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1. Introduction

This paper is devoted to study the existence and asymptotic behavior of solutions
to the classic semilinear elliptic equation

∆u+ u(1− u2) = 0, in RN (1.1)

Equation (1.1) is known as the Allen-Cahn equation and it arises in the gradient
theory of phase transitions by Allen and Cahn [1], where (1.1) is the prototype
equation for the continuous modeling of phase transition phenomena finding appli-
cations on material sciences, superconductivity, population dynamics and biological
patterns formation, see for instance [30]. In this physical model, the function u rep-
resents the phase of a material in a given point of RN .

In 1978 E. De Giorgi formulated the following celebrated conjecture concerning
entire solutions to the equation (1.1), which is in parallel to Bernstein’s conjecture
theorem for minimal hypersurfaces.

De Giorgi’s Conjecture: The level sets of a bounded entire solution u to
(1.1), which is in addition monotone in one direction, must be hyperplanes, at least
for dimension 2 ≤ N ≤ 8.

This conjecture, basically states that, up to translations and rotations of RN ,
u(x) = w(xN ), where w is determined by

w′′ + w(1− w2) = 0, in R, w(±∞) = ±1. (1.2)
1
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A solution to (1.2) indeed exists. Even more, this solution is strictly increasing and
uniquely determined up to translations by

w(t) = tanh

(
t√
2

)
, t ∈ R.

The conjecture was proved in dimension N = 2 by Ghoussoub and Gui, see [13]
in dimension N = 3 by Ambrosio and Cabré, see [2], and in dimensions 4 ≤ N ≤ 8
by Savin, under the additional assumption

lim
xN→±∞

u(x′, xN ) = ±1

see [28]. Recently in [11], the authors showed a counter-example to this conjecture
in dimension N ≥ 9, monotone in the xN direction and whose zero level set is close
to a large dilation of the Bombieri-De Giorgi-Giusti minimal graph that disproves
Bernstein’s conjecture in high dimensions, see [3].

The monotonicity of the solution u implies its stability, in the sense that the
quadratic form

B(ψ,ψ) :=

∫
RN
|∇ψ|2 − F ′(u)ψ2, F (u) = u(1− u2)

is positive, for all ψ ∈ C∞c (RN ). Indeed, without any loss of generality, assume
∂xNu > 0, in RN . It is not hard to check that the linearized operator L := ∆ +F ′(u)
satisfies maximum principle. Even more, the level sets of u are all graphs. Let us
remark that stability is at the core of the proof of the conjecture in dimensions
N = 2, 3, where is used to control at infinity the Dirichlet integral∫

BR(0)

|∇u|2 = O(R2), R > 0 (1.3)

which intuitively says that the level sets of u must have a finite number of compo-
nents outside a large ball, which are all asymptotically flat. The question if stability
is sufficient to conclude (1.3), remains open. Actually, it is believed that property
(1.3) is equivalent to F inite Morse Index of the solution u. For a bounded entire
solution u to (1.1), the Morse index m(u) is defined as the maximal dimension of a
vector space E of compactly supported functions such that

B(ψ,ψ) < 0, ∀ψ ∈ E − {0}.
Strikingly, there are basically no examples of finite Morse index solutions to (1.1)
in dimension 3, and the connection between Allen-Cahn equation and the theory
of minimal surfaces has only been partially explored to produced more examples of
finite Morse index solutions.

As remarked in [6], Morse index is a natural element regarding classification of
bounded entire solutions to (1.1). This is of course, the natural step to follow beyond
De Giorgi’s conjecture, towards the understanding of the geometrical structure of
the set of solutions to (1.1).

There is a great connection between the developments made in the study of
equation (1.1) and the theory of minimal surfaces. Let us restrict ourselves to
dimension N = 3. For more than a century there were only two known examples of
minimal surfaces with finite total curvature, namely the catenoid and plane. The
first nontrivial example was found by Costa in 1981, see [5], [15]. The Costa surface
is a genus one, minimal, complete and properly embedded surface. It has three
connected components outside some compact set, say a large ball, for which two
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of these components are asymptotically catenoids with the same axis of symmetry,
while the remaining one is asymptotically a plane, perpendicular to the axis of
symmetry of the catenoidal ends. Later, Hoffman and Meeks generalized Costa’s
construction by exhibiting a genus k, embedded, minimal surface with three ends
and with the same look as the Costa genus one surface outside a large ball, see [16],
[17], [18]. Many other examples of this kind of surfaces, with multiple connected
components outside a compact set, either asymptotically catenoidal or flat, have
been found, see for instance [20], [22] and references there in.

Recently, a new family of finite Morse index solutions to equation (1.1) in R3,
was found in [9]. Each one of these solutions has the property that its nodal set is
close to a large dilation of a fixed, complete, embedded and nondegenerate minimal
surface and along the normal direction of this large dilation of the surface it has
the one dimensional profile of the heteroclinic solution w, determined by (1.2).
Their Morse index coincides with the index of the surface, which is counted as
k = 2l − 1, where l ∈ N is the genus of the surface. In this regard solutions with
Morse index 1, associated to the catenoid and Morse index k for k ≥ 3, associated
to the Costa-Hoffman-Meeks surface do exist.

A natural question that rises is wether the construction of solutions to (1.1) with
multiple transitions ”close” to a complete embedded minimal surfaces of finite total
curvature, can be carried out, under the same conditions as in [9]. The first goal of
this paper is to provide a partial answer to this question by constructing a family
of bounded solution to problem (1.1) with an arbitrary finite number of transitions
layers near a large dilation of a catenoid in R3.

In order to state our first result, let M be a catenoid in R3, which is the surface
of revolution having the catenary curve as profile and described by the mapping
Y : R× (0, 2π)→ R3, defined by

Y (y, θ) := (
√

1 + y2 cos θ,
√

1 + y2 sin θ, log(y +
√

1 + y2))

which provides local coordinates on the catenoid in terms of the angle of rotation,
and the signed arch-length variable of the catenary curve. We observe that M
divides R3 into two connected components, say S+ and S−, where we choose S+

to be the component containing the axis of symmetry, namely the x3-axis.
The unit normal vector to M , pointing towards S+, is then given by

ν(y, θ) =
1√

1 + y2
(− cos θ,− sin θ, y), y ∈ R, θ ∈ (0, 2π).

Let us now consider a large dilation of the catenoid M , given by

Mα = α−1M

for any small positive number α. We parameterize Mα by Yα : (y, θ) 7→ α−1Y (αy, θ)
and we define associated local Fermi coordinates in R3,

Xα(y, θ, z) = α−1Y (αy, θ) + zν(αy, θ), |z| < η

α
+

1

2α
log(1 + y2).

Our first result is the following:

Theorem 1. Let N = 3 and M be the catenoid in R3 described above. Then for
all sufficiently small α > 0 there exists a bounded solution uα to problem (1.1) such
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that

uα(x) =

m∑
j=1

(−1)j−1 w (z − hj(αy)) +
(−1)m−1 − 1

2
+ o(1), as α→ 0

for x = Xα(y, θ, z), |z| < η
α + 1

2α log(1 + y2) and the location of the interfaces h′js
is governed by the Jacobi-Toda system of PDEs on M ,

α2
(
∆Mhj + |AM |2hj

)
− a0

[
e
√

2t e−
√

2(hj−hj−1) − e−
√

2t e−
√

2(hj+1−hj)
]

= 0

where

a0 = ‖w′‖−2
L2

∫
R

6(1− w2)e
√

2tw′(t)dt > 0

and

hj+1 − hj ≥ log

(
1

α

)
+ log (1 + y)) .

In addition, these solutions are axially symmetric and converge to ±1 away from
Mα, i.e

uα(x) = uα(|x′|, x3), x = (x′, x3) ∈ R3

u2
α(x)→ 1, as dist(x,Mα)→∞.

The Morse Index of uα, m(uα), satisfies that

m(uα) ≥ c0 log

(
1

α

)
, as α→ 0.

Entire solutions with multiple transition layers to (1.1) in R2 were found in [7]. In
this case the nodal set of the solutions consists on multiple asymptotically straight
lines, not intersecting themselves, whose locations are governed by the Toda system
of ODEs.

As a byproduct of this result, we also present a new familiy of solutions to
equation (1.1) in R3, with Morse index 1 and the property that its zero level set,
outside a large ball, has four logarithmical divergent connected components. The
transitions of these solutions take place near the graph of a radially symmetric
solution to the Toda System in R2. This is another step in the program towards
the study of finite Morse index solutions to (1.1).

In order to state our second result, we consider a smooth radially symmetric
solution (q1, q2) of the Toda System

∆ q1 + a0e
−
√

2 (q2−q1) = 0, ∆ q2 − a0e
−
√

2 (q2−q1) = 0, in R2. (1.4)

where a0 > 0 is the positive constant from 1. To be more precise, we assume that
−q1 = q2 = q, and the function q is a solution to the Liouville equation

∆ q − a0e
−2
√

2 q = 0, in R2 (1.5)

given explicitly by

q(r, ρ) =
1

2
√

2
log

(√
2 a0

4 ρ

(
1 + ρ r2

)2)
. (1.6)
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We remark that, for every α > 0, the functions

q1α(r) = −
√

2

2
log

(
1

α

)
+ q1(αr), q2α(r) =

√
2

2
log

(
1

α

)
+ q2(αr), r > 0

are also smooth radially symmetric solutions to (1.4). Denote by Mjα the graph of
the function qjα. Our second Theorem states the following:

Theorem 2. For all sufficiently small α > 0 there exists an smooth axially symme-
tric bounded solution uα to equation (1.1) such that m(uα) = 1 and

uα(x′, z) = w ( z − q1α(αx′) ) − w ( z − q2α(αx′) ) − 1 + o(1), as α→ 0

for x = (r cos θ, r sin θ, z), |z| < η
α+ 1

2α log(1+r2) and the location of the interfaces

q′jαs is governed by the Toda system on R2 and

q2α − q1α ≥
√

2 log

(
1

α

)
+ log (1 + |αx′|) .

In addition, these solutions even in the z−variable and they converge to ±1 away
from the graphs of the functions qjα, i.e

uα(x′, z) = uα(|x′|, z) = uα(x′,−z), for x = (x′, z) ∈ R3.

u2
α(x)→ 1, as dist(x,Mjα)→∞.

Remark 1.1: The proof of Theorems 1 and 2 strongly relies on an infinite di-
mensional reduction procedure, in the spirit of the pioneering work due to Floer
and Weinstein, see [12] and for which the choice of a ”good” approximation of the
solution is of vital importance. The proof also combines elements from the analysis
made in [9] and [11] for one transition in a noncompact setting and [10] for multiple
transition for the compact setting. We remark that, contrary to the compact case
treated in [10], no gap condition is required.

Remark 1.2: An important ingredient in the proof of Theorem 1, is the nonde-
generacy of the catenoid. To make this more precise, let us consider the Jacobi
operator of the catenoid

J (h) = ∆Mh+ |AM |2h,
where |AM |2 is the euclidean norm of the second fundamental form of M . M is
nondegenerate, in the sense that the bounded kernel of J consists exactly on the
jacobi fields

zi(x) = ν(x) · ei, for every x ∈M, i = 1, 2, 3.

associated to the translation along the coordinates axis. It turns out that a suitable
right inverse for J can be found. This implies that M is isolated in a smooth
topology.

This kind of nondegeneracy is expected to hold true for complete embedded
minimal surfaces with finite total curvature, but it is known to hold true not only
for the catenoid, but for some other important cases, such as the Costa-Hoffman-
Meeks surface of genus k. Nondegeneracy has been a used as a tool to construct
new minimal surfaces, see for instance [19], [23], and also to construct solutions to
the Allen-Cahn equation over compact manifold, see [27].

The paper is structured as follows. Sections 2 through 8 are concerned with the
construction of the solutions predicted in Theorems Theorem 1 and 2, while section
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9 sketches the estimates and computations regarding information about the Morse
index of these families of Solutions.

2. Geometrical setting near a dilated catenoid

In this section we compute the euclidean laplacian in R3, in a neighborhood of
the dilated catenoid Mα.

Let us consider the curve

γ(s) = (cosh(s), s), s ∈ R.

The set γ(R) corresponds to the catenary curve in R2, for which we can compute
the corresponding signed arch-length as

y(s) =

∫ s

0

‖γ′(ζ)‖dζ = sinh(s), s ∈ R.

Setting

s(y) = log(y +
√

1 + y2), y ∈ R

we can parameterize γ(R) using the mapping

γ(s(y)) =
(√

1 + y2, log (y +
√

1 + y2)
)
, y ∈ R.

Let us now consider the catenoid M in R3, with γ(R) as profile curve. The
mapping Y : R× (0, 2π)→ R3, defined by

Y (y, θ) :=
(√

1 + y2 cos θ ,
√

1 + y2 sin θ , log(y +
√

1 + y2)
)

gives local coordinates on M in terms of the signed arch-length variable of γ(R)
and the angle of rotations around the x3-axis which, in our setting, corresponds to
the axis of symmetry of M . Observe also that for y = (y1, y2, y3) ∈M

r(y) := |(y1, y2)| =
√

1 + y2, y = Y (y, θ) ∈M.

We consider local Fermi coordinates

X(y, θ, z) = Y (y, θ) + zν(y, θ), y ∈ R, θ ∈ (0, 2π), z ∈ R.

This map defines a smooth local change of variables onto the open neighborhood
of M , given by

N :=

{
Y (y, θ) + zν(y, θ) : |z| < η +

1

2
log(1 + y2)

}
for some small, but fixed η > 0. Observe that |z| = dist(x,M), for every x ∈ N
with x = X(y, θ, z).

Let us compute the euclidean laplacian in N , in terms of these local coordinates,
from the formula

∆X =
1√

det(g)
∂i(
√

det(g)gij∂j), i, j = y, θ, z

where gij = ∂iX · ∂jX corresponds to the ij-th entry of the metric g on N and
gij = (g−1)ij .
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Computing the metric g, we find that

g =

gyy 0 0
0 gθθ 0
0 0 gzz

 =


(
1 + z

1+y2

)2
0 0

0 (1 + y2)
(

1− z
1+y2

)2

0

0 0 1


so that √

det(g) =
√

1 + y2

(
1− z2

(1 + y2)2

)
.

Since

∆X =
1√

det(g)

[
∂y(
√

det(g)g−1
yy ∂y) + ∂θ(

√
det(g)g−1

θθ ∂θ) + ∂z(
√

det(g)∂z)
]
,

we find by a direct computation that

∆X = ∂zz + ∂yy +
y

1 + y2
∂y +

1

1 + y2
∂θθ −

2z

(1 + y2)2
∂z + D (2.1)

where

D = z a1(y, z) ∂yy + z a2(y, z) ∂θθ + z b1(y, z) ∂y + z3 b2(y, z) ∂z

and the smooth functions ai(y, z), bi(y, z) satisfy

|ai| + |y Dyai| = O(|y|−2), |b1| + |y Dyb1| = O(|y|−3)

|b2| + |y Dyb2| = O(|y|−8)
(2.2)

as |y| → ∞, uniformly on z in the neighborhood N of M . Actually, it is not hard
to check that, inside N and for i = 1, 2

ai(y, z) = ai, 0(y) + z ai, 1(y, z), b1(y, z) = b1, 0(y) + z b1, 1(y, z),

b2(y, z) = b2, 0(y) + z2 b2, 1(y, z),
(2.3)

where

ai, 0(y) =
(−2)i−1

(1 + y2)i
, b1, 0(y) = − 2y

(1 + y2)2
, b2, 0(y) = − 2

(1 + y2)4
,

and

|ai, 1|+ |y Dyai, 1| = O(|y|−(4+2i)), |b1, 1|+ |y Dyb1, 1| = O(|y|−5)

|b2, 1|+ |y Dyb2, 1| = O(|y|−12).

At this point, we remark that the catenoid is an axially symmetric minimal
surface, and the functions ai, bi, i = 1, 2, also share this symmetry and actually
they enjoy the additional properties

ai(y, z) = ai(−y, z), b1(y, z) = −b1(−y, z), b2(y, z) = b2(y, z), x = X(y, θ, z) ∈ N .

Let us now consider a large dilation of the catenoid M , given by

Mα = α−1M

for a small positive number α.
We parameterize Mα by Yα : (y, θ) 7→ α−1Y (αy, θ) and define associated local

Fermi coordinates

Xα(y, θ, z) = α−1Y (αy, θ) + zν(αy, θ)
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on the neighborhood Nα = α−1N of Mα. Observe that

Nα =

{
Yα(y, θ) + zν(αy, θ) : |z| < η

α
+

1

2α
log(1 +

(
αy)2

)}
.

Scaling formula (2.1) we find that

∆Xα = ∂zz + ∂yy +
α2y

1 + (αy)2
∂y +

α2

1 + (αy)2
∂θθ −

2α2z

(1 + (αy)2)2
∂z +Dα (2.4)

where

Dα = α z a1(αy, αz) ∂yy +α3 z a2(αy, αz) ∂θθ +α2 z b1(αy, αz) ∂y +α4 z3 b2(αy, αz) ∂z

and the smooth functions ai, bi, i = 1, 2, satisfy (2.2) and (2.3).

Let us consider next an arbitrary smooth function h : R → R and local coordi-
nates near Mα, defined by

Xα,h(y, θ, t) = α−1Y (αy, θ) + (t+ h(αy)) ν(αy, θ)

onto the region Nα, which can be described as

Nα =

{
Xα,h(y, θ, t) : |t+ h(αy)| ≤ η

α
+

1

α
log(

√
1 + (αy)2 )

}
.

Observe that for x ∈ Nα we have x = Xα(y, θ, z) = Xα,h(y, θ, t), which means
t = z − h(αy). We will often emphasize the description of the region Nα in terms
of the local coordinates Xα,h by writing Nα,h.

We compute directly, from expression (2.4), the euclidean laplacian in these new
coordinates.

Lemma 2.1. On the open neighborhood Nα,h of Mα in R3, in the coordinates
x = Xα,h(y, θ, t), the euclidean laplacian has the following expression:

∆Xα,h = ∂tt + ∂yy +
α2y

1 + (αy)2
∂y +

α2

1 + (αy)2
∂θθ

− α2

{
h′′(αy) +

αy

1 + (αy)2
h′(αy) +

2(t+ h)

(1 + (αy)2)2

}
∂t

− 2αh′(αy) ∂ty + α2[h′(αy)]2 ∂tt + Dα,h (2.5)

where

Dα,h = α(t+ h)a1(αy, α(t+ h)) (∂yy − 2αh′(αy)∂yt − α2h′′(αy)∂t + α2[h′(αy)]2∂tt)

+ α3(t+ h)a2(αy, α(t+ h))∂θθ

+ α2(t+ h)b1(αy, α(t+ h)) (∂y − αh′(αy)∂t)

+ α4(t+ h)3b2(αy, α(t+ h)) ∂t (2.6)

and the smooth functions ai, bi are those described in (2.2)-(2.3).

Proof. Set z = t+h(αy) and consider a function U ∈ C2(Nα,h). In the coordinates
Xα,h as well as in the coordinates Xα, we can write

U(Xα(y, θ, z)) = u(y, θ, z) and U(Xα,h(y, θ, t)) = v(y, θ, t)

which means that u(y, θ, z) = v(y, θ, z − h(αy)).
It remains to notice that in the local coordinates Xα,h

∂zu = ∂tv, ∂zzu = ∂ttv
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∂θu = ∂θv, ∂θθw = ∂θθv

∂yu = ∂yv − αh′(αy)∂tv

∂yyu = ∂yyv − 2αh′(αy)∂tyv − α2h′′(αy)∂tv + α2[h′(αy)]2∂ttv.

Substituting these partial derivatives into formula (2.4) and using that z = t+h,
we get expression (2.5). �

Remark 2.1: The Laplace-Beltrami operator of the dilated catenoid Mα, in the
coordinates Yα(y, θ), corresponds to the differential operator

∆Mα = ∂yy +
α2y

1 + (αy)2
∂y +

α2

1 + (αy)2
∂θθ

with the convention that M = M1. On the other hand, since each one of these
dilated catenoids is a minimal surface, we have that the Gaussian curvature, KMα

of Mα, is given by the relation

2KMα
(y) = −α2|AM (αy)|2 = − 2α2

(1 + (αy)2)2
, y ∈ R

where |AM (y)| is the norm of the second fundamental form of the catenoid M .

Hence, we can write the euclidean laplacian in expression (2.5), as follows

∆Xα,h = ∂tt + ∆Mα
− α2

{
∆Mh+ (t+ h)|AM |2

}
∂t

− 2αh′(αy) ∂ty + α2[h′(αy)]2 ∂tt + Dα,h (2.7)

where the functions h, ∆Mh, |AM |2 are evaluated in αy.

3. Jacobi-Toda system on the Catenoid

In the previous section, we discussed the system of coordinates and differential
operators that come into play in the proof of Theorem 1. We continue our discus-
sion providing a detailed description of the approximate nodal set of the solutions
predicted by this Theorem. As mentioned in the introduction, the location of this
nodal set is governed by the nonlinear system of PDEs for h = (h1, h2, . . . , hm)

α2
(
∆Mhl + |AM |2 hl

)
− a0[e−

√
2(hl−hl−1) − e−

√
2(hl+1−hl)] = 0, in M (3.1)

where a0 > 0 is a constant, α > 0 is a small parameter and with the convention
that

−∞ = h0 < h1 < · · · < hm < hm+1 =∞.
In this section we provide a complete proof of the following proposition.

Proposition 3.1. For every α > 0 small enough there exists an axially symmetric
and smooth vector function h = (h1, . . . , hm) solving system (3.1) and satisfying
that

hl =

(
l − m+ 1

2

)[
σα +

(
1− 1√

2 σα

)
log
(
|AM (y)|−2

)]
+ h̃l, l = 1, . . . ,m

(3.2)

where σα ∼ log(α−1) and the functions h̃l satisfy the estimates

|h̃l(y)| ≤ K δ
5
4 log (2 + r(y)) , y ∈M∥∥∥(1 + r(y))jD(j) h̃l

∥∥∥
L∞(M)

≤ Kj δ
5
4−

j
2 , l = 1, . . . ,m j = 1, 2, . . .
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for some large constant K > 0, independent of α > 0. In addition h is even respect
to the arch-length variable of the catenoid M

We split the proof of proposition 3.1 into a series of steps, each of which is
presented as a subsection.

3.1. Decoupling and the approximate Solution: We look for a solution
h = (h1, h2, . . . , hm) to (3.1) having the form

hl =

(
l − m+ 1

2

)
σα + ql, l = 1, . . . ,m (3.3)

where the constant σ = σα solves the algebraic equation

α2σ = a0 e
−
√

2σ

so that σα is a smooth function of α, satisfying the asymptotic expansion

σα = log

(√
2 a0

α2

)
− log

(
log

(√
2 a0

α2

))
+O

(
log log log 1

α2

log log 1
α2

)
.

In what follows, we omit the explicit dependence of σ respect to α and we set
δ = σ−1.

