CO-EXISTENCE OF TYPE II BLOW-UPS WITH MULTIPLE BLOW-UP RATES FOR FIVE-DIMENSIONAL

HEAT EQUATION WITH CRITICAL NONLINEAR BOUNDARY CONDITIONS
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ABSTRACT. We consider the following five-dimensional heat equation with critical boundary condition
Oru = Au in Ri_ x (0,T), —0Ozgu= \u|%u on 8R3_ x (0,T).

Given o distinct boundary points S BR‘?_, and o integers I; € N (possibly duplicated), ¢ = 1,2,...,0, for 7' > O sufficiently
small, we construct a finite-time blow-up solution u with a type II blow-up rate (T' — t)~3% =3 for 2 near g, This seems to be
the first rigorous result of the co-existence of type II blowups with different blow-up rates. To accommodate highly unstable blowups
with different blowup rates, we first develop a unified linear theory for the inner problem with more time decay in the blow-up scheme
through restriction on the spatial growth of the right-hand side, and then use vanishing adjustment functions for deriving multiple rates
at distinct points. This paper is inspired by [25, 52, 60].
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1. INTRODUCTION AND MAIN RESULTS
In this paper we consider the heat equation with the critical boundary conditions
O = Au in R} x (0,T), —0,,u= |u|%u on OR" x (0,7T), wu(-,0)=wup in RY, (1.1)

where the dimension n > 3,z € R~ !, z,, € Ry, and z = (Z,z,,) € R7.

The phenomena of finite-time singularity formation triggered by the superlinear right-hand side appear in many evolution
equations. It is interesting to reveal how boundary conditions influence the behaviour of solutions for the evolution equations.

In this paper, we give a comprehensive study of the possible phenomenon of the finite-time blow-up of heat equations with
the nonlinear boundary condition. The regularity and existence problems of elliptic and parabolic equations with linear and
nonlinear oblique derivatives are extensively studied. We refer to [29, Chapter I1I-5, Chapter V-7], [35, 37, 38].

For an integern > 2, « € (0,1),p > 0, —00 <ty < t1 < 00, the heat equation with algebraic power nonlinear boundary
condition in R’} has the form

1 -2«

Oru = Azu + Oy th+ Oz = 2, T2V, - (2172V u) for (z,t) € R x (to,t1),
n
. w(Z,x, t) —u(Z,0,t) . —wi720, w(F, wp,t) p—1 - - 1
- ;irﬂ) por = :girﬁ) 5o = <|u\ u) (z,0,t) for (&,t) € R"™" x (to,t1),
u (z,to) = ug () for x € R,
1.2)
where the initial value is vacuum if ¢y = —oo. This equation appears in the extension form of
(-
4a(r(z)) (0 — Az)" u(E,0,t) = ([ulP~'u)(Z,0,t)

for (%,t) € R"~! x (—o0,t;) with the Gamma function I'(-) according to [54, Theorem 1.7, 1.8]. (1.1) is a special case of
(1.2).

For (to,t1) = R,p > 0, (1.2) is dilation and translation invariant in the sense that for u solving (1.2),
Au (A; (T — &), N5 2, A5 (tfs)) (1.3)
still satisfies (1.2) with A > 0,& € R*~!, s € R. The energy associated with (1.2) is

1 2
T[u] = §/ oh 2 Vol do = == [ (3,0,0) di
R™ p Rn-1

For u with sufficient smoothness and spatial decay, % J [u] = — [5,, 172 |8;u|? dx. Note that
+

—1

J [)\u (A; (@—¢€) A*xnt)} = (\E) P2 (D) 1y (5 1 1)

For this reason, we define the energy critical exponent

{ 00 if n <1420
Pa,s ‘= —142 .
e ifn> 14 2

and p < (=, >)pa,s is called the energy subcritical (critical, supercritical) case.
(1.2) has a close relationship with the well-known Fujita-type equation

Ou — Au = |uPtu in Q@ x(0,T7), u(,0)=ug in Q, (1.4)

where (2 is domain in R™. There are three important exponents for (1.4): the Fujita exponent pr, the Sobolev exponent pg,
and the Joseph-Lundgren exponent p s, which are defined respectively as

12 oo ifn=1,2 S it n <10

n—2

The dynamics and colorful phenomena of (1.4) are sensitive to the power p.
Given an initial value ug € L°°(£), there is a unique solution of (1.4) in L*°(Q2 x (0,¢)) for ¢ € (0,7") with a maximum life
time 7' < oo. We say that u blows up in finite time if 7" < oo, and in this case, lim sup;4p [|u (-, ) [ Lo (@) = 00. Forp > 1,

there are two types of blow-ups depending on the rates compared with the ODE solution of (1.4), (p — 1)_1%1 (T — t)_ﬁ,

Type I : lim sup(T" — t)r’%l |w(-, )] Loe () < 00, (1.5)
‘T
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Type I1 : lim sup(T — )77 [[u(-, t)|| 1o () = o0. (1.6)
T

Indeed, once u blows up at T', by comparison theorem, |u(:, )| o) > (p — 1)_ﬁ (T — t)_ﬂ%l with p > 1 in bounded
domain with zero Dirichlet boundary condition by [48, Proposition 23.1]. From the celebrated work [19] of Fujita, (1.4)
possesses a global nontrivial solution v > 0 if and only if p > pp.

For the subcritical case 1 < p < pg, under the assumption of (1.5), 1 < p < pg, Giga and Kohn [20] gave the asymptotic
behavior of solutions in the parabolic cylinder. Giga and Kohn [21] proved (1.5) in a bounded convex domain or R", provided
that either (¢) ug > 0 and p satisfies 1 < p < pgorn < 2,0r (ii) 1 < p < g:ffi or n = 1. Finally, Giga, Matsui and
Sasayama [22, 23] proved (1.5) in a bounded, convex domain or R™ without assumptions on the sign of solutions. Quittner
[46] proved that O;u = Au + uP in R™ x R does not possess positive classical solutions and there is only type I blow-
up for non-negative classical solutions of (1.4) in arbitrary domain of R™ without convex assumption. For 1 < p < pg,
Souplet [53, Theorem 1.1] gave a much simpler proof when the initial value is bounded, nonnegative, radially symmetric, and
nonincreasing.

For the critical case p = pg, Filippas, Herrero and Veldzquez [18, Section 6] excluded the type II blow-up in the positive
radial and monotonically decreasing class for n > 3. The same result was obtained when the monotone assumption was
removed by Matano and Merle [39, Theorem 1.7], and in higher dimensions n > 7 for positive solutions in bounded convex
domains or R™ without radially symmetric assumptions by Wang and Wei [57].

By formal asymptotic analysis in [18], it is conjectured that there exist sign-changing type II blow-up solutions in lower
dimensions n = 3,4, 5,6 and rigorous construction are given in a series of work [49, 12, 14, 25, 26, 31]. For n = 5, del
Pino, Musso, and the first author [12] constructed the first rate. Harada [25] adopted a self-similar variable and then adjusted
eigenfunctions with cut-off functions to achieve the fast time decay for the outer problem at the blow-up point for deriving
other rates. Zhang and Zhao [60] first constructed finite-time blow-up solutions with multiple different rates by the gluing
method. Zhang and Zhao first split the right-hand side of the outer problem into several parts. Second, they introduced the
idea of using the solution of the heat equation to eliminate the derivatives for the influence between distinct blow-up points.
Finally, applying Tylor expansion deduced the desired vanishing condition for the outer problem at the prescribed blow-up
points.

In the case ps < p < pjr, Matano and Merle [39] excluded the type II blow-up in the radially symmetric class when €2 is a
ball or R™ (under some additional requirement). In the non-radial case, del Pino, Musso, and the first author [13] constructed
positive type II blow-up solutions in some special domain in R™ forn > 7, p = gfé € (ps,psr). Du[15, Theorem 1.3]
gave counterpart classification results for finite-time blow-up solutions of rotational symmetric harmonic map heat flow in
dimension 3 < n < 7.

For p > pg, various characterizations of type I and type II blow-ups are established in [40].

For p = p;r, Seki [50] constructed a type II blow-up solution.

For p > psr, Herrero and Veldzquez [27] first constructed a type II blow-up solution in the radial case and Mizoguchi
[41] gave a simpler proof. Collot [4] constructed non-radial type II blow-up solutions under some restrictions of the exponent
p>pJrL.

Mizoguchi and Souplet [42, Theorem 1] built the connection between type I blow-up and L% norm blow-up. We refer
to the monograph [48] for various developments about Fujita-type equations.

Compared with the Fujita-type equations, there are much fewer studies about (1.2) and variations of (1.2). By Proposition
A.1, when (tg,t1) = (—o00,T), p > 1, there exists a solution of (1.2) with the form

1
_h

x2e e ar —a 1 © 1 zp1 p1
== +Ch,) (T — p=1 dr, o = 1.7
ul(@t) = 5@ /0 17 (FCap) (T —t47)770dr, - Cay [4“1“(00 /1 (e dz] >0 4D

independent of x and satisfying

uy (#,0,8) = £Cop (T — )71, wy(2,t) ~ & (max {T — £,22 )71 for (z,t) € RT x (—00,T),  (1.8)

where “~” only depends on «, p. Compared with the time rate of (1.7), we define the type I and type II blow-up for (1.2) as

Type I : limsup(7T — t)7-1 u(-, )| oo () < 00, (1.9)
"

Type I1 : limsup(7 — £)7-7 [|u(-, t) || Lo () = 00. (1.10)
T

Fila and Quittner [17, p.205] considered
Ou=Au in B x (0,T), dyu=1u" on OB x (0,T), u(-,0)=1ug in B
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with an outer normal derivative 0, and a unit ball B C R™ in the radial class and got the convergence result for blow-up
solutions under some non-negative restrictions on ug and its derivatives.

As a counterpart of [46], Quittner [45] proved that there is no positive classical bounded solution of (1.2) with o = %,
l<p<p 15 and only type I blow-up (1.9) can occur for positive classical solutions in a bounded smooth domain. See
Quittner and Souplet [47, Theorem 4.1] for type I blow-up results in the half space without the sign assumption about the
solution.

We believe many results in Fujita-type equations can be realized in (1.2) with more general nonlinear boundary conditions.

Now, we state our main results. By classical results of Li and Zhu [33, Theorem 1.2] (see also [16, 3]), for n > 3, all
nonzero nonnegative solutions to

AU=0 inR}, -0, U=Uwz2 on R} (1.11)
are given by
n—2 _n—=2
T E— o+ [ea+ (n—=2)"1"} T, 2= (Fw,) ERY, B eR™L, ¢ 0. (1.12)
We refer to [30, 32] for Liouville theorems for more Yamabe-type equations. Let
_n—2
U(z) = (n —2)"= [|az~|2 1+ x,ﬂ * . z=(32,) €R. (1.13)

Asin [18, p.2977], we set

Ou(z,t) = —(T — 1! (Ll%? (O)>_1 Ll%z (4(|$|2

with the modified Laguerre polynomials

n—2 _n—2 dl n—2 _
L2 (r)=r""2 ¢ — (r 7 e T).
dr!

Obviously, Lln% (r) = Zé:o c;r* with some constants ¢; € R, and ¢y = Lln% (0) > 0. O(z,t) satisfies ©;(0,t) =
—(T —t)!, and for n > 2,

0,0, = AO; in R? x (—00,T), —0,,0, =0 on IR" x (—00,T), (1.15)

where the first formula in (1.15) can be deduced by the second equation below [18, p.2977 (A1)].
Inspired by the work [25, 52, 60], we construct finite-time blow-up solutions at a finite number of prescribed blow-up
points with multiple rates for (1.1) with n = 5. The main theorem is stated as follows.

Theorem 1.1. Consider

Ou=Au in RS x (0,T), —0pu= |u\%u on R’ x (0,T). (1.16)
Given an integer o > 1, o distinct boundary points ¢!l € 8R5+, and o integers |; € N (possibly duplicated), i = 1,2,... 0,
0= 1<rgéir_1< |q[i] — ¢Vl |/32, then for T > O sufficiently small, there exists a finite-time blow-up solution of the form
<i#j<o
° [ s 3@ —ell)? 25\ 7% (@ — gl 0 x — g
u(x,t)—Z{Szlui { ” +<1+M) } n( 2 >+61i(x—q ,t)n<5>

i=1

+0 (| InT)2(T — t)lin (;/;(]7—[]11)) } +0 <| InT| "% (z) 2 <1 - gn ('g’";q_[ll)» ;

where © = (&, x5), Oy, is defined in (1.14) with n = 5, and ju; = p;(t) € C*([0,T),Ry), £l = ¢lil(t) € C1([0,T),RY)
satisfy

pi = (Di+ O T|~H0)) (1= 0242, |(¢9,0) — ] < 7|~ (7 — 1)+

with some constants D; > 0 independent of T. The initial value u(-,0) € C® (@) with the support in US_, BS (¢!, 46). In

particular, ||u(-, t)HLoc(m) ~(T—t)3 3 fori=1,2,...,0.

Remark 1.1.1. The cut-off functions n( z;gm ), n( mféqm ) are for the purpose of avoiding the influence between distinct blow-
up points and the multiple relationship between 20 and § is not essential. The radial property of n(x) helps simplify the error
on the boundary a lot. See (3.3).

Remark 1.1.2. It is possible to add the type I blow-up rate in a solution with multiple rates.
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The proof relied on the parabolic gluing method established in the pioneering work [5, 11]. This method has the powerful
ability to analyze concentration phenomena in finite-time and infinite-time cases and localize the blow-up points to achieve
various concentration phenomena. We refer to [8, 9, 51, 7].

We develop the linear theory for the inner problem with more time decay in the blow-up scheme through spatial restriction
on the right-hand sides. We illustrate necessary norms before stating the next proposition.

Given a non-negative function ¢(7), we define the following norms for the linear theory for the inner problem. For
—00 <19 <1 < 00,6 € (0,1),

||g| 0,2+a,0(7),R% ;70,71 = inf {C | |g(y,7)| < CTU<y>72’“1‘y|§g(7) for TES Ri,’l‘o <T< 7'1} R
1Pllo 1t ae(r)mnt mom = f {C | [h(g,7)] < CT7(G) " *Lygj<u(r) for §ER" im0 <7<},

Q((Q,T),T) = {(5?8) € Rn_l X (TOaTl) | |2 _g| < ’I",T—?”2 <s < T}a

. = sup (g™, 1) — (G, )|
QU@ T g 1) g2 e ll/2) (max{[gll — GBI fm — p[1/23)"

[7]

[h]o,1+a,f(7’),<,R"*1,'ro.,n ;= inf {C | [h]cg’%(Q((ﬂJ),Wlﬂ)) < CTU<§>717G7§1|Q|§25(7—) for y € Rnil,To <7< 7'1} R

Ihllo,140,60r),6.87=1 70,7 = Pllo,140,00),R7=1 70,71+ [Ploy14a,007),6,RP=1 70,71 -

(1.17)
We arrive at the following linear theory for the inner problem:

Proposition 1.2. Given an integer n > 5, consider

n N
Oy = Ap+g in R X (10,m), —0y, ¢ = n_QUn%?qS—kh on R x(10,71), (y,70) = CsZo(y) in R™. (1.18)

Suppose that 1 < 19 < 11 < 00, £(T) satisfies C[lTp < (1) < CytP with a constant Cy > 1,

1 1
2<a<n—2, al<p< 3 L€ (071), o—pa+2im>0, <ec(0,1), (1.19)
I9llo.24a,e0r),R7 70,71 < 09 [Pllo14a,0(7) 6 B2 79,7 < 00, and g = g(y,T), b = h(F,T) satisfy the orthogonality condi-
tions
/ 9(y, 7)Z;(y)dy -I—/ . Wy, 7)Z;(g,0)dg =0  for 7 € (10,71), j=1,2,...,n (1.20)
R Rn—

n
+

with Z; given in (2.1), Zy(y) € C%(R7%) N CH<(RY) satisfies

Zo(y) =0 for |y| > Co, / ZoZidy =0 for j=1,2,...,n, / ZoZody # 0 (1.21)
R R7%

with Zy given in (2.3) and a constant Cy > 0, then there exist ¢ = ¢[g, h] and a constant Cy, = Cy|g, h| as linear mappings

of g, h solving (1.18) and satisfying

oy, 7)Z;(y)dy =0 for T € (10,71), j=1,2,...,n, (1.22)
R

and

=yl

o —1l—a op—a —1 o—1%p—a —I
V9l S (7700 Lo + T T g TR )

_ _ _ i
9] < (TU@/) “Ly <oy + 77 (T)e T 1|y\>€(7’)) (||9||o,2+a,e(7),m,m,n + ||h||a,1+a,e(r),w—1,m,n),
S

(1.23)
S (P ) ST —
1Cal S 7 (1gllo 240,072 ro,ms + 1l 1) 2 7 )
with a constant I € (0,t), where all “<” are independent of 19,71, g, h.
Remark 1.2.1. By Lemma 2.4, there exists Zo (y) e C*= (@) satisfying the assumption (1.21).
Remark 1.2.2. The orthogonality conditions (1.20) are initiated from [52, Proposition 4.1, 4.2].

Main difficulties and novelties.

e Due to the lack of an ODE method for the linearized equations around steady state solution U(x), the strategy for
deriving the linear theory for the inner problem in [5, Section 7] does not work here. Instead, we resort to the parabolic
blow-up argument to get a desired linear theory. The parabolic blow-up argument was first introduced in the linear theory
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of mode 1 in [11, Section 7.3], and this argument works for many heat flows of Schrodinger operator with nondegenerate
property. See [44, Section 5.1] for instance. In the proof of [58, Proposition A.2], the authors modified the blow-up argument
when the spatial variable goes to infinity.

For Tgn [-] defined in (B.8) with n > 2,if b < 2, tlggo t=Tgn [t%(x) "] (0,%) = oo by the similar lower bound estimate
in [59, Lemma A.1];if b > nora < —1, lim {[(t"(z)>=") " g [t*(x) "] (2,1)] le:\/{} = oo by similar lower bound
estimates in [59, Lemma A.1] and [59, Lemma A.2] respectively. Thus the parameter about the growth of time in [58,
Proposition A.2] should be optimal in the algebraic power sense.

To obtain better time decay for the linear theory in a wider application, we impose restrictions on the spatial growth of the
right-hand side. Additionally, we discover that the scaling argument when the spatial variable goes to infinity is not necessary
in previous works. Instead, we utilize convolution estimates directly.

e For the outer problem, Harada [25, 26] used a linear combination of eigenfunctions corresponding A, — Z - V. with
cut-off functions as the modified functions to adjust the time vanishing at the blow-up point in the outer problem. However,
the algebraic growth of these eigenfunctions and the rough cut-off functions cause complexity in calculation.

We realized that the modified functions need not be eigenfunctions corresponding A, — 5 - V.. The key point is that
the modified functions are not orthogonal with these eigenfunctions, so we have more flexibility in the choice of modified
functions and simplify the proof for the outer problem. See Corollary 2.5 and the application in Section 6.

o In order to derive multiple rates at distinct points, we introduce vanishing adjustment functions to eliminate derivatives
at arbitrarily prescribed finitely many points. This method works for more general parabolic equations. See Proposition 2.13.

The method of adjusting the initial value for improving the vanishing condition of the outer problem was implemented
in [11, p.386] for the case of one bubble with the first rate. Zhang and Zhao [60, p.8] introduced the idea of using the heat
equation with some special initial value to improve the vanishing at the blow-up points for multiple rates. We make this
process clearer and summarize it as the vanishing adjustment functions. A counterpart for the Schrédinger equation is given
in [1, Lemma 4.1].

o The compactness argument for the parameters in the initial value in the fixed-point argument in Subsection 7.4 deduces
a smooth initial value u(z, 0) with compact support. This can not be derived from the parabolic regularity theory. Although
forafixed t € (0,T), u(x,t) is smooth, the support of u(z, t) is usually not compact.

e Convolution estimates in Appendix B are in the spirit of [59, Appendix A] (See also [56, Appendix B.1]). We combine
the comparison theorem to approach the best constant in the power of the exponential term. Appendix B is prepared for the
proof of Proposition 4.2 and also establishes the foundation for the long-time dynamics of (1.1).

Notations:

e Denote Ry = (0,00), Ry = [0,00), R =R"! x R, R} =R"! x R}
e Denote the natural number set N = {0, 1,...}, the set of natural numbers n-tuples N* = N x N x --- x N. For
n multiplicities

C4,C5 € R, denote C1N + Cy = {C1i + Cs | ¢ € N}. In particular, 2N (2N + 1) is the set of even (odd) numbers.

Foram x nmatrix A = (Ay;),, ., denote [[All,, = >70%, 377, [Ay].

For € R™, denote the Japanese bracket (x) = /1 + |z|2.

Given ¢ € R", r > 0, denote B, (¢q,r) = {z € R"| |z —q| <}, B} (¢,7) = Bn(q,r) NRY.

For any z € R", we use Z, z,, to denote the first n — 1 components and the nth component of z respectively.

C(a,b,...) denotes a constant only depending on parameters a, b, . . ..

We write a < b (resp. a 2 b) if there exists a constant C' > 0 independent of 7" such that a < Cb (resp. a > Cb).

Seta ~ bif b < a < b. Given a non-negative function g, O(g) denotes some function f satisfying |f| < g.

o We write a Sa,... b (tesp. a Zq.p,.. b) to emphasize that there exists a constant C(a, 5,...) > 0 such that
a<C(a,B,...)b(resp. a > C(a, B,...)b). Seta ~q 5. bifb<ap,.. aSap,.. b

e For constants C7, Cy > 0, the symbol C; < C5 denotes that there exists a constant ¢ > 0 sufficiently small such that

Cl S COQ.
e For C € R, the ceiling function [C'] denotes the smallest integer greater than or equal to C.
e Given a positive integer n, a multi-index m = (mq,ma, ..., m,) € N”, and a sufficiently smooth function f defined

in a domain of R", denote D' f = 010,22 - - - O, f.
e n(x) is a smooth radial cut-off function in R™ satisfying n(z) = 1 for |z| < 1, n(z) = 0 for |z| > 2, and
0 <n(z) <linR™
e Denote 1o(x) as the indicator function with 1g(x) = 1if z € Q and 1g(x) = 0if = € 2. We will use 1, to denote
1o (x) if no ambiguity.
The structure of this paper is as follows. Section 2 is the preliminary to prepare some backgrounds and useful estimates.
In Section 3, we calculate the errors of the approximate solution and give the inner-outer gluing system. Section 4 builds the
linear theory of inner problem by blow-up argument. Section 5 gives the formal calculation of y; and introduces the topology
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for the fixed-point argument. In Section 6, we study the outer problem and obtain apriori estimates. Finally, in Section 7, we
use the Schauder fixed-point theorem to solve the inner-outer gluing system away from 7" and then deduce Theorem 1.1.

2. PRELIMINARY

2.1. Kernels and the eigenfunction with negative eigenvalue. For n > 3, by dilation and translation invariance (1.3), the
linearized operator of the steady equation of (1.1) around U has kernels

Zi(x) == 0,,U = —(n—2)% [|5:\2 +( +xn)2}7 e, i=1,2,...n—1,

2.1
Zn(a) =2 ; 20 42 VU = 27 n —2)%F [|F2+ (1 +20)2] "2 (1—|2]?), =y
which satisfy
AZ;=0 inR?, -0, 7 = n’jQU%Zi on OR™,  i=1,2,...,n. 2.2)
By Proposition D.5, the corresponding eigenvalue problem
~AZy=XZy iR}, —0,,Z = ——=UTZ, on R} @3)

has only one negative eigenvalue Ao and )Xo is simple with an eigenfunction Zy(z) € C*°(R7) N H'(R%) satisfying
1 ZollL2mn) = 1,0 < Zo(z) < Ce~"I*l in RY forall v € [0,+/=Xo) with a constant C' depending on n, A, v.

2.2. Properties of the operator A, = A, — 5 - V.. Given a domain {2 C R", define the weighted L?(Q) space by
L2(Q) = {f | 1 fllz2 () < oo} (2.4)

equipped with the inner product and the norm
_1z? 1/2
(1o 2) 2y = /Q KA BEN o) = 1l = U )i

Define the weighted H! (£2) space by

Hy(Q) = {f|f,Vfe Ly} 2.5)
equipped with the inner product and the norm

(f1, f2)H;(Q) = (vflvvf2)L’%(Q) + (f1, f2)Lg(Q) , ||f||H;(Q) = (f,f)}ffm) :
Denote A, = A, — 2 - V.. For f,g € C?(R%) N CH(RY),

(A1, 9) ey = — (V. VO)rzen) + /8 )T (0., 0 ds
i 2|2 2|2 (2.6)
= (A9 F)paun) + /8 IR (0, ) (S = | (e (<0:,9) (2)dS.
+ +

Denote H,(s) = Ho($), a € N, s € R, where Hy(r) = (—1)° e’ 2 (¢=") is the Hermite polynomial. Two basic

dre

properties of H., (z) are given in the following lemma without proof.

Lemma 2.1. (1) H, (z) is an even (odd) polynomial of order « provided that « is an even (odd) number. And H, (0) #£0
if ais even, and %I:IQ(O) # 0if ais odd.
2) (ﬁa)aeN is the basis of the eigenfunctions of — ((“)SS — %85) in L%(R) satisfying — (858 — %85) ﬁa(s) = %ﬁa (s),
and is an orthogonal basis in Li(R).

Denote a multi-index & = (g, g, . . ., v, ) with each «; € N, and H, () := H?:l o, (zi). By separation of variables,
(Ha)aenn is the basis of the eigenfunctions of —A. in L2(R™) satisfying —A.Hy(2) = 27|, Ha(z), and is an
orthogonal basis in L2(R™).

Given a domain 2 C R™, denote

Eip(@) i= {Ha(2),2 € Q] la] =i},

gi/Q,cvcn(Q) = {ﬁa(Z) (S 51/2(9) ‘ (07% iS even} 5 gi/Q,Odd(Q) = {ﬁa(Z) € 52/2(9) | (67%% iS Odd} .

Some basic properties of Hermite polynomials are listed in the next lemma without proof.

2.7)



J. WEL Z. YE, X. ZENG, AND Q. ZHANG
Lemma 2.2. (1) The eigenvalue problem —A,h = Ah in R™, h € Li(R”) has the eigenvalue \
E;/2(R™) as the orthogonal basis of the associated eigenspace
(2) FOY’fl, f2 S Ujooog]/z(

)

= §,z’erith

)and fi # fo, we have (1, f2),z

=0.
(3) Fori € N, denote S; = {f e H)(R") | (f, )Lz rry =0 forall g€ Ui_&; /(R )} then
2 i+ 1
03§f S ”fHLZ(Rw) vaHLg(]Rn) = 2
A counterpart in the half space R’} is the following.
Lemma 2.3.

