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1. Allen Cahn Equation

Energy: Phase transition model.
Let Ω ⊆ RN of a “binary mixture”: Two materials coexisting (or one
material in two phases). We can take as an example of this: Water in
solid phase (+1), and water in liquid phase (−1). The configuration of
this mixture in Ω can be described as a function

u∗(x) =

{
+1 in Λ
−1 in Ω \ Λ

where Λ is some open subset of Ω. We will say that u∗ is the phase
function.

Consider the functional

1

4

∫

Ω

(1− u2)2

minimizes if u = 1 or u = −1. Function u∗ minimize this energy
functional. More generally this well happen for∫

Ω

W (u)dx

where W (u) minimizes at 1 and −1, i.e. W (+1) = W (−1) = 0,
W (x) > 0 if x 6= 1 or x 6= −1,W ′′(+1),W ′′(−1) > 0.

1.1. The gradient theory of phase transitions. Possible configu-
rations will try to make the boundary ∂Λ as nice as possible: smooth
and with small perimeter. In this model the step phase function u∗ is
replaced by a smooth function uε, where ε > 0 is a small parameter,
and

uε(x) ≈
{

+1 inside Λ
−1 inside Ω \ Λ

and uε has a sharp transition between these values across a “wall” of
width roughly O(ε): the interface (thin wall).

1
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In grad theory of phase transitions we want minimizers, or more
generally, critical points uε of the functional

Jε(u) = ε

∫

Ω

|∇u|2
2

+
1

ε

∫

Ω

(1− u2)2

4

Let us observe that the region where (1−u2
ε) > γ > 0 has area of order

O(ε) and the size of the gradient of uε in the same region is O(ε2) in
such a way J(uε) = O(1). We will find critical points uε to functionals
of this type so that J(uε) = O(1).

Let us consider more generally the case in which the container isn’t
homogeneous so that distinct costs are paid for parts of the interface
in different locations

Jε(u) =

∫

Ω

(
ε
|∇u|2

2
+

1

ε

(1− u2)2

4

)
a(x)dx

a(x) non-constant, 0 < γ ≤ a(x) ≤ β and smooth.

1.2. Critical points of Jε. First variation of Jε at uε is equal to zero.

∂

∂t
Jε(uε + tϕ)

∣∣∣∣
t=0

= DJε(uε)[ϕ] = 0, ∀ϕ ∈ C∞
c (Ω)

We have
Jε(uε + tϕ) =

i.e. ∀ϕ ∈ C∞
c (Ω)

0 = DJε(uε)[ϕ] = ε

∫

Ω

(∇uε∇ϕ)a +
1

ε

∫

Ω

W ′(uε)φa.

If uε ∈ C2(Ω)∫

Ω

(
−ε∇ · (a∇uε) +

a

ε
W ′(uε)

)
ϕ = 0, ∀ϕ ∈ C∞

c (Ω)

This give us the weighted Allen Cahn equation in Ω

−ε∇ · (a∇u) +
a

ε
u(1− u2) = 0 in Ω.

We will assume in the next lectures Ω = RN , where N = 1 or N = 2.
If N = 1 weight Allen Cahn equation is

(1.1) ε2u′′ + ε2u′
a′

a
+ (1− u2)u = 0, in (−∞,∞).

Look for uε that connects the phases −1 and +1 from −∞ to ∞.
Multiplying (1.1) against u′ and integrating by parts we obtain

(1.2)

∫ ∞

−∞

d

dx

(
ε
u′2

2
− (1− u2)2

4

)
+

∫ ∞

−∞

a′

a
u′2 = 0
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Assume that u(−∞) = −1, u(∞) = 1, u′(−∞) = u′(∞) = 0, a > 0,
then (1.2) implies that

(1− u2)2

4
+

∫ ∞

−∞

a′

a
u′2 = 0

from which we conclude that unless a is constant, we need a′ to change
sign. So: if a is monotone and a′ 6= 0 implies the non-existence of
solutions as we look for. We need the existence (if a′ 6= 0) of local
maximum or local minimum of a. We will prove that under some
general assumptions on a(x), given a local max. or local min. x0 of
a non-degenerate (a′′(x0) 6= 0), then a solution to (1.1) exists, with
transition layer.

