AARMS SUMMER SCHOOL—LECTURE 1IV:
INTRODUCTION TO LYAPUNOV SMICHDT
REDUCTION METHODS FOR SOLVING PDE’S

MANUEL DEL PINO AND JUNCHENG WEI

1. ALLEN CAHN EQUATION

Energy: Phase transition model.
Let Q C RY of a “binary mixture”: Two materials coexisting (or one
material in two phases). We can take as an example of this: Water in
solid phase (+1), and water in liquid phase (—1). The configuration of
this mixture in 2 can be described as a function

“(2) = +1 in A
YT -1 mQ\A

where A is some open subset of (2. We will say that u* is the phase

function.
1
- 1 _a2\2
1 /Q( ")

Consider the functional
minimizes if v = 1 or u = —1. Function «v* minimize this energy
functional. More generally this well happen for

/Q W(u)dx

where W (u) minimizes at 1 and —1, i.e. W(+1) = W(-1) = 0,
Wi(x)>0ifx#1oraz#-1W"+1),W"(-1) > 0.

1.1. The gradient theory of phase transitions. Possible configu-
rations will try to make the boundary dA as nice as possible: smooth
and with small perimeter. In this model the step phase function u* is
replaced by a smooth function u., where € > 0 is a small parameter,
and

_J +1 inside A
ue(z) ~ { —1 inside Q\ A

and u, has a sharp transition between these values across a “wall” of

width roughly O(e): the interface (thin wall).
1
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In grad theory of phase transitions we want minimizers, or more
generally, critical points u. of the functional

Vu|> 1 / (1 —u?)?
Jw)y=e [ D2 [ T00
(u) 6/9 5 T - )1

Let us observe that the region where (1 —u?) > v > 0 has area of order
O(e) and the size of the gradient of u. in the same region is O(g?) in
such a way J(u.) = O(1). We will find critical points u. to functionals
of this type so that J(u.) = O(1).

Let us consider more generally the case in which the container isn’t
homogeneous so that distinct costs are paid for parts of the interface
in different locations

¢wy:4(ﬁi??+ylafy>qmm

3

a(x) non-constant, 0 < v < a(z) <  and smooth.

1.2. Critical points of J.. First variation of J, at u. is equal to zero.

0
§J5<us + t@)

We have

= DJ.(u)[p] =0, Vpe ()

t=0

J-(us +tp) =
ie. Vo € C(0)
0= DJ.(u:)|p] = a/Q(Vuan))a + é /Q W' (u.)da.

If u. € C%*(Q)

/ (—EV - (aVue) + gW’(u€)> =0, VYpelCrQ)
Q
This give us the weighted Allen Cahn equation in §2

—eV - (aVu) + gu(l —u?) =01in Q.

We will assume in the next lectures = RY, where N = 1 or N = 2.
If N =1 weight Allen Cahn equation is

!
(1.1) R (1 —u*)u =0, in (—o0,0).
a

Look for wu. that connects the phases —1 and +1 from —oo to oc.
Multiplying (1.1) against «’ and integrating by parts we obtain

*d (v (1—u?)? *ad L,
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Assume that u(—o0) = —1, u(oco) = 1, v/(—00) = u'(00) = 0, a > 0,
then (1.2) implies that

2\2 oo/
(1_u) +/ guazo
4
from which we conclude that unless a is constant, we need a’ to change
sign. So: if a is monotone and a’ # 0 implies the non-existence of
solutions as we look for. We need the existence (if a’ # 0) of local
maximum or local minimum of a. We will prove that under some
general assumptions on a(z), given a local max. or local min. xy of
a non-degenerate (a”(xy) # 0), then a solution to (1.1) exists, with
transition layer.

We consider first the problem with a =1, e = 1:

(1.3) W'+ (1-WHW =0, W(-00)=—1, W(c0) = 1.

The solution of this problem is

W (t) = tanh (%)

This solution is called “the heteroclinic solution”, and it’s the unique
solution of the problem (1.3)up to translations.

—00

Observation 1.1. This solution exists also for the problem

(1.4) w” + f(w) =0, w(—o00)=-1,w(oco)=1
where f(w) = —W'(w). Solutions satisfies “’T/Q — W(w) = E, where E
is constant, and w(—o0) = —1 and w(oo) = 1 if and only if E = 0.

This implies

/w ds y
0 2w(s)
t(w) — oo if w — 1, and t(w) — —o0 if w — —1, so the previous
relation defines a solution w such that w(0) = 0, and w(—o0) = —1,
w(oo) = 1.