(2.8)
(1) The eigenvalue problem with the Neumann (Dirichlet) boundary condition
—Ah=Mh in RY,

~0,. h=0(h=0)

on ORY}
associated eigenspace.

2.9)
in LQ(]R") has the eigenvalue N = 3 L with i € N, and Ei/2,even(RY) (€i/2,0aa(R7)) is the orthogonal basis of the
(2) For f1, f2 € U5Z0Ej2,even(RY) (€)/2,0aa(RY)) and f1 # fa, we have (f1, f2) p2(mn)

=0.
o (RY
(3) Foranyi € N, denote Sy {f € Hl( )| (f, )Li(Ri) =0 forall g € UJ' o€j/2 even(Rﬁ)},

. _2 2 i+l
0#16%2 ||fHLg(1R1) HVfHLg(R") -9
Proof. Given any function f in R, denote

e sz )
fo(z) = {f(%,zn) if 2, <0 9l {

—f(Z,—z,) if 2z, <O.
(1). For the Neumann boundary condition, obviously he(z) € L2(R™) and it is straightforward to derive —A,he(2)
Ahe(z) in R™. By Lemma 2.2 (1), 0, h

(2.10)

if z, >0

2n—=0 = 0, and Lemma 2.1 (1), then A € N and h € &) cven
hand, all elements in &; /3 cven (R} ), @ € N satisfy (2.9) with A = i/2

, R’} ). On the other
For the Dirichlet boundary condition, the conclusion can be deduced by analyzing ho(z) similarly
(2). For any g1, g2 in R, (g1e, gge)Lz(Rn) =2 (gl,QQ)Lz(Rn) = (910, ggo)Lz(Rn) Then the result holds

(3). For any f € Ss, we have fo(z) € H)(R™); (fe, )L2 gy = 0 for ali) 9 € &i/2,0adR"), 5 € N; (fo,9)r2mn) =
2(f,9)r2(ry) = Oforallg € U’—o€j/2,even(R™). Applying Lemma 2.2 (3) to f,, we getinfoxses, 1A 22 @y IV fll 22 gy =
% The equality sign can be attained by &(;1)/2,even(R') |
The next lemma gives a general localized modification method for approximate orthogonal functions.
Lemma 2.4. Given a domain Q C R™ (possibly unbounded), a weight w(z) (possibly sign-changing), and an integer m > 1
suppose that fori,5 =1,2,....m, ¥;(2)V;(z)w(z) € L

L (), a function x(z) € L>(Q) with compact support,
Z / 93 (2)91(2)w(2)x(2)dz| < 92 (2)w(2)x(2)dz| < oo for i=1,2,...,m,
1=1,1%i |7 Q
then there exist functions 9;(z), i = 1,2,...,m of the form 0;(z) =
of (JoWi(2)01(z)w(z)x(2)dz) ., such that

> agi(2)x(2), where (air),, ., is the inverse matrix
=1

Di(2)9,(2)w(z)dz = 6;;  for i,5=1,2,
Q

Proof. The conclusion is deduced by the non-singularity of the strictly diagonally dominant matrix

iX. ]
We arrange the eigenfunctions of (2.9) with the Neumann boundary condition according to non-decreasing eigenvalues
and label them as (e;(z));, ¢ = 0,1,.... Due to the multiplicity of eigenspaces, the arrangement appears to be non-unique
We only fix one sequence (e;(2)); and e;(z) satisfies
—A.ei(z) = Niei(z)  in R}, -0, ei(z) =0 on ORY,
where the eigenvalues \; are non-decreasing about ¢ and A; — oo as ¢+ — oo. Define the eigenvalue counting function of
—A, by

2.11)
N(C) :=

#{ieN|)\ <C}, CeR

2.12)
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Corollary 2.5. Given m € N, there exists a constant M > 0 sufficiently large and a non-singular symmetric constant
real-valued matrix (1) (m+1)x (m+1) t0 make

éi(2) ::;ailel(z)n(;[), i=0,1,...,m (2.13)
satisfy
0.,6i=0 on OR} and (&, ej)LQ(Ri) =40;; for i,j=0,1,...,m. (2.14)

Proof. By Lemma 2.3 (2), and Lemma 2.4 in the case 2 = R}, w(z) = p(2), (€i(2))o<i<m. x(2) = n(5F) with M > 0
sufficiently large, we get the desired é;(z) satisfying the second property in (2.14). Since () is a smooth radial cut-off
function and 9, ,,¢; = 0,7 € N on OR’}, we have 0, &; = 0 on IR’} O

2.3. Green’s functions in R’}. The fundamental solution with the Neumann boundary condition in R’} has the form

n | _13—2%+len—2n|? _13=2%+|en+zn|?
4

Gn(z,t,z,8) =[Am(t —s)] 2 |e (E=s) +e D) for ¢t > s. (2.15)

Obviously,
Oy DIGy(x,t,2,8),. € Nym € N” is odd (even) about z,, if m,, is odd (even) for ¢ > s. 516
Oy DG, ((£,0),t,2,s) = 0if m,, is odd for t > s. (2.16)
By Green’s identities, for f with sufficient smoothness and decay, we have
t
(@)= [ [ Guletz9) 0 = Aup) . 5)dzds
to Ri
(2.17)

+ /t . Gn(x,t,(2,0),8)[(=0., f) ((£,0),s)] dzds + Gr(x,t,z,t0) f(2,t0)dz.

Rﬂ.
™
(2.17) can be used for representing solutions in some weak sense with right-hand sides, boundary value and initial value in
some Sobolev spaces.

Lemma 2.6. Let n > 2 be an integer, —o0o < t1 < to < 00,
00 = A0+ g1(x,t) in R} x (t1,t2), —0,,0 = g2(%,t) on ORY X (t1,t2), O(x,t1) = g3(x) in RY.  (2.18)
Givents € [tg,00), ¢ € ORY, set
s=s(t)=—In(ts —t) € (s1,52), S =s(t;))=—1In(ts —1;),i=1,2, z=z(z,t)=(t3— t)*% (x—q),
thatis, t=1(s)=t3—e * t;=1t(s;))=t3—e %, i=12 x==x(2,8)=e 224
O(z,t) = 0((ts — 77 (x—q),—In(ts — t)), thatis, 0(z,8) =0(e 2z+4q,t3 —e ®).
Then (2.18) is equivalent to

050 = A0 —5-V.0+ e Sgi(e 22+ qtzg—e®) for (z,8) € R% x (s1,52),
—0,,0=e"2ga(e" 22+ G, t3 — e %) for (z,s) € ORY} x (s1,52),
0(z,s1) = gg((tg — tl)%z + q) for z € R%.

Proof. Plug 0(x,t) := 0((t3 —t)~% (z — q) ,— In(t3 — t)) into (2.18), then
27U (ts =) F (x —q) - (V) (ts — )3 (v — ), — In(ts — 1))
+(ts — 1)1 (0:0) ((ts — )72 (2 — @), — In(ts — 1))
= (tz — 1) (A.0) ((ts — 72 (z—q),—In(ts — t)) + g1(z,t) in R} x (t1,t2),
(ts — )" % (=0, 0) ((t3 =) 2 (x —q), —In(ts — 1)) = ga(F, 1) on IR x (t1,12).
Changing the variables deduces the conclusion. ]
Lemma 2.7. Let n > 2 be an integer, —00 < s1 < s < 00,

0,0 = A0 — g V.0 + fi(z,s) in R} x (s1,82), —0.,0= f2(Z,s) on ORY x (s1,52), 0(2,81)= f3(z) in R7}.
(2.19)
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Giventz € R, g € OR", set
t=1(s) :=t3 —e ™ € (t1,ta), ti=1ti(s;) =tz —e % i=1,2 x=ux(z,s)=e 22+4q,
thatis, s =s(t) = —In(ts —t), s;=s(t;)=—In(ts —¢;), i=1,2, z=z(x,t)=(t3— t)_%(x —q);
O(z,t) == 0((ts — t)_%(gc —q),—In(ts —t)), thatis, 0(z,8) =0(e 2z+q,t3 —e *).
Then (2.19) is equivalent to
00 =00+ (ts — ) fi((ts —t) "2 (x —q), —In(ts — ) for (z,t) ERY x (t1,t2),
~05,0 = (t3 — )3 fo((t3 — )72 (& — §), — In(ts — 1)) for (z,t) € AR x (t1,t2), (2.20)
O(z,t1) = fs(e? (z — q)) for x € RY.
Moreover, the solution of (2.19) is given by

0(z,s) = /5 . H, (z,s,w,0) fi(w,o)dwdo
* (2.21)

n

+1/S Hz(%siﬁﬂoha)ﬁxwwﬂd@da+l/ Hy (28,0, 1) fo(w)duw,
s Rn—1

where .
H, (z,8,w,0) :=e 72Gp(e 22,t3 —e e Tw,t3 —e %) = [dr (1 —e” )] 2 x
o—s 2 ) 2
’e2z—w’ +‘ezzn—wn 22—11)‘ +’622n—|—wn
exp 1(1—e) +exp (1)

Proof. By direct calculation,
Oz t1) = fs(e (x—q), (—02,0) (#,0),8) = (ts — )% fo((ts = 1) "2 (& — @), — In(ts — 1)),
- s 1 _ _ _
0,0 =V 0 - ze‘i(—i) + 0be™®, 0,0 =0,,0e 2, 0.0 =04,0e°.
Then (2.19) is equivalent to (2.20). By (2.17), the solution of (2.20) is given by
t
O(x,t) = / Gz, t,v,9)(ts —9) " f1((ts —9) 72 (v — q), — In(tz — 9))dvdd
R
t
+/ Gl 1, (3,0),9)(ts — 9) "% fo((ts — 0) "2 (8 — ), — In(ts — 9))dody
t1 JRn—1
+ Gp(z,t,v, tl)fg(e%l (v —q))dv.
R}
Then

0(z,8)=0(e 2z+q,ts — e *)
tz—e”° .
_ / Gle 52+ ayts — e v,9)(ts — 9) " f1(ts — )% (v — q), — In(ts — 9))dvd?
tg—e— 51 JR"
ts e * . .
+/ Gnle 524 q,t3 — e7°,(5,0),9)(t5 — 0) 2 fo((ts — 9) "% (5 — §), — n(t — 9))dodd
tz—e— "1 JR—1
+ Gnle 224 q,t3 —e %, v, t3 —e_sl)fg(e%(v—q))dv
RTL
= / / e G (e 22ty —e % e Sw,ty — e %) fi(w, 0)dwdo
n
+ / / e 7 G (e 22,t3 — e, (e 210,0),t3 — e %) fa (10, o) dibdo
s1 JRn—1

+/ e G, (e7 32ty — e 0, e~ T w,ty — e 1) fs(w)dw

where we used G, (z + ¢, t, 2 + ¢, 8) = Gy (2,1, 2, ) with ¢ € OR"} for the last step. O
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2.4. Some barrier functions.

Lemma 2.8. Let n > 2 be an integer Forj € R" Yy, >0,y = (§,yn), ¥ > 0, a > 0, denote P(y) = | U, Yn + 1+
19|g|)|_a, then Oy, P ~q.9 —(y)~ Sa,0 (Y) ™% Moreover, ifa € (0,n—2), 0 < ¥ < C(n, a) with a sufficiently
small constant C(n,a) > 0 only dependmg onn,a, then AP <, 49 —(y) %2

= (1+ 192)|z?\2 + (yn + 1)® 4 29(yn + 1)|g|. Obviously, g(y) ~g (y)?,

Proof. Denote g(y) = |(7,yn + 1+ 9l7))|° =

P(y) = g~ % (y). By direct calculation, fori = 1,2, .. -1,
Oy P=—ag 2" [( 1+192 Vi + O(yn + Dyily|™ ]
Oy P = ala+ 2)9*%* (1402 +9(yn + V[F ]y
TEL 0+ Oy + DG - (yn+1)y7 1917°],
0y, P = — *%*1 (@3] +yn + 1),

yy, P =ala+2)g 2> (0]g] + yn +1)* —ag 27",
which implies 9y, P ~q ¢ —(y) =1 |y - VP| Sa (y)~® Moreover,
AP =a(a+2)g~ 2 2 {[(1+ 9>+ 9%] [§]* + 20(9° + 2)(yn + 1)|F] + (9* + 1) (yn + 1)?}
—ag” (0P + 1) (n— 1) + 1+ 9(n — 2)(ya + gl
= ag~8 g a+2) [(9* 4 30% + DI+ 2000 + 2)(g + DI + 0 + (o + 1)

— (0= 1)9% = n—9(n - 2)(yn + VI } = ag™ 1),
where we set t = (y, + 1)|7|~! € (0,00) and
V4392 + 1429 (92 +2)t+ (92 + 1) ¢
I(t) :=(a+2) ( )t )¢
02 +1 4 20t + 12
f)

92 + 1 4 20t + t2’

—(n=1)9%—n—(n—2)vt

where
f&) =29 n—-2)+ 2 [0*Bn—a—T7)+n—a—2] +tJ [0* (3n — 2a — 8) + 3n — 4a — 10]

+9*(n—a—3)+9*2n—-3a—T7)+n—a—2.

For a < n — 2, by the discriminant of the quadratic polynomial, there exists a constant C'(n,a) > 0 sufficiently small such
that for any 0 < ¥ < C(n, a), we have

PBn—a—-T)+n—-a—2>0 and f(t)—t39(n—2) >0 for t >0,
which implies () < 0 for ¢ > 0. Note that tlim I(t) < 0. Thus, sup I(t) < —C1(n, a,d) with a constant C;(n, a,¥) > 0.
—00 >0
By a > 0, we conclude the second result. |

Lemma 2.9. Giventy >t1 >0,a; > —1, as € R,

t1 tgl+a2+1v lf a; +as > —1
/0 (fl - 3)‘11 (t2 — s)az ds §a1,a2 1+1In (m) s if a1 +as=-—1
(ta — t1) " Fo2 41 if a1 +az <-—1.
Proof.
[ta—(ta—t1)]4 t
(/ —|—/ ) (t1 — 8)™ (t2 — 8)* ds
0 [t1—(t2—t1)]}
[t1—(t2—t1)] ty
o / (b — )19 ds 4 (ts — £1)™ / (ty — 5) ds.
0 [ti—(t2—t1)],
Using a; > —1, we conclude this lemma. O

Lemma 2.10. Given an integer n > 2 and constants s1 € R, Cy > 0, consider
z . "
0,0 = A, ® — B V@ + fi(z,s) in R} x (s1,00),
— 0., = fa(Z,s) on OR] X (s1,00), ®(z,51) = f3(2) in R,

(2.22)
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where ® is given by the formula (2.21) formally.

(D) If[fi(z,8)] < Cpe®> (e2122) 7% |fa(2,8)] < Cpel®2o0* (¢122) 717" fy(2) = O with (2 + @) — a2 > 0,
a € (0,n — 2), then there exists a constant C(n, a, a1, aa) > 0 such that

(2,5 < CpC(n,a,a1, 05) {02200 ()0 (~Gha)an—ealsn ]

(2) If fi(z,5) =0, fa(Z,s) = 0, then there exists a constant C'(n) > 0 such that

1212

|@(sz)‘ < C(TL) (1 o 681—8)71 64(1+e-<—sl) ||f3||L,2)(R7+’)
Moreover, if | f3(2)| < Cf|z|* with a > O, then there exists a constant C(n,a) > 0 such that
|®(z,5)| < CyC(n,a) {ea%|z|“ +(1- esl’s)ﬂ )

(3) If|f1(z,5)] < Cre*®, f2(Z,5) =0, f3(2) = 0 with a € R, then

—1/,as _ ,asy ; 0
|<1><z,s>scf{‘)‘ S A
s — 81, if a=0.
@) If fi(z,s) =0,|f2(2,8)] < Cpe®® |Z]", f3(2) = 0 with o € R, a > 0, then there exists a constant C(n, a, o) > 0
such that
elat$)sr fat+2<0
|®(2,5)| < CyC(n,a,a) [638 24 (In(1—(1—2e7%),)), ifa+2=0
elatg)s, ifa+35>0
erst, if a<0
+9 {(In(1—-(1—-2e7%),)), fa=0|.
e*?, if a>0

Proof. Denote
Ty =e, (a,t):=0((Ty —t) 2z, —In(Ty —t)), thatis, ®(z,5) =(e 22T —e®).
Then by Lemma 2.7, (2.22) is equivalent to

Ah = Aty + (T — ) 1 (T1 — )" 22, — In(T1 — 1)) for (z,t) € R x (0,T}),
(=02, %) ((£,0),t) = (Ty —t)"2 fo((Ty — )22, —In(Ty —t))  for (&,t) € R"! x (0,T1), (2.23)
Y(z,0) = f3(€%1I) for x € R%.

(1). In this case, we have fs(e? ) =0,
(T =7 |2 ((Ty = ), — (T = )| < Oy (T = ) (T =)™ 2 )20,

(T — )%

£o((Ty = )% &, —In(Ty — t))‘ < Op (Ty — )~ (2073 ((y — )~ 3 gy~ la,
By Lemma 2.8, for a € (0,n — 2), we set

- g Cenad
Py) = |Gy + 1+ 91G)| 7, y=(Ty —t) @ g,
where ¥ = J(n, a) > 0 is a small constant to make A, P(y) Sp.a0 —(y) "2
Set ¢y (x,t) = 2(Ty — t)** =2 P(y) withy = (Ty — )72 z, then

—5%1#1!%:0 = -2 (Tl - t)al_a2_§ aynP(y>‘y ~a,d (Tl - t)al_az_§ <?j>_a_1a

n=0
and
Ot — Apthr = — (T1 — )" L A, P(y) + g1 (2. ),

where

gr(a,t) == (T — )" [—Ayp(y) — (day — 2a2) (T1 — £)*** P(y) + (201 + 1) (Ty — ) y - vyP(y)} .
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By the estimates of P(y) in Lemma 2.8, we have
= (T =) AYP(Y) Znaw (T = 1) ()77,
gi(@,t) > (Ty =)~ ** 7" Ci(n, a,v) {(Z/)ia*z — Ca(n,a,0, a1, 02) (Ty — 1)*** ()"

> —Cs(n,a,9,01,a2) (Th — t)alaﬁal_a?_1

with some positive constants C;(,%,...), i = 1,2,3. In order to control g;(z,t), we set thy(x,t) = TProt2er—o2 _

(Ty — t)ymat2ea=az which satisfies 9, 12 = 0, (9 — Ag)hy = (a1a + 201 — ag) (Ty — t)*r9+2e1=22=1 Gince aya +
201 — ay > 0, C;Cs(n,a,9, a1, ag)(zbl + Cy(n,a,9,aq, ag)wz) is a supersolution of (2.23) for some large constants

Ci(n,a,9,a1,a9) > 0,7 = 4,5. Hence, (1) is deduced by the comparison theorem and plugging ®(z, s) = ¥(e” 22, T} —

e~ *).
(2). Using the even extension of f3 in z,, variable, we can deduce the first result by the following calculation, which is
similar to the proof of [24, Lemma 2.2]. For g € L?) (R™),

g -5 e _2S Z —w
{47T [1 —e_(é 51):|} 2 /n eXp( w>g(w)dw
< 4 |1 = e~ (=51 % |6 = Z*w| #d 5
- { W[ — ¢ ” _eXP m € w ||9||Lg(Rn)

n 2|2

—o iqd [1 + e—“—sﬂ} o [1 - e—<5—81>} et T gl -

For the second result, without loss of generality, one taking C'y = 1, then

s s n z—v|?
[(z,t)] < Gp(z,t,v,0) ‘fg(e%v)‘ dv < €7 (47rt)_7e_‘ i |v|*dv
R? R™

w2 s w]|? a
aTI(ZLﬂ') 5/ e_%pc —Viw|%dw < C(n,a)e* > / et (|z|* 4+ t2 |w|*) dw < C(n, a)e o3 (Jz|* +t2),

n

where we used a > 0 for the third “<”. Then we get the second result.
(3). Take C¢ = 1.

(z, )| < /0 [ Galatw )T~ 9)! )fl((T1 —9)" v, —In(T) — 19))‘ dvdd

t
S/ / [Am (t—0)] 2 e S (T, —9)"" " dvdv
0 n
t -1 N e« p
:/ 11— egg— | (M- —17°], if a0
0 ln(Tfl_t), if a=0.
Using the relationship ®(z,s) = ¢(e~%2,T) — e~*), we get the conclusion.
(4). Set Cy = 1.
¢
|¢(x,t)\§// Gn(z,t,(0,0),9)(T1 —9) "7 | fo((Th —9) 20, — In(Ty — ﬁ))‘dﬁdﬁ
0 JRr-1

1252 +a2

t
/ 2dm (t— )] F e T (T —9) 2O F 5| dodd
R 1

T 7 E, ifa+e<o [17° if a<0

~|a T . a T . _
SC(TL7CL,OZ)|:|{L'| 1+1n<m), lfa+§:0+ 1+1n(m), lfOé—O
(T, — )™ %, ifat+2>0 | (T -1, if a>0

where we used a > 0 for the third “<” and Lemma 2.9 for the fourth “<”. Then the conclusion holds.
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O

2.5. Vanishing adjustment functions. In order to derive multiple rates at distinct points, we introduce vanishing adjustment
functions to eliminate derivatives at arbitrarily prescribed finitely many points. This method works for more general parabolic
equations.

Lemma 2.11. Suppose thatn > 1,1 € N, ug(z) € CH(R") satisﬁes DXug(z) — 0 as |z| — oo for all k € N™ with
|2yl

Iklle, <1 to € R, denote u(z,t) = [47 (t — to)] 2 Jan € 0 ug(y)dy, then for . € N, m € N with 20 + ||mll,, <1,
we have 0; Du € C(R™ x [tg, 00)),

0;DYu(x,t) — AL DXug(x) in L=(R™) as t | to, [|0;D7u(-,t)||pemny < [|AL D uo|| poo mny for t > to.

Proof. Fort > tg,

|z —y|?

D™, 1) = [ (t — to)] % / pm [eww] wo(y)dy

n |z—y|? n lz—y|?
= [dm(t—1to)] 2 (_I)Hmull / Dy [6_4“10)} uo(y)dy = [47 (t —to)] 2 / e 1=t DPug(y)dy,

n

le—yl?

n |z—y|?
O DX u(x,t) = /n Al {[47r (t—to)]” 2 o AG-tg) } D ug(y)dy = /n [Am (t —to)] 2 e ) Ay Dy ug(y)dy.
We conclude this lemma by the property of the heat kernel. (|

Lemma 2.12. Givenn > 2, ug(xz) € L>(R%), ty € R, denote

18—2|2+|2n —2n |2

u(z,t) = Gz, t, 2, to)ug(2)dz = [Am(t — to)]_% / e~ At-ig) (uo(2)1,, >0 + uo(2, —2n)1:,<0) dz
Ri n

with Gy, given in (2.15), then for t > to, ¢ € N, m € N", 9¢ D™u(x, t) is odd (even) about x,, € R if m,, is odd (even). In
particular, 0y D*u((%,0),t) = 0 if m,, is odd. o

Under the additional assumptions that ug(z) € C'(R), | € N satisfies that for k € N™ with ||k|¢, <1, DXug(z) — 0
as |z| — oo in R} and D¥ug(z)|z,—0 = 0 if ky, is odd, then for . € N, m € N" with 20 + |mll,, < [, we have
8D € C(RT  [to, o0)),

Oy DPu(x,t) = AL DPug(x) in L=(RY) as t L to, [0;DFul- )| mrn) < [[ALDFuol| Lo ry) for t = to.

Proof. (2.16) deduces the first result. Under the additional assumptions of ug, uo(x)14, >0 + o (%, —n )14, <o satisfies the
assumption of Lemma 2.11, which implies the second result. ]

We will give vanishing adjustment functions in the next proposition. First, we will find a basis for derivatives at the
prescribed finite number of points and then use the continuity in a short time to derive a basis for derivatives at these points at
t=T<1.

Proposition 2.13. Suppose that | is a positive integer, pl'), p2!. ... pl! be arbitrary distinct points on OR?, n > 2, and a

constant d satisfies 0 < d < minj<;-+;<( |pltl — pll| /4, Ny € N, then for T < 1, there exist Voilm(,1), 1 =1,2,..., [ with
m € N”, |mllg, < No, my, € 2N, solving

8t‘/;3[i]7m = AVp[i]7m in Ri X (O,T], —amanm’m =0 on 8R1 X (O,T], ‘/;)[i]7m($70) = ‘/;3[1-]7m70(1') in R?H

and the following properties hold:
(1) Vil mo(@) is smooth in R and Vi, g o(x) = 0 in RE\B; (pli], 2d).
(2) 9 DXV,iy o((£,0),8) =0fori e R"', t €[0,T), and € N, k e N", k,, € 2N + L.
(3) DXVoii o (P, T) = G kit pis , <Ny j=1,2,...,L
4) ||atLDlw(Vp[i]7m||L00(R1><[0)T]) < CforveN k eN", 2.+ |k|¢ < Ngwith a constant C' > 0 only depending on |,
d, No, 2. pll.

Proof. Denote ¢m () = n(z/d)[Tj_, (m;!)~ ! ;"-’, and g, m o(2) = dm(z — pl'l). Since 7 is radial, for m € N" with
my € 2N, k € N™ with k, € 2N + 1, D¥g 11 1, o is odd about z,. In particular, DXg, ) 1, 0(Z,0) = 0. For m, k € N,
DX g1 m.o(P7) = O 1Byl pis

Denote g, (il m (2, t) fRn 17715,270)9,) m,0(?) i D it m (5 1) | oo (rr) < AL D gpin,
Sekm L 0yDEgpi m((Z, 0) t) = 0forz € R ¢t € [0,00) if k:n € 2N + 1, m,, € 2N; and given ¢ > 0,
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for all m,k € N" satisfying ||ml|¢,, ||k|le, < No, my, € 2N, and all ¢,5 = 1,2,..., [, there exists T < 1 such that
D,qugpm,m(p[j]vT) — Smx 0y piit | < €.

One taking e sufficiently small, by the non-singularity of the strictly diagonally dominant matrix, then forz = 1,2,...,1,
there exist V) m (7, 1) as a linear combination of g, ., [|kl[le, < Ny satisfying the conclusion. O

2.6. Derivative estimate in the vanishing region. In the next lemma, we only require 7" to have a fixed upper bound, but it
does not need to be small.