We consider first the problem with a ≡ 1, ε = 1:

(1.3) W ′′ + (1−W 2)W = 0, W (−∞) = −1, W (∞) = 1.

The solution of this problem is

W (t) = tanh

(
t√
2

)

This solution is called “the heteroclinic solution”, and it’s the unique
solution of the problem (1.3)up to translations.

Observation 1.1. This solution exists also for the problem

(1.4) w′′ + f(w) = 0, w(−∞) = −1, w(∞) = 1

where f(w) = −W ′(w). Solutions satisfies w′2
2
−W (w) = E, where E

is constant, and w(−∞) = −1 and w(∞) = 1 if and only if E = 0.
This implies ∫ w

0

ds√
2w(s)

= t

t(w) → ∞ if w → 1, and t(w) → −∞ if w → −1, so the previous
relation defines a solution w such that w(0) = 0, and w(−∞) = −1,
w(∞) = 1.

If we wright the Hamiltonian system associated to the problem we
have:

p′ = −f(q), q′ = p.

Trajectories lives on level curves of H(p, q) = p2

2
−W (q), where W (q) =

(1−q2)2

4
.

Let x0 ∈ R (we will make assumptions on this point). Fix a number
h ∈ R and set

v(t) = u(x0 + ε(t + h)), v′(t) = εu′(x0 + ε(t + h))
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Using (1.1), we have

ε2u′′(x0 + ε(t + h)) = −ε2a′

a
u′(x0 + ε(t + h))− (1− v2(t))v(t)

so we have the problem
(1.5)

v′′(t)+ε
a′

a
(x0+ε(t+h))v′(t)+(1−v(t)2)v(t)2 = 0, w(−∞) = −1, w(∞) = 1.

Let us observe that if ε = 0 the previous problem becomes formally in
(1.3), so is natural to look for a solution v(t) = W (t) + φ, with φ a
small error in ε.
Assumptions:

(1) There exists β, γ > 0 such that γ ≤ a(x) ≤ β, ∀x ∈ R
(2) ‖a′‖L∞(R), ‖a′′‖L∞(R) < +∞
(3) x0 is such that a′(x0) = 0, a′′(x0) 6= 0, i.e. x0 is a non-degenerate

critical point of a.

Theorem 1.1. ∀ε > 0 sufficiently small, there exists a solution v = vε

to (1.5) for some h = hε, where |hε| ≤ Cε and vε(t) = w(t)+φε(t) and

‖φε‖ ≤ Cε

Proof. We write in (1.5) v(t) = w(t) + φ(t). From now on we write
f(v) = v(1− v2). We get

w′′+φ′′+ε
a′

a
(x0+ε(t+h))φ′+ε

a′

a
(x0+ε(t+h))w′+f(w+φ)−f(w)−f ′(w)φ+f(w)+f ′(w)φ = 0

φ(−∞) = φ(∞) = 0.

It can be written in the following way

(1.6) φ′′ + f ′(w(t))φ + E + B(φ) + N(φ) = 0, φ(−∞) = φ(∞) = 0

where

B(φ) =ε
a′

a
(x0 + ε(t + h))φ′,

N(φ) =f(w + φ)− f(w)− f ′(w) = −3wφ2 − φ3,

E =ε
a′

a
(x0 + ε(t + h))w′.

We consider the problem

(1.7) φ′′ + f ′(w(t))φ + g(t) = 0, φ ∈ L∞(R),

and we want to know when (1.7) is solvable. We will assume g ∈
L∞(R). Multiplying (1.7) against w′ we get∫ ∞

−∞
(w′′′ + f ′(w)w′)φ +

∫ ∞

−∞
gw′ = 0
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the first integral is zero because (1.4). We conclude that a necessary
condition is ∫ ∞

−∞
gw′ = 0.