If we wright the Hamiltonian system associated to the problem we
have:

V=-fla), d=p

Trajectories lives on level curves of H(p,q) = %2 —Wi(q), where W(q) =
(1-¢*)?

4

Let zp € R (we will make assumptions on this point). Fix a number
h € R and set

v(t) = u(zg+e(t+h)), V() =cu(zg+e(t+h))
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Using (1.1), we have

e2u (zo +e(t + h)) = —EQ%UI(IO +e(t+h)) — (1 —22(t)v(t)

so we have the problem
(1.5)
/
V() e (@ote (M) (O)+(1—v())o(t) = 0, w(—00) = —1, w(oc) = 1.
a
Let us observe that if € = 0 the previous problem becomes formally in
(1.3), so is natural to look for a solution v(t) = W(t) 4+ ¢, with ¢ a

small error in €.
Assumptions:
(1) There exists 3,7 > 0 such that v < a(z) < 3, Vx € R
(2) [lo/ |y, [la"[| o) < +00
(3) xgissuch that a’(zg) = 0, a”(x¢) # 0, i.e. x¢ is a non-degenerate
critical point of a.

Theorem 1.1. Ve > 0 sufficiently small, there exists a solution v = v,
to (1.5) for some h = he, where |h.| < Ce and v.(t) = w(t) + ¢:(t) and

[fell < Ce

Proof. We write in (1.5) v(t) = w(t) + ¢(t). From now on we write
f(v) =v(1 —v?). We get
/ !/

' () e S (e ()0 + (w0 0) = () = ()t () +f ()6 =
#(~00) = 9(00) = 0.

It can be written in the following way
(16) &'+ F'(wH)o+ B+ B(@) + N(6) =0, (~o0) = 4(00) =0
where
B(8) == (xo + <(t + M),
N(9) =f(w+ ) — f(w) = f'(w) = —3wd* — ¢,
E__Z@m+a@+h»w

We consider the problem
(1.7) ¢" + [(w(t)g+9(t) =0, ¢ L™(R),

and we want to know when (1.7) is solvable. We will assume g €
L>*(R). Multiplying (1.7) against w’ we get

| @ rwwes [~ g =0

—00 — 00
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the first integral is zero because (1.4). We conclude that a necessary

condition is
oo
/ guw' = 0.
— 0

This condition is actually sufficient for solvability. In fact, we write
¢ = w'V, we have
¢+ [(w)g =g & w'V+ 20"V = —g

Multiplying this last expression by w’ (integration factor), we get

[e.9]

(W) = g’ = w'2V'(t) = —/ g(s)w'(s)ds

Let us choose
t dT T
U(t) = — _ "(s)d
0=~ [ o |ty
Then the function

o) =) [ 5 [ oo

Recall that
w'(t) & 2v/2e VM

Claim: if [*° gw’ = 0 then we have

[¢lloe < Cliglloo-

/ guw'ds

For t < 0 a similar estimate yields, so we conclude

|6(8)] < Cl|glloc-

In fact, if ¢ >0
e

SOl <] | —

t
dr < Clglce™* / V7" dr < Ollglloe.
0

|
0

O

The solution of (1.7) is not unique because if ¢; is a solution implies
that ¢o = ¢ + Cw'(t) is also a solution. The solution we found is
actually the only one with ¢(0) = 0. For g € L™ arbitrary we consider
the problem

(1.8) "+ fl(w)p+ (g —cw') =0, inR, ¢eL®R)
where C' = C(g) = f;? iu/;

)2
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Lemma 1.1. Vg € L*(R) (1.8) has a solution which defines a operator
¢ = Tlg] with

IT[9)llo0 < Cllglloo-

In fact if T[Q] is the solution find in the previous step then ¢ = T[g —
C(g)w'] solves (1.8) and

(1.9) [6llse < Cliglloe +1C(9)IC < Cllglloe

Proof. Back to the original problem: We solve first the projected prob-
lem

¢" + [(w)o+ E+ B(¢) + N(¢) = Cu', ¢ € L*(R)

where

Jo(E + B(¢) + N(¢))w'"

fR w'?
We solve first (1.9) and then we find h = h. such that in (1.9) C=0

in such a way we find a solution to the original problem. We assume
|h| < 1. It’s sufficient to solve

¢ =T[E+ B(¢) + N(¢)] := M[g].
We have the following remark

|E] <O [IB(9)lloo < Celldlloos  IN@) < C16°[loc + 16°]]o0)

where C' is uniform on |h| < 1. We have

C:

d
1M lootll = Mlloo < CUE oI BONooHIN (@)oo < C”+e 1 |ooH 167 [loo+ 1 [|oc)
then if [|¢]|oc + [|¢'[|c < Me? we have
d

Moo + |57 M|l < C*>.