Lemma 2.14. Suppose that n > 2 is an integer, 0 < T < Cp, g1, g2, g3 satisfy
91(2, )] < Cg(T =) & — q|" Lo gz, [92(Z. )] < Cy(T = 1)2|7 — 41 Ljz—gi>r,  193(2)] < Cyl — q|™ L gi>r
forallx = (%,x,) € R}, t € (0,T), where Cr,Cy,r € Ry, a1,a2,b1,b2,b3 € R, ¢ = (¢,0) € ORY, denote

t t
it = [ [ GuotasgGodds, b= [ [ Gt 60,500 0dds
o Jry 0o Jrn-1

fa(z,t) = Gn(z,t,2,0)g3(2)dz

n
R

with G, given in (2.15), then f1, fa, f3 € C*(Bif (q,7/2) % [0,T]), and for . € N, m € N", (z,t) € By (¢,r/2) x [0, T,
we have

w2 _r2
|0 D3 fix, 1) ’S”’L’T’a’i’b“CT’”mel Cgt?’e*m’ i=1,2, [0;D; fs(z,t)| Sn,unba,CT,HmHh Cgte™ 217,
Moreover; if m,, is odd, then for (Z,t) € B,—1(q,r/2) x [0,T], 0: D™ f;((Z,0),t) =0,i=1,2,3.

Proof. Due to the property of supports of g1, g2, g3, by the parabolic regularity theory, then f1, fo, f3 € C*° (Bf{ (q,7/2) x
[0, T7). Notice that

|v — z| < |z — (2,—2,)| for 2,z € RY; for [z —¢q| <r/2, [2—q| >r, then |z —z|>|z—q|/2,

. ym _n lEoiPleneaPY) n_ mley ez enden|? _ lz=al?
0; D} |:(t —s) ze I(t—s) :| Sl (t—s)72 P) 5(i—s) Seir,Cr,|mlle, © 21(E—3) |
(2.24)
For an integer ny > 1, Cy € Ry, ¢ € (0,Cr], b € R,
2 n oo 2
—C 1212 b b _ byni_ g _Cy 2
/ e ez rdz ~vogn, 17 ey Ty gy b op e 0T (2.25)
R”1 Cor2

t1

where we used Lemma B.1(1) for the last “~”. Hereafter in this proof, we always assume (x,t) € By} (¢,7/2) x (0,T], and
(2.24), (2.25) will be used repetitively in calculation.

—q|?

lz—4q 2
¢ pm — 55— b3 — =
‘at x f3(z,t)] SR,L,T,CT,Hm‘Izl Og/ e” 2t |z — (¢ 1|Z_q|ZTdZ gn;L>T7b3)CT7HmH£1 Cyte 21t
RTL
T

|z—gq|?

8{D§Gn(x,t,z,s)gl(z,s)dz’ SnoirCp e, Co(T — s)al/ e 2IG-9)

RY

b
‘ z2=q|" 1 gp>rdz
R}

2
5n,i,r,b1,CT7Hﬁ”£1 CQ(T - 5)(11 (t - 5)6 21(t=2)

for all z € N,m € N". In particular, 1%1 Jgn O DGy (2, t, 2, 5)g1(2, s)dz = 0. Thus,
s +

t
DT i) = | /0 [ D (Gt e 5) s
¥

|z—gq|?
B

t
ail T o1(t—35)
Sy, Corllmlle, Cg/ (T —s) / e
0 R

n
+

z— q|b1 1._g>rdzds

t 2
a - T
Sn,LJ‘,bl’CTJlmHel Cg/ (T — s) 1 (t - S)e 21(t—9) ds
0

t 2 5
R c— 3 T
_ 22(t=9) (],
S’n’“r’al’bl’CT’”nl”fl Cg/O (t 8)6 (T ds ~n,i,r,a1,b1,Cr,||ml| g, Cgt e 22,
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where we used Lemma B.1(1) for the last “~".

|2—q

I B 5 B . al? 5
‘ / : 6tLD;nGn($,t, (2,0),8)92(Z, s)dz‘ S/n»ZmCT,IlﬁHzl Cg(T — 5)%2 / ) e 20— |7 — (J|b21\2—zﬂ2rdz
Rn— Rn—

1‘2
Sntrbe,Cp fmal,, Cg(T —8)*(t — s)e” 2=

forall 7 € N,m € N". In particular, 1i%1 Jgn—1 Of DGy (z,t,(2,0),5)g2(Z, s)dZ = 0. Thus,
S

t
oot =| [ [ oDr (Gulet (5,0).5) (e s)dzs|

t s_~12
|2—4|
as —2it—5 |5 _ A|b21.. . 5

Snaer,Cormlle Cg/ (T —s) / e |2 — g1z g>,dZds

0 Rn—1

t

< C (T —s)®(t—s)e” i ds S Cytde™ i
~n,e,m,be,COry|lmlle, Y9 o ~n,e,r,az,b,Cr,|lmlle, Y9 :

If m,, is odd, by (2.16), 0; D™ f;((%,0),t) = 0 for t € (0,T], i = 1,2,3. Combining f1, f2, f3 € C*° (B (q,7/2) x
[0,T7), we complete the proof. O

2.7. Scaling argument.

Lemma 2.15. Let n > 2 be an integer, —oo < tg < t1 < 00, v be a weak solution of

v = Av + hy(x,t) in R x (to,t1),  Op,v+ BY(F,t)v = ho(E,t) on IR} x (to,t1), v(x,to) =vo(z) in RY}.
(2.26)

Given v, € R}, t, € (to,t1),p € Ry, suppose p||50||Lm (5 < Cpoy, v,hy € LS (RT %

1 (#2,20) x ( max{to,t.—4p2}.t.] )
[to,t1)), ha € LS (R™! x [to,t1)), then there exist positive constants C1, g only depending on n such that if o €

loc

(0, a0, v0 € CL (R), we have

[U}C‘l’a/z (B,T(x*,p) X (IIlaX{to,t*—pz},t*] )

< C1{Cao)p [l )+l

Lo (B,JLr (z4,2p) % ( max{tg,t.—4p%},t. Lo (B:r(:c*,2p) X ( max{tg,t*—4p2},t*])

F laensap P12l o (5, 5. 2y (mastto ta—apya]) T LvET0<t0 (Ioll o st (o 200y + P00l o 200) ]
(2.27)
Under the additional assumption that for v € (0, 1),

0 1 0
I8 HL"’C(anl(i*,QP)X(max{toyt*—4p2},t*]) + B }C’Y-,’Y/?(Bn,l(i*,Qp)X(max{to,t*—élpz},t*]) < Cpo2 (2.28)

hy € CW’W/Q(R"’l X [to,t1)), vo € C’ﬁ;%@), then we have

loc
plIVav]| + [V,

/2 (Bf[(gc*,p)x (max{to,t* —p2},t*] )

lv(z, 1) — v(x, 72)|
|7'1 — 7'2|(1+'Y)/2

Lo (B:{ (s ,p) X (max{to,t*—pz},t*] )

1
+ p +v sup
2€B (T4,p), T1,72€(max{to,t.—p2},t.]

2
< |:H,U||L°<> (B;f (z4,2p) % (max{to,t* —4p2},t*]) Tp ||h1 ”L‘X’ (B;f (z4,2p) % (max{t07t*—4p2},t*]) 2.29)

+ 1, <4p (P||h2HLoo (Bn,l(i*,Qp)X (max{to,t*—4p2},t*]) + p1+'y [hz}cmv/z (Bn,l(i*ﬂp)x (max{to,t*—4p2},t*] ))
1ty (10l (st e 2oy 07 Va0l o )
with a positive constant C only depending on n,y, Cgo 5.
Proof. Set0(z,s) = v(z. + pz,ts + p*s), thatis, v(z,t) = 0(p~ (& — z.), p~2(t — t.)). By direct calculation,
O = p2(D55) (0~ (= ), p 2t — 1)), DPv = p~ Il (D) (o7 (@ = 2,), p2(t — )
form € N, ||m||,, < 2. Then (2.26) is equivalent to

D50 = AT+ hi(z,s) for (z,8) € Q, . ,0+ %3, 5)0 = ha(Z,s) for (z,s) € SQ,
0 =vo(zs + pz) for (z,s) € BQ,
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where
BO(%,8) 1= pB°(&s + pZ,ts + p%s), (2, S) 1= p?h1 (24 + pz, b + p7s),  ho(Z,5) = pho(Zs + pZ, te + p°s),
Q:={(2,8)|2€ A1, s€ (p(to—tu),p 2(t1 —t.))}, Ar:={2|Z€R", 2z, > —p la.,},
SQ = ((z, —p ), s) | (2,5) € Ag} Ay = { Z8)|2eR" s € (p_Q(to —t.),p %t — t*))},

Sy

{
Q:={(z,p2(to—t.)) | 2 € A1 }.
Obviously,

(2,8) €Q & xy + pz €RY t, +p?s € (to, 11);  (5,8) € Ay & &y + pZ € Rt + p?s € (Lo, 11);

n (2.30)
z €A & x, +pz e R

For any r € Ry, for r > 0, denote Q,(r) := B,(0,7) x (—r% 0]. For brevity, denote ||f1| 1 (q,nsq) =

Al e (£ 200 | (Grp12n).5) c@uirnsQ})’ lox(@umnBa) = IIfQHCa({Z| (20-2(to—t) €@uirnB@ }) W19
I f3llcvmrz (o, (rynsq)s 1 fallcr+v (@, (r)nBq) are defined similarly. Since

< Cﬂo,la

(2.31)
by [35, p.140 Theorem 6.44] (see also [36, Corollary 7.6]), there exist positive constants C', a determined only by n such
that if & € (0, o], v € Cf.(R), we have

20 0/~ s 2 0
1502 @u@ns@) < PIBT(Fe + P2t + P78) L (@u s @nie) = PIBIl o (5, (5. 20 x (smastto b 4023 1))

[Fleerr@une) < C1(Ca.0) (I7=(@u@nay HIllix @) el =@, @nse) HIto@.+p2) les @ @re) )
We will handle the above term by term and (2.30) will be used repetitively.

(O] caarz (@, (1)n@) = (@ + p2,ts + pZS)]C“ﬂ/?(Qn(l)ﬂQ)

N |v(33* + p2lt t, + p%s1) — v(Ts + pzl?t, + p282>‘
=p su o 2] 2 5 RE (2.32)
(=1,81),(212],52)€Qu()nQ (max{|(z. + p2) — (z, + pz@)|, |(L + p251) — (L + p252)[1/2})
=P [U]C“‘va/Z (B:r(z*,p)x (max{to,t*—p2},t*} ) ’
where we used (2.30) for the last step.
1ol @u@00) = 10l o (51 o, 2y (smattont—ap2y.e.])
(2.33)

7 _ 2
allze@u@ne) = P71l o (51 o, 2y (matto ta—ap21.0.])
||iL2HLoo(Qn(2)mSQ) is vacuum if —p~lz,, < —4. For —p~lz,, > —4 & 2., < 4p, similar to (2.31),

P2l (@ 2)nsq) < pllh2ll (Bu (50 20)x (mascfto t 402y 1.])°

[vo(zs + p2) || co (@, 2)nBQ) is Vacuum if p=2(tg — t,) < —16. For p=2(to — t.) > —16 < /t, — o < 4p,

oo (4 + pzI") — vg (@, + pz))| = p°[vo] +
(@ + pz) — (20 + pelyja P P0lcamit@. 20))

[vo(z« + p2)]ce (@ 2nBQ) < P° sup
zo+pz) z +pzl2l€ B (z.,2p)

[vo(z+ + p2)[ L Q. @2nB@) < V0l L= (B (2. 20)-
(2.34)
As aresult, we get (2.27).

Under the additional assumption, we have ||3°] o 1200, (2)nsq) < Cpo o since (2.28) holds and

(820, 2)nsQ) < P [B°(Fs + P2, te + 075)] 1, /2@ (2)NAs)
— sup (@ + Mty + p2s1) — BO(E. + p22 L, + p?s2)|
(20),1).(%)32)€Qun ()0 ds (max{|(Zs + p2N) — (T + pZR)]L (8 + p251) — (B + p252)[V2})" (35
= pl—w[ﬁo]cmwm(

Bru—i1(#,20)x ( max{to,t.—4p2},t.] )

20 0
18 =@ @501 < AU N (5, sy ettty .])



J. WEL Z. YE, X. ZENG, AND Q. ZHANG

Hence, by [35, p.69 Theorem 4.21, and p.79 Theorem 4.30], we have

”f)HC’1+’Y=(1+’Y)/2(Qn(1)ﬂQ) <Cxn (||17||L°°(Qn(2)ﬂQ) + ||h1HLOO(Qn(2)mQ)
+ Wizllora@unse) + Io(@- + p2)llcr+(@u@n50)

with a constant C'y; > 0 only depending on n,y, Cgo . We will handle the above term by term.
[1Bllcr 40 72(@u @) = Il (@umn@) + IV20llL(@umn@) + [Vellorar2@umne) + Wlear2g. 1)no):

Therein, by (2.30),
~ 2
IV-0ll=@umne) = PI(Vav)(ze + p2 b+ p78) 1 @un@) = PIVaVll o (51 o, oy (miatonte—p2y 2]

Similar to (2.32),
Vtlowarquung) = AVe0) @t pz bt p*8)lonra@ung) = 0 VeVl s (5t oy x (masttonte—soy.])

Liry [0(2s + pz,ts + p?51) — V(T4 + p2,te + p?S2)]
e {62+ ps1) = (b + p2s2) T2
(2,51),(2,52)€EQA(1)NQ * T pUs1 * T P52
1+ sup |v(x’7—1) _U(vaQ)‘
+ 2 |71 — | (1H+7)/2
TE€By (T4,p), T1,72€(max{to,t«—p2},t]

[lcaenrz g, ne)

=p

||€)HLOC(QR(2)QQ), H;Ll | Lo (@, (2)nq) have been handled in (2.33).
hall ooz is vacuum if —p~lz,, < —4. For —p~lz,, > —4 & x,, < 4p, similar to (2.35),
C (R (2)NSQ)

- 4
[hQ]C””/z(Qn(Z)ﬂSQ) <p v[hQ]Cw,wm (Bn,l(i*,Qp)x (max{to,t*—4p2},t*])’

1h2]lz (@ 2)nsq) < pllb2ll (Bu (50 20)x (masctto t 497} 1.])

[vo (s + p2)||cr+v (0. (2)nBo) is Vacuum if p=2(to — t,) < —16. For p~?(tg — t.) > —16 < /T, — ty < 4p, similar to

(2.34), we have
lvo(z« + p2)llc14v(Q. 2)nBQ) ~~ [vo(Tx + p2)||L= (@, 2)nBQ) + PI(V2v0) (T« + p2)]cv (@ (2)nBQ)

< HUOHL‘X’(BI(QJ*Q;))) + p1+7[vao]m(B:(m*’2p)).

In sum, we obtain (2.29).
3. APPROXIMATE SOLUTION AND INNER-OUTER GLUING SCHEME
The finite-time blow-up solutions of heat equations with the critical boundary condition are expected to behave like the
dilation of steady-state solutions. Given an integer 0 > 1, we define
_n=2 7 — ¢l
U, ein(@)i=p; > U (m ¢ 7xn> , ZeR" Lz, eRy, x=(Z,2,), i=1,2,...,0
Hi Hi
t), @), ... ,fgll(t)) € C' ([0,T),R™!) to be determined

with 1 = pi(t) € C1(10,7),Ry), € = gll(e) = (¢l
later. Given arbitrary o distinct points ¢ on OR%,i=1,2,...,0, we define

) ) ) — (£l o ) _ ol 1 ) )
ISR ) RN 1) IV el CAP 1) BN N ek’ S SRS SRR N )
=z =g,y Py, e I 57 i ¢ — a7,
and some cut-off functions
) yl! ) ) 2l
nr(y) = n(f) with R=|InT|, nes(z?) = n(a) for C' > 0. 3.1)
Given o integers [; € N (could be duplicated), = = 1,2, ..., 0, denote ljax := rln2aX l;. We look for the solution of the
i=1,2,...,0
form
0
. . . _n—-2 . .
u=>) (Uui,sm (@)n2s (1) + Oy, (21, t)ns (al1) + ;2 ¢i(y[’],t)mz(y[’])) + (. 1),
i=1
where Oy, is given in (1.14) satisfying (1.15) and ¢;, ¢ will be determined later. Denote
&= (M, Pl PN, b= (1,00, ,00).

o= (p1, pi2, - - -, o),



SINGULARITY FORMATION WITH MULTIPLE RATES 19

We introduce the error operators as
Eilu] := =0+ Ay in R} x (0,7T), Eu) := 0y, u + |u|£u on ORY x (0,7).
Solving (1.1) is equivalent to making &; [u] = 0 and E>[u] = 0. By (1.15), direct calculations give that

Eufu] = (<0 + Ay + Y [51 (U, 0 ()] mas (27) + E5% + €83
=1

n+2

+u; * nr() <_N?3t¢i(y[i],t) + Ay ¢i(ym,t)> + Aq i, i €] + Ag iy, i, €11],

where
E1 (U0 @)] = frapty * Zo (™) + g 2E10 - (V ~-1U> <~“‘] v,
EG =2V, (Uy, e (x)) - Vs (7725(ac[i])) el (T n2s(x )
egu =29, (01,(2",0)) - V. (ms(al))) + 4, (2l ) )
Ayl i €)= i T j;«vfn)( - yi’,) (V) (4 >] oy, ) G2
+ o R 20,9, 1) (Awn)(y]:])+2uz TRVl t) - (Vw)(%),

, n2 T ; o1 n—2 i i i
Ao ildi, s, €8] = ;2 nr(y) [/‘i YV s () + ! <2¢¢(y[ L0+ Vsl ]’t)ﬂ '

Since 7)() is a smooth radial cut-off function, we have d,., f| _, = 00on R x(0,T) for f = nr(y™), ns(x7), a5 (7).

Combining (1.11) for U, s and (1.15) for Oy,, we have

o}

Ealu] =3 [_ (Ut (2)) 7 125 () + g2 e (y)0, g ¢i(y[i],t)} + 0,0+ |u| 77w

i=1

0
=3 [ U @)™ (035 @) = masa@™)) + 17 00,6101, 6)] + 02,0
=1
o

£ 3 U @) T 055 (@) (01, (@, ) + g1y " i, D) + 02,0)) + N [, 6, 10,8

i=1
(3.3)
with the nonlinear term
o]

N[1/)7 ¢7 “76] = "UJ|£U - Z (Uui,f[i] (CL’)) n-2 ?72%%2 (CE[’L])

=1

2

—Zn,g Uyt (@)) ™ 35 * (@) (@, 2, 0y () + iy

n—2

> iy e () + ww)) :

In order to make & [u] = 0in R’} x (0,7") and E>[u] = 0 on R x (0,T), it suffices to solve the following inner-outer
gluing system.
The inner problems: For: =1,2,... 0,

1201 = Ay i + Ha i, €] for ¢t € (0,T),y" € B (0,2R), 3.4)
_aylf] ¢l = %Um(ym)(bz + HZ,i[w7Mi7€[i]] for t € (07T> 7y[i] S Bn71(07 2R> X {O}a )
where
) i\ na2 (4] , . L
3 e— y 2 — y : 3 7 ~|1 K3
Hilpi, €7] = H(E)M & U, ()] =n E) (MiMiZn(y[ D+ gl (V) (3t ]72/7[;])), 45)
R n n_ 2 s ~[i] s . s i . ’
Ha 1, €)= BT U3 (G, 00 (45.0) (01, (g™ + €1 = 7,00, 8) + (g +€1,0),8) ).

The outer problem:

8“/} = A:C¢ + gl [¢7 Au'vé] in Ri X (07 T) 9 _832nw = QQ[Q//, ¢a /1’7 6] on 8R’i X (07 T) ) (36)
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where
[

Gile 1€l i= D &1 [Uy 0 (@)] (mas(al?) = ma(y™)) + EG% + 8% + A il i, €] + Agyilon, s, €]
i=1
o
Galth, &, 18] 1= [N 6, 6, 11,81+ { (U0@) 77 (035 (@) = mas(al))
i=1 3.7
s (U @) 77 | (m5(a) = ey 1, 1) + (7725 * (@) — nr(y! ]>> (x.1)
2 o _n=2 .
+ (772"52 (alT) — 1) ey, 2 ¢i(y[”,t)} }]
In order to avoid the difficulty of the compactness argument due to the singularity of right-hand sides as ¢t 1 T, we will
solve (3.6), (3.4) for t € (0,Ty,) with Ty, := T — 09,00 € (0,7T) instead of (0,7"). Details will be given in Section 7.

For applying Proposition 1.2 in R’} for solving (3.4), we impose the cut-off functions n(%), n(%, 0) to restrict the spatial
growth of Hy ;, Ho ; respectively.

=0

4. PROOF OF PROPOSITION 1.2

In this section, we will prove Proposition 1.2, which will be used for solving the inner problems. The following nondegen-
eracy lemma is prepared for the forthcoming blow-up argument.

Lemma 4.1. For an integer n. > 3, all bounded solutions of the equation A¢ = 0 inR", —0,, ¢ = %Uﬁqb on R} are

the linear combination of Z;(x), j = 1,2,...,n, given in (2.1).

Proof. Since (—Az)? ¢(#,0) — -5 (Uf ¢) (%,0) = 0in R"! and [10, Theorem 1.1], we have ¢(%,0) = _ ¢;Z;(#,0)

j=1

for some ¢; € R, and thus ¢(z) = ) ¢;Z;(x) in R?}, where we used the fact that the bounded solution of the equation

Jj=1

Au = 0in R}, u = 0 on IR} is zero. O
Recall the norms defined in (1.17).

Proposition 4.2. Given an integer n > 5, consider

n _2 . n
8T¢ = A¢+g in ]R:L- X (7_0,7—1)7 7ayn¢ = mU"*2¢+ h on aRr—:— X (7_0,7—1)7 QS(y,TO) =0 in R+7 (41)

where ¢ is given by

o) = [ Gutrrssgazs s [ [ Gt G0ns) | (0750) (G000 + bz dids
0 JR? o JRP-1 n—
' 42)
with G, given in (2.15). Suppose that 1 < 19 < 71 < 00, £(T) satisfies C[lTp < (1) < Cyr? with a constant Cy > 1,
1 1
2<a<n—2, a_1<p§§, LE(O7Z), o—pa+2in>0, <ec(0,1), 4.3)

llgl 0,24a,0(1) R ;ro,m < OO, Pllo14a,e(r)eRn—1 70,7 < 00, and g = g(y,7), h = h(§,T) satisfy the orthogonality condi-
tions
/ g(y,T)Zj(y)dy+/ h(9,7)Z;(9,0)dy =0  for 7 € (m9,71), j=0,1,....,n (4.4)
R Rn—1

n
with Z; given in (2.1) and (2.3), then there exists a unique solution ¢ in L (Rﬁ_ x (70, 7:)) Sorall 7 € (19, m1] N (70,00) and
satisfying
oy, 7)Z;(y)dy =0  for T € (10,11), j=0,1,...,n, 4.5)
RZ
and

lyl?

O] S (77w “Liyj<er) + TUK_Q(T)e_LThyN(T)) (||9||a,2+a,£(r),RiJo,n + Hh”a,l-ﬁ-mf(ﬂ,R"_l77'0,7'1)7

Vol <

/

o —1l—a op—a — o—3%p—a 7Zy—‘2
) T Lyiseen) T g TR (e 1|y|>7%> *0)

/

X

([ Prae e [ e Top——
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with a constant i € (0, ), where both “<” are independent of 19,11, g, h.

We first use Proposition 4.2 to deduce Proposition 1.2.

Proof of Proposition 1.2. Set ¢(y,7) = ¢1(y,7) + c(T)ZO(y). It suffices to consider

n

Ordr = Ay + g1 in RY x (10,7m),  —0,,é1= —5UT%¢1 +h on ORY x (10,7), 1y, 70) =0 in R,

n

where
91=01(y,7) = g+ (1) AZo(y) — ¢ (1) Zo(y),

b = ha (5 7) = h+ e(r) —— (U2 2) (5.0) + () (9, Z0) (.0).

Forj =0,1,...,n,by (2.2), (2.3), (1.20), orthogonality conditions in (1.21), we have

/
-1,
+c(7')/Rn

= djo (/Rn 9(y, 1) Zo(y)dy + /RW1 h(9,7)Z0(y,0)dy — /\OC(T)/

n R

01y, 7) Z; (y)dy + / ha (3, 7)2; (5, 0)d3

n —1
n Rn

g(y,T)Zj(y)dyﬂL/

[ h2,.0d5+r) [

Z0(3,0) (%Zj + ”Uszj) (§,0)dj
Rn—1 n — 2

ZoAZ;dy — c'(T)/ Z0Z;dy

Ry

ZoZody — ¢ (1) /

Z()Z()dy
R

n n
+ +

with X\g < 0. Since [, ZoZody # 0, we can take
¥

oy _(/R ZOZod?J)_le_/\UT /:1 e,\ﬂs(/R

which makes g1, h; satisfy (4.4). Since Zy(y) decays exponentially, by (B.1), we have

9(y, 8)Zo(y)dy +/

) h(]% S)ZO(?% O)dg) dSa
RP—

“ "
‘C(T)| + ‘CI(T)| S 77 (||g||0,2+a,é(‘r),Ri,TO,Tl + Hh’”a,lJra,Z(T),]R"*l,‘ro,‘rl) .
Combining Zy(y) € C?(R%) N CY<(R7), Zo(y) = 0 for [y| > Cy, for C1 = Cy max {Co, 1}, we have

”gl||a,2+a,Cll(T),]Ri,To,ﬁ + Hh’l||0‘¢1+G,C1f(7),Rn71,T(],Tl /S ||g||a,2+a,€(‘r),Ri,To,n + Hh”a,lJra,f('r),R“*l,To,na

”hl||cr,1+a,01€(7'),c,R"*1,‘ro,‘rl 5 H9H0,2+a,f(7'),R1,To,‘rl =+ ||hHa,1+a,Z(T).,<,R"*1,‘ro,n'

Thus, we can use Proposition 4.2 to find ¢, satisfying (4.5), (4.6). Set Cy = ¢(79). Combining (1.21), we complete the
O

proof.

Proof of Proposition 4.2. By the contraction mapping theorem, it is easy to get the existence and uniqueness for (4.2) in
L>*(R™ x (70,7)) for all 7 € (79,71] N (79,00) and (4.1) holds in the weak sense. By the parabolic regularity theory,

¢ € C(RY} x [r0, 7).