This condition is actually sufficient for solvability. In fact, we write
φ = w′Ψ, we have

φ′′ + f ′(w)φ = g ⇔ w′Ψ + 2w′′Ψ′ = −g

Multiplying this last expression by w′ (integration factor), we get

(w′2Ψ′)′ = gw′ ⇒ w′2Ψ′(t) = −
∫ ∞

−∞
g(s)w′(s)ds

Let us choose

Ψ(t) = −
∫ t

0

dτ

w′2(τ)

∫ τ

−∞
g(s)w′(s)ds

Then the function

φ(t) = −w′(t)
∫ t

0

dτ

w′2(τ)

∫ τ

−∞
g(s)w′(s)ds

Recall that

w′(t) ≈ 2
√

2e−
√

2|t|

Claim: if
∫∞
−∞ gw′ = 0 then we have

‖φ‖∞ ≤ C‖g‖∞.

In fact, if t > 0

|φ(t)| ≤ |w′(t)|
∫ t

0

C

e−2
√

2τ

∣∣∣∣
∫ ∞

τ

gw′ds

∣∣∣∣ dτ ≤ C‖g‖∞e−
√

2t

∫ t

0

e
√

2τdτ ≤ C‖g‖∞.

For t < 0 a similar estimate yields, so we conclude

|φ(t)| ≤ C‖g‖∞.

¤

The solution of (1.7) is not unique because if φ1 is a solution implies
that φ2 = φ1 + Cw′(t) is also a solution. The solution we found is
actually the only one with φ(0) = 0. For g ∈ L∞ arbitrary we consider
the problem

(1.8) φ′′ + f ′(w)φ + (g − cw′) = 0, in <, φ ∈ L∞(R)

where C = C(g) =

∫∞
−∞ gw′

∫∞
−∞ w′2 .



6 MANUEL DEL PINO AND JUNCHENG WEI

Lemma 1.1. ∀g ∈ L∞(R) (1.8) has a solution which defines a operator
φ = T [g] with

‖T [g]‖∞ ≤ C‖g‖∞.

In fact if T̂ [ĝ] is the solution find in the previous step then φ = T̂ [g −
C(g)w′] solves (1.8) and

(1.9) ‖φ‖∞ ≤ C‖g‖∞ + |C(g)|C ≤ C‖g‖∞
Proof. Back to the original problem: We solve first the projected prob-
lem

φ′′ + f ′(w)φ + E + B(φ) + N(φ) = Cw′, φ ∈ L∞(R)

where

C =

∫
R(E + B(φ) + N(φ))w′

∫
Rw′2 .

We solve first (1.9) and then we find h = hε such that in (1.9) C=0
in such a way we find a solution to the original problem. We assume
|h| ≤ 1. It’s sufficient to solve

φ = T [E + B(φ) + N(φ)] := M [φ].

We have the following remark

|E| ≤ Cε2, ‖B(φ)‖∞ ≤ Cε‖φ′‖∞, ‖N(φ)‖ ≤ C(‖φ2‖∞ + ‖φ3‖∞)

where C is uniform on |h| ≤ 1. We have

‖M‖∞+‖ d

dt
M‖∞ ≤ C(‖E‖∞+‖B(φ)‖∞+‖N(φ)‖∞ ≤ C(ε2+ε‖φ′‖∞+‖φ2‖∞+‖φ3‖∞)

then if ‖φ‖∞ + ‖φ′‖∞ ≤ Mε2 we have

‖M‖∞ + ‖ d

dt
M‖∞ ≤ C∗ε2.

We define the space X = {φ ∈ C1(R) : ‖φ‖∞ + ‖φ′‖∞ ≤ C∗ε2}. Let us
observe that M(X) ⊂ X. In addition

‖M(φ1)−M(φ2)‖∞+‖ d

dt
(M(φ1)−M(φ2))‖∞ ≤ Cε(‖φ1−φ2‖∞+‖φ′1−φ′2‖∞).

So if ε is small M is a contraction mapping which implies that there
exists a unique φ ∈ X such that φ = M [φ]. ¤

In summary: We found for each |h| ≤ 1

φ = Φ(h), solution of1.7

. We recall that

h → Φ(h)
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is continuous (in ‖‖C1) . Notice that from where we deduce that M is
continuous in h.