2o+ 1 a1 < O
We define the space X = {¢ € CY(R) : ||}l + [|¢']|co < C*e?}. Let us
observe that M (X) C X. In addition

HM(¢1)—M(¢2)Hoo+||%(M(¢1)—M(¢2))HOO < Ce([|or—=2lloot |91 —dloc)-

So if € is small M is a contraction mapping which implies that there
exists a unique ¢ € X such that ¢ = M|[¢]. d

In summary: We found for each |h| <1
¢ = ®(h), solution ofl.7

. We recall that
h — CI)(h)
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is continuous (in ||[|c1) . Notice that from where we deduce that M is
continuous in h.

The problem is reduced to finding h such that C' = 0 in (1.7) for
¢®(h) =. Let us observe that

C =0 a(h):= /R(Eh + BI®(R)]) + N[®(R)])u' = 0.

Let us observe that if we call 1(z) = £ (z), then

P(xote(t+h)) = w(x0)+w’(xo)5(t+h)+/0 (1—8)" (wo+se(t+h))e (t+h)>ds

We add the assumption a” € L>(R) in order to have ¢” € L>(R). We
deduce that

/Ehw' = 52@//(900)/(t+h)w'(t)2+53/R(/0 (1—8)" (wo+se(t+h))ds)(t+h)*w' (t)dt

We recall that: [, tw'(t)* and

\/R(B[aﬁ(h)] + N[p(Mhw'| < Clel @)l + [[@(R)|[1=) < CE°.
So, we conclude that

ac(h) = ¢/ (z0)e*(h + O(e))

and the term inside the parenthesis change sign. This implies that
Jh. : |he| < Me such that a.(h) =0, so C = 0.
Observe that

L(¢) = ¢”—2¢+ew+3<1—w2>¢+%f”(w+s¢>¢¢+0(52>eﬁt' =0, |t|>R

We consider ¢ > R. Notice that 3 f”(w + s¢)¢ = O(e?). Then using

<;A5 = ce Il + el Then using maximum principle and after taking
§ — 0, we obtain ¢ < ee” .
A property: We call

L(¢) = ¢" + ['(w)p, ¢ € H*(R).
We consider the bilinear form associated
Bloo) =~ [ L@ = [ 6"~ Fwpe’. oeH'®)

Claim: B(¢,¢) > 0,V¢ € H'Y(R) and B(¢,¢) = 0 & ¢ = cw'(t).
In fact: J"(w)[¢, ¢] = B(¢,$). We give now the proof of the claim:
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Take ¢ € C’OO( ). Write ¢ = w'V = W € C°(R). Observe that
Lw'V] = L (w?P') and

B(¢,¢) = —/%(w'Q\II’)’w’\II = /mew’ Vo € C°(R)

Same is valid for all ¢ € H'(R), by density. So B(¢,¢) = [, [¢'|* —
fl(w)¢? = [fw2|¥']? > 0 and B(¢,¢) = 0 < ¥ = 0 which implies
¢ =cw'.

Corollary 1.1. Important for later porpuses There exists r > 0 such
that if ¢ € H'(R) and [, pw’' =0 then

B(6,9) 27/R¢2

Proof. If not there exists ¢,, [ H*(R) such that 0 < B(¢y, ¢n) < = [, ¢2.

We may assume without loss of generahty | ¢2 =1 which 1mphes that
up to subsequence

¢n — ¢ € H'(R)
and ¢, — ¢ uniformly and in L?sense on bounded intervals. This
implies that

n—oo

0= lim gbnw —/gbw’
R
On the other hand

Jiorz 23 [a-uhe —o
and also [ |¢)|?+2 [ ¢2=3 [(1—w?)¢2 — [|¢']P+2 [ ¢*—3 [(1—w?)¢?
so B(¢,¢) =0, and [w'¢ =0so ¢ =0. But also
2 < 3/(1 — w2 +o(1)

which implies that 2 < 3 [(1 — w?)¢? and this means that ¢ # 0, so
we obtain a contradiction. O

Observation 1.2. If we choose § = then

2||f/Hoo
/ 0% — (14 8)f (w)é* > 0.

