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Abstract. We construct new class of entire solutions of the Allen-Cahn equa-

tion ∆u+(1−u2)u = 0, in R2(∼ C). Given k ≥ 1, we find a family of solutions
whose zero level sets are, away from a compact set, asymptotic to 2k straight

lines (which we call the ”ends”). These solutions have the property that there

exists θ0 < θ1 < . . . < θ2k = θ0 + 2π such that limr→+∞ u(reiθ) = (−1)j

uniformly in θ on compacts of (θj , θj+1), for j = 0, . . . 2k−1, they complement

the solutions with dihedral symmetry which have been obtained in [14].

1. Introduction and statement of main results

This paper deals with the construction of a new class of entire solutions for the
semilinear elliptic equation in RN ,

(1.1) ∆u+ (1− u2)u = 0 in RN ,

known as the Allen-Cahn equation. This problem has its origin in the gradient
theory of phase transitions [1], a model in which two distinct phases (represented by
the values u = ±1) try to coexist in a domain Ω while minimizing their interaction
which is proportional to the (N−1)- dimensional volume of the interface. Idealizing
the phase as a regular function which takes values close to ±1 in most of the domain,
except for a narrow transition layer of width ε, one defines the Allen-Cahn energy,

Jε(u) =
ε

2

∫
Ω

|∇u|2 dx+
1
4ε

∫
Ω

(1− u2)2 dx .

whose critical points satisfy the Euler-Lagrange equation

(1.2) ε2∆u+ (1− u2)u = 0 in Ω.

Replacing u(x) by u(εx) we obtain the equation

(1.3) ∆u+ (1− u2)u = 0 in ε−1 Ω.

Therefore, equation (1.1) appears as the limit problem in the blow up analysis of
(1.2) as ε tends to 0. The relation between interfaces of least volume and critical
points of Jε was first established by Modica in [23]. Let us briefly recall the main
results in this direction : If uε is a family of local minimizers of Jε for which

(1.4) sup
ε>0

Jε(uε) < +∞,
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then, up to a subsequence, uε converges in L1 to χΛ − χΛc , where ∂Λ has minimal
perimeter. Here χΛ (resp. χΛc) is the characteristic function of the set Λ (resp.
Λc = Ω− Λ). Moreover, Jε(uε)→ cHN−1(∂Λ) where c is a universal constant.

For critical points uε of Jε which satisfy (1.4), a related assertion is proven in [17].
In this case, the convergence of the interface holds with certain integer multiplicity
to take into account the possibility of multiple transition layers converging to the
same minimal hypersurface.

These results enlighten a strong link between solutions to equation (1.1) and the
theory of minimal hypersurfaces, which has been widely explored in the literature.
For example, solutions concentrating along non-degenerate, minimal hypersurfaces
of a compact manifold were found in [25] (see also [19]). As far as multiple transition
layers are concerned, given a minimal hypersurface Γ (subject to some additional
property on the sign of the potential of the Jacobi operator about Γ, which holds
on manifolds with positive Ricci curvature) and given an integer k ≥ 1, solutions
of (1.2) with multiple transitions near Γ were built in [27] (see [11] for the 2-
dimensional case, and [9] for the euclidean case), in such a way that Jε(uε) →
k cHN−1(Γ).

As already mentioned, entire solutions of (1.1) arise as limits of blown up solu-
tions of (1.2). Conversely, given a solution u of (1.1), the scalings uε(x) = u(x/ε),
satisfy equation (1.2) on any domain Ω and condition (1.4) is equivalent to the
existence of a constant C > 0 such that

(1.5) IR(u) :=
1
2

∫
BR(0)

|∇u|2 dx+
1
4

∫
BR(0)

(1−u2)2 dx ≤ CRN−1 for all R > 0.

Entire solutions with this type of energy growth are thus of special importance in
further understanding the links between the Allen-Cahn equation and theory of
minimal hypersurfaces.

This paper deals with the construction of a new, rather unexpected class of entire
solutions of equation (1.1) satisfying the energy growth condition (1.5). Recall that
a basic solution satisfying (1.5) is the following : Let H denote the unique solution
to the problem

(1.6) H ′′ + (1−H2)H = 0, with H(±∞) = ±1 and H(0) = 0 .

Then, for all b ∈ RN with |b| = 1 and for all a ∈ R, the function u(x) = H(b ·x+a)
solves (1.1) and satisfies condition (1.5). A celebrated conjecture due to De Giorgi
states that these solutions are the only ones that are bounded and monotone in one
direction for dimension N ≤ 8. Let us recall that monotonicity is related to the
fact that solutions u are local minimizers.

In dimensions N = 2, 3 De Giorgi’s conjecture has been proven in [13, 3] and
(under some extra assumption) in the remaining dimensions in [26]. Establishing
that condition (1.5) holds is a key element in the proof of De Giorgi’s conjecture
in dimensions N = 2, 3. When N = 2, the monotonicity assumption can even
be replaced by a weaker stability assumption [15]. Finally, counterexamples in
dimension N ≥ 9 have recently been built in [10], using the existence of non trivial
minimal graphs in higher dimensions.

In light of these results, it is natural to study the set of entire solutions to
(1.1) satisfying (1.5). The functions u(x) = H(b · x + a) are obvious solutions.
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In dimension N = 2, nontrivial examples (whose nodal set is the union of two
perpendicular lines) were built in [5] using the following strategy : A positive so-
lution to (1.1) in the quadrant {x = (x1, x2) : x1, x2 > 0} with zero boundary
conditions is built by constructing appropriate super and subsolutions. This so-
lution is then extended by odd reflections to yield a solution u2 to (1.1) in entire
R2. Function u2 is a solution of (1.1), whose 0-level set is the union of the two
axis, satisfies property (1.5). It can easily be generalized to obtain solutions with
dihedral symmetry by considering the corresponding solution within the sector
{x = (r cosθ, r sin θ) : r > 0 , θ ∈ (0, π/k)}, see [14], and extending it by k con-
secutive reflections to yield a solution uk. The zero level set of uk is constituted
outside any ball by 2k infinite half lines with dihedral symmetry. To our knowledge,
no other nontrivial examples of solutions satisfying (1.5) are known in dimension
N = 2 (up to the action of rigid motions).

We will assume from now on that the dimension is equal to N = 2.

Definition 1. We will say that u, solution of (1.1), has 2k-ends if, away from a
compact, its nodal set is given by 2k connected curves which are asymptotic to 2k
infinite half lines bj · x+ aj = 0, j = 1, . . . , 2k (for some choice of bj ∈ R2, |bj | = 1
and aj ∈ R) and if, along these curves, the solution is asymptotic to ηj H(bj ·x+aj),
with ηj = ±1.

Given any k ≥ 1, we prove in this paper that the space of 2k-ended solutions
of (1.1) is not empty and in fact contains a smooth finite dimensional family of
non congruent solutions. In a forthcoming paper [6] we show that the solutions
we construct in the present paper belong to some smooth 2k-parameter family of
2k-ended solutions of (1.1).

Given α > 0 small enough, our main result states the existence of a a function
uα, solution of (1.1) in R2, which can be described as follows :

uα(x) =
k∑
j=1

(−1)j+1H
(
x1 − fαj(x2)

)
+ σk + o(1),

with x = (x1, x2) and

σk = −1
2

((−1)k + 1) ,

where H is the solution of (1.6). The functions fαj(z) are even and satisfy

fαj(z) = αaj |z|+ bjα +O(e−aα |z|) ,

as |z| → +∞. Here a1 < a2 < · · · < ak do not depend on α while bjα are constants
depending on both j and α, and finally a > 0.

To state our result in precise way, we need to introduce the Toda system

(1.7) c f ′′j −
(
e−
√

2(fj−fj−1) − e−
√

2(fj+1−fj)
)

= 0,

for j = 1, . . . , k, where the constant c > 0 is given by

c =

∫
R

(H ′)2 dz

3
∫

R
(1−H2)H ′e−

√
2z dz

.
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Here ′ denotes the derivative with respect to the variable z and the solutions are
supposed to be defined on R. We agree that f0 ≡ −∞ while fk+1 ≡ +∞.

Given the symmetries of the system it is natural to look for solutions of (1.7)
which are even, namely

(1.8) fj(z) = fj(−z) for all z ∈ R.

As will be discussed later, given initial conditions

fj(0) = x0j , and f ′j(0) = 0,(1.9)

for j = 1, . . . k, with

x0j < x0j+1,(1.10)

the system (1.7) has a unique solution f= (f1, . . . , fk) which is defined for all z ∈ R
and which satisfies (1.8). Moreover, thanks to (1.10), we have

fj(z) < fj+1(z), ∀z ∈ R .(1.11)

Finally, for all j = 1, . . . , k,

(1.12) fj(z) = aj |z|+ bj +O(e−θj |z|)

as |z| tends to +∞, for some aj > 0, bj ∈ R and θj > 0. We will show also that
there exists ϑ > 0 depending only on the initial conditions such that

aj+1 − aj > ϑ, and θj > ϑ .

Let us observe that, for each α > 0, the vector function fα, whose components
are defined by

(1.13) fαj(z) = fj(αz)−
1√
2

(
j − k + 1

2

)
logα ,

corresponds to a solution of (1.7) which satisfies (1.8), (1.11) and

(1.14) f ′αj(+∞) = aj α ,

for all j = 1, . . . , k.

Granted the above we have the :

Theorem 1.1. For all α > 0 sufficiently small, there exists uα a solution of equa-
tion (1.1) satisfying

uα(x1, x2) = uα(x1,−x2) for all (x1, x2) ∈ R2

and which has the form

uα(x1, x2) =
k∑
j=1

(−1)j+1H
(
x1 − fαj(x2)

)
+ σk + o(1), σk = −1

2
(1 + (−1)k).

Here o(1)→ 0 as α→ 0 uniformly as |x| tends to +∞.

In other words, to each symmetric solution of the Toda system, we have found
a one parameter family of 2k-ended solutions of (1.1) which depend on a small
parameter α > 0. The ends of the solutions we construct have slopes of order α,
and, as α tends to 0, they converge on compacts to the straight line x1 = 0.

Our result raises some interesting questions :
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(i) - The classification of entire solutions of (1.1) with growth condition (1.5)
remains an important and unexplored problem. In dimension N = 2, we believe
that these solutions are precisely the solutions with finitely many ends. In addition,
there is strong evidence that these solutions correspond to the solutions of (1.1) with
finite Morse index (presumably, in dimension N = 2, their Morse index is equal to
k − 1 if the solution has 2k ends).

(ii) - Still in dimension N = 2, the understanding of the moduli space of all
2k-ended solutions is far from complete : the result in Theorem 1.1 (see also [5])
implies that this space is non empty and contained smooth families of solutions.
Moreover, the result of [6] shows that this moduli space has formal dimension equal
to 2k (the formal dimension is the dimension of the moduli space close to any non
degenerate solution). Let us also mention that some balancing conditions on the
directions of the ends is available (see [14]), it states that the sum of the unit vectors
of the ends (oriented toward the ends) has to be 0.

(iii) - It is tempting to conjecture that the solution uk (whose nodal set has
dihedral symmetry) and the solutions given in Theorem 1.1 belong to the same
connected component of the moduli space of 2k-ended solutions.

(iv) - Observe that the solutions we construct still have some symmetry since they
are invariant under the reflexion with respect to the x1 axis. Nevertheless, using
Theorem 1.1 together with the result of [6], it is possible to prove (in dimension
N = 2) the existence of solutions of 1.1 which have no symmetry provided the
number of ends is larger than or equal to 6. We believe that all solutions with 2
ends are given (up to the action of rigid motion) by H while solutions with 4 ends
are symmetric with respect to reflection through two perpendicular lines.

These questions hint towards a program generalizing De Giorgi’s conjecture, on
the classification finite Morse index entire solutions of (1.1).

Let us briefly comment on the proof of Theorem 1.1. The method is based on
an infinite dimensional form of Lyapunov Schmidt reduction, conceptually related
with the method in [8], see also [20, 21]. The proof uses some ideas of the proof of
the existence of entire solutions to nonlinear Schrödinger type equations have been
recently built in [7] and [22].