Plugging (3.3) into (3.1) and dividing by σ, we obtain the system for (q1, . . . , qm)

δ
(
∆Mql + |AM |2 ql

)
−
[
e−
√

2(ql−ql−1) − e−
√

2(ql+1−ql)
]

+

(
l − m+ 1

2

)
|AM |2 = 0, in M, l = 1, . . . ,m (3.4)

Before solving system (3.4), let us introduce some useful notations. Consider the
invertible m×m real matrix

B :=



−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
...

...
. . .

. . .
...

...
0 0 0 . . . −1 1
1 1 1 . . . 1 1


(3.5)

and the auxiliary functions

(
v
vm

)
:= B ·

(
q
qm

)
, q :=

 q1

...
qm−1

 .

Let us introduce the notation

ev :=

 ev1

...
evm−1

 , 1 :=

 1
...
1

 .
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and consider the constant invertible (m− 1)× (m− 1) matrix

C =


−2 1 0 · · · 0
1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1
0 0 · · · 1 −2

 . (3.6)

We notice that the l−th entry of the constant vector B−1 · 1 corresponds to
l − m+1

2 .
With these notations, system (3.4) can be written as

δ
(
∆Mv + |AM |2 v

)
+ C · e−

√
2 v + |AM |2 · 1 = 0, in M (3.7)

∆Mvm + |AM |2 vm = 0, in M (3.8)

Since matrix B in (3.5) is invertible, any information about system (3.7)-(3.8)
has a direct translation into system (3.4) and viceversa.

Taking vm = 0 in (3.8), we only need to take care of system (3.7). In order to
solve this system, let us denote

E(v, δ, y) := δ
(
∆Mv + |AM |2 v

)
+ C · e−

√
2 v + |AM |2 1 (3.9)

We want to find an approximate solution v0 to (3.7) such that E(v0, δ, y) is as
close to zero as possible. Writing

v0(y, δ) = ω0(y) + δ ω1(y)

expression (3.9) becomes

E(v0, δ, y) = C · e−
√

2ω0 + |AM |2 1

+ δ
(
∆M ω0 + |AM |2 ω0

)
+ δ Dv

(
C · e−

√
2 v
)

v=ω0

· ω1

+ δ2
(
∆M ω1 + |AM |2 ω1

)
+ C·

[
e−
√

2 (ω0+δω1) − e−
√

2ω0 − δ Dv

(
e−
√

2 v
)

v=ω0

ω1

]
.

(3.10)

Proceeding formally by taking δ → 0, we find that ω0 must solve the algebraic
equation

C · e−
√

2ω0 + |AM |2 1 = 0. (3.11)

where we recall that in local coordinates

|AM (y)|2 =
2

(1 + y2)2
, y = Y (y, θ).

From this we write ω0 = (ω0,1, . . . , ω0,m−1) where

ω0,l(y) = − 1√
2

log

(
1

2
|AM (y)|2(m− l)l

)
, 1 ≤ l ≤ m− 1

so that

ω0 =
1√
2

log
(
|AM |−2

)
1 + c0 (3.12)

for some constant vector c0. A direct computation yields that

∆Mω0 + |AM |2ω0 = |AM |2 (2 · 1 + ω0) . (3.13)
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With this choice of ω0, dividing expression (3.10) by δ and taking δ → 0, we find
that ω1 must solve the algebraic equation

Dv

(
C · e−

√
2 v
)

v=ω0

· ω1 +
(
∆M ω0 + |AM |2 ω0

)
= 0. (3.14)

Observe that

Dv

(
C · e−

√
2 v
)

v=ω0

= −
√

2 |AM |2 C · diag
(

(m− j)j
2

)
(m−1)×(m−1)

=
√

2 |AM |2



−2a1 a2 . . . . . . 0 0
a1 −2a2 . . . . . . 0 0
0 a2 −2a3 . . . 0 0
...

...
. . .

. . .
... 0

0 0 . . . am−3 −2am−2 am−1

0 0 . . . 0 am−2 −2am−1

 (3.15)

where

al =
(m− l)l

2
, l = 1, . . . ,m− 1.

Directly from (3.15) we find that

−C · diag
(

(m− j)j
2

)
(m−1)×(m−1)

· 1 = 1.

and consequently (3.14) becomes

√
2 C · diag

(
(m− j)j

2

)
m−1

ω1 = (2 · 1 + ω0) .

It follows that

ω1 = −
√

2 · 1 − 1

2
log
(
|AM |−2

)
· 1 + c1 (3.16)

for some constant vector c1. Therefore, our choice of the approximation to (3.7) is

v0(y, δ) =
1√
2

(
1− δ√

2

)
log
(
|AM (y)|−2

) 1
...
1

+ c0 + δc1

and observe that

E(v0, δ, y) = δ2
(
∆M ω1 + |AM |2 ω1

)
+ C ·

[
e−
√

2 (ω0+δω1) − e−
√

2ω0 − δ Dv

(
e−
√

2v
)

v=ω0

δ ω1

]
. (3.17)

From (3.12), (3.16), (3.17) and a direct computation we get the pointwise esti-
mate in M

|E(v0, δ, y)| ≤ Cδ2|AM |2(1−δ)−ε [1 + | log
(
|AM |2

)
|+O(| log

(
|AM |2

)
|2)
]
. (3.18)

for some ε > 0 small. To verify estimate (3.18), first recall that

r(y) = |y′|, y = (y′, y3) ∈M,

which in the local coordinates y = Y (y, θ) reads as r(y) =
√

1 + y2.
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Next, using Taylor expansion up to second derivatives in the region of M where

δ log(|AM |2) ≤ K1

we get that∣∣∣∣e−√2 (ω0+δω1) − e−
√

2ω0 − δ Dv

(
e−
√

2v
)

v=ω0

δ ω1

∣∣∣∣ ≤ C δ2|AM |2|ω1|2

where K1 is independent of δ and y. Since |AM |2 ∼ O(r(y)−4), this actually occurs
in the large region determined by

r(y) ≤ e
K1
4δ , y ∈M

while in the remaining part of M , we use the fast decay of |AM |2 to get that∣∣∣∣e−√2 (ω0+δω1) − e−
√

2ω0 − δ Dv

(
e−
√

2v
)

v=ω0

δ ω1

∣∣∣∣ ≤ C |AM |2eδ log(r4(y))

≤ r(y)−βe−
c1
δ

which is exponentially small in δ, provided that we choose β so that 0 < β < 4−4δ.
Clearly, (3.18) follows at once from these remarks.

3.2 Solving the Jacobi Toda System. Next, we linearize system (3.7) around
the approximate solution v0(y, δ), we have described in the previous subsection.

Let us first introduce the topologies that will be used to set up our functional
analytical scheme. For functions g and ζ defined in M , 1 < p ≤ ∞ and β > 5

2 we
consider the norms

‖g‖p,β := ‖(1 + r(y)β)g‖Lp(M) (3.19)

‖ζ‖δ,∞ := δ‖D2ζ‖∞,2 + δ
1
2 ‖(1 + r(y))D ζ‖L∞(M) + ‖ log( r(y) + 2 )−1 ζ‖L∞(M).

(3.20)

‖ζ‖δ,p,β := δ‖D2ζ‖p,β + δ
1
2 ‖(1 + r(y))D ζ‖L∞(M) + ‖ log( r(y) + 2 )−1 ζ‖L∞(M).

(3.21)
Next, we study the linearization of system (3.7) around v0(y, δ). Recall that

v0(y, δ) =
1√
2

(
1− δ√

2

)
log
(
|AM (y)|−2

) 1
...
1

+ c0 + δ c1 (3.22)

and we look for a solution to (3.7) of the form

v = v0 + ζ.

Thus, we are led to study the system

δ
(
∆Mζ + |AM |2 ζ

)
+Dv

[
C · e−

√
2 v
]

v=v0

ζ =

− E(v0, δ)−
(

C · e−
√

2(v0+ζ) −C · e−
√

2 v0 −Dv

[
C · e−

√
2 v
]

v=v0

ζ

)
, in M.

(3.23)
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Let us observe that

Dv

[
C · e−

√
2 v
]

v=ω0+δω1

= Dv

[
C · e−

√
2 v
]

v=ω0

+ C ·
([
Dve

−
√

2 v
]

v=ω0+δω1

−Dv

[
e−
√

2 v
]

v=ω0

)
. (3.24)

Proceeding as in (3.18), it can be checked that∥∥∥∥C · ([Dve
−
√

2 v
]

v=ω0+δω1

−Dv

[
e−
√

2 v
]

v=ω0

)∥∥∥∥
∞,β
≤ Cδ (3.25)

for any 0 < β < 4− 4δ. Consequently, we can write system (3.23) as

Lδ(ζ) = −E(v0, δ) − Q(v0, ζ), in M. (3.26)

where
Lδ(ζ) := δ

(
∆Mζ + |AM |2 ζ

)
−
√

2|AM |2C ·A(y, δ) ζ

A(y, 0) := diag

(
(m− j)j

2

)
(m−1)×(m−1)∥∥ |AM |2 (A(·, δ)−A(·, 0))

∥∥
∞,β ≤ Cδ, 0 < β < 4− 4δ

and

Q(v0, ζ) := C · e−
√

2(v0+ζ) −C · e−
√

2 v0 −Dv

[
C · e−

√
2 v
]

v=v0

ζ.

The following proposition provides a suitable linear theory needed to solve the
linear equation

Lδ(ζ) = g̃, , in M (3.27)

in the class of axially symmetric even functions.

Proposition 3.2. For every δ > 0 small enough and any given axially symmetric
even vector function g̃ with

‖ g̃ ‖p,β <∞
for 4

3 < p ≤ ∞ and 5
2 < β < 4 − 2

p , there exists a unique axially symmetric even

solution ζ to system (3.27) satisfying the estimates

‖ζ‖δ,p,β ≤ Cδ−
3
4 ‖g̃‖p,β (3.28)

‖ζ‖δ,∞ ≤ Cδ−
3
4 ‖g̃‖∞,β (3.29)

where we recall that

‖ζ‖δ,p,β := δ‖D2ζ‖p,β + δ
1
2 ‖(1 + r(y))D ζ‖L∞(M) + ‖ log( r(y) + 2 )−1 ζ‖L∞(M).

We remark that the constant C > 0 in proposition 3.2 does not depend on δ but
rather on β and p. We provide the proof of this result in next section.

We finish this section solving system (3.26). Let ζ = Tδ(g̃) denote the linear
operator provided by proposition 3.2. We recast system (3.26) as the fixed point
problem for the vector function ζ

ζ = R(ζ), R(ζ) := Tδ [−E(v0, δ)−Q(v0, ζ)] .

in the Banach space X of smooth vector functions ζ with the norm

‖ζ‖X := ‖ζ‖δ,∞ <∞.
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From (3.18) and for any β such that 2 < β < 4− 4δ, we get that

‖E(v0, δ)‖∞,β ≤ C δ2 (3.30)

and consequently, from (3.29) we obtain that

‖R(0)‖X = ‖Tδ[E(v0, δ) ] ‖X ≤ Cδ
5
4 .

On the other hand, proceeding as we did to verify (3.18), for any 5
2 < β < 4−4δ

and any ζ such that

‖ζ‖X ≤ Cδ
5
4 (3.31)

it follows that

‖Tδ[Q(v0, ζ)] ‖X ≤ Cδ−
3
4 ‖Q(v0, ζ) ‖∞,β

≤ Cδ−
3
4 ‖ζ‖2X

= O(δ
7
4 ).

Finally, we check the Lipschitz character of Q(v0, ζ) respect to ζ, we simply
observe that for ζ1, ζ2 satisfying (3.31), we have

Q(v0, ζ1)−Q(v0, ζ2) =

C ·
[
e−
√

2(v0+ζ1) − e−
√

2(v0+ζ2) −Dv(e−
√

2 v)v=v0
(ζ1 − ζ2)

]
From this and proceeding again as we did to obtain (3.30), the inequality

‖Q(v0, ζ1)−Q(v0, ζ2)‖∞,β ≤ C δ
5
4 ‖ζ1 − ζ2‖X (3.32)

follows. This implies that

‖R(ζ1)−R(ζ2)‖X ≤ Cδ−
3
4 ‖Q(v0, ζ1)−Q(v0, ζ2)‖∞,β ≤ C δ

1
2 ‖ζ1 − ζ2‖X .

Hence, the function R maps the ball in X of radius Kδ
5
4 onto itself, provided the

constant K > 0 is chosen large enough, but independent of δ > 0 small. A direct
application of Banach fixed point theorem allows us to solve system (3.26). We
have thus proven the following proposition.

Proposition 3.3. For every δ > 0 small and β such that 5
2 < β < 4(1 − δ) there

exists a unique axially symmetric even and smooth solution ζ to the system

Lδ(ζ) = −E(v0, δ) − Q(v0, ζ), in M

satisfying that

‖ζ‖δ,∞ ≤ K δ
5
4 , ‖(1 + r(y))jD(j) ζ‖∞ ≤ K δ

5
4−

j
2 , j = 1, 2, . . .

To conclude the proof of proposition 3.1 simply notice that, from the previous
proposition and a direct computation, the solution h = B−1 [v0 + ζ] is such that

hl =

(
l − m+ 1

2

)[
σα +

(
1− 1√

2 σα

)
log
(
|AM (y)|−2

)]
+ h̃l, l = 1, . . . ,m

with the h̃l as predicted in Proposition 3.1.
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4. Jacobi operator and the linear Jacobi-Toda operator on the
catenoid.

This section is devoted to prove Proposition 3.2 and the study of the linearization
of the decoupled Jacobi-Toda system around the exact solution we found in the
previous section.

4.1 Linearized Jacobi-Toda Operator. We first prove proposition 3.2. In
order to do so, we study the linear system

δ∆M ζ + |AM |2(−
√

2C ·A(y, 0) + δ I) ζ = g̃, in M (4.1)

where we recall that

A(y, 0) = diag

(
(m− j)j

2

)
(m−1)×(m−1)

and the matrix C is given in (3.6). Actually, a direct computation shows that the
numbers

1,
1

2
, . . . ,

m− 1

m
are the m− 1 eigenvalues of the matrix −C, so that −C is symmetric and positive
definite. Let us write

ζ = [−C]
1
2ψ, g̃ = [−C]

1
2 ḡ.

System (4.1) becomes

δ∆M ψ + |AM |2(δI + B)ψ = ḡ, in M. (4.2)

where the matrix B is given by

B =
1√
2

[−C]
1
2 diag ((m− j)j)(m−1)×(m−1) [−C]

1
2 .

Next, we consider the eigenvectors ê1, . . . , êm−1 of the matrix B, i,e

B · êi = λiêi, i = 1, . . . ,m− 1

and we write

ψ =

m−1∑
i=1

ψi êi, ḡ =

m−1∑
i=1

ḡi êi.

Hence, system (4.1) decouples into m− 1 scalar equations, namely

δ∆M ψi + |AM |2(λi + δ)ψi = ḡi, in M, i = 1, . . . ,m− 1. (4.3)

The eigenvalues λ1, . . . , λm−1 are positive, a fact that makes invertibility of each
equation in (4.3) a very delicate matter.

Without any lose of generality, we study solvability theory for the model linear
equation

Lδ(ψ) = δ∆Mψ + |AM |2 ψ = g̃, in M. (4.4)

Since we are working in the class of axially symmetric and even functions, we
only need to study solutions to

Lδ ψ = 0, in M ∩ {x3 ≥ 0}
which in the arch-length variable of M reads as the ODE

δ

(
ψ′′(y) +

y

1 + y2
ψ′(y)

)
+

2

(1 + y2)2
ψ(y) = 0, y ≥ 0. (4.5)
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Let us denote yδ > 0, the real number such that
√

1 + y2
δ = 1√

δ
.

Consider the change of variables y = sinh(t) and consider the outer region y > yδ.
Let us choose Tδ > 0 so that δ cosh2(Tδ) = 2. Hence writing solutions to (4.5) in
the form ψ(y) = φ(t), we see that the function φ must satisfy

∂ttφ+ pδ(t)φ = 0, pδ(t) := 2δ−1 sech2(t) t > Tδ (4.6)

The following lemma gives us a precise description of the solutions to (4.6) in
the outer region t > Tδ.

Lemma 4.1. The linear ODE (4.6) has two linearly independent solutions, φ1(t),
φ2(t), satisfying that

φ1(t) = t+O(1), ∂tφ1(t) = 1 +O(t−1), for t > Tδ (4.7)

φ2(t) = 1 +O(t−1), ∂tφ2(t) = O(t−1), for t > Tδ (4.8)

provided δ is small enough, which amounts to the fact that Tδ is large enough. Even
more, φ2(t) satisfies the estimate

|∂tφ2(t)| ≤ C‖φ2‖L∞(Tδ,∞) pδ(t), t > Tδ. (4.9)

Proof. First let us look for a solution φ1(t) to (4.6) of the form φ1(t) = tv(t). We
find that v(t) must solve

∂t(t
2 ∂tv(t)) + pδ(t)t

2 v(t) = 0.

Setting z(t) = t2 ∂tv(t), we obtain the first order IVP for z(t) and v(t)

∂t z(t) = −pδ(t) t2v(t), ∂t v(t) =
1

t2
z(t), z(Tδ) = z0, v(Tδ) = v0.

Integrating each equation on the system, we find that

z(t) = z0 −
∫ t

Tδ

pδ(τ)τ2v(τ)dτ, v(t) = v0 +

∫ t

Tδ

1

τ2
z(τ)dτ.

Hence, using this integral formulas and Fubini’s theorem, we obtain the integral
representation for z(t)

z(t) = z0 − v0

∫ t

Tδ

pδ(τ)τ2dτ −
∫ t

Tδ

1

τ2
z(τ)

∫ t

τ

pδ(s)s
2ds dτ.

Next, we prove that z(t) is bounded. First observe that

0 ≤
∫ t

Tδ

pδ(τ)τ2dτ ≤
∫ ∞
Tδ

pδ(τ)τ2dτ ≤ Cδ−1T 2
δ e
−2Tδ ≤ C T 2

δ

where C > 0 is independent of δ, provided δ > 0 is small enough. On the other
hand

|z(t)| ≤ C(|z0|+ δ−1|v0|) +

∫ t

Tδ

pδ(τ)|z(τ)|dτ

and directly from Gronwall’s inequality we obtain that

|z(t)| ≤ C(|z0|+ δ−1|v0|) exp

(∫ t

Tδ

pδ(τ)dτ

)
.

Since ∫ ∞
Tδ

pδ(τ)dτ ≤ C

δ
e−2Tδ

then for δ small enough, and taking v0 = 0, we find that |z(t)| ≤ C|z0|, for t > Tδ.
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Plugging this into the integral formula for z(t) we observe that

z(t) = z0 +

∫ t

Tδ

z(τ)
1

τ2

∫ t

τ

pδ(s)s
2ds dτ.

Since z(t) is bounded, we obtain that

z(∞) = lim
t→∞

z(t) = z0 +

∫ ∞
Tδ

z(τ)
1

τ2

∫ ∞
τ

pδ(s)s
2ds dτ

and without any lose of generality we write

z(t) = 1 +

∫ ∞
t

z(τ)
1

τ2

∫ t

τ

pδ(s)s
2ds dτ, t > Tδ.

Observe that

|z(t)− 1| ≤ C pδ(t) ≤ C e−2(t−Tδ), t > Tδ.

From the integral formula for v(t), we obtain that

v(t) = v(∞) +

∫ ∞
t

z(τ)
1

τ2
dτ = v(∞) +O

(
1

t

)
so that, we may choose

φ1(t) = t+O(1), t > Tδ, ∂tφ1(t) = v(t) + t ∂tv(t) = 1 +O
(

1

t

)
.

Using the reduction of order formula, we find the second solution φ2(t), satisfying
that

φ2(t) = 1 +O
(

1

t

)
, ∂tφ2(t) = O

(
1

t

)
.

To find estimate (4.9), observe that ∂tφ2(∞) = 0. So we obtain from (4.6) that

∂tφ2(t) = −
∫ ∞
t

pδ(τ)φ2(τ)dτ, t > Tδ

from where

|∂tφ2(t)| ≤ C‖φ2‖L∞(Tδ,∞) pδ(t), for t > Tδ.

This concludes the proof of the lemma. �

Next, we describe solutions to (4.5) in the whole line and in the arch-length
variable y. Let {ψ1(y), ψ2(y)} be a fundamental set of (4.5), with

ψi(0) = ci,1, ∂yψi(0) = ci,2 δ
− 1

2 , i = 1, 2 (4.10)

where c1,1c2,2 − c1,2c2,1 = 1, so that the wronskian is given by

W (ψ1, ψ2) =
δ−

1
2√

1 + y2
, ∀ y ∈ R.

The following proposition completes the description of the kernel.

Proposition 4.1. The fundamental set {ψ1, ψ2} of (4.5) satisfies the following
estimates

|ψi(y)| ≤ C
(
1 + y2

) 1
4 , |∂yψi(y)| ≤ Cδ− 1

2 (1 + y2)−
1
4 , 0 ≤ y ≤ yδ. (4.11)

|ψi(y)| ≤ Cδ− 1
4 | log(δ)| ln (1 + |y|) , (1 + |y|)|∂yψi(y)| ≤ Cδ− 1

4 , y ≥ yδ. (4.12)
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Proof. We pass to the sphere S2 using the stereographic projection

y = tan(θ), for 0 < θ < θδ

where the number θ < θδ is such that yδ = tan(θδ), 0 < θδ <
π
2 . Writing

ψ(y) = ϕ(θ), for 0 < θ < θδ

we find that ϕ solves the equation

∂θθ ϕ(θ)− tan(θ) ∂θ ϕ(θ) +
2

δ
ϕ(θ) = 0. (4.13)

Assume further that

ψ(y) =
1√

cos(θ)
γ

(
θ√
δ

)
, for 0 < θ < θδ. (4.14)

so that

∂ss γ(s) +

([
1 +

δ

4

]
+
δ

4
sec2(

√
δ s)

)
γ(s) = 0, for 0 < s < sδ :=

θδ√
δ
.

We claim that γ(s) and ∂s γ(s) are uniformly bounded in (0, sδ). To prove this
claim, we consider the pointwise energy

J(s) := |∂s γ(s)|2 +

[
1 +

δ

4

]
|γ(s)|2

for which

∂s J(s) = −2∂s γ(s) γ(s)
δ

4
sec2(

√
δ s).

Hence, for constant C > 0 independent of δ > 0, it follows that

|∂s J(s)| ≤ C J(s)
δ

4
sec2(

√
δ s)

and consequently

0 ≤ J(s) ≤ J(0) + C
δ

4

∫ s

0

J(ξ) sec2(
√
δ ξ) dξ, for 0 < s < sδ.