This implies in fact that
Bo.0)za [ o
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2. NONLINEAR SCHRODINGER EQUTION (NLS)

gil; = ?AV — W(x)U + ||~ 1D,
A first fact is that [, |¥|* = constant. We are interested into study

solutions of the form U z,t) = e *F'u(z) (we will call this solutions
standing wave solution). Replacing this into the equation we obtain

cBu = e*Au— Wu — |ulPu
whose transforms into
E2Au— W = Nu+ [uf fu=0, wulx)—0, as|zr| — oo
choosing E = 2. We define V(z) = (W(z) — \)
2.1. The case of dimension 1.

(2.1)

e —V(r)u+u? =0, z€R, 0<u(z)—0, as|z] — oo,p>1.
Assume: V > v > 0, V, V', V" V" € L*, and V € C3*(R). Starting
point

(2.2) w'—w+wP =0, w>0, w(*oo)=0,p>1

There exists a homoclinic solution

C p+1 =
w - — - ()
(:osh(p%t)'”‘1

Let us observe that w(t) ~ 2¥®VCe M as t — oo and also that
W (t + c¢) satisfies same equation.

Staid at 2o with V(z0) = 1 we want u.(z) ~ w (£2%2) of the problem
(2.1).

Observation 2.1. Given zq we can assume V(x¢) = 1. Indeed writing
u(z) = A\ Tv(Azg + (1 — \)o)
we obtain the equation
2" (y) = V(y)v + 0P =0
where y = Axo + (1 — Ao, and V(y) = V(M) Then choosing
A = /V (o, we obtain V(zo) = 1.

Theorem 2.1. We assume V(xg) = 1,V'(x9) = 0,V"(x¢) # 0. Then
there exists a solution to (2.1) with the form

ue () ~ w (x ;IO) -
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We define v(t) = u(zo + €(t + h)), with |h| < 1. Then v solves the
problem

(2.3) V' = Vi(xg+e(t+hv+1P =0, v(foo)=0.
We define v(t) = w(t) + ¢(t), so ¢ solves
(2.4)

¢ — ¢+ puw o — (Vo +e(t+h)) = V(20))d+ (w+¢) —w’ —pu'¢

(2.5) —(V(xg+e(t+h)) —V(zg))w(t) =0
So we want a solution of
(2.6) ¢" —d+puw’o+ E+ N(¢)+ B(¢) =0, ¢(x)=0.
Observe that
o %v”(m T Ee(t + Bt + B)2wl(?),

s0 |E| <Ot +1)e Ml < Ce ot for 0 <o < 1.

We won’t have a solution unless V' doesn’t change sign and V' # 0.
For instance consider V’(z) > 0, and after multiplying the equation by
v and integrating by parts, we see that [; v’“; = 0, which by ODE
implies that © = 0, because v and u' equals 0 on some point.

2.2. Linear projected problem.
L(p)=¢" —o+puPlo+g=0, ¢cL™R)

For solvability we have the necessary condition [ L(¢)w’ = 0. Assume
g such that [, gw’ = 0. We define ¢ = w'U, but we have the problem
that w'(0) = 0. We conclude that (w?¥’) +w'g = 0 for t # 0. We
take for t < 0

o(t) = w'() / ) wi—) / " gy (s)ds
and for t > 0
o(t) = /(1) / wcg—) / g(s)u/(s)ds

In order to have a solution of the problem we need ¢(07) = ¢(07).

t - T t
50) — i I TR Lo 0 st g
t—0— w+@ t—0~ __w'(lt)2w//(t) w"(0) ff)oo qu’
and
1
¢(07) = —
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and the condition is satisfies because of the assumption of orthogonality
condition.
We get [|6]loo < C||g]loo- In fact we get also: V0 <o < 1,3C > 0:

g™ [z + [[¢'e” ||~ < Cllge™|

Observation: We use g = g — cw’.(Correct this part!!!!)

2.3. Method for solving. In this section we consider a smooth radial
cut-off function n € C*°(R), such that n(s) =1 for s < 1 and n(s) =0

it s > 2. For 6 > 0 small fixed, we consider 7. =7 <%|>, E>1.