We will use the comparison theorem for parabolic equations with the oblique derivative. See [6, p.122, 13.5 Theorem] for

1912+ (yn+1)2
—plilf+ntD®

instance. Set (y,7) = e . Using the supports of g, h, we have

(0 —N)p—g=1"2 {QHRT + k(1 —4kK) [|3}|2 + (yn + 1)2] } ¢ in |y| > 0(7),

P L § 7= [ S N -1 " i) g J -
(ay,l n—ZU )qf) h (2/{7 n—2U )gb on [j| > (1), y, = 0.

r € (0, 1] is a necessary condition to make C1¢ be a barrier function. We take x = 1. Forany 7 € (10,71] N (70,0
C1¢ is a barrier function in {(y, )| |yl > Cyrmax{s.p }, T € (70, %)} with sufficiently large constants C; depending on 7
and Cy > Cy. By ||g||J,2+a’g(T),R1’TO’TI < 00, ||l 14a,6(r),c R 1,79, < 00, and (2.29) in Lemma 2.15, V¢(-,7) has

exponential decay in space.

21

),
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Forj =0,1,...,n, we test (4.1) with Z;(y)n(M ~'y) and integrate by parts,

o Sy 7) Zi (y)n(M~"y)dy — o2 (y)n(M~"y)dy

=[] ooz ) (.0 s+ [ / - 1[¢a o (Zn(49)] (3,0 9)dds
+/ ¢A( i(y)n(M dyd8+/ / 9Z;(y M~Yy)dyds

/ T/Rn ' Kn— urs 2¢+h> Zin(M 1)] ((,0), s)dgds

[ ) + o000, 2] (5:0). )i
R!L 1

/ /n YAZ;(y) +2VZ;(y) -V (n(M~'y)) + Z;(y) A (n(M~'y))] dyds

i / / 9Z;(y)n(M~"y)dyds.

Taking M — oo gives

oy, 7)Zi(y)dy — | oy, 70)Z;(y)dy

R R7

:/ / <nn QUH22¢Zj+th+¢8yan> ((Q,O),s)dgder/ ¢>Azj(y)dyds+/ / 07, (y)dyds.
70 JR?1 — o Ri . i
Using (2.2), (2.3), (4.4), and fR" (y,70)Z;(y)dy = 0, we have

T

o) 2wy =500 [ [ ozudy,

RW
which implies (4.5). Define

Hf||gapT0 . inf{C| |f(y,7)] < Cw(y,7) for y e R, 79 <7 < Tl},
where

o—pa

_ w2
w(y,7) = T(Y) " Vyj<rr + 77 % T Ly ser, L€ (0,

i ]
The weight w(y, 7) is partially determined by the forthcoming estimate (4.11), (4.13). By the barrier function C;¢, for

19124 (yn +1)2 . .
1<79<7 < oo, wehavee 47 < Csw(y,7) fory € R, 79 < 7 < 71 with a constant C5 > 0 depending on 7y,

which implies
< oQ.

yasPyT0,T1
Claim: Forall 1 < 79 < 71 < 00, there exists a constant C'5 > 0 independent of 7y, 71, g, h such that

TR 7

Indeed, for p € [0, %} one taking 71 — o0, (4.7) deduces the estimate of ¢ in (4.6) for the case 4 = oo. Combining
| R mo,m1 < 00, 12l o 14a,60r) .6, 87— 1,70,71 < 00, and (2.29) in Lemma 2.15, we get the desired bound of V¢ in

160 s < C5 (190102 40.007),85 70,7

(4.6).
We prove (4.7) by contradiction argument. Suppose that there exists a sequence (¢, g, hk, Tok, T1k),, satisfying
Ordr = Ay + gr in R X (Top, T1x),  —0y, Ok = 7U" 2¢p + hy on ORY X (o, T1k), %)
or(y, 7or) =0 in R, IM or(y,7)Z;(y)dy =0 forall 7 € (1o, 71x), j=0,1,...,n, '
and
Dy TOk Tk 17 Hngo’ 2+a,l(T),R T TOk Tk = Ok(l)a ||h‘k||«J,l%»zz,f(‘r),]R"*l,7'(,;€,7'1;c = Ok(l)v (49)

where o0y (1) — 0 as k — oco. Therein, T1j, — oo otherwise ||@x[|#
Yk € R, Top < Tor, < 715, such that

L 0. Thus, there exists a sequence (Y, Tgk)k,

(w (Y Tox)) " |0k Yk, T2k)| > 01 > 0 (4.10)
with a small constant §; > 0 independent of k, where 7o, — oo otherwise (4.10) fails.
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For (y,7) € R™ X [To, T1k), denote

Tif1] == /T . Gn(y,7,2,8) f1(z,8)dzds, Tal[f2] = /T Gn(y,7,(2,0),8) f2(Z, s)dzds

Rn—1

for some admissible functions f1, fo. Then

oun) = T o] + T |5 (U755 00) (310)7) + .

Hereafter, all general constants, like C;, C'(*, *, . .. ), are independent of k.
By (4.9), Lemma B.5,

—<z—a o —a —pa _M
171 [g]] < Coor()Th [77(y) 2" 11y <eim ] < Coor(1)T <<Z/> Liy|<re +7 P07 1|y>‘rP) (4.11)
under the assumption

p<io-—pat+%=>0, if o+pn—2—a)+#-1

4.12
p<i(eo-pa+2>0), ifo+pn—2-a)=-1, (4.12)

p>0, 0<a<n-—2 {

where Cg varies from line to line.
By (4.9), Lemma B.3,

~\—1l—a o —a —pa 7M
| T2 [hi]] < Coor(1)Ta [77(0) ' " 1jg1<e(r)] < Coor(1)T <<y> Lyj<r + 7 Pl 47 1|y>71’) (4.13)

under the assumption (4.12).
By (4.9), Lemma B.3, Lemma B .4,

’7—2 KU” 2¢’“> ((#0) ” < GoTe [T (@) L1 +77PUG) e

< CsTs [r 7 s TP L i U aerd 777

lv|?
4T 1|y|>7—p>

Lul® c lul?
o—pa —peq — % -1 o—pa—35 ,—L
T (T ly|<7? T |y| TT‘<|y\<T2 T \y|>‘r% +7 €

< Cs [TU (<y>a€1|y|§w + rPlate) e

for any constant € € (0, min {n — 2 — a, 1}), under the assumption

p<i,o-plate)+2>0, ifo+pn—2—a—e) #-1

0<a<n—2, >0, .
P {p<§, ifo+pn—2—a—¢e) =-1,

c (0,4 S hoam>0
L 74 ) o pa 9 tm = U.
Thus,
_L\yl
‘Tz [(U quk) ((,0) ” < Cor <<y> Ly + TP 1|y>fp)- @1h

(4.11), (4.13), (4.14) imply

|0 (y, 7) < Cow(y, 7) (or (1) + (1)~ Liyjzre + 7" Ly nrn) -

Using p > 0, 7o, — 00, and (4.10), we conclude that there exists a constant C; > 0 such that |y, | < C7 for all k. By (4.10),
for k large, there exists a positive constant C's such that

Tor |0k (Y, T21)| = Cs > 0. (4.15)
Set

k(Y t) = 73" k(Y o + 1), Gk t) = 7o g (s ok + 1), M) = .7 e (i, Tk + 1),
Then,
|6 (yi, 0)| > Cs > 0. (4.16)

The following argument is in the same spirit as the proof of [11, Lemma 7.7].
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Case 1: There exists a subsequence, (without loss of generality, we still use k as the serial number), such that 7o, > 970
By (4.8), we have

Oyr, = A&k + G, in RY X (105 — 25,0], =0y, dp = 25U 2 +hy  on IR x (1o, — 135, 0], @17
fanSk y.t)Zi(y)dy =0 forall t € (top — 2,0, j=0,1,...,n )
And (4.9) implies
It — —pa *LM
|¢k(yat)| < C(O’,a,p, L) (<y> al\y|<7-2”k + Tzkp e T2k 1|y27-2pk) ) (4.18)
13k (u, )] < 0k (D)C ()W) > Vyi<cprr s 1he(@, )] < 0r()C(0) (@)L i51<c,mm,
holding in ¢ € (7o, — 72—’“ ,0,y e R, g € R"™ L. Since 7oy > 970k, Tor — 00 implies 7o — i" — —0Q.
Case 2: 1o, < Tok < 979k holds for all k. Similarly, by (4.8), we have
8t¢~>k:AgZ>k —|—§k in Ri X (TOk Tzk,O] 8yn¢k 7U" 2¢k+hk on 8Ri X (Tok_TQk,O], (4 19)
&k (y, 7o — Tor) =0 in R}, fRﬂ ¢;€ y,t)Zi(y)dy =0 forall t € (1o — 72,0, j=0,1,...,n )
and (4.9) makes (4.18) hold for all t € (o, — 721, 0], y € R}, § € R"~1. (4.16) implies 1o, — Tox — —00.
— 2k for Case 1
We will handle the above two cases in a unified way. Denote t;, := 70k ’ ortase . Since t, — —o0, by
Tok — Tog,  for Case 2
(4.18) and the parabolic regularity theorem (see [37, p.2418]), up to a subsequence, we have
dr — ¢ in Cf;c% (R x (—o0,0]) witha constant a € (0,1). (4.20)
Combining (4.16) with |yx| < C7, (4.18), we have
¢ #0, and |(y,t)| < C(o,a,p,¢){y)~" for (y,t) € R x (—00,0]. 4.21)
Given t € (—o00,0], for any €; > 0, taking a large constant Ry, then for all j = 0, 1,...,n, when k is sufficiently large,
we have

R ]
/ ol }¢ (ya t)Z ( )dy’ C(Uv a7p>L7n)/l (|y|2_n_a1|y<r§k + |y|2_n7'2kpa€ ok 1y|27'§k) dy
Riﬁ y|>R1 y|>Ry
oo

S C(o-’ a7p7 L? n) <R + 1 pa/

2p
T2k

e *? dz) < €1,
—1
where in the last step, we require the assumption

a>2 pa>1.

Similarly, for a > 2, we have | [ 15 5y @0 1) Z;(y)dy| < e1. By (4.20), we have
nn{lyl>

lim r (1) Z; () dy = / 5, 8)Z;(y)dy.

k=00 Jrr N {ly|<R1} nn{|y|<R1}

Thus, the orthogonality conditions in (4.17), (4.19) yields

oy, t)Z i(y)dy =0 forallt € (—o0,0], j=0,1,...,n
R?

By (4.17), (4.19), we have
t
o (y,t) = Gn(y,t, 2, tn)or (2, tr)dz +/ Gn(y,t, 2, 8)gk (2, s)dzds
R% R%

n

+/tt - Gn(y,t,(2,0),s) {n_ 5 (Ufm) ((2,0),s) +ﬁk(g’s)] dids.

n z|2 n
Taking k — oo, using (4.18), a > 0, [59, Lemma A.3] for the first part in Case 1, fo (4mt)” 2 e~ Erdt = |z~ =227 (n—
2)~1I'(%) with n > 2 for the second and third parts, we have

t
:/_OO - Gyt (2.0), ) —— (U7228) ((2,0), s)dzds, 4.22)
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which satisfies

8tgi~>—A(;3 in R x (—00,0], —8,,¢=-"5U72¢ on IR x (—o0,0],
{fw (y)dy=0 forall t € (—o0,0], 7=0,1,....,n (4.23)
Using (4.22), there exists a constant Cy varying from line to line , such that
|9l < Coly)> ™, (4.24)
and ¢ is smooth by the parabolic regularity theory (See [34, 37]). By the scaling argument, we have
(W)~ 1DY| + [dn] + D] < Caly) ™" (4.25)
Differentiating (4.23), we get
Dby = Agy  in R x (—00,0], —dy, b = Uw 24, on IR x (—00,0],
{ fR1 b:(y,1)Z;(y)dy =0  forall t € (— oo,O], j=0,1,...,n (4.26)

and then the scaling argument gives
()M Dée| + |bue| + D] < Coly) ™" 2.
Moreover, multiplying (4.26) by ét and integrating by parts, we get

1 - -
30 [ |GiPdy + Bléw ] =0,
R}

where Blu,v] := f]R" Vu - Vody — 25 [ (Uﬁuv) (7,0)dj.

Then B [fbt, ¢t] > 0by [zn fbt y,t)Zo(y)dy = 0 since Zj is the only eigenfucntion of (2.3) with negative eigenvalue.

- +

Thus, O; fm |¢|?dy < 0.

Multiplying (4.23) by @ and integrating by parts, we have

- 1 - -
/ |6t|*dy = —-0: B[, 9.
- 2

By (4.24), (4.25), for n > 2, | B[¢, ¢|(t)| is uniformly bounded for ¢ € (—c0, 0]. Thus, we have

0
/ / |p¢ | dydt < oo.
—00 1

Hence ¢, = 0, that is, ¢ = ¢(y) is independent of ¢.
By (4.23) and Lemma 4.1, we have ¢ = 0, which contradicts ¢ # 0 in (4.21). As aresult, (4.7) holds. Due to the arbitrarily
small choice of €, we conclude the parameters restriction (4.3). O

5. LEADING TERM OF p; AND TOPOLOGY OF THE INNER AND OUTER PROBLEMS

Hereafter, we focus on the case n = 5 unless otherwise specified.

In order to apply Proposition 1.2 to solve the inner problems (3.4), suitable w, & will be taken to satisfy the orthogonality
conditions (1.20).

Recall (1.14). ©;,(0,t) = —(T — t)% is a leading role in the orthogonal equations. Roughly speaking, 1 is a smaller term
compared with ©, (0, ) in the inner problem. As the leading term of y;, i; o is determined by

. ) Z2 n —2 2 ~
ul,om,o/m Hom( L)+ [ s U .00 5.0)0u0.02,(5.0)d5 = 0

'n,

@Hzoﬂzo = —(T—1)" Ag

5.1

with

Ani= —(/ Z’%(y)"(%)dy)_l /RM n - QUﬁ(ﬂvo)n(%,O) Zn(§,0)dj
¥
_n ; 2 (/1 Zi(y)dy)_l /Rnil Uﬁ(g’o)dg + O(Rfl),

(5.2)
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where we used (2.1) and n = 5 for the last step of Ar. We take

2
6—n

pio(t) = ARG U + 1)—1 (Tit)&%(l,;-s-l)'

(5.3)
Let p;.1(t) := p;(t) — pi0(t) be the minor term of y;(¢). Denote
Ko = (H1,0, 12,055 H0,0)s K1 = (H1,1, 42,15 -, fo,1)-
For T' < 1, one plugging n = 5, then there exists a constant C,,, ; > 9 sufficiently large such that
90,1 (T —)*2 < pio(t) S971C,, (T =) 2 o) <97C, , (T — )% (5.4)
We make the ansatz that
0;10 (T - t)”i“ < i € Couo (T = P52 |fug] < Gy (T = )™F,
’E (T — 1242 € < 0, (T — 12t (5.5)

Under the ansatz (5.5),

13 Zs (y)| m(%
Proposition 1.2 with n = 5 formally, for ¢

i i\ — [1] i —2 [4] .
) 5 < =" ) (i) S RE(T - 0" (1) “En(4R). Using
1, 2. , 0, we define Ty, := T — og with oy € [0,T'), and the spaces
{(fl)f27"'7fﬂ) ’ fl)vfl €L~ (B;_(072R) X (OvTO'())) ;

)

Bin,o’g =

i=12.0, s |fillnie <1} 656
i=1,2,...,0
with the norm
5
[fllin,ts.00 = sup (BT =ty H3) =) " (| f . 0)] + W)V (. D))
(y,t)€ BT (0,2R) x(0,T%)
where we used R? instead of R? in the norm || - [[in

1,00 Tor the final fixed point argument.

In order to get the vanishing property around the blow-up points for the outer problem, we adopt the ideas in [25, p.318]
[60, p.13] to define the following space for the outer problem

with the norm

Xapioo = { € L (BE(0,05) % (0,T)) | 1 .00 < 0}

(5.7)
o ‘ 1
1 fllx,00 == sup {(@721 e Y (T =)l 1o | f(z,1)]
o [ sty T 2 0|52
with z[1 = % and s = —In(T —

t), where we admit By (0,05 ")|

o, = R and the constant 5 € (0,1) will be

. 1 X ;s ;s

determined later. Note that |2[)| < eTi72 & |z —qlll| < (T—#) %2, which implies {|2[1] < eTiT2 }N{|2V]] <72} = ()
for i # j with T < 1. Given g € R3, () ~g (z — q)

6. PRIORI ESTIMATE OF THE OUTER PROBLEM
Set Nppax =

max N([bl;/3] 4+ 1) with N(-) defined in (2.12). We set €;(z) by Corollary 2.5 satisfying the properties
=1,2,...,0

Ninax B
g(2)= Y aje2)n(

) with a constant Cz > 0
=0 Cé

j:0717"'7NmaX7
0.,6i=0 on JRY

6.1)
and (éi’ej)L%(Ri) :515 for Z,] :O,l,...,NmaX
with a constant matrix (@;1) (n,,..+1)x (Nmax+1)- DeNOte
é,(z) = (éo(z), él (Z), ey éN([Sli/S]—&-l)(Z)) . (62)
We emphasize the following remark before further analysis

Remark 6.0.1. The property of (&) being the original function of u(é ) plays no role in this section, for which we can regard
w, v, &, & as four independent functions in this section
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In order to find a solution for the outer problem (3.6) with fast time decay near the blow-up points, we consider the

*5%1# = 92[1/1,¢,Ma5} on aRi— X (OaT)a
(6.3)

following equation with a suitable initial value

atw - AI’LZJ + gl[(ﬁau’vé] in Ri—
Zb é; (z — q)) + @o(x) in RY,

where @o(z) € C2(R%) and b; = (bi0,bi1, - -+ bi n([s1,/3741)) € RV IPH/31H1) will be determined later. By (2.17), (6.3)

is rewritten as

t
"/}(37, t) = Tout [1/}7 ¢> IJ’7£] = /0 RS G5($, iz, S)gl [¢7 M, 5](Z7 S)dZdS
Gs(z,t,2,0)

x (0,T),

t [
+ /0 » Gs(r,t,(2,0),8)G2[¥, @, 1, €]((2,0), s)dzds + . {Z b; - &; (T—%(x — gl + <p0(z)} dz.
: (6.4)

Adopting the idea in [60, p.14] about the distribution of the right-hand side, we decompose ) = EOH 1;, where ;

satisfy the following equations respectively. Fori =1,2,... 0,
Goi on aRix(o,T), bi(x,0) = b;-& (T2 (z—¢7)) in R, (6.5)

b = Agi+Gr; in REx(0,T), —0p0; =
and fori =0+ 1,
Othot1 = Dgthos1 in R x (0,T), —0p;th0t1 = Go,041 on ORY. x (0,T), toy1(x,0) = o(x) in RS, (6.6)
cut

)0’
e (@)] (nolal®) = na(y™)) + €6 + €8,

where for: = 1,2,...
+& (U,

Gl b3, iy €] = Ay s[4, iy €] 4 Ao i[5, pai, €]

Gii =
g?,i = g2,i Wﬂi-”,#’ﬁ] = {7745(1'[ ]) W ¢,ll’ £] ( g, €L ( ))% (n?&(x[l]) - 7]25(:7][1]))
5 2 ) . . .
5 Uaen @) [ (mse™) = may™)) 00, 0) + (mss(a) —ma) ) v )] }]
G2.041 = G2,0+1[¥] := G2 — ZQQ,i = {(1 - 27745 ) [V, &, w1, & } B
i=1 To=
(1S (el 02
(oS ntayitel]
. \ 6.7)
Here we used (5.5) and 7' < 1 for Gs o1 and ( 55 (T (i) — 1) UR(y[i])Ni_§¢i(y[i]7 t) =0 for Go ;.
Pi(e 22l 4 gl T —e72). 6.8)

Fori:=1,2,...,0,set
iz, t) = U (T — )73 (x _ q[i]) —In(T—1)), thatis, W;(zl, s)=

By Lemma 2.6, (6.5) is rewritten as
0V, =A,m¥; + gl,i(zmas)
\I}i (Z[i],SO) = bl . éz(Z[Z])

in R% x (sg, 00), —Bzg] U =goi(211s)  on IRE. x (s9,00),
in RY,
where
so:=—InT, gri(z0 s) == e Gri(e 220 4 ¢ T —e72), o, (B, 5) := e 5Ga (e 220 4G T — e7%). (6.9)
In order to find a solution ¥;(z!", s) of the form

U, (21, 5) = di(s) - &(2l1) + @; (217, )
)) to be determined later, one using 9, €; = 0 on OR"}

(6.10)

di N (51, /31+1)(5)) € C([s0,
), ®i(-,80) =0 in RS,

with dl(s) = (di)o(s), di,l(s), RN
6.11)

in (6.1), it suffices to solve

95®; = A ®; + g1.i(25) in RY ~0,10%; = g.i(2 [ 5) on ORZ. x (s9,00

X (80, 00),
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where we set
_ _ N([5L:/31+1) - _
bii=di(s0), G1i(z1 ) =g 5)+ > (di,j(s)AZm e (1) — di,j(s)éj(zm)) : (6.12)

j=0
In order to recover the time decay of the right-hand sides of (6.11) for <I>Z-, we impose the orthogonality conditions

/ ] (2, )e; (e 5T del 4 / L 923(3, 5)e; (21, 0)e™ Ef sl —0, j=0,1,... N([5L/3] +1). 6.13)
R R
One using (2.6), (2.11), and (6.1), then (6.13) is equivalent to

dij(s) + Njdij(s) = /5 g1.i(211, s)e; (2[N)e~
R

+

[1] 12

\2[1 |z[1

dz[z] + / g2,i(2[i]a S)ej(gmv 0) dz[l] (614)
R4

forj=0,1,...,N([5;/3] +1).
6.1. Estimates of G5 511, G1,i, G257 = 1,2,...,01in (6.7), and d; ;(s).
Lemma 6.1. Suppose that p, (1, &, § satisfy (5.5), ¥ € Xsy0, and T K 1, then

é ~\ —
1Ga.041| < 06 (3)7F Lo q1ati|> 48} (6.15)

Under the additional assumption that ¢ € Biy o, then there exists a constant C independent of T, o such that for i =
1,2,...,0, G1i, G2, have the pointwise upper bounds

1 _ —l:s i\ —2 3]y — 1L
|Gl §C{R Ty te ((y”> 41\y[i]|§2R+<y[]> * 1Iy“]|>R) 1<

(6.16)
—(3l;+2)s),[i])—3 X )
+ |:€ ( 2) |Z[]| +156%<‘Z[i]|<2(58§:| 11<\z \<4682}’
Go.l < O (R e (gl 78 €780 ) 1y + e Blee 3l ey e
1< |5l |<e i T2
(6.17)

+(e-%li8|zm|% +53) . ]
21 T2 <|300]<85e 2
Proof. The estimate of Gy ,41 is straightforward. By (5.5), we have
W) ~ 207 o+ 1] ~ (el = G (T = 0)3 ) (Ol D2, (6.18)
Step 1: Estimate of G; ;. Recall (3.2). One using R = |In T, (5.5), ||®illin.1;,.0 < 1 (by ¢ € Bin.o), then
, g i, ;
_3 . Y
A1+ Aol S w2 2 <R72|¢i| + RNV i és| + palfral|di| + iR 1\5[]||¢z‘|> 1p<)yitj<2r
[ e
+ g [\mlm <|¢z| + ’y[z] V¢ ) + K 2|§[Z]va[i]¢i‘] 1\y[111|<23
_ li o5 I i\ _5 s, [i\—2
Su 2 (T =) R 2 1peyyuij<on + 1y "R (T — £)° 3 (ylily =3 1mj<or SR (yth) =3 1y 1 j<2R-
Note that |y[*/| < 2R implies |2[]| < 1.
i i —3l;—4 ; [{]\—
€0 (U 0 @)] (m2s(@) = nn (@) | S (Ltijeas = Lypaer) (T =77 (1) =
=3l;—4 4 i\ — -2 —lisy, [i]\— — (314 3)s) 1] |—
= 1|w[i]\§4§, lyld|>R (T - t) <y[ ]> ’ S My 26 : <y[ }> 31\z[f]\§1, lyld|>R +e (8l:+3) |Z[ ]| 311<|Z['i]\§4§e%’
where we used (6.18) for the last “<”.
cu 7 -5 2|\ — —(3; 3)s 1] |—
‘5 t| < (:uz < []> :uz 2<y[]> 4) 126§|x[’71|§4(§ ~ e (3l/+2) |ZH| 312§e%§\z[i]\§46e%’

where we used (6.18) for the last “~”. Using (1.14), then

cut
|g®,i’ 5 16§|z[i]|§26 = 1ge%§|z[z‘]|§25e%'
Summarizing all the estimates reaches the upper bound of G ;.
Step2: Estimate of G5 ;. By (6.18),
S (. 5 (.l i —5/ li\—5 —(5l;4+8)s| [i]|—5
‘(Uui,ﬁ[i] (’JJ)) ° (77235(5”[ ]) - 7’25(33[ ]))‘ rg My ? <y[ ]> 125§\x[i]|§46 ~e (5lit3) |Z[]| 125€%§\Z[i]|§45e%’
Z ' ' j 1y, [i\—2,—lss/ li]\ 2L
(U e0@)® (ms(al) = ™)) ©0, 1, 0)| S a7 ()25 UL s
—(3li+1)slz[i}|2li—21

-1y, [i\—2_,—1l;s ) )
~ W) e <, >R € 1< |2l <28e3
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For ¢ € X5, 0,

|Ur@)® (sta™) = nayh)) vl

U ) P g o B[ (T — (2L @
~ i11<46, |yld|>R 00 z s € ls
1 ‘f |, |?J | |z[i]\§emi+2 |z[1]|>e2lb+2 \z z]|<46
—1; —(31;+1 i 2042— i)\ —2
< 50[ < [Z]> Sllz[i]|<1,|y[i]‘>R+e (Bli+ )S‘Z s e ( L *1) < M> 1 s » S:|,
- 1<|z[ l|<eTiF? eTTZ <|2lil| <4deB

where we used (6.18) and (x) ~ (z[1) for the last “<”.

For |z11| < 85, u = U, ¢t (z)n2s(2zl?)+ Oy, (a7, t)ns(xl) + T qﬁz( ,t)nr(y!¥)+1. By the elementary inequality

|la+bP~ (a +b) — |a[P~ a — pla|P~1b| < p|b|? forp € (1,2], a,b € R, we have

5 2 2 . .
= 2 (U @) nis(a) (€0, ms(al) + g1 ¥ iy, Oma(y) + (1)) |
< mas(@™) |00, @, s (@) + 172 5 (0, ) + vz, 1)
5 e*%li8<z[i]>%li1 %

wlot

5 i1\ — 25
+ RT3 = (yli) 1,0)<2r

\z[i]|§26e§
5 5 107, 4 10 5 _7
+5()36 dl8< [Z]> l1+31 I;s +56’< [l]> 1;s .-
|2l <e2li+2 2li4r2<\z i1|<85e2
Combining the estimates above, we have the estimate of G5 ;. O

To exploit the spectrum properties of the —A ., we give the following estimates.

