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When a two component Bose-Einstein condensate is placed into rotation, a lattice of vortices and
cores appear. The geometry of this lattice (triangular or square) varies according to the rotational
value and the intercomponent coupling strengths. In this paper, assuming a Thomas-Fermi regime,
we derive a point energy which allows us to determine for which values of the parameters the lattice
goes from triangular to square. It turns out that the separating curve in the phase diagram agrees
fully with the complete numerical simulations of the Gross-Pitaevskii equations.

PACS numbers:

INTRODUCTION

When a two component condensate is set into rotation,
topological defects of both order parameters are created,
which leads to more exotic defects than in a single com-
ponent condensate. Experiments on two component con-
densates have shown how the condensates can exhibit
either triangular or square vortex lattices [1]. Accord-
ing to the values of the interaction strengths, the defect
patterns can vary a lot, as illustrated in the numerical
simulations [2, 3]. One specific feature is the appear-
ance of coreless vortices: the existence of a vortex in
component-1 corresponds to a peak in component-2 and
vice-versa. The interaction between vortices and peaks
leads to changes in the geometry of the vortex lattice. We
are interested in determining the equations governing this
vortex peak behaviour in the Thomas Fermi regime and
estimating the interaction energy between the lattices of
the two components. Indeed, for a single condensate,
the vortex lattice is triangular, while for a two compo-
nent, the vortex-peak interaction can lead to a square
lattice. In [4], an asymptotic interaction between two
half quantized vortices is derived for two component ho-
mogeneous condensates. In this paper, we want to take
into account the nonhomogeneity of the condensate due
to the trapping potential and estimate the vortex-peak
energy according to the parameters of the system. We
derive an energy depending on the location of vortices
and peaks and determine for which values of the exper-
imental parameters, the lattice goes from triangular to
square. These critical values agree well with the ones
found from the numerical computations of the full Gross
Pitaevskii equations of [3]. We note that in the rapid
rotation regime, using the lowest Landau level approxi-
mation, several papers [5, 6] (see [2, 7] for review) have
analyzed the transition between triangular to square lat-
tices.

We first review the results for a single condensate,

before moving to the derivation of homogeneous equa-
tions and the computation of the interaction term in two-
component condensates.

For a single component condensate, the wave function
minimizes the energy

Eg,Ω(ψ) =

∫
1

2
|∇ψ−iΩ×rψ|2+

1

2
(V (r)−Ω2r2)|ψ|2+

g

2
|ψ|4

(1)
under

∫
|ψ|2 = 1, where Ω = Ωez is the rotation, V (r)

is the trapping potential and in most cases V (r) = r2.
We will denote by ∇Ω the operator ∇ − iΩ × r. For g
large, at Ω = 0, the ground state η of Eg,0 approaches
the inverted parabola

1

2g
(λ− r2)

in the disk of radius R2 = λ = 2
√
g/π, and goes to 0

elsewhere. If the problem is rescaled on a disk of size 1,
then the analysis of the vortex cores leads to a vortex
of size 1/

√
g and, close to the core, the wave function

behaves like f(r)eiθ where f is the solution tending to 1
at infinity of

f ′′ +
f ′

r
− f

r2
+ f(1− f2) = 0. (2)

This is the equation of a vortex core in a uniform system.
In the case of a single condensate, from the equation of
the vortex core, one can estimate the energy of vortices,
the critical velocity for the nucleation of the first vortex
and the interaction energy between vortices [8–10] which
is

−
∑
i 6=j

log|pi − pj |+
∑
i

|pi|2 (3)

where pi are the location of the vortex cores. Numeri-
cally, the minimization of (3) yields an almost triangular
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lattice for a large number of vortex points.
The aim of this paper is to describe the equivalent of

(2)-(3) in the case of two-component condensates. We
define gi to be the intra-component coupling strength for
component i and g12 to be the inter-component coupling
strength. For simplicity, we assume equal masses for the
atoms in each component and equal trapping potential,
but a general case could be handled. The ground state
of a two-component condensate is given by the infimum
of

Eg1,g2,g12,Ω(ψ1, ψ2) = Eg1,Ω(ψ1) + Eg2,Ω(ψ2)