The problem is reduced to finding h such that C = 0 in (1.7) for
φΦ(h) =. Let us observe that

C = 0 ⇔ αε(h) :=

∫

R
(Eh + B[Φ(h)]) + N [Φ(h)])w′ = 0.

Let us observe that if we call ψ(x) = a′
a
(x), then

ψ(x0+ε(t+h)) = ψ(x0)+ψ′(x0)ε(t+h)+

∫ 1

0

(1−s)ψ′′(x0+sε(t+h))ε2(t+h)2ds

We add the assumption a′′′ ∈ L∞(R) in order to have ψ′′ ∈ L∞(R). We
deduce that
∫

Ehw
′ = ε2ψ′(x0)

∫
(t+h)w′(t)2+ε3

∫

R
(

∫ 1

0

(1−s)ψ′′(x0+sε(t+h))ds)(t+h)2w′(t)dt

We recall that:
∫
R tw′(t)2 and

|
∫

R
(B[φ(h)] + N [φ(h)])w′| ≤ C(ε‖Φ(h)‖C1 + ‖Φ(h)‖L∞) ≤ Cε3.

So, we conclude that

αε(h) = ψ′(x0)ε
2(h + O(ε))

and the term inside the parenthesis change sign. This implies that
∃hε : |hε| ≤ Mε such that αε(h) = 0, so C = 0.

Observe that

L(φ) = φ′′−2φ+εψ+3(1−w2)φ+
1

2
f ′′(w+sφ)φφ+O(ε2)e−

√
2|t| = 0, |t| > R

We consider t > R. Notice that 1
2
f ′′(w + sφ)φ = O(ε2). Then using

φ̂ = εe−|t| + δe|t|. Then using maximum principle and after taking
δ → 0, we obtain φ ≤ εe−|t|.

A property: We call

L(φ) = φ′′ + f ′(w)φ, φ ∈ H2(R).

We consider the bilinear form associated

B(φ, φ) = −
∫

R
L(φ)φ =

∫

R
φ′2 − f ′(w)2φ2, φ ∈ H1(R).

Claim: B(φ, φ) ≥ 0, ∀φ ∈ H1(R) and B(φ, φ) = 0 ⇔ φ = cw′(t).
In fact: J ′′(w)[φ, φ] = B(φ, φ). We give now the proof of the claim:
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Take φ ∈ C∞
c (R). Write φ = w′Ψ =⇒ Ψ ∈ C∞

c (R). Observe that
L[w′Ψ] = 1

w′ (w
′2Ψ′)′ and

B(φ, φ) = −
∫

1

w′ (w
′2Ψ′)′w′Ψ =

∫

R
w′2Ψ′2, ∀φ ∈ C∞

c (R)

Same is valid for all φ ∈ H1(R), by density. So B(φ, φ) =
∫
R |φ′|2 −

f ′(w)φ2 =
∫
Rw′2|Ψ′|2 ≥ 0 and B(φ, φ) = 0 ⇔ Ψ′ = 0 which implies

φ = cw′.

Corollary 1.1. Important for later porpuses There exists r > 0 such
that if φ ∈ H1(R) and

∫
R φw′ = 0 then

B(φ, φ) ≥ γ

∫

R
φ2

Proof. If not there exists φn

∫
H1(R) such that 0 ≤ B(φn, φn) < 1

n

∫
R φ2

n.
We may assume without loss of generality

∫
φ2

n = 1 which implies that
up to subsequence

φn ⇀ φ ∈ H1(R)

and φn → φ uniformly and in L2sense on bounded intervals. This
implies that

0 = lim
n→∞

∫

R
φnw′ =

∫

R
φw′

On the other hand∫
|φ′n|2 + 2

∫
φ2

n − 3

∫
(1− w2)φ2

n → 0

and also
∫ |φ′n|2+2

∫
φ2

n−3
∫

(1−w2)φ2
n →

∫ |φ′|2+2
∫

φ2−3
∫

(1−w2)φ2,
so B(φ, φ) = 0, and

∫
w′φ = 0 so φ = 0. But also

2 ≤ 3

∫
(1− w2)φ2

n + o(1)

which implies that 2 ≤ 3
∫

(1 − w2)φ2 and this means that φ 6= 0, so
we obtain a contradiction. ¤

Observation 1.2. If we choose δ = γ
2‖f ′‖∞ then

∫
φ′2 − (1 + δ)f ′(w)φ2 ≥ 0.