Lemma 6.2. Under all assumptions in Lemma 6.1, then for i = 1,2, ... 0, s € [sg, ), it holds that
g 8)llzaee) < Ce (it lg.i 8|2 ey < Ce—(3lit3)s

with a constant C' independent of T, 6o and varying from line to line. For j € N,

s . [l] 2 . . [] 2
d; ;i(s) :e_A-fs/ e)‘j"[/ g1,i(z (2 U)ej(zm)e ‘ dzl +/ g2,i(2[l]70)€j(2[2]70) e dz1 | do (6.19)
SO 5 4

0

so if Aj > 3lit g
with o 1= = g f are integrable and satisfy (6.14). Moreover, given k € N, for j = 0,1,... k,
o0 if )\j < gli + 5

. —(§Lit+3)s if \; # 21+ 1
e \5tits i
d; ;i + |d; ; <C J 32 6.20
| ,J(S)| | ,J(S)| > {Se(gzﬁ;)s if A\ = %l + %’ ( )
k —(3Li+1)s if A\ < 21 4+ L
> ( ; ]’ ‘ mD< 1, g3 if A < 3li+ 3
=0 s (5)]+ i (‘AZ[ )| +1%E9)]) < Clizicac, se=(Blitz)s A, > 2L+ 3 ©2D

with e; given in (6.1). In particular,

1916 9 p2ws ) < Cse(3lits, (6.22)

Proof. By (6.9), Lemme 6.1, (6.18),

—s — 3 -2
||gl,i( ) )||L2(R5) ~ € R~ 4:“’1 2 s ’</’[’z ! (T_ t>2 ZM> 41|z[i]|S4RMi(T,t)*%
(T -2 )R

+ 678H67(3h+%)s|z[1]|731

1 .
21 R (-t << e

1<)zl <4003 T Lses <|zlil|<25e3 ||L%(]R5+)

< e~ @lit)s 4 s [e—(?ylﬁ-%)s + e—%a%s} N e-(zmg)s’
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where we used

1 =2
H -tz H> 41\ 1| <4Rpu; (T— t"”fﬁ(R )

)78 Gl -7
+/1’z (T t) s ‘Z | 41# (T—t)~ 2<|z[’\<4R,u7,(T 1)~ 2HL2(R )
SuHT =7+ REH (T — )78~ Rl U
-1 1 o1
H<F‘i (T—t)2z”> 412 LRy (T—t)~ 2<|ztl|<1HL2(R )

11 1 . 1
~ ot (T =) % ||| 751

~ |l |20 | <py (T—t) " %

1 5 1 15
—4,,2 2 — 5 ,—(Bli+2)s
2*1R;¢i(T7t)*%<|z[i]|§1HL%(R@ ~Rap?(T—t) 1~ R 1e itT)s

lg2,i (- 8)llzaqay S €73 |R™ap; e hoem (Bht s o=l 4 (e*%lis + 60%) efae”“S] ~ e (Blita)s,
where we used (6.18) and
i —T _ L1
||<ym> 41|,2[’]|<1||L2(]R<4) ~ [{ps ' (T —t)2 Z[Z]> 41|2[i]|§1”L2(]R4)

7 .
- N PO
||1\ (< (T— t)—*+m (T —t)" 8|24~ 1 u(T b <zt ‘<1||L2(R4)
ST ) pf (T —1)7F e (B 3Ds,

It follows that

‘/ 91, (21, s)e; (211)e™
5

Now it is easy to get that d; ;(s) given in (6.19) are well-defined and satisfy (6.20). Due to the support of €;, we deduce
(6.21). The bound of ||g1 4(-, 5)”L§(Ri) is deduced by (6.12), the estimate of || g1 ; (-, $) ”L%(Ri)’ and (6.21). O

[4]

’/ 024 (310, )¢, (319, 0)e= 252 gzl | < e~(litb)s,

6.2. Estimates of ®; satisfying (6.11), 7 = 1,2,..., 0. This subsection is inspired by [25, 60]. We will derive the estimate
of ||®,(-, 9)|| r2(r3) and then give the pointwise estimate of ®;.

Lemma 6.3. Under all assumptions in Lemma 6.1, then there exists a constant C' > 0 independent of T, §y such that

@ (-, 5)||Lg(Ri) < Cse(8lit3)s,
Proof. We first assume G ;, G2 ; are smooth about 2l ,s and il , s respectively and the derivatives of G ;, G2 ; belong to
L>®(R5 % (sg,s)) and L>=(R* x (so, s)) respectively for all s € (sg,00). Then ®; is smooth and the derivatives of ®;

are bounded for any fixed s € (sg,00). Forj = 0,1,...,N([5[;/3] + 1), testing the equation (6.11) by e;(z[1)p(2[),
integrating by parts as (2.6), and using (2.11), (6.13), we obtain that

Os(®i(+8),€5)ra(ms) = (il 8), Asuej) 2w

~ i iy, 12 i s[i i i
+/r G121, s)e; (21e 1 +/R492,i(2[]a5) (21, 0)e” dZ[] = *)\J(‘I’i(ws)a@j)Lg(Ri)-
+
By ®;(-, s0) = 0, we have
(@i(-,s),ej)L%(Ri) :O, ]2071,,N(|—5lz/3-| +1) for all SZS(). (623)

Testing the equation (6.11) by ®; p(z[i]) and integrating by parts as (2.6), we obtain

1 ~ i i B
50: (105,93 ) = IV Eyr, + [ ralel s)i(al, s)e
P P Rfjr

1z02
4

+ / g2, ) @i((21,0), 5)e™ T2 < V()] ag) + CH B9y
with f1(5) i= llg1aCs)lzaces) + 929z + 05D (1dii(5)] + 1di3(5)] ), where we used (6.12) and
Lemma C.3 for the last inequality. Then by (6.23), Lemma 2.3 (3), we have

Clo)

505 (12409 aqa, ) < = (1= €) (1516/31 +3/2) 194, 5) i as, + o (1(5))%
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where € > 0 can be close to 0 arbitrarily. By ®,(-, so) = 0,
@3, 8)l12 s ) < e—(l—é)(2|—5li/3-‘+3)8/ C)(f1(a)) 2= I3 /31+3)a g, 6.24)
]

Generally, when Gy ;, Ga ; are not smooth, we apply the mollifier to G; ;, G2 ; in spatial and time variables. Then repeating
the above process and taking the limitation will deduce (6.24). Using Lemma 6.2 and taking e sufficiently small to make
(1 —¢€)(2]51;/3] + 3) > 10l;/3 + 1, we get the desired estimate. O

The representation formula of ®; in (6.11) is given by (2.21) of the form
B, (21, s / Hj z[] S, w O’) g1.i(w, a)ddeJr/ Hs Z[Z] , (0,0), )ggz(w o)dwdo.
]Rs R4

Lemma 6.4. Under all assumptions in Lemma 6.1, then there exists a constant C > 0 independent of T, o such that for any
2 e R, s > 51 > s0, we have

/ / H5 [] LS, W 0) |G1,i(w, o) |dwdo+/ H5 (w, 0), )|gg7i(ﬁ/,a)|du~)do
o R4

21; +2}

<c[ Lis (oClt3)s i =% 4 =t =it +mm{e*51,e —(+D)s i
-I-min{6_571,e_(%li+%)s|2[i]|1*§li+%}].

Proof. By (6.12), (6.9), (6.21), Lemma 6.1,

gl,i(z[i]vs)‘ S e Gl +3€_(%li+%)51|z['iJ\gzcé S Rap 2 D) =5 4 ge(Slita)s e L5 5 < <ased
92021, 8)| S 7% |Ga] S R Hp e (D) ~E o (Blr D g o8 i {1, e7 Furjal 1,

where we used dp € (0,1). By (5. 5) (6.18),

Rip 2 Gt s (=%  R=aeBlitd)s ((RLit3)s Ly =% Ry temUita)sglily—3 o p=iellit)s (((lit3)s 510y~ %

By Lemma 2.10 (1),

/ H5 R J) RG89 (oLt 3)o ) =% quydo
RS

/ H; z[l] s, (@, 0), )R*%6(li+%)"(6(21i+%)”w)*%dﬁ)da
R4
SRTE [e*l s(e@lit)s lily =% | o= (Blit®)m 4 o—lis(o(@litd)s lily=F | o~(Glit)n
~R°% [e—li8<e(2li+%)sz[i]>—i n e—(%lw%)sl} _
By Lemma 2.10 (3), for an arbitrarily small constant € € (0,1/4),
/ H5 ) S, W o) oe” (31t2)9 qudo < / Hs H,s,w,a) e~ (3Lt 2-99 qydo <c e~ (3litz—e)st
R RS
By Lemma 2.10 (3) (2),

S
[4] -
/S . H (ZZ ,s,w,cr) (e 0166%§|w|§25e%) dwdo
LR

S
/ Hy (Z[Z],s,w,cr> min{eﬂ’,ef(liﬂ)ﬂw
S1 ]Ri

A

}dwdcr

< min {e‘sl,/ [e“’e_(li+1)s|z[i] +e +2)‘7] do} < min {e_sl,e_sle_(lﬁ'l)ﬂz + e~ it }
s1
By Lemma 2.10 (4),
/ H5 (w,0), ) [e_(%l”%)" —&—min{e_%,e (5li+3 )"|w|7O i ?OH dwdo
Rél

< min{e—%’e—(alﬂr 5|55 Pty 4 o~ (Glits )81}
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Combining the above estimates and using C; + min{C5,C5} = min{C; + Cs,C; + Cs}, then we get the desired
estimate. O

Proposition 6.5. Under all assumptions in Lemma 6.1, then there exists a constant C' > 0 independent of T, ¢ such that for
any 2l € R, s > s¢, we have

2l7j> _|_ e—(ll—‘r%)S'Z[’L]

‘(Di(z[i], 8)‘ < C[(R‘ie_l”(e(m"*%)sz[i]>_% + TR Tl (|11 2l"'“)l e

2l |<e 22
1 I=Hl< (6.25)
+R 11

]
|2[i] | > 2TiF2

Proof. Applying Lemma 6.4 with s; = s¢, we get | ;]| < R™%in @ x (8o, 00). For the more delicate estimate, we separate
the domain into the following four parts and estimate separately.
Case 1: Fix 2" € RS and s € (sg, 50 +2]. By Lemma 6.4 with s; = s,

|®Z(2[l]7s)| < R—%e—l1s<e(2lb+%)sz[’b]>—i + R—ie—(lb-‘r%)So + 6—806—(li+1)8|z[i]|2li+2 + 6_(%ll+%)s|z[z]|%ll+%.
Case 2: Fix |2l)| < 2and s € (5o +2,00). By uniqueness, we split &; = <I>l(»1) + <I>§2) and rewrite (6.11) as
85*4)1(.1) = Awd)gl) + g1,i(w, s.) for (w,s,) € R} x (s —1,00),
— Dy @ (1,0), 5,) = go.4(1B, 5.) for (@,5.) €R* x (s —1,00), (., s—1)=0 in R},
88*4)1(.2) = Aw¢§2) for (w,s.) € R}, x (s —1,00),
— Dy @7 (1,0, 5,) = 0 for (1,5.) € R x (s —1,00), @ (. 5—1)=;(-,s—1) in R>.
For @gl), applying Lemma 6.4 with s; = s — 1 at the point (z[, s), we have

’(I)Z(_l)(z[i],sﬂ < R—ie—lis<e(2li+%)sz[i]>—i +R—%e—(li+%)s +e—se—(li+l)s|z[i] 20;+2 + e—(glz+%)5|z[i]|%li+§.

For <I>§2), by Lemma 2.10 (2) with s; = s — 1, \z[i]| < 2, and Lemma 6.3, then
2) /i —(31,41)s
|0 (217, )] S 11i(5 = Dl 2y S se”Firde,
Since se—(3li+3)s < R-ie~(i+8)s we have
‘q)i(z[i],s)‘ < R—%e—lis<e(2li+%)sz[i]>—% + R—ie—(li—i-%)s + e—se—(li+1)s‘z[i]|2l7;+2 _i_e—(%li—&-%)slz[i]l%li-i-l—f.

s—s1

Case 3: Fix 2 < |2l1l| < ¢™2" and s € (so + 2,00). We choose s; € (sq, s — 1) such that |2l}| = ¢~ Similar to
Case 2, we split ; = <I>l(-3) + <I>Z(-4) and the equation (6.11) is rewritten as

8S*<I>Z(-3) = Aw<I>Z(-3) + G1,i(w, s,) for (w,s.) € R} x (s1,00),
{ — D0y P (1,0, 5,) = g2 (B, 5.) for (@, 5.) € R* x (s1,00), B (,81) =0 in R,
8S*<I>Z(-4) = Aw<I>z(-4) for (w,s.) € R} x (s1,00),
{ — Dy @Y ((1,0),5,) = 0 for (1, 5.) € R x (s1,00), (-, 51) = ®i(-,51) in R}
By Lemma 6.4, we have
|<I>53)(z[i],s)| < TRR e lis

where we used

— _ i _1 13 i\ — 1 R (kg3 il — L 3 1 i1121
e~ — ¢ S|Z[l]|2, R ie l,s<€(2l1+2)sz[1]> I SR ie l’sle (2+8)s|z[z]| i STSR ie l;s Z[z] 2l7,7

Rie~Uit®st = =81 gdo—lis| 112 < PR g elis|li)2L
By Lemma 2.10 (2), |zm| —e 25,5 < s— 1, and Lemma 6.3, we obtain that
‘@24)(2«["],3)] < ||<1>Z.(.,31)||L%(Ri) < Sle—(%li%)sl < (_lnT)T%e—lis|Z[i]|2li'
Since (—InT)T2 < TS8R~ 1, we have
|‘I>i(z[i],s)} < TRR e lis

“ls

Ll 20;+2 +67(gzi+%)5|z[i}|%li+

2i 4 Pe=litDs| 1]
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. ) s—sg .
Case 4: Fix |zl)| > e™=" and s € (s¢ + 2,00). By Lemma 6.4 with s; = s,
; 3 1 _po 2L (L 1190 (5541 7,107 1 10
‘@Z(ZM,S)‘ g TsR 2e lzs|z[l]‘2lz +Te (lz+1)5|z[1]|2lz+2 +e (3lz+2)3|z[1]| = lit+ 3 ,
where we used

e %0 < efs|z[i]|2, R*%e*l”(e(mﬁ%)sz[ ]> T < ]*Tie*lisoe*(%Jr%)s|zm|*i < TR e lis|li

21;
)

Rie~(lit8)so < PR R—ae—lis il 2l

Combining the above four cases, we get

< R77 —1; s< (21i+%)sz[i]>7% +T%Riz <‘Z 2li+2+€7(%li+%)s|z[i]‘%li+§.

oy 4 Tem(lrn)s

’@i(z[l 5)

In particular,
'@(zm,s)‘ < RFelis (o@D =1 | 8 Rt olis (|12 o o= (it s L0120t for |1i)] < 7T
Integrating |®;| < R~ in @ X (89, 00), we attain the conclusion. O

Proposition 6.6. Under all assumptions in Lemma 6.1, then for T [1), ¢, p, €] given in (6.4), there exist po(x) € C° (ﬁ)
in (6.3) and a constant C > 0 independent of T', g such that

lis

|2li]|<e2lit2 -+

out b, 1. b gCR*i 1 1 +
T, 6, 0. €] 1) [N{waz Z

L ,
T, ¢, p, €](,0) Zb &(T 2 (zx — qm)) + Z Z Cqi) p#qti p,0(2);
i=1 peN®,||pll¢; <4lmax+4,p5 €2N
where b; = b;[1h, p, ., &) are constant vectors and |b;| < C|InT|T3% %2 ; &; are given in (6.2); Cuiitp = Cyi p[¥, D, 1, €]

2 _ _
are constants and |C ,| < Ce Qg1 po(®) € CE(RY) and @i 1 o(x) = 0in RE\B (1, 26). In particular, for
m € NP, there exists a constant Cry, > 0 independent of T, 5 such that

ey
DT, b, 12, €](2,0)| < Ci| I T|T5!F2 D Lo gi<as-

1=1

Proof. Recalling (6.8), (6.10), we have

N

i, 1) = di(s) - &) + @1, 5)  with 2l = (T — 1)
wl(xvo) =b;-€ (T7%(1~ — q[l]))

with b; = b;[1h, d, 1, €] = di(s0) given in (6.12). Lemma 6.2 deduces that |b;| < [InT|T35+% and |d;(s) - & (217)| <
].lz[i] |<2C, se~(Bli+3)s, Combining (6.25) and T2 <« R™iduetoT < 1, we have

il D] S BT =0

(m - qm) , s=—In(T —1),

]|2l+2)1 e +1 e } i=1,2,...,0. (6.26)

[ —r
|2lil | <e2TiF2 |2lil[>e2li+2

By uniqueness, we set ¢, = ¢£1+)1 (x,t) + on (z,t) and decompose the equation (6.6) of 1,1 into the following two
equations.

aﬂpoﬂ ¢<1>1 in RS x (0,7), %zpaﬂ G2,041 on ORS x (0,7), ¢0+1( 0) =0 in R7, 627
O = Al in RS x (0,7), 8,082 =0 on 9RS x (0,7), ¢, (x,0) = go(x) in R}.
Set
bi(a,t) = ), (@ Z Y;(x,t)  for i=1,2,... 0. (6.28)
J=1,j#i
By (6.5), (6.27), ; satisfies
Otz[% = 11&1 + hl,i(x,t) in Ri X (O,T), —8%1@» = hgﬂ‘(i‘,t) on 8Ri X (O,T), (6.29)
Gi(,0) =351 ;b &(T 73 (x —ql)) in RY, '
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where
o+1
hii(x,t): Zgljxt hoi(Z,t) : Zg%xt
j=1,j#i j=1,5#i

By the properties of &; given in (6.2), (6.1), |¢;(z,0)| < |InT|T' D1t |x7q[j]|<2CET%’¢ i(2,0) € C° (U9, u{z €
Ri | |z — ql! | < 2CéT§ }) By Lemma 6.1, one sees that

_1 —4—3lmax
lhi(z, ) S R7% (T 1) Lue_, i dle—qlil|<a6}>

= —2—lmax
|h27i(1‘,t)| ,S 10.;::1“55,6[1”245} + R~ 4( —t) 1Uo 1 {|&—gl1|<86}> with lmax :j maxh lj.

1); can be represented by the formula (2.17) with n = 5 and o = 0. Since hy ;(z,t) = 1;(x,0) = 0 for |z — ¢l < 36
and hy ;(#,t) = 0 for |# — ¢l!| < 36, applying Lemma 2.14 with = 34, we have

< me—% in WX [0, 7] forall : € N,;m € N°,

| S

i € OB (ql,35/2) x [0,T]) and |0; D0
where 1); can be defined by extension naturally for t = T', z € BZ (qlil, 36/2). Under the additional assumption ms € 2N+1,
we have 8! D™, ((Z,0),t) = 0 in B4(gl,36/2) x [0, T).

By Proposition 2.13, forj = 1,2,...,0,p € N°, ||p|l¢, < 4lmax+4, ps € 2N, we take the vanishing adjustment functions
Pqli1 p(, 1) to satisfy

Orpgiil p = Dupglil p In RS x (0,7, —0s5 411 p =0 on IR’ x (0,77, P11, p(7,0) = Py polT) in R,
and the following properties hold:

(1) @y p.o() is smooth in R} and @, 0(z) = 0 in R3\ B (g1, 20).

(2) O:D™ @1 ,((7,0),t) = 0 for & € R, ¢ € [0,T),and e € N, m € N°, mj5 € 2N + 1.

(3) D™ goq[J] o (@, T) = 65 m6,01 g1 form € N, |lmlg, < Alpax +4,k=1,2,... 0.

(4) |0 DR p||Lx g5 x(o7]) S 1fore € Nom € N°, 20 + [|mg, < 4lmax + 4.

We take
0
e =Y ) — (D245) (0, T)py (). (6.30)
J=1peN?,|p|le; <4lmax+4,p5€2N

Then for all i = 1,2,...,0, m € N°, ||ml|s, < 4lpmax + 4, ms € 2N, we have DI (¢; + wg?l)(qm,T) = 0. One using
(6.27) and the support of hy ; in (6.29), it follows that

D™ (i + 7)) (@, T) = ALD™ (d; +0$2)) (¢, T) = 0 for 1 € Nym € N, 20 + [|m|,
Besides, we have

AD™ (i + ) (¢ T) =0 for c € N,m e N° m; € 2N 4 1;

< Alax +4,ms5 € 2N.

0D (s + ) )| S e #7 for € Nym € N°, 20 + [|mlle, < 4lmax +4 in Bf (¢l,36/2) x [0, 7).
Applying Taylor expansion to ; + on at the point (¢l T), for (z,t) € B (¢l),35/2) x [0, T], we have

— 9% i _ 952 ) i
|(¢Z q/,fjr)l)( H <e % {(T_t)2lmax+2 + |z — gl Plmast2] < o= B (T — )l ()l

). (6.31)

By (6.15), |G2,0+1| < 1. Recall the equatlon of 7/’a+1 in (6.27). By the Green’s formula (2.17), we have |1/J§1+)1\ < tz. By

95

(6.30), |,¢a+1‘ < e 227, By (6.26), [Yp| S R™1 k‘—l,2,... 0. Hence,

| -H/JUH’ <SRT in RE x (0,7).
Combining (6.31), we get

~ 2 952 . _1
|4 + §421| S e (T — )i (|1 >1|x—q[il|g35/2 + RT3, qi1)>35)2- (6.32)
Integrating (6.26), (6.32), and arbitrary choice of ¢ = 1,2, ..., 0, we complete the proof. ]

Lemma 6.7. Under all assumptions in Lemma 6.1, then for T (1), ¢, p, &] given in (6.4), there exists a constant C > (
independent of T 6o such that

T, b, 1, €] (2, )| < Cmax{R™%,65 }a)~™3  for [¢] > 99 max |ql]. (6.33)

i=1,2,...,0
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Proof. Recall the equation (6.3) of ¢, and G; = >, G1,4, G2 = 25:11 Gs.;. Denote g = 99 max;—; .., |¢l")|. By Lemma

6.1 and Proposition 6.6,

glaTout[¢7¢7/*l’7£](x7O) =0 for x € Ri\Bf)(Oer)? |g2| = |g2,0+1| S 6O§ <£>_% for T € R4\B4(0,T0),
|T0ut[w7 ¢7Ha£}($7t)‘ S R_% for x € Ri N 835(0, TO)'

_z
By Lemma 2.8, set P(z) = [(Z,z5 + 1 + ¥1|&])| ® with a constant Y1 > 0 sufficiently small. Then P(x) satisfies

—0p, P ~ (z)"%, AP < —(z)~ . Thus, C; max{R "3 6 }P( ) with a large constant Cy > 0 is a barrier function of
(6.3) in R?\ B5 (0, 7). O

7. COMPLETION OF THE PROOF OF THEOREM 1.1

Recall T,, = T — 09,00 € (0,T'). In order to avoid the difficulties of the singularity of the right-hand sides at { = T’
(see (6.16) for example) and achieve the compactness for the mappings by the regularity theory, we solve the outer problem
in B (0,05") x (0,T,,), the orthogonal equations in (0,7}, ), and the inner problems in By (0,2R) x (0, T,,) in order.
Then we get a solution u,,, of (1.16) in B;‘ 0,00 Hyx (0,1, o ) Finally, we take o | 0 and use the compactness argument to
conclude Theorem 1.1.

7.1. Solving the outer problem in B (0,0,") x (0,T,,)-

Lemma 7.1. Suppose that 5y = R™3, oo € (0,T), |pi1| < (9C,, o) (T — )%+ ;1| < (9C,, )" HT — )2+ in
(0,Ty,) fori =1,2,...,0, &, € satisfy (5.5) in (0,T5,), ¢ € Bin,o,, then for T < 1, there exists Vg, = V5, [, 11,€&] €
X, .0 SOlving the outer problem (3.6) in B3 (0,05") x (0, T,,) with an initial value 1y, (z,0) € C° (]R5 ) satisfying

Yoo (2, 0) Zbl oo " i (z — qt” JF Z Z Cli),p,o0 Pali),p,0 (%)

1=1 peN?,||p|le; <4lmax+4,p5€2N

where bi 5, = i o0 [ey, O, 1.1, €] are constant vectors and |b; 5| < C|InT|T3%+3 with a constant C' > 0 independent

of T, 00, €; are given in (6.2); Cyii) p 5o = Cylil p.oo Voo, Py 1,1, &] are constants and |C i 4 0] < Ce’%; Pqii polT) €
C(R3) and Pqii) p.o(x) = 0in RS\ BT (¢l7, 26).

For any compact set K C ﬁ x [0,T), there exists o € (0,T') sufficiently small such that for all oy € (0,0k), Vs, are
well-defined and uniformly Hélder continuous in K.

Moreover, there exists a universal constant y € (0, 1) independent of any parameters such that if ¢; € (0, <), there exists

a constant C1 > 0 independent of T, oy such that for all
t* € (O,Ta0)7 Tx GB;—(q[j]aRil(Tft*)l/Z)a j:1727"'707 pE (07R71(T7t*)1/2]a

we have
—¢1 1s 1 —3l:—
[%o]cw/z(iB;(x*,p)X(max{o,t*_pq,t*}) <Cip™* [60(T—t*)J +p?RT(T —t,) % 4}_ (7.1)

Remark 7.1.1. Recall H, ; given in (3.5). The quantitative Holder estimate of 1., is required for the application of Propo-
sition 1.2 with n = 5 in solving the inner problems.

Proof. Given a function f defined in a domain of RS x (0, 7)), (0,T) or B (0,2R)x (0,7T), denote f,1, f.2 o fu3 as the zero
extension of f in RS x (0,7, (0,T) or BZ (0,2R) x (0, T) respectively. Denote §[Z] [(t) = ¢l (t)lte(O}Tao)+q~[i] Lie[r,, 1)

and £, = (535][11 , 55[2] Yo ’££(2l°l)' Denote A = (N,o + (1) %2, £r,0 + (£41)525 Exgo 5*2). It follows that A satisfies (5.5)
in (0,7).

