w + sf)− |w|p−1w − sp|w|p−1f − sλ1f > 0, in Ω2

provided that 0 < s < s∗,1.
Case 3. If x ∈ Ω3, it is easy to see that

|w(x) + sf(x)|p−1(w(x) + sf(x))− |w(x)|p−1w(x) > 0

and

p|w(x)|p−1 + λ1 < 0.

Hence

|w + sf |p−1(w + sf)− |w|p−1w − sp|w|p−1f − sλ1f > 0, in Ω3.

Case 4. Finally, for x ∈ Ω4,

|w(x) + sf(x)|p−1(w(x) + sf(x))− |w(x)|p−1w(x)− sp|w(x)|p−1f(x)− sλ1f(x)

=|w(x) + sf(x)|p−1(w(x) + sf(x))− |w(x)|p−1w(x)− sp|w(x) + sf(x)|p−1f(x)

+ sp|w(x) + sf(x)|p−1f(x)− sp|w(x)|p−1f(x)− sλ1f(x)

≥sp|w(x) + sf(x)|p−1f(x)− sp|w(x)|p−1f(x)− sλ1f(x).

Because |w| is bounded from below and above in Ω4, there exists a positive constant
C depending only on n, p, λ1 such that

sp|w + sf |p−1f − sp|w|p−1f − sλ1f ≥ −Cs2f 2 − sλ1f, in Ω4.

Hence there exists a positive constant s∗,2 such that

|w + sf |p−1(w + sf)− |w|p−1w − sp|w|p−1f − sλ1f > 0, in Ω4

provided that 0 < s < s∗,2.
The proof is finished by choosing s∗ = min{s∗,1, s∗,2}. □

Lemma 8.3. Assume w and f satisfy the condition in Lemma 8.2. If w̃ is the
solution to the Cauchy problem{

∂τ w̃ = ∆w̃ − y
2
· ∇w̃ − 1

p−1
w̃ + |w̃|p−1w̃,

w̃(·, 0) = w + sf,
(8.2)

where s < s∗ is a small positive constant, then w̃ blows up in finite time.
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Proof. Without loss of generality, we may assume that {w > 0} ≠ ∅. Otherwise, we
can consider −w instead of w. Assume by the contrary that w̃ exists in Rn×(0,+∞).

Step 1: We claim that

∂τ w̃ > 0, in Rn × (0,+∞). (8.3)

Since w̃ satisfies (8.2), we have

∂τ w̃(·, 0) = ∆(w + sf)− y

2
· ∇(w + sf)− 1

p− 1
(w + sf) + |w + sf |p−1(w + sf).

By Lemma 8.2, we have

∂τ w̃(·, 0) > 0, in Rn.

We also have the equation for ∂τ w̃,

∂τ∂τ w̃ = ∆∂τ w̃ − y

2
· ∇∂τ w̃ − 1

p− 1
∂τ w̃ + p|w̃|p−1∂τ w̃, in Rn × (0,+∞).

By the maximum principle, we get (8.3).
Since w̃ is monotone increasing with respect to τ , there exists a function w̃∞ such

that w̃(y, τ) tends to w̃∞ as τ → ∞.
Step 2: w̃∞ ̸= +∞ is a weak solution of (SS).
Let {τk} be a sequence such that limk→∞ τk = +∞. Without loss of generality,

we may assume that limk→∞(τk+1 − τk) = +∞. By the monotonicity formula, the
energy of w̃(τ), E(w̃(τ)) is decreasing in τ . Thus for any τ > 0,

E(w̃(τ)) ≤ E(w̃(0).

By Lemma 8.1, for any τ > 0,

I(w̃(τ)) = −2E(w̃(τ)) +
p− 1

p+ 1

[ˆ
Rn

w̃(τ)2ρdy

] p+1
2

≤ 0.

Hence

E(w̃(τ)) ≥ p− 1

2(p+ 1)

[ˆ
Rn

w̃(τ)2ρdy

] p+1
2

≥ 0.

In particular, E(w̃(τ)) is bounded in [0,+∞). This in turn implies that ∥w̃(τ)∥L2
w(Rn)

is bounded.
Because

d

dτ
E(w̃(τ)) = −

ˆ
Rn

(∂τ w̃(τ))
2ρdy,

there exists a positive constant C independent of k such thatˆ τk+1

τk

ˆ
Rn

(∂τ w̃)
2ρdydτ ≤ C.

Testing (8.2) with w̃, we obtainˆ
Rn

w̃(τ)∂τ w̃(τ)ρdy =

ˆ
Rn

[
−|∇w̃(τ)|2 − 1

p− 1
w̃(τ)2 + |w̃(τ)|p+1

]
ρdy.
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Combing these two estimates with the boundedness of ∥w̃(τ)∥L2
w(Rn) and E(w̃(τ)),

an application of Cauchy-Schwarz inequality gives

p− 1

p+ 1

ˆ τk+1

τk

ˆ
Rn

|w̃|p+1ρdydτ ≤ C.

Because E(w̃(τ)) is bounded in [0,+∞), this implies thatˆ τk+1

τk

ˆ
Rn

[
|∇w̃|2 + w̃2

]
ρdydτ ≤ C.

Therefore, there exists a function ŵ such that w̃k(·, τ) = w̃(·, τ + τk) → ŵ∞ weakly
in L2

loc((0,∞), H1
w(Rn)) ∩ L2

loc((0,∞), Lp+1
w (Rn)). Moreover, ŵ∞ is a weak solution

of (8.2). Since we have proved that w̃(·, τ) is increasing with respect to τ , then
ŵ∞ = w̃∞ and w̃∞ ∈ H1

w(Rn) ∩ Lp+1
w (Rn) is a weak solution of (SS).

Step 3: w̃ blows up at a finite time.
Let Ω0 be a connected component of {w > 0}, then w satisfies{

∆w − y
2
· ∇w − 1

p−1
w + wp = 0, in Ω0,

w = 0, on ∂Ω0.

Since w̃∞ is a weak solution of(SS), we get from Step 1 that the restriction of w̃∞
on Ω0 is a weak solution of (SS) such that

w̃∞ > w in Ω0,

For each R ≫ 1 such that BR(0) ∩ Ω0 ̸= ∅. Let λ1,R,D be the first eigenvalue of the
eigenvalue problem{

∆ϕ− y
2
· ∇ϕ− 1

p−1
ϕ+ pwp−1ϕ+ λϕ = 0, in Ω0 ∩BR(0),

ϕ = 0, on ∂(Ω0 ∩BR(0)),

then [1, Corollary 2.4] yields λ1,R,D is positive. Let λ1,D be the first eigenvalue of
the eigenvalue problem{

∆ϕ− y
2
· ∇ϕ− 1

p−1
ϕ+ pwp−1ϕ+ λϕ = 0, in Ω0,

ϕ = 0, on ∂Ω0.

Since the first Dirichlet eigenvalue is decreasing with respect to the domain and w is
bounded, then λ1,D is finite. Moreover, we have limR→∞ λ1,R,D = λ1,D and λ1,D ≥ 0.
On the other hand, by choosing w as a test function, it is easy to see that λ1,D < 0,
this contradiction yields that w̃ can not exist on Rn × (0,+∞). □

Lemma 8.4. Let τ1 be the first blow up time of w̃. There exist R > 0 and C > 0
such that

|w̃| ≤ C, in (Rn\BR(0))× (0, τ1). (8.4)

In particular, if we use Σ to denote the blow up set of w̃, then Σ is a compact subset
of Rn.