Using Gronwall’s inequality, we find that

J(s) ≤ J(0) exp

(
C
δ

4

∫ sδ

0

sec2(
√
δ ξ) dξ

)
. (4.15)

We compute explicitly the integral in (4.15) to find that

δ

4

∫ sδ

0

sec2(
√
δ ξ) dξ =

√
δ

4
tan(
√
δ sδ) =

√
δ

4
tan(θδ) ≤ c0

where c0 does not depend on δ > 0. Hence, we find that

J(s) := |∂s γ(s)|2 +

[
1 +

δ

4

]
|γ(s)|2 ≤ C J(0), 0 < s <

θδ√
δ

and so the claim is proven. Pulling back the change of variables given in (4.14) and
since

(1 + y2) ∂y ψ(y) =
1√
δ

∂s γ
(
θ√
δ

)
√

cos(θ)
+

sin(θ) γ
(
θ√
δ

)
2 cos

3
2 (θ)

. (4.16)

we find that
ψ(0) = γ(0), ∂y ψ(0) = δ−

1
2 ∂s γ(0).

and consequently we obtain (4.11).
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On the other hand, using lemma 4.1 we may find another fundamental set for

(4.5), say {ψ̃1(y), ψ̃2(y)}, such that

ψ̃1(y) = ln (1 + |y|) +O(1), (1 + |y|)∂yψ̃1(y) = 1 +O(ln (1 + |y|)−1
), y ≥ yδ

ψ̃2(y) = 1 +O(ln (1 + |y|)−1
), (1 + |y|)∂yψ̃2(y) = O(log (1 + |y|) |−1), y ≥ yδ.

and with wronski determinant

0 < W (ψ̃1, ψ̃2) = c (1 + y2)−
1
2

Let us consider next equation (4.5) for ψi in the region y > yδ. Since γ(s),
|∂sγ(s)| are uniformly bounded, we find from (4.14) and (4.16) the conditions

ψi(yδ) = O(δ−
1
4 ), ∂yψi(yδ) = O(δ

1
4 ). (4.17)

and we write
ψi(y) = ci,1ψ̃1 + ci,2ψ̃2, y ≥ yδ, i = 1, 2.

A direct computation shows that(
ci,1
ci,2

)
= c δ−

1
2

(
∂yψ̃2(yδ) −ψ̃2(yδ)

−∂yψ̃1(yδ) ψ̃1(yδ)

)
·
(

ψi(yδ)
∂yψi(yδ)

)
From this we obtain that

ci,1 = O(δ−
1
4 ), ci,2 = O(δ−

1
4 | log(δ)|)

and clearly (4.12) follows at once from these remarks. �

The proof of Proposition 3.2: Using proposition 4.1 we choose a solution to (4.4)
defined by the variations of parameters formula

ψ(y) = −δ− 1
2ψ1(y)

∫ y

0

√
1 + ξ2 ψ2(ξ) g̃(ξ)dξ + δ−

1
2ψ2(y)

∫ y

0

√
1 + ξ2 ψ1(ξ) g̃(ξ)dξ.

(4.18)
In order to estimate the size of ψ, we observe that for 2 ≤ p < ∞, β > 5

2 and
0 < y < yδ, it holds that∫ y

0

√
1 + ξ2 |ψi(ξ)| |g̃(ξ)| dξ ≤ C ‖g̃‖p,β

(∫ y

0

(1 + |ξ|)(1+ p′
2 −βp

′)dξ

) 1
p′

.

Directly from this inequality and using (4.11), we find that∣∣∣∣ψi(y)

∫ y

0

√
1 + ξ2ψj(ξ) g̃(ξ)dξ

∣∣∣∣ ≤ Cδ− 1
4 ‖g̃‖p,β , i, j = 1, 2, i 6= j

and since we are taking β > 5
2 and using again (4.11), we get that

δ
1
2

√
1 + y2 |ψ′(y)| + |ψ(y)| ≤ Cδ− 3

4 ‖g̃‖p,β , 0 < y ≤ yδ. (4.19)

Proceeding as above, we observe that for y > yδ∫ y

0

√
1 + ξ2 |ψi(ξ)| |g̃(ξ)| dξ ≤ C ‖g̃‖p,β +

∫ y

yδ

√
1 + ξ2 |ψi(ξ)| |g̃(ξ)| dξ

and using (4.12) and since β > 5
2 , we find that for some ε > 0 small∫ y

yδ

√
1 + ξ2 |ψi(ξ)| |g̃(ξ)| dξ ≤ C| log(δ)| δ− 1

4 ‖g̃‖p,β
(∫ y

yδ

(1 + |ξ|)(1−βp′) log (1 + |ξ|)p
′
) 1
p′

≤ Cδε‖g̃‖p,β .
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Hence, using again (4.12), it holds that

δ
1
2

√
1 + y2 |ψ′(y)| + log(2 + |y|)−1 |ψ(y)| ≤ Cδ− 3

4 ‖g̃‖p,β , y ≥ yδ. (4.20)

Putting together, estimate (4.19) and (4.20) we obtain that
√
δ‖(1 + r(y))Dψ‖L∞(M) + ‖ log(2 + r(y))−1 ψ‖L∞(M) ≤ Cδ−

3
4 ‖g̃‖p,β (4.21)

Finally, observe that for 2 ≤ p < ∞, β < 3 and some ε > 0 arbitrarily small, we
have that∫
M

(1+r(y)β)p |AM (y)|2p |ψ(y)|p dVM ≤ C‖(log(r(y)+2)−1 ψ‖L∞(M)

∫
M

(1+r(y))(β−4−ε)pdVM .

Since (β − 4)p < −2, we obtain that

‖ |AM |2ψ ‖p,β ≤ C ‖(log(r(y) + 2)−1 ψ‖L∞(M) ≤ C δ−
3
4 ‖g̃‖p,β .

and so, from (4.4)

‖ψ‖δ,p,β ≤ Cδ−
3
4 ‖g̃‖p,β

where

‖ψ‖δ,p,β = δ‖D2 ψ‖p,β + δ
1
2 ‖(1 + r(y))Dψ‖L∞(M) + ‖ log(2 + r(y))−1 ψ‖L∞(M).

The case p =∞ is treated in an analogous fashion.

To finish the proof of Proposition 3.2, we simply notice that linear system (4.1)
can be written as the fixed point problem

ψ = L−1
δ [g̃] − L−1

δ

[
−|AM |2(A(y, δ)−A(y, 0)ψ)

]
and as we observed before, it holds that∥∥ |AM |2 (A(·, δ)−A(·, 0))

∥∥
p,β
≤ Cδ.

then a direct application of the contraction mapping principle, in both of the norms
(3.20)-(3.21) for ψ, completes the proof of the proposition 3.2.

4.2 The Jacobi Operator in M . To study the linearization of the system
(3.1), we also need to develop solvability theory for the equation

JM (v) = ∆Mv + |AM |2v = g, in M. (4.22)

Operator JM in equation (4.22) corresponds to the linearization around the
catenoid M of the mean curvature operator.

It is well known that the catenoid M is L∞-nondegenerate, in the sense that the
functions zi = ν · ei, for i = 1, 2, 3 are the only bounded solutions to the equation

JM (v) = ∆Mv + |AM |2v = 0, in M,

where e1, e2, e3 corresponds to the canonical basis in R3. One can check directly
that z3(y), which has the explicit expression

z3(y) =
y√

1 + y2
, y = Y (y, θ) ∈M

is the only bounded axially symmetric jacobi field. Hence, using the reduction of
order formula with the ansatz

z4(y) = 1 + s(y)z3(y), y 6= 0.
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one can also deduce the existence of another axially symmetric element of the
kernel of JM , with logarithmic growth, associated to the dilations of the catenoid
M , namely

z4(y) := Y (y, θ) · ν(y, θ) = 1− ln(y +
√

1 + y2)
y√

1 + y2
, y = Y (y, θ) ∈M.

We compute the derivatives of z3 and z4, respect to y, so we get

∂y z
′
3(y) = − 1

(1 + y2)
3
2

= O
(
|y|−3

)
(4.23)

∂y z
′
4(y) = − ln

(
y +

√
1 + y2

) (
1 + y2

)− 3
2 − y

1 + y2
= O(|y|−1). (4.24)

Since we are working in the class of axially symmetric functions, we use the
variations of parameters formula to define J−1(g) := v, where

v(y) := −z3(y)

∫ y

0

√
1 + ξ2g(ξ)z4(ξ)dξ + z4(y)

∫ y

−∞

√
1 + ξ2g(ξ)z3(ξ)dξ. (4.25)

for any function g satisfying that

‖g‖p,β := ‖(1 + r(y)β)g‖Lp(M) <∞

Formula (4.25) defines a function v that solves equation (4.22). We remark that,
under the orthogonality condition∫ ∞

−∞

√
1 + ξ2g(ξ)z3(ξ)dξ = 0 (4.26)

this solution is unique in the class of bounded functions with v′(0) = 0 and the
following lemma gives us an estimate on the size of J−1.

Lemma 4.2. Let g be an axially symmetric function satisfying condition (4.26),
and such that ‖g‖p,β < ∞, for 1 < p ≤ ∞ and 2 < β < 4− 2

p . Then, the function

v, given by formula (4.25), defines an axially symmetric solution to

∆Mv + |AM |2v = g, in M,

such that v′(0) = 0 and the following estimate holds true

‖v‖2,p,β ≤ C ‖g‖p,β (4.27)

where

‖v‖2,p,β := ‖v‖L∞(M) + ‖rβ−1(y)∇v‖L∞(M) + ‖D2v‖p,β .

The proof of this lemma follows calculations similar to those in the proof of
proposition (3.2), so we leave details to the reader.

Remark 4.1: To prove lemma 4.2, we simply notice that an even axially symme-
tric function g in L1(M), automatically satisfies the orthogonality condition (4.26).
In such a case, formula (4.25) defines an even function.
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5. Approximation of the solution of the theorem 1

To define our approximate solution to problem (1.1), let us first observe that the
heteroclinic solution to

w′′(s) + w(1− w2) = 0, s ∈ R, w(±∞) = ±1

is given explicitly by

w(s) = tanh

(
s√
2

)
, s ∈ R

and has the asymptotic properties

w(s) = 1 − 2 e−
√

2 s + O
(
e−2
√

2|s|
)
, s > 1

w(s) = −1 + 2 e
√

2 s + O
(
e−2
√

2|s|
)
, s < −1

w′(s) = 2
√

2 e−
√

2 |s| + O
(
e−2
√

2|s|
)
, |s| > 1

(5.1)

where w′ = dw
ds .

5.1 The first local approximation. Let us consider the vector function
h = (h1, . . . , hm) given in proposition (3.1) and solving the Jacobi-Toda system.
Recall that every hl has the form

hl(y) =

(
l − m+ 1

2

)[
σ +

√
2

(
1− 1

σ

)
log
(
1 + y2

)]
+ h̃l(y), y ∈ R. (5.2)

where
|h̃l(y)| ≤ K σ−

5
4 log (2 + r(y)) , y ∈M∥∥∥(1 + r(y))jD(j) h̃l

∥∥∥
L∞(M)

≤ K σ−
5
4 + j

2 , l = 1, . . . ,m, j ∈ N

and where σ is the unique positive real number that solves the algebraic equation

α2σ = a0 e
−
√

2σ. (5.3)

Let us also consider a parameter vector function v = (v1, . . . , vm) satisfying the
apriori estimate that

σ−
1
4 ‖(1 + r(y))Dvl‖L∞(M) + ‖( log(2 + r(y) )−1 vl‖L∞(M) ≤ K1 α

τ0σ
3
4 (5.4)

for some τ0 > 0 small and K1 > 0 a universal constant to be chosen large but
independent of α > 0.

Let us consider m normal graphs over M of the axially symmetric functions
fl = hl + vl ∈ C2(M), l = 1, . . . ,m. With a slight abuse of notation we write

fl (Y (y, θ)) = fl(y), (y, θ) ∈ R× (0, 2π), l = 1, . . . ,m.

From (5.2)-(5.3)-(5.4), we observe that

fl+1(y)− fl(y) ≥ σ +
√

2

(
1− 1

σ
−Mσ−

5
4

)
log
(
1 + y2

)
, y ∈ R. (5.5)

for some positive universal constant M > 0 and for every fixed j = 1, . . . ,m− 1.

In the region Nα we consider as a local approximation the function

U0(x) =

m∑
j=1

wj
(
z − fj(αy)

)
+

(−1)m−1 − 1

2
, wj(s) = (−1)j−1 w(s) (5.6)
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where x = Xα(y, θ, z) ∈ Nα. Observe that for points x ∈ Nα, for which z is close
enough to hj(αy), we have that

U0(x) ≈ wj
(
z − fj(αy)

)
.

For l = 1, . . . ,m fixed, we consider the set

Al =

{
Xα(y, θ, z) : |z − fl(αy)| ≤ 1

2

[
σ +

√
2

(
1− 1

σ
−Mσ−

5
4

)
log
(
1 + (αy)2

)]}
.

From (5.2) it is direct to check that Al ⊂ Nα, for every α > 0 small enough. Set-
ting t = z−fl(αy), the set Al can also be describe in terms of the local coordinates
Xα,fl(y, θ, t) as

Al =

{
Xα,fl(y, θ, t) : |t| ≤ 1

2

[
σ +

√
2

(
1− 1

σ
−Mσ−

5
4

)
log
(
1 + (αy)2

)]}
.

Next, with the aid of lemma 2.1, we compute the error

S(U0) = ∆U0 + F (U0), in Al, l = 1, . . . ,m

of the approximation U0 defined in (5.6) and where F (u) = u(1− u2).

We proceed as in lemma 2.4 in [10], collecting all the computations in the fo-
llowing lemma.

Lemma 5.1. For l = 1, . . . ,m and x = Xα,fl(y, θ, t) ∈ Al, it holds that

(−1)l−1 S(U0) = −α2
(
∆Mfl + |AM |2fl

)
w′(t)

+ 6
(
1− w2(t)

) [
e−
√

2t e−
√

2(fl−fl−1) − e
√

2t e−
√

2(fl+1−fl)
]

− α2 |AM |2 t w′(t) + α2 [ f ′l ]2w′′(t) − α3(t+ fl) a1(αy, α(t+ fl)) f
′′
l w
′(t)

− α2
∑
|j−l|≥1

(
∆Mfj − α (t+ fl) a1(αy, α(t+ fl))f

′′
j

)
w′j(t+ fl − fj)

+ Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm) (5.7)

where Rl = Rl(αy, t, p, q) is smooth on its arguments and

|DpRl(αy, t, p, q)| + |DqRl(αy, t, p, q)| + |Rl(αy, t, p, q)| ≤ C α2+τ (1+ |αy|)−4e−% |t|

(5.8)

for 0 < % <
√

2, some 0 < τ < 1 and where

p = (v1, . . . , vm), q = (Dv1, . . . , Dvm).

Proof. Denote

E1 = F
(

(−1)l−1 U0

)
, E2 = ∆Xα,hl

[
(−1)l−1 U0(x)

]
.

We first compute E1. We begin noticing that

F (U0) =

m∑
j=1

F (wj (t+ fl − fj)) +

F (U0(x))−
m∑
j=1

F (wj (t+ fl − fj) )

 .
Since F (u) = u(1− u2), for u ∈ R, we find that

0 ≤ F (u) ≤ |1− u||1 + u|, ∀u ∈ [−1, 1]. (5.9)
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On the other hand, for |j − l| ≥ 1, we have that

|fl − fj | = |l − j|
[
σ +
√

2

(
1− 1

σ
+O(σ−

5
4 )

)
log(1 + (αy)2)

]
and recall that

α2σ = a0 e
−
√

2σ.

Hence, we obtain for |j − l| ≥ 1 and for ε ∈ [0, 1) that

|t+ fl − fj | ≥ |l − j|
[
σ +
√

2

(
1− 1

σ
+O(σ−

5
4 )

)
log(1 + (αy)2)

]
− |t|

≥
(
|j − l| − 1 + ε

2

)[
σ +
√

2

(
1− 1

σ

)
log(1 + (αy)2)

]
+ ε |t|.

Assume for the moment that 2 ≤ l ≤ m − 1. For x = Xα,fl(y, θ, t) ∈ Al and
1 ≤ j < l, it holds that

t+ fl(αy)− fj(αy) ≥ 1

2

[
σ +
√

2

(
1− 1

σ
−Mσ−

5
4

)
log(1 + (αy)2)

]
while for l < j ≤ m, it holds that

t+ fl(αy)− fj(αy) ≤ −1

2

[
σ +
√

2

(
1− 1

σ
−Mσ−

5
4

)
log(1 + (αy)2)

]
.

Using the asymptotic behavior of w(s) from (5.1), we find that

w(t+ fl − fj) = 1− 2 e−
√

2 te−
√

2 (fl−fj) +O
(
e−2
√

2 |t+fl−fj |
)
, 1 ≤ j < l

w(t+ fl − fj) = −1 + 2 e
√

2 te
√

2 (fl−fj) +O
(
e−2
√

2 |t+fl−fj |
)
, l < j ≤ m.

From (5.9) and the remarks made above, we conclude that∣∣∣∣∣∣
∑
|j−l|≥2

F (wj(t+ fl − fj))

∣∣∣∣∣∣ ≤ C max
|j−l|≥2

e−
√

2 |t+fl−fj | ≤ Cα2+τ (1 + |αy|)−4 e−% |t|

for some 0 < % <
√

2 independent of α > 0 and 0 < τ < 1 depending only on % > 0.

From the previous estimate we also observe that

(−1)l−1

F (U0(x))−
m∑
j=1

F (wj (t+ fl − fj) )

 =

(−1)l−1F (U0(x)) + F (w(t+ fl − fl−1)) − F (w(t)) + F (w(t+ fl − fl+1)) +

+ R̄l(αy, t, v1, . . . , vm) (5.10)

where
|Dp R̄l(αy, t, p)| + |R̄l(αy, t, p)| ≤ Cα2+τ (1 + |αy|)−4 e−% |t|.

for p = (v1, . . . , vm).

Let us now denote

a1 = w(t+ fl − fl−1)− 1, a2 = w(t+ fl − fl+1) + 1.

From the mean value theorem, we can choose numbers si ∈ (0, 1), for i = 1, 2, 3,
such that

F (w(t+ fl − fl−1)) = F (1) + F ′(1)a1 +
1

2
F ′′(1 + s1 a1) a2

1
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F (w(t+ fl − fl+1)) = F (−1) + F ′(−1)a2 +
1

2
F ′′(−1 + s2 a2) a2

2.

(−1)l−1F (U0(x)) = F (w)− F ′(w)(a1 + a2)

+ F ′(w)
∑
|j−l|≥2

(−1)j−l[w(t+ fl − fj)− sign(l − j)]

+
1

2
F ′′[w + s3

(
(−1)l−1U0 − w

)
]

 ∑
|j−l|≥1

(−1)j+lw(t+ fl − fj)− sign(l − j)

2

.

Hence, using that F ′(1) = F ′(−1), we obtain that

(−1)l−1F (U0) =

m∑
j=1

(−1)l−1F (wj (t+ fl − fj)) +

+ 6
(
1− w2(t)

) [
e−
√

2 te−
√

2 (fl−fl−1) − e
√

2 te−
√

2 (fl+1−fl)
]

+ Rl(αy, t, v1, . . . , vm) (5.11)

where for p = (v1, . . . , vm)

|DpRl(αy, p)| + |Rl(αy, t, p)| ≤ Cα2+τ (1 + |αy|)−4 e−% |t|. (5.12)

The remainder cases, namely l = 1 and l = m, are treated in an similar fashion,
replacing the term

e−
√

2 te−
√

2 (fl−fl−1) − e
√

2 te−
√

2 (fl+1−fl)

by the respective terms

− e
√

2 te−
√

2 (f2−f1), e−
√

2 te−
√

2 (fm−fm−1).

So far, we have only written the term E1 in a convenient way. We still have to
compute E2. In order to do so, we write

E2 = ∆Xα,fl
w(t) +

∑
|j−l|≥1

∆Xα,fl

[
(−1)l−1wj(t+ fl − fj)

]
= E21 + E22.

Directly from lemma 2.1, we obtain that

E21 = w′′(t) − α2
(
∆Mfl + |AM |2fl

)
w′(t)− α2|AM |2t w′(t) + α2[ f ′l ]2 w′′(t)

−α3(t+ fl) a1(αy, α(t+ fl))
{
f ′′l w

′(t)− [ f ′l ]2w′′(t)
}

−α3(t+ fl) b1(αy, α(t+ fl))h
′
l w
′(t)− α4(t+ fl)

3 b2(αy, α(t+ fl))w
′(t).

Using assumptions (5.2)-(5.4), we can write E21 as follows

E21 = w′′(t) − α2
(
∆Mfl + |AM |2fl

)
w′(t)− α2|AM |2t w′(t) + α2[ f ′l ]2 w′′(t)

− α3(t+ fl) a1(αy, α(t+ fl))h
′′
l w
′(t) + Q21(αy, t, vl, Dvl) (5.13)

where

Q21 = Q21(αy, t, p, q)
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and

|DpQ21(αy, t, p, q)|+ |DqQ21(αy, t, p, q)|+ |Q21(αy, t, p, q)| ≤ Cα3(1+|αy|)−4e−% |t|

(5.14)

for some 0 < % <
√

2.

Next, we compute E22. A direct computation yields that

(−1)l−1E22 =
∑
|j−l|≥1

w′′j (t+ fl − fj)

− α2
∑
|j−l|≥1

([
∆Mfj + |AM |2(fl + t)

]
w′j(t+ fl − fj) −

[
f ′j
]2
w′′j (t+ fl − hj)

)
− α3 (t+ fl) a1(αy, α(t+ fl))

∑
|j−l|≥1

(
f ′′j w

′
j(t+ fl − fj)− [ f ′j ]2 w′′j (t+ fl − fj)

)
− α3 (t+fl) b1(αy, α(t+fl))

∑
|j−l|≥1

(
f ′j w

′
j − α (t+ fl)

3 b2(αy, α(t+ fl))w
′
j(t+ fl − fj)

)
.

Using the fact that for ε ∈ (0, 1) and |j − l| ≥ 1

|t+ fl − fj | ≥
(

1− 1 + ε

2

)[
σ +
√

2

(
1− 1

σ

)
log(1 + (αy)2)

]
+ ε |t|

and proceeding as above, we can write E22 as follows

(−1)l−1E22 = w′′j (t+ fl − fj)−

− α2
∑
|j−l|≥1

(
∆Mfj − α (t+ fl) a1(αy, α(t+ fl))f

′′
j

)
w′j(t+ fl − fj)

+ Q22(αy, t, v1, . . . , vm, Dv1, . . . , Dvm) (5.15)

where

Q22 = Q22(αy, t, p, q)

and

|DpQ22(αy, t, v, q)|+ |DqQ22(αy, t, p, q)|+ |Q22| ≤ C α2+τ (1+|αy|)−4e−% |t| (5.16)

for some 0 < % <
√

2 and some 0 < τ < 1.