This implies in fact that

B(φ, φ) ≥ α

∫
φ′2.
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2. Nonlinear Schrödinger eqution (NLS)

εiΨt = ε2∆Ψ−W (x)Ψ + |Ψ|p−1Ψ.

A first fact is that
∫
RN |Ψ|2 = constant. We are interested into study

solutions of the form Ψ(x, t) = e−iEtu(x) (we will call this solutions
standing wave solution). Replacing this into the equation we obtain

εEu = ε2∆u−Wu− |u|p−1u

whose transforms into

ε2∆u− (W − λ)u + |u|p−1u = 0, u(x) → 0, as |x| → ∞
choosing E = λ

ε
. We define V (x) = (W (x)− λ)

2.1. The case of dimension 1.
(2.1)
ε2u′′ − V (x)u + up = 0, x ∈ R, 0 < u(x) → 0, as |x| → ∞, p > 1.

Assume: V ≥ γ > 0, V, V ′, V ′′, V ′′′ ∈ L∞, and V ∈ C3(R). Starting
point

(2.2) w′′ − w + wp = 0, w > 0, w(±∞) = 0, p > 1

There exists a homoclinic solution

w(t) =
Cp

cosh
(

p−1
2

t
) 2

p−1

, Cp =

(
p + 1

2

) 1
p−1

Let us observe that w(t) ≈ 22/(p−1)Cpe
−|t| as t → ∞ and also that

W (t + c) satisfies same equation.
Staid at x0 with V (x0) = 1 we want uε(x) ≈ w

(
x−x0

ε

)
of the problem

(2.1).

Observation 2.1. Given x0 we can assume V (x0) = 1. Indeed writing

u(x) = λ
2

p−1 v(λx0 + (1− λ)x0)

we obtain the equation

ε2v′′(y)− V̂ (y)v + vp = 0

where y = λx0 + (1 − λ)x0, and V̂ (y) = V (y−(1−λ)x0

λ
). Then choosing

λ =
√

V (x0, we obtain V̂ (x0) = 1.

Theorem 2.1. We assume V (x0) = 1, V ′(x0) = 0, V ′′(x0) 6= 0. Then
there exists a solution to (2.1) with the form

uε(x) ≈ w

(
x− x0

ε

)
.
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We define v(t) = u(x0 + ε(t + h)), with |h| ≤ 1. Then v solves the
problem

(2.3) v′′ − V (x0 + ε(t + h)v + vp = 0, v(±∞) = 0.

We define v(t) = w(t) + φ(t), so φ solves
(2.4)
φ′′−φ+pwp−1φ− (V (x0 +ε(t+h))−V (x0))φ+(w+φ)p−wp−pwp−1φ

(2.5) −(V (x0 + ε(t + h))− V (x0))w(t) = 0

So we want a solution of

(2.6) φ′′ − φ + pwp−1φ + E + N(φ) + B(φ) = 0, φ(±) = 0.

Observe that

E =
1

2
V ′′(x0 + ξε(t + h))ε2(t + h)2w(t),

so |E| ≤ Cε2(t2 + 1)e−|t| ≤ Ce−σt for 0 < σ < 1.
We won’t have a solution unless V ′ doesn’t change sign and V 6= 0.

For instance consider V ′(x) ≥ 0, and after multiplying the equation by

u′ and integrating by parts, we see that
∫
R v′ u

2

2
= 0, which by ODE

implies that u ≡ 0, because u and u′ equals 0 on some point.