By Remark 6.0.1, we make a distinction between p(€&) and fi(€) in Proposition 6.6 and Lemma 6.7. For g € Xso.00, WE
denote 7°%[g.1] = T°%[gs1, P+3, A] for brevity in this proof and the following properties hold

[

é o
[T [gu] (2, 8)] S max{R™%,64 }(z) 51 e RIS (T )Py b
ﬂle{‘z[l]‘>6217‘,+2 } p |2 ]‘<ezz,+2

iy, O
DT g (@,0)] S [IWTITHFE=T20 S 0, jajcny for me N,

i=1

Tout [9*1}(37, 0) — Z b, -é; (T ;1; — q —|— Z Z Cq['i],pgoq['i],p,()(x%

=1 i=1 peN®,|Iplle; <4lmax+4,p5 €2N
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where b; = b;[g«1, Pz, A] are c2onstant vectors and Cyriy , = Cyiil plgx1, @3, A] are constants, which satisty |b;| <
|1nT|T§li+% and |Cyi | S e~ 357 . For 0o = R=3 and T < 1, then T (gu1) € Xsy.0 N Xy -

By G1 = Z;’zl G1,i,G2 = Zf;l Ga,;, Lemma 6.1, G1, Go are uniformly bounded for ¢ € (0,7,,). One combining the
uniform boundedness of | D7 °4[g,1](z, 0)| with m € N°, ||m||,, < 1, by the parabolic regularity theory, {7°"[g,1] | g €

Xs,.00 } is uniformly Hélder continuous in By (0,0,') x [0,T,,). Hence, g — T°"[g,1] is a compact operator from X, .,
to X5, +,-The Schauder fixed-point theorem then yields the existence of a fixed point 1y, = T°"*[tby, +1] in By (0,05 ') x
(0,T5,,) and ¥, € X5, +,, which implies that 1), solves (3.6) in B;(O, 00_1) X (0,T5,). Set b; oy := b;[Yoy 41, Pr3, Al
and Cyi) o, = Cylit p [0 %1, @3, A]. Then the initial value has the desired form.

The uniform Hélder continuity of 14, in compact sets of R% x [0, 7)) for oy sufficiently small is straightforward by the
parabolic estimate.

Finally, we will give the quantitative Holder estimate of v, around the blow-up points. We always assume 7' < 1 to
make B (0,0, ") sufficiently large to make the following estimates well-defined. By G; = S0, G14,G2 = ZS;l Gai,
Lemma 6.1, and 7°" [tpy, +1] € Xs,.0, for j =1,2,..., 0, we have

GISRHT =75 in Qo= {(@1) | t€ (0,T),x € B (@, (T -1)"/?)},
G SRTHT =757 in Qo= {(@1) |t € (0.7).7 € B(@, (T - )"/*)},
[T oo a1l S 00(T = 1) in Qg, ;-
Recall the definition of 7°" (1), +1] in (6.4). Given
t. € (0,T), x.€ B (qV), R-1(T —t,)1/2), pe (0,R™HT —t,)"?,

notice that for any ¢; € (max{0,t, — 4p*},¢,], by R™' < 1, we have T — t; € [T —t,,2(T —t,)]. Then for any
w € Bi (x.,2p), it holds that |w — ¢V)| < |w — 2| + |z« — ¢V!| < 3R™YT — t,)'/? < (T — t,)*/?, which implies
B (24,2p) x (max{0,t, — 4p*},t.] C Qg, ;. Similarly, B4(Z.,2p) x (max{0,t. — 4p?},t.] C Qg,; holds. Hence, for
any (w,t1) € B (z4,2p) x (max{0,t, — 4p?},t.], we have [T [hgy w1 ](w, t1)| S 0o(T — t1)b ~ 6(T — t,)", that is,

1T [t 1] ) S 0l = t)b.
Similarly, we can deduce that

PlIGA |
plG|

Lo (B;(m*,Zp)X (max{O,t*—4p2},t*
< 2p—%( _ —3l;—4
L (B;(z*,2p)x (max{O,t*—4p2},t*}) ~ P R (T t*) T

1 1,2
L (Ba(3.,20) x (max{0,t. —4p?},t.]) SpRTI(T 1) :

Since for any w € Bi (v, 2p), |w — V| < 3R™Y(T — t,)!/2, then for any o € (0, 1),
||T0ut[¢o—o,*1}('aO)”Loo(B;(gg*,gp)) SIRVAVALRES
pa [Tom [%0,*1} ('7 O)]ch(B;(z*,Qp))

-~ _1 ;
= pa |:bj,0'0 . ej (T 2 (:E - q[]])) + Cq[]‘]’pvgosoq[j]vp_’o(x) ot
. 2 Co (B (2.,2p))
PENS,||p|l¢; <4lmax+4,p5€2N
2 5
Sp(|ImT|T3E+3T—3 1= 4™ 5T pl =) ~ p|InT|T3H < R~ InT|T30+3,

By Lemma 2.15, there exist positive universal constants ¢y € (0, 1), K7 independent of any parameters such that if ¢; € (0, ¢o],
we have

[T [$og.01]] Cs151/2 (B (@u,p) x (max{0,t.—p?} .. ] )
<Kip~ [50(T —t ) PP RTI(T —£) ™ 4 1,y pR™T(T — 1) 7724 1 ey, | InT| T2
Therein, by the inequality ¢; + c3 > 2,/c1¢ for ¢, ¢ > 0, it holds that
So(T = t.)" + P RTH(T — t.) 73674 > 2(8R™3) 2 p(T — t,) ™72 > pR™%(T — t,) ™72
1

Besides, v/%, < 4p, p € (0, R™*(T — t,)'/?] deduce ¢, < 16R~>T. Combining R~! < 1, then 1 s, |InT|T35+s <
do(T — t*)lﬂ'. Thus, we get

[Tout [7#00,*1]]0&1,(1/2 (B;r(m*,p)x(max{O,t*—pQ},t*]) ,S pigl [50(T — t*)lj + pQR*% (T _ t*)73Zj74:| )
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Using ¢y, = T [ty 1] in B (0,05 ") x [0, Ty, ), we finally achieve (7.1). O

7.2. Solving the orthogonal equations in (0, 7}, ). In order to apply Proposition 1.2 with n = 5 to solve the inner problems
(3.4)in B (0,2R) x (0,T,,), we need to choose suitable y, £ to attain the orthogonality conditions (1.20). In other words,
we need to solve the following formal orthogonal equations.

/ \ n( 15 ) (it Za(y) + i - (V30) (G,90)) 2, (w)dy
(7.2)

noono1 2 y = el =gl Al =N
+/Rn_1 ——nt U (y,O)n(Eﬂ) (wgo((uiy+£[170)7t) + 0, (g + & —q”,O),t))Zj(y,O)dy=0

forj=1,2,...,n,t € (0,T,,), where ¥y, = V5, [, pt.1,€&] € Xs, .0, is given by Lemma 7.1 with g 1, £ in a suitable space
to meet the assumption in Lemma 7.1. Here we used y instead of %! as the integral variable.

Lemma 7.2. Suppose that o = R™5, o € (0,T), ¢ € Bin.o,, thenfor T < 1, there exist f1.1 oy = 1,00 |®), €0y = Eoo[D)]
solving (7.2) withn = 5 in (0, Ty, ) and satisfying
. . 1 ) 1 X
13,1,00] + 185 = ¥ < 0F (T =02 F2, i 100 ] + €5 < 05 (T — ) (73)

fort €[0,Ty,), i =1,2,...,0. In particular, the ansatz (5.5) holds in [0, Ty, ).
Moreover, for any compact set K C [0,T), there exists ox € (0,T) sufficiently small such that for all oy € (0,0k),
fi1,0q ( L ]) are well-defined and uniformly Holder continuous in K.

Proof. By the radial property of n(x) and the parity of U(y) and Z,;(y) given in (1.13), (2.1) respectively, we have

<)

/ n(-= L )Zi(y) Zi(y)dy =0 for j,k=1,2,...,n,5 #k; / Uﬁ(g,o)n(—,O)Zj(gLO)dgj:O for j=1,2,...,
4R Rn—1 4R
Hence, (7.2) is equivalent to
S n 9 i —1 n;4
fi; = n—2(/Rn Zn(y)n(4R)dy) IORERS
+ (7.4)

[ U0 0) [ (G + €0,0).0) + 01, ((ui+ €1 = 1,0).0)] 2,705

€ = SV, €)= (811100, 8, 8P s €], S, €)) (7.5)

fort =1,2,...,0,whereforj =1,2,...,n—1,

S8 = — n%(/ 22w ( R>dy)71u:54 /Ri U=

(5.0 1. 0) [ (15 + €7,0),1)

(7.6)
+ 0, (g + €71 = 317,0),8) — ©1,(0,)| 2;(7,0)dg.
Recalling (5.1) and ©;,(0,t) = —(T — t)", we have
. 2 ! ot =22 (7 9 = N
o= ( [ L (3r)a) euoug [ vPGom({p.0)z @00 a7

(7.4) minus (7.7) implies

—14 ot 2
frin = Filp1, €](t) — nﬁ2</n Za(yn (4R)dy> 01, (0,1)" = 5 Hio uu/RHUm(ﬂ,o)n<%70)2n(ﬂ70)dyf,
+
(7.8)

where

Flua €= —5 ([ . Zﬁ(ym(j%)dy)_l{u#“ [ 00 (J0) e (i -+ €.0.0) 2,500

n—2

n—4

el /Rn_lUﬁ(g’O)"(le )[@l (s + €7 = 7,0), 1) — ©4,(0,1)] Z(5,0)dj

gt mpt m—d mge w2 (5 oy - o 0\di
+@l¢(0at)(lh Hi 0 B) Mo M, 1) anU 2(y,0)n(4R,O)Zn(y,O)dy .
(7.9)

n—1.
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By (5.2), (5.3), then (7.8) is equivalent to
4
fit + B s = Filp1, €](H)  with  B(t) == 7’(;‘_ ()T 1) (7.10)

To obtain a solution of (7.5), (7.10), it suffices to solve the following fixed-point problem about /i 1, E .
(/-.l/,lv 5) = Tort [H,la é] = ((Sl [IJ/,17 6]7 82 [H,h 6]7 sy So [N,la EDv (8[1] [M,la 6]78[2] [N,lu EL sy S[u] [M,la ED)a

do " b
Si[ﬂ,lag] = %(/T eft rg(a)dafi[u,J’g](S)dS) = _B<t)/1: eff‘ ﬁ(a)dafi[lj’,lag](s)ds +]:7z[l“",1’£](t)7 (711)

t

i = fei1[fi1](t) Z/ f1i1(a)da, €0 = ell[El / a)da + G, i=1,2,.
T"U

We will solve [:l,’l,é in suitable space to make the above integrals and ¢, = Vs, [, t.1,&] € Xs,,0, given by Lemma 7.1

well-defined. Set the norm

= sup (T —s)" D] f(s)].

5€(0,Tog)

We will find a solution (£ 1, é‘) of (7.11) in the space B.1,s, X By2,0,, Where

1
B*Lo’o = {(f17f27"'7f0) ‘ fi S C((07T00)7R)5i = 1a25"'a B _EDQaX ||f7;||l,i70'o S 662}a
Buso, = {(f[lhf@h...,f[“l) [£10€ C((0.T) R*™)i = 1,20, max < 55}

Hereafter, we plug in n = 5. Given any (f11,€) € Ba1.g, X Bi2.0o, fort € (0,T,,), we have

T"O . . TUO .
i < / i (a)lda < 63 (T — 2442, |l — glil| < / €0 (a)|da < 62 (T — 242 (7.12)
t

t

In particular, the integrals about p; 1, ¢ [ in (7.11) are well-defined. Due to the small quantity 50% and T < 1, p, 1, ¢ €
satisfy (5.5) in (0, T}, ) and the assumption in Lemma 7.1 holds, which implies that 1o, = ¥y, [P, pt.1,&] € X5, 0, given by
Lemma 7.1 is well-defined. For |§| < 8R, t € (0,T,,),
(i + €7,0) = g < gl + €1 = @] S R(T — )42 < (T — )77,
Combining v, € X5,.0, and Oy, given in (1.14) with n = 5, we have
~ i ) _1 ~ 3 ~[i1\ 2042 )
[ty (i) + €1,0),6)| < S0(T = )" (T = 1) 2 |puagg + € = @)™ ~ 8o(T = 1), (7.13)
li

100, (s + €1 = G7,0),£) = ©,(0,8) S (T =) > [(T — ) g+ € — P S RAT —pE. (.1
j=1

It then follows from (5.5), (7.13) and (7.14) that S][i] [1,&] given in (7.6) has the upper bound

155 a1, €] < 8o(T — )2+, (7.15)
By (5.4), (7.12), and &y < 1,

|,U¢_,Ulo_2 uzouulNuzouu<5o( — )l

Combining (5.5), (7.13), (7.14), F; .1, &](¢) given in (7.9) has the upper bound
[ Filke,1, €)(1)] S 6o (T — )%+ (7.16)
This together with 3(¢) given in (7.10) implies that for ¢ € (0, Ty, ),

t To
B(t) / el N 1 €)(s)ds| < (T~ )" / el DT gy (7 2t s S 6o(T — P (7.17)
Toy t

By (7.15), (7.16), (7.17), for §y < 1, we deduce that T [i1.1, €] € Bii.0q X Ba2,op-

For all (f1.1,€) € Buioy X Bi2.og» Yoo lh, .1, &) are uniformly Holder continuous in B; (0,0, /2) x [0,T5,). By
(7.11), T°™[p.1, €] is uniformly Holder continuous in [0, T}, ). Hence, (p.1,&) — T°"[p.1,£] is a compact mapping from
Bi1,00 X Bia,s, to itself by the Arzela-Ascoli theorem. By the Schauder fixed-point theorem, we find a solution (£t 1,5, égo)
of (7.11) in By1 5y X Bs2,,. Combining (7.12), g = R~5,T < 1, and uniform Holder continuity of 7°"*[p 1, £ in [0, T, ),
we conclude the final estimate. ]
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7.3. Solving the inner problems in B (0,2R) x (0,7,,). Now the inner problems (3.4) for t € (0,7,,) with n = 5 can
be rewritten as the following form formally. Fori =1,2,... 0,

(1,00 [@])20060 = A 1 61+ Haal@l (i 1) for ¢ € (0, L) by € B (0,2R),

P (7.18)
=0, &1 = U5 (o) b1 + Hoald|(imd, 1) for £ € (0,T,)  yoy € Ba(0,2R) x {0},
90

where (150 [P, Eoo [P, Yoo [P] = Yoo (@, 11,00 (D], €oy [P]] are given by Lemma 7.2 and Lemma 7.1 respectively, p; o, [¢] =
) el ) ) )
Hi0 + 1,00 (], y([;(]) = %0[[2]],0)’ gj([f(]) is the first four components of ygf(]J, yg]a is the fifth component of y([f(]),
o0
[4]
7 Yo . 7
Haal @l 1) =0 (55 ) (ioo [ 811100 [ @1 Z0ED) + pion[$161, (8] - (V500 U) L whL)).
~[1]

5 3 2 o) i 7 ~li
Mo [ $1G8L6) = 2 el 1910 L, 00 (225,0) (@1, (s 9138] + 5211 — 7,0),1)

+ 0[] (15,0, [9175) + €78],0),1)).

Lemma 7.3. Suppose that & = R™%, o € (0,T), then for T < 1, there exists a solution ¢y, = (61,505 32,005 - - -  Po.00) €
Bin o, of (71.18). Moreover, for i = 1,2,...,0, the initial value ¢; +,(-,0) = Cin,i’aOZO in B;‘(O,ZR), where Zo €
C*> (B (0,2R)) and a constant Cyy, ; o, satisfies |Cin i 00| < CTH+3R3 with a constant C > 0 independent of T, 0.

Furthermore, for any compact set K C [0,T), there exists o € (0,T) sufficiently small such that for all oy € (0,0k),
i=1,2,...,0, ¢ o, are well-defined and uniformly C*+<+-(1+<1)/2 bounded in BF (0,2R)x K with a constant s; € (0,1/10)
independent of T, 0.

(7.19)

Proof. For any ¢ € Bin oqs I,1,00[P], Eoo (@), Yo, [@)] are well-defined. Fori = 1,2, ..., 0, set the new time variable

t
Ti,oo = Ti,oq (t) = /O (lui,Uo [¢](S))72 ds + Cﬁzti,oT74li73 ~ (T - t)74li73 for t € (OaToo)a (7.20)

where we used (5.5) for the last step. For brevity, we use y!"!, 7; to denote y([,’(]), Ti,oo in this proof. We set the corresponding
inverse function about 7; as
t =t;(r;) for 7; € (13(0), 7:(Ts,))

which is monotonically increasing in 7;. Since (i;, 5, [@])20¢p; = O-, ¢i, we consider

Or, i = Ay i + Hi [Pl (1, (7)) for 7 € (7:(0), 7:(Th, ),y € RY, (721)
¢i = JUS (Wi + Haslgl (3, 1i(r))  for 71 € (ri(0), (Ty)) ) € ORY. '
By (7.20), (5.4), (7.3), we make the following preparation for estimates about H1 ;[@], H2 ;[®].
T —ti(r;) ~ Ti_ﬁ§ T —ti(a1) ~T —ti(az) for ay,as € (74(0),7(T,,)) , a1 ~ az;
d — T
o tilT) = 1250 [@1(ti(7)): iy [@)(ti(T2)) ~ (T — t3(7:))" 2~ 7 075,
d d d < 6li+5 ~ i
|2 (0 @100:0m0) )| = [ 5 (0 ]) (7)) 70| S (T = )™~ 70 (7.22)
1 1 721’i+2
€8] (i (7)) — G| < 06 (T — ti(7)) > 2 ~ o5, 7,
i d . d 1 645
2 (el (s — | 2 £ld] (Yt (s 3(T _ . 61;+5 3. A+3
o (ei@ls) | = |5 (68101) (tir) g )| 8 (7 = tutr®4° ~ 6,
For ’HLi[(ﬁ],
| | N |
[Hal ) m)] (@ = tm) (1) < RE ) R (). (7.23)

where we used the trick in [2, p.19] for the last step.
For the application of Proposition 1.2, pointwise and Holder estimates are required for Ha ;[p](§1, ti(7;)). For || <

/ , denote Qi) ,, = {(v s) € R* x (:(0), 7:(Ty, Hf)—ﬂ[iuﬁﬁ Ti — ‘y dk <8§T-}. For any (9V],s;) €

th .J =1,2with s, < s1,itholds that ¢;(s2) < t; (81) [5b)] € [151%]/2,3]§"| /2], and s; € [r; |Q[2‘2,Ti] C [37:/4, 7).
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Due to 77(4137 0), [Ho, [d)](-,ti(-))]ca,a/z(QM ) = Ofor |71 > 16 R and Ha;[¢] ("), :(7:)) = 0 for |§l!l| > 8R. Hence,
we always assume |(!| < 16R in this proof. By (7.22),

w5 ~ 7y T,
(811 (52)) — [ 0:(520) | = | (1 [N gy 1 (51— 52) (7.24)

7l;+6

1;+1 45
S [0s1+ (1 —0)so] 73 [0sy + (1 — 0)s2] s |s1 — sa| ~ 7 T |s1 — so|

with some 6 € [0, 1]. In this proof, § € [0, 1] will be used repetitively and will vary from line to line.
Recall U(z) given in (1.13) with n = 5.

U@l 0) ~ (@) 72 ~ (g1) 72,

)72
—2 .
U a1,0) — U 62,0)| = 3 052 + (1 - 0) 52 1] |2 - | 5 (5t Hat — o)
ol

(0) (5 0) [ £ 5715 = 0 oo
Denote wll = (p1; 0, [@](t:(57))55) + €50 [@] (t:(57)) — G7,0). By (7.22), for 3] < 16R,
b1 S (T = t:(5,))" 2 (G ~ (T = 1:(72)) "2 (57) < RTUT = 1))/,
ol = wl| < (T = t3(m) "2 (G |51 = o] + (T = #:(7:))™ 2 ol — 5], (7.26)
[ti(s1) = ti(s2)] S (T = ti(r:) "+ 51 = sal,

where in the second line, (T — t;(7;))65+5 (511} |5y — s3] < T (T — t;(7;))*" 2. Recall ©,, given in (1.14) with n = 5. By
(7.26), (1.22),

(7.25)

l;

|91i(w[j]’ti(5j))‘ ~ (T = ti(sy))le ~ry 70 -

3 B 3 w2
O, (! ti(s1)) — O, (wP, ()| = (£20)) | [(@ — tiCs1))t — (7 — o))" £ <4(T||))>

+ (T — ti(s2))" [Lz <4(T|f|(231))> -1 (%) H

< d L \w[1]|2 |w[2]|2
~ ‘£( —tils )) ‘5 Os1+(1— 9)52(81 B 32)‘ + (T — ti(s2))™ T —t;(s1) a T —t;(s2)
ST =101 + (1 — 0)52))* |51 — s (7.27)
eyt | i) = ta(s2) | (] P (el - o))
O ) (T = i) T T ti(s2) |

ST = ()™ s = sal + (T = ta(ma) { (T = ti(7))™ (§1)2]s1 = s3]

(T =m0 [( = ()t s =l 4 (7 — () o) - o) }

50;+3 ~Til\ 1 ~ ~[il\ 1 ~ -
~ (T = t(r)™ " (51 = sal 4+ G0 = ) 7 T (g — s+ () 1 - 212 )

By (7.26), T < 1 makes wlil + ¢lil € BF(0,05"). Using ¢, [p] € X, .0, and |wll| < RTHT — t;(s;))"/? in (7.26),
we have
Ly

[ [@] (1) + g1, 13(5)) | < 00(T — ti(s))!* ~ Bor; "o (7.28)
It max{|f;[1] — o |, [s1 — s2[} > 1, by (7.28), 6 = R™s, @[i]‘ < 16R, for any ¢; € (0,1/10), we have
|t [0 (W + ¢l i (51)) — ¥, [p] (w2 +§q[i]7ti(82))| < 507'74!2ﬁ < R’Tlo@[i]fclrf‘“iﬁ, (7.29)
(max {511 — 52|, |s; — s[1/2})"" ~ 00T N .

If max{[oM) — 3P| |s; — 52|} < 1, by (7.26) and T — t;(s;) ~ T — t;(;), we have [wl| < R™H(T —t;(s1))"/2, |wlt —
21 4 Jt5(s1) — ti(s2)|Y/2 < (T — ti(s1))** 2. Hence, by the Holder estimate (7.1) with (z,,¢,) = (wl + ¢l #;(s1)),
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p = (T —t;(s1))*""? In R, where obviously (T — t;(s1))*"*? <« p < R™Y(T — t;(s1))"/2, then there exists a constant
¢1 € (0,1/10) independent of T, o such that

RACICE +q[” t‘(sn) — oo [0 (! + g 1i(52)) |

<079 [T = ti(s)" + PR = ti51)) 7 (mane { ) — 0, i (51) = ti(s2)] 2 })
075 [30(T — (r)" 4+ 2 RHT — 4(r)) 4] (7 = 1) e {18 = 581 sy — 5a//2})™ 730
~ (In R)~ <6O+(lnR) R )(T—ti(n))” (max{wm —5[21|,|31—82|1/2})“

S R (g~ T (max {1 — 521 |5, — s[1/2})

where we used (7.26) for the second “<”.
Combining (7.24), (7.25), (7.27), (7.28), (7.29), (7.30), we obtain

. _ jlil _ gl
[Ha )5, im))| S 77 3 2n(Az.0) < BER ) i (Uz0),

Haa[B1C O gy ST G 2 gecaon[r 1502 + (@) + 77 @) ) 150 73D
YT

1 i — _ ~[i\ —92 ¢ iy — T
+ R0 (i) q} <7ty 1y [l\<16R~RZT Lty = 150 <16R-

Recalling the norms given in (1.17), by (7.23), (7.31), we have ||H1;[¢](-, ti('))||—1,g,r§’,Ri,n(o),r7( T,y) S < R3,
[H2,i[@]Co t (DN 1,2 77 1 B 7(0) 7 (Tog) S R3 provided 77 > 16R. The choice of g 1 4, (], &s, (] in Lemma 7.2
meets the orthogonal equations (7.2). Namely, ’Hl,i[q&](y[i] L ti(73))s Hg,i[cb](gj[i] ,ti(7;)) satisfy the orthogonality conditions
(1.20) with n = 5 for 7; € (7;(0),7i(Ts,)). Thus, for T < 1, Proposition 1.2 with n = 5,7 = 7; € (7;(0),7:(T%,))s
c=-la=5r)=1"pe () 1e(HGp+1).1).c=c1.9=Huild| W, t:(). h = Ha2i[] (7", 1:(7:)). and
Zy € O(R3) satisfying (1.21) (see Remark 1.2.1 for the existence of Zo) yields a mapping 7;"[¢] = T,;"[¢](y", 7;) with
the estimate

Tl + WV Tl S Rery (1) 73 ~ RTERXT — ti(m)) ()~
for (y(,¢;(1;)) € B (0,9R) x (0,T,,). For solving (7.18), it suffices to solve the fixed-point problem
¢ =T"[] := (T [¢] (™M, m1.(1), T3 (@) (01, w2 (1), - . T (@) (01, 7o (1))

fort € (0,Ty,),y € Bf (0,2R),i=1,2,...,0. Due to the small quantity R~2, T [¢] € Bin 4,

For all ¢ € Bin o,, the uniform Hélder continuity of Vi 7;"[¢] in t € (0,T,,),y" € Bf(0,8R), i = 1,2,...,0
follows from the parabolic regularity theory. Hence 7[-] is a compact mapping from Biy ., to itself. The Schauder fixed-
point theorem gives a fixed point ¢o, = (91,00, $2,005- - - » Po,00) € Bin,op- Moreover, Proposition 1.2 gives ¢; 5, (-,0) =
Cini.ooZo in BF(0,2R) with a constant Cyy, .5, satisfying [Cinioe] < (7:(0))"'R2 ~ T4+3R% . The last uniform
C''*1:(14+51)/2 poundedness in By (0,2R) x K follows from (7.23), (7.31), and the parabolic regularity theory. O

Remark 7.3.1. We did not apply the Holder estimate (7.1) to 1)y, |p] with (x*, 2 = (¢, t;(1)). Since due to (7.26), we
require p > (T — t;(:))*"* *2 (). Then the term p?>= R=3 (T'—t;(7;)) =31 ~* will lead to additional spatial growth (1),
which can not be eliminated by R~

7.4. Proof of Theorem 1.1.

Proof of Theorem 1.1. Combining Lemma 7.1, Lemma 7.2, Lemma 7.3, for ¢ € (0,T), we set

Ve (2, ) = g (2, ) +Z( oo el (@ (9;[5])+®l( 0,0 ( ;)+uwo¢mo(xfg‘[’i‘]),t)n(i;%‘gw (7.32)

1,00
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with ;oo = i,0 + i 1,0, and then v, satisfies

8ﬁv00 = A/UUO in B;(O7U()_1) X (07T00)v (_aﬂcsvao) (i),O) = (‘UUO|%UO'U)(‘%7O) on B4(Ova()_1) X (O7TO'O)’

o [d]
~ 1 X
Voo (2,0) =D [bi,oo'ei(T 2all) + > Cattp.onPat.p0(®) + U, 0),eld o) () (75)
i=1 pENS,HpHZI <4lmax+4,p5€2N
. [1] 3 5 _ g[i] (0) el (0)
X x oz T o . —
+ 0, zl4.0 77( )+ Wio0(0)) 2 CiniooZ ( 0 )7}( - ﬂ in BF(0,001),
(055 s O0) 2 Gt 05 o7 I oy )| o B @) .

where b; ,, are constant vectors and Cpi) , 5> Cin,i 0, are constants satisfying |b; 5| < C|In T|T§l i+ ICytil ool <

2 R
Ce~ %7, and |Cinisoo| < CT*i+3R% with a constant C' independent of T, o¢; &; are given in (6.2); @il po € CE(RY)

and ¢, 0 = 0in R3\BJ (ql1],26); Zy € C(BF(0,2R)).
Uptoa subsequence there exist constant vectors b; o and constants Cypi , o, Cin,i,0 such that b; 5, — b0, Cyit p o, —
Cqm .0 Cin,i,0o = Cin,i,0 as 0o J 0. For simplicity of exposition, we will often take a subsequence with o | 0 but will not

state it. By Lemma 7.1, by the diagonal method, there exists a function v such that ¢,, — g in L{3 (R5 x [0,T)), and

loc
then vy € Xy, 0. Similarly, by Lemma 7.2, 1, 1.0, — i.1,0, 500 — f[Z in CL.([0,7)), and then p; 1 0, 50 satisfy (7.3) with
oo = 0. Denote 11,0 = pi,0 + pi,1,0- By Lemma 7.3, ¢; o0 — @0 and Vs, — Vo in L (Bg (0,2R) x K) for any
compact set ' C [0,7"), and then ¢; 9 € Bin 0.
Now we can extend the definition (7.32) of v,, at o9 = 0 naturally. Then vo(z, 0) € C°(R7%). By the convergence
argument above, v,, — vg in LS (R5 x [0, 7)) and vy, (z,0) — vo(z,0) in Cf _(R3) for any k € N. One testing (7.33)

loc

with arbitrary functions in CZ° (RS, x [0, 7)) with o sufficiently small, then taking o | 0 deduces that vy is a weak solution
of (1.16). Set u = g, j1; = pui 0,0 = §([f], and then we get Theorem 1.1. O

Remark 7.3.2. We can not use contraction mapping like [5] to solve f1 1, 5 under the current topology since we do not have
gradient estimate of 1) and can not get the Lipschitz continuity about 1 1, & in (7.11) with T,,; = T.