Setting Rl = Rl + Q21 + Q22, we have that Rl = Rl(αy, t, p, q) is smooth on its
arguments and

|DpRl(αy, t, p, q)| + |DqRl(αy, t, p, q)| + |Rl(αy, t, p, q)| ≤ C α2+τ (1+ |αy|)−4e−% |t|

for 0 < % <
√

2 and 0 < τ < 1. Putting together (5.11)-(5.13)-(5.15) and using
that w′′j + F (wj) = 0, we obtain expressions (5.7) and (5.8) and the proof of the
lemma is complete. �

5.2 Improvement of the Local Approximation. For subsequents develop-
ments, it will be useful to have more precise information about the asymptotics of
the solution we are looking for, so we improve our first approximation U0. In order
to do so, we write

6(1− w2(t))e−
√

2t = a0 w
′(t) + g0(t),

∫
R
g0(t)w′(t)dt = 0. (5.17)
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Using (5.17), the fact that the vector function h is an exact solution of the
Jacobi-Toda system in M and lemma (5.1), we observe that

(−1)l−1S(U0) := −α2
(
∆Mvl + |AM |2vl

)
w′(t)

+ g0(−t) e−
√

2(hl−hl−1) − g0(t) e−
√

2(hl+1−hl) + α2 [h′l ]
2w′′(t) − α2 |AM |2 t w′(t)

+ 6
(
1− w2(t)

)
e−
√

2t e−
√

2(hl−hl−1)
[
e−
√

2(vl−vl−1) − 1
]

− 6
(
1− w2(t)

)
e
√

2t e−
√

2(hl+1−hl)
[
e−
√

2(vl+1−vl) − 1
]

+α2v′l(2h
′
l + v′l)w

′′(t) − α3(t+ fl) a1(αy, α(t+ fl)) f
′′
l w
′(t)

− α2
∑
|j−l|≥1

(
∆Mfj − α (t+ fl) a1(αy, α(t+ fl))f

′′
j

)
w′j(t+ fl − fj)

+ Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm) (5.18)

where Rl = Rl(αy, t, p, q) is smooth on its arguments and satisfies (5.8) for 0 < % <√
2 and some 0 < τ < 1.

Let us consider ψ0(t) to be the bounded solution to the equation

∂ttψ0(t) + F ′(w(t))ψ0(t) = g0(t), t ∈ R

given explicitly by the variations of parameters formula

ψ0(t) = w′(t)

∫ t

0

w′(s)−2

∫ ∞
s

w′(ξ)g0(ξ) dξ ds. (5.19)

From (5.19), we obtain the estimate∥∥∥(1 + e2
√

2 tχ{t>0}

)
∂

(j)
t ψ0

∥∥∥
L∞(R)

≤ Cj , j ∈ N.

Let us also consider functions ψ1(t) and ψ2(t) so that

∂ttψ1(t) + F ′(w(t))ψ1(t) = −w′′(t), t ∈ R (5.20)

∂ttψ2(t) + F ′(w(t))ψ2(t) = tw′(t), t ∈ R. (5.21)

Proceeding as before, we see that

ψ2(t) = −w(t)

∫ t

0

w′(s)−2

∫ ∞
s

ξw′(ξ)2 dξds

and ψ1(t) = − 1
2 tw

′(t), from where the following estimate follows at once

‖e%|t|∂(j)
t ψi‖L∞(R) ≤ Cj , i = 1, 2, j ∈ N, 0 < % <

√
2.

So, we consider as a second approximation in the region Nα, the function

U1(x) = U0 +

m∑
j=1

φj,0 (5.22)
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where for every l = 1, . . . ,m and in the coordinates Xα,fl

(−1)l−1φl,0(y, t) = −e−
√

2(hl−hl−1) ψ0(−t) + e−
√

2(hl+1−hl) ψ0(t)

+α2 [h′l(αy)]2 ψ1(t) + α2|AM (αy)|2 ψ2(t).

The new error created reads as

S(U1) := S(U0) +

m∑
j=1

∂ttφj,0 + F ′(wj(t))φj,0

m∑
j=1

+ ∆Mαφj,0 + Bj(φj,0) + [F ′(U1)− F ′(wj(t))]φj,0

Directly from (5.18) in each one of the sets Al, reads at main order as follows

(−1)l−1S(U1) = −α2
(
∆Mvl + |AM |2vl

)
w′(t)

+ 6
(
1− w2(t)

)
e−
√

2t e−
√

2(hl−hl−1)
[
e−
√

2(vl−vl−1) − 1
]

− 6
(
1− w2(t)

)
e
√

2t e−
√

2(hl+1−hl)
[
e−
√

2(vl+1−vl) − 1
]

+α2v′l(2h
′
l + v′l)w

′′(t) − α3(t+ fl) a1(αy, α(t+ fl)) f
′′
l w
′(t)

− α2
(
∆Mfj − α (t+ fl) a1(αy, α(t+ fl))f

′′
j

)
w′j(t+ fl − fj) + R̃l (5.23)

where
R̃l = R̃l(αy, t, v1, . . . , vm, Dv1, . . . , Dvm)

and

|DpR̃(αy, t, p, q)| + |DqR̃(αy, t, p, q)| + |R̃(y, t, p, q)| ≤ Cα2+τrα(y)−4e−%|t| (5.24)

for some 0 < % <
√

2 and some 0 < τ < 1.

5.3 Global approximation. The approximation U1 is so far defined only on
the neighborhood Nα of Mα. To define our global approximation, we use the non-
negative function β ∈ C∞(R) from above as well as the cut-off function defined
by

βα(x) = β(|z| − η

α
− 2
√

2 (m+ 1) log(r(αy)) + 3), x = Xα(y, θ, z) ∈ Nα

for which we observe that βα is supported in a region that expands logarithmically
in rα(y). With the aid of this function, we set up as approximation in R3, the
function

w(x) = βα(x)U1 + (1− βα(x))H, x ∈ R3 (5.25)

where H is the function

H(x) =

{
1, x ∈ S+

α

(−1)m, x ∈ S−α
and S±α = α−1S±, S± being the two connected components of R3 −M for which
S+ is the component containing the x3−axis.

We compute the new error as follows

S(w) = ∆w + F (w) = βα(x)S(U1) + E

where

E = 2∇βα∇U1 + ∆βα(U1 − H) + F (βαU1 + (1− βα)H)− βαF (U1).
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Due to the choice of βα(x) and the explicit form of the error the term E, the
error created only takes into account values of βα for x ∈ R3 in the region

x = Xα(y, θ, z), |z| ≥ η

α
+ 4 ln(rα(y))− 2,

and so, we get the following estimate for the term E

|Dy E| + |E| ≤ Ce−
η
α r−4

α (y).

We observe that the error E decays rapidly and is exponentially small in α > 0,
so that its contribution is basically negligible.

6. Proof of theorem 1.

The proof of Theorem 1 is quite technical, so we prefer to sketch the steps of the
proof and leave the detailed proofs of the propositions and lemmas mentioned here
for subsequent sections.

First, we introduced the norms we will use to set up an appropriate functional
analytic scheme for the proof of Theorem 1. Let us recall the notation

r(x) =
√
x2

1 + x2
2, x = (x1, x2, x3) ∈ R3

and let us define for α > 0, µ > 0 and f(x), defined in R3, the norm

‖f‖p,µ,∼ := sup
x∈R3

(1 + r(αx))µ ‖f‖Lp(B1(x)), p > 1. (6.1)

We also consider 0 < % <
√

2, µ > 0, α > 0 and functions g = g(y, t) and
φ = φ(y, t), defined for every (y, t) ∈Mα × R. Let us set the norms

‖g‖p,µ,% := sup
(y,t)∈Mα×R

(1 + r(αy))µe % |t|‖g‖Lp(B1(y,t)) (6.2)

‖φ‖∞,µ,% := ‖(1 + r(αy)µ)e % |t|φ‖L∞(Mα×R) (6.3)

‖φ‖2,p,µ,% := ‖D2 φ‖p,µ,% + ‖Dφ‖∞,µ,% + ‖φ‖∞,µ,%. (6.4)

Finally, for functions v and g̃ defined in M , we recall the norms

‖g̃‖p,β := ‖(1 + r(y)β)g̃‖Lp(M) (6.5)

‖v‖δ,p,β := δ‖D2v‖p,β + δ
1
2 ‖(1 + r(y))D v‖L∞(M) + ‖ log( r(y) + 2 )−1 v‖L∞(M).

(6.6)

Now, in order to prove Theorem 1, let us look for a solution to equation (1.1) of
the form

U(x) = w(x) + ϕ(x)

where w(x) is the global approximation defined in (5.25) and ϕ is going to be
chosen small. Hence, since F (u) = u(1− u2), for U(x) being a genuine solution to
(1.1), we see that ϕ must solve the equation

∆ϕ + F ′(w)ϕ + S(w) +N(ϕ) = 0, in R3.
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or equivalently

∆ϕ + F ′(w)ϕ = −S(w)−N(ϕ)

= −βα S(U1)− E −N(ϕ) (6.7)

where

N(ϕ) = F (w + ϕ)− F (w)− F ′(w)ϕ.

6.1 Gluing procedure: In order to solve equation (6.7), we consider a non-
negative function β ∈ C∞(R) such that

β(s) =

{
1, |s| ≤ 1
0, |s| ≥ 2

and define for l = 1, . . . ,m and n ∈ N, the cut off function for x = Xα,fl(y, θ, t) ∈
Nα,fl

ζ l,n (x) = β

(
|t| − 1

2

[
σ +

√
2

(
1− 1

σ
−Mσ−

5
4

)
log
(
1 + (αy)2

)]
+ n

)
. (6.8)

Observe that for k 6= l and n ∈ N, ζl,n · ζk,n = 0. Observe that for k 6= l,
ζl,n · ζk,n = 0.

Now we look for a solution ϕ(x) with the particular form

ϕ(x) =

m∑
j=1

ζ j,3 (x)ϕj(y, z) + ψ(x)

where the functions ϕj(y, z) are defined in Mα×R and the function ψ(x) is defined
in the whole R3. So, from equation (6.7) and noticing that ζj,2 · ζj,3 = ζj,3, we find
that

m∑
j=1

ζj,3 [∆Nαϕj + F ′(ζj,2w)ϕj + ζj,2S(w) + ζj,2N(ϕj + ψ) + ζj,2(F ′(w) + 2)ψ]

+ ∆ψ − [2− (1−
m∑
j=1

ζj,3)(F ′(w) + 2)]ψ +

1−
m∑
j=1

ζj,3

S(w)

+

m∑
j=1

2∇ζj,3 · ∇Nαϕj + ϕj∆ζj,3 + (1− ζj,3)N [ψ +

m∑
i=1

ζi,2ϕi] = 0.

Hence, to construct a solution to (6.7), it suffices to solve the system of PDEs

∆ψ −

2−

1−
m∑
j=1

ζj,2

 (F ′(w) + 2)

ψ = −

1−
m∑
j=1

ζj,2

S(w)−

−
m∑
j=1

2∇ζj,2 · ∇Nαϕj − ϕj∆ζj,2 −

1−
m∑
j=1

ζj,3

N

[
m∑
i=1

ζi,2ϕi + ψ

]
, in R3

(6.9)

∆Nαϕl + F ′(ζl,2w)ϕl = − ζl,2S(w) − ζl,2N(ϕl + ψ)

− ζl,2(F ′(w) + 2)ψ, for |z − fl(αy)| ≤ ρα(y), l = 1, . . . ,m (6.10)
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where

ρα(y) :=
1

2

[
σα +

√
2

(
1− 1

σα

)
log
(
1 + (αy)2

)]
, y = Yα(y, θ) ∈Mα

Now, we extend equation (6.10) to the whole Mα×R. First, let us introduce the
differential operator

Bl := ζl,2[∆Nα,fl − ∂tt −∆Mα
]

for l = 1, . . . ,m. Recall that ∆Mα
is nothing but the Laplace-Beltrami and which

in the local coordinates Yα(y, θ), has the expression

∆Mα
= ∂yy +

α2y

1 + (αy)2
∂y +

α2

1 + (αy)2
∂θθ.

Clearly, Bl vanishes in the domain

|t| ≥ 1

2

[
σα + 2

(
1− 1

σα

)
ln
(
1 + (αy)2

)]
− 1

We look for a solution to (6.10) having the form

φl(y, t) = ϕl(y, t+ fl(αy)), x = Xα,fl(y, θ, t)

and so, instead of equation (6.10), we consider the equation

∂ttφl + ∆Mα
φl + F ′(wl(t))φl = −Sl(w)−Bl(φl)

− [F ′(ζl,2w)−F ′(wl(t))]φl − ζl,2(F ′(w)+2)ψ − ζl,2N(φl+ψ), in Mα×R (6.11)

and where we have denoted

(−1)l−1Sl(w) = −α2
(
∆Mvl + |AM |2vl

)
w′(t)

+ 6
(
1− w2(t)

)
e−
√

2t ζl,2 e
−
√

2(hl−hl−1)
[
e−
√

2(vl−vl−1) − 1
]

− 6
(
1− w2(t)

)
e
√

2t ζl,2 e
−
√

2(hl+1−hl)
[
e−
√

2(vl+1−vl) − 1
]

+α2v′l(2h
′
l + v′l)w

′′(t) + ζl,2
[
−α3(t+ fl) a1(αy, α(t+ fl)) f

′′
l w
′(t)−

− α2
(
∆Mfj − α (t+ fl) a1(αy, α(t+ fl))f

′′
j

)
w′j(t+ fl − fj) + R̃l

]
(6.12)

where we recall that

R̃l = Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm)

and

|DpR̃(αy, t, p, q)| + |DqR̃(αy, t, p, q)| + |R̃(y, t, p, q)| ≤ Cα2+τrα(y)−4e−%|t| (6.13)

for 0 < % <
√

2 and 0 < τ < 1. Observe that Sl(w) coincides with S(U1) where
ζl,2 = 1, but we have basically cut-off the parts in S(U1) that, in the local coordi-
nates Xα,fl , are not defined for all t ∈ R.

Using (6.12) and (6.13) and since the support of ζl,2 is contained in a region of
the form

|t| ≤ 1

2

[
σα − 2

(
1− 1

σα

)
ln
(
1 + (αy)2

)]
we compute directly the size of this error to obtain that

‖Sl(w)‖p,2,% ≤ Cα2+τ1 (6.14)
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for some 0 < % <
√

2, some constant C > 0 and some 0 < τ1 < τ0 small, indepen-
dent of α > 0.

Hence we solve system (6.9)-(6.11). We first solve equation (6.9), using the fact
that the potential 2 − (1 −

∑m
j=1 ζj3)(F ′(w) + 2) is uniformly positive, so that

the linear operator there behaves like ∆R3 − 2. A solution ψ = Ψ(φ1, . . . , φm) is
then found using contraction mapping principle. We collect this discussion in the
following proposition, that will be proven in detail in section 7.

Proposition 6.1. Assume 0 < % <
√

2, µ > 0, p > 2 and let the functions f ′ls be
as in (5.2)-(5.4). Then, for every α > 0 sufficiently small and for m fixed functions
φ1, . . . , φm, satisfying that

‖φl‖2,p,µ,% ≤ 1, l = 1, . . . ,m

equation (6.9) has a unique solution ψ = Ψ(φ1, . . . , φm). Even more, the operator
ψ = Ψ(φ1, . . . , φm) turns out to be lipschitz in every φj. More precisely, ψ =
Ψ(φ1, . . . , φm) satisfies that

‖ψ‖X := ‖D2ψ‖p,µ̂,∼ + ‖(1 + rµ̂(αx))Dψ‖L∞(R3) + ‖(1 + rµ̂(αx))ψ‖L∞(R3)

≤ C

α2+ %√
2
−ε

+ α
%√
2
−ε

m∑
j=1

‖φj‖2,p,µ,%

 (6.15)

where 0 < µ̂ < min(2µ , µ+ %
√

2 , 2 + %
√

2) and

‖Ψ(φj)−Ψ(φ̂j)‖X ≤ Cα
%√
2
−ε‖φj − φ̂j‖2,p,µ,%. (6.16)

Hence, using Proposition 6.1, we solve equation (6.11) with ψ = Ψ(φ1, . . . , φm).
Let us set

Nl(φ1, . . . , φl, . . . , φm) := Bl(φl) + [F ′(ζl,2w)− F ′(w(t))]φl

+ ζl,2(F ′(w) + 2)Ψ(φ1, . . . , φm) + ζl,2N [φl + Ψ(φ1, . . . , φm)].

So, setting Φ = (φ1, . . . , φm), we only need to solve

∂ttφl + ∆Mα
φl + F ′(wl(t))φl = −Sl(w)−Nl(Φ), in Mα × R (6.17)

for every l = 1, . . . ,m.

To solve system (6.17), we solve a nonlinear and nonlocal problem for φl, in
such a way that we eliminate the parts of the error that do not contribute to
the projections onto w′(t). This step can be though as an improvement of the
approximation w. We use the fact that the error has the size

‖Sl(w)‖p,2,% ≤ α2 + τ1 (6.18)

and as we will see in section 7 for 0 < τ1 < τ0 Nl(φ) satisfies that

‖Nl(Φ)‖p,4,% ≤ Cα3+τ1 (6.19)

‖Nl(Φ1)−Nl(Φ2)‖p,4,% ≤ C α ‖Φ1 − Φ2‖2,p,2,%, (6.20)

for Φ1,Φ2 ∈ Bα a ball of radius O(α2+τ1) in the product norm ‖Φ‖2,p,2,%. A direct
application of the contraction mapping principle allows us to solve the projected
system

∂ttφl+∆Mα
φl+F ′(wl(t))φl = −Sl(w)−Nl(Φ) + cl(y)w′(t), in Mα×R. (6.21)
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R
φl (y, t)w

′(t)dt = 0, l = 1, . . . ,m. (6.22)

where

cl(y) =

∫
R

[Sl(w) + Nl(Φ)]w′(t)dt, ∀ l = 1, . . . ,m.

This solution φl, defines a Lipschitz operator φl = Φl(v1, . . . , vm) for the product
norm

‖(v1, . . . , vm)‖δ,p,β :=

m∑
j=1

‖vj‖δ,p,β .

This information is collected in the following proposition

Proposition 6.2. Assume 0 < µ ≤ 2, 0 < % <
√

2 and p > 2. For every α > 0
small enough, there exists an universal constant C > 0, such that system (6.21)-
(6.22) has a unique solution (φ1, . . . , φm) = Φ(v1, . . . , vm), satisfying

‖Φ‖2,p,2,% ≤ Cα2+τ1

and

‖Φ(v1, . . . , vm)− Φ(v̂1, . . . , v̂m)‖2,p,2,% ≤ C α2+τ1‖(v1, . . . , vm)− (v̂1, . . . , v̂m)‖δ,p,β
for some fixed β ∈ ( 5

2 , 4− 4δ).

6.2 Solving the Jacobi-Toda system to adjust the nodal sets. First, to
estimate the size of the error of the projected problem, we borrow a result from
section 8 in [9].

Lemma 6.1. Assume g(y, t) is a function defined in Mα × R and for which

sup
(y,t)∈Mα×R

(1 + r(αy)µ)e%|t|‖g‖Lp(B1(y,t)) <∞

for some %, µ > 0 and p > 2. The function defined in M as

q(y) :=

∫
R
g
( y

α
, t
)
w′(t)dt

satisfies

‖q‖p,β ≤ C sup
(y,t)∈Mα×R

(1 + r(y)µ)e%|t|‖g‖Lp(B1(y,t))

provided

µ > β +
2

p
.

To conclude the proof of Theorem 1, we choose the vector function v = (v1, . . . , vm)
in such a way that

cl(y) =

∫
R

[Sl(w) + Nl(Φ)]w′(t)dt = 0, ∀ l = 1, . . . ,m.

Using (6.12), we find that making these projections zero is equivalent to solve
the nonlinear and nonlocal system of equations

α2
(
∆Mvl + |AM |2 vl

)
−
√

2 a0

[
e−
√

2(hl−hl−1)(vl − vl+1)

− e−
√

2(hl+1−hl)(vl+1 − vl)
]

= α2Ql(v) (6.23)
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where

Ql(v) := Gl,1(v) +Gl,2(v)

α2Gl,1(v) :=

∫
R
ζj2

[
−α3(t+ fj) a1(αy, α(t+ fj)) f

′′
j w
′(t)−

− α2
(
∆Mfj − α (t+ fl) a1(αy, α(t+ fl))f

′′
j

)
w′j(t+ fl − fj) + R̃l

]
w′(t)dt

−a0e
−
√

2(hl−hl−1)
(
e−
√

2(vl−vl−1) − 1 +
√

2(vl − vl−1)
)

+ a0 e
−
√

2(hl+1−hl)
(
e−
√

2(vl+1−vl) − 1 +
√

2(vl+1 − vl)
)

−
∫

R
6
(
1− w2(t)

)
e−
√

2t (1− ζl,2)w′(t)dt e−
√

2(hl−hl−1)
[
e−
√

2(vl−vl−1) − 1
]

+

∫
R

6
(
1− w2(t)

)
e
√

2t(1− ζl,2)w′(t)dt e−
√

2(hl+1−hl)
[
e−
√

2(vl+1−vl) − 1
]

α2Gl,2(v) :=

∫
R

Nl(Φ)w′(t)dt.

where we set Φ = (Φ1, . . . ,Φm) and

a0 = ‖w′‖−2
L2(R)

∫
R

6(1− w2(t)) e−
√

2 tw′(t)dt.

Direct computations using (6.12) and lemma 6.1 yield the estimates

‖Gl,1(v)‖p,β ≤ Cατ0

‖Gl,1(v)−Gl,1(v̂)‖p,β ≤ Cατ0‖v − v̂‖δ,p,β
for some 0 < τ0 < 1 fixed independent of α > 0.

From (6.19) and lemma 6.1 we also have that for any p > 2 and 0 < β < 4− 2
p

‖Gl,2(v)‖p,β ≤ α−2

∥∥∥∥∫
R

Nl(Φ)w′(t)dt

∥∥∥∥
p,β

≤ Cα1+τ1 .

On the other hand, it is direct to check from (6.20) and Proposition 6.2 that

‖Gl,2(v)−Gl,2(v̂)‖p,β ≤ Cα
1+τ1‖v − v̂‖δ,p,β

Hence we find that

Q(v) := (Q1(v, ), . . . ,Qm(v, ))

satisfies

‖Q(v)‖p,β ≤ Cατ0

‖Q(v)−Q(v̂)‖p,β ≤ C ατ0 ‖v − v̂‖δ,p,β .

Since we are linearizing the Jacobi-Toda system (6.23) around the exact solution
h, we can proceed as in the proof proposition 3.1 to solve this system. We see that
using propositions (3.2) and (3.3) and a direct application of contraction mapping
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principle in a ball of radius O(ατ0σ
3
4 ) in the product topology ‖v‖δ,p,β yields the

existence of functions v1, . . . , vm satisfying (5.4), so that

cl(y) =

∫
R

[Sl(w) + Nl(Φ)]w′(t)dt = 0, ∀ l = 1, . . . ,m

and this completes the proof of the theorem. We leave details to the reader since
the procedure is a copy of decoupling procedure developed in subsection 3.2

In sections 7 we present the proofs of the auxiliary results mentioned in this
section.

7. gluing reduction and solution to the projected problem.

In this section, we prove propositions 6.1 and 6.2. The notations we use in this
section have been set up in sections 4 and 5.

7.1 Solving the Gluing System. Given fixed functions φ1, . . . , φm such that
‖φl‖2,p,µ,% ≤ 1 for l = 1, . . . ,m, we solve problem (6.9). To begin with, we observe
that there exist constants a < b, independent of α, such that

0 < a ≤ Qα(x) ≤ b, for every x ∈ R3

where we set

Qα(x) = 2−

1−
m∑
j=1

ζj2

 [F ′(w) + 2] .

