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Abstract: We establish some general theorems for the existence and nonexistence of
ground state solutions of steady-state N coupled nonlinear Schrödinger equations. The
sign of coupling constants βij ’s is crucial for the existence of ground state solutions.
When all βij ’s are positive and the matrix � is positively definite, there exists a ground
state solution which is radially symmetric. However, if all βij ’s are negative, or one of
βij ’s is negative and the matrix � is positively definite, there is no ground state solu-
tion. Furthermore, we find a bound state solution which is non-radially symmetric when
N = 3.

1. Introduction

In this paper, we study solitary wave solutions of time-dependent N coupled nonlinear
Schrödinger equations given by






−i ∂
∂t

�j = ��j + µj |�j |2�j +
∑

i �=j

βij |�i |2�j for y ∈ Rn, t > 0,

�j = �j(y, t) ∈ CI , j = 1, . . . , N,

�j (y, t) → 0 as |y| → +∞, t > 0,

(1.1)

where µj > 0’s are positive constants, n ≤ 3, and βij ’s are coupling constants. The
system (1.1) has applications in many physical problems, especially in nonlinear optics.
Physically, the solution �j denotes the j th component of the beam in Kerr-like photore-
fractive media(cf. [1]). The positive constant µj is for self-focusing in the j th component
of the beam. The coupling constant βij is the interaction between the ith and the j th

component of the beam. As βij > 0, the interaction is attractive, but the interaction is
repulsive if βij < 0. When the spatial dimension is one, i.e. n = 1, the system (1.1) is
integrable, and there are many analytical and numerical results on solitary wave solutions
of the general N coupled nonlinear Schrödinger equations(cf. [8, 17–19]).
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From physical experiment(cf. [23]), two dimensional photorefractive screening sol-
itons and a two dimensional self-trapped beam were observed. It is natural to believe
that there are two dimensional N -component(N ≥ 2) solitons and self-trapped beams.
However, until now, there is no general theorem for the existence of high dimensional
N -component solitons. Moreover, some general principles like the interaction and the
configuration of two and three dimensional N -component solitons are unknown either.
This may lead us to study solitary wave solutions of the system (1.1) for n = 2, 3.
Here we develop some general theorems for N -component solitary wave solutions of
the system (1.1) in two and three spatial dimensions.

To obtain solitary wave solutions of the system (1.1), we set �j(y, t) = eiλj t uj (y)

and we may transform the system (1.1) to steady-state N coupled nonlinear Schrödinger
equations given by






�uj − λjuj + µju
3
j +

∑

i �=j

βij u
2
i uj = 0 in Rn,

uj > 0 in Rn, j = 1, . . . , N,

uj (y) → 0 as |y| → +∞,

(1.2)

where λj , µj > 0 are positive constants, n ≤ 3, and βij ’s are coupling constants.
Here we want to study the existence and the configuration of ground state solutions
of the system (1.2). The existence of ground state solutions may depend on coupling
constants βij ’s. When all βij ’s are positive and the matrix �(defined in (1.9)) is pos-
itively definite, there exists a ground state solution which is radially symmetric, i.e.
uj (y) = uj (|y|), j = 1, · · · , N . Such a radially symmetric solution may support the
existence of N circular self-trapped beams. However, if all βij ’s are negative, or one of
βij ’s is negative and the matrix � is positively definite, there is no ground state solu-
tion. Furthermore, we find a bound state solution which is non-radially symmetric when
N = 3. We will prove these results in the rest of this paper.

Now we give the definition of ground state solutions as follows:
In the one component case (N = 1), we may obtain a solution to (1.2) through the

following minimization:

inf
u≥0,

u∈H1(Rn)

∫

Rn | � u|2 + λ1
∫

Rn u2

(
∫

Rn u4)
1
2

. (1.3)

An equivalent formulation, called Nehari’s manifold approach (see [6] and [7]), is to
consider the following minimization problem:

inf
u1∈N1

E[u1],

where

N1 =
{

u ∈ H 1(Rn) : u �≡ 0 ,

∫

Rn

| � u|2 + λ1

∫

Rn

u2 = µ1

∫

Rn

u4
}

. (1.4)