Proof. Since w satisfies (7.4), by Lemma 2.2 and Lemma 7.6, there exists a positive
constant C such that

(1 + |y|)
2

p−1 |w(y)|+ (1 + |y|)1+
2

p−1 |∇w(y)| ≤ C, in Rn
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and
(1 + |y|)

2p
p−1 |f(y)|+ (1 + |y|)1+

2p
p−1 |∇f(y)| ≤ C, in Rn.

Thus given δ0 > 0, ε > 0, there exists R such that if |y0| > R and (z0, τ0) ∈
Bδ0(y0)× (τ1 − δ20, τ1 + δ20), then

E(z0,τ0)(w + sf) < ε,

where

E(z0,τ0)(w + sf) =
1

2
τ

2
p−1

−n
2
+1

0

ˆ
Rn

|∇(w + sf)|2e−
|y−z0|

2

4τ0 dy

− 1

p+ 1
τ

2
p−1

−n
2
+1

0

ˆ
Rn

|w + sf |p+1e
− |y−z0|

2

4τ0 dy

+
1

2(p− 1)
τ

2
p−1

−n
2

0

ˆ
Rn

(w + sf)2e
− |y−z0|

2

4τ0 dy.

Following the arguments in the proof of [17, Theorem 3.1] (starting from formula
(3.12)) or [28, Theorem 4.1], we obtain

|w̃| ≤ C∗δ
− 2

p−1

0 , in Bδ0/2(y0)× (τ1 − δ20, τ1),

where C∗ is a universal positive constant. The estimate (8.4) follows from this
estimate and the definition of τ1. □

Proposition 8.5. If w ∈ Bn and (7.4) holds, then

E(w) ≥ E(κ).

Proof. The proof will be divided into several steps.
Step 1: Let w̃ be the solution of (8.2) and let τ1 be the first blow up time. Then

there exists a positive constant C such that

|w̃| ≤ C(τ1 − τ)−
1

p−1 , in Rn × (0, τ1). (8.5)

By Lemma 8.4, the singular set Σ is a compact subset of Rn. Fix R > 0 such that
Σ ⊂ BR/2(0). By Lemma 8.2 and the maximum principle, there exist 0 < τ0 < τ1
and a positive constant c0 such that

∂τ w̃ ≥ c0, on (BR(0)× {τ = τ0}) ∪ (∂BR(0)× [τ0, τ1]) . (8.6)

Moreover, by the choice of R, there exists a positive constant C1 such that

|w̃|p ≤ C1, on (BR(0)× {τ = τ0}) ∪ (∂BR(0)× [τ0, τ1]) . (8.7)

Combining (8.6) and (8.7), we see there exists a small positive constant ε such that

∂τ w̃ ≥ ε|w̃|p, on (BR(0)× {τ = τ0}) ∪ (∂BR(0)× [τ0, τ1]) . (8.8)

Because w̃ satisfies (8.2), we get from Kato inequality that

∂τ |w̃| ≤ ∆|w̃| − y

2
· ∇|w̃| − 1

p− 1
|w̃|+ p|w̃|p. (8.9)

Then the chain rule gives

∂τ |w̃|p ≤ ∆|w̃|p − y

2
· ∇|w̃|p + p|w̃|p−1|w̃|p − [p(p− 1)|w̃|p−2|∇|w̃||2 + |w̃|p].
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Let v(y, τ) = ∂τ w̃(y, τ)− ε|w̃(y, τ)|p, where ε is a small positive constant satisfying
(8.8). Then v satisfies{

∂τv −∆v + y
2
· ∇v + 1

p−1
v − p|w̃|p−1v ≥ 0, in BR × (τ0, τ1),

v > 0 on (BR(0)× {τ = τ0}) ∪ (∂BR(0)× [τ0, τ1]) .
(8.10)

By the maximum principle,

v > 0, in BR × (τ0, τ1).

This is equivalent to

∂τ w̃ ≥ ε|w̃|p, in BR × (τ0, τ1). (8.11)

For any τ0 < τ < τ1 − δ, integrating (8.11) from τ to τ1 − δ gives

|w̃(τ1 − δ)|1−p − |w̃(τ)|1−p ≤ −(p− 1)ε(τ1 − δ − τ).

Hence

|w̃(y, τ)| ≤M(τ1 − δ − τ)−
1

p−1 , in BR × (τ, τ1 − δ),

where M = ((p− 1)ε)−1/(p−1).
Sending δ → 0, we conclude that

|w̃(y, τ)| ≤M(τ1 − τ)−
1

p−1 , in BR × (τ0, τ1),

Combining this with Lemma 8.4, we get (8.5).
Step 2: There exists a smooth solution w̃∗ of (SS) such that E(w̃∗) < E(w).
Assume (y1, τ1) is a blow up point. Set

ŵ(z, ς) = (1− eτ−τ1)
1

p−1w
(
e

τ−τ1
2 y1 + (1− eτ−τ1)1/2z, τ

)
,

where

ς = − log(e−τ − e−τ1).

Then ŵ is a solution to (RF) with initial data

ŵ(z,− log(1− e−τ1)) = (1− e−τ1)
1

p−1 [w(ỹ) + sf(ỹ)],

where ỹ = e−τ1/2y1 +
√
1− e−τ1z.

Let {ςk} be a sequence such that limk→∞ ςk = ∞ and let wk(z, ς) = w(z, ς + ςk).
Similar to the proof of [21, Proposiiton 4], limk→∞ w̃k = w̃∗ for some solution of
(SS) uniformly on compact subsets. By applying the monotonicity formula (see [21,
Proposiiton 3]), we have

E(ŵ(z,− log(1− e−τ1))) > E(w̃∗). (8.12)
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We compute

E(ŵ(z,− log(1− e−τ1)))

=

ˆ
Rn

[
1

2
|∇ŵ(z,− log(1− e−τ1))|2 − 1

p+ 1
|ŵ(z,− log(1− e−τ1))|p+1

]
ρ(z)dz

+
1

2(p− 1)

ˆ
Rn

ŵ(z,− log(1− e−τ1))2ρ(z)dz

=
1

2
(1− e−τ1)

p+1
p−1

ˆ
Rn

|∇w(y) + s∇f(y)|2G(y − e−τ1/2y1, e
−τ1 − 1)dy

− 1

p+ 1
(1− e−τ1)

p+1
p−1

ˆ
Rn

|w(y) + sf(y)|p+1]G(y − e−τ1/2y1, e
−τ1 − 1)dy

+
1

2(p− 1)
(1− e−τ1)

2
p−1

ˆ
Rn

|w(y) + sf(y)|2G(y − e−τ1/2y1, e
−τ1 − 1)dy

=Fe−τ1/2y1,e−τ1−1(w + sf).

By the proof of Theorem 7.7,

Fe−τ1/2y1,e−τ1−1(w + sf) < E(w)

provided that s is small enough. Combining this with (8.12), we conclude the proof
of this step.

Step 3: The function w̃∗ in the previous step is κ.
Since w̃ satisfies (8.11), a direct calculation using the definition of ŵ shows that

1

p− 1
ŵ +

z

2
· ∇ŵ + ∂ςŵ ≥ ε|ŵ|p > 0, in Rn × (− log(1− e−τ0),∞).

By Step 1, there exists a positive constant C3 such that

|ŵ| ≤ C3, in Rn × (− log(1− e−τ0),∞).