ACKNOWLEDGEMENTS

We appreciate the discussions about the vanishing adjustment method for the heat equation with Yifu Zhou, the distribution
of the right-hand side of the outer problem with Jianfeng Zhao, and the linear theory for inner problems with Youquan Zheng.
Qidi Zhang wrote part of this paper when visiting Wuhan University and appreciates the hospitality of Yifu Zhou. Xiaoyu
Zeng appreciates the warm hospitality from the University of British Columbia and the Department of Mathematics, and he
is supported by China Scholarship Council and NSFC (Grant Nos. 12322106, 11931012, 12171379).

APPENDIX A. A TYPE I SOLUTION OF (1.2)

Proposition A.1. Suppose o € (0,1), p > 1, then u, given in (1.7) satisfies (1.2) with (tg,t1) = (—o0,T') and (1.8).
Proof. By [54, Corollary 1.4], fort < T,

(at A)* T—t) (6%) (T —t)°

1—2¢

(T_T)a _ 1 _ p\a—«a o 5
I/ — )l dT_\r(—a)l(T ?) /1 (z—1)1+ad’

where we changed the variable z = 5:; s

Given u (7,0, t) of the form C (T — t)*, by [54, Theorem 1.7, (1.7)], in order to make

IC(=a)|

@ a ap—1 a
49T () (O —Ax)T[C(T =) =|C((T-t)"] C(T 1),
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we take a = =% withp > 1, and C = £, with Co, > 0 given in (1.7). Thus u (Z,0,t) = £Ca,, (T — t)ﬁ. By [54,
Theorem 1.7, (1.5)], for x,, > 0,

2a [e%e) 22 o L2 .
ur (T, @p,t) = 4axrn(a) /0 e S (dr7) ™ T (£Cup) (T —t +7)71 der %7
M R —a +C0, [F N
—ir (£C T —¢t p—1 717ad — o,p / A n ozfld
= T A ¢ (ECap) (T =t 7)7r T T J, € tus) 5w
_ ECap x; _ AT -6 =1
n 8 go— =L v d
T(a) \ 4 > (/ /T t > 2 7 i

2\ po1 ﬁ T _ ¢\ -1 [ —a
Z") [/ e ST ds + ( 5 ) / ) e_ss(’_lds} ~ & (max {T —t, a2 }) 7"
0 X ;Zt

APPENDIX B. CONVOLUTION ESTIMATES
B.1. Inequalities toolkit.

Lemma B.1. (1) Givena > 0, b > 0, then for any r > 0, ree=br < bffo x%e " dx. Givena < 0,b > 0, then for any
r >0, bfroo 2% dr < r%e7. Givena € R, b > 0, 79 > 0, then for any r > g,

/ % "% dx ~ C(a,b,ro)re"", (B.1)

where C(a,b, o) > 0 is a constant depending on a, b, ro, and “~” does not depend on any parameters.
(2) Givena € R, rg > 0, then for any A > B > 1,

A A
/ r*(1+InA—Inr)e "dr < (1+1In (B 'A)) / r*e”"dr < C(a,r0)B* (1+In (B~ 'A)) e . (B.2)

B B

(3) Given b > 0, a > 0, then r2eP is monotone increasing inr > 0. Givenb > 0, a < 0, rg > 0, then for any
ro >1T1 2> T,
r2e’1 < C(a,b,ro)re (B.3)

with a constant C(a,b,rq) > 0 depending on a, b, 1.
Given b < 0, a < 0, then r*e’" is monotone decreasing in r > 0. Given b < 0, a > 0, rg > 0, then for any
re > 11 2 To,
riet™ > C(a,b,ro)rie’? (B.4)

with a constant C(a,b,r9) > 0 dependmg ona,b,rg.
(4) Given a < 0, rg > 0, then for any ro > r1 > 710,

i (14 [Inr]) = Cla,ro)rg (1 + |Inrel), (B.5)

r{ (1+1n(rg'r1)) > Cla)rs (1 +1n (ry'rs)) (B.6)
with a constant C'(a,r9) > 0 depending on a,rq and a constant C(a) > 0 depending on a.
(5) Givena < —1,b € R, rg > 0, then for any r > 1y,

/ 2% (1 + [Inz))’ dz < C(a, b, ro)r™ (1 + [In )’ B.7)

with a constant C(a, b, rq) > 0 depending on a, b, 1.

Proof. (1). The first two inequalities are straightforward. Givena € R, b =1, r9 > 0, for M > 1,
Mr Mr
/ x%e dx ~ C(M, a)ra/ e %dr =C(M,a)r%e™" [1 - ef(Mfl)T] .

One taking M = M (ro) large to make (M — 1)rg > 1, then err x%e *dx ~ C(M,a)r*e~". For the other part,

/ x%e Fdx = (Mr)te ™" —|—/ ar®te~"dz, and / ar® e dx| < —/ x%e *dx.
Mr Mr Mr Mro Mr
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One taking M = M (|a|, ro) large to make 2 < 9-1, then

MT‘O

o0
/ e dx ~ (Mr)ae_Mr < e(I=M)ro prapac—r
Mr

Thus, we conclude (B.1) for b = 1, which implies the general case b > 0 by

o0 (o]
/ ey = p7o ! / 2% *dz ~ C(a,b,ro)rte ",
T b

T

(2) is deduced by (1).

(3). Forb > 0,a < 0,79 > 0, denote f(r) = r®e"", then f'(r) = r®" (b+r"'a) and f'(r) > 0 for r > 9]alb~". For
ro <7 < max {9]alb~!, ro }, we have r?e®" ~ C(a, b, ro)r§e’™. Thus, (B.3) holds.

The inequality for the case b < 0, a > 0, 79 > 0 is deduced by applying the above result to r~%e =",

(4). Denote g(r) = r*(1+ |Inr|). Forr > 1, ¢’(r) = r* ' [a(14+1n7r) 4+ 1] and ¢/(r) < 0 for r > C; with a large
constant Cy = Cy(a) > 1. For r € [rg, C1], g(r) ~ C(C1,r0). Thus, (B.5) holds.

(B.6) is deduced by changing the variable z = 1y 11 and the above result.

(5). For any M > max {ro, 1}, r € [ro, M], we have

o)
/ 2% (14 |Inz|)’ dz < C(a,b,ro, M)t (1 + [Inv|)®.
T

Forr > M,
/Oo””u<1+lnw)bdw R Y O Y LAY [yt L
r a+1 a+1}/, )
where
b /Ooxa(l—l—lnm)b_ld:c <}/ooa?“(1+lna:)bdm
a+1/, —9/.

for M = M(a, b) sufficiently large. Thus, we conclude (B.7).

B.2. Beyond Neumann boundary value v(t)|§3|_blll(t)§‘j|§l2(t) and v(¢) (|1Z| + 11 (t))_b 1iz1<ta(t)-

Lemma B.2. Let n > 2 be an integer; t > to > 0, b € R. Suppose that v(s) > 0 for s € [to,1]; 0 < I1(s) < lo(s) < C,s2
for s € [to,t], C;7 M () < Ui(s), and l5(s) < Cila(t), for all s € [max{to, £},t], where C.. > 0,C; > 1 are constants.
Givenx = (%,1,), T € R"™ %, 2, >0, Cy > 0, we define

n

t |&—y|2+a2
Tty = [ [ (=52 5 pys)dyas
tO Rn—l
Sor an admissible function f. Then for any € € (0,1), we have

T [o®)|Z]~"10, ()< ja1<ia ] (@, 1) < C(wl + sup U(tl)w2),
t1€[max{to,t/2},t]

where C'is a constant only depending on n,b,C\, Cy, Cy,

=12
—Co(l—e¢) MO

t—t

n C ‘T%z
wy =1t 2e %t (1 e
1 |7]<C. [1+(1—e)%]e*1t% + 1Z|>C. [1+(1—e)%]rlt%

50 (s), b<n—1

. /max{tmg} U(S) 111(12(8)) b=n—1ds
t li(s) /2 B 7
0

1), b>n—1
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13t), b<1
!
(In(E), b=1, 2] < 11 ()
0N,  b>1
b, b<1
(In(%)), b=1
Wy 1= |x|1—b’ l<b<n—-1, L(t) < |z| < Ia(t)
o2 (In(55)), b=n-—1
P ), b> -1
ln—l—b t , b < _ 1 ., .
: l,,(t() : " |lz[>~", lo(t) < |z| < C,t2
<1n( )> b=n—-1 22 4 6452
1l1(bt() )7 |x\_2t2_%6_200n+8f,1“ |;g‘ >C t3
r=7°1), b>n-1 ’ *

with the convention 538 =1 (%E = 1) ifl1(s) = la(s) = 0 (I1(t) = I2(t) = 0).
Under the additional assumption that 11 (s) < Cil1(t) for all s € [max{to, £}, 1], one replacing ln(gi(z)) by (In(
the definition of wy, then the same upper bound is held for T [v(t) (& + L (t)™° 1|i‘§l2(t)].

l2(s .
zfgs)» n

|

Proof. In this proof, we assume j;ff coeds = 0ifty > toand [, 1 Lo, <|y|<e, - - dy = 0if ¢1 > c2. We emphasize that all
“<”, “~” in this proof are independent of ¢, ¢to. Denote ¢, := max{to, %}

T [v®IZ "1, (< jz1<0] S Coz= “’/ / K Col= o s Y1710, ()< [yl <t () dyds
Rn
t
n _ \T U\ B
+ sup U(tl)/(t_s) BemCors / o Y170, (o <pyi<ta(s)dyds == uy + sup v(t1)iy
t1E[tx,t] Ty R"’_l t1 €[ty 1]
Obviously,

t 2
~ _n 0o, tn _on ey
o < Ug ::/ (t—s)" 2e COf*S/ e~ Co =5
t* Rn—l

_gy lEmul® ) - .
For uy, notice |y| < C,tz. For |&| < Mtz, we use e “° =+ < 1; Given a constant € € (0,1), for |Z| > Mtz with

M=c, [1 r (- e)ﬂ ¢!, one has |# — y| > (1— M~1C,) |Z| > (1 — €)% |7|. Then, u; < wy.
Let us estimate uy in different regions.
For |7| < 271C; 14 (t), we have |# — y|? > 47 |y|?, and then

t 22
ug < / (t—s) "2 Cors /
t Rn—1

3 RO 1 213(t)
t— (gcm t— (9002 t ok e [ATC0CP S o we s
~ + ) + , e~ Cois (t—s)" 2 , € 7277 T2dzds = ugy + ugo + usas.
. PL0) AL 0) 4

_ 1 _213(1)
(9C)2 (9C)2 CoC 755

—b
Y1 o, )<yl <ot (1 @y ds-

\y\

O (H)<ly|<Cila (1 @YdS

For ugy, using =% ~ 1 and t, > £, we have

(9C)222 ln_b_l( t), b<n-—1
) Co— 12 B . n_g lo(t)
U1 gxn_"/ . e "r27dr<{ In (Cflf ) , b=n-1
C x
’ o t, b>n—1,

where we always use the convention éfgg = 1ifl1(t) = lo(t) = 0. Since n > 2, we have § — 2 > —1. Then

(O} b<n—1 (127"(), zy, < lo(t)
1
uz S ¢ In (012 ﬁfgg) L b=n—14 227", Io(t) < m, < Cyt2
=01y, b>n—1 (2722 587200 g > O3,

where we used (B.1) for the case z,, > C*t%.
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For w99, since l(; <t—s< (1) then

(oC €] c. )2’
i 12(t) ) 1, b<n-—1
(9C4)2 — Oy Zn _b+1 t—s
Uy S 2w € Vs (t—s)" 2 (In (z())>a b=n—1ds
RCmE: 2(t)\n=b _1
(9Cx) (tls)z 2, b>n-—-1
(90*)2 2
1 b 12(t) b_3
f (ohz.s € T2 2dr, b<n-—1
Co 12()
<90*>2 2
2—n HO) —r.2-2 Cox} _
~ Q2 f (0c2ez € T2 <ln(rl%(t”)))dr7 b=n—1
Co 12()
, (0002}
n—b—1 2—n 13(1) n_g
I (t)xs f oonze2 € T2 dr,  b>n—1.
Co 12()

Since n > 2, we have

ntw, b<i1

n(2g), b=1, o < 1y (1)
nt@), b>1
170(1), b<1
(=), b=1
", l<b<n-—1, () < 2y < Iy(t)
S -n n —
U2 S x2 (ln(lf(t)», b=n-—1
227N, b>n—1
(90:)%a2
—9273—b —Co l2(t) n
Ly l2 (t)e 2 5 b<n-—1
—24-n 13(1) yy ~Co S5 Ty > la(t)
7l (t)(ln(ll(t)»e 2@ b=n—1> Tn =2
RN
27 (I (b)e 5O h>n—1

where we used (B.2), (B.7) for the case 1 (t) < x,, < l3(t), b =n — 1, and (B.1), (B.2) for the case xz,, > la(t).
For us3, by (B.1), we have
t

UuU23 5 l?_b_g(t) efcﬂ(z?ﬂr‘lilcle?(t))i(t _ 5)17%d5

12(t)
T (9C)2
n—b—: — — 2-% * —r, -
=50 [Co (a4 a7 GO TE [ g e
0( ) W
2 41522 2,2
RN R Tttt/ (2] L ey 0%
SEP) (22 + 471021 (t)) L Co0e) HE ~ 1) (22 + B (1) L7 30

In sum, when n > 2, for |#| < 271C; 1, (t), we have
L), b<1
<1n(l2gt3)>a b=1 3 T, < ll(t)
1=, b>1
170, b<1
(In(24)), b=1

uzngl = lL’}lib, l<b<n-—1, Zl(t)<$n§lg(t)

v M (In(7E)), b=n-1
227 ), b>n—1
m=7b@), b<n-—1 1
2 lz(t() ) . " x%—n, Io(t) <z, < C'*té
(i) b=n-1 222 B e 2C0 > C,t2
l?_l_b(t), b>mn—1 y In x2,
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where we used (B.6) for the case 1 (t) < z, < I3(t),b=n — 1, and Lemma B.1 (3) for the case z,, > C*t%.

For 2-1C7 13 (t) < |#] < min {9clz2(t), 90,13 }

t 2 = 2

_n _CO% —Co \xiyql —b . i i

uz < /L (t—s) 2e 00 /Rn*l e =yl (10;111(t)§|y\<—';' Tl cos 12\1|<|y|SCzlz(t)) dyds
2

= Ug1 + U2z + U23.
For w1, since | — y| > |;—|, we have

p|n—1-0 b<n-—1
t n —C xi_,’_ - |l’| ~ Y
u21§/ (t—s)"2e 0( o ) ““ds ¢ (In( |Z] ), b=n-—1

11(t)
2 ), b>n—1

Z*170 b<n—1

- -2 oo
=[Oy (22 + @ : 2 e TPz 2y <ln(ﬂ)> b=n-—1
= o\, 4 20, S5t = Li(t) /1 B

: ), b>n—1.

Since n > 2, using (B.1) for the case z,, > t%, we have

|z"1t b<n—1
up S 4 (W(Agh), b=n-1
), b>n—1

] x, <13

2
n r 1
|z| 7225 e 2007 g, > t3.

For w9, using n > 1, we have

t 2 = 2
~1—b - _Cy 1’_n —Co \z—_y|
uz2 < |7 ﬁ (t—s)"ze 707 / € = 1z oy <3/ dyds
L R’Vl*

2
1%|2

t 1 i 9C07=5 n_3
~ |a~:|7b/ (t—s) e Coes / e 227 2dzds
t 0

2

— |Z|2 2 t 2
( *)2 x5 x
sial lap [T s e Oy [ - e @
t t &z

L 2 T (99C%)2
r (99C) 222
~1—b | |mn—1 gni-2 [T ., oy [~ -
= || |Z] (Cozz) 2 e "r22dr + (Cox})? e "rzdr
x x
20 %. (QQC*)2 %.
03 o2

Since n > 2, using (B.1) to the case |Z| < x,, < t%, and (B.1), (B.3) to the case z,, > t%, we have

jZ[*°, Tn < |Z|

Ugy < ¢ xpE Y, |#] <z, < t2

~

2
—2~n—1— _n Zn 1
$n2|$|n 1 bt2 2e 2Co ; l‘n>t2,

where we assume that if |Z| > ¢2, the case |#| < 2, < ¢ is vacuum, and the cases x,, < || and z,, > ¢2 have the common
part t2 <, < |Z| with the same upper bound up to a multiplicity of a constant. The same convention is used for the other
similar conditions.

For u»3,

t

2

K n ey _Coll
ugg < [ (t—s)"2e 0TS e Yl Loz < |y <Cyla (v Ay ds
Rn—

2
13(t) 152 CoCF 13(1)
4 s

|
t— . t—— t 2 -~
(9C%)2 (99C;C)? _b_1 _ Th t—s _  n-b_3
- / +/ 12(0) + 2 (t—s) 3 2 % 2 e "z 2 T 2dzds 1= ug31 + ug32 + Usss,
t _ ‘2 _ 1Z| 121
2 t (9C )2 t (99C;Cx)2 Coi=

|| 15(t) t

T
where 55ieyz < ez < 3
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For uo31, using e ~ 1
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for this part, we have

4 B , (O} b<n—1
(OC») _CyFn
U231 5/ (t*S)ife CO"*SdS (ln (|.’Z“_1l2(t))>7 b=n-1
t
2 |zt b>n—1
Co 020202 1517, b<n—1
— (Coz?) % B0 32y ~1—1
= ( oxn) c .2 T <11’l (‘J}| lg(t))>, b=n-—-1
2o |1t b>n—1.
Since n > 2, using (B.1) for the case z,, > C’*t%, we have
B0, b<n—1 (BT, Tn < la(t)
U231 S <ln(l2|ét|) ), b=n-1 an ", Io(t) < zp < C.t
2" b>n—1 (2722 56200 g, > Cuth.
F i 2 <t—s< 2O weh
Or U232, SINCE m STU—8s CIeRER we have
t— 1|2 2 b_ 1 TEL
J (;Qf)lc*) (t—s)" 272 O 5 ds, b<n-—1
t_<92c*>22
&l
Uzza S ft (ég(f)lc*) (t—s)"2 e~ Cois (In (|§:|_2(t - s)))ds, b=n-1
T (9C)2
El 22
[zt bf (zgzg(f)lc Ga” (t_s)—%efCot%’st’ b>n—1
ICERE
126 O(QQCL?,;) z2 )
(Coxn) 7 [ weynre € Tr272dr, b<n-—1
Co 12 ()
2, 2
oyi—z €0 (QQCZ\C\;) 2 Coz?
= q (Coxp)' % [ oo e e (In(SEg))dr, b=n—1
°TZ®
(9901 Cx)2%2
|Z|" 1P (Cozp) 8 f O(gc*)'f,'% e "rz2dr, b>n-—1.
0Tz
Since n > 2, we have
1t@), b<1
In(28)|, p=1 < |z
n( 7] )| s ) Ty < |Z|
%12, b>1
B70(t), b<1
(m(28)),  b=1
< rib l<b<n—1, |Z] <z < 1a(t)
U
232~ o), b=n-1
27 Fn 17t b > -1
—913—b,y 0 (0023
220 (t)e 2" b<n-—1
o (9C)2%a2
w2 (B )e B0 b=n -1, Tn>b(),
o 9092
x 23T (e “ T30 b>n—1
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where (B.1), (B.2) are utilized for the case x,, > l2(t); for the case |Z| < x, <l2(t),b=n —1, weused n > 2, (B.7), (B.2)

to get
1
(/C (9Cx)2z2 +/1
t)

0
12(

2. 2
Co (99C;C)2%a2

HE Cox?

rlz?

>e—%3—2<1n( ))dr

13(t)

2 %_1 2 5212
(9Cx)=|z| n )
< (@)’ [T e s () ~ ()

ke

5 o

o Th |x|
122

For us33, by (B.1), then

n |zo|2 T n
t—s) "5 P05 ds = 7730 (Colw)? 2 e "re 7 3dr
2 2
Co (ggcl‘c:‘*; |z
x

~|m—3—b
U233 S \33| 2
t— (99C;C+)2

(99C;,C) 2% |x|? (99C;Cx)2%22
Slal2aPte T Rt te T

In sum, when n > 2, for 2_1Cl*111(t) < |Z] < min {90;[2(15), 9C, 1> }, through tedious comparison, we have

l%*b(t), b<1
!
(In(22). b=1
|Z|1P, l<b<n-1, Tn < |21
3> (7)), b=n-1
FPn ), b1
l%*b(t), b<1
U S wog 1= <ln(%)>, b=1
513}17% 1<b<n71, |Lﬂ<mn§12(t)
zr " (In(ggy)), b=n—1
L DN S
n—1—b —
ly 12(t()t)’ ’ f nel 2, Ia(t) < wn < Cut?
<ln(ll(t))>v b=n~—1 x72t27%6*20017% Zn > Otz
l’f_l_b(t), b>mn—1 n n xU2,

where we used Lemma B.1 (3) for the case x,, > C.t3; (B.6) for the case x,, < |Z|, b =mn—1, and the case |Z| < z,, < l5(t),
b=n-—1.

For |Z| > min {QCIZQ(t), 90, t2 } we estimate @iz instead of us. For @iz, note that |Z — y|? > $1|%|%, then

t

5 _n oo (2?4 84172) 2 b

o < /; (t_s) 2e O(In 5112l )t—s /]1;n71 |y‘ 1Cflll(t)S\y|§Cll2(t)dde
2

6 —n e B, b<n—1

S |:CO (‘ri + 81|£|2>:| / @2 46472 e—rr%—er IH(CZQEEQ% b=n-1
248405

2= ), b>n— L

Since n > 2, using (B.1) for the case || > t3, we have

lgflfb(t), b<n-1 2" 2] < P
= — l2(t) — ’ -
o S weg == ¢ (In , b=n-1 22 46452

In(7,)) \x|*2t2*%e*2007+§“ | .|z >t

), b>n—1

Since wq ~ wag when |Z| ~ 11 (t), min {90;[2(1%), 9C*t%} ~ l5(t) due to the assumption I3 (t) < C.t7, and way ~ wWa3

when |Z| ~ I2(t), we get the first conclusion

T [”('5)|$|_b111(t)5\z|§z2(t)] Swy + sup v(t1) (wa1liz<iy (1) + Wazliy ()< |z <ta(t) + W23 1|25 15(1) ) 5
t1€[max{to,t/2},t]

where w211z <1 (1) + Waz2liy (1) <7<t (1) T W23 17> 15() ~ W2
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The upper bound of T [v(t) (2] + L))" 1\£\§l2(t)} is deduced by the first conclusion and

~ —b — ~—
o(t) (12| + 1) ™ Lizj<iae) ~ v O Lz1<0 1) + v1E] 10, 1) <)51 <t 1) -

B.3. Exponential decay estimates for Neumann boundary ¢|Z|~°1;, (1)< |z/<1,(¢) and t* (|Z| + L(t)™" 1iz1<ta(t)-

Lemma B.3. Letn > 2 be an integer, t > to > 1, v = (%,2,), T € R"™, x,, > 0. For an admissible function f, we define

t n \i7y|2+z,21
Tilfltyi=2 [ [ fante-s)7F e T sy,
tO Rn 1
which satisfies the equation
Ou = Au in R’ x (tg,00), —0p,u= f(Z,t) on IR} X (tg,00), wu(-tg) =0 in RY.