Using this remark, we study the problem

∆ψ −Qα(x)ψ = g(x), x ∈ R3 (7.1)

for a given g = g(x) such that

‖g‖p,µ̂,∼ := sup
x∈R3

(1 +Rµ̂(αx))‖g‖Lp(B1(x)).

Solvability theory for equation (7.1) is collected in the following lemma whose
proof follows the same lines as in lemma 7.1 in [9] and [11].

Lemma 7.1. Assume p > 2 and µ̂ ≥ 0. There exists a constant C > 0 and α0 > 0
small enough such that for 0 < α < α0 and any given g = g(x) with ‖g‖p,µ̂,∼ <∞,
equation (7.1) has a unique solution ψ = ψ(g), satisfying the a-priori estimate

‖ψ‖X ≤ C‖g‖p,µ̂,∼
where

‖ψ‖X := ‖D2ψ‖p,µ̂,∼ + ‖(1 + r(αx)µ̂(x))Dψ‖L∞(R3) + ‖(1 + rµ̂(αx))ψ‖L∞(R3).

Now we prove Proposition 6.1. Denote byX, the space of functions ψ ∈W 2,p
loc (R3)

such that ‖ψ‖X < ∞ and let us denote by Γ(g) = ψ the solution to the equation
(7.1) from the previous lemma. We see that the linear map Γ is continuous i.e

‖Γ(g)‖X ≤ C‖g‖p,µ̂,∼
with 0 < µ̂ < min(2µ , µ+%

√
2 , 2 +%

√
2). Using this we can recast (6.9) as a fixed

point problem, in the following manner

ψ = −Γ

1−
m∑
j=1

ζj2

S(w) + g1 +

1−
m∑
j=1

ζj2

N

[
m∑
i=1

ζi3φi + ψ

] (7.2)
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where

g1 =

m∑
j=1

2∇ζj2 · ∇φj + φj∆ζj2.

Under conditions (5.2)-(5.4) and max1≤l≤m ‖φl‖2,p,µ,% ≤ 1, we estimate the size
of the right-hand side in (7.2).

Recall that S(w) = βα(x)S(U1) + E, where

|Dy E| + |E| ≤ Ce−
η
α r−4

α (y).

So, we estimate directly using (8.32), to get∣∣∣∣∣∣
1−

m∑
j=1

ζj2

S(w)

∣∣∣∣∣∣ ≤ C

m∑
j=1

α2(1 + rα(y))−2e−%|t| (1− ζj2)

≤ Cα
2+ %√

2σ
%

2
√

2 (1 + rα(y))
−2

(
1+ %√

2

)
,

this means that∣∣∣∣∣∣
1−

m∑
j=1

ζj2(x)

S(w)

∣∣∣∣∣∣ ≤ Cα2+ %√
2σ

%

2
√

2 (1 +Rα(x))
−2(1+ %√

2
)
.

Consequently we get, for 0 < µ̂ < 2(1 + %√
2
) that∥∥∥∥∥∥

1−
m∑
j=1

ζj,2

S(w)

∥∥∥∥∥∥
p,µ̂,∼

≤ Cα
2+ %√

2
−ε

for some ε > 0 sufficiently small
As for the second term in the right-hand side of (7.2), the following holds true

|2∇ζj,2 · ∇φj + φj∆ζj,2| ≤ C(1− ζj2)(1 + rµ(αy))−1e−%|t|‖φj‖2,p,µ,%

≤ Cα
%√
2σ

%

2
√

2 (1 + r
µ+ %√

2 (αy))−1‖φj‖2,p,µ,%.

This implies that

‖2∇ζj,2 · ∇φj + φj∆ζj,2‖p,µ+%
√

2−ε,∼ ≤ Cα
%√
2
−ε

m∑
j=1

‖φj‖2,p,µ,%.

Finally we must check the lipschitz character of (1−
∑m
j=1 ζj2)N [

∑m
i=1 ζi2φi+ψ].

Take ψ1, ψ2 ∈ X. Then1−
m∑
j=1

ζj2

∣∣∣∣∣N
[
m∑
i=1

ζi2φi + ψ1

]
−N

[
m∑
i=1

ζi2φi + ψ2

]∣∣∣∣∣ ≤

≤

1−
m∑
j=1

ζj2

∣∣∣∣∣F (w +

m∑
i=1

ζj1φi + ψ1)− F (w +

m∑
i=1

ζi1φi + ψ2)− F ′(w)(ψ1 − ψ2)

∣∣∣∣∣
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≤ C

1−
m∑
j=1

ζj2

 sup
s∈[0,1]

∣∣∣∣∣
m∑
i=1

ζi1φi + sψ1 + (1− s)ψ2

∣∣∣∣∣ |ψ1 − ψ2|

≤ Cα%−ε

(
m∑
i=1

‖φi‖∞,µ,% + ‖ψ1‖X + ‖ψ2‖X

)
|ψ1 − ψ2|

So, we see that∥∥∥∥∥∥
1−

m∑
j=1

ζj2

N

[
m∑
i=1

ζi2φi + ψ1

]
−

1−
m∑
j=1

ζj2

N

[
m∑
i=1

ζi2φi + ψ2

]∥∥∥∥∥∥
p,2µ̂,∼

≤ Cα
%√
2
−ε‖ψ1 − ψ2‖∞,µ̂,∼.

In particular, we take advantage of the fact that N(ϕ) ∼ ϕ2, to find that∥∥∥∥∥∥
1−

m∑
j=1

ζj2

N

(
m∑
i=1

ζi2φi

)∥∥∥∥∥∥
p,2µ,∼

≤ Cα2%−ε
m∑
j=1

‖φj‖22,p,µ,% .

Consider Γ̃ : X → X, Γ̃ = Γ̃(ψ) the operator given by the right-hand side of

(7.2). From the previous remarks we have that Γ̃ is a contraction provided α is

small enough and so we have found ψ = Γ̃(ψ) the solution to (6.9) with

‖ψ‖X ≤ C

α2+ %√
2
−ε

+ α
%√
2
−ε

m∑
j=1

‖φj‖2,p,µ,ρ


We can check directly that Ψ(Φ) = ψ is Lipschitz in Φ = (φ1, . . . , φm), i.e

‖Ψ(Φ1)−Ψ(Φ2)‖X ≤

C

∥∥∥∥∥∥
1−

m∑
j=1

ζj2

[N ( m∑
i=1

ζi2φi 1 + Ψ(Φ1)

)
−N

(
m∑
i=1

ζi2φi 2 + Ψ(Φ2)

)]∥∥∥∥∥∥
p,2µ,∼

≤ Cα%−ε (‖Ψ(Φ1)−Ψ(Φ2)‖X + ‖Φ1 − Φ2‖2,p,µ,%)
Hence for α small, we conclude

‖Ψ(Φ1)−Ψ(Φ2)‖X ≤ Cατ‖Φ1 − Φ2‖2,p,µ,%.

7.2 Solving the Projected System (6.21)-(6.22). Now we solve system

∂ttφl + ∆Mαφl + F ′(wl(t))φl = −Sl(w)−Nl(φl) + cl(y)w′(t), in Mα × R.∫
R
φl(y, t)w

′(t)dt = 0.

To do so, we need to study solvability for the linear equation

∂ttφ+ ∆Mαφ+ F ′(w(t))φ = g(y, t) + c(y)w′(t), in Mα × R (7.3)∫
R
φ(y, t)w′(t)dt = 0. (7.4)

Solvability of (7.3)-(7.4) is based upon the fact that the heteroclinic solution
w(t) is nondegenerate in the sense, that the following property holds true.
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Lemma 7.2. Assume that φ ∈ L∞(R3) and assume φ = φ(x1, x2, t) satisfies

L(φ) := ∂ttφ+ ∆R2φ+ F ′(w(t))φ = 0, in R2 × R. (7.5)

Then φ(x1, x2, t) = C w′(t), for some constant C ∈ R.

For the detailed proof of this lemma we refer the reader to [9], [11] and references
therein.

The linear theory we need to solve system (6.22), is collected in the following
proposition, whose proof is again contained in essence in proposition 4.1 in [9] and
[11].

Proposition 7.1. Assume p > 2, 0 < % <
√

2 and µ ≥ 0. There exist C > 0,
an universal constant, and α0 > 0 small such that, for every α ∈ (0, α0) and any
given g with ‖g‖p,µ,% < ∞, problem (7.3)-(7.4) has a unique solution (φ, c) with
‖φ‖p,µ,% <∞, satisfying the apriori estimate

‖D2φ‖p,µ,% + ‖Dφ‖∞,µ,% + ‖φ‖∞,µ,% ≤ C‖g‖p,µ,%.

Using Proposition 7.1, we are ready to solve system (6.21)-(6.22). First, recall
that as stated in (6.14)

‖Sl(w)‖p,2,% ≤ Cα2+τ1 (7.6)

for some 0 < τ1 < τ0 small enough.
From the discussion in 6.2, we have a nonlocal operator ψ = Ψ(φ1, . . . , φm). We

want to solve the following problem
Recall that for Φ = (φ1, . . . , φm),

Nl(Φ) := Bl(φl) + [F ′(ζl2w)− F ′(wl(t))]φl +

+ ζl2[F ′(w) + 2]Ψ(Φ) + ζl2N(φl + Ψ(Φ)).

Let us denote

N1(Φ) := Bl(φl) + [F ′(ζl2w)− F ′(wl(t))]φl

N2(Φ) := ζl2 [F ′(w) + 2] Ψ(Φ)

N3(Φ) := ζl2N(φl + Ψ(Φ)).

We need to investigate the Lipschitz character of Ni, i = 1, 2, 3. We begin with
N3. Observe that

|N3(Φ1)−N3(Φ2)| = ζl2|N(φl1 + Ψ(Φ1))−N(φl2 + Ψ(Φ2))|

≤ Cζl2 sup
τ∈[0,1]

|τ(φl1 + Ψ(Φ1)) + (1− τ)(φl2 + Ψ(φl2))| · |φl1 − φl2 + Ψ(Φ1)−Ψ(Φ2)|

≤ C [|Ψ(Φ2)|+ |φl1 − φl2|+ |Ψ(Φ1)−Ψ(Φ2)|+ |φl2|]·[|φl1 − φl2|+ |Ψ(Φ1)−Ψ(Φ2)|] .

This implies that

‖N3(Φ1)−N3(Φ2)‖p,2µ,% ≤



40 O. AGUDELO, M. DEL PINO, AND J. WEI

≤ C

α2+ %√
2
−ε

+

m∑
j=1

‖φj1‖∞,µ,% +

m∑
j=1

‖φj2‖∞,µ,%

 · m∑
j=1

‖φj1 − φj2‖∞,µ,% .

Now we check on N1(Φ). Clearly, we just have to pay attention to Bl(φl). But
notice that Bl(φl) is linear on φl and

Bl(φl) = −α2

{
f ′′l (αy) +

αy

1 + (αy)2
f ′l (αy) +

2(t+ fl)

(1 + (αy)2)2

}
∂tφl

−2αf ′l (αy)∂tyφl + α2[f ′l (αy)]2∂ttφl +Dα,fl(φl),

where the differential operator Dα,fl is given in (2.6). From asstmptions (5.2)-
(5.5) made on the functions f ′ls, we have that

‖N1(Φ1)−N1(Φ2)‖p,2+µ,% ≤ Cα‖Φ1 − Φ2‖2,p,µ,%.
Then, assuming that max1≤j≤m ‖φj‖2,p,µ,% ≤ Aα2+τ1 , we have that

‖Nl(Φ)‖p,2+µ,% ≤ Cα3+τ1

Setting T (g) = φ the linear operator given by the Lemma 7.1, we recast problem
(6.21) as the fixed point problem

φl = T (−Sl(w)−Nl(Φ)) =: Tl(Φ), l = 1, . . . ,m.

in the ball

Bα :=
{

Φ = (φ1, . . . , φm) : ‖Φ‖∗∗ ≤ Aα2+τ1 , j = 1, . . . ,m
}

where clearly we are working in the space of function Φ ∈W 2,p
loc (Mα × R) endowed

with the norm

‖Φ‖∗∗ :=

m∑
j=1

‖φj‖2,p,2,%.

Observe that

‖Tl(Φ1)−Tl(Φ2)‖∗∗ ≤ C ‖Nl(Φ1)−Nl(Φ2)‖p,4,% ≤ C α ‖Φ1−Φ2‖∗∗, Φ1,Φ2 ∈ Bα.
On the other hand, because C and K1 are universal constants and taking A large
enough independent of α > 0, we have that

‖Tl(Φ)‖∗∗ ≤ C (‖Sl(w)‖p,2,% + ‖Nl(Φ)‖p,4,%) ≤ Aα2+τ1 , φ ∈ Bα.
Hence, the mapping T = (T1, . . . , Tm) is a contraction from the ball Bα onto

itself. From the contraction mapping principle we get a unique solution

Φ = Φ(v1, . . . , vm)

as required. As for the Lipschitz character of Φ(v1, . . . , vm) it comes from a lengthy
by direct computation from the fact that

‖Φ(v1, . . . , vm)− Φ(ṽ1, . . . , ṽm)‖2,p,2,%

≤ C
m∑
j=1

‖Sj(w, v1, . . . , vm)− Sj(w, ṽ1, . . . , ṽm)‖p,2,% +

+

m∑
j=1

‖Nj( Φ(v1, . . . , vm) )−Nj( Φ(ṽ1, . . . , ṽm) )‖p,4,%.
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We left to the reader to check on the details of the proof of the following estimate

‖Φ(v1, . . . , vm)− Φ(ṽ1, . . . , ṽm)‖2,p,2,% ≤ Cα2+τ1

m∑
j=1

‖vj − ṽj‖δ,p,β

for (v1, . . . , vm) and (ṽ1, . . . , ṽm) satisfying (5.2) and (5.4). This completes the
proof of proposition 6.2 and consequently the proof of Theorem 1.

8. Sketch of the proof of Theorem 2

This section briefly sketches first part of the proof of Theorem 2. We begin by
describing the location of the nodal set of the solutions predicted by this theorem.

8.1. Toda system in R2 and its linearization. In this part we describe the
way we solve the Toda System of PDEs

∆ f1 + a0e
−
√

2 (f2−f1) = g1, in R2 (8.1)

∆ f2 − a0e
−
√

2 (f2−f1) = g2, in R2 (8.2)

where

a0 = ‖w′‖−2
L2(R)

∫
R

6(1− w2(t))e
√

2tw′(t)dt > 0.

A decoupling procedure similar to the one performed in section 3, implies that
system (8.1)-(8.2) becomes

∆ (f2 − f1)− 2a0e
−
√

2 (f2−f1) = g2 − g1, in R2 (8.3)

∆ (f1 + f2) = g1 + g2, in R2 (8.4)

Let us look for a radially symmetric smooth solution to (8.1)-(8.2) having the
form

f1(x′) = q1(x′) + v1(x′), f2(x′) = q2(x′) + v2(x′), x′ ∈ R2 (8.5)

where the vector function (q1, q2) solves the system of PDEs

∆ q1 + a0 e
−
√

2 (q2−q1) = 0, in R2 (8.6)

∆ q2 − a0 e
−
√

2 (q2−q1) = 0, in R2. (8.7)

Since we are looking for an axially symmetric nodal sets that are also symmetric
respect to the x3-axis, we assume that q2 = −q1 = q, so that the system (8.6)-(8.7)
reduces to a Liouville equation, namely

∆ q − a0e
−2
√

2 q = 0, in R2. (8.8)

It is known that every radially symmetric solution to (8.8) is given by

q(x′, ρ, γ) =
1

2
√

2
log

( √
2 a0

4 ρ2 γ2

(
1 + ρ2 |x′|2γ

)2)− (γ − 1)√
2

log (|x′|) , r > 0. (8.9)

Since we are looking for smooth solutions to (8.8) with the initial conditions

q(0) = a > 0, ∇x′ q(0) = 0

this forces γ = 1, so that

q(x′, ρ) =
1

2
√

2
log

(√
2 a0

4 ρ2

(
1 + ρ2 |x′|2

)2)
, ρ > 0. (8.10)



42 O. AGUDELO, M. DEL PINO, AND J. WEI

From the fact that q(0) = a > 0, we obtain

log

(√
2 a0

4 ρ2

)
=

2 a√
2
.

Remark 8.1: Observe that ρ is a free parameter that determines the conditions
at the origin in (8.8). Without any loss of generality we assume that ρ = 1, but it is
important to keep in mind that the function q is smooth respect to this parameter
ρ > 0. We also remark that in the case when ρ lies in a fixed and compact interval
of R+, the topologies considered and the procedure we carry out below, can be done
independent of ρ.

Decoupling and linearizing (8.1)-(8.2) around the exact solution (q1, q2) as we
did in section 3.2, we obtain the nonlinear system

∆ v1 + 2
√

2 a0e
−2
√

2 qv1 + N(v1) = g̃1, in R2 (8.11)

∆ v2 = g̃2, in R2 (8.12)

where we consider right-hand side functions g̃j such that

‖g̃j‖p,β := ‖(1 + |x′|β)g̃j‖Lp(R2) <∞, j = 1, 2 (8.13)

for some p > 1 and β ≥ 0 and where we have denoted

N(v1) = −e−2
√

2 q
[
e−
√

2 v1 − 1 +
√

2 v1

]
. (8.14)

Let us consider first the linear system associated to (8.11)-(8.12), namely

∆ v1 + 2
√

2 a0e
−2
√

2 qv1 = g̃1, in R2 (8.15)

∆ v2 = g̃2, in R2 (8.16)

Since our setting is radially symmetric, we deal with this system using varia-
tions of parameters formula. We solve first equation (8.15). Taking derivatives
in (8.9) respect to γ and ρ, for γ = 1 and ρ = 1, we find that the functions
ψ1(r) = ∂γq(r, 1, 1) and ψ2(r) = ∂ρq(r, 1, 1) span the set of radially symmetric
solutions to

∆ψ + 2
√

2 a0e
−2
√

2 qψ = 0, in R2

where
√

2ψ1(r) =
log(r) (r2 − 1)

r2 + 1
− 1,

√
2ψ2(r) =

r2 − 1

r2 + 1
(8.17)

Observe that ψ1 is clearly singular at the origin. Observe also that

∂r ψ1(r) =
−1 + r4 + 4r2 log(r)√

2r(1 + r2)2
, ∂r ψ2(r) =

2
√

2 r

(1 + r2)2
(8.18)

so that from (8.18) we find that

c

r
≤ |∂r ψ1(r)| ≤ C

r
, |∂r ψ2(r)| ≤ C r

1 + r4
, r > 0. (8.19)

We compute the wronski determinant

W (ψ1, ψ2) := ψ1∂rψ2 − ψ2∂rψ1 = − 1

2r
and we observe that the function

v1(r) = 2ψ1(r)

∫ r

0

ξ ψ2(ξ) g̃1(ξ) dξ + 2ψ2(r)

∫ ∞
r

ξ ψ1(ξ) g̃1(ξ) dξ (8.20)
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defines a smooth solution to equation (8.15). From (8.17) and (8.18), we directly
check that ∂rv1(0) = 0 and that

‖v1‖2,p,β ≤ C‖g̃1‖p,β , p, β > 2

where

‖v1‖2,p,β := ‖D2v1‖p,β + ‖(1+|x′|)Dv1‖L∞(R2)+‖ log(2+|x′|)−1v1‖L∞(R2). (8.21)

Next, we observe that (8.16) has a radially symmetric smooth solution given by

v2(r) :=

∫ ∞
r

ξ log(ξ) g̃2(ξ)dξ + log(r)

∫ r

0

ξ g̃2(ξ) dξ. (8.22)

Taking p, β > 2, we see directly from this formula that

‖v2‖2,p,β ≤ C‖g̃2‖p,β .

We are now in position to invert the linear system (8.11)-(8.12). We collect this
information in the following lemma

Lemma 8.1. Assume p > 2, 0 < β < 4− 2
p and consider a vector function (g̃1, g̃2)

satisfying that

‖g̃j‖p,β ≤ Cακ1 , j = 1, 2

for some small parameter α > 0 and some κ1 > 0. Then, the vector function (v1, v2)
defined (8.20)-(8.22) is the solution to the system (8.11)-(8.12) and satisfies that

‖vj‖2,p,β ≤ C max
k=1,2

‖g̃k‖p,β , j = 1, 2.

Even more this solution turns out to be Lipschitz in the vector function (g̃1, g̃2),
namely

‖vj − v̂j‖2,p,β ≤ C max
k=1,2

‖g̃k − ĝk‖p,β , j = 1, 2.

The proof of this lemma is straightforward from the previous comments and
proceeding as in section 4. Let us remark that in the case where g̃j , j = 1, 2, are
nonlocal operators in (v1, v2) having small Lipschitz character a direct application
of Banach fixed point theorem will also lead to the existence of a unique solution
to (8.11)-(8.12).

Remark 8.2: When looking for solutions to (8.4)-(8.3) that are symmetric
respect to the x3-axis, i.e f2 = −f1 then g̃2 = 0 and consequently the function v2

defined in (8.22) is zero. Hence, we deal only with the single linear equation (8.15).

8.2 Approximate solution to the projected problem. Now that we have
described the location of the nodal set of our solution, we proceed to set up our
approximation. Consider a radially symmetric solution (q1, q2) to the system

∆ q1 + a0e
−
√

2 (q2−q1) = 0, ∆ q2 − a0e
−
√

2 (q2−q1) = 0, in R2. (8.23)

where

a0 := ‖w′‖−2
L2(R)

∫
R

6
(
1− w(t)2

)
e
√

2tw′(t)dt

Recall from the previous section that we have chosen −q1 = q2 = q, and the
function q is a solution to the Liouville equation

∆ q − a0e
−2
√

2 q = 0, in R2
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given explicitly by

q(x′, ρ) =
1

2
√

2
log

(√
2 a0

4 ρ2

(
1 + ρ2 |x′|2

)2)
. (8.24)

and observe that, for every α > 0 the vector function (q1α, q2α), defined by

q1,α(x′) = − 1

2
√

2
log

(
1

α2

)
− q(αx′), q2,α(x′) =

1

2
√

2
log

(
1

α2

)
+ q(αx′), r > 0

are also smooth radially symmetric solutions to (8.23).

Now, for α > 0 small, consider a parameter function v, satisfying that

‖v‖2,p,β := ‖D2v‖p,β + ‖(1+|x′|)Dv‖L∞(R2)+‖ log(2+|x′|)−1v‖L∞(R2) ≤ Kα2| log(α)|
(8.25)

for some K > 0 that will be chosen later and independent of α > 0 and consider
the functions

flα(x′) = qlα(x′) + vlα(x′), l = 1, 2 (8.26)

where v2α = −v1α = vα and vα(x′) = v(αx′).

Proceeding as in the proof of Theorem 1, we consider as local approximation the
function

U0(x) = w (z − f1α(x′)) + w (z − f2α(x′))− 1, x ∈ R3. (8.27)

As in section 5.1, let us consider the sets

Al :=

{
x = (x′, z) : |z − fjα(x′)| ≤ 1

2
(f2α(x′)− f1α(x′))

}
, l = 1, 2

Writing z = t+ flα(x′), we notice that Al can be described as

Al :=

{
x = (x′, t) : |t| ≤ 1

2
(f2α(x′)− f1α(x′))

}
, l = 1, 2.