Let {wk} be the functions defined in Step 2. Then ∂ςŵ converges to 0 uniformly on
compact subsets. By the above analysis, we conclude that w̃∗ is a solution of (SS)
satisfying

|w̃∗| ≤ C3 in Rn,

and
1

p− 1
w̃∗ +

z

2
· ∇w̃∗ ≥ 0, in Rn.

By Proposition 5.1, w̃∗ is a constant solution of (SS). Moreover, Theorem 3.1 in [17]
implies w̃∗ ̸= 0, so w̃∗ ≡ κ.
Combining Step 1, Step 2 and Step 3, the proof is complete. □

9. Constant solutions have the lowest energy

In this section, we will combine the Federer type dimension reduction arguments
with the results obtained in the previous sections to prove that the positive constant
solution of (SS) has the lowest energy among functions in Bn.
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Lemma 9.1. Let Bn,m be the set defined in (1.2). There exists a positive constant
C depending only on n, p,m such that if w ∈ Bn,m , then

C−1 ≤ E(w) ≤ C.

Proof. It follows from (3.5) and (E) that

E(w) =

(
1

2
− 1

p+ 1

) ˆ
Rn

|w|p+1ρdy. (9.1)

By Kato inequality (see [29]), we have

∆w · sgn(w) ≤ ∆|w|, in D′(Rn),

here sgn(w) is the sign function. Since w satisfies (SS), we have

∆|w| − y

2
· ∇|w| − 1

p− 1
|w|+ |w|p ≥ 0.

Testing this inequality with ρ and integrating over Rn, we get

− 1

p− 1

ˆ
Rn

|w|ρdy +
ˆ
Rn

|w|pρdy ≥ 0.

Therefore, we have either
sup
Rn

w ≥ κ ≥ inf
Rn
w,

or
inf
Rn
w ≤ −κ ≤ sup

Rn

w.

In particular, there exists a point y0 ∈ Rn such that w(y0) = κ. Since w ∈ Bn,m, it
follows from Lemma 2.1 that there exists a constant r1 > 0 depending only on n, p
and m such that

w ≥
(

1

2(p− 1)

) 1
p−1

, in Br1(y0).

Therefore, there exists a positive constant C depending only on n, p and m such
that ˆ

Rn

|w|p+1ρdy ≥
ˆ
Br1 (y0)

|w|p+1ρdy ≥ C. (9.2)

By (9.1) and (9.2), we have

E(w) ≤
(
1

2
− 1

p+ 1

)
C. (9.3)

Next, since w ∈ Bn.m, then

E(w) =

(
1

2
− 1

p+ 1

) ˆ
Rn

|w|p+1ρdy ≤
(
1

2
− 1

p+ 1

)
mp+1. (9.4)

Combining (9.3) and (9.4), we finish the proof. □

Lemma 9.2. There exists w0 ∈ Bn,m such that

E(w0) = inf
w∈Bn,m

E(w).
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Proof. Let {wi} be a sequence such that

lim
i→∞

E(wi) = inf
w∈Bn,m

E(w).

It follows from Lemma 2.1 that |wi|+|∇wi|+|∇2wi|+|∇3wi| are uniformly bounded.
By the Arzelá-Ascoli theorem, we know that there exists a function w0 such that
limi→∞wi = w0. Since the functions wi converge to w0 uniformly on compact
subsets of Rn, then w0 is a bounded solution of (SS) such that ∥w0∥l∞(Rn) ≤ m. The
convergence also implies that

E(w0) = lim
i→∞

E(wi),

Using the functions {wi} are uniformly bounded once again, we know that there
exists a positive constant R0 such that for each i,(

1

2
− 1

p+ 1

)ˆ
Rn\BR0

(0)

|wi|p+1ρdy ≤ (4C)−1,

here C is the constant in Lemma 9.1. Thus we have(
1

2
− 1

p+ 1

)ˆ
BR0

|wi|p+1ρdy ≥ (4C)−1,

so w0 can not be zero and it attains the minima in Bn,m. □

Proof of Theorem 1.1. By Lemma 9.2, there exists w0 ∈ Bn,m such that

E(w0) = inf
w∈Bn,m

E(w). (9.5)

Since κ ∈ Bn,m, it is clear that

E(w0) ≤ E(κ). (9.6)

We will prove by induction that

E(w0) = E(κ). (9.7)

If n = 1, 2, by Theorem 2.7, w0 ≡ κ or −κ. Hence (9.7) trivially holds.
Let us assume that Theorem 1.1 holds for n − 1 with n ≥ 3. That is to say, for

any w ∈ Bn−1,m,

E(w) ≥ E(κ), (9.8)

and the inequality is strict unless w ≡ ±κ. We want to show that Theorem 1.1
holds for dimension n.

If w0 is the constant solution of (SS), then we are done. Therefore, we assume w0

is not the constant solution of (SS). Set u0(x, t) = (−t)−1/(p−1)w0(x/
√
−t). Since

w0 ∈ Bn,m, u0 is an ancient solution of (F) satisfying

|u0| ≤ m(−t)−
1

p−1 , in Rn × (−∞, 0).

Next we divide the discussion into two cases.
Case 1. u0 blows up at some point x0 ̸= 0.
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Blowing up u0 at (x0, 0) gives a w1 ∈ Bn,m, which is translation invariant in the
x0 direction. Equivalently, w1 ∈ Bn−1,m. By the inductive assumption,

E(w0) ≥ E(κ).

By Lemma 2.5, Θ(x0, 0;u0) ≤ Θ(0, 0;u0). Hence

E(w0) = Θ(0, 0;u0) ≥ E(w1) ≥ E(κ).

Case 2. u0 does not blow up at any x0 ̸= 0.
By this assumption, there exist C1, δ0 such that

|u0| ≤ C1, in {1/4 < |x| < 1/2} × (−δ0, 0).

This is equivalent to

|w0| ≤ C1|y|−
2

p−1 , in |y| ≥ 1

4
√
δ0
.

Thus w0 ∈ Bn,m satisfies (7.4). By Proposition 8.5,

E(w0) > E(κ),

which contradicts (9.6) again.
Finally, let us show that w0 ≡ κ (or −κ). First by the analysis of the above Case 2,

u0 must blow up at some point x0 ̸= 0. Next, by the analysis of Case 1 and inductive
assumption, Θ(x0) = E(κ). Then by Lemma 2.5, u0 is translation invariant in the
x0 direction. This implies w0 ∈ Bn−1,m. Using the inductive assumption again, we
deduce that w0 ≡ κ or −κ. □

10. Proof of Theorem 1.3 and Proposition 1.9

In this section, we prove Theorem 1.3 and Proposition 1.9.

10.1. Energy gap. First, we prove that not only does the positive constant solution
achieve the lowest weighted energy among functions in Bn,m, but there is a gap to
the second lowest.

Proof of Theorem 1.3. Suppose instead that there is a sequence of self-similar solu-
tions {wi} ⊂ Bn,m, which is not equal to the positive constant solution with

E(wi) < E(κ) + 2−i. (10.1)

Since {wi} ⊂ Bn,m, regularity theories imply there exists a positive constant C(n, p,m)
such that for any i

|wi|+ |∇wi|+ |∇2wi|+ |∇3wi| ≤ C(n, p,m).

By the Ascoli-Arzelà theorem, there exists a function w∞ ∈ C2(Rn) such that wi →
w∞ uniformly on compact subset of Rn. Moreover, w∞ is a solution of (SS) such
that

E(w∞) ≤ E(κ).