2.3.1. The gluing procedure. Write ¢ = n9.¢ + U, then ¢ solves (2.5)
if and only if

(2.7) M [¢" + (pwP™ = 1)¢ + B(¢) + 2¢'n} |

(2.8) + [9" + (pw*™" = 1)U + BU| + E + N(n2,¢ + ¥) = 0.
(¢, ¥

) solves (2.8) if is a solution of the system

(2.9)
¢ — (1 —pw" o+ n1E+n3.B(d) + mpw” W+ ,N(p+¥) =0

(2.10) U — (V(zog+e(t+h)) —pwP 11 —n )0

211)  +(L=me)E+ (1 =me)N(naed + W) +2¢"n5 . + 1.6 = 0
We solve first (2.11). We look first the problem
U — W (@)U +g=0

where 0 < a < W(x) < B, W continuous and g € C(R) N L*>*(R).
We claim that (2.3.1) has a unique solution ¢ € L*(R). Assume first
that ¢ has compact support and consider the well defined functional in

H'(R)
J(@):l/\qf’ml/wqﬂ—/g\p.
2 R 2 R R

Also, this functional is convex and coercive. This implies that J has a
minimizer, unique solution of (2.3.1) in H'(R) and it is bounded. Now
we consider the problem

t
\IJ’}E—W\I/RnLgn(’—R') =0
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«

Let us see that U has a uniform bound. Take o(t) = 124 5 cosh (‘/7&|t]>
for p > 0 very small. Since U € L>°(R) we have

Up <p(t), forlt|>t,r.

Let us observe that in [—t, g, t, g]

t]
"W 1] < 0.
¥ ®+gn (R)
From (2.3.1), we see that 7 = (Vg — ¢) satisfies
(2.12) ' —Wn > 0.

Claim: v < 0 on R. It’s for |t| > t, g if y() > 0 there is a global max-
imum positive v € [—t,r,t,x]. This implies that 7”(¢t) < 0 which
is a contradiction with (2.12). This implies that Wg(t) < lae 4

—_— (0%
llgll
(6%

p cosh <*/7at> Taking the limit p going to 0 we get Ui < , and

similarly we can conclude that

|V g|lLe < %, VR
8}

Passing to a subsequence we get a solution ¥ = limg_,, Y, and the
convergence is uniform over compacts sets, to (2.3.1) with

191]o0
(0%

[]loo <

. Also, the same argument shows that the solution is unique (in L
sense). Besides: We observe that if ||e?g||. < 00, 0 < 0 < /o then

le” o < ClleMg]|

The proof of this fact is similar to the previous one. Just take as the
function ¢ as follows

olt|
(0

Observe now that W satisfies (2.11) if and only if

2 i
U= <_ﬁ + W) [F[V, ¢]]
where W (x) = V(xo+e(t+h))—pwP~ (1—n; ) and Fl¢] = (1—m ) E+
(1 =me)N(n2ep+ W) +2¢"n5 . + 05 6. The previous result tell us that
the inverse of the operator (—% + W> is well define. Assume that

lollcr == l|@]loo + [|¢]l < 1, for some o < 1 and ||V]|o < p, where p
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is a very small positive number. Observe that ||(1 —n;.)E|/e < e7¢/.
Furthermore, we have
[F(¥,¢)] < e+ cellpllor + [19l% + 1113
This implies that
IMIP]] < Culu+ (| 9]13]
where 1 = e~/ + cel|gllcr + [|9]%,. If we assume p < A, and

choosing p = 2C, u, we have
M| < p.

If we define X = {U|||¥|l < p}, then M is a contraction mapping
in X. We conclude that

|M[U,] — M[Wy]|| < C.C||Wy — Wy, where C,C < 1.

Conclusion: There exists a unique solution of (2.11) for given ¢ (small
in C'-norm) such that

1()lloe < ™ +ellgller + [1l13]
Besides: If ||¢]| < p, independent of ¢, we have

[W (1) — ¥(p2)|loe < o(1)|l1 — B2]|.
Next step: Solver for (2.9), with ||¢|| very small, the problem
(2.13)
¢"—(1=pu?™ )+ B+, B(¢)+m pw? ™ Wi ) N (p+¥) —cw' = 0
where ¢ = # Je(m3,2:B(@) + i cpw? "W 411, N (¢ + ¥))w'. To solve
(2.13) we write it as

¢ =Tl B¢] + T[N (¢ + V() + pw¥(¢)] + T[E] = Q[g]
Choosing 0 sufficiently small independent of € we conclude that Q(z
X, and @ is a contraction in X for || - ||c1. This implies that (2.13) has
a unique solution ¢ with ||@||c1 < Me?. Also the dependence ¢ = ®(h)
is continuous. Now we only need to adjust h in such a way that ¢ = 0.
After some calculations we obtain

0= Ke*V"(xg)h + O(e*) + O(5¢?).
So we can find h = h. and |h.| < Ceg, such that ¢ = 0.

) C
ha