2. The approximate solution

2.1. Model for the transition layers. In order to define the approximate solu-
tion we first need to describe possible locations of its transition layers. Let us recall
that there exists a unique solution to the Toda system (1.7) with the initial data
(1.9). According to the results in [18], assuming (1.10) such solution satisfies (1.14)
and (1.11). Let us consider fixed, smooth functions

fjα(z) = fj(αz) +
√

2
(
j − k + 1

2

)
log

1
α
, j = 1, . . . , k(2.1)

such that
fj(z) = ajz + bj + f̃j(z), |z| � 1,

where aj − aj−1 > θ > 0, and ‖f̃je θ|z|‖C4(R) < M,
(2.2)

with some fixed constants θ > 0 and M > 0. From now on we will assume that
fj ’s are solutions to the Toda system (1.7) and that conditions (1.8)–(1.12) hold.
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This will guarantee that all our estimates below (with constants independent on α)
are valid if we choose α small while keeping θ,M fixed. It is convenient to denote
f0 = f0α = −∞ and fk+1 = fk+1α =∞.

Let

γjα = {(x, z) | x = fjα(z)} ⊂ R2,

We observe that the signed curvature of γjα is:

κjα(z) = −
α2f ′′j

(1 + α2(f ′j)2)3/2
,

and the radius of curvature is

Rjα(z) =
1

|κjα(z)|
≥Mα−2eθα|z|, |z| � 1.(2.3)

This means that Fermi coordinates around γjα are well defined in a neighborhood

Njα =
⋃
z∈R

{
(x, z) | dist (γjα, (x, z)) <

1
4
Rjα(z)

}
,

where Rjα satisfies (2.3). We observe that from (2.2) and (2.3) it follows that

γnα ⊂ Njα, ∀n, j = 1, . . . , k.(2.4)

To define Fermi coordinates precisely let njα(z) be the unit normal to γjα, where
we fix the orientation on γjα in such a way that njα · (1, 0) ≥ 0 (so that (njα, τjα),
where τjα is he unit tangent, is positively oriented). We have

njα(z) =

(
1,−αf ′j(αz)

)√
1 + α2

(
f ′j(αz)

)2 ,(2.5)

Then, given (x, z) ∈ Njα, the Fermi coordinates (xj , zj) are defined by:

(x, z) = (fjα(zj), zj) + xjnjα(zj).(2.6)

The Fermi coordinate xj associated with a fixed curve γjα represents the signed
distance to γjα. In what follows we will need the following elementary fact:

xn =
(
1 +O(α2)

)
xj + α(an − aj)zn −

√
2(n− j) log

1
α

+O(1),(2.7)

where O(·) terms are uniform for α small. Notice that (2.7) follows directly from the
definition of the Fermi coordinates and formulas (2.1). We will derive an expression
of ∆ in the Fermi of every fjα. Using (2.6) and denoting X = (x, z) we have:

Xxj = njα,

Xzj =
(
αf ′j , 1) + xjnjα,zj ,

where njα is defined in (2.5). From this we get the following expression for the
metric

gj =
(

1 0
0 gj,22

)
, gj,22 = Xzj ·Xzj ,
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where

Xzj ·Xzj = [1 + α2(f ′j)
2]
[
1 + 2xj

κjα√
1 + α2(f ′j)2

]
+ x2

jnjα,zj · njα,zj ,

njα,zj = α2
(αf ′jf

′′
j , f

′′
j )(

1 + α2(f ′j)2
)3/2

For future references we observe that

gj,22 = 1 +O(α2) +O(α2|xj |e−θα|zj |) +O(α4|xj |2e−2θα|zj |), in Njα.

Also we notice that det(gj) = gj,22 and g22
j = 1

det gj
. Then we have in Njα:

∆x,z =
1√

det(gj)
∂xj (

√
det(gj)∂xj ) +

1√
det(gj)

∂zj (
√

det(gj)g22
j ∂zj )

= ∆xj ,zj − α2f ′′j ∂xj + α2B1j(xj , zj) + α3B2j(xj , zj),
(2.8)

where Bjm, m = 1, 2 are second order differential operators:

B1j(xj , zj) = −1
2
[
(f ′j)

2 − 2xjf ′′j + α2x2
j (f
′′
j )2
]
∂zjzj

B2j(xj , zj) = O(e−θα|z|)∂xj + e−θα|z|O(1 + α|xj |)∂zj
+O(1 + |xj |e−θα|z|)∂zjzj

(2.9)

2.2. The ansatz. In the sequel we will often make use of the following formulas
for the heteroclinic H:

H(x) − 1 = −A0 e
−
√

2 |x| + O
(
e−2
√

2 |x|), x > 1,

H(x) + 1 = A0 e
−
√

2 |x| + O
(
e−2
√

2 |x|), x < −1,

H
′
(x) =

√
2A0 e

−
√

2 |x| + O
(
e−2
√

2 |x|), |x| > 1,

(2.10)

Let hj(z), j = 1, . . . , k be given even functions of z such that

‖h′jeθ|z|‖C1(R) + ‖hj‖∞ ≤ δ̄,(2.11)

where δ̄ is a small constant such that

0 < δ̄ <
α2

4
minRjα(z), j = 1, . . . , k.

As we will see later on in reality we have δ̄ = o(1), as α→ 0. We will set hjα(z) =
hj(αz). Let η(t) be a cutoff function such that η(t) = 1, |t| ≤ 1, η(t) = 0, |t| > 2.
Then given fjα, j = 1, . . . , k, with fj satisfying (2.2) we define:

Hj(x, z) =

{
(−1)j+1η

( 4xj
Rjα

)[
H(xj − hjα(z))− 1

]
+ (−1)j+1, xj > 0,

(−1)j+1η
( 4xj
Rjα

)[
H(xj − hjα(z)) + 1

]
− (−1)j+1, xj < 0

(2.12)

Finally we define a multiple-end approximate solution of (1.1) to be

w(x, z) =
k∑
j=1

Hj(x, z) + σk, σk =
1
2

((−1)k+1 − 1).(2.13)
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In the sequel we will use weighted norms for functions defined in R2. To define
them we let σ > 0 to be a fixed constant. We set:

‖φ‖σ,θα,∗ :=
∥∥∥( k∑

j=1

e−σ|x−fjα(z)|−θα|z|
)−1

φ
∥∥∥
∞
.(2.14)

Constant θ is in general the same one as in (2.2). A more precise upper bound on
the constant σ will be determined later on. Let us observe that in the set where
the Fermi coordinate for a fixed j is well defined, say in Njα we have that:

x− fjα =
xj√

1 + α2(f ′j(z))2
,

z = zj −
αxjf ′j(αz)√

1 + α2(f ′j(z))2
.

(2.15)

It follows that for the exponential weights in (2.14) we have:

Ce−σ
′|xj |−θα|zj | ≤ e−σ|x−fjα(z)|−θα|z| ≤ Ce−σ

′′|xj |−θα|zj |,(2.16)

with σ′′ < σ < σ′. We get also from (2.15) that in Njα we have

∂z

∂zj
= 1 +O(α2|xj |e−αθ|z|).(2.17)

Our next goal is to compute the size of the error, namely:

S(w) ≡ −∆w − w(1− w2),

in the norm ‖ · ‖σ,θ,∗. We have:

∆x,zw =
k∑
j=1

∆x,zHj ,

and, for a fixed j,

∆x,zHj = (−1)j+1η
( xj

2Rjα

)
∆x,zH(xj − hjα(z))

+ (−1)j+1∇x,zH(xj − hjα(z)) · ∇x,zη
( 4xj
Rjα

)
+ (−1)j+1[H(xj − hjα(z))± 1]∆x,zη

( 4xj
Rjα

)
.

Using (2.8) we get

∆x,zH(xj − hjα(z)) = H ′′
(
1 + α2(h′j)

2
)
− α2(h′′j + f ′′j )H ′

+ α2B1(xj , zj)[H] + α3B2(xj , zj)[H],
(2.18)

where H = H
(
xj − hjα(z)

)
, hjα(z) = hj(αz). We have

|B1(xj , zj)[H]| ≤ Cα2
[
|(f ′j)2 + |f ′′j |

][
|(h′j)2 + |h′′j |

]
e−
√

2
2 |xj |

≤ Cα2e−θα|zj |e−
√

2
2 |xj |,

(2.19)
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with similar estimate for B2(xj , zj)[H]. We also observe that

∣∣∣∇x,zH(xj − hjα(zj)) · ∇x,zη
( 4xj
Rjα

)∣∣∣+
∣∣∣[H(xj − hjα(zj))± 1]∆x,zη

( 4xj
Rjα

)∣∣∣
≤ CR−1

jα e
−
√

2|xj |
∣∣∣η′( 4xj

Rjα

)∣∣∣
≤ Cα3e−θα|zj |e−

√
2

2 |xj |.

(2.20)

For convenience we will denote F (w) = w(1− w2). Now we will compute

w(1− w2) = F (w) = F
( k∑
j=1

Hj + σk
)
.

For every fixed j, 1 ≤ j ≤ k, we consider the following set

Aj =
{

(x, z) ∈ R2
∣∣dist

(
γjα, (x, z)

)
≤ min
n=j±1

{
dist

(
γnα, (x, z)

)}}
.(2.21)

We recall here that formally we have set γ0α = −∞, γk+1α =∞.
For (x, z) ∈ Aj , we write

F (w) = F (Hj) + F ′(Hj)(w −Hj) +
1
2
F ′′(Hj)(w −Hj)2 + max

n6=j
O(e−3

√
2 |xn|)

=
k∑

n=1

F (Hn) +
[
F ′(Hj)(w −Hj)−

∑
n 6=j

F (Hn)
]

+
1
2
F ′′(Hj)(w −Hj)2 + max

n 6=j
O(e−3

√
2 |xn|).

Following similar computations in [9], we obtain, for (x, z) ∈ Aj , j = 1, . . . , k

F (w) =
k∑

n=1

F (Hn) +
1
2
F ′′(Hj)(w −Hj)2 + 3(1−H2

j )(w −Hj)

− 1
2

∑
n 6=j

F ′′(σjn)(σjn −Hn)2 + max
n 6=j

O(e−3
√

2 |xn|).
(2.22)

In the above formula we define σjn as follows: if j is even, σjn = (−1)n for n < j
and σjn = (−1)n+1 for n > j; if j is odd, σjn = (−1)n+1 for n < j and σjn = (−1)n
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for n > j. We have in Aj :

∆x,zHj + F (Hj) = (−1)j+1η
( 4xj
Rjα

)[
∆x,zH(xj − hα(z)) + F

(
H(xj − hα(z))

)]
+ η
( 4xj
Rjα

)[
F (Hj)− (−1)j+1F

(
H(xj − hα(z))

)]
+
[
1− η

( 4xj
Rjα

)]
F (Hj)

+ (−1)j+1∇x,zH(xj − hjα(z)) · ∇x,zη
( 4xj
Rjα

)
+ (−1)j+1[H(xj − hjα(z))± 1]∆x,zη

( 4xj
Rjα

)
= Sj1 + Sj2 + Sj3 + Sj4 + Sj5.

(2.23)

Using (2.18)–(2.19) we get:

|Sj1| ≤ Cα2e−
√

2
2 |xj |−θα|zj |.(2.24)

To estimate S2j we observe that when η
( 4xj
Rjα

)
= 1 then

F (Hj)− (−1)j+1F
(
H(xj − hjα(z))

)
= 0,

hence

|S2j | ≤ Ce−
√

2
2 |xj |e−

√
2

4 Rjα(zj)

≤ Cα3e−
√

2
2 |xj |−θα|zj |.

(2.25)

Similar estimate holds for S3j , and also by (2.20), for S4j , S5j .
By an analogous argument one can show that for if n 6= j then, still in Aj we

have

|∆x,zHn + F (Hn)| ≤ Cα2e−
√

2
2 |xn|−θα|zn|(2.26)

Now, let us consider a typical term involved in (2.22), which is of the form:

|F ′′(Hj)(w −Hj)2| ≤ C
∑
n 6=j

e−2
√

2|xn|χAj .