Because Theorem 1.1 says that κ is the unique least energy solution, w∞ ≡ κ or −κ.
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Let λ1,i be the first eigenfunction of

Liψ = −∆ψ +
y

2
· ∇ψ +

1

p− 1
ψ − p|wi|p−1ψ

and let fi be the positive, first eigenfunction satisfying
´
Rn f

2
i ρdy = 1. That is to

say, fi satisfies

∆fi −
y

2
· ∇fi −

1

p− 1
fi + p|wi|p−1fi + λ1,ifi = 0, in Rn. (10.2)

Since {wi} ⊂ Bn,m, it follows from (5.2) that the eigenvalues λ1,i are uniformly
bounded. By choosing a subsequence if necessary, we may assume that

λ1,i → λ1,∞, as i→ ∞.

Multiplying both sides of (10.2) by fiρ and integrating by parts, we see {fi} are
uniformly bounded in H1

w(Rn). Then standard elliptic regularity theory implies that
{fi} are uniformly bounded in C2,α

loc (Rn). Using the Ascoli-Arzelà theorem again,
we know that there exists a function f∞ such that fi → f∞ uniformly on compact
subsets of Rn. Taking limit in (10.2), we deduce that f∞ is a C2 solution of the
equation

∆f∞ − y

2
· ∇f∞ + f∞ + λ1,∞f∞ = 0, in Rn. (10.3)

Since we have assumed that fi is positive and
´
Rn f

2
i ρdy = 1, f∞ is positive and´

Rn f
2
∞ρdy = 1. Hence λ∞ is the first eigenvalue of the linear operator

L∞ψ = ∆ψ − y

2
· ∇ψ + ψ + λψ

and f∞ is the associated eigenfunction. By Lemma 6.4, λ1,∞ = −1 and f∞ ≡ 1. By
Lemma 5.4 and Proposition 5.1, we haveˆ

Rn

fi

(
2

p− 1
wi + y · ∇wi

)
ρdy = 0.

Sending i to ∞ gives ˆ
Rn

f∞

(
2

p− 1
w∞ + y · ∇w∞

)
ρdy = 0.

Since f∞ ≡ 1 and w∞ ≡ κ, this is a contradiction. □

10.2. Proof of Proposition 1.9. In this section, we combine Theorem 1.1 and
Theorem 1.3 to prove Proposition 1.9.

Proof of Proposition 1.9. Define the stratification of the blow up set to be

S0 ⊂ S1 · · · ⊂ Sn = Σ,

where Sk consists of all blow up points whose tangent functions are at most trans-
lation invariant in k directions. By [41, Theorem 8.1], the Hausdorff dimension of
Sk is at most k. Set

Σn−1 = (Σ ∩BR(0))\Sn−3(R), Σn−2 = (Σ ∩BR(0))\Σn−1,
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then ΣR = Σ ∩BR(0) = Σn−1 ∪Σn−2. Moreover, the Hausdorff dimenion of Σn−2 is
at most n− 3. Thus we have proved both (1) and (3).

If (x0, T ) ∈ Σn−1, then the tangent functions are at least translation invariant in
n−2 directions. Hence any tangent function can be regarded as a bounded solution
of (SS) in R2. By Theorem 2.7 and [17, Theorem 3.1], any tangent function is the
positive constant solution of (SS). Hence we have proved (4).

In order to finish the proof of Proposition 1.9, it still remains to prove (2). First,
we prove that Σn−1 is relative open in ΣR. Assume it is false, then there exists a
point (x0, T ) ∈ Σn−1 and a sequence {(xi, T )} ⊂ Σn−2 such that limi→∞ xi = x0.
Since {(xi, T )} ⊂ Σn−2 , we get from Theorem 1.3 that

Θ(xi, T ;u) ≥ E(κ) + ε.

Since (x0, T ) ∈ Σn−1, then

Θ(x0, T ;u) = E(κ).

Applying Lemma 2.4, we have

Θ(x0, T ;u) = E(κ) ≥ lim sup
i→∞

Θ(xi, T ;u) ≥ E(κ) + ε,

which is a contradiction. Thus we have shown that Σn−1 is relative open in ΣR.
Once this is established, the claim that Σn−1 is (n − 1)− rectifiable follows from
Velázquez [37]. Although in [37], only the subscritical case is considered. However,
by checking the proof, the arguments there still work in the supercritical case under
the assumption that u satisfies (F), (1.8) and for each x0 ∈ Σ,

lim
t→T

(T − t)
1

p−1u(x0 + y(T − t)
1
2 , t) = κ. □

11. Proof of Theorem 1.7

In this section, we prove Theorem 1.7. First, we study the case when 1 ≤ n ≤
3, 1 < p < ∞ or n ≥ 3 and 1 < p < (n + 1)/(n − 3). If we view any homogeneous
positive solution w of (1.6) as a suitable weak solution of (SS), then w is not the
lowest energy solution among self-similar solutions. The proof of this fact is based
on the following classification result.

Proposition 11.1. Assume 1 ≤ n ≤ 3, 1 < p < ∞ or n ≥ 3 and 1 < p <
(n+ 1)/(n− 3). If Φ is a bounded positive solution of (1.7), then Φ = β1/(p−1) .

Proof. The proof of this rigidity result can be found in [3, Theorem 6.1], [20, Theo-
rem B.2] and [16, Theorem 1]. □

Lemma 11.2. Assume n ≥ 3 and 1 < p < (n + 1)/(n − 3). If w is a positive
homogeneous of (1.6), then

E(w) > E(κ) (11.1)

Proof. Let Φ be a positive function defined on Sn−1 such that w(r, θ) = r−2/(p−1)Φ(θ).
Then Φ satisfies (1.7). By Proposition 11.1, we have Φ = β1/(p−1). It follows that
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w = β1/(p−1)r−
2

p−1 . Then

E(w) =

(
1

2
− 1

p+ 1

)ˆ
Rn

wp+1ρdy

=

(
1

2
− 1

p+ 1

)[
2

p− 1

(
n− 2− 2

p− 1

)] p+1
p−1
ˆ
Rn

|y|
−2(p+1)

p−1 ρdy

Thus in order to get (11.1), it suffices to show that[
2

p− 1

(
n− 2− 2

p− 1

)] p+1
p−1
ˆ
Rn

|y|
−2(p+1)

p−1 ρdy > (p− 1)−
p+1
p−1 . (11.2)

This has essentially been proved by Matano and Merle in [31]. In [31], Matano
and Merle gave a “parabolic proof” without using the explicit formula. To be self
contained, we will give a more direct proof in Appendix B. □

Proof of Theorem 1.7. Similar to the proof of Theorem 1.1, we will prove by induc-
tion. If n = 1, 2, we get from Theorem 2.7 that F+

n consists only of the constant
solutions, so Theorem 1.3 holds.

Assume that Theorem 1.3 holds for n − 1 with n ≥ 3. We want to show that
Theorem 1.3 holds for dimension n.

Let u(x, t) := (−t)−1/(p−1)w(x/
√
−t), which is a suitable weak solution of (F).

Assume u blows up at some point x0 ̸= 0, then we can apply the Federer dimension
reduction to get a solution w1 of (SS) such that w1 is translation invariant in the x0
direction. Moreover,

E(w1) = Θ(x0, 0;u) ≤ Θ(0, 0;u) ≤ E(w).

By the inductive assumption,

E(w) ≥ E(κ),

and the proof is complete.
Next, assume u does not blow up at any point x0 ̸= 0. By standard parabolic

regularity theory, there exist C1, δ0 such that

u ≤ C1, in {1/4 < |x| < 1/2} × [−δ0, 0].