+g12

∫
|ψ1|2|ψ2|2

(4)

under
∫
|ψ1|2 = N1,

∫
|ψ2|2 = N2. We set g1 = α1g,

g2 = α2g, g12 = α0g where g is large, so that ε =
1/
√
g is small. We change wave functions to ψ1(x, y) =√

εu1(x
√
ε, y
√
ε), ψ2(x, y) =

√
εu2(x

√
ε, y
√
ε). Calling

α = (α0, α1, α2), the energy we want to minimize is

Eα,Ω(u1, u2) =

∫
ε2

2
|∇u1|2 +

1

2
r2|u1|2 +

α1

2
|u1|4

− εΩ× r(iu1,∇u1)

+
ε2

2
|∇u2|2 +

1

2
r2|u2|2 +

α2

2
|u2|4

− εΩ× r(iu2,∇u2)

+ α0|u1|2|u2|2

(5)

where (iu,∇u) = iu∇ū − iū∇u. For Ω = 0, the ground
state is real valued and we denote it by (η1, η2). It is a
solution of

−ε2∆η1 + r2η1 + 2α1η
3
1 + 2α0η

2
2η1 = µ1η1 (6)

−ε2∆η2 + r2η2 + 2α2η
3
2 + 2α0η

2
1η2 = µ2η2. (7)

The shape of the ground state varies according to α and
when α2

0 − α1α2 ≤ 0, can be either 2 disks or a disk and
an annulus, as we will see below.

REDUCTION TO THE CORE EQUATIONS

We consider (u1, u2) a ground state of Eα,Ω and call
(f1, f2) such that u1 = η1f1 and u2 = η2f2. We expect
ηi to include the slow varying profile and fi to include
the vortex or peak contribution, so that fi is 1 almost
everywhere except close to the vortex and peak cores.
We want to write the energy of (u1, u2) as the energy of
(η1, η2) plus a rest, which is the energy that we are going
to study. This follows a trick introduced in [11], and used
for single Bose Einstein condensates in [8]. We multiply
(6) by η1(|f1|2−1) and (7) by η2(|f2|2−1), and integrate

and add the two equations, which yields the identity∫
ε2

2
|∇η1|2(|f1|2 − 1) + ε2η1f1∇η1 · ∇f1

+
1

2
r2η2

1(|f1|2 − 1) + α1η
4
1(|f1|2 − 1) + α0η

2
2η

2
1(|f1|2 − 1)

+
ε2

2
|∇η2|2(|f2|2 − 1) + ε2η2f2∇η2 · ∇f2

+
1

2
r2η2

2(|f2|2−1)+α2η
4
2(|f2|2−1)+α0η

2
2η

2
1(|f2|2−1) = 0.

(8)

Note that the Lagrange multiplier term has disappeared
because ui and ηi are normalized similarly. We replace
(u1, u2) by (f1η1, f2η2) into the energy, use the identity
(8) and find

Eα,Ω(u1, u2) = Eα,0(η1, η2) + Fα,Ω(f1, f2) where

Fα,Ω(f1, f2) =

∫
ε2

2
η2

1 |∇f1|2 − εη2
1Ω× r(if1,∇f1)

+
1

2
α1η

4
1(|f1|2 − 1)2 + α0η

2
1η

2
2(1− |f1|2)(1− |f2|2)

+
ε2

2
η2

2 |∇f2|2−εη2
2Ω×r(if2,∇f2)+

1

2
α2η

4
2(|f2|2−1)2.

(9)

This splitting of energy does not assume anything about
the scales of energy: it is an exact identity. We point
out that as soon as α1α2−α2

0 ≥ 0, then the energy Fα,Ω
is positive and minimizing Eα,Ω in (u1, u2) amounts to
minimizing Fα,Ω in (f1, f2).