Using (2.7) we get that for each fixed n 6= j, again assuming that (x, z) ∈ Aj , we
have

|xn| ≥ α|an − aj ||zn|+
√

2
2

log
1
α

+O(1),

hence, taking σ ∈ (0, 1)

e−2
√

2|xn|χAj ≤ Ce−2
√

2σ|xn|e−2
√

2(1−σ)|xn|

≤ Cα2(1−σ)e−2
√

2σ|xn|−2
√

2(1−σ)θα|zn|.
(2.27)

Similar estimate holds for other terms involved in (2.22). Since we can write

−S(w) = ∆w + F (w) =
k∑
j=1

[∆w + F (w)]χAj ,

therefore combining (2.23)–(2.27) and using (2.16) we get the following:
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Lemma 2.1. Let w be the aproximate solution defined in (2.13) and let S(w) =
−∆w − F (w). Then we have:

‖S(w)‖σ,θα,∗ ≤ Cα2(1−σ),(2.28)

where ‖ · ‖σ,θα,∗ is the norm defined in (2.14) and σ ∈ (0, 2
√

2−1
2
√

2
). In addition if

fjα, hjα are even functions of z then so is w and S(w).

2.3. Setting up the infinite dimensional reduction. We look for a solution of
(1.1) in the form:

u = w + φ,

where φ is a ”small” perturbation of w. Substituting in (1.1) we obtain to the
following problem for φ:

L(φ) = S(w) +N(φ), N(φ) = −F (w + φ) + F (w) + F ′(w)φ,(2.29)

and

L(φ) = ∆φ+ F ′(w)φ, F ′(w) = 1− 3w2.(2.30)

As is well know, the linear operator L will have in general unbounded (as α → 0)
inverse and to remedy this situation we will use the so called Lyapunov-Schmidt
reduction scheme. To be more precise let ρ be a cutoff function such that ρ(t) = 1,
|t| <

√
2

2 (1 − 2−5) and ρ(t) = 0, |t| >
√

2
2 (1 − 2−6), and let η be a cut-ff function

such that η(t) = 1, |t| <
√

2
2 (1− 2−7) and η(t) = 0, |t| >

√
2

2 (1− 2−8). We define:

ηj(x, z) = η
( |x− fjα|
| logα|

)
, ρj(x, z) = ρ

( |x− fjα|
| logα|

)
j = 1, . . . , k,(2.31)

where fjα = fjα + hjα. Then, instead of (2.29), we will solve a projected problem
for φ, namely:

L(φ) = S(w) +N(φ) +
k∑
j=1

cj(z)H ′(x− fjα)ηj , in R2,∫
R
φ(x, z)H ′(x− fjα)ρj dx = 0, ∀z ∈ R, j = 1, . . . k.

(2.32)

The choices of the cutoff functions above seem at this point somewhat unnatural
and it is dictated by purely technical reasons that will become apparent later on.

Above we have introduced new unknowns cj = cj(z) that are needed in order that
the extra orthogonality conditions be satisfied. Remembering that our ansatz w
depends on k functions-paramaters hj , see (2.11), we conclude that (1.1) is reduced
to first solving (2.32) for given hj ’s and then to adjusting functions-parameters in
such a way that

cj(z) = 0, j = 1, . . . , k.(2.33)

In the next section we will develop the necessary linear theory to deal with (2.32)
after which we will solve the reduced problem (2.33).
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3. Linear theory

3.1. Linearized operator for a single interface. In this section we will consider
the basic linearized operator. Let

L0(φ) = φxx + F ′(H)φ, F ′(H) = 1− 3H2.

First, we recall that L0 has one dimensional kernel L0(Hx) = 0. Second, let ρ ∈
L2(R) be a fixed, nonnegative, even function. Then, there exists ν0 > 0, such that
for any φ ∈ H1(R) satisfying ∫

R
Hxφρ dx = 0,

we have ∫
R

[1
2
|φx|2 + F ′(H)φ2

]
dx ≥ ν0

∫
R
φ2 dx.(3.34)

As a consequence of these facts we observe that problem

(3.35) L0(φ)− ξ2φ = h,

is uniquely solvable whenever ξ 6= 0 for h ∈ L2(R). Actually, rather standard
argument, using comparison principle and the fact that L0 is of the form

L0(φ) = φxx − 2φ+ 3(1−H2(x))φ, |1−H2(x)| ≤ Ce−
√

2|x|,

can be used to show that whenever h is for instance a compactly supported function
then the solution of (3.35) is an exponentially decaying function.

Let us consider operator

L(φ) = L0(φ) + φzz,

defined in the whole plane (x, z) ∈ R2. Equation L(φ) = 0, has obviously a bounded
solution φ = Hx. Our first result shows that converse is also true.

Lemma 3.1. Let φ be a bounded solution of the problem

(3.36) L(φ) = 0 in R2.

Then φ(x, z) = aHx, for certain a ∈ R.

Proof. Let assume that φ is a bounded function that satisfies

(3.37) φzz + φxx + F ′(H)φ = 0.

Let us consider the Fourier transform of φ(x, z) in the z variable, φ̂(x, ξ) which is
by definition the distribution defined as

〈φ̂(x, ·), µ〉R = 〈φ(x, ·), µ̂〉R =
∫

R
φ(x, ξ)µ̂(ξ)dξ,

where µ(ξ) is any smooth rapidly decreasing function. Let us consider a smooth
rapidly decreasing function of the two variables ψ(x, ξ). Then from equation (3.37)
we find ∫

R
〈φ̂(x, ·), ψxx − ξ2ψ + F ′(H)ψ〉R dx = 0.

Let ϕ(x) and µ(ξ) be smooth and compactly supported functions such that

{0} ∩ supp (µ) = ∅.(3.38)
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Then we can solve the equation

ψxx − ξ2ψ + F ′(H)ψ = µ(ξ)ϕ(x), x ∈ R,

uniquely for a smooth, rapidly decreasing function ψ(x, ξ) such that ψ(x, ξ) = 0
whenever ξ 6∈ supp (µ). We conclude that∫

R
〈φ̂(x, ·), µ〉R ϕ(x) dx = 0,

so that for all x ∈ R, 〈φ̂(x, ·), µ〉R = 0, whenever (3.38) holds. In other words

supp (φ̂(x, ·)) ⊂ {0}.

It follows that φ̂(x, ·) is a linear combination (with coefficients depending on x) of
derivatives up to a finite order of Dirac masses supported in {0}. Taking inverse
Fourier transform, we get that

φ(x, z) = p(x, z),

where p is a polynomial in z with coefficients depending on x. Since φ is bounded
these polynomial is of zero order, namely p(x, z) ≡ p(x), and the bounded function
p must satisfy the equation

L0(p) = 0,

from where the desired result thus follows. �
Let B(φ) be an operator of the form

B(φ) = b1∂xxφ+ b2∂xzφ+ b3∂xφ+ b4∂zφ+ b5φ,

where the coefficients bi are small functions. In the sequel we will denote b =
(b1, . . . , b5) and assume that

(3.39) ‖b‖ ≡
5∑
j=1

‖bj‖∞ + ‖∇b1‖∞ + ‖∇b2‖∞ < δ0,

where the small number δ0 will be subsequently fixed. The linear theory used in
this paper is based on a priori estimates for the solutions of the following problems

(3.40) B(φ) + L(φ) = h, in R2.

The results of Lemma 3.1 imply that such estimates without imposing extra condi-
tions on φ may not exist. The form of the bounded solutions of L(φ) = 0 suggests
the following orthogonality condition:

(3.41)
∫

R
φ(x, z)Hx(x)dµ(x) = 0, ∀z ∈ R,

where dµ(x) is a fixed measure in R absolutely continuous with respect to the
Lebesque measure. In the sequel we will in particular consider dµ(x) = χ(x) dx
where χ is a compactly supported cut-off function (c.f (2.31)), however our next
result applies for a general dµ(x) as well. With these restrictions imposed we have
the following result concerning a priori estimates for this problem.

Lemma 3.2. There exist constants δ0 and C such that if the bound (3.39) holds
and h ∈ L∞(R2), then any bounded solution φ of problem (3.40)-(3.41) satisfies

‖φ‖∞ ≤ C‖h‖∞.
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Proof. Proof of the Lemma is similar to the argument in the proof of Lemma 2.2
[7]. We will argue by contradiction. Assuming the opposite means that there are
sequences bnj , φn, hn such that

5∑
j=1

‖bnj ‖∞ + ‖∇bn1‖∞ + ‖∇bn2‖∞ → 0,

‖φn‖∞ = 1, ‖hn‖∞ → 0,

and

Bn(φn) + L(φn) = hn, in R2,(3.42) ∫
R
φn(x, z)Hx(x)dµ(x) = 0, for all z ∈ R.(3.43)

Here
Bn(φ) = bn1∂xxφ+ bn2∂xzφ+ bn3∂xφ+ bn4∂zφ+ bn5φ.

Let us assume that (xn, zn) ∈ R2 is such that

|φn(xn, zn)| → 1.

We claim that the sequence {xn} is bounded. Indeed, if not, using the fact that
Lφ = ∆φ − 2φ + O(e−c|x|)φ and employing elliptic estimates we find that the
sequence of functions

φ̃n(x, z) = φn(xn + x, zn + z),

converges, up to a subsequence, locally uniformly to a solution φ̃ of the equation

∆φ̃− 2φ̃ = 0, in R2,

whose absolute value attains its maximum at (0, 0), This implies φ̃ ≡ 0, so that
{xn} is indeed bounded. Let now

φ̃n(x, z) = φn(x, zn + z).

Then φ̃n converges uniformly over compacts to a bounded, nontrivial solution φ̃ of

L(φ̃) = 0 in R2,∫
R
φ̃(x, z)Hx(x)dµ(x) = 0, for all z ∈ R.

Lemma 3.1 then implies φ̃ ≡ 0, a contradiction and the proof is concluded. �
Using Lemma 3.2 we can also find a priori estimates with norms involving expo-

nential weights. Let us consider the norm

‖φ‖σ,a ≡ ‖eσ|x|+a|z|φ‖∞.

where numbers σ, a ≥ 0 are fixed and will be subsequently adjusted. In the case
a = 0 we have the following a priori estimates.

Corollary 3.1. There are numbers C and δ0 as in Lemma 3.2 for which, if ‖h‖σ,0 <
+∞, σ ∈ [0,

√
2), then a bounded solution φ of (3.40)–(3.41) satisfies

(3.44) ‖φ‖σ,0 + ‖∇φ‖σ,0 ≤ C‖h‖σ,0.
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Proof. Besides some obvious changes in the proof, Corollary 3.1 follows from the
same argument as Corollary 2.1 in [7]. Again we concentrate on estimates for the
problem (3.40)–(3.41). We already know that

‖φ‖∞ ≤ C‖h‖σ,0.

We set φ̃ = φ‖h‖−1
σ,0. Then we have

(L+B)(φ̃) = h̃, where ‖h̃‖σ,0 ≤ 1,

and also ‖φ̃‖∞ ≤ C. Let us fix a number R0 > 0 such that for x > R0 we have

1−H2(x) <
2− σ2

6
,

which is always possible since 1 − H2(x) = O(e−
√

2|x|). For an arbitrary number
ρ > 0 let us set

φ̄(x, z) = ρ[cosh(z/2) + eσx] +Me−σx,

where M is to be chosen. Then we find that, reducing δ0 in (3.39) if necessary,

(L+B)(φ̄) ≤ −M(2− σ2)
4

e−σx, for x > R0.

Thus
(L+B)(φ̄) ≤ h̃, for x > R0,

if
M(2− σ2)

4
≥ ‖h̃‖σ,0 = 1.