Suppose that 0 < 11(s) < lo(s) < C,s2 for s € [to, t], C; M1 (t) < 11(s) for all s € [max{ty, 1.t O Pz < ly(t) <
CitP2, where C, > 0,C; > 1 are constants,

p2<%, if a+ps(n—1-5)=—
then
1nt@), b<1
(W), b=1, |2 <L)
1n=t), b>1
T [taﬁ"‘_blll(t)gmglz(t)] (z,t) < Ct® l%_b(t) b<1

(In(%2)), b=1, L(t)<la| <L)
2|12, b>1
#%+len+1|?
B 0e TR el > ba(1)
with the convention l2(2 = 1ifl1(t) = l3(t) = 0, where C' is a constant only depending on n,a,b, p2, Cy, C}.
Under the additional assumption that 11(s) < Cjli(t) for all s € [max{to, t},t], the same conclusion is held for
2

7o [t 3]+ 1) Laica |-

Proof. By Lemma B.2, the upper bound estimate of 7 [f] (z,t) has two parts. For b < n — 1, po < 1, in order to make the
second part dominate the first part in the range |z| < lo(t), it suffices to guarantee

max{to, %}
t—% / Sa+p2(n_l_b)d8 S ta-i—pg(l—b),
to

which can be deduced under the assumption
p?S%)a—i—pQ(l_b)—’—%ZOa a’+p2(n_1_b)#_
p2<%, a+py(n—1-0)=—

12124 zn+1]2

Then 71 [t°]Z] 71y, (1)< jz1<t2()] S totP2(1=8) on || = I5(t). Denote f := totP2(1=b)e=r="—"3"""— Then

&2 +|on+1|2
(61& _ A)f _ e—nl 12 o t1] t—1Hatp2(1-b) [(K _ 4,€2) 1 (|3~3‘2 + |1?n + 1|2) + 2%n + a+p2(1 . b)] :
which is non-negative in R” x (to,00) if & € [0, 1] and 2kn 4+ a + pa(1 — b) > 0.

PEIRES
t

-9 7,0,t) = 2kt tP2(1-0)—1o—
(=0z, f) (%,0,1)

Take £ = %. As aresult, Cf is a barrier function in the range |z| > I5(t) when C is sufficiently large and the first

conclusion holds.
The pointwise upper bound of 77 [t“ (& + L))" 1|5‘§12(t)} is deduced similarly.
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—b 0l
e T

B.4. Neumann boundary value ¢°|Z| 3med

Lemma B.4. Letn > 2 be an integer, £ > 0, k € (O,i), %+af%+2/£n >0, t>tg>1, 2= (%,2,),7€R" L, 2, >0,

Ti [] defined in Lemma B.3, then

> 1,
T |to)z]be 1 _ 1] (1,1) < o~ b+l ] C(R), b n€(0,4n(03)
71203 Cb,tr), i b< —1,5 € (0,min{f, 1}),

where C(k) > 0 is a constant depending on k and C(b, ¢, k) > 0 is a constant depending on b, {, k.
212 +a3 1 Ualren)?

Proof. Set fy(z,t) = t" 5 ze 7 fo(x,t) =t 2t 2e
calculation gives

with a constant k to be determined later. Direct

rn b 1
Oy —A) fr=e" R ta=5—3 {<2+a—g+2mn)t+m(l—4n) (1> +22) |,
(=04, f1) (2,0,t) =0,
Bltan)? b 1 n ~
(8t—A)f2:e_”(‘ e ja-§ -3 [(2+a—g+2lin>t+2ﬁ(n—2)t3;|+ff(1—8/i)(x|+xn)2 ,

(=04, f2) (2,0,t) = 2t E 2 |Z]le™ ™.

Sincen > 2,k € (0,1), 3 +a—5+2kn > 0,2, > 0, there exists C2(x) > 0 small such that (8; — A) (f1 + Ca(k) f2) > 0
Additionally,
|%|2

[~ 82, (f1 + Ca(r) f2)] (£,0,8) > Co(r)26t*~ 3~ 5|3l 0
{cw; if b>—1,k€ (0,

=

alz|—b 7fﬁ
>tME[ e L
|Z]>t2

C,¢ k), ifb<—1,k€(0,£)

for some positive constants C(x), C(b, £, k). Thus, C (f1 + C2(k) f2) is a barrier function with C sufficiently large.

|
B.5. Right-hand sides t*|2|~"1;, (;)<x|<to() and t* (|2 + 11 (£)) ™" Liaj<in(0)-
Lemma B.5. Let n > 2 be an integer, t >ty > 1, x € R™. For an admissible function f, we define
¢ _n lz—y|?
Teo 1)yt = [ [ fanle = )78 55 (g, s)dyds, (B.3)
t n

which satisfies the equation Oyu = Au+ f in R™ X (tg,00), u(-,tp) = 0in R™.
Suppose that 0 < [1(s) < la(s) < C,s3 for s € [to, 1], C’l_lll(t) < Ul1(s) for all s € [max{to, %},t}, C’l_ltp2 <ly(t) <
CitP2, where C, > 0,C; > 1 are constants,

b<n p2<3,a+p22-b)+%2>0, ifa+pn—>b)#—1
’ p2<%7 l:fa‘i’pQ(n*b):*l,
then
1270t if b<?2
(In(28))  ifb=2, o] <l
270t ifb>2
T [t02] "L, 1) <jai<ia )] (2,1) < CL* { 137(t) ifb<2
2
2

(W) ifb=2, L(t) < |z < la(t)
|z|20 if b>2
P(t)e i, ] > Ia(t)

with the convention 12(3 = 1ifl1(t) = l2(t) = 0, where C is a constant only depending on n, a, b, p2, Cy, C}.

Under the additional assumption that l1(s) < Cily(t) for all s € [max{to, £},t], the same conclusion is held for

Ten [t“ (J| + ()~ 1|x\§lz(t)]
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Proof. Similar to the proof of Lemma B.2, the requirement “C; 1, (t)
in [59, Lemma A.1] can be relaxed to “C; '1;(¢) < l1(s), and lo(s)
[59, Lemma A.1] is indeed independent of %.

One recalling [59, Lemma A.1], the estimate of Tgn [¢*|2| "1, (1)<|z|<12(+)] is split into two parts. We call the term

(s) SCili(t), i =1,2,forall § < s <t t>ty”
Iy

<l
< Cila(t), for all s € [max{to, £}, and the “<” in

including ftto/ /22 as the first part and the other term as the second part. For b < n, ps < % in order to make the second part
dominate the first part in the range |z| < l3(¢), it suffices to make

t/2
2 / gatp2(n=b) q4 < Cratr2(2-0)

to
with a constant C' independent of ¢y. This can be deduced under the assumption

p2<g,a+pa(2-b)+5 >0, if at+pa(n—0b)#-1
P2 < 3 if a+p2(n—0b)=-1

||

2
Then Trn [tz 715, (1) <jui<ia(y] S 1977278 on |z| = I5(t). Denote f := t*tP2(2=be="7~ with a constant & to be
determined later. Then

(0 —A) f= R - Tratpa(2-0) [(k —4r*) t 7 2> + 260 + a+ pa(2 - b)],

which is non-negative in R x (to,00) if & € [0, 1] and 2kn + a + p2(2 — b) > 0. For b < n, p; < 3, we take k = I and
C'f is a barrier function in the range |x| > l5(¢) when C is sufficiently large.

The estimate about T [t“ (lz| + 11(8) " 1|I|§2(t)} is similar. O

APPENDIX C. SOBOLEV-TYPE LEMMAS
Lemma C.1. Given a domain Q2 C R" (possibly unbounded), suppose that2 < p < ccifn=1,2,2<p < % ifn >3,
and a sequence (ug)x>1 C H'(Q) satisfies
up — vy in HY(Q), Vup — vg = (va1,V22,...,02,) in L*(Q), up — vg in LP(Q),
then Vv = v in L*(Q), vy = vg in LP(Q).

Proof. Given a function f € L*(Q), [, fOr,ux — [, fv2i, i = 1,2,...,n. Forany g € HY(Q), g — [, fOz,91s a
bounded linear mapping on H'(Q). By uj, — vy in H'(Q), we have [, f0z,ur — [, fOz,v1. Due to the arbitrary choice
Off S LZ(Q), then 6%111 = vg; In LQ(Q)

For the other part, given a function f; € L¥' (Q), where 2 + 14 =1, Jo frux — [ frvs. Forany g € H'(Q), g — [, f1g

p D
is also a bounded linear mapping on H*(£2) by the Sobolev embedding theorem and the choice of p. By uz, — vy in H* (),
we have [, fiux — [, f1v1. Due to the arbitrary choice of f; € LP'(2), then vy = vg in LP(Q). O

Lemma C.2. Let V(z) € L*(R"™1), V(Z) — 0 as |Z| — oc. If a sequence (uy,)i>1 satisfies w, — uo in H'(R7) as k —
o0, then up to a subsequence, [y, |V(Z)] |(uy — uo)(&,0)|* di — Oand [, . V(%) [ug(&,0)|* dz — [r. . V(&) [uo(%,0)|* dE
as k — oo.

Proof. Without loss of generality, assume u;, — 0. Since the Sobolev embedding H'(R") < L?*(9R") is continuous, we

have sup > [|ux (-, 0)|[L2@®n-1) < C. Thus, for any € > 0, there exists R sufficiently large such that fIi’IZR \V(2)] |ux(&,0)) di

< €. Since for any compact set 2 C OR’}, the Sobolev embedding H'(R’) < L?() is compact, up to a subse-

quence, klim Jiz1<r V(@) lug(2,0)|*di = 0. Thus, fr. . |[V(&)||(ur — uo)(Z,0)]>dZ — 0as k — oco. Combining
bade el

supy > lluk (-, 0)[|L2@®n-1) < C, we have the second convergence result. O

Recall L%(R"’l), H ; (R7) defined in (2.4), (2.5) respectively.

=12
12|

Lemma C.3. Given an integer n > 2, for u € H; (R™}), we have erH u?(%,0)e” 2

- 4
di < %HUH%{;(RZ}_)'
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Proof. Set the norm ||f||H‘1/(R1) = [IRKOVJCF + V(x)f2)dz]1/2 with V(x) := \w\ + 1. For any u € C(R%), let

2
u(x) = e

v(z), then direct calculation gives that

o =2 2 9 =2 2 |z[? AT
lul“e” 3 dx = vide, |Vule™ =3 da = |Vo|* + 6 1) dx,
" ¥ ¥ ¥

+

n+4 z)2
mzmw:4<ww+4ﬁ}z4@

which indicates ”u”Hl(R”) < lvll3 L&) < n+4Hu||H1 ®D)" Thus,

12
/ uz(i,O)e*‘ T di = / v*(%,0)di = — Oy, (vV¥)dx = 72/ 00y, vdx
Rn—1 Rn—1 Rn 4 n (C'l)
n +
< 20vll 2@y 100, ll 2y < [0llEa@n) + 1V0llT2@n) < ——llullf@n),
which implies the lemma by approximating general functions in HF} (R%) by C° (Ri) O

APPENDIX D. NEGATIVE EIGENVALUE AND EXPONENTIAL DECAY OF THE EIGENFUNCTION

This section is devoted to the eigenvalue problem about the linearized equation around the ground state U (z). The main
result is Proposition D.5. o
Define D*?(R") as the completion of C2°(R") (f(%,0) can be nonzero) under the norm ||V f| ;- (®2)" Obviously,

H'(R%) & DY2(R?). Given an integer n > 3, p = 25, for v, f,g € D*?(R'}), set functionals

2 p+1 ~
o] ;:/ ﬂdx—/ PP (2.9 42 1) ;:/ |Vv\2da:—/ [P+ (7,0)dz,
1 2 Rn—1 p—|—1 i Rn—1

(D.1)
Bulf,gl:== | Vf Vgdz —p/ (I~ fg) (z,0)dz.
R™ Rn—1
Direct calculation deduces that J[-], I[] € C? (D?(R%),R) and I[v] = (J'[v],v), By[f, g] := (J"[v]f, g). Define
DI*(R%) == {f € D"*(RY) | f(,0) € LPTHR"")\{0}},
2 D.2
o= ([ 1r@od) T [ Vi, e i), ®2
R’Vl* i
Define the Nehari manifold
Ne:= {f € D"*(R})\{0} | I[f] = 0}. (D.3)
By [16, Theorem 1], for all f € DY2(R?}),
1 an— 1 . 2(n—1
(n— 2)% é|5 HEEED | £, )] por a1y < ||VfHL2(JR1) with p+1= %, n >3, (D.4)
where |S™ 1| is the volume of the n — 1 dimensional unit sphere. The equality sign is attained only by
_n=2
o(x) = 0102 {|x — 02 + (2 + c2) } Y ox= (i1, € R7Y (D.5)

with constants ¢; # 0, ca > 0, and a constant vector ¥ € R™ 1, It follows that (D.5) attains ilnzf Q(f). By (D.4), we
fEDLE(RY)
have

1 1 2(p+1)
/ \Vf\%lx:/ |fIPH (2,0)dz > [(n —2)2272|S"~ L2 0] »T for f€Ne; NeC D*(R}). (D.6)
Ri Rn—1

Define the tangent space at v € INe as

TNev = {f e DY) [(I'fo], fy =2 [ Vo-Vide—(p+ 1)/ (|v|”‘1 vf) (%,0)d7 = 0}. (D.7)
R" Rn—l
Lemma D.1. Suppose that n > 3 is an integer, p = —n 5, and v € Ne attains flenlfl J[f] € R, then
e

Vv - Vgdx — / (\v|p*1vg) (,0)dz =0 for g€ Dl’z(]R’_f_); Bylp, 0] >0 for ¢ € TNev.

Rn—1

n
RZ
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Proof. The first result is deduced by the Lagrange multiplier method. For the second result, there exists ¢ € D1’2(R7}r)
such that (I'[v], 1) # 0. Indeed, since v € Ne and (I'[v],v) = (1 —p) [pn_s [Pt (%,0)dE # 0, we can take ¢ = v.
Given ¢ € TNev, set H(t,s) := I [v+ tp + stp]. Then H(0,0) = 0 and 9sH (¢, s |(t 9=(0.0) = (I'[v], %) # 0. For |t], |s]
sufficiently small, H (¢, s) is smooth about ¢, s. By the implicit function theorem, there exists § > 0 small such that
I'[v], ¢)
H(t,s(t) =0 Vte(=60); s=s(t)eC?(=5,0); s(0)=0; 50 :f<7’:
(t,5() (2,9) (t) € C*(=6,6); 5(0) ) = ~ {7 a)
Set h(t) := ty + s(t)1, and then h(t) satisfies
h(0) =0, K (0)=¢, ht)ec C?*((-s, 6),D1’2(R’}r)), v+ h(t) € Ne for t € (—4,6),0 < § < 1,

where we take 6 < 1 to make v + h(t) # 0. The fact that v € Ne attains fi]r%\fI J[f] implies %J(v + h(t))| > 0.
€Ne

t=0
Therein,
d? -
St h(o)| _ = / VR O) de+ [ V- VI (0)de — p/ (1o () (2. 0)d
dt2 = Ri Ri Rn—1
= [ (ol o) @0)dz = B o)
Rn—1
where we used the first result for the last step. Hence the second result holds. |
Lemma D.2. Assume that n > 3 is an integer, p = —2=. For f € Ne, we have
1 1 2 1 1 b+l
Jf]l=(z———= dr=|-——— p=T D.8
U]<2p+J/1W1x (5-757) @) ®8)

Given f € Di’Q(Ri),fora constant cy > 0,

Joy ISP de -\ 7
)d

Il f]:@/ |Vf|2dx—cp+1/ FPF (7,0)dF = 0 < =< _
f f Ri f f f]Rn—l |f|17+1 ($,0

Rn—1

D.9)

and then c;f € Ne, Jlcsf] = (1 - 1> (Q(f))»—*.

Moreover,

. 1 1 . p=1
1= (57 551) (e, 00)

In particular, if fi € Ne attains inf J[f] then f1 attains inf  Q(f); conversely, if fo € Di’Q(Ri) attains
feD?(RY)

inf  Q(f), thency, fo € Ne and cg, f2 attains inf J[f].
fEDPRY) feNe

Proof. (D.8) and (D.6) imply
. (11 . (11 . =
flénl\erJ[f] N (2 B p+ 1) (flenlfleQ(f)) = (2 B P+ 1) (feDinzf(R )Q(f)) ’

Given f € Di’Q(R”) the choice of ¢y yields ¢y f € Ne. One combining (D.8), then J[csf] = <7 - #) (Q(f)»1,

S
+
-

f

S

2 p+1
which implies

1 1 =
- — inf = inf c inf Jle > 1nf J
<2 P+ 1) (fEDi2(R )Q(f)) feDI(RY) Tlesd) = ¢y fENe les 1] L1
O
Lemma D.3. Given an integer n > 2 and constants A = —m?, m > 0, then for u € C2(R1) N C’l(@) and x € M, we
have
u(e) = [ (Ot € () B = o)~ B2 = .~ dy
(D.10)

N /Rn_l(*ayn“)(ﬂv 0) [2E(lz — (3, 0)])] d,
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_n n

where E™(r) = m% ~1(2m) 2r' "2 Ka_y(mr) forr > 0 and Ku _y is the second kind modified Bessel function of order

% — 1. Moreover,

r2 T, on>2

|E;”(T)| < C(m,n) (17'<1 { <lnr> n=2

+ 1,.21em7”> for > 0. (D.11)

Remark D.3.1. Similar to (2.17), (D.10) can be used to represent solutions with some rough data.
Proof. By [55, Theorem 2.5], the fundamental solution of A+ X in R™ is given by —E"*(|z|), namely (A + \) (=E*(|z|)) =
d(z) in R™. The properties of —E]* are given in [55, pp.9-10].

Given 7 € R" %, 2, > 0,z = (Z,7,), take v(y) = —E™(|z — y|) — E™(|x — (§, —yn)|). Direct calculation yields

8ynv|yn:0 =0,(A+Nv=(Ay+ ) [-E™ly—z|) — E™(ly — (&, —z4)|)] = 6y—s + 6y—(3,—z,) in R™. Integration
by parts yields
I

= / [(_aynu)v] (ga O)dg + / (u(y)lyn>0 + Olyngo) (5y7m + 5y—(5c,—acn)) dy
Rn—1 n

(Au+ M) vdy = /

[(=0y,u)v — (—0y,v)u] (§,0)dy + / u (Av + Av) dy
R?’L*l

n
RY

= [ 10, 0)0] G,0)d + uo).
Rn—l
Taking x,, | 0 deduces the case = € IR"}. Plugging v(y), then we complete the proof. ]

Given Vi (z) € L>®(R%) and V2(z) € L= (R"™!), we say that f € H'(R") satisfies the equation
—~Af=Vi(x)f in R}, —0,,f=Va(Z)f on ORY}
in the weak sense if

Vf-Vgdr — / Va(Z)(fg)(z,0)dz = Vi(z)fgdr  holds forall g € H'(RY).
R Rn—1 R
Lemma D.4. Suppose that n > 2 is an integer, A < 0, V(&) satisfies V() € L®(R"™') and limyz|00 V(Z) = 0, let
¢ € H*(R'}) satisfy

—Ap=Xp inRY, =0, ¢6=V(T)¢ on IR} (D.12)
in the weak sense. Then for all v € [0,v/=X), we have |¢(z)| < Ce™"I*l in R with a constant C depending on
n, /\7 v, ||¢||L2(]Ri)a V<:Z.)

Proof. Denote m = /= \. Since ||| z2(rn) < o0, by [38, Theorem 5.36, Theorem 5.45], ¢ € C(R'!) and [¢(z)| — 0 as

|z| — oo. By the representation formula (D.10) in Lemma D.3 and uniqueness of the weak solution of (D.12) in H'(R"), ¢
can be written as

o) =2 [ V(o 0OF (2~ (w.0)hdu, (0.13)

where E7" is given in Lemma D.3 and satisfies (D.11).
The following argument is in the same spirit of [28, Proof of Theorem 2.1]. Given v € [0, m), denote

Alz) = sup |o(w,0)]e =@ B(a) 1=/ 2|7 (jo = (w,0)])] "=~ OV (w)] duw.
weRn—1 Rn—1

If A(z) = 0 for some x € R}, then ¢(-,0) = 0in R"~!, which implies that ¢ = 0 in R’} by (D.13) and the conclusion holds.
Hereafter, we always assume A(z) > 0 in R'}. Obviously, |¢(z)| < A(z)B(z). By (D.11), v < m, the properties of V (z),
and Lebesgue’s dominated convergence theorem,

B(x) = /]R 3 21E(|(z, n)])] eV(zn)] V(2 —z)|dz — 0 as |z] = oo,

which implies that there exists Ry = Ry (n,m, V(%)) > 0 sufficiently large such that
lp(z)] <27'A(z) for z € RT, |z| > Ry. (D.14)
Note that for v > 0,

A(Jj): sup |¢(w70)‘ sup e*l/|m7(270)|e*l/|(2,0)7(w,0)\
weRn—1 z€R"—1

sup  sup |p(w,0)] e VT E0lIE0-@ Ol = gyp - A(z,0)e VI =01
ZERTL71 weRnfl ZeRnfl
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Combining (D.14), we have

sup |¢)(w,0)|e*”‘I*(“”0)| <271 sup A(w7())e*”‘””*(w’0)| < 2*1A(x) < A(x).
|w|>Ry |w|>Ry

By the definition of A(x), it implies
A(x) = sup |¢(w70)‘€*”|1’*(7ﬂ,0)\ < ¢ Vlzl sup |¢(w70)|€u|w\.

|w| <Ry lw|<R:

Combining (D.14) and the local L*° estimate [38, Theorem 5.36] in B (0,2R;), we conclude this lemma. O

Proposition D.5. Given an integer n > 3, p = =, (z) given in (1.13), there exists only one negative eigenvalue \g

for the following eigenvalue problem in H* (R%),

—Af=MXf inRY, =0, f=pUP"'f on OR'}. (D.15)
The eigenvalue Xy is simple with an eigenfunction Zy(z) € C*°(R%) N H'(R™) satisfying [ZollL2(ry) = 1. 0 < Zo(z) <
Ce—V7l in R7 forallv € [O, \/—)\0) with a constant C' depending onn, A, v. Moreover, \y = 0zf 1nf1 - ||fHL2(R" Bylf, f]-
cHL(RY)

Proof. Step 1. Forany f € H'(R") satisfying (D.15) in the weak sense, by parabolic regularity theorem, f € C'* (M) By
Lemma D.4, for all v € [0,/— )\0) we have | f(z)| < Ce™"/*l in R with a constant C depending on n, Ao, v, £l 2 gy

Step 2. Denote A\, = 02/ Hl(]R Hf||L2 E7) Bylf, f], where Bylf, f] is well-defined since U(z) € D"?(R7) for
e 77/

n > 2. Notice that By[U,U] = (1 —p) [pn. UPT1(Z,0)d < 0. Since U ¢ L*(R’}) when n < 4, instead, ap-
plying ||U7](:E/R)HL2(W BU[Un(x/R),Un(x/R)] with R sufficiently large implies A, < 0. For any f € H'(R%),
Jgn—1 [2(E,0)dE < 2[[fllL2@®) |0, fll L2 (R ), then for any € > 0,

p[ O 0005 < A age + OIS

which implies A, > —o0.
Step 3. Take a sequence (fy)r>1 C H'(R'.) such that [ fkllL2en) = 1 and By[fy, fr] = Ax + o(1) with o(1) — 0 as
k — oo. It implies

_ - - As
eV fill2@ny + CONfelliz@n) = P/R B (UP71fR) (&,0)di = / IV fil? dz — Ay + 0(1) > -5 >0
T
when k is sufficiently large. Thus
(1= IV filliay) < OO+ A 40D, » [ (071) @0y > -5

It follows that sup || f[| 71 (r7 ) < co. By Lemma C.1, C.2, up to a subsequence,
k>1
fr=foin H'RY), Vfi =V, in LARY), fi = f. in L*(RY),

p/]R”ﬂ (Up—lflg) (z,0)dz —>p/Rni1 (Up_lff) (&,0)di > _%7

which implies
Bulfu f] A <0, 0<[|fillr2@n) <1
and then
||f*||L2(Rn Bulfs, [+] < Bulfs, f«] < A

By the definition of A, we know that Hf*HLQ(M)BU[f*,f*] = Ao Thus || fullp2ry) = 1 and Bylfs, fi] = As. Since
IV|fI| <|Vf]a.e., by the definition of \,, we also have By [| f«|, | f<|] = Ax.

Denote S. := { f e HY(R?) | f satisfies (D.15) with some Ao < 0 in the weak sense } By the Lagrange multiplier
method, f., |f«| € S< with the eigenvalue \,. Step 1 shows that the elements in S are smooth with exponential decay. By
strong maximum principle and Hopf theorem, |f.| > 0 in M

Step 4. Claim: the dimension of S is 1.

Assume the opposite that there exists two linearly independent functions fi, fo € S~ with negative eigenvalues Aq, Ao
respectively. Note that A (f1, fQ)Lz(R:z_) = Bylfi, fo] = AQ(fl,fQ)L2(]R1). We can assume (f1, f2)L2(R:L_) = 0 since if
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A1 # Mg, it holds automatically, and if A\; = As, we replace f; by fi — Hf?HZE(Rg)(fh fQ)Lz(Ri)fg # 0 by the linear
independence of fi, fo. Then By|[f1, fo] = 0. Fori = 1,2, f; # 0 deduces By|f;, fi] = )\i||fi||%2(m) < 0.
Since J[] € C? (DY2(R%),R), (J"[glg, 9) = (1 —p) [gn |Vg|?dx # 0 for g € Ne, and (D.6) holds, by [43, Proposition
+

5.75], Ne is a complete C''-Banach submanifold of D172(Rﬁ_) of codimension 1. Since U(z) € Ne for n > 2, in particular,
TneU is codimension 1 in D*?(R7).

Thus, there exists wg € D'?(R%)\TneU, such that fi = ajwg + aswi, fo = biwe + bows for some constants
a1,b1,a2,bo € R and wy,wy € TneU. Taking ¢; = ¢co = 1,9 = 0 in (D.5) and then using Lemma D.2, (D.9), we get
that U (z) given in (1.13) attains fi€n1\fle J[f]. By Lemma D.1 and By|[f;, fi] < 0,4 = 1,2, we have a; # 0,b; # 0. So we

canset f3 := f1 — by ‘a1 fo € TneU. One using By [f1, fo] = 0, then By [fs, fa] = Bulfi, fi] + (b7 'a1)?By|fa, f2] < 0,
which contradicts with Lemma D. 1.
Taking A\g = A« and Zy = | f.|, we complete the proof. O
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