Now we assume that we scale everything close to a
point p where η2

1 = ρ1, η2
2 = ρ2, and f1, f2 can be written

as functions of p + |r − p|/ε. Then, in the new variable
r̃ = |r − p|/ε, the functions f1, f2 are a ground state of

Fα,Ω(f1, f2) =

∫
1

2
ρ1|∇f1|2 − ερ1Ω× r(if1,∇f1)

+
1

2
α1ρ

2
1(|f1|2 − 1)2 + α0ρ1ρ2(1− |f1|2)(1− |f2|2)

+
1

2
ρ2|∇f2|2 − ερ2Ω× r(if2,∇f2) +

1

2
α2ρ

2
2(|f2|2 − 1)2

(10)

and solve the system

− ρ1∆f1 − iεΩ× rρ1∇f1 + 2α1ρ
2
1(|f1|2 − 1)f1

+ 2α0ρ1ρ2f1(|f2|2 − 1) = λ̃1f1

− ρ2∆f2 − iεΩ× rρ2∇f2 + 2α2ρ
2
2(|f2|2 − 1)f2

+ 2α0ρ1ρ2f2(|f1|2 − 1) = λ̃2f2. (11)

This is exactly the system studied in [4, 12] for a homo-
geneous condensate. The splitting of energy has allowed
us to reach a homogeneous system. Assuming a vortex
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in component-1 and a spike in component-2, we have
f1 = v1(r)eiθ and f2 = v2(r). We expect that v1, v2 tend
to 1 at infinity so that λ̃1 = εΩ and λ̃2 = 0. This yields
the following system

−v′′1 −
v′1
r

+
v1

r2
+ 2α1ρ1(v2

1 − 1)v1 + 2α0ρ2v1(v2
2 − 1) = 0(12)

−v′′2 −
v′2
r

+ 2α2ρ2(v2
2 − 1)v2 + 2α0ρ1v2(v2

1 − 1) = 0.(13)

From this system, asymptotic expansions can be obtained
for v1 and v2 at infinity: v1(r)− 1 ∼ −γ1/r

2 and v2(r)−
1 ∼ γ2/r

2 for some constants γ1 and γ2. Equation (12)-
(13) at infinity imply that α2ρ2γ2 = α0ρ1γ1 and 1 −
4α1ρ1γ1 + 4α0ρ2γ2 = 0, thus

γ1 =
1

4ρ1α1Γ12
and γ2 =

α0

4ρ2α1α2Γ12
(14)

where

Γ12 = 1− α2
0

α1α2
. (15)

In particular,

α0γ1γ1ρ1ρ2 =
1− Γ12

16α1Γ2
12

. (16)

THOMAS-FERMI PROFILE OF THE GROUND
STATE

When α1α2 − α2
0 ≥ 0, that is Γ12 ≥ 0, and ε is small,

both components are in the Thomas-Fermi regime. We
study the properties of the solutions of (6)-(7). The fol-
lowing non-dimensional parameters are introduced

Γ1 = 1− α0

α1
(17)

Γ2 = 1− α0

α2
. (18)

We refer to [3] for detailed computations. To begin, as-
sume that both components are circular with radii R1

and R2 and with R1 < R2. Thus in the Thomas-Fermi
(TF) regime, the density profiles for r < R1 are

|η1|2 =
1

2α1Γ12

(
µ1 −

α0

α2
µ2 − r2Γ2

)
(19)

|η2|2 =
1

2α2Γ12

(
µ2 −

α0

α1
µ1 − r2Γ1

)
(20)

and for R1 < r < R2 are

|η2|2 =
µ2 − r2

2α2
(21)

with |η1|2 = 0. The chemical potentials µ1 and µ2, and
the radii, R1 and R2, are to be found. In addition we
have the normalisation condition∫

|ηk|2dr = Nk, (22)

where, for generality, N1 6= N2. We denote α̃k = Nkαk
and α̃0 =

√
N1N2α0 and get

R1 =

(
4α̃1Γ12

πΓ2

)1/4

, (23)

R2 =

(
4(α̃2 + α̃1(1− Γ1))

π

)1/4

, (24)

µ1 =

(
4α̃1Γ12Γ2

π

)1/2

(25)

+(1− Γ2)

(
4

π
[α̃2 + α̃1(1− Γ1)]

)1/2

, (26)

µ2 =

(
4

π
[α̃2 + α̃1(1− Γ1)]

)1/2

. (27)

We find from (19) and (14) that

ρ1 = η2
1(0) =

Γ2R
2
1

2α1Γ12
=

√
Γ2N1

πα1Γ12
(28)

and

γ1 =

√
π

16N1α1Γ2Γ12

while

ρ2 = η2
2(0) =

1

α2

(
(

1

π
(N2α2 +N1α0))1/2 − α0(

N1Γ2

πα1Γ12
)1/2

)
(29)

and γ2 follows from (14).