If we also also assume
Me−σR0 ≥ ‖φ̃‖∞,

we conclude from maximum principle that φ̃ ≤ φ̄. Letting ρ → 0 we then get by
fixing M ,

φ̃ ≤Me−σx, for x > 0,
hence

φ ≤M‖h‖σ,0e−σx, for x > 0.
In a similar way we obtain the lower bound

φ ≥ −M‖h‖σ,0e−σx, for x > 0.

Finally, the same argument for x < 0 yields

‖φ‖σ,0 ≤ C‖h‖σ,0,

while from local elliptic estimates we find

‖∇φ‖σ,0 ≤ C‖h‖σ,0,

and the proof is concluded. �
When a > 0 in the definition of the norm ‖ · ‖σ,a then we have the following a

priori estimates.

Corollary 3.2. There are numbers C, δ0 as in Lemma 3.2, and a0 > 0 for which,
if ‖h‖σ,a < +∞, σ ∈ (0,

√
2), a ∈ [0, a0), then a bounded solution φ to problem

(3.40)-(3.41) satisfies
‖φ‖σ,a + ‖∇φ‖σ,a ≤ Cσ‖h‖σ,a.
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Proof. We already know that

‖φ‖σ,0 + ‖∇φ‖σ,0 ≤ C‖h‖σ,a.
Then we may write

ψ(z) =
∫

R
φ2(x, z) dx,

and differentiate twice weakly to get

ψ′′(z) = 2
∫

R
φ2
z dx+ 2

∫
R
φzzφdx.

We have ∫
R
φzzφdx =

∫
R
φ2
x dx+

∫
R
F ′(H)φ2 dx−

∫
R
B(φ)φ+

∫
R
hφ.(3.45)

Integrating by parts once in x we find∣∣∣ ∫
R
B(φ)φ

∣∣∣ =
∣∣∣ ∫

R
[−(b1φ)xφx − (b2φ)xφz + b3φxφ+ b4φzφ+ b5φ

2]
∣∣∣

≤ Cδ0
∫

R
(φ2
z + φ2

x + φ2) dx.
(3.46)

Because of the orthogonality condition (3.41) we also have that for a certain ν0 > 0,∫
R
φ2
x dx+

∫
R
F ′(H)φ2 dx ≥ ν0

∫
R
(φ2
x + φ2) dx.

Hence, reducing δ0 if necessary, we find that for a certain constant C > 0

ψ′′(z) ≥ ν0

4
ψ(z)− C

∫
R
h2(x, z) dx,

so that
−ψ′′(z) +

ν0

4
ψ(z) ≤ C

σ
e−2a|z|‖h‖2σ,a.

Since we also know that ψ is bounded by:

|ψ(z)| ≤ C

σ
‖h‖2σ,0,

we can use a barrier of the form ψ+(z) = M‖h‖2σ,ae−2az+ρe2az, with M sufficiently
large and ρ > 0 arbitrary, to get the bound 0 ≤ ψ ≤ ψ+ for z ≥ 0 and any
a <

√
ν0
4 ≡ a0. A similar argument can be used for z < 0. Letting ρ → 0 we get

then ∫
R
φ2(x, z) dx ≤ Cσe−2a|z|‖h‖2σ,a, a < a0.

Elliptic estimates yield that for R0 fixed and large

|φ(x, z)| ≤ Cσe−a|z|‖h‖σ,a for |x| < R0.

The corresponding estimate in the complementary region can be found by barriers.
For instance in the quadrant {x > R0, z > 0} we may consider a barrier of the form

φ̄(x, z) = M‖h‖σ,ae−(σx+az) + ρe
x
2 + z

2 ,

with ρ > 0 arbitrarily small. Fixing M depending on R0 we find the desired
estimate for ‖φ‖σ,a letting ρ→ 0. Arguing similarly in the remaining quadrants is
similar. The corresponding bound for ‖∇φ‖σ,a is then deduced from local elliptic
estimates. This concludes the proof. �
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Notice that for a general right hand side h equation of the form L(φ)+B(φ) = h
with the orthogonality conditions imposed as above does not have a solution. On
the other hand the problem

(3.47) L(φ) +B(φ) = h+ c(z)Hx, in R2,

under orthogonality conditions

(3.48)
∫

R
φ(x, z)Hx(x)dµ(x) = 0, for all z ∈ R.

has a solution in the sense that for given h one can find (φ, c) satisfying (3.47)–
(3.48).

Corollary 3.3. There exist C > 0 and δ0 > 0 as in Lemma 3.2, and η0 > 0 and
a0 > 0 for which, if ‖h‖σ,α < +∞, σ ∈ (0,

√
2), a ∈ [0, a0), and dµ(x) = ρ(x) dx is

such that

(3.49)
∫

R
e−σ|x|[|Hx|ρxx|+ 2|Hxx||ρx|] dx < η0,

then a bounded solution φ to problem (3.47)-(3.48) satisfies

(3.50) ‖φ‖σ,a + ‖∇φ‖σ,a ≤ C‖h‖σ,a.
Moreover we have

|c(z)| ≤ C‖h‖σ,ae−a|z|.(3.51)

Proof. To find a priori estimate (3.50) we have to find bounds for the function c(z).
Testing equation (3.47) against Hx and integrating with respect to dµ(x) we get∫

R
φzzHx dµ(x) +

∫
R
L0(φ)Hx dµ(x) +

∫
R
B(φ)Hx dµ(x) =

∫
R
hHx dµ(x)

+ c(z)
∫

R
H2
x dµ(x).

Let us assume that ‖h‖σ,0 < +∞ and that φ is a bounded solution. Integrating by
parts and using L0(Hx) = 0 and the orthogonality condition (3.48) we get
(3.52)

c(z)
∫

R
H2
xρ dx =

∫
R
B(φ)Hxρ dx+

∫
R
φ(2wxxρx +Hxρxx) dx−

∫
R
hHx dµ(x).

To estimate term
∫

R B(φ)Hxρ dx we use an argument similar to that of (3.46), and
to estimate

∫
R φ(Hxρ)xx dx we use (3.49) to get

|c(z)| ≤ C
∫

R
|hHx|+ C(δ0 + η0)(‖∇φ‖σ,0 + ‖φ‖σ,0).

From the a priori estimates (Corollary 3.1) applied to (3.47) we know that

‖∇φ‖σ,0 + ‖φ‖σ,0 ≤ C(‖h‖σ,0 + ‖c‖∞),

since
‖Hxe

σ|x|‖∞≤ C,
for σ ∈ [0,

√
2). Thus, reducing δ0, η0 if necessary, we find

‖c‖∞ ≤ C‖h‖σ,0,
and the estimate

‖∇φ‖σ,0 + ‖φ‖σ,0 ≤ C‖h‖σ,0.
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follows.

Finally, if we additionally have ‖h‖σ,a < +∞, we obtain that∫
R
|hHx| ≤ C‖h‖σ,ae−a|z|.

The same procedure as above and the a priori estimates found in Corollary 3.2 then
yield

|c(z)| ≤ C‖h‖σ,ae−a|z|,

from where the relation (3.50) immediately follows. �
Concerning the existence of bounded solutions of (3.47)–(3.48) we have:

Proposition 3.1. There exists numbers C > 0, δ0 > 0, η0 > 0 such that whenever
bounds (3.39), (3.49) hold, then given h with ‖h‖σ,a < +∞, σ ∈ (0,

√
2), a ∈ [0, a0),

there exists a unique bounded solution φ = T (h) to problem (3.47)-(3.48) which
defines a bounded linear operator of h in the sense that

‖∇φ‖σ,a + ‖φ‖σ,a ≤ C‖h‖σ,a.

Proof. We will first consider solvability of the following problem

(3.53) (L+B)(φ) = h, in R2,

in the space V , where ψ ∈ V if ‖ψ‖σ,0 <∞, σ ∈ (0,
√

2) and

(3.54)
∫

R
ψ(x, z)Hx(x)ρ(x) dx = 0, for all z ∈ R,

where the density ρ(x) satisfies the hypothesis of Corollary 3.3. We claim that
given h ∈ V there exists a unique solution φ of (3.53) in V . We will argue by
approximations. Let us replace h by the function h(x, z)χ(−R,R)(z) extended 2R-
periodically to the whole plane. With this right hand side we can give to the
problem (3.53) a weak formulation in the subspace of H1

R ⊂ H1(R2) of functions
that are 2R-periodic in z. To be more precise let

[ψ, η] =
∫ ∞
−∞

∫ R

−R
∇ψ · ∇η dzdx+

∫ ∞
−∞

∫ R

−R
ψη dzdx.

By W we will denote the subspace of functions in H1
R that satisfy (3.54). Then

(3.53) can be written in the form

(3.55) − [(A+K)(φ), ψ] =
∫ ∞
−∞

∫ R

−R
hψ, ψ ∈W,

where A : W →W is defined for ψ ∈W by

[A(φ), ψ] =
∫ ∞
−∞

∫ R

−R
(∇φ∇ψ + b1φxψx + b2φxψz) dzdx

+
∫ ∞
−∞

∫ R

−R
(2− b5)φψ dzdx,
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and K : W →W is a linear operator defined by

[K(φ), ψ] =
∫ ∞
−∞

∫ R

−R
[(b1x + b2z − b3)φx − b4φz]ψ dzdx

−
∫ ∞
−∞

∫ R

−R
φψ[2 + F ′(H)] dzdx.

Using (3.39), (3.49), and the fact that ‖2 +F ′(H)‖√2,0 <∞ one can show that the
operator A is invertible and the operator K is compact.

From Fredholm alternative and Lemma 3.1 we find a solution of (3.55), which
in addition can be extended periodically to a unique solution φ ∈ V , of (3.53) with
h replaced by h(x, z)χ(−R,R)(z). Letting R → +∞ and using the uniform a priori
estimates valid for the approximations completes the proof of the claim.

The existence of a solution to (3.47)–(3.48) as well as the rest of the Proposition
follows from this claim. Indeed, given h such that ‖h‖σ,0 < ∞ by ΠV (h) we will
denote the orthogonal projection of h onto V (in the sense of L2(ρ dx) as indicated
by (3.54)). Using the claim we can solve then the following problem

(L+B)(φ) = ΠV (h).

Now we only need to chose function c(z) such that

(I −ΠV )[(L+B)(φ)] = (I −ΠV )(h) + c(z)Hx.

This ends the proof.
�

3.2. Linear theory for multiple interfaces. We want to develop a theory similar
to that in the previous section now for the operator

L(φ) = ∆φ+ F ′(w)φ.

Let us recall the definition of the weighted norm which we will use (2.14):

‖φ‖σ,θα,∗ :=
∥∥∥( k∑

j=1

e−σ|x−fjα(z)|−θα|z|
)−1

φ
∥∥∥
∞
.

We will search for a bounded left inverse for a projected problem for the operator
L in the space of functions whose ‖ · ‖σ,θα,∗ norm is finite. In section 2.1 we have
introduced approximate locations of the transitions layers: γjα = {x = fjα(z) +
hjα(z) | z ∈ R}, j = 1, . . . , k where functions fjα, hjα satisfy, respectively, (2.2)
and (2.11). For convenience we will set

fjα(z) = fjα(z) + hjα(z).

Furthermore we will denote:

Hj(x, z) = H
(
x− fjα(z)

)
,

Hj,x(x, z) = H ′
(
x− fjα(z)

)
.

Thus we consider the problem

(3.56) L(φ) = h+
k∑
j=1

cj(z)ηj(x, z)Hj,x(x, z), in R2,

where now we do not assume necessarily orthogonality conditions on φ. Above we
have introduced cut-off functions ηj , which are defined as folllows: let ηba(s) be a
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smooth function with ηba(s) = 1 for |s| < a and = 0 for |s| > b, where 0 < a < b < 1.
Then, with d∗ = log 1

α , we set

ηj(x, z) = ηba

( |x− fjα|
d∗

)
, a =

√
2

2
(1− 2−7), b =

√
2

2
(1− 2−8).(3.57)

In the sequel we will also use other cut-off functions:

ρj(x, z) = ηba

( |x− fjα|
d∗

)
, a =

√
2

2
(1− 2−5), b =

√
2

2
(1− 2−6),

η−j (x, z) = ηba

( |x− fjα|
d∗

)
, a =

√
2

2
(1− 2−6), b =

√
2

2
(1− 2−7),

η+
j (x, z) = ηba

( |x− fjα|
d∗

)
, a =

√
2

2
(1− 2−8), b =

√
2

2
(1− 2−9).