Hence, we can estate the following lemma regarding the error of this approxima-
tion in the set Al.

Lemma 8.2. For l = 1, 2 and every x ∈ Al, x = (x′, t), we have that

(−1)l−1 S(U0) = −∆R2 flαw
′(t) + (−1)l6

(
1− w2(t)

)
e(−1)l−1

√
2t e−

√
2(f2α−f1α)

+ |∇ flα |2w′′(t)− ∆R2 fjα w
′(t+ flα − fjα) + |∇fjα|2w′′(t+ flα − fjα)

+
[
(−1)l−16

(
1− w2(t)

)
+ 12(1 + (−1)lw(t))

]
e(−1)l−12

√
2t e−2

√
2(f2α−f1α)

+ Rl(αx
′, t, v,Dv) (8.28)

where Rl = Rl(αy, t, p, q) is smooth on its arguments and

|DpRl(αx
′, t, p, q)|+ |DqRl(αx

′, t, p, q)|+ |Rl(αx
′, t, p, q)| ≤ C α2+τ (1+|αx′|)−4e−% |t|

(8.29)

for some 0 < τ < 1 small and some 0 < % <
√

2 and where p = v and q = Dv.
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Proof. The proof of this lemma follows the same lines of lemma 5.1, with no signi-
ficant changes and actually with easier computations. So, we only remark that in
the set A1

U0(x′, t) = w(t)− w(t+ f1α − f2α)− 1

where the function w(s) is the heteroclinic solution to

w′′ + F (w) = 0, w(±∞) = ±1, w′ > 0

having the asymptotic expansion

w(s) = 1 − 2 e−
√

2 s + 2e−2
√

2s + O
(
e−2
√

2|s|
)
, s > 0

w(s) = −1 + 2 e
√

2 s − 2e−2
√

2s + O
(
e−3
√

2|s|
)
, s < 0

(8.30)

and where these relations can be differentiated. Using that F (±1) = 0,

F (U0) = F (w(t))− F (w(t+ f1α − f2α))

− (F ′(w(t))− F ′(−1)) [w(t+f1α−f2α)+1] +
1

2
(F ′′(w(t)) + F ′(−1)) [w(t+f1α−f2α)+1]2

+O
(
[w(t+ f1α − f2α) + 1]3

)
.

From (8.30) we obtain that

F (U0) = F (w(t))− F (w(t+ f1α − f2α))− 6(1− w2(t))e
√

2te−
√

2(f2α−f1α)

+ 6
[
(1− w2(t)) + 2(1− w(t))

]
e2
√

2te−2
√

2(f2α−f1α) + O
(
e−3
√

2|t+f1α−f2α|
)
.

Similar computations hold true in the set A2 and this completes the proof of the
lemma. �

Using the fact that the vector function q = (q1, q2) is an exact solution to the
Toda system in R2 and using the function for g0 described in (5.17), we can write
expression (8.28) as

(−1)l−1 S(U0) = −∆R2vlαw
′(t)

+ (−1)l6
(
1− w2(t)

)
e(−1)l−1

√
2t e−

√
2(q2,α−q1,α)

(
e−
√

2(v2α−v1α) − 1
)

+(−1)lg0((−1)lt)e−
√

2(q2,α−q1,α) + |∇qlα|2w′′(t)

+∇vlα(2∇qlα +∇vlα)w′′(t)− ∆R2 fjα w
′(t+ flα − fjα) + |∇fjα|2w′′(t+ flα − fjα)

+
[
(−1)l−16

(
1− w2(t)

)
+ 12(1 + (−1)lw(t))

]
e(−1)l−12

√
2t e−2

√
2(f2α−f1α)

+ Rl(αx
′, t, v,Dv) (8.31)

Next, we improve the approximation by considering the function

U1(x′, z) = U0(x′, z) + ϕ1,0(x′, z − f1α)− ϕ2,0(x′, z − f2α)

and
(−1)l+1ϕl,0(x′, t) = e−

√
2(q2α−q1α)ψ0

(
(−1)lt

)
+ |∇qlα|2ψ1(t)

where the functions ψ0(t) is the one described in (5.19) and ψ1(t) = − 1
2 tw

′(t).
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We recall that

q2α(x′) = −q1α(x′) =
1

2
√

2
log

(
1

α2

)
+

1

2
√

2
log

(√
2a0

4
(1 + |αx′|2)2

)
so that

e−
√

2(q2α−q1α) =
α2

a0

√
2

4

(1 + |αx′|2)2
.

Proceeding as in section 5.2, we compute the new error created to find that in
the region Al, setting z = t+ flα

(−1)l−1S(U1) = −∆R2vlα w
′(t)

− (−1)l 6
(
1− w2(t)

)
e
√

2(−1)l−1t e−
√

2(q2α−q1α)
[
e−
√

2(v2α−v1α) − 1
]

+∇vlα(2∇qlα +∇vlα)w′′(t)− ∆R2 fjα w
′(t+ flα − fjα) + |∇fjα|2w′′(t+ flα − fjα)

+
[
(−1)l−16

(
1− w2(t)

)
+ 12(1 + (−1)lw(t))

]
e(−1)l−12

√
2t e−2

√
2(f2α−f1α) + R̃l

(8.32)
where

R̃l = R̃l(αx
′, t, v,Dv)

and

|DpR̃l(αx
′, t, p, q)|+ |DqR̃l(ααx

′, t, p, q)|+ |R̃l(αx
′, t, p, q)| ≤ Cα2+τ (1+|αx′|)−4e−%|t|

(8.33)

for some 0 < % <
√

2 and some 0 < τ < 1. Actually, from the proof of lemma 8.2
we have that

|R̃l(αx
′, t, v,Dv)| ≤ Ce−3

√
2|t+f1α−f2α|, in A1.

Next step, consists on defining the global approximation to the solution. We
consider again the smooth cut-off function β ∈ C∞c (R), such that β(t) = 1, for
|t| ≤ 1/2 and β(t) = 0, for |t| ≤ 1. Now, for α > 0 small we define the cut-off
function

βα(x) := β(|z| − η

α
− 4 log(|αx′|+ 3), x = (x′, z) ∈ R3.

We see that βα is supported in a region that expands logarithmically in |αx′|
and we consider as global approximation the function

w(x) := βα(x)U1(x) + (1− βα(x))(−1). (8.34)

Recalling that F (u) = u(1− u2), we compute the new error as follows

S(w) = ∆w + F (w) = βα(x)S(U1) + E

where

E = 2∇βα∇U1 + ∆βα(U1 + 1) + F (βαU1 − (1− βα))− βαF (U1).

Due to the choice of βα(x), the error term E only takes into account values of βα
for x ∈ R3 in the region

|z| ≥ η

α
+ 4 ln(|αx′|+ 3)− 2, x = (x′, z) ∈ R3
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and so, we get the following estimate for the term E

|∇E| + |E| ≤ Ce−
η
α (1 + |αx′|)−4.

We observe that the error E decays rapidly and is exponentially small in α > 0, so
that its contribution is negligible.

Remark 8.3: The local approximation U1 is clearly axially symmetric and even
in the z-axis this is due to the fact that the graph of the function f1α is a reflection
through the z−axis of the graph of the function f2α. Of course, this is also true for
the global approximation w. Observe also that for the moment, we are omitting
the role of the parameter ρ > 0, but clearly the approximations U1 and w and the
error created depend smoothly on it.

8.3. Outline of the Lyapunov-Schmidt Reduction. Let us consider first
an appropriate functional setting to work with. Consider the norms

‖f‖p,µ̂,∼ := sup
x∈R3

(1 + |αx′|)µ̂ ‖f‖Lp(B1(x)), p > 1. (8.35)

and
‖ψ‖2,p,µ̂,∼ := ‖D2ψ‖p,µ̂,∼ + ‖Dψ‖∞,µ̂,∼ + ‖ψ‖∞,µ̂,∼ (8.36)

where 0 < µ̂ ≤ min(2µ , µ+ %
√

2 , 2 + %
√

2).

We also consider 0 < % <
√

2, µ > 0, α > 0 and functions g = g(x′, t) and
φ = φ(y, t), defined for every (y, t) ∈Mα × R. Let us set the norms

‖g‖p,µ,% := sup
(x′,t)∈R2×R

(1 + |αx′|)µe % |t|‖g‖Lp(B1(x′,t)) (8.37)

‖φ‖∞,µ,% := ‖(1 + |αx′|µ)e % |t|φ‖L∞(R2×R) (8.38)

‖φ‖2,p,µ,% := ‖D2 φ‖p,µ,% + ‖Dφ‖∞,µ,% + ‖φ‖∞,µ,%. (8.39)

Finally, for functions v and g̃ defined in R2, we recall the norms

‖g̃‖p,β := ‖(1 + |x′|β)g̃‖Lp(R2) (8.40)

‖v‖2,p,β := ‖D2v‖p,β + ‖(1+ |x′|)Dv‖L∞(R2) + ‖ log( |x′|+2 )−1 v‖L∞(R2). (8.41)

Observe that the functional setting we are considering in this part is basically
the same one used for the proof of Theorem 1.

Let us recall that our goal is to find an axially symmetric solution to equation
(1.1) which is close to the function w defined in (8.34).

We proceed as in section 6, with no significant changes, so we rather prefer to
give an outline of the scheme. We consider for l = 1, 2 and n ∈ N, the cut off
function

ζ l,n (x) = β

(
|t| − 1

2
[f2α(x′)− f1α(x′)] + n

)
, x = (x′, t+ flα) ∈ R2. (8.42)

A crucial observation we make is that, under assumptions (8.25), directly from
lemma (8.2) and the choice of the functional setting, the error

(−1)l−1Sl(w) := −∆R2vlα w
′(t)

− (−1)l 6
(
1− w2(t)

)
e
√

2(−1)l−1t e−
√

2(q2α−q1α)ζl,2

[
e−
√

2(v2α−v1α) − 1
]
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+∇vlα(2∇qlα+∇vlα)w′′(t)− ζl,2∆R2 fjα w
′(t+flα−fjα) + ζl,2|∇fjα|2w′′(t+flα−fjα)

+ζl,2
[
(−1)l−16

(
1− w2(t)

)
+ 12(1 + (−1)lw(t))

]
e(−1)l−12

√
2t e−2

√
2(f2α−f1α) + ζl,2R̃l

(8.43)
has the size

‖Sl(w)‖p,2,% ≤ Cα2+τ1 . (8.44)

where 0 < % <
√

2 and 0 < τ1 ≤ 1 is arbitrarily close or equal to 1, in which
case % goes or equals 0, independently of α > 0. The following proposition collects
estimates regarding (8.44).

Proposition 8.1. Assume % ∈ (0,
√

2) and that the functions fjα satisfy condition
(8.25). Then there exist a constant C > 0 and a small number 0 < τ1 ≤ 1, both
independent of α > 0, such that

‖Sl(w)‖p,2,% ≤ Cα2+τ1 (8.45)

and

‖Sl(w, v)− Sl(w, ṽ)‖p,2,% ≤ Cα2+τ1‖v − ṽ‖2,p,β . (8.46)

where

‖v‖2,p,β := ‖D2v‖p,β + ‖(1 + |x′|)Dv‖L∞(R2) + ‖ log(2 + |x′|)−1v‖L∞(R2) (8.47)

As before, we look for a solution to (1.1) of the form

U = w + ζ1,3(x)φ1(x′, z − f1α)− ζ2,3(x)φ2(x′, z − f2α) + ψ (8.48)

so that we fall into a system of elliptic PDEs for φ1, φ2 and ψ similar to (6.9)-(6.11).

The linear theory needed to solve this problem is a copy of the one sketched in
section 7, but applied to the system

∆ψ(x)− 2ψ(x) = h(x), x ∈ R3 (8.49)

∂ttφl(x
′, t) + ∆R2φl(x

′, t) + F ′(w(t))φl(x
′, t) = gl(x

′, t) + cl(x
′)w′(t), in R2 × R

(8.50)
in the class of axially symmetric functions and in the topologies induced by the
norms set above. In particular, the nonlinear nonlocal system of equations for the
functions φl reads as

∂ttφl + ∆R2φl + F ′(w(t))φl = −Sl(w)−Bl(φl)

− [F ′(ζl,2w)− (−1)l−1F ′(w(t))]φl − ζl,2(F ′(w) + 2)ψ − ζl,2N(φl +ψ), in R2×R
(8.51)

with

Bl(φl) := −∆R2 flα∂tφl − 2∇flα∇x′∂tφl + |∇flα|2∂ttφl
and

N(φl + ψ) = F (w + φl)− F (w)− F ′(w) (φl + ψ) .

from where we get that

‖φl‖2,p,2,% ≤ Cα2+τ1 ,

∫
R
φl(x

′, t)w′(t)dt = 0, l = 1, 2. (8.52)

with τ1 as above.
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As we already saw, the Lyapunov-Schmidt reduction scheme is based upon the
fact that we can find functions v1, v2 satisfying (8.25) such that the functions cl(x

′),
l = 1, 2 in (8.50) are zero.

8.4. Solving the reduced problem. Let us recall that

w(x) := βα(x)U1(x) + (1− βα(x))(−1) (8.53)

where

U1(x) = w(z − f1α(x′))− w(z − f2α(x′))− 1

+ φ1,0(x′, z − f1α(x′))− φ2,0(x′, z − f2α(x′)) (8.54)

where for l = 1, 2

φl,0(x′, t) = (−1)l+1e−
√

2(q2α−q1α)ψ0((−1)l+1t) + |∇qlα|2ψ1(t) (8.55)

the functions ψ0, ψ1 are those described in (5.19) and (5.20).

In what comes next we make use of the symmetries we have assumed for the
nodal set and the local and global approximations. From the structure of the
equation (1.1) and using the fact that the approximation w is axially symmetric
and even respect to the z−axis, we find that the functions φ1, φ2 and ψ share also
this symmetry.

In this setting the error S1(w) in the region A1 and in terms of the parameter
function vα, reads as

S1(w) = ∆R2vα w
′(t) − 6

(
1− w2(t)

)
e
√

2t e−2
√

2qαζl,2

[
e−2
√

2vα − 1
]

+∇vα(2∇qα +∇vα)w′′(t) + ζl,2∆R2 fα w
′(t− 2fα) + ζl,2|∇fα|2w′′(t− 2fα)

+ ζl,2
[
6(1− w2(t)) + 12(1− w(t))

]
e2
√

2te−4
√

2fα + ζl,2R̃ (8.56)

with similar computations in the set A2.

In what comes next, we derive the system that governs the location of the inter-
faces, namely a system of PDE’s that will guarantee that

cl(x
′) = 0, l = 1, 2.

Since the error S(w) is also axially symmetric and even in the z−variable, we
easily verify that c2(x′) = −c1(x′) = c(x′).

In order to determine the function c(x′), for l = 1, we multiply the equation
(8.51) by w and integrate in t to get that at main order

−
∫

R
S1(w)w(t)dt−O(α4(1 + |αx′|)−3) = c(x′)

∫
R
w′2dt.

This can be done since in inequality (8.45) as τ1 approaches to 1, the constant
% goes to zero, while the constant C > 0 remains uniformly bounded.

Hence using lemma 8.2, and setting

c∗ :=

∫
R
|w′(t)|2dt, a0 = ‖w′‖−2

L2(R)

∫
R
(1− w2(t))w′(t)e−

√
2 tdt

we find that

c(x′) = c∗∆R2vα + c∗2
√

2 a0 e
−2
√

2qαvα
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+ ∆R2 fα

∫
R
ζ1,2w

′(t− 2fα)w′(t)dt︸ ︷︷ ︸
A

+ |∇fα|2
∫

R
ζ1,2w

′′(t− 2fα)w′(t)dt︸ ︷︷ ︸
B

+ e−4
√

2fα

∫
R
ζ1,2

[
6(1− w2(t)) + 2(1− w(t))

]
e2
√

2tw′(t)dt︸ ︷︷ ︸
C

+ c∗a0e
−2
√

2qα
[
e−2
√

2vα − 1
] ∫

R
6(1− w2(t))e

√
2tw′(t)(ζ1,2 − 1)dt

− c∗a0e
−2
√

2qα
[
e−2
√

2vα − 1 + 2
√

2vα

]
+O(α4(1 + |αx′|)−3) (8.57)

and using lemma 8.1 one finds that

c(x′) + c∗∆R2vlα(x′) + 2
√

2 c∗ a0 e
−
√

2(q2α−q1α)vα

is lipschitz in the parameter function vα. Actually it is not hard to check from
lemma 8.2 that its Lipschitz constant is of order O(α2+τ ), for some 0 < τ < τ1
small. Hence we see that making c(x′) = 0 is equivalent to a nonlinear and nonlocal
equation of the form

∆ v + 2
√

2a0e
−2
√

2qv = G(v), in R2 (8.58)

where we conclude from (8.57) that A + B + C is the leading order term in the
expression for G(v).

In order to give a more precise expression for the Nonlinear term G(v), we recall
that w(s), the heteroclinic solution to

w′′ + F (w) = 0, w(±∞) = ±1, w′ > 0

has the asymptotic behavior

w(s) = 1 − 2 e−
√

2 s + 2e−2
√

2s + O
(
e−2
√

2|s|
)
, s > 0

w(s) = −1 + 2 e
√

2 s − 2e−2
√

2s + O
(
e−3
√

2|s|
)
, s < 0

(8.59)

and these relations can be differentiated.
Since in the set A1

w′(t− 2fα) = 2
√

2e
√

2te−2
√

2fα +O(e−2
√

2|t−2fα|)

we obtain that

w′(t− 2fα)w′(t) =

 8e−2
√

2fα +O(e−2
√

2|t|e−2
√

2fα), t > 0

8e2
√

2te−2
√

2fα +O(e−3
√

2|t|e−2
√

2fα), t < 0

Hence it is direct to check that

A = 8∆fαe
−2
√

2fα (fα +O(1)) .

Proceeding in the same fashion, we obtain in the set A1 that

w′′(t− 2fα)w′(t) =

 8
√

2e−2
√

2fα +O(e−2
√

2|t|e−2
√

2fα), t > 0

8
√

2e2
√

2te−2
√

2fα +O(e−3
√

2|t|e−2
√

2fα), t < 0
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so that
B = 8

√
2|∇fα|2e−2

√
2fα (fα +O(1)) .

Finally, we directly check using again (8.59) that

[
6(1− w2(t)) + 2(1− w(t))

]
e2
√

2tw′(t) =

 96
√

2 +O(e−
√

2|t|), t > 0

O(e−5
√

2|t|), t < 0

from where
C = 96

√
2e−4

√
2fα (fα +O(1)) .

Hence, we obtain that

−α2G(v) = e−2
√

2fα fα

[
8∆fα + 8

√
2|∇fα|2 + 96

√
2e−2

√
2fα
]

+O(α4(1 + |αx′|)−3)

From this expression, we obtain that

G(0) =
α2

2
√

2a0

(
1

2
√

2
log

(
1

α2

)
+ q(x′)

)
R0(x′) +O(α4(1 + |αx′|)−3).

where

R0(x′) = −
[
8∆q + 8

√
2|∇q|2 + 96

√
2e−2

√
2q
]
e−2
√

2q

= −4|x′|2 + 4 + 3
√

2

(1 + |x′|2)4

Since, so far the scheme involves the same estimations to those in proposition 6.2,
we find that the function G satisfies the estimates

‖G(v)‖∞,3 ≤ Kα2| log(α)|
‖G(v)−G(ṽ)‖∞,3 ≤ Cατ‖v − ṽ‖2,p,β .

A direct application of lemma 8.1 and Banach Fixed point theorem completes
the construction of the solutions predicted in Theorem 2. We leave further details
to the reader.

Using the integral formula (8.20) and the last remarks, and since

ψ1(r) =
1√
2

(log(r)− 1) +O(r−2 log(r)), as r →∞

we can actually describe the asymptotic behavior for the function v(x′) as |x′| → ∞,
namely

v(x′) =
α2

2a0

[
log

(
1

α2

)
β0 +O(1)

]
log(|x′|) + O

(
α2 log(α)|x′|−2 log(|x′|)

)
(8.60)

and

β0 :=

∫ ∞
0

ζψ2R0dζ =
1

12
(3 + 2

√
2) > 0.

Next, we study the smooth dependence of this family of solutions respect to
the parameter α in order to obtain useful information about some elements of the
kernel of the linear equation

∆R3φ+ F ′(uα)φ = 0, in R3 (8.61)

This information is collected in the following proposition.
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Proposition 8.2. For every α > 0 small, the functions

∂zuα(x′, z), ∂xiuα(x′, z), for i = 1, 2

are bounded solutions to equation (8.61). Besides, uα is smooth respect to α and
the following asymptotic formulae hold true

∂x′iuα(x′, z) = α∂xiq(αx
′) [w′(z − f1α) + w′(z − f2α)]+α2O

(
2∑
l=1

e−%|z−flα|

)
, i = 1, 2

∂zuα(x′, z) = [w′(z − f1α)− w′(z − f2α)] + α2O

(
2∑
l=1

e−%|z−flα|

)

∂αuα(x′, z) = ∂α (qα + vα) [w′(z − f1α) + w′(z − f2α)] + αO

(
2∑
l=1

e−%|z−flα|

)
Proof. From the smoothness of these solutions we readily check the first two equal-
ities. So, we only need to take care of the last assertion.

Smoothness respect to α > 0 small is a direct consequence of the Implicit Func-
tion Theorem. We remark that following step by step the construction and taking
into account the dependence on ρ ∼ 1 of this family of smooth solutions we have
the asymptotic behavior

uαρ(x) = w(z − f1αρ(x
′))− w(z − f2αρ(x

′))− 1

+φ1,0(x′, z − f1αρ(x
′))− φ2,0(x′, z − f2αρ(x

′))

+ α2+τ1

2∑
l=1

O
(

(1 + |αρx′|)−2e−%|z−flαρ(x′)|
)

(8.62)

with 0 < % <
√

2.

Provided ρ is taken in a small, bounded and fixed interval around one, we can
recast the fact that the functions v = (v1, v2), Φ = (φ1, φ2) and ψ in (8.48) yield a
solution to equation (1.1) as a system for (ρ, v,Φ, ψ) of the form

Φ−Π(ρ, v,Φ, ψ) = 0, ψ − Π̃(ρ, v,Φ, ψ) = 0,

v − T (ρ, v,Φ, ψ) = 0

where smooth dependence on each one of the variables, in the respective topolo-
gies described in (8.36), (8.39) and (8.41), is readily check from the scheme of the
construction of this family of solutions. Solvability theory of the linear problems
implies that the derivative of this system respect to (v,Φ, ψ) is an isomorphism and
consequently, we obtain a smooth dependence of the solution respect to ρ. Unique-
ness from the fixed point argument in our proof guarantees that these solutions
correspond to those ones given by the Implicit Function Theorem.