Equations (23)-(24) are valid provided Γ12/Γ2 > 0 (to
ensure that R1 and µ1 are real) and α̃1Γ1 < α̃2Γ2 (to
ensure that R2 > R1). If instead the initial assumption
on the size of the radii was taken to be R1 > R2, then
the appropriate expressions would also be given by Eq.’s
(23)-(24), however with the indices 1 and 2 alternated.
In this case, the conditions would be α̃1Γ1 > α̃2Γ2 and
Γ12/Γ1 > 0.

Returning now to R2 > R1, one must ensure that
|η2|2 > 0 for all r < R1. Suppose that there is a point at
the origin, where |η2|2 = 0. Then, from Eq. (20),

α0 = ᾱ0 =
α1µ2

µ1

=
N1α1

2(N1 +N2)
+

1

2

√
α2

1N
2
1

(N1 +N2)2
+

4N2α1α2

N1 +N2
.(30)

The existence of some Γ12 at which the density in
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component-2 hits zero at the origin is the indication
of a spatial separation of the components. Notice that
this critical value for Γ12 is independent of Ω. In the
spatial separation regime, component-1 is circular while
component-2 is annular, provided R2 > R1. It is not
possible for an annulus to develop in component-1; this
can be seen by writing down the TF density expressions
for an annular component-1 and a circular component-
2 in which the chemical potentials become multi-valued.
Thus under the assumption R2 > R1, an annulus can
only develop in component-2. Similarly, an annulus can
only develop in component-1 if R1 > R2. The condition
to have two disks is thus α0 < ᾱ0.

VORTEX INTERACTION

Let us call ρTF,1, ρTF,2 the Thomas-Fermi limits of
|η1|2 and |η2|2 given by (19)-(20)-(21) and (23), (24),
(25), (26), (27) in the case of two disks. Then

ρTF,1 =
Γ2

2α1Γ12
(R2

1 − r2) (31)

ρTF,2 =
Γ1

2α2Γ12
(R2

1−r2)+
1

2α2
(R2

2−R2
1) if r < R1 (32)

and
1

2α2
(R2

2 − r2) if r > R1. (33)

We want to estimate the various terms in the energy
Fα,Ω as in [8] and we are going to show that, if pi are
the vortices for component-1 and qj are the vortices for
component-2, then they minimize the point energy

− πε2
∑
i,j

ρ1 log |pi − pj | − πε2
∑
i,j

ρ2 log |qi − qj |

+ π

(
−ε2| log ε| Γ2

2α1Γ12
+ εΩρ1

)∑
i

|pi|2

+ π

(
−ε2| log ε| Γ1

2α2Γ12
+ εΩρ2

)∑
i

|qi|2

+ π
1− Γ12

16Γ2
12

(
1

α1
+

1

α2

)
ε4| log ε|

∑
i 6=j

1

|pi − qj |2
. (34)

Estimate of the kinetic energy term

Let us call pi the vortices in component-1, and
qj in component-2. Then the kinetic energy term
(1/2)

∫
η2

1ε
2|∇f1|2 provides a leading order term due to

the kinetic energy of the phase (which behaves locally
like 1/r outside a disk of radius ε around each vortex),

which is

πε2
∑
i

ρTF,1(pi)| log ε| − πε2
∑
i,j

ρTF,1(pi) log |pi − pj |

(35)
with a similar term for component-2, where pi is replaced
by qj .

Rotation term

We call X1(r) the primitive of rρTF,1(r) which vanishes
atR1 andX2(r) the primitive of rρTF,2(r) which vanishes
at R2. Then for r < R1

X1(r) =
Γ2

8α1Γ12
(R2

1 − r2)2, (36)

X2(r) =
Γ1

8α2Γ12
(R2

1−r2)2+
1

8α2
(R2

2−R2
1)(R2

2+R2
1−2r2).