(3.58)

We will prove the following result:

Proposition 3.2. There exist positive constants α0, σ0, δ0 > 0 such that if (3.39)
is satisfied, and if α ∈ [0, α0), σ ∈ (0, σ0), and conditions (2.1)-(2.2), (2.11) hold,
then problem (3.56) has a solution φ = T(h) which defines a linear operator of h
with ‖h‖σ,θα,∗ < +∞ and satisfies the estimate

‖φ‖σ,θα,∗ + ‖∇φ‖σ,θα,∗ ≤ Cσ‖h‖σ,θα,∗.

In addition function φ satisfies the following orthogonality conditions

(3.59)
∫

R
φ(x, z)Hj,x(x, z)(x, z)ρj(x, z) dx = 0, for all z ∈ R.

Besides, the coefficients cj(z) in (3.56) can be estimated as

k∑
j=1

|cj(z)| ≤ C‖h‖σ,θα,∗e−θα|z|.(3.60)

Proof. The main idea in the proof of this proposition is to decompose problem (3.56)
into interior problems that can be handled with the help of the theory developed
in the previous section and an exterior problem and then glue the solutions of the
subproblems.

From the definition of the functions ηj , η±j we have

(3.61) ηjη
−
j = η−j , η+

j ηj = ηj .

We search for a solution of (3.56) of the form

φ =
k∑
j=1

ηjφj + ψ.

Substituting this expression into equation (3.56) and arranging terms we find
k∑
j=1

ηj [∆φj + F ′(w)φj − cj(z)Hj,x − h]

+
[
∆ψ + F ′(w)ψ −

(
1−

k∑
j=1

ηj

)
h−

k∑
j=1

(2∇ηj∇φj + ∆ηjφj)
]

= 0.
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We will denote
hj = η+

j h, rj = η+
j [F ′(Hj)− F ′(w)].

Let us observe that in the support of ηj we have, using (3.61),

ηjhj = ηjh, ηjrj = ηj [F ′(Hj)− F ′(w)],

Then we find a solution to problem (3.56) if we solve the following linear system of
equations

∆φj + F ′(Hj)φj + rjφj = hj − 3(1− w2)η−j ψ + cj(z)Hj,x,(3.62)

in R2, for j = 1, . . . , k, and

∆ψ −
[
2− 3

(
1−

k∑
j=1

η−j

)
(1− w2)

]
ψ =

(
1−

k∑
j=1

ηj

)
h−

k∑
j=1

(2∇ηj∇φj + ∆ηjφj),

(3.63)

in R2. To solve equations (3.62) we denote φ̃j = φj + η−j ψ and use (3.62)–(3.63) to
write the equation for φ̃j

∆φ̃j + F ′(Hj)φ̃j + rj φ̃j = hj + η−j ψ
[
F ′(Hj)− 3(1− w2) + rj + 2

− 3
(

1−
k∑

m=1

η−m

)
(1− w2)

]
− 2∇ψ∇η−j −∆η−j ψ + cjHj,x.

(3.64)

We observe that equation (3.63) written in terms of φ̃j has form

∆ψ −
[
2− 3

(
1−

k∑
j=1

η−j

)
(1− w2)

]
ψ =

(
1−

k∑
j=1

ηj

)
h−

k∑
j=1

(2∇ηj∇φ̃j + ∆ηj φ̃j),

(3.65)

since for instance ∇ηj∇(η−j ψ) ≡ 0.
Let us denote

Lj(φ) = ∆φ+ F ′(Hj)φ,

and consider first the auxiliary problem

(3.66) Lj(φ) = h+ c(z)Hj,x, in R2,

under orthogonality condition

(3.67)
∫

R
φ(x, z)Hj,x(x, z)ρj(x, z) dx = 0, for all z ∈ R.

For future references we observe that

ρjη
−
j = ρj , ρj(1− η−j ) ≡ 0.(3.68)

We want to solve (3.66)–(3.67) using Proposition 3.1. To this end we consider
the natural change of coordinates

x 7→ x ≡ x− fjα, z 7→ z.

and set
φ(x, z) = φ̃(x, z), h(x, z) = h̃(x, z).
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Direct computation then shows that problem (3.66)-(3.67) is equivalent to

(3.69) L(φ̃) +Bj(φ̃) = h̃+ c(z)H ′(x), in R2.

under orthogonality conditions

(3.70)
∫

R
φ̃(x, z)H ′(x)ρ(x) dx = 0, for all z ∈ R,

where

ρ(x) = ηba

( x

d∗

)
, a =

√
2

2
(1− 2−5), b =

√
2

2
(1− 2−6).

Here
L(φ̃) = φ̃zz + φ̃xx + F ′(H)φ̃,

and

Bj(φ̃) =
(∂x
∂z

)2

φ̃xx + 2
(∂x
∂z

)
φ̃xz +

(∂2x

∂z2

)
φ̃x,

∂x

∂z
= − d

dz
fjα(z),

∂2x

∂z2
= − d2

dz2
fjα(z).

(3.71)

The operator Bj satisfies the assumptions of Proposition 3.1, since from (2.2), (2.11)
we have, using the notation of (3.39) and denoting the vector of the coefficients of
Bj by bj ,

(3.72) ‖bj‖ ≤ C
(∥∥ d
dz

fjα
∥∥
∞ +

∥∥ d2

dz2
fjα
∥∥
∞

)
≤ Cα.

Problem (3.69)–(3.70) has a unique bounded solution φ̃ = T̃j(φ̃) where T̃j is the
linear operator T predicted by the proposition for B = Bj . Besides, if ‖h̃‖σ,α < +∞
then we have the estimate

‖∇x,zφ̃‖σ,θα + ‖φ̃‖σ,θα ≤ C‖h̃‖σ,θα.
Going back to original variables we see then that there is a unique solution to
(3.66)-(3.67), φ = Tj(h) where Tj is a linear operator. In addition we have the
estimate

‖∇φ‖σ,θα,j + ‖φ‖σ,θα,j ≤ C‖h‖σ,θα,j ,
where

‖φ‖σ,θα,j = ‖ eσ|x−fjα(z)|+θα|z| φ ‖∞.(3.73)

Moreover, c is estimated using (3.51) by

|c(z)| ≤ C‖h‖σ,θα,je−θ0α|z|.(3.74)

Let us observe that given ψ we can recast the equations (3.62) for φ̃j as a system
of the form

φ̃j + Tj(rj φ̃j) = Tj
(
hj + gj(ψ)

)
,where

gj(ψ) = η−j ψ
[
F ′(Hj)− 3(1− w2) + rj + 2− 3

(
1−

k∑
m=1

η−m

)
(1− w2)

]
− 2∇ψ∇η−j −∆η−j ψ,

j = 1, . . . , k,

(3.75)
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We will solve next equation (3.65) for ψ as a linear operator

ψ = Ψ(Φ, h),

where Φ denotes the k-tuple Φ = (φ̃1, . . . , φ̃k). To this end let us consider first the
problem

(3.76) ∆ψ − (2−Θ)ψ = g in R2.

where

Θ = 3
(

1−
k∑
j=1

η−j

)
(1− w2).

Observe that if the number d∗ is large enough then Θ is uniformly small, indeed
Θ = o(1) as α→ 0. Let us assume that g satisfies

|g(x, z)| ≤ A
k∑
j=1

e−µ|x−fjα(z)|−θα|z|,

for some 0 ≤ µ <
√

2. Then, given that if d∗ is sufficiently large then number θ
is small, and also that (2.2), (2.11) holds, the use of barriers and elliptic estimates
proves that this problem has a unique bounded solution with

|∇ψ(x, z)|+ |ψ(x, z)| ≤ C
k∑
j=1

e−µ|x−fj(z)|−θα|z|.

Thus if we take

g = (1−
k∑
j=1

ηj)h−
k∑
j=1

(2∇ηj∇φ̃j + ∆ηj φ̃j),

we clearly have that

|g(x, z)| ≤C
[
‖h‖σ,θα,∗ + o(1)

k∑
j=1

(
‖φ̃j‖σ,θα,j + ‖∇φ̃j‖σ,θα,j

)]

×
k∑
j=1

e−µ|x−fj(z)|−θα|z|,

and hence equation (3.65) has a unique bounded solution

ψ = Ψ(Φ, h),

which defines a linear operator in its argument and satisfies the estimate

|Ψ(Φ, h)| ≤C
[
‖h‖σ,θα,∗ + o(1)

k∑
j=1

(
‖φ̃j‖σ,θα,j + ‖∇φ̃j‖σ,θα,j

)]

×
k∑
j=1

e−µ|x−fj(z)|−θα|z|.

(3.77)
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In addition, we find that
‖Ψ(Φ, h)‖σ,θα,∗ + ‖∇Ψ(Φ, h)‖σ,θα,∗

≤ C
[
‖h‖σ,θα,∗ + o(1)

k∑
j=1

(
‖φ̃j‖σ,θα,j + ‖∇φ̃j‖σ,θα,j

)]
.

(3.78)

Now we have the ingredients to solve the full system (3.64)-(3.65). Accordingly
to (3.75) we obtain a solution if we solve the following system in Φ = (φ̃1, . . . , φ̃k)

(3.79) φ̃j + Tj
(
rj φ̃j − gj(Ψ(Φ, 0))

)
= Tj

(
hj + gj(Ψ(0, h))

)
, j = 1, . . . , k,

where functions gj(Φ) are defined in (3.75). We consider this system defined in the
space X of all C1 functions Φ such that the norm

‖Φ‖X :=
k∑
j=1

‖∇φ̃j‖σ,θα,j + ‖φ̃j‖σ,θα,j ,

is finite. System (3.79) can be written as

Φ + A(Φ) = B(h),

where A and B are linear operators. Thanks to the estimates derived for the oper-
ators Tj and the bound (3.77) we see that

‖B(h)‖X ≤ C‖h‖σ,θα,∗.
On the other hand we have that

‖A(Φ)‖X ≤ C
[ k∑
j=1

‖gj(Ψ(Φ, 0))‖σ,θα,j +
∑
j=1

‖rj φ̃j‖σ,θα,j
]
.

Using estimates (3.77) and (3.78) we find

(3.80)
k∑
j=1

‖gj(Ψ(Φ, 0))‖σ,θα,j ≤ o(1)‖Φ‖X .

From the definition of rj and (2.15) we get ‖rj‖∞ = o(1) which implies
k∑
j=1

‖rj φ̃j‖σ,θα,j ≤ o(1)‖Φ‖X .

Summarizing the last estimates we obtain

‖A(Φ)‖X ≤ o(1)‖Φ‖X ,
hence the operator A is a uniformly small operator in the norm ‖ · ‖X provided
that α is sufficiently small. We conclude that system (3.79) has a unique solution
Φ = Φ(h), which in addition is a linear operator of h such that

‖Φ(h)‖X ≤ C‖h‖σ,θα,∗.
Thus we get a solution to problem (3.56) by setting

(3.81) φ =
k∑
j=1

ηj φ̃j(h) +
(

1−
∑

η−j

)
Ψ(Φ(h), h).

Using (3.68) we get ρjφ = ρj φ̃j hence from and (3.67) we obtain (3.59). Estimate
(3.60) follows directly from (3.74). The proof of the proposition is complete. �



MULTIPLE-END SOLUTIONS TO THE ALLEN-CAHN EQUATION IN R2 25

4. The nonlinear projected problem

4.1. Solvability. Let us recall (see section 2.3) that our goal is to find a solution
of the problem

L(φ) = S(w) +N(φ) +
k∑
j=1

cj(z)Hj,xηj , in R2,∫
R
φ(x, z)Hj,xρj dx = 0, ∀z ∈ R, j = 1, . . . k.