It is easy to see that (1.3) and (1.4) are equivalent. A solution obtained through (1.4) is
called a ground state solution in the following sense: (1) u > 0 and satisfies (1.2), (2)
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E[u] ≤ E[v] for any other solution v of (1.2). Hereafter, we extend the definition of
ground state solutions to N -component case. To this end, we define first

N =
{

u = (u1, . . . , uN) ∈
(
H 1(Rn)

)N

: uj ≥ 0, uj �≡ 0 , (1.5)

∫

Rn

| � uj |2 + λj

∫

Rn

u2
j = µj

∫

Rn

u4
j +

∑

i �=j

βij

∫

Rn

u2
i u

2
j , j = 1, . . . , N

}

and consider the following minimization problem:

c = inf
u∈N

E[u] , (1.6)

where the associated energy functional is given by

E[u] =
N∑

j=1

(
1

2

∫

Rn

| � uj |2 + λj

2

∫

Rn

u2
j − µj

4

∫

Rn

u4
j

)

(1.7)

−1

4

N∑

i,j=1,
i �=j

βij

∫

Rn

u2
i u

2
j

for

u = (u1, . . . , uN) ∈ (H 1(Rn))N . (1.8)

Since n ≤ 3, by Sobolev embedding, E[u] is well-defined. A minimizer u0 = (u0
1, . . . ,

u0
N) of (1.6), if it exists, is called a ground state solution of (1.2), and it may have the

following properties:

1. u0
j > 0 , ∀j , and u0 satisfies (1.2);

2. E[u0
1, . . . , u0

N ] ≤ E[v1, . . . , vN ] for any other solution (v1, . . . , vN) of (1.2).

It is natural to ask when the ground state solution exists. As N = 1, the existence of
the ground state solution is trivial (see [6]). However, the existence of the ground state
solution with multi-components is quite complicated.

For general N ≥ 2, we introduce the following auxiliary matrix:
∑

= (|βij |), where we set βii = µi. (1.9)

Our first theorem concerns the all repulsive case:

Theorem 1. If βij < 0, ∀i �= j , then the ground state solution doesn’t exist, i.e. c defined
at (1.6) can not be attained.

Our second theorem concerns the all attractive case.

Theorem 2. If βij > 0, ∀i �= j , and the matrix
∑

(defined at (1.9)) is positively definite,
then there exists a ground state solution (u0

1, . . . , u0
N). All u0

j must be positive, radially
symmetric and strictly decreasing.
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When attraction and repulsion coexist, i.e. some of βij ’s are positive but some of
them are negative, things become very complicated. Our third theorem shows that if one
state is repulsive to all the other states, then the ground state solution doesn’t exist.

Theorem 3. If there exists an i0 such that

βi0j < 0, ∀j �= i0, and βij > 0, ∀i �= i0, j �∈ {i, i0} (1.10)

and assume that the matrix � is positively definite, then the ground state solution to
(1.2) doesn’t exist.

Finally, we discuss the existence of bound states, that is, solutions of (1.2) with finite
energy. We show that if repulsion is stronger than attraction, there may be non-radial
bound states. To simplify our computations, we choose

N = 3, λ1 = λ2 = λ3 = µ1 = µ2 = µ3 = 1. (1.11)

Theorem 4. Assume that N = 3 and

β12 = δβ̂12 = β13 = δβ̂13 > 0, β23 =
√

δβ̂23 < 0. (1.12)

Then for δ sufficiently small, problem (1.2) admits a non-radial solution uδ = (uδ
1, u

δ
2, u

δ
3

)

with the following properties:

uδ
1(y) ∼ w(y), uδ

2(y) ∼ w(y − Rδe1), uδ
3(y) ∼ w(y + Rδe1) ,

where

Rδ ∼ log
1

δ
, e1 = (1, 0, . . . , 0)T ,

and w is the unique solution of the following problem:






�w − w + w3 = 0 in Rn

w > 0 in Rn, w(0) = max
y∈Rn

w(y)

w(y) → 0 as |y| → +∞.

(1.13)

Graphically, we have



Ground State of N Coupled Nonlinear Schrödinger Equations in Rn, n ≤ 3 633

Note that under condition (1.12), there is also a radially symmetric solution ur of the
following form:

ur = (ur
1, u

r
2, u

r
3), ur

j = √ξjw(y), j = 1, 2, 3,

where ξj satisfies

ξj +
∑

i �=j

βij ξi = 1, j = 1, 2, 3. (1.14)

Then we have

Corollary 1. Assume that N = 3 and (1.12) holds. Then for δ sufficiently small, we
have

E[uδ] < E[ur ], (1.15)

where uδ is constructed in Theorem 3. As a consequence, if the ground state solution
exists, it must be non-radially symmetric.