(37)
Thus the rotation term −εΩ

∫
η2

1 × r(if1,∇f1) is well
approximated by−εΩ

∫
∇X1×(if1,∇f1). An integration

by parts around each vortex yields

−2πεΩ
∑
i

X1(pi) (38)

with a similar contribution for component-2.

First vortices

The leading order approximation of the kinetic and
rotation energy yields (assuming vortices at points pi for
component-1 and qj for component-2):

πε2
∑
i

ρTF,1(pi)| log ε|+ πε2
∑
j

ρTF,2(qj)| log ε|

− 2πεΩ
∑
i

X1(pi)− 2πεΩ
∑
j

X2(qj). (39)

The vortex first appears at the point where X1/ρTF,1 or
X2/ρTF,2 reaches its maximum. We find that

X1(r)

ρTF,1(r)
=

1

4
(R2

1 − r2) (40)

X2(r)

ρTF,2(r)
=

1

4
(R2

1 − r2) +
1

4

(R2
2 −R2

1)(R2
2 − r2)

Γ1

Γ12
(R2

1 − r2) + (R2
2 −R2

1)

(41)
This implies that above a critical value Ωc, vortices be-
come energetically favorable and Ωc is given by

Ωc =
1

2
ε| log ε|min

i,r

ρTF,i
Xi

. (42)
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For a harmonic potential, and in the case of a disk, the
minimum of

ρTF,i

Xi
occurs at the origin since

ρTF,2
X2

=
ρTF,1
X1

−D(r) (43)

where

D(r) =
4(R2

2 −R2
1)(R2

2 − r2)

(R2
1 − r2)

×

1[
Γ1

Γ12
(R2

1 − r2)2 + (R2
2 −R2

1)(R2
1 +R2

2 − 2r2)
] ,

(44)

and given the signs of the parameters, we see that D(0) >
0 so that ρTF,1/X1 > ρTF,2/X2 always.

The first vortex is thus preferred in component-2 (i.e.
the component with larger support) and occurs at the
origin with the critical velocity given by

Ωc =

√
π

α̃2Γ12
ε| log ε|

[
Γ12

√
α̃2 + α̃1(1− Γ1)

− (1− Γ1)
√
α̃1Γ2Γ12

]
.

(45)

Note that this expression gives Ωc = 0 when α0 = ᾱ0

(provided α1 6= α2 otherwise Ωc reduces to a non-zero
constant).

We have plotted Ωc − Γ12 curves for two cases in
Fig. 1, the first with distinct intracomponent coupling
strengths and the second with equal intracomponent cou-
pling strengths (where Eq. (45) reduces to Eq. (46)) and
compared then to the numerical results of [3] (these pa-
rameter sets correspond to sets ‘ES1’ and ‘ES3’ respec-
tively from [3]).

For the next computations, we can assume N1α1 =
N2α2 so that R1 = R2 and we have a lattice of peaks
and vortices close to the origin. Since mini,r ρTF,i/Xi =
4/R2

1, we have

Ωc = ε| log ε|
√

πΓ1

α1Γ12
. (46)

Energy expansion

We assume that the vortices appear close to the origin.
Then (35) and (38) can be expanded around the origin,

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Γ12

Ω

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Γ12

Ω
FIG. 1: The critical velocity for creation of the first vortex
plotted analytically from Eq. 45 [solid line] and numerically
(dotted line) as a function of Γ12 for two parameter sets: (a)
ε = 0.0352, α1 = 0.97, α2 = 1.03 and (b) ε = 0.0358, α1 =
α2 = 1.

using (31)-(33) and (36)-(37), which yields

− πε2
∑
i,j

ρ1 log |pi − pj | − πε2
∑
i,j

ρ2 log |qi − qj |

+ πε

(
−ε| log ε| Γ2

2α1Γ12
+ Ωρ1

)∑
i

|pi|2

+ πε

(
−ε| log ε| Γ1

2α2Γ12
+ Ωρ2

)∑
i

|qi|2 (47)

Interaction energy

We find from (9) that the interaction energy is

α0ρ1ρ2

∫
(1− |v1|2)(1− |v2|2).