(4.1)

As we have shown already in Lemma 2.1:

(4.2) ‖S(w)‖σ,θα,∗ ≤ Cα2(1−σ),

where θ is as in (2.2), (2.11) and σ ∈ (0, 2
√

2−1
2
√

2
). We will establish next that

the nonlinear problem (4.1) is solvable with similar estimates to those obtained in
Proposition in 3.2 for problem (3.56) with h = S(w), namely we show the following
result.

Proposition 4.1. There exist positive numbers α0, δ0, σ0, such that for any number
σ ∈ (0, σ0), α ∈ [0, α0) and any f, satisfying constraints (2.2)-(2.11), Problem (4.1)
has a solution φ with ‖φ‖σ,θα,∗ ≤ Cσ′α2−2σ′ , where σ′ ∈ (σ, 2

√
2−1

2
√

2
) such that

(4.3)
∫

R
φ(x, z)Hj,x(x, z)ρj(x, z) dx = 0.

The coefficients cj can be estimated as follows:

(4.4)
k∑
j=1

|cj(z)| ≤ Cσ′α2−2σ′e−θα|z|.

In addition, if functions fjα, hjα are even functions of z then so is φ.

Proof. Let us observe that we obtain a solution of the problem (4.1) if we solve the
fixed point problem

(4.5) φ = T
(
S(w)−N(φ)

)
:=M(φ),

where T is the operator found in Proposition 3.2. Assume that ‖φj‖σ,θα,∗ < 1,
j = 1, 2. We have that

|N(φ2)−N(φ1) | ≤ C(|φ1|+ |φ2|) |φ2 − φ1|,

and hence

(4.6) ‖N(φ2)−N(φ1) ‖σ,θα,∗ ≤ C( ‖φ1‖σ,θα,∗ + ‖φ2‖σ,θα,∗) ‖φ2 − φ1‖σ,θα,∗,

in particular
‖N(φ) ‖σ,θα,∗ ≤ ‖φ‖2σ,θα,∗.

Then, from (4.2), the following holds: for each fixed σ′ ∈ (σ, 2
√

2−1
2
√

2
) there exists a

number ν > 0 such that for all small α the operator M is a contraction mapping
in a region of the form

B = {φ / ‖φ‖σ,θα,∗ ≤ να2−2σ′},
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and hence a solution of the fixed point problem (4.5) in B exists. Furthermore φ
solves (4.1), and by (3.59) we find that φ satisfies (4.3). The proof of the proposition
is complete. �

4.2. Lipschitz dependence on the parameters. Now we will consider the the
dependence of the solution φ of (4.1) on the function-parameters hjα, j = 1, . . . , k
(we recall that functions fjα are fixed). For convenience we will denote

fα = (f1α, . . . , fkα), hα = (h1α, . . . , hkα).

More specifically we are interested in establishing the Lipschitz character of φ as a
function of variables (h′′α, h

′
α, hα). We will begin with the observation that the error

term S(w) can be written as follows:

S(w) =
k∑
j=1

∆x,zHj + F ′(w)

= E1(h′′α, h
′
α, hα) + E2(hα),

where

E1 =
k∑
j=1

[∆x,zHj + F (Hj)] =
k∑
j=1

E1j(h′′jα, hjα′ , hjα).

Observe that functions E1j depend linearly on h′′jα and are quadratic functions of
h′jα (see (2.8)-(2.9) and (2.18)–(2.19)). Another observation we make is that to
establish the Lipschitz dependence of φ it suffices to vary one parameter at a time.
Thus we will consider functions hj such that

‖h′′j e θ|z|‖∞ + ‖h′je θ|z|‖∞ + ‖hj‖∞ < δ̄, j = 1, . . . , k.(4.7)

We will denote hjα(z) = hj(αz), hα = (h1α, . . . , hkα), etc. Also we will denote

d

dz
hjα = h′jα = αh′j(αz),

d2

dz2
hjα = h′′jα = α2h′′j (αz).

We observe that the error terms E1, and E2 can be thought of as functions of
h′′α, h

′
α, hα, and the same applies for the solution φ of (4.1). Thus we will further

write:

E1 = E1(h′′α, h
′
α, hα), E2 = E2(hα), φ = φ(h′′α, h

′
α, hα),

etc., whenever convenient. Given hα function φ solves the following problem (c.f.
(4.1)):

Lhα(φ) = E1(h′′α, h
′
α, hα) + E2(hα) +N(φ) +

k∑
j=1

cj(z)Hj,xηj , in R2,∫
R
φ(x, z)Hj,xρj dx = 0, ∀z ∈ R, j = 1, . . . k,

(4.8)

where fjα = fjα + hjα, Hj,x(x, z) = H ′
(
x− fjα(z)

)
and

Lhα = ∆ + F ′
(
w(hα)

)
.

The solution of this problem can be obtained by the argument of Section 4.1. In fact
the analog of Proposition 4.1 yields ‖φ‖σ,θα,∗ ≤ Cα2(1−σ′), where σ′ ∈ (σ, 2

√
2−1

2
√

2
).
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We will consider functions hαi, i = 1, 2 such that

α2‖hα1 − hα2‖∞ + α‖h′α1 − h′α2‖θα + ‖h′′α1 − h′′α2‖θα ≤ δ̄α2,(4.9)

where δ̄ > 0 is a fixed small constant (c.f. (2.11)). For convenience we will denote

|||hα|||θα = α2‖hα‖∞ + α‖h′α‖θα + ‖h′′α‖θα

Lemma 4.1. Under the assumptions (4.9) we have the following estimates:

‖E1(h′′α1, h
′
α1, hα1)− E1(h′′α1, h

′
α1, hα1)‖σθα,∗ ≤ Cα−2σ′ |||hα1 − hα2|||θα(4.10)

‖E2(hα1)− E2(hα2)‖σ,θα,∗ ≤ Cα2(1−σ′)‖hα1 − hα2‖∞(4.11)

The proof of this Lemma follows the lines of the proof of Lemma 2.1 and is
omitted here.

In what follows we will emphasize the dependence of φ and cj on parameters by
writing

φ(i) = φ(h′′αi, h
′
αi, hαi),

c
(i)
j = c

(i)
j (h′′αi, h

′
αi, hαi), etc.

(4.12)

Proposition 4.2. Let φ, be the solution of (4.8). Then functions φ and cj for
j = 1, . . . , k, are continuous with respect to the parameters h′′α, h

′
α, hα. Moreover

assuming (4.9), with the notation (4.12) we have the following estimates

‖φ(1) − φ(2)‖σ,θ0α,∗ + ‖∇(φ(1) −∇φ(2))‖σ,θ0α,∗ ≤ Cα−2σ′ |||hα1 − hα2|||θ0α(4.13)

where σ′ ∈ (σ, 2
√

2−1
2
√

2
).

Proof. With the notations in (4.12) we have that φ(i), i = 1, 2 is the solution of the
following problem in R2:

(4.14) Lhαi(φ
(i)) = E

(i)
1 + E

(i)
2 −N(φ(i)) +

k∑
j=1

c
(i)
j (z)H(i)

j,xη
(i)
j .

In terms of the operator T(i) defined in Proposition 3.2, we can write φ(i) as the
solution of the fixed point problem:

φ(i) = T(i)
(
S(w(i))−N(φ(i))

)
.(4.15)

In order to estimate the difference φ(1)−φ(2) we need first to analyze the Lispchitz
dependence of the operator T(i) on the function parameters hαi and their derivatives.
Let h be a given function satisfying ‖h‖σ,θ0α,∗ < +∞. Let us denote

ϕ(i) = T(i)(h),

Using the same notation as in the proof of Proposition 3.2 we get

(4.16) ϕ(i) =
k∑
j=1

η
(i)
j ϕ̃

(i)
j (h) +

(
1−

∑
η

(i)−
j

)
Ψ(i)(Φ(i)(h), h).

where functions ϕ̃(i)
j solve system (3.79), and Φ(i) = (ϕ̃(i)

1 , . . . , ϕ̃
(i)
k ). Clearly the

Lipschitz dependence of T(i) on the parameters depends on the Lipschitz dependence
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of the operator Ψ(i) as well as the functions ϕ̃(i)
j , j = 1, . . . , k. This is the issue to

which we turn our attention now. Let us denote

Θ(i) = 3
(

1−
k∑
j=1

η
(i)−
j

)(
1− (w(i))2

)
,

and

g(i) = (1−
k∑
j=1

η
(i)
j )h−

k∑
j=1

(2∇η(i)
j ∇ϕ̃

(i)
j + ∆η(i)

j ϕ̃
(i)
j ),

Then Ψ(i)(Φ(i), h) is defined by (see 3.76)

(4.17) ∆Ψ(i) − (2−Θ(i))Ψ(i) = g(i) in R2.

Writing the difference as Ψ̄ = Ψ(1) −Ψ(2) we get:

∆Ψ̄− 2Ψ̄ = Θ(1)Ψ(1) −Θ(2)Ψ(2) + g(1) − g(2).

If q(s) denotes a smooth real function and if we set q(i)
j = q(x − fjα − h(i)

jα) (as
suggested by the form of a typical term involved in the expression for g(i)) then:

|q(1) − q(2)| ≤ ‖hα1 − hα2‖∞‖∇q‖∞.(4.18)

From this it follows:

‖g(1) − g(2)‖σ,θα,∗ ≤ Cd−1
∗ ‖hα1 − hjα2‖∞

×
(
‖h‖σ,θ,∗ + d−1

∗ [‖ϕ̃(1)‖σ,θα,∗ + ‖∇ϕ̃(1)‖σ,θα,∗]
)

+ Cd−1
∗
[
‖ϕ̃(1) − ϕ̃(2)‖σ,θα,∗ + ‖∇ϕ̃(1) −∇ϕ̃(2)‖σ,θα,∗

](4.19)

(see (3.73) for the definition of ‖ · ‖σ,θα,j .) In a similar manner we can estimate:

‖Θ(1)Ψ(1) −Θ(2)Ψ(2)‖σ,θα,∗ ≤ ‖Θ(1) −Θ(2)‖∞‖Ψ(1)‖σ,θα,∗
+ ‖Θ(2)‖∞‖Ψ(1) −Ψ(2)‖σ,θα,∗

≤ o(1)‖hα1 − hα1‖∞‖Ψ(1)‖σ,θα,∗ + o(1)‖Ψ̄‖σ,θα,∗

(4.20)

Using then a standard comparison argument and (3.78) we get

‖Ψ̄‖σ,θα,∗ + ‖∇Ψ̄‖σ,θα,∗ ≤ o(1)‖hα1 − hα2‖∞

×
(
‖h‖σ,θα,∗ + d−1

∗ [‖ϕ̃(1)‖σ,θα,∗ + ‖∇ϕ̃(1)‖σ,θα,∗]
)

+ o(1)
[
‖ϕ̃(1) − ϕ̃(2)‖σ,θα,∗ + ‖∇ϕ̃(1) −∇ϕ̃(2)‖σ,θα,∗

]
(4.21)
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Let us now recall (c.f. (3.75)) that functions ϕ̃(i)
j that appear in formula (4.16)

satisfy

ϕ̃
(i)
j + T

(i)
j (r(i)

j ϕ̃
(i)
j ) = T

(i)
j

(
h

(i)
j + g

(i)
j (ψ(i))

)
,where

g
(i)
j (ψ(i)) = η

−(i)
j ψ(i)

[
F ′(H(i)

j )− 3(1− (w(i))2) + r
(i)
j + 2

− 3
(

1−
k∑

m=1

η−(i)
m

)
(1− (w(i))2)

]
− 2∇ψ(i)∇η−(i)

j −∆η−(i)
j ψ(i),

j = 1, . . . , k, i = 1, 2,

(4.22)

and

h
(i)
j = η

+(i)
j h, r

(i)
j = η

+(i)
j [F ′(H(i)

j )− F ′(w(i))], ψ(i) = Ψ(i)(Φ(i)(h), h).