It is known that (1.2) admits many radially symmetric bound states (see [17] and
[18]). Theorem 4 suggests that there are many non-radially symmetric bound states
which have lower energy than radially symmetric bound states. We consider the appli-
cations of Theorems 1–3 to simple cases N = 2 and N = 3.

For the case N = 2, we have

Corollary 2. If N = 2, then

1. for β12 < 0, the ground state solution doesn’t exist,
2. for 0 < β12 <

√
µ1µ2, the ground state solution exists.

For the case N = 3, the matrix � becomes

� =



µ1 |β12| |β13|

|β12| µ2 |β23|
|β13| |β23| µ3



 .

Assume that βij �= 0. Then we may divide into four cases given by

Case I: all repulsive: β12 < 0, β13 < 0, β23 < 0,

Case II: all attractive: β12 > 0, β13 > 0, β23 > 0,

Case III: two repulsive and one attractive: β12 < 0, β13 < 0, β23 > 0,
Case IV: one repulsive and two attractive: β12 > 0, β13 > 0, β23 < 0.

For Case I–III, we have a complete picture

Corollary 3. If N = 3, then

1. for Case I, the ground state solution doesn’t exist,
2. for Case II and assume � is positively definite, the ground state solution exists,
3. for Case III and assume � is positively definite, the ground state solution doesn’t

exist.
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It then remains only to consider Case IV. Due to the existence of non-radial bound
states in Theorem 4 and non-radial property of ground states in Corollary 1, Case IV
becomes very complicated. Our results here will be very useful in the study of (1.2) for
bounded domains which relates to multispecies Bose-Einstein condensates, and in the
study of solitary wave solutions of N coupled nonlinear Schrödinger equations with trap
potentials:






�uj − Vj (x)uj + µju
3
j +

∑

i �=j

βij u
2
i uj = 0, x ∈ Rn,

uj > 0 in Rn, j = 1, . . . , N,

uj (x) → 0 as |x| → +∞.

(1.16)

The main idea in proving Theorem 1–3 is by Nehari’s manifold approach and Sch-
wartz symmetrization technique. Theorem 4 is proved by the Liapunov-Schmidt reduc-
tion method combined with the variational method. The organization of the paper is as
follows: In Sect. 2, we collect some properties of the function w-solution of (1.13) and
Schwartz symmetrization. In Sect. 3, we state another equivalent approach of Nehari’s
method which is more useful in our proofs. It is here that we need that the matrix �

is positively definite. The proofs of Theorems 1, 2, 3, 4 are given in Sects. 4, 5, 6, 7,
respectively. Section 8 contains the proof of Corollary 1.

2. Some Preliminaries

In this section, we analyze some problems in Rn. Recall that w is the unique solution of
(1.13). By Gidas-Ni-Nirenberg’s Theorem, [14], w is radially symmetric. By a theorem
of Kwong [20], w is unique. Moreover, we have

w′(|y|) < 0 for |y| > 0

and

w(|y|) = Anr
− n−1

2 e−r

(

1 + O

(
1

r

))

, as r = |y| → +∞, (2.1)

w′(|y|) = −Anr
− n−1

2 e−r

(

1 + O

(
1

r

))

, as r = |y| → +∞. (2.2)

We denote the energy of w as

I [w] = 1

2

∫

Rn

| � w|2 + 1

2

∫

Rn

w2 − 1

4

∫

Rn

w4. (2.3)

Let wλ,µ be the unique solution to the following problem:






�wλ,µ − λwλ,µ + µw3
λ,µ = 0 in Rn,

wλ,µ > 0, wλ,µ(0) = max
y∈Rn

wλ,µ(y),

wλ,µ(y) → 0 as |y| → +∞.
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It is easy to see that

wλ,µ(y) =
√

λ

µ
w
(√

λ|y|
)

, (2.4)

and

1

2

∫

Rn

| � wλ,µ|2 + λ

2

∫

Rn

w2
λ,µ − µ

4