2.2. Linear projected problem.

L(φ) = φ′′ − φ + pwp−1φ + g = 0, φ ∈ L∞(R)

For solvability we have the necessary condition
∫

L(φ)w′ = 0. Assume
g such that

∫
R gw′ = 0. We define φ = w′Ψ, but we have the problem

that w′(0) = 0. We conclude that (w′2Ψ′)′ + w′g = 0 for t 6= 0. We
take for t < 0

φ(t) = w′(t)
∫ −1

t

dτ

w′(τ)2

∫ τ

−∞
g(s)w′(s)ds

and for t > 0

φ(t) = w′(t)
∫ t

1

dτ

w′(τ)2

∫ ∞

τ

g(s)w′(s)ds

In order to have a solution of the problem we need φ(0−) = φ(0+).

φ(0−) = lim
t→0−

− ∫ t

−1
dτ

w′(τ)2

∫ τ

−∞ g(s)w′(s)ds
1

w′(t)
= lim

t→0−

− 1
w′(t)2

∫ t

−∞ gw′

− 1
w′(t)2 w

′′(t)
=

1

w′′(0)
∫ 0

−∞ gw′

and

φ(0+) = − 1

w′′(0)
∫∞
0

gw′
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and the condition is satisfies because of the assumption of orthogonality
condition.

We get ‖φ‖∞ ≤ C‖g‖∞. In fact we get also: ∀ 0 < σ < 1, ∃C > 0 :

‖φeσt‖L∞ + ‖φ′eσt‖L∞ ≤ C‖geσt‖
Observation: We use g = g − cw′.(Correct this part!!!!)

2.3. Method for solving. In this section we consider a smooth radial
cut-off function η ∈ C∞(R), such that η(s) = 1 for s < 1 and η(s) = 0

if s > 2. For δ > 0 small fixed, we consider ηk,ε = η
(

ε|t|
kδ

)
, k ≥ 1.

2.3.1. The gluing procedure. Write φ̃ = η2,εφ + Ψ, then φ solves (2.5)
if and only if

(2.7) η2,ε

[
φ′′ + (pwp−1 − 1)φ + B(φ) + 2φ′η′2,ε

]

(2.8) +
[
Ψ′′ + (pwp−1 − 1)Ψ + BΨ

]
+ E + N(η2,ηφ + Ψ) = 0.

(φ, Ψ) solves (2.8) if is a solution of the system

(2.9)
φ′′− (1− pwp−1)φ + η1,εE + η3,εB(φ) + η1,εpw

p−1Ψ + η1,ηN(φ + Ψ) = 0

(2.10) Ψ′′ − (V (x0 + ε(t + h))− pwp−1(1− η1,ε))Ψ

(2.11) +(1− η1,ε)E + (1− η1,ε)N(η2,εφ + Ψ) + 2φ′η′2,ε + η′′2,εφ = 0

We solve first (2.11). We look first the problem

Ψ′′ −W (x)Ψ + g = 0

where 0 < α ≤ W (x) ≤ β, W continuous and g ∈ C(R) ∩ L∞(R).
We claim that (2.3.1) has a unique solution φ ∈ L∞(R). Assume first
that g has compact support and consider the well defined functional in
H1(R)

J(Ψ) =
1

2

∫

R
|Ψ′|2 +

1

2

∫

R
wΨ2 −

∫

R
gΨ.

Also, this functional is convex and coercive. This implies that J has a
minimizer, unique solution of (2.3.1) in H1(R) and it is bounded. Now
we consider the problem

Ψ′′
R −WΨR + gη

( |t|
R

)
= 0
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Let us see that ΨR has a uniform bound. Take ϕ(t) = ‖g‖∞
α

+ρ cosh
(√

α
2
|t|

)

for ρ > 0 very small. Since ΨR ∈ L∞(R) we have

ΨR ≤ ϕ(t), for |t| > tρ,R.

Let us observe that in [−tρ,R, tρ,R]

ϕ′′ −Wϕ + gη

( |t|
R

)
< 0.

From (2.3.1), we see that γ = (ΨR − ϕ) satisfies

(2.12) γ′′ −Wγ > 0.