As it can be seen from (4.20)–(4.22) we need to analyze the Lipschitz character of
the operators T (i)

j , where we say that T (i)
j (h) = ϕ

(i)
j , if ϕ(i)

j is a unique solution of

(3.66)–(3.67). Using the linear operators L(i)
j , where

L
(i)
j (ϕ(i)

j ) = ∆ϕ(i)
j + F ′

(
H(x− fjα − h(i)

jα)
)
ϕ

(i)
j ,

we can write:

L
(1)
j (ϕ(1)

j − ϕ
(2)
j ) = c

(1)
j H

(1)
j,x − c

(2)
j H

(2)
j,x + (L(2)

j − L
(1)
j )ϕ(2)

j .

To use the theory developed for the a priori estimates for the operator L(1)
j we

denote

aj =

∫
R(ϕ(2)

j − ϕ
(1)
j )H(1)

j,xρ
(1)
j dx∫

R
(
H

(1)
j,x

)2
ρ

(1)
j dx

,

so that function ϕ̄j = ϕ
(1)
j − ϕ

(2)
j + ajH

(1)
j,x satisfies:

L
(1)
j ϕ̄j = −c(2)

j (H(2)
j,x − H

(1)
j,x) + (L(2)

j − L
(1)
j )ϕ(2)

j + L
(1)
j (ajH

(1)
j,x)

+ (c(1)
j − c

(2)
j )H(1)

j,x,∫
R
ϕ̄jH

(1)
j,xρ

(1)
j dx = 0.

(4.23)

Notice that the first equation in (4.23) can be written in the form

L
(1)
j ϕ̄j = h̄j + c̄jH

(1)
j,x,

where

h̄j = −c(2)
j (H(2)

j,x − H
(1)
j,x) + (L(2)

j − L
(1)
j )ϕ(2)

j + ajL
(1)
j (H(1)

j,x) + 2aj,zH
(1)
j,xz,

c̄j = (c(1)
j − c

(2)
j + aj,zz).

As a consequence, function ϕ̄j , as a unique solution of (4.23), can be estimated in
terms of the norm of h̄j only. Using (3.60) we have

‖c(2)
j (H(2)

j,x − H
(1)
j,x)‖σ,θα,j ≤ C‖hα1 − hα2‖∞‖h‖σ,θα,j .
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(See (3.73) for the definition of ‖ · ‖σ,θ0α,j). Similarly we find

‖(L(2)
j − L

(1)
j )ϕ(2)

j ‖σ,θα,j ≤ C‖hα1 − hα2‖∞‖h‖σ,θα,j .
In order to estimate the last two term in (4.23) we observe:

‖ajL(1)
j (H(1)

j,x)‖θα + ‖aj,zH(1)
j,xz‖θα

≤ C(‖ϕ(2)
j − ϕ

(1)
j ‖σ,θα,j + ‖∇(ϕ(2)

j − ϕ
(1)
j )‖σ,θα,j)

×
(∥∥ d
dz

fjα
∥∥
θα

+
∥∥ d2

dz2
fjα
∥∥
θα

)
≤ Cα(‖ϕ(2)

j − ϕ
(1)
j ‖σ,θα,j + ‖∇(ϕ(2)

j − ϕ
(1)
j )‖σ,θα,j).

Summarizing we get,
‖ϕ̄j‖σ,θα,j ≤ C‖hα1 − hα2‖θα‖h‖σ,θα,j

+ Cα(‖ϕ(2)
j − ϕ

(1)
j ‖σ,θα,j + ‖∇(ϕ(2)

j − ϕ
(1)
j )‖σ,θα,j).

(4.24)

For future references we also observe that, using the orthogonality condition,

‖aj‖θα ≤ C‖hα1 − hα2‖∞‖h‖σ,θα,j .(4.25)

Combining (4.24)–(4.25) we find:

‖ϕ(2)
j − ϕ

(1)
j ‖σ,θα,j ≤ C‖hα1 − hα2‖∞‖h‖σ,θα,j

+ Cα(‖ϕ(2)
j − ϕ

(1)
j ‖σ,θα,j + ‖∇(ϕ(2)

j − ϕ
(1)
j )‖σ,θα,j).

(4.26)

An estimate similar to (4.26) holds for ∇(ϕ(2)
j −ϕ

(1)
j ) and thus we get (by definition

ϕ
(i)
j = T

(i)
j (h)):

‖T (1)
j (h)− T (2)

j (h)‖σ,θα,j + ‖∇(T (1)
j (h)− T (2)

j (h))‖σ,θα,j
≤ C‖hα1 − hα2‖∞‖h‖σ,θα,j .

(4.27)

Going back to formula (4.14) and using the above we derive at the end the
following estimate for the function ϕ(1) − ϕ(2):

‖ϕ(1) − ϕ(2)‖σ,θα,∗ + ‖∇(ϕ(1) − ϕ(2))‖σ,θα,∗
≤ C‖hα1 − hα2‖∞(‖h(1)

j ‖σ,θα,∗ + ‖h(2)
j ‖σ,θα,∗)

+ C‖h(1)
j − h

(2)
j ‖σ,θα,∗.

(4.28)

Now we use (4.28), (4.15), Proposition 3.2 and Lemma 4.1 to conclude estimate
(4.13). This ends the proof of the proposition. �

5. The final step of the Lyapunov-Schmidt procedure

5.1. Derivation of the reduced problem. In this section we will derive a second
order differential system for the location of the interfaces which will guarantee that

cj(z) = 0, j = 1, . . . , k,(5.1)

where cj ’s are defined in Proposition 4.1. In order to determine these functions we
multiply the first equation in (2.32) by ρjHj,x and integrate in x to get

−
∫

R
S(w)ρjHj,x dx+

∫
R
L(φ)ρjHj,x dx−

∫
R
N(φ)ρjHj,x dx = cj(z)

∫
R
H2
j,xρj dx,

(5.2)
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where we have used the fact that ρjηj′ = δjj′ρj , j, j′ = 1, . . . , k. As we will see later
on that leading order term in the expansion of cj(z) as a function of the parameter
α is

Πj = −
∫

R
S(w)ρjHj,x dx.

Now we will compute this term. Let us notice first that for a fixed 1 ≤ j ≤ k:

S(w) = ∆x,zHj + F (Hj)

+ 3(1−H2
j )(w −Hj)

+
∑
n6=j

[∆x,zHn + F (Hn)]

+
1
2
F ′′(Hj)(w −Hj)2 − 1

2

∑
n 6=j

F ′′(σjn)(σjn −Hn)2 + max
n 6=j

O(e−3
√

2 |xn|)

= S̃j1(w) + S̃j2(w) + S̃j3(w) + S̃j4(w).

(5.3)

Accordingly we can write,

Πj = −
∫

R
S̃j1(w)ρjHj,x dx−

∫
R
S̃j2(w)ρjHj,x dx−

∫
R
S̃j3(w)ρjHj,x dx

−
∫

R
S̃j4(w)ρjHj,x dx

= Π̃j1 + Π̃j2 + Π̃j3 + Π̃j4.

Using (2.18) we get

Π̃j1 = −α2

∫
R

[H ′′(h′jα)2 − (h′′j + f ′′jα)H ′]Hj,xρj dx

− α2

∫
R

B1(xj , zj)[H]Hj,xρj dx− α3

∫
R

B2(xj , zj)[H]Hj,xρj dx,

where H = H
(
xj − hjα(z)

)
, hjα(z) = hj(αz). From the definition of the Fermi

coordinates (xj , zj) in (2.6) we find

|x− fjα(z)− xj | ≤ Cα2|xj |,
hence,

|H ′(xj − hjα)−H ′(x− fjα − hjα)| ≤ Cα2|xj |e−
√

2|xj |.(5.4)

Replacing now H ′(xj − hjα) in in the formula for Π̃j1 by H ′((x− fjα− hjα) = Hj,x
we get:

Π̃j1 = c0,α(h′′jα + f ′′jα) + α2M1j(fα, hα),(5.5)

where fα(z) = f(αz), hα(z) = h(αz) and fα = (f1α, . . . , fkα), hα = (h1α, . . . , hkα),
and we have denoted:

c0,α =
∫

R
(H ′)2ρ(

x

| logα|
) dx,

Since

ρ(t) = ηba(t), a =
√

2
2

(1− 2−5), b =
√

2
2

(1− 2−6),
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therefore

c0,α = c0
(
1 +O(α2−µ)

)
, c0 =

∫
R

(H ′)2 dx,
1
2
> µ >

1
25
.(5.6)

Function M1j defined above satisfies:

‖M1j‖θ0α ≤ C(‖h′α‖2θ0α + ‖h′′α‖θ0α),

where constants C depends on function fα. Furthermore we get

Π̃j2 = −c1,α(e−
√

2(fjα−fj−1α) − e−
√

2(fj+1α−fjα)) + P1j(fα, hα),(5.7)

where

c1,α = c1
(
1 +O(α1−µ)

)
, c1 = 3

∫
R

(1−H2)H ′e−
√

2x dx,

and we recall that fjα = fjα + hjα. Function P1j can be estimated as follows:

|P1j(fα, hα)| ≤ Cα2 max
n 6=j

e−
√

2|fnα−fjα|.

Similarly, we get

‖Π̃j3‖θα ≤ Cα(α2 + ‖h′α‖2θα + ‖h′′α‖θα)

|Π̃j4| ≤ C max
n 6=j

e−2
√

2|fnα−fjα| ≤ Cα2 max
n 6=j

e−
√

2|fnα−fjα|.

Now we will consider

Q1 ≡
∫

R
L(φ)ρjHj,x dx =

∫
R

[φxx + F ′(Hj)φ]ρjHj,x dx

+
∫

R
φ[F ′(w)− F ′(Hj)]ρjHj,x dx

+
∫

R
[−2φz(ρjHj,x)z − φ(ρjHj,x)zz] dx

= Qj1 +Qj2 +Qj3,

(5.8)

where we have made use of the orthogonality condition satisfied be φ. After an
integration by parts in the expression for Qj1 we get

Qj1 =
∫

R
φ(2ρj,xHj,xx + ρj,xxHj,x) dx.

If σ in the definition of the ‖ · ‖σ,θα,∗ norm is chosen sufficiently small and σ′ is
taken close to σ then from Proposition 4.1 it follows:

‖Q1j‖θα ≤ Cα2+µ′ , 3/4 > µ′ > 1/2.(5.9)

Likewise we get:

‖Q2j‖θα ≤ Cα2+µ′ ,

‖Q3j‖θα ≤ Cα2+µ′(1 + |||hα|||θα).
(5.10)

Finally we get:

‖Rj‖θα ≤ Cα2+µ′ , where Rj =
∫

R
N(φ)ρjHj,x dx.(5.11)

Summarizing these calculations and also taking into account the the results of the
previous section we get:
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Lemma 5.1. The reduced problem

cj(z) = 0, j = 1, . . . , k,

is equivalent to the following system of differential equations for functions fα =
(f1α, . . . , fkα) and hα = (h1α, . . . , hk,α):

c(h′′jα + f ′′jα)− (e−
√

2[fjα−fj−1α+hjα−hj−1α] − e−
√

2[fj+1α−fjα+hj+1α−hjα])

=M(fα, hα),
(5.12)

where c = c0/c1 and (nonlinear and nonlocal) function M(fα, hα) satisfies:

‖M(fα, hα)‖θα ≤ Cαµ
′
(α2 + |||hα|||θα),

3
4
> µ′ >

1
2
.(5.13)

Moreover, if fα, hα are even functions of the variable z so isM(fα, hα). In addition
M(fα, hα) is a Lipschitz function with respect to the second variable and we have:

‖M(fα, h(1)
α )−M(fα, h(2)

α )‖θα ≤ Cαµ
′
|||h(1)
α − h(2)

α |||θα.(5.14)

5.2. The Toda system and its linearization. We will briefly outline the theory
necessary for solving (5.12).

As suggested by the form of (5.12), first we will consider the Toda system for
even functions fj , j = 1, . . . , k:

cf ′′j − (e−
√

2(fj−fj−1) − e−
√

2(fj+1−fj)) = 0, j = 1, . . . , k.(5.15)

together with the initial conditions{
fj(0) = x0j ,

f ′j(0) = 0,
j = 1, . . . , k(5.16)

It is convenient to consider our problem in a slightly more general framework then
that of the system (5.15)–(5.16). Thus for given functions qj(t), pj(t), j = 1, . . . , k
such that

k∑
j=1

qj =
k∑
j=1

pj = 0,

we define the Hamiltonian

H =
k∑
j=1

p2
j

2
+ V, V =

k−1∑
j=1

e (qj−qj+1).