This is equivalent to

w ≤ C1|y|−
2

p−1 , in |y| ≥ 1

4
√
δ0
.

There are two cases.

• Case 1: There exists a constant C0 such that

w ≤ C0, in Rn;

• Case 2: There exists a point y0 ∈ Rn such that w0 blows up at y0.

In Case 1, w0 satisfies (7.4). Then we can apply Lemma 8.5 to obtain

E(w) > E(κ).
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In Case 2, we choose a sequence {λk} such that limk→∞ λk = +∞. For any k,

define wk(y) = λ
−2/(p−1)
k w(λ−1

k (y − y0)). Then wk satisfies the equation

∆wk −
λ−2
k

2
(y + y0) · ∇wk −

λ−2
k

p− 1
wk + wpk = 0. (11.3)

By the convergence theories obtained in [40], there exists a function w∞ such that
limk→∞wk = w∞ strongly, where w∞ is a homogeneous suitable weak solution of
(1.6). Therefore, there exists a function Φ defined on Sn−1 such that w∞(r, θ) =

r−
2

p−1Φ(θ), where (r, θ) is the polar coordinate. If Φ is not smooth on Sn−1, we can
apply the Federer dimension procedure (see [39, Section 4]) once again to reduce to
the case that Φ is smooth on Sn−2. By Lemma 11.2,

E(w) ≥ E(w∞) > E(κ). □

12. Extensions and some related questions

We have defined F -functional and entropy for bounded smooth functions. These
definitions can be extended to a larger class of functions, for example, the class Gm
of suitable weak ancient solutions as defined in Definition 1.5. The Morrey space
bound therein ensures that the Fx0,t0-functional is well defined for any (x0, t0), and
the monotonicity formula (in particular, Lemma 2.5) ensures that the entropy is
also well defined. Moreover, if w is a self-similar, suitable weak ancient solution in
GM , then Lemma 2.5 implies that

λ(w) = E(w).

The first variation formula and the second variation formula also hold for them.
We just replace various integration by parts techniques used before by substituting
suitable smooth vector fields into the stationary condition (1.5) and the localized
energy inequality (1.4).

Our main results, Theorem 1.1 and Theorem 1.7, suggest the following natural
problem.

Conjecture 12.1. For any w ∈ Fn, if w ̸= 0, then

E(w) ≥ E(κ).

Moreover, there exists a constant ε such that if w ̸= ±κ, then
E(w) ≥ E(κ) + ε.

It seems that the main obstruction to prove this conjecture lies in the class of
“elliptic solutions” in Fn, or more precisely, 2/(p− 1) homogeneous solutions of the
elliptic equation (1.6). If w is such a solution, then there exists a function Φ defined
on Sn−1, which is a solution of the equation (1.7), such that w(r, θ) = r−2/(p−1)Φ(θ).
The energy functional for (1.7) is

E(Φ) =
ˆ
Sn−1

[
1

2
|∇Φ|2 + 1

2β
Φ2 − 1

p+ 1
|Φ|p+1

]
dθ.

The above conjecture will follow if we can prove the following conjecture.
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Conjecture 12.2. For any bounded solution of (1.7),

E(Φ) ≥ E
(
β

1
p−1

)
.

This conjecture says once again, among all bounded solutions of (1.7), the con-
stant solution β1/(p−1) has the lowest energy.

A. Proof of Theorem 4.3

In this appendix, we prove Theorem 4.3.

Proof of Theorem 4.3. Because w is a bounded solution of (SS), for any ϕ ∈ C∞
0 (Rn),

d

ds
Fx(s),t(s)(w + sϕ)|s=0 = 0.

Substituting (3.3), (3.4) and (3.7) into (4.1), we have

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=
p+ 1

2(p− 1)

2

p− 1
h2
ˆ
Rn

|∇w|2ρdy

− 1

p− 1

2

p− 1
h2
ˆ
Rn

|w|p+1ρdy

− 1

(p− 1)2

(
− 2

p− 1
+ 1

)
h2
ˆ
Rn

w2ρdy

+
2

p− 1
h

ˆ
Rn

wϕρdy

− p+ 1

p− 1
h

ˆ
Rn

|∇w|2ρ
[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+
2

p− 1
h

ˆ
Rn

|w|p+1ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy (A.1)

− 2

(p− 1)2
h

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+

ˆ
Rn

(
|∇ϕ|2 + 1

p− 1
ϕ2 − p|w|p−1ϕ2

)
ρdy

+ 2

ˆ
Rn

(∇w · ∇ϕ)ρ
[
y · y0
2

− h|y|2

4

]
dy

− 2

ˆ
Rn

|w|p−1wϕρ

[
y · y0
2

− h|y|2

4

]
dy

+
2

p− 1

ˆ
Rn

wϕρ

[
y · y0
2

− h|y|2

4

]
dy

+
1

2

ˆ
Rn

|∇w|2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy
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− 1

p+ 1

ˆ
Rn

|w|p+1ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy

+
1

2(p− 1)

ˆ
Rn

w2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy.

Notice that

− p+ 1

p− 1
h

ˆ
Rn

|∇w|2ρ
[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+
2

p− 1
h

ˆ
Rn

|w|p+1ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

− 2

(p− 1)2
h

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

=− 2h

(
p

p− 1
+

1

p− 1

)
1

2

ˆ
Rn

|∇w|2ρ
[
nh

2
+
y · y0
2

− h|y|2

4

]
dy (A.2)

+ 2h

(
p

p− 1
+

1

p− 1

)
1

p+ 1

ˆ
Rn

|w|p+1ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

− 2h

(
p

p− 1
+

1

p− 1

)
1

2(p− 1)

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+
h

p− 1

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy.

Thus

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=− 1

(p− 1)2
h2
ˆ
Rn

w2ρdy +
2

p− 1
h

ˆ
Rn

wϕρdy

− 2ph

p− 1

1

2

ˆ
Rn

|∇w|2ρ
[
nh

2
− h|y|2

4

]
dy

+
2ph

p− 1

1

p+ 1

ˆ
Rn

|w|p+1ρ

[
nh

2
− h|y|2

4

]
dy

− 2ph

p− 1

1

2(p− 1)

ˆ
Rn

w2ρ

[
nh

2
− h|y|2

4

]
dy

+
h

p− 1

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy

+

ˆ
Rn

(
|∇ϕ|2 + 1

p− 1
ϕ2 − p|w|p−1ϕ2

)
ρdy (A.3)

+ 2

ˆ
Rn

(∇w · ∇ϕ)ρ
[
y · y0
2

− h|y|2

4

]
dy
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− 2

ˆ
Rn

|w|p−1wϕρ

[
y · y0
2

− h|y|2

4

]
dy

+
2

p− 1

ˆ
Rn

wϕρ

[
y · y0
2

− h|y|2

4

]
dy

+
1

2

ˆ
Rn

|∇w|2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy

− 1

p+ 1

ˆ
Rn

|w|p+1ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy

+
1

2(p− 1)

ˆ
Rn

w2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy.

Multiplying both sides of (SS) by (y · y0)ϕρ and integrating by parts, we obtain

0 =

ˆ
Rn

[
1

ρ
div(ρ∇w)− 1

p− 1
w + |w|p−1w

]
(y · y0)ϕρdy

=−
ˆ
Rn

ρ∇w∇ ((y · y0)ϕ) dy +
ˆ
Rn

|w|p−1w(y · y0)ϕρdy

− 1

p− 1

ˆ
Rn

w(y · y0)ϕρdy (A.4)

=−
ˆ
Rn

(∇w · y0)ϕρdy −
ˆ
Rn

(∇w · ∇ϕ)(y · y0)ρdy

+

ˆ
Rn

|w|p−1w(y · y0)ϕρdy −
1

p− 1

ˆ
Rn

w(y · y0)ϕρdy.