Claim: γ ≤ 0 on R. It’s for |t| > tρ,R if γ(t̄) > 0 there is a global max-
imum positive γ ∈ [−tρ,R, tρ,R]. This implies that γ′′(t) ≤ 0 which

is a contradiction with (2.12). This implies that ΨR(t) ≤ ‖g‖∞
α

+

ρ cosh
(√

α
2

t
)
. Taking the limit ρ going to 0 we get ΨR ≤ ‖g‖∞

α
, and

similarly we can conclude that

‖ΨR‖L∞ ≤ ‖g‖∞
α

, ∀R
Passing to a subsequence we get a solution Ψ = limR→∞ ΨR, and the
convergence is uniform over compacts sets, to (2.3.1) with

‖Ψ‖∞ ≤ ‖g‖∞
α

. Also, the same argument shows that the solution is unique (in L∞

sense). Besides: We observe that if ‖eσ|t|g‖∞ < ∞, 0 < σ <
√

α then

‖eσ|t|Ψ‖∞ ≤ C‖eσ|t|g‖
The proof of this fact is similar to the previous one. Just take as the
function ϕ as follows

ϕ = M
‖eσ|t|g‖∞

α
e−σ|t| + ρ cosh

(√
α

2
|t|

)
.

Observe now that Ψ satisfies (2.11) if and only if

Ψ =

(
− d2

dt2
+ W

)−1

[F [Ψ, φ]]

where W (x) = V (x0+ε(t+h))−pwp−1(1−η1,ε) and F [φ] = (1−η1,ε)E+
(1− η1,ε)N(η2,εφ+Ψ)+2φ′η′2,ε + η′′2,εφ. The previous result tell us that

the inverse of the operator
(
− d2

dt2
+ W

)
is well define. Assume that

‖φ‖C1 := ‖φ‖∞ + ‖φ′‖∞ ≤ 1, for some σ < 1 and ‖Ψ‖∞ ≤ ρ, where ρ
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is a very small positive number. Observe that ‖(1− η1,ε)E‖∞ ≤ e−cδ/ε.
Furthermore, we have

|F (Ψ, φ)| ≤ e−cδ/ε + cε‖φ‖C1 + ‖φ‖2
∞ + ‖Ψ‖2

∞
This implies that

‖M [Ψ]‖ ≤ C∗[µ + ‖Ψ‖2
∞]

where µ = e−cδ/ε + cε‖φ‖C1 + ‖φ‖2
∞. If we assume µ < 1

4C∗2
, and

choosing ρ = 2C∗µ, we have

‖M [Ψ]‖ < ρ.

If we define X = {Ψ|‖Ψ‖∞ < ρ}, then M is a contraction mapping
in X. We conclude that

‖M [Ψ1]−M [Ψ2]‖ ≤ C∗C‖Ψ1 −Ψ2‖, where C∗C < 1.

Conclusion: There exists a unique solution of (2.11) for given φ (small
in C1-norm) such that

‖Ψ(φ)‖∞ ≤ [e−cδ/ε + ε‖φ‖C1 + ‖φ‖2
∞]

Besides: If ‖φ‖ ≤ ρ, independent of ε, we have

‖Ψ(φ1)−Ψ(φ2)‖∞ ≤ o(1)‖φ1 − φ2‖.
Next step: Solver for (2.9), with ‖φ‖ very small, the problem
(2.13)
φ′′−(1−pwp−1)φ+η1,εE+η3,εB(φ)+η1,εpw

p−1Ψ+η1,ηN(φ+Ψ)−cw′ = 0

where c = 1∫
w′2

∫
R(η3,εB(φ) + η1,εpw

p−1Ψ + η1,ηN(φ + Ψ))w′. To solve

(2.13) we write it as

φ = T [η3,εBφ] + T [N(φ + Ψ(φ)) + pwp−1Ψ(φ)] + T [E] =: Q[φ]

Choosing δ sufficiently small independent of ε we conclude that Q(x) ⊆
X, and Q is a contraction in X for ‖ · ‖C1 . This implies that (2.13) has
a unique solution φ with ‖φ‖C1 < Mε2. Also the dependence φ = Φ(h)
is continuous. Now we only need to adjust h in such a way that c = 0.
After some calculations we obtain

0 = Kε2V ′′(x0)h + O(ε3) + O(δε2).

So we can find h = hε and |hε| ≤ Cε, such that c = 0.