We consider the following Toda system
dqj
dt

= pj ,

dpj
dt

= −∂H
∂qj

qj(0) = q0j , pj(0) = 0 j = 1, . . . , k.

(5.17)

Solutions to (5.17) are of course even. Observe that also that the location of their
center of mass remains fixed. Thus to mode out translations we will assume that

k∑
j=1

q0j = 0.(5.18)
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We will now give a more precise of these solutions and in particular their asymptotic
behavior as z → ±∞. To this end we will often make use of classical results of
Konstant [18] (c.f. [24]) and in particular we will use the explicit formula for the
solutions of (5.17) (see formula (7.7.10) in [18]).

We will first introduce some notation. Given numbers w1, . . . , wk ∈ R such that
k∑
j=1

wj = 0, and wj > wj+1, j = 1, . . . , k(5.19)

we define the matrix
w0 = diag (w1, . . . , wk).

Furthermore, given numbers g1, . . . , gk ∈ R such that
k∏
j=1

gj = 1, and gj > 0, j = 1, . . . , k,(5.20)

we define the matrix
g0 = diag (g1, . . . , gk).

The matrices w0 and g0 can be parameterized by introducing the following two
sets of parameters

(5.21) cj = wj − wj+1, dj = log gj+1 − log gj , j = 1, . . . , k.

Furthermore, we define functions Φj(g0,w0; t), t ∈ R, j = 0, . . . , k, by

Φ0 = Φk ≡ 1
Φj(g0,w0; t) =(5.22)

(−1)j(k−j)
∑

1≤ii<···<ij≤k

ri1...ij (w0)gi1 . . . gij exp[−t(wi1 + · · ·+ wij )],

where ri1...ij (w0) are rational functions of the entries of the matrix w0. It is proven
in [18] that all solutions of (5.17) are of the form

(5.23) qj(t) = log Φj−1(g0,w0; t)− log Φj(g0,w0; t), j = 1, . . . , k,

Namely, given initial conditions in (5.17) there exist matrices w0 and g0 satisfying
(5.19)–(5.20). According to Theorem 7.7.2 of [18], it holds

(5.24) q
′

j(+∞) = wk+1−j , q
′

j(−∞) = wj , j = 1, ..., k.

We introduce variables

(5.25) uj = qj − qj+1.

In terms of u = (u1, . . . , uk−1) system (5.17) becomes

u′′ −Meu = 0,

uj(0) = q0j − q0j+1, u′j(0) = 0, j = 1, . . . , k − 1,
(5.26)

where

M =


2 −1 0 · · · 0
−1 2 −1 · · · 0

. . .
0 · · · 2 −1
0 · · · −1 2

 , e−u =

 eu1

...
euk−1

 .



MULTIPLE-END SOLUTIONS TO THE ALLEN-CAHN EQUATION IN R2 35

As a consequence of (5.22) all solutions to (5.26) are given by

uj(t) = qj(t)− qj+1(t) = −2 log Φj(g0,w0; t) + log Φj−1(g0,w0; t)
+ log Φj+1(g0,w0; t).(5.27)

Our next result is the following:

Lemma 5.2. Let w0 be such that

(5.28) min
j=1,...,k−1

(wj − wj+1) = ϑ > 0.

Then there holds
(5.29)

uj(t) =

{
−ck−jt− dk−j + τ+

j (c) +O(e−ϑ|t|), as t→ +∞, j = 1, . . . , k − 1,

cjt+ dj + τ−j (c) +O(e−ϑ|t|), as t→ −∞, j = 1, . . . , k − 1,

where τ±j (c) are smooth functions of the vector c = (c1, . . . , ck−1).

Proof. This Lemma has been proven in [8]. We include a proof here for complete-
ness. Let qj , j = 1, . . . , k be a solution of the system (5.17) depending on the
(matrix valued) parameters w0, g0 and defined in (5.23). We need to study the
asymptotic behavior of Φj(w0,g0; t) as t → ±∞ with the entries of w0 satisfying
(5.28) and still undetermined g0.

By (5.22) and (5.19), we get that as t→ −∞

Φj = (−1)j(k−j)r1...j(w0)g1 . . . gje
−(w1+···+wj)t(1 +O(e−(wj−wj−1)t) ,

hence

(5.30)
Φj+1Φj−1

Φ2
j

=
gj+1r1...(j−1)(w0)r1...(j+1)(w0)e−cjt

gjr2
1...j(w0)

(1 +O(e−ϑ|t|)) .

It follows that as t→ −∞

uj(t) = log

(
Φj+1Φj−1

Φ2
j

)

= −cjt+ log

(
gj+1r1...(j−1)(w0)r1...(j+1)(w0)

gjr2
1...j(w0)

)
+O(e−ϑ|t|)(5.31)

= cjt+ dj + τ−j (c) +O(e−ϑ|t|),(5.32)

where

τ−j (c) = log

(
r1...(j−1)(w0)r1...(j+1)(w0)

r2
1...j(w0)

)
.

Similarly, as t→ +∞ we get

uj(t) = log

(
Φj+1Φj−1

Φ2
j

)
= −ck−jt− dk−j + τ+

j +O(e−ϑ|t|),(5.33)

where

τ+
j (c) = log

(
rk+2−j...k(w0)rk−j...k(w0)

r2
k+1−j...k(w0)

)
.

This ends the proof. �
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To find a family of solutions parameterized by α starting from a solution of (5.17)
we use functions uj and set

ujα(z) = uj(αz)− 2 log
1
α
− log

c√
2
.(5.34)

Then functions fjα(z) are obtained from the relations

ujα(z) =
√

2
(
fjα(z)− fj+1α(z)

)
,

k∑
j=1

fjα(z) = 0.
(5.35)

Observe that as a consequence we get that there exist wj , gj , j = 1, . . . , k such that
(5.19)–(5.20) holds, that

min
j=1,...,k

(wj − wj+1) = ϑ > 0,

and functions fjα satisfy

‖f ′′jαeϑα|z|‖∞ ≤ Cα2,

f ′jα(∞) = βj = f ′jα(−∞), where βj+1 − βj = (wj − wj+1)α > ϑα,

fjα(z)− fj−1α(z) ≥
√

2 log
1
α

+
1√
2

log
c√
2
.

(5.36)

In this case we take θ = 1
4ϑ. Relations (5.36) are easily seen to be consistent with

assumptions (2.1)–((2.2).
Next we will continue with preliminaries needed to solve (5.13). We will study

the linearization of the system (5.13) around the solution fα of the Toda system
defined in (5.35) and (5.36). We will always assume that α > 0 is small and θ > 0
is a fixed constant. We are lead to the following linear system

~φ′′ −


2eu1α −eu2α 0 · · · 0
−eu1α 2eu2α −eu3α · · · 0

. . .
0 · · · 2euk−2α −euk−1α

0 · · · −euk−2α 2euk−1α

 ~φT = ~p,

~φ = (φ1, . . . , φk−1), ~p = (p1, . . . , pk−1),

(5.37)

where ~p is an even function such that

‖~p‖θα ≤ Cα2+µ′ .(5.38)

We will analyze the solvability of this problem in the space of even C2 functions ~φ
such that

|||~φ|||θα <∞.(5.39)

Lemma 5.3. Let us assume that ~p is an even function of z and that (5.38) holds.
Then problem (5.37) has a bounded, even solution ~φ = R[~p]. Moreover we have

‖R[~p]′′‖θα ≤ C‖~p‖θα,(5.40)

|||R[~p1]−R[~p2]|||θα ≤ C‖~p1 − ~p2‖θα.(5.41)
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Proof. We first observe that

gj
∂umα
∂gj

= α


1, j = m+ 1, z →∞,
−1, j = m, z →∞

1, j = k + 2−m, z → −∞,
−1, j = k + 1−m, z → −∞,

0, otherwise.

Hence by a transformation we can find a set of linearly independent solutions to
the homogenous version of (5.37)

ψ1jα(z) =
{

α~ej , z →∞,
−α~ej , z → −∞.

Notice that functions ψ1jα are odd. Similarly, considering derivatives of umα with
respect to wj we can find solutions of (5.37), ψ2j(z), j = 1, . . . , k−1 which are even
and such that

ψ2jα(t) = α~ej |z|+O(1).

Functions {(ψ1j(z), ψ′1j(z)), (ψ2j(z), ψ′2j(z))} form a fundamental set for the system
(5.37). Let us denote the fundamental matrix of the system (5.37) described above
by Ψα(z) and the right hand side of the transformed system by ~q. Let us denote
also (with some abuse) by ~φ the solution we are after. We observe that as z →∞,
matrices Ψα,Ψ−1

α are block matrices of the form

Ψα(z) =
(
αI + o(1) αzI +O(1)
o(1) αI + o(1)

)
, Ψ−1

α =
(
αI + o(1) −αzI +O(1)
o(1) αI + o(1)

)
.

(5.42)

Let us denote these blocks by Ψmnα, Ψ−1
mnα, m,n = 1, 2, respectively. Then, from

variation of parameters formula we get that the solution of our problem has form

(~φ(z), ~φ′(z)) = Ψα(z) ·
∫ z

0

Ψ−1
α (s) · (0, ~q(s))T ds

−
(
Ψ12α(z)

∫ ∞
0

Ψ−1
22α(s)~q(s) ds,Ψ22α(z)

∫ ∞
0

Ψ−1
22α(s)~q(s) ds

)
.

(5.43)

The key fact which allows us to conclude that the solution given in (5.43) is indeed
bounded as |z| → ∞ is that ∫ ∞

−∞
Ψ−1

22α(s)~q(s) ds = 0.

This follows from the evenness of ~p and hence of ~q and the oddness of Ψ−1
22α. Using

now (5.43) we can directly estimate

|||~φ|||θα ≤ C‖~q‖θα,

from which we infer (5.40). Formula (5.41) follows from the variation of parameters
formula as well. The proof of the lemma is complete. �
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5.3. Resolution of the reduced problem. Now we are in position to solve prob-
lem (5.12). First let us fix the solution of the Toda system given by the formula
(5.35). Further let us denote

Nj(hα) = (e−
√

2[fjα−fj−1α+hjα−hj−1α] − e−
√

2[fj+1α−fjα+hj+1α−hjα])

− (e−
√

2[fjα−fj−1α] − e−
√

2[fj+1α−fjα])

−
√

2[e−
√

2[fjα−fj−1α](hjα − hj−1α)− e−
√

2[fj+1α−fjα](hj+1α − hjα)],

and set N = (N1, . . . ,Nk). Then problem (5.12) can be set up as a fixed point
problem for hα in a ball

B(Dα2+µ′) = {hα | |||hα|||θα<Dα
2+µ′},

where D is a large constant depending on the constant C appearing in the estimate
(5.13). Indeed assuming that hα ∈ B(Dα2+µ′) we get easily

‖N (hα)‖θα ≤ Cα2+2µ′ .

Problem (5.12) after linearization around the fixed solution of the Toda system fα
can be put in terms described in previous section by setting

ujα =
√

2
(
fjα(z)− fj+1α(z)

)
,

φjα =
√

2
(
hjα(z)− hj+1α(z)

)
, ~φα = (φ1α, . . . , φkα),

pjα =Mj +Nj −Mj+1 −Nj+1, ~pα = (p1α, . . . , pkα).

Using then the operator R defined in Lemma 5.3 we get the solution of (5.12) by a
standard fixed point argument. This completes the construction of the solution of
(1.1) described in the statement of Theorem 1.1.
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