In order to find the asymptotics of ∂αuα, we first notice from (8.62) that at main
order

∂αuα(x′, z) = ∂αU1(x′, z) + ∂αφ1 − ∂αφ2 (8.63)
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We need to find the size of ∂αφl in terms of α > 0 in the sets

Al =

{
(x′, z) ∈ R2 × R : |z − flα| ≤

1

2
|f2α − f1α|)

}
, l = 1, 2.

and to fix ideas, let us localize ∂αϕ in Al. Consider cut-off functions ζ̃l supported
in the set Al.

Set z = t+ flα

L∗(∂αφl) = ∂tt∂αφl + ∆R2∂αφl + F ′(w(t))∂αφl +B(∂αφl)

where B(∂αφl) is a small differential operator in ∂αφl. We find that inside Al, ∂αφl
solves at main order an equation of the form

L∗(∂αφl) +Bl(∂αφl) = Elα in Bα−1R(0)× R.

where

Elα =: −ζ̃l(∆∂αU1 + F ′(uα)∂αU1)

Since we have symmetry respect to the z−axis we only focus the developments

for the set Ã1, where. Notice for instance that in A1

ζ̃1(∆∂αU1 + F ′(uα)∂αU1) =

−∆R2∂αvlα w
′(t)− 6

(
1− w2(t)

)
∂α

(
e
√

2(−1)l−1t e−
√

2(q2α−q1α)
[
e−
√

2(v2α−v1α) − 1
])

+ ∂α(2∇qlα · vlα + |∇vlα|2)w′′(t) +O
(
α2+τ1(1 + |αx′|2+ %√

2
−ε

)−1e−%|t|
)
. (8.64)

From (8.26) and (8.64) we observe that

|∂αvα(x′)| ≤ Cα log

(
1

α

)
log(2 + |αx′|)

so that and from (8.32) it is direct to check that

‖ζ̃1(∆∂αU1 + F ′(uα)∂αU1)‖p,2−β,% ≤ Cα1+τ1 .

Consider functions k1, k2 defined by the integrals∫
R
∂αφ1(x′, t)w′(t)dt = k1(x′)

∫
R
(w′(t))2dt+ k2(x′)

∫
R
ζ̃1w(t+ f1α − f2α)w′(t)dt

∫
R
∂αφ2(x′, t)w′(t) = k2(x′)

∫
R
(w′(t))2dt+ k1(x′)

∫
R
ζ̃2w(t+ f2α − f1α)w′(t)dt

so that in the set A1 we have the decomposition

φ̃1 = k1(x′)w′(t) + ζ̃1k2(x′)w′(t+ f1α − f2α) + ϕ1∫
R
ϕ1w

′(t)dt = 0

Analogously, in A2, we have

φ̃2 = k2(x′)w′(t) + ζ̃2k1(x′)w′(t+ f2α − f1α) + ϕ2∫
R
ϕ2w

′(t)dt = 0
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We recall that ∫
R
φl(x

′, t)w′(t)dt = 0, l = 1, 2.

and taking derivative respect to α in these orthogonality condition for φl, keeping
in mind that t = z − f1α, we obtain∫

R
∂αφl w

′(t)dt = −∂αfα(x′)

∫
R
φl w

′′(t)dt+O(α1+τ (1 + |αx′|)−2), τ > τ1.

so that ∣∣∣∣∫
R
∂αφl w

′(t)dt

∣∣∣∣ = O(α1+τ1(1 + |αx′|)−2 log(2 + |αx′|)).

Observe that φ̃l solves the equation

∆R3 φ̃l + F ′(uα)φ̃l =

which implies that dropping the subindexes we have that the equation for the
functions ϕ1 have the form

L∗(ϕ) +B(ϕ) = Eα − S∗,0 +B(kw′)

in Bα−1R(0)× R where

S∗,0 := ∆R2k1 w
′ + |∇q1α|2k1 w

′′′︸ ︷︷ ︸
Q̂1

+ F ′′(w(t))
[
−(2e

√
2t + ψ0(t))e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1 w

′︸ ︷︷ ︸
Q̂2

+
√

2(F ′(w)− F ′(1))e
√

2te−
√

2(q2α−q1α)k2︸ ︷︷ ︸
Q̂3

−w′′ [∆R2 f1α k1 + 2∇x′ f1α∇x′k1]︸ ︷︷ ︸
Q̂4

+O
(
α2+τ1(1 + |αy|2+ %√

2
−ε

)−1e−%|t|
)

︸ ︷︷ ︸
Q̂5

. (8.65)

for some τ > 0 small enough.

ϕ(x) = ζ1,3φ1(x′, t)− ζ2,3φ2(x′, t− 2fα(x′))

+α2+τO
(

(1 + |αx′|)−2e−%|t|
)

+ α2+τO
(

(1 + |αx′|)−2e−%|t−2fα(x′)|
)

with τ > τ1 > 0 and with a similar expression for the set A2.
It is clear that the functions ki(x

′), ϕ′is are smooth and bounded up to their
second derivatives and actually for any β > 0 small

‖D2kl‖p,2−β + ‖Dkl‖∞,2−β + ‖kl‖∞,2−β ≤ Cα1+τ1 , l = 1, 2.

Dropping the subindexes we have that the equation for the functions ϕl have the
form

L∗(ϕ) +B(ϕ) = Eα − S∗,0 +B(kw′)

in Bα−1R(0)× R where for instance in A1

S∗,0 := ∆R2k1 w
′ + |∇q1α|2k1 w

′′′︸ ︷︷ ︸
Q̂1
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+ F ′′(w(t))
[
−(2e

√
2t + ψ0(t))e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1 w

′︸ ︷︷ ︸
Q̂2

+
√

2(F ′(w)− F ′(1))e
√

2te−
√

2(q2α−q1α)k2︸ ︷︷ ︸
Q̂3

−w′′ [∆R2 f1α k1 + 2∇x′ f1α∇x′k1]︸ ︷︷ ︸
Q̂4

+O
(
α2+τ1(1 + |αy|2+ %√

2
−ε

)−1e−%|t|
)

︸ ︷︷ ︸
Q̂5

. (8.66)

for some τ > 0 small enough. Let us write ϕ = ϕ̄1 + ϕ̄2, where

L∗(ϕ̄1) = ∂α(2∇qlα · ∇vlα + |∇vlα|2)w′′(t) + Q̂4

with ∫
R
ϕ̄1w

′(t)dt = 0

Then, we obtain the estimate

‖D2ϕ̄1‖p,2−β,% + ‖Dϕ̄1‖∞,2−β,% + ‖ϕ̄1‖∞,2−β,% ≤ Cα1+τ , τ > τ1.

Next, we observe that

L∗(ϕ̄2) +B(ϕ̄2) = g(x′, t) + c(x′)w′(t)

where

g(x′, t) = Eα + ∂α(2∇qlα · ∇vlα + |∇vlα|2)w′′(t)

−S∗,0 − (Q̂1 + Q̂2 + Q̂3 + Q̂5)−B(ϕ̄1)

and observe that ‖B(ϕ̄1)‖p,3−τ,% ≤ Cα2+τ . Using the size of Eα we obtain that

‖g‖p,2−β,% ≤ Cα1+τ1

for some τ > 0 small enough.
Since, ∫

R
ϕ̄2w

′(t)dt = 0

we obtain that

‖D2ϕ2‖p,2−β,% + ‖Dϕ̄2‖∞,2−β,% + ‖ϕ̄2‖p,2−β,% ≤ Cα1+τ .

Hence from (8.63), we can write in the set A1

∂αuα = −∂αf1αw
′(t) + ∂αf2αw(t− 2fα)

αz1(αx′)w′(t) + αz2(αx′)w(t− 2fα) +O(α1+τ1(1 + |αx′|)−2+βe−%|t|)

with

‖zl‖∞,2−β ≤ C
and this completes the proof of the proposition, since the same procedure yields an
analogous expansion in the set A2. �
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9. On the Morse Index of the solutions in Theorem 1 and 2.

In this section we provided information about the Morse index of the solutions
found in Theorems 1 and 2. Most of the developments we carry out in this part are
motivated by those in section 11 in [9]. Hence, we simply remark the key points of
the scheme, refereing the reader to sections 10 and 11 in [9] for more details.

Let us consider the eigenvalue problem

∆Mh+ (σ + λ)|AM |2 h = 0, in M, h ∈ L∞(M) (9.1)

with σ ∼ log(α−1). Using the stereographic projection θ = arctan(y), we can recast
this problem as

∆S2 h̃+ 2(σ + λ) h̃ = 0, h̃ ∈ L∞(S2).

By standard spectral theory on the sphere, we know that

λk =
1

2
k(k + 1)− σ, k ∈ N

are the eigenvalues to problem (9.1), so that there are at least O(
√
σ) negative

eigenvalues for this problem.

Next, let us consider another related eigenvalue problem, namely

∆R2h+
8 + λ

(1 + |x′|2)2
h = 0, in R2, h ∈ L∞(R2). (9.2)

Using the stereographic projection θ = arctan( r
2−1
r2+1 ), we can transform (9.2) into

the problem

∆S2 h̃+ (2 + λ̂)h̃ = 0, h̃ ∈ L∞(S2)

from where it is also direct to check that problem (9.2) has exactly one negative
eigenvalue. On the other hand, using Fourier decomposition and maximum princi-
ple, in proposition 1 in [4], it was shown that the graph of the function described in
(8.24) is non denegerate, in the sense that the space of bounded solutions to (9.2)
for the case λ = 0 is spanned only by the functions described in polar coordinates
by

z̄0 =
−1 + r2

1 + r2
, z̄1

r

1 + r2
cos(θ), z̄2

r

1 + r2
sin(θ), r > 0, θ ∈ (0, 2π). (9.3)

As in [9], we define the Morse index of uα, m(uα), to be the largest dimension
of a vector space E of compactly supported functions for which the quadratic form

Q(ψ,ψ) :=

∫
R3

|∇ψ|2 − F ′(uα)ψ2, ψ ∈ E − {0} (9.4)

is strictly negative.

In this part, we sketch briefly the proof of the inequalities m(uα) ≥ c0
√
σ for the

solutions in Theorem 1, and m(uα) ≥ 1 for the solutions in Theorem 2.

To prove both inequalities, we follow the scheme developed in the Proof of The-
orem 2 in [9], getting information about the eigenvalue problem

∆R3φ+ F ′(uα)φ+ λ p(αx)φ = 0, in R3, φ ∈ L∞(R3). (9.5)

where p(x) is a function such that

p(x) := |AM |2, x ∈ N
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a

1 + |x′|4
≤ p(x) ≤ b

1 + |x′|4
, x ∈ R3 −N

for the case in Theorem 1 and

p(x) :=
8

(1 + |x′|2)2
, x ∈ R3

for the case in Theorem 2.
In any case, a useful characterization of m(uα) is given through the following

eigenvalue problem

∆R3φ+ F ′(uα)φ+ λp(αx)φ = 0, in CR, φ = 0, on ∂CR (9.6)

where CR is the cylinder

CR :=
{

(x′, z) : |x′| < Rα−1, |z| < Rα−1
}
.

Let mR(uα) denote the number of negative eigenvalues to (9.6), counting multi-
plicities. Then, as in [9] it is straightforward to check that

m(uα) = sup
R>0

mR(uα). (9.7)

9.1 Estimates on the Morse index for solutions in Theorem 1. Regarding
solutions of Theorem 1 and to keep computations as clear as possible we consider
only the case of two transitions, namely m = 2. We also recall the sets

Al =

{
Xα(y, θ, z) : |z − fl(αy)| ≤ 1

2

[
σ +

√
2

(
1− 1

σ
−Mσ−

5
4

)
log
(
1 + (αy)2

)]}
.

We remark that, the solutions we have found in Theorem 1 have the asymptotic
expansion for x = Xα(y, θ, z) ∈ Nα

uα(x) = w(z − f1(αy))− w(z − f2(αy))− 1

+ φ1,0(y, z − f1(αy))− φ2,0(y, z − f2(αy)) + O
(
α2+τ1(1 + |αy|2)−1e−%|t|

)
(9.8)

where for l = 1, 2 and t = z − fl(αy)

φl,0(y, t) = e−
√

2(h2−h1)ψ0((−1)l+1t) + α2[h′l]
2ψ1(t) + α2|AM (αy)|2ψ2(t) (9.9)

and the functions ψi are those described in (5.19), (5.21) and (5.20).

Using (9.8)-(9.9), we find for instance in the set A1 and in the coordinates Xα,f1

that

F ′(uα)w′(t) = F ′(w)w′+

F ′′(w)w′
[
(−2 e

√
2t + ψ0(t)) e−

√
2(h2−h1) + α2[h′1]2ψ1(t) + α2|AM |2ψ2(t)

]
+ O

(
α2+τ1(1 + |αy|2)−1e−%|t|

)
. (9.10)

Since F ′′(w) = −6w, taking derivatives in the equations that the functions ψi(t)
solve, and integrating against w′(t), we can easily check that∫

R
F ′′(w)(w′)2

(
−2e

√
2t + ψ0(t)

)
dt =

√
2

∫
R

6(1−w2)e
√

2tw′dt =
√

2 a0

∫
R
(w′(t))2dt∫

R
F ′′(w)(w′)2ψ1(t)dt = −

∫
R
tw′w′′dt =

1

2

∫
R
(w′)2dt
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∫
R
F ′′(w)(w′)2ψ2(t)dt = −

∫
R
(w′′)2dt

On the other hand,

F ′(uα)w′(t+ f1 − f2) = F ′(w(t+ f1 − f2))w′(t+ f1 − f2)

+
√

2(F ′(w)− F ′(1))e
√

2te−
√

2(h2−h1) +O
(
α2+τ1e−%|t|(1 + |αy|)−4+β

)
.

and since F ′(w)− F ′(1) = 6(1− w2), we obtain that

√
2

∫
R

6(1− w2(t))e
√

2tw′(t)dt =
√

2a0

∫
R
(w′(t))2dt.

With the previous remarks, let us now consider a test function v(x) defined in
the region Nα, defined in local coordinates x = Xα(y, θ, z) as

v(x) := k1(y, θ)w′(z − f1(αy))− k2w
′(z − f2(αy)).

Using lemma 2.1 together with (2.3), (9.8) and (9.9) and carrying out compu-
tations similar to those in lemma 11.1 in [9], we obtain, for instance in A1, the
validity of the following expression

∆Xα,f1
v + F ′(uα)v =

∆Mα
k1 w

′ − α2|AM |2k1 tw
′′ + α2[h′1]2k1 w

′′′ + αa1,0 f1 ∂yk1 w
′︸ ︷︷ ︸

Q1

+ F ′′(w(t))
[
(−2e

√
2t − ψ0(t))e−

√
2(h2−h1) + α2[h1]2ψ1(t) + α2|AM |2ψ2(t)

]
k1 w

′︸ ︷︷ ︸
Q2

√
2(F ′(w)− F ′(1))e

√
2te−

√
2(h2−h1)k2︸ ︷︷ ︸

Q3

−w′′
[
α2JM (f1)k1 + 2α f ′1 ∂yk1 + α2 a1,0 f1(f ′1∂yk1 + f ′′1 k1 )

]︸ ︷︷ ︸
Q4

α tw′ [a1,0∂yyk1 + αb1,0∂yk1]︸ ︷︷ ︸
Q5

α2(t+ f1)2a1,1) [∂yyk1w
′ − 2f ′1∂yk1w

′′]︸ ︷︷ ︸
Q6

+O
(
α2+τ1(1 + |αy|2+ %√

2
−ε

)−1e−%|t|
)

︸ ︷︷ ︸
Q7

.

(9.11)
Observe also that∫

|t|<ρα
Qiw

′(t)dt =

∫
R
Qiw

′(t)dt + O
(
α2+τ1(1 + |αy|2+ %√

2−ε )−1
)

where

ρα(y) :=
1

2

[
σα +

√
2

(
1− 1

σα
−Mσ−

5
4

)
log
(
1 + (αy)2

)]
.
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We observe also that∫
R

5∑
i=1

Qi w
′(t)dt =

(
∆Mα

k1 + α2|AM |2k1 +
√

2a0e
−
√

2(h2−h1)(k1 + k2) + αa1,0f1∂yyk1

)∫
R
w′(t)2dt

and ∫
R
(Q6 +Q7)w′(t)dt = O(α2r(αy)−2)∂yyk1 +O

(
α3r(αy)−3

)
∂yk1

Combining these computations , we have in the set A1 that∫
|t|≤ρα

(∆v + F ′(uα)v)w′(t)dt =
(
∆Mα

k1 + α2|AM |2k1 + αa1,0f1∂yyk1

) ∫
R
w′(t)2dt

+
√

2a0 e
−
√

2(h2−h1)(k1 + k2)

∫
R
w′(t)2dt

+O(α2r(αy)−2)∂yyk1 + O
(
α3r(αy)−3

)
∂yk1 + O(α2+τ1r(αy)2+β)k1.

Regarding computations in the set A2 in the coordinates Xα,f2 and using again
(9.8) (9.9), we find in the set A2 that

F ′(uα)w′ = F ′(w)w′+

+ F ′′(w)w′
[
(2 e−

√
2t − ψ0(−t)) e−

√
2(h2−h1) + α2[h′2]2ψ1(t) + α2|AM |2ψ2(t)

]
+ O

(
α2+τ1(1 + |αy|2)−1e−%|t|

)
(9.12)

and the interaction term this time is

F ′(uα)w′(t+ f2 − f1) = F ′(w(t+ f2 − f1))w′(t+ f2 − f1)

−
√

2(F ′(w)− F ′(1))e−
√

2te−
√

2(f2−f1) +O
(
α2+τ1e−%|t|(1 + |αy|)−4+β

)
.

Consequently when testing against w′(t) we obtain∫
R
F ′′(w)(w′)2

(
2e−
√

2t − ψ0(−t)
)
dt =

√
2

∫
R

6(1− w2)e
√

2tw′dt =
√

2 a0

so that in the set A2∫
|t|≤ρα

(∆v + F ′(uα)v)w′(t)dt =
(
∆Mα

k2 + α2|AM |2k2 + αa1,0f1∂yyk2

) ∫
R
w′(t)2dt

+
√

2a0 e
−
√

2(h2−h1)(k1 + k2)

∫
R
w′(t)2dt

+O(α2r(αy)−2)∂yyk2 + O
(
α3r(αy)−3

)
∂yk2 + O(α2+τ1r(αy)2+β)k2.

Hence, choosing functions k1 = −k2 = k, with k bounded and using the fact
that

dx =
√

1 + (αy)2
(
1− α2(t+ f1)2|AM |2

)
dy dt

we observe that in the region

WR = {x ∈ Nα : r(αx) < R}
it holds that

Q(v, v) =

∫∫
WR

|∇v|2 − F ′(uα)v2dx
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= 2

∫
R
w′(t)2dt

∫
MR
α

|∇Mαk|2 − α2|AM |2k2 + 2
√

2a0e
−
√

2(h2−h1)k2dVMα

+O

(
α

∫
MR
α

|∇Mk|2 + α2(1 + (αy))2+βk2dVMα

)
.

On the other hand, since

e−
√

2(h2−h1) = α2σ|AM (αy)|2 +O
(
α2σ−1(1 + r(αy))−4 log(r(αy))2

)
we find that

Q(v, v) = 2

∫
R
(w′(t))2dt

∫
r(αy)<R

|∇Mαk|2 − α2(2σ + 1)|AM (αy)|2k2(y)dVMα

+ατ1O

(∫
r(αy)<R

|∇Mα
k|2 + α2σ|AM (αy)|2k2

)
.

Taking k(y) = z(αy), with z ∈ C2(M) is an eigenfunction associated to a nega-
tive eigenvalue of the problem (9.1) and taking R→∞, we obtain that

Q(v, v) = α2λ

∫
M

|AM |2z2dV +O
(
α2+τ1

∫
M

|∇Mz|2 + σ|AM |2z2

)
.

Since we can take at least O(
√
σ) of these eigenfunctions, we conclude that

m(uα) ≥ c̃
√
σ.

9.2 Estimates on the Morse index for solutions in Theorem 2. As for
the solutions described in Theorem 2, we have the asymptotic expansion

uα(x) = w(z − f1α)− w(z − f2α)− 1

+ φ1,0(x′, z − f1α)− φ2,0(x′, z − f2α) + O

α2+τ1(1 + |αx′|2)−1
∑
l=1,2

e−%|z−flα|


(9.13)

where for l = 1, 2

(−1)lφl,0(x′, t) = (−1)l+1e−
√

2(q2α−q1α)ψ0((−1)l+1t) + |∇qlα|2ψ1(t) (9.14)

and the functions ψ0, ψ1 are again those described in (5.19) and (5.20). We also
recall the sets

Al :=

{
x = (x′, z) : |z − fjα(x′)| ≤ 1

2
(f2α(x′)− f1α(x′))

}
, l = 1, 2

We use a test function v(x′, z) of the form

v(x′, z) := k1(x′)w′(z − f1α(x′)) + k2(x′)w′(z − f2α(x′)),

and proceed as before to obtain in the set A1

∆v + F ′(uα)v = ∆R2k1 w
′ + |∇q1α|2k1 w

′′′︸ ︷︷ ︸
Q1

+ F ′′(w(t))
[
−(2e

√
2t + ψ0(t))e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1 w

′︸ ︷︷ ︸
Q2
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+
√

2(F ′(w)− F ′(1))e
√

2te−
√

2(q2α−q1α)k2︸ ︷︷ ︸
Q3

−w′′ [∆R2 f1α k1 + 2∇x′ f1α∇x′k1]︸ ︷︷ ︸
Q4

+O
(
α2+τ1(1 + |αx′|2+ %√

2
−ε

)−1e−%|t|
)

︸ ︷︷ ︸
Q5

. (9.15)

Observe also that∫
|t|<ρα

Qiw
′(t)dt =

∫
R
Qiw

′(t)dt + O
(
α2+τ1(1 + |αy|2+ %√

2−ε )−1
)

where this time

ρα(y) :=
1

2
(f2α(x′)− f1α(x′)) .

We conclude that in the set A1∫
|t|≤ρα

(∆v + F ′(uα)v)w′(t)dt =
(

∆R2k1 +
√

2a0 e
−
√

2(q2α−q1α)(k1 + k2)
)∫

R
w′(t)2dt

+O(α2r(αx′)−2)D2k1 + O
(
α3r(αx′)−3

)
∇k1 + O(α2+τ1r(αx′)2+β)k1.

As before, a similar estimate holds estimate holds for the region A2, namely∫
|t|≤ρα

(∆v + F ′(uα)v)w′(t)dt =
(

∆Mα
k2 +

√
2a0 e

−
√

2(q2α−q1α)(k1 + k2)
)∫

R
w′(t)2dt

+O(α2r(αy)−2)D2k2 + O
(
α3r(αy)−3

)
∇k2 + O(α2+τ1r(αy)2+β)k2.

so that for the test function

v(x′, z) = k(x′) [w′(z − f1α(x′))− w′(z − f2α(x′))]

it holds that

Q(v, v) =

∫
R3

(
|∇v|2 − F ′(uα)v2

)
dx′dz = 2

∫
R2

(
|∇k|2 − 8

(1 + |αx′|2)2
k2

)
dx′

+O
(
ατ
∫

R2

(
|∇k|2 +

1

(1 + |αx′|2)2
k2

)
dx′
)
.