Near a vortex-peak, this reduces to

α0ρ1ρ2γ1γ2

∫
1

r2
(1,0)

1

r2
(0,1)

where we take the notations of [4]: r(1,0) is the local
distance to the vortex in component-1, and r(0,1) is the
distance to the next peak in component-1, or equivalently
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to the vortex in component-2. From (16), we find that
the coefficient in front of the integral is equal to π 1−Γ12

16α1Γ2
12

.

The computations in [4] allow to estimate the integral
term and we find for the interaction term

π
1− Γ12

16Γ2
12

1

α1
ε4| log ε| 1

|pi − qj |2
.

This is for a vortex in v1. Of course, if the vortex is in
v2, it would be different by a factor 1/α2.

The interaction energy is thus

π
1− Γ12

16Γ2
12

(
1

α1
+

1

α2

)
ε4| log ε|

∑
i 6=j

1

|pi − qj |2
. (48)

Together with (47), this leads to (34).

NUMERICAL SIMULATION OF THE
RENORMALISED ENERGY

We want to find the ground state of (34) when the radii
of both components are equal. Under this condition we
have ρ1 = ρ2, Γ1 = Γ2 and α1 = α2. This allows us to
perform a rescaling that leaves the renormalised energy
only dependent on a single parameter. We write Ω = ωΩc

for Ωc defined in (46). Then

ρ1

(
−| log ε|

R2
1

+
Ω

ε

)
= ρ1| log ε|

(
ω

√
πΓ2

α1Γ12
− 1

R2
1

)
(49)

which implies that we can rescale the pi’s and qj ’s so that
pi = γp̃i and qj = γq̃j with

γ2 =
1

2| log ε|
(
ω
√

πΓ2

α1Γ12
− 1

R2
1

) (50)

so that the new energy is

1

2
πε2ρ1

[
−
∑
i,j

log |pi − pj |2 −
∑
i,j

log |qi − qj |2

+
∑
i

|pi|2 +
∑
i

|qi|2 + cω
∑
i 6=j

1

|pi − qj |2

]
(51)

with

cω =
π(1− Γ12)

4α1Γ2
12

(2ω − 1)ε2| log ε|2. (52)

We simulate this renormalised energy (51) using a con-
jugate gradient method varying the parameter cω and the
number of vortex points. For a fixed number of lattice
points, when increasing cω, the ground state lattice goes
from triangular to square at a critical ctsω . Note that when
N gets large, ctsω no longer depends on N . In Fig. 2 we

plot the ground state for two values of cω which give a
triangular (cω = 0.05) and a square lattice (cω = 0.15)
when N =?. to edit

For each N , we can calculate the critical ctsω and com-
pare this with the simulations on the full GP equations,
as performed in [3] (they provide the appropriate value
of N). From (refcomega), we thus find the critical value
of Ω for which the lattice goes from triangular to square:

Ωts =

(
1

2
+

2ctsω α1Γ2
12

π(1− Γ12)ε2| log ε|2

)√
πΓ2

g1Γ12
| log ε| (53)

It turns out that when Ω gets close to 1, the condensate
expands and one has to include in the TF profile a term
(1− Ω2)r2 instead of just r2. The radii R1 and R2 vary
like (1− Ω2)1/4. This changes cω from [52) to

cω =
π(1− Γ12)

4α1Γ2
12

(
2ω −

√
1− Ω2

√
1− Ω2

)
ε2| log ε|2 (54)

so that if we define

βts =

(
1

2
+

2ctsω g1Γ2
12

π(1− Γ12)| log ε|2

)√
πΓ2

g1Γ12
| log ε| (55)

then Ωts = βts
√

1− (Ωts)2, which yields

Ωts =
βts√

1 + βts
. (56)

We plot the form of Ωts as a function of Γ12 in Fig.
3 where we have taken ε = 0.0358 and α1 = α2 = 1
(note that this parameter set corresponds to set ‘ES3’
in [3]). This provides good agreement and confirms that
our point energy well describes the system.

We point out that [13] found a point energy with an

interaction term e−|pi−qj |
2

, which is not so good numer-
ically.
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