Multiplying both sides of (SS) by |y|2ϕρ and integrating by parts, we get

0 =

ˆ
Rn

[
1

ρ
div(ρ∇w)− 1

p− 1
w + |w|p−1w

]
|y|2ϕρdy

=−
ˆ
Rn

ρ∇w∇(|y|2ϕ)dy +
ˆ
Rn

|w|p−1w|y|2ϕρdy

− 1

p− 1

ˆ
Rn

w|y|2ϕρdy (A.5)

=− 2

ˆ
Rn

(∇w · y)ϕρdy −
ˆ
Rn

(∇w · ∇ϕ)|y|2ρdy

+

ˆ
Rn

|w|p−1w|y|2ϕρdy − 1

p− 1

ˆ
Rn

w|y|2ϕρdy.

Substituting (A.4) and (A.5) into (A.3), we get

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=

ˆ
Rn

(
|∇ϕ|2 + 1

p− 1
ϕ2 − p|w|p−1ϕ2

)
ρdyρdy
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+ h

ˆ
Rn

(
2

p− 1
w +∇w · y

)
ϕρdy −

ˆ
Rn

(∇w · y0)ϕρdy

− 2ph

p− 1

1

2

ˆ
Rn

|∇w|2ρ
[
nh

2
− h|y|2

4

]
dy

+
2ph

p− 1

1

p+ 1

ˆ
Rn

|w|p+1ρ

[
nh

2
− h|y|2

4

]
dy

− 2ph

p− 1

1

2(p− 1)

ˆ
Rn

w2ρ

[
nh

2
− h|y|2

4

]
dy (A.6)

+
h

p− 1

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy − h2

(p− 1)2

ˆ
Rn

w2ρdy

+
1

2

ˆ
Rn

|∇w|2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy

− 1

p+ 1

ˆ
Rn

|w|p+1ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy

+
1

2(p− 1)

ˆ
Rn

w2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy.

To continue the proof, we need several more identities. Multiplying both sides of

(SS) by
(
n
2
− |y|2

4

)
(∇w · y0)ρ and integrating by parts, we get

0 =

ˆ
Rn

[
1

ρ
div(ρ∇w)− 1

p− 1
w + |w|p−1w

](
n

2
− |y|2

4

)
(∇w · y0)ρdy

=−
ˆ
Rn

ρ∇w · ∇
[(

n

2
− |y|2

4

)
(∇w · y0)

]
dy

− 1

p− 1

ˆ
Rn

w

(
n

2
− |y|2

4

)
(∇w · y0)ρdy

+

ˆ
Rn

|w|p−1w

(
n

2
− |y|2

4

)
(∇w · y0)ρdy

=− 1

4(p− 1)

ˆ
Rn

w2(y · y0)ρdy +
1

2(p+ 1)

ˆ
Rn

|w|p+1(y · y0)ρdy (A.7)

− 1

4(p− 1)

ˆ
Rn

(
n

2
− |y|2

4

)
w2(y · y0)ρdy

+
1

2(p+ 1)

ˆ
Rn

(
n

2
− |y|2

4

)
|w|p+1(y · y0)ρdy

+
1

2

ˆ
Rn

(∇w · y)(∇w · y0)ρdy −
1

4

ˆ
Rn

|∇w|2(y · y0)ρdy

− 1

4

ˆ
Rn

|∇w|2(y · y0)
(
n

2
− |y|2

4

)
ρdy.



52 K. WANG, J. WEI, AND K. WU

Multiplying both sides of (SS) by (∇w · y0)(y · y0)ρ and integrating by parts, we
obtain

0 =

ˆ
Rn

[
1

ρ
div(ρ∇w)− 1

p− 1
w + |w|p−1w

]
(∇w · y0)(y · y0)ρdy

=−
ˆ
Rn

ρ∇w · ∇ [(∇w · y0)(y · y0)] dy +
ˆ
Rn

|w|p−1w(∇w · y0)(y · y0)ρdy

− 1

p− 1

ˆ
Rn

w(∇w · y0)(y · y0)ρdy

=− 1

4(p− 1)

ˆ
Rn

|y · y0|2w2ρdy +
1

2(p− 1)

ˆ
Rn

w2|y0|2ρdy (A.8)

+
1

2(p+ 1)

ˆ
Rn

(y · y0)(y · y0)|w|p+1ρdy − 1

p+ 1

ˆ
Rn

|w|p+1|y0|2ρdy

−
ˆ
Rn

|∇w · y0|2ρdy −
1

4

ˆ
Rn

|∇w|2|y · y0|2ρdy

+
1

2

ˆ
Rn

|∇w|2|y0|2ρdy.

Multiplying both sides of (SS) by (n
2
− |y|2

4
)(∇w · ∇ρ) and integrating by parts, we

get

0 =

ˆ
Rn

[
1

ρ
div(ρ∇w)− 1

p− 1
w + |w|p−1w

](
n

2
− |y|2

4

)
(∇w · ∇ρ)dy

=−
ˆ
Rn

ρ∇w · ∇
[(

n

2
− |y|2

4

)
(∇ log ρ · ∇w)

]
dy

− 1

2(p− 1)

ˆ
Rn

(
n

2
− |y|2

4

)
(∇w2 · ∇ρ)dy

+
1

p+ 1

ˆ
Rn

(
n

2
− |y|2

4

)
(∇|w|p+1 · ∇ρ)dy

=
1

8(p− 1)

ˆ
Rn

w2|y|2ρdy − 1

4(p+ 1)

ˆ
Rn

|w|p+1|y|2ρdy

− 1

2(p− 1)

ˆ
Rn

(
n

2
− |y|2

4

)(
n

2
− |y|2

4

)
w2ρdy (A.9)

+
1

p+ 1

ˆ
Rn

(
n

2
− |y|2

4

)(
n

2
− |y|2

4

)
|w|p+1ρdy

+
n

4

ˆ
Rn

|∇w|2ρdy − 1

4

ˆ
Rn

|∇w · y|2ρdy

− 1

2

ˆ
Rn

(
n

2
− |y|2

4

)2

|∇w|2ρdy.
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Combining (A.7), (A.8) and (A.9), we have

1

2

ˆ
Rn

|∇w|2ρ
[
nh

2
+
y · y0
2

− h|y|2

4

]2
dy

− 1

p+ 1

ˆ
Rn

|w|p+1ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]2
dy

+
1

2(p− 1)

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]2
dy

=
h2

8(p− 1)

ˆ
Rn

w2|y|2ρdy − h2

4(p+ 1)

ˆ
Rn

|w|p+1|y|2ρdy

+
nh2

4

ˆ
Rn

|∇w|2ρdy − h2

4

ˆ
Rn

|∇w · y|2ρdy

+
1

4(p− 1)

ˆ
Rn

w2|y0|2ρdy −
1

2(p+ 1)

ˆ
Rn

|w|p+1|y0|2ρdy (A.10)

− 1

2

ˆ
Rn

|∇w · y0|2ρdy +
1

4

ˆ
Rn

|∇w|2|y0|2ρdy

− h

2(p− 1)

ˆ
Rn

w2(y · y0)ρdy +
h

p+ 1

ˆ
Rn

|w|p+1(y · y0)ρdy

+ h

ˆ
Rn

(∇w · y)(∇w · y0)ρdy −
h

2

ˆ
Rn

|∇w|2(y · y0)ρdy

=− 1

2

ˆ
Rn

|∇w · y0|2ρdy −
h2

4

ˆ
Rn

|∇w · y|2ρdy

+ h

ˆ
Rn

(∇w · y)(∇w · y0)ρdy +
h2

2

ˆ
Rn

|∇w|2
[
n

2
− |y|2

4

]
ρdy

+
1

2

ˆ
Rn

|∇w|2
[
|y0|2

2
+

|y|2

4
]ρdy +

1

2(p− 1)

ˆ
Rn

w2[
|y0|2

2
+

|y|2

4

]
ρdy

− 1

p+ 1

ˆ
Rn

|w|p+1

[
|y0|2

2
+

|y|2

4

]
ρdy,

where we have applied (3.7). Then

1

2

ˆ
Rn

|∇w|2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy

+
1

2(p− 1)

ˆ
Rn

w2ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy

− 1

p+ 1

ˆ
Rn

|w|p+1ρ

{[nh
2

+
y · y0
2

− h|y|2

4

]2
+
nh2

2
− |y0|2

2
− h2|y|2

2

}
dy

=h2
ˆ
Rn

|∇w|2
[
n

2
− |y|2

4

]
ρdy − h2

p+ 1

ˆ
Rn

|w|p+1

[
n

2
− |y|2

4

]
ρdy
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+
h2

2(p− 1)

ˆ
Rn

w2

[
n

2
− |y|2

4

]
ρdy − h2

4

ˆ
Rn

|∇w · y|2ρdy

− 1

2

ˆ
Rn

|∇w · y0|2ρdy + h

ˆ
Rn

(∇w · y)(∇w · y0)ρdy.

Plugging this into (A.6), we get

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=

ˆ
Rn

(
|∇ϕ|2 + 1

p− 1
ϕ2 − p|w|p−1ϕ2

)
ρdy

+ h

ˆ
Rn

(
2

p− 1
w +∇w · y

)
ϕρdy −

ˆ
Rn

(∇w · y0)ϕρdy

− (p+ 1)h

p− 1

1

2

ˆ
Rn

|∇w|2ρ
[
nh

2
− h|y|2

4

]
dy

+
(p+ 1)h

p− 1

1

p+ 1

ˆ
Rn

|w|p+1ρ

[
nh

2
− h|y|2

4

]
dy

− (p+ 1)h

p− 1

1

2(p− 1)

ˆ
Rn

w2ρ

[
nh

2
− h|y|2

4

]
dy (A.11)

+
h

p− 1

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy − h2

(p− 1)2

ˆ
Rn

w2ρdy

+
h2

2

ˆ
Rn

|∇w|2
[
n

2
− |y|2

4

]
ρdy − h2

4

ˆ
Rn

|∇w · y|2ρdy

− 1

2

ˆ
Rn

|∇w · y0|2ρdy + h

ˆ
Rn

(∇w · y)(∇w · y0)ρdy.

Multiplying both sides of (3.2) by (n
2
− |y|2

4
)wρ and integrating by parts, we get

0 =

ˆ
Rn

[
1

ρ
div(ρ∇w)− 1

p− 1
w + |w|p−1w

](
n

2
− |y|2

4

)
wρdy

=−
ˆ
Rn

ρ∇w∇
[(

n

2
− |y|2

4

)
w

]
− 1

p− 1

ˆ
Rn

w2

(
n

2
− |y|2

4

)
ρdy

+

ˆ
Rn

|w|p+1

(
n

2
− |y|2

4

)
ρdy

=−
ˆ
Rn

|∇w|2
(
n

2
− |y|2

4

)
ρdy +

1

2

ˆ
Rn

w(∇w · y)ρdy

− 1

p− 1

ˆ
Rn

w2

(
n

2
− |y|2

4

)
ρdy +

ˆ
Rn

|w|p+1

(
n

2
− |y|2

4

)
ρdy

=−
ˆ
Rn

|∇w|2
(
n

2
− |y|2

4

)
ρ+

1

4

ˆ
Rn

(
∇w2 · y

)
ρdy
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+
1

p− 1

ˆ
Rn

w2

(
n

2
− |y|2

4

)
ρdy +

ˆ
Rn

|w|p+1

(
n

2
− |y|2

4

)
ρdy

=−
ˆ
Rn

|∇w|2
(
n

2
− |y|2

4

)
ρdy − 1

2

ˆ
Rn

w2

(
n

2
− |y|2

4

)
ρdy

− 1

p− 1

ˆ
Rn

w2

(
n

2
− |y|2

4

)
ρdy +

ˆ
Rn

|w|p+1

(
n

2
− |y|2

4

)
ρdy.

Therefore

0 =− 1

p+ 1

ˆ
Rn

|∇w|2
(
n

2
− |y|2

4

)
ρdy − 1

2(p− 1)

ˆ
Rn

w2

(
n

2
− |y|2

4

)
ρdy (A.12)

+
1

p+ 1

ˆ
Rn

|w|p+1

(
n

2
− |y|2

4

)
ρdy.

By (3.6) and (A.12), we have

0 =
1

p− 1

ˆ
Rn

|∇w|2ρdy − 1

p+ 1

ˆ
Rn

|∇w|2
(
n

2
− |y|2

4

)
ρdy. (A.13)

Substituting (A.13) and (3.6) into (A.11) gives

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=

ˆ
Rn

(
|∇ϕ|2 + 1

p− 1
ϕ2 − p|w|p−1ϕ2

)
ρdy

+ h

ˆ
Rn

(
2

p− 1
w +∇w · y

)
ϕρdy −

ˆ
Rn

(∇w · y0)ϕρdy (A.14)

+
h

p− 1

ˆ
Rn

w2ρ

[
nh

2
+
y · y0
2

− h|y|2

4

]
dy − h2

(p− 1)2

ˆ
Rn

w2ρdy

− h2

4

ˆ
Rn

|∇w · y|2ρdy − 1

2

ˆ
Rn

|∇w · y0|2ρdy

+ h

ˆ
Rn

(∇w · y)(∇w · y0)ρdy.

Recall that L is the linearized operator defined by

Lψ = −∆ψ +
y

2
· ∇ψ +

1

p− 1
ψ − p|w|p−1ψ.

By Lemma 5.4, 2/(p− 1)w+ y ·∇w is an eigenfunction of L associated to the eigen-
value −1 and wi, i = 1, 2, · · · , n are eigenfunctions of L associated to the eigenvalue
−1/2. Since L is self-adjoint, for any y0 ∈ Rn,ˆ

Rn

(
2

p− 1
w + y · ∇w

)
(∇w · y0)ρdy = 0. (A.15)

By (A.15), we have ˆ
Rn

(∇w · y)(∇w · y0)ρdy
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=− 2

p− 1

ˆ
Rn

w(∇w · y0)ρdy (A.16)

=− 1

p− 1

ˆ
Rn

(∇w2 · y0)ρdy

=− 1

2(p− 1)

ˆ
Rn

w2ρ(y · y0)dy.

Finally, we have

h2

p− 1

ˆ
Rn

w2ρ

[
n

2
− |y|2

4

]
dy

=− h2

p− 1

ˆ
Rn

w2∆ρ

=
h2

p− 1

ˆ
Rn

∇w2 · ∇ρdy (A.17)

=− h2

p− 1

ˆ
Rn

w(∇w · y)ρdy.

Substituting (A.16) and (A.17) into (A.14) gives

d2

ds2
Fx(s),t(s)(w + sϕ)|s=0

=

ˆ
Rn

(
|∇ϕ|2 + 1

p− 1
ϕ2 − p|w|p−1ϕ2

)
ρdy

+ h

ˆ
Rn

(
2

p− 1
w +∇w · y

)
ϕρdy −

ˆ
Rn

(∇w · y0)ϕρdy (A.18)

− h2

(p− 1)2

ˆ
Rn

w2ρdy − h2

p− 1

ˆ
Rn

w(∇w · y)ρdy

− h2

4

ˆ
Rn

|∇w · y|2ρdy − 1

2

ˆ
Rn

|∇w · y0|2ρdy.

Since

− h2

(p− 1)2

ˆ
Rn

w2ρdy − h2

p− 1

ˆ
Rn

w(∇w · y)ρdy − h2

4

ˆ
Rn

|∇w · y|2ρdy

=− h2
ˆ
Rn

(
1

p− 1
w +

y

2
· ∇w

)2

ρdy,

we get (4.2) with the help of (A.18). □

B. Proof of (11.2)

In this appendix, our main objective is to prove (11.2). The calculation in this
appendix is inspired by Stone [36].
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Proof of (11.2). By the definition of ρ, we haveˆ
Rn

|y|−
2(p+1)
p−1 ρdy

=(4π)−
n
2

ˆ
Rn

|y|−
2(p+1)
p−1 e−

|y|2
4 dy (B.1)

=(4π)−
n
2ωn−1

ˆ +∞

0

rn−1− 2(p+1)
p−1 e−

r2

4 dr,

where ωn−1 is the area of the unit sphere Sn−1 in Rn. Recall that we have assumed
p > (n + 2)/(n − 2), so the above integral is well defined. Let r = 2

√
s. Then

dr = s−1/2ds and

E(w) =c(n, p)

ˆ +∞

0

rn−1− 2(p+1)
p−1 e−

r2

4 dr

=c(n, p)

ˆ +∞

0

s−
1
2 (2

√
s)n−1− 2(p+1)

p−1 e−sds

=2n−3− 4
p−1 c(n, p)

ˆ ∞

0

s
n−4− 4

p−1
2 e−sds

=2n−3− 4
p−1 c(n, p)Γ

(
n− 2− 4

p−1

2

)
,

where

c(n, p) =

(
1

2
− 1

p+ 1

)[
2

p− 1

(
n− 2− 2

p− 1

)] p+1
p−1

(4π)−
n
2ωn−1

and

Γ(τ) =

ˆ +∞

0

sτ−1e−sds

is the Γ-function. It is well known that the area of the unit sphere is

ωn−1 =
2π

n
2

Γ(n
2
)
.

Then

E(w) =2n−3− 4
p−1 c(n, p)Γ

(
n− 2− 4

p−1

2

)

=2−2− 4
p−1

(
1

2
− 1

p+ 1

)[
2

p− 1

(
n− 2− 2

p− 1

)] p+1
p−1

Γ

(
n−2− 4

p−1

2

)
Γ
(
n
2

) .

(B.2)

In order that Lemma 11.2 holds, we need only to show

2−2− 4
p−1

[
2

p− 1

(
n− 2− 2

p− 1

)] p+1
p−1

Γ

(
n−2− 4

p−1

2

)
Γ
(
n
2

) >

(
1

p− 1

) p+1
p−1

.



58 K. WANG, J. WEI, AND K. WU

This is equivalent to

(
n− 2

2
− 1

p− 1

) p+1
p−1

Γ

(
n−2− 4

p−1

2

)
Γ
(
n
2

) > 1. (B.3)

To obtain (B.3), we set α = 2/(p− 1). Using p > (n+ 2)/(n− 2) again, we have
α ∈ (0, (n− 2)/2). Let

x =
n

2
, f(x) =

Γ(x− 1− α)

Γ(x)

(
x− 1− α

2

)1+α
and

ϕ(x) = log f(x) = log Γ(x− 1− α)− log Γ(x) + (1 + α) log
(
x− 1− α

2

)
.

Then

ϕ′(x) =
Γ′(x− 1− α)

Γ(x− 1− α)
− Γ′(x)

Γ(x)
+

1 + α

x− 1− α
2

(B.4)

and

ϕ′′(x) =

(
Γ′(x− 1− α)

Γ(x− 1− α)

)′

−
(
Γ′(x)

Γ(x)

)′

− 1 + α(
x− 1− α

2

)2
=

∞∑
l=0

(x− 1− α + l)−2 −
∞∑
l=0

(x+ l)−2 − 1 + α(
x− 1− α

2

)2
Because for any τ > 1, (

τ − 1− α

2

)(
τ +

α

2

)
≤ τ(τ − 1),

we have

1

1 + α

[
1(

τ − 1− α
2

)2 − 1(
τ + α

2

)2
]
−
[

1

(τ − 1)2
− 1

τ 2

]
=

1

1 + α

(1 + α)(2τ − 1)(
τ − 1− α

2

)2 (
τ + α

2

)2 − 2τ − 1

τ 2(τ − 1)2

=(2τ − 1)

[
1(

τ − 1− α
2
)2(τ + α

2

)2 − 1

τ 2(τ − 1)2

]
≥0.

Taking τ = x+ l − α/2 in the above inequality, it gives

ϕ′′(x) ≥ (1 + α)
∞∑
l=0

[
1

(x− 1 + l − α/2)2
− 1

(x+ l − α/2)2

]
− 1 + α

(x− 1− α
2
)2

= 0.

Thus ϕ is convex. By the mean value theorem, we have

(1+α)

[
1

x− 1− α
2

−
∞∑
l=0

(x+ l)−2

]
≤ ϕ′(x) ≤ (1+α)

[
1

x− 1− α
2

−
∞∑
l=0

(x− 1− α + l)−2

]
.
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It follows that limx→∞ ϕ′(x) = 0; and for any α ∈ (0, (n − 2)/2), ϕ is decreasing in
[3/2,+∞). Moreover, we see from (B.4) that ϕ′(x) = O(|x|−2) as x → ∞. Thus
there exists a constant c0 such that limx→∞ ϕ(x) = c0. By the Stirling’s formula (see
[42]), we have for m = 1, 2, · · · ,

log Γ(x) =

(
x− 1

2

)
log x− x+

1

2
log(2π) +

m∑
l=1

B2l

2l(2l − 1)
x−2l+1 +O(x−2m−1),

where B2l are the Bernoulli numbers. Therefore, as x→ ∞,

ϕ(x) = log Γ(x− 1− α)− log Γ(x) + (1 + α) log
(
x− 1− α

2

)
=

(
x− 1− α− 1

2

)
log(x− 1− α)− (x− 1− α)

−
(
x− 1

2

)
log x+ x+ (1 + α) log

(
x− 1− α

2

)
+O(|x|−1)

=

(
x− 1

2

)
log

(
1− 1 + α

x

)
+ (1 + α)

[
log

(
1 +

α

2(x− 1− α)

)
+ 1

]
+O(|x|−1).

Because

lim
x→∞

(
x− 1

2

)
log

(
1− 1 + α

x

)
= −(1 + α),

we get
ϕ(x) = O(|x|−1), as x→ +∞.

This then implies that for any α ∈ (0, (n− 2)/2), if x > 1, then ϕ(x) > 0. □
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