Taking k(y) = z(αy), with z ∈ C2(R2) an eigenfunction associated to a negative
eigenvalue of the problem (9.2) and taking R→∞, we obtain that

Q(v, v) = α2λ

∫
R
w′(t)2dt

∫
R2

p(x′)z2dV +O
(
α2+τ1

∫
R2

|∇R2z|2 + p(x′)z2

)
.

This last expression implies that m(uα) ≥ 1, since the problem (9.2) has exactly
one negative simple eigenvalue.

Let us next prove the following lemma involving the size of negative eigenvalues
to problem (9.5)

Lemma 9.1. that there exists a universal constant µ > 0 such that for any eigen-
value λ < 0 for the problem (9.6) and any R > 0 large enough

λ ≥ −µα2. (9.16)
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Proof. To prove this claim, let us consider sets Ωl := Al ∩ CR, l = 1, 2, where we
recall that

Al =

{
(x′, t) : |t| ≤ 1

2
|f2α(x′)− f1α(x′)|

}
, z = t+ f1α(x′).

Observe that it is enough to prove that

Ql(ψ,ψ) =

∫
Ωl

(
|∇ψ|2 − F ′(uα)ψ2

)
dx′dz ≥ −µα2

∫
Ωl

p(αx)ψ2dx′dz, l = 1, 2.

As in [9], consider the eigenvalue problem

∆R3ψ + F ′(uα)ψ + λp(αx)ψ = 0, in Ω1 ∪ Ω2

ψ = 0, on |αx′| = R, ∂nψ = 0, |z − flα(x′)| = 1

2
|f2α(x′)− f1α(x′)|, l = 1, 2.

(9.17)
For a solution ψ to (9.17), we write in Ωl

ψ(x′, t) = ζl,1kl(x
′)w′(t) + ψ⊥l

and where we can choose the functions kl so that∫
|t|≤ 1

2 |f2α−f1α|
ψ⊥l w

′(t)dt = 0 (9.18)

We write

Ql(ψ,ψ) = Ql (ζl,1kl, ζl,1kl) + 2Ql
(
ζl,1kl, ψ

⊥
l

)
+Ql

(
ψ⊥l , ψ

⊥
l

)
= Il + IIl + IIIl.

By a series of lengthy calculations similar to those performed in subsection 9.1,
we obtain that

Il =

∫
R
w′(t)2dt

∫
R2

(
|∇kl|2 −

4α2

(1 + |αx′|2)2
k2
l

)
dx′

+ ατO
(∫

R2

(
|∇kl(x′)|2 +

α2

(1 + |αx′|2)2
k2
l (x′)

)
dx′
)
. (9.19)

Since, ψ⊥l satisfies the same boundary conditions as ψ, we obtain that

IIIl =

∫
|αx′|<R

∫
|t|≤ 1

2 |f2α−f1α|
|∂tψ⊥l |2 + |∇x′ψ⊥l |2 − F ′(uα)ψ⊥l

2
dx′dt.

=

∫
|αx′|<R

∫
|t|≤ 1

2 |f2α−f1α|
|∇ψ⊥l |2 − ψ⊥l [∂ttψ

⊥
l + F ′(uα)ψ⊥l −∇x′(f2α − f1α) · ∇ψ⊥l ]

≥
(
γ

2

∫∫
|∂tψ⊥l |2 + |∇x′ψ⊥l |2 + |ψ⊥l |2

)
+ α2−τO

(∫∫
(1 + |αx′|)−4+βψ⊥l

2
)

≥ µ̃
∫∫ (

|∂tψ⊥l |2 + |∇ψ⊥l |2 + |ψ⊥l |2
)
. (9.20)

As for IIl, we proceed as follows. For instance in Ω1 it holds that

L(k1(x′)w′(t)) := ∆k1(x′)w′(t) + F ′(uα)k1(x′)w′(t) =

∆R2k1 w
′ + |∇q1α|2k1 w

′′′
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F ′′(w(t))
[
−(2e

√
2t + ψ0(t))e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1 w

′

−w′′ [∆R2 f1α k1 + 2∇x′ f1α∇x′k1]

+O
(
α2+τ (1 + |αx′|2+ %√

2
−ε

)−1e−%|t|
)

and this implies that

II1 = −
∫
ζ1,1L(k1(x′)w′(t))ψ⊥1 +

∫
2∇ζ1,1·∇(k1(x′)w′(t))ψ⊥1 +∆ζ1,1w

′(t)k1(x′)ψ⊥1 .

Since ψ⊥1 satisfies condition (9.18) and using equation (9.17), we obtain that

II1 = −
∫

Ω

L(k1(x′)w′(t))ψ⊥1 dx
′dz −

∫
Ω1

(1− ζ1,1)L(k1(x′)w′(t))ψ⊥1 dx
′dz + θ

= −
∫

Ω1

(6w(t)w′(t) + 3w(t)ψ0(t)) e
√

2te−
√

2(f2α−f1α)k1(x′)ψ⊥1 dx
′dz + θ

where

θ = o(1)

∫
R2

(
|∇k1(x′)|2 + α2p(αx)k2

1(x′)
)
dx′ + o(1)

∫
Ω1

(
|ψ⊥1 |2 + |∇ψ⊥1 |2

)
dx′dz.

So, we obtain that

|II1| ≤ Cν−1α2

∫
R2

(1 + |αx′|)−4k2
i (x′)dx′ + ν

∫
Ωi

(1 + |αx′|)−4|ψ⊥i |2dx′dz. (9.21)

Putting together estimate (9.19)-(9.20)-(9.21) we get the estimate

QΩ1
(ψ,ψ) ≥ −µ1 α

2

∫
(1 + |αx′|)−4k2

1(x′)dx′.

Then inequality

Q(ψ,ψ) ≥ −µα2

∫
p(αx)ψ2.

follows since a similar procedure applies the region A2. �

9.3. The proof of Inequality m(uα) ≤ 1 for solutions in Theorem 2. We
begin this part by proving that eigenvalues to problem (9.6) that are close to zero
are actually positive and we give a precise estimation on their size. This information
is collected in the following lemma, whose proof proceeds as in section 11 in [9],
but that we include here for the sake of completeness.

Lemma 9.2. Assume that φα,R and λα,R 6= 0 are respectively an eigenfunction
and eigenvalue for problem (9.6) such that

‖φα,R‖L∞(R3) = 1, |λα,R| ≤Mα2 (9.22)

for some M → 0 as α→ 0. Then there exists a positive universal constant β̂ such
that for every α > 0 small and R large enough

λα := lim
R→∞

λα,R = α3 log

(
1

α

)
β̂ +O(α3)
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and

φα,R(x′, z) = Z(αx′) [w′ (z − f1α)− w′ (z − f2α)] +O

∑
l=1,2

e−%|z−flα|


where Z(x′) is a scalar multiple of the function z̄0(x′) described in (??).

Proof. Let us consider a solution φ to the problem (9.6). Using assumption (9.22)
and a sub and super solutions scheme, it can be proven that

|φ(x′, z)| ≤ C
2∑
j=1

e−%|z−fjα(x′)|

for |αx′| ≥ R0 and R0 large enough. This inequality basically states that any
solution to problem (9.6) can have values away from zero only in the regions Al.

From inequality (9.22) we can write

λ = λα,R = µα,R α
2, µα,R → µα, as R→∞

Consider again the sets

Ãl =
{

(x′, z) ∈ R2 × R : |z − flα| ≤ θ[f2α − f1α])
}
, θ ∈

(
1

2
, 1

)
, l = 1, 2.

and consider a cut-off function ζ̃l, supported in the set Ãl.

we consider a solution to the eigenvalue problem

∆R3φ+ F ′(uα)φ+ α2µ p(αx′)φ = 0, in CR

φ = 0, on ∂CR

and to fix ideas, let us localize φ in Ã1 by setting

φ̃1 = ζ1φ

which implies that φ̃1 must solve the equation

∆R3 φ̃1 + F ′(uα)φ̃1 + α2µp(αx′)φ̃1 = 2∇x′ζ1 · ∇x′φ1 + φ1∆ζ1 =: E1α.

Since in the set Ã1

|Dφ|+ |Dφ|+ |φ| ≤ Ce−%|t|, z = t+ f1,α, 0 < % <
√

2 (9.23)

we find that

|E1α| ≤ Ce−%ε|t|e−(1−ε)%|t| ≤ C
[
α2(1 + |αx′|)−4+β

] %θ√
2

(1−ε)
e−%̂|t|

from where we conclude that

|E1α| ≤ Cα1+τ (1 + |αx′|)−2(1+τ)e−%̂|t|, in Ã1.

for some %̂ > 0, 1
2 < θ < 1 and τ > 0 small.

Setting z = t+ f1α, we write inside Ã1

L∗(φ̃1) = ∂ttφ̃1 + ∆R2 φ̃1 + F ′(w(t))φ̃1 +B(φ̃1)

where

B(φ̃1) := −∆R2 f1α∂tφ̃1 − 2∇f1α∇x′∂tφ̃1 + [∇f1α]2∂ttφ̃1

+ [F ′(uα)− F ′(w)] φ̃1
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Hence, φ̃1 solves the equation

L∗(φ̃1) + α2µp(αx′)φ̃1 +B1(φ̃1) = E1α in Bα−1R(0)× R.

Proceeding in the same fashion, localizing φ in Ã2, we find that

L∗(φ̃2) + α2µp(αx′)φ̃2 +B2(φ̃2) = E2α in Bα−1R(0)× R.

where
E2α := 2∇x′ζ2 · ∇x′φ2 + φ2∆ζ2

and
B2(φ̃2) := −∆R2 f2α∂tφ̃2 − 2∇f2α∇x′∂tφ̃2 + [∇f2α]2∂ttφ̃2

+ [F ′(uα)− F ′(w)] φ̃2

Consider functions k1, k2 define by the integrals∫
R
φ̃1(x′, t)w′(t)dt = k1(x′)

∫
R
(w′(t))2dt+ k2(x′)

∫
R
ζ̃1w(t+ f1α − f2α)w′(t)dt

∫
R
φ̃2(x′, t)w′(t) = k2(x′)

∫
R
(w′(t))2dt+ k1(x′)

∫
R
ζ̃2w(t+ f2α − f1α)w′(t)dt

so that in the set Ã1 we have the decomposition

φ̃1 = k1(x′)w′(t) + ζ̃1k2(x′)w′(t+ f1α − f2α) + ϕ1∫
R
ϕ1w

′(t)dt = 0

Analogously, in Ã2, we have

φ̃2 = k2(x′)w′(t) + ζ̃2k1(x′)w′(t+ f2α − f1α) + ϕ2∫
R
ϕ2w

′(t)dt = 0

From (9.23), it is clear that the functions are smooth and bounded up to their
second derivatives.

We do the subsequent developments for φ̃1 only, since for φ̃2 is the procedure is
the same.

Dropping again the subindexes we have that the equations for the function ϕ
have the form

L∗(ϕ) + α2µp(αx′)ϕ+B(ϕ) = S∗,µ + Eα +B(kw′), in Bα−1R(0)× R

where
S∗,µ = ∆R2k1 w

′ + |∇q1α|2k1 w
′′′︸ ︷︷ ︸

Q1

+ F ′′(w(t))
[
−(2e

√
2t + ψ0(t))e−

√
2(q2α−q1α) + |∇q1α|2ψ2(t)

]
k1 w

′︸ ︷︷ ︸
Q2

+
√

2(F ′(w)− F ′(1))e
√

2te−
√

2(q2α−q1α)k2︸ ︷︷ ︸
Q3

−w′′ [∆R2 f1α k1 + 2∇x′ f1α∇x′k1]︸ ︷︷ ︸
Q4

+O
(
α2+τ1(1 + |αy|2+ %√

2
−ε

)−1e−%|t|
)

︸ ︷︷ ︸
Q5

. (9.24)
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for some τ > 0 small enough. Observe that k1(x′), k1(x′) are bounded in the C2

norm, in Bα−1R(0).
Testing this equation against w′, we observe that

∆R2k1 +
√

2a0 e
−
√

2(q2α−q1α)(k1 + k2) + α2µp(αx′)k1 = B̃

+O(α2r(αx′)−2)D2k1 + O
(
α3r(αx′)−3

)
∇k1 + O(α2+τ1r(αx′)2+β)k1

where

B̃ =
1∫

R w
′(t)2dt

∫
R
B(ϕ)

We will prove that B̃ ∼ O(α2+τ ) for some τ > 0 small enough.
Let us write ϕ = ϕ̄1 + ϕ̄2, where

L∗(ϕ̄1) + α2µp(αx′)ϕ̄1 = Q4,

∫
R
ϕ̄1w

′(t)dt = 0

Then, we obtain the estimate

‖D2ϕ̄1‖p,1,% + ‖Dϕ̄1‖∞,1,% + ‖ϕ̄1‖∞,1,% ≤ Cα.
Next, we observe that

L∗(ϕ̄2) + α2µp(αx′)ϕ̄2 +B(ϕ̄2) = g(x′, t) + c(x′)w′(t)

where

g(x′, t) = Eα − α2µp(αx′)k1w
′(t)− (Q1 +Q2 +Q3 +Q5)−B(ϕ̄1)

and ∫
R
ϕ̄2w

′(t)dt = 0.

Observe that ‖B(ϕ̄1)‖p,2−τ,% ≤ Cα2 Using the size of Eα we obtain that

‖g‖p,2−τ,% ≤ Cα1+τ

for some τ > 0 small enough, so that we conclude

‖D2ϕ̄2‖p,2−τ,% + ‖Dϕ̄2‖p,2−τ,% + ‖ϕ̄2‖p,2−τ,% ≤ Cα1+τ

and consequently
‖B(ϕ̄2)‖p,3−τ,% ≤ Cα2+τ .

So, we decompose

B̃ = B̃1 + B̃2, B̃l =
1

α2‖w′‖2L2(R)

∫
R
B(ϕ̄l)

where
|B̃1| ≤ C, |B̃2| ≤ Cατ

Even more, keeping into account the procedure for ϕ2 and setting zl(αx
′) =

kl(x
′), for l = 1, 2, and using elliptic estimates in the system of equations for z1, z2

we find that
‖D2z‖p,2−τ + ‖(1 + |x′|)1−τDz‖∞ ≤ Cα

from where
‖Q4‖p,2−τ,% ≤ Cα2

and so
‖ϕ̄1‖p,2−τ,% ≤ Cα2, ‖B̃1‖p,3−τ ≤ C‖B̃‖p,2−τ ≤ Cα3
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and so

|B̃| ≤ Cα2+τ .

At this point we recall that φ = φα,R has a uniform C1 bound and that

φi,α,R(x′, z) = k1,i,α,R(x′)w′(z − f1α) + k2,i,α,R(x′)w′(z − f2α)

+ O

α 2∑
j=1

e−%|z−fjα|

 (9.25)

so that

φα,R → φα, as R→∞
uniformly on compact sets and

∆R3φα + F ′(uα)φα = 0, in R3.

with

φα(x′, z) = k1,α(x′)w′(z − f1α) + k2,α(x′)w′(z − f2α) + O

α 2∑
j=1

e−%|z−fjα|

 .

Observe also that zl,α,R(x′) = kl,α,R(x
′

α ) satisfies

∆R2z1,α,R+
√

2e−
√

2(q2−q1)(z2,α,R−z1,α,R)+µα,Rp(x
′)z1,α,R = O(ατ (1+|x′|)−2−β).

∆R2z2,α,R+
√

2e−
√

2(q2−q1)(z2,α,R+z1,α,R)+µα,Rp(x
′)z2,α,R = O(ατ (1+ |x′|)−2−β)

so that, after passing to the limit R→∞, we obtain the estimates

‖z1,α ± z2,α‖L∞(R2) ≤ C
[
‖z1,α ± z2,α‖L∞(|x′|<R0) +O(ατ )

]
(9.26)

or equivalently

‖k1,α ± k2,α‖L∞(R2) ≤ C
[
‖k1,α ± k2,α‖L∞(|αx′|<R0) +O(ατ )

]
.

From (9.27) we know that k1,α ± k2,α can not be simultaneously zero. Then we
obtain the limit situation

∆R2z1 +
√

2e−
√

2(q2−q1)(z2 + z1) = 0.

∆R2z2 +
√

2e−
√

2(q2−q1)(z2 + z1) = 0.

Hence, for every α > 0 small and R large enough we have the asymptotics

φα,R(x′, z) = z1(αx′)w′(z − f1α) + z2(αx′)w′(z − f2α) +O

α 2∑
j=1

e−%|z−fjα|


and the functions z = z1 + z2, ẑ = z1− z2 are bounded, no simultaneously zero and
solve the system

∆R2z + 2
√

2e−
√

2(q2−q1)z = 0, ∆ẑ = 0, in R2.

Since, the bounded kernel of the operator

∆R2 + 2
√

2e−
√

2(q2−q1)

is spanned by the functions described in polar coordinates

z̄0 :=
−1 + r2

1 + r2
, z̄1 :=

r

1 + r2
cos(θ), z̄2 :=

r

1 + r2
sin(θ), r > 0, θ ∈ (0, 2π).
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so that

z(x′) =

2∑
i=0

β̄i z̄i(x
′), β̄i ∈ R,

Since we are assuming that λ 6= 0, we may assume from spectral theory that∫
CR

p(αx′)φα,R · φ̄dx′ dz = 0

for every bounded φ̄ solving

∆φ̄+ F ′(uα)φ̄ = 0, in CR, φ̄ = 0, on ∂CR.

and from proposition 8.2 we know that the functions

∂x′1uα, ∂x′2uα, ∂zuα

are bounded solutions to the equation

∆φ+ F ′(uα)φ = 0, in R3

and passing to the limit, we obtain that∫
R3

p(αx′)φ2,α(x′, z)Z(x′, z)dz = 0

for any Z having the form

Z = βi∂xiuα + β3∂zuα, βi ∈ R, i = 1, 2, 3.

From the asymptotic expansion

∂zuα(x′, z) = w′(z − f2α − f1α)− w′(z − f2α) +O(α(1 + |αx′|)−2e−%|t|)

we can pass to the limit as α→ 0, in the orthogonality condition respect to ∂zuα,
to obtain that ∫

R2

p(x′)ẑdx′ = 0

so that from Liouville theorem we get that ẑ2 = 0. This implies that

φα,R(x′, z) =
1

2
z(αx′) [w′(z − f1α) + (αx′)w′(z − f2α)] +O

α 2∑
j=1

e−%|z−fjα|

 .

Proceeding similarly but this time using orthogonality conditions respect to
∂xiuα and asymptotic expansions

∂x′iuα(x′, z) = α∂xiq(αx
′) [w′(z − f1α)− w′(z − f2α)] +O(α2), i = 1, 2

we find that ∫
R2

p(x′)z(x′)z̄i(x
′)dx′ = 0, i = 1, 2.

Consequently, z(x′) must be a scalar multiple of z̄0(x′) and with no loss of
generality we write

φα,R(x′, z) = z̄0(αx′) [w′(z − f1α) + (αx′)w′(z − f2α)] +O

α 2∑
j=1

e−%|z−fjα|

 .
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To finish the proof of the lemma, let us consider again the sets Ωl = Al ∩ CR
from above and notice that

α2µα

∫
Ω1,R∪Ω2,R

p(αx′)α∂αuα·φαdx′dz = α

∫
Ω1,R∪Ω2,R

∇φα·∇∂αuα−F ′(uα)φα·∂αuα

= α

∫
∂ (Ω1,R∪Ω2,R)

φα∂n (∂αuα) dS

Observe first that

α3µα

∫
Ω1,R∪Ω2,R

p(αx′)φα · ∂αuαdx′dz

= 2α2µα

∫
|αx′|≤R, |t|≤ 1

2 (f2α−f1α)

p(αx′)z̄0(αx′)2w′(t)2dx′dt + O (ατ )

= µα‖w′‖2L2

∫
|x′|≤R

p(x′)z̄2
0dx
′ +O(ατ ) = c0µ2,α +O(ατ ), c0 > 0.

On the other hand,

α

∫
∂ (Ω1,R∪Ω2,R)

φ2,α∂n (∂αuα) dS =

∫
|αx′|=R, |t|≤ 1

2 (f2α−f1α)︸ ︷︷ ︸
I

+

∫
|αx′|≤R,|t|= 1

2 (f2α−f1α)

φ2,α∂n (∂αuα)︸ ︷︷ ︸
II

Clearly, the largest contribution in this integral comes from the first term, which
from the asymptotic formula (8.60), yields that

I = 2π α−1R ‖w′‖2L2 z̄0(R) [α∂r,αqα + α∂r,αvα]|x′|=α−1R +O(α1+τ )

= β̃0α log

(
1

α

)
+O (α)

with β̃0 > 0. Hence, taking R → ∞, we find that µα ∼ α log(α)β̂ for some β̂ > 0
and this completes the proof of the lemma. �

9.4 The proof of inequality m(uα) ≤ 1 for solutions in Theorem (2). To
sketch the proof of inequality m(uα) ≤ 1 we proceed as in the proof of the lemma
9.2. From the characterization of m(uα) in (9.7), we can take an eigenfunctions
φα,R, associated to strictly negative eigenvalue λα,R < 0, which from the variational
characterization of the eigenvalues can be chosen to be decreasing in R. We also
may assume that

‖φα,R‖∞ = 1,

∫
R3

p(x′)φα,R φ̄α,Rdx
′dz = 0 (9.27)

for φ̄α,R an eigenfunction to problem (9.6) associated to a different eigenvalue.
From inequality (9.16) we can write

λα,R = α2 µα,R, µα,R → µα < 0, as R→∞.

And proceeding as above, we find the asymptotics for φα,R

φα,R(x′, z) = z1(αx′)w′(z − f1α) + z2(αx′)w′(z − f2α)
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+O

α 2∑
j=1

e−%|z−fjα|


with

∆R2z1 +
√

2e−
√

2(q2−q1)(z2 + z1) + µp(x′)z1 = 0.

∆R2z2 +
√

2e−
√

2(q2−q1)(z2 + z1) + µp(x′)z2 = 0

where µ ≤ 0.

The case µ = 0 is discarded with the help of lemma 9.2, which states that there
are not strictly negatives eigenvalues close to zero. Hence, µ < 0 and we observe
that the equation for the difference ẑ2 = z1 − z2, reads as

∆R2 ẑ2 + µp(x′)ẑ2 = 0, ‖ẑ2‖∞ <∞.

Since, the eigenspace associated to the eigenvalue µ is spanned by exactly one
simple and positive eigenfunction and using as before the orthogonality condition
against ∂zuα, we find that ∫

R3

p(x′)ẑ2dx
′ = 0

which implies that ẑ2 = 0. So that, we have the asymptotic expansion

φα,R(x′, z) = z(αx′) [w′(z − f1α) + w′(z − f2α)] + α2O(e−%|t|)

where

∆R2z + 2
√

2e−
√

2(q2−q1)z + µp(x′)z = 0.

From condition (9.27) for eigenfunctions associated to the same eigenvalue, we
can conclude that and since there is exactly one negative eigenvalue for problem
(9.6), we conclude that this eigenvalue must be simple so that m(uα) ≤ 1 and this
concludes the proof of Theorem 2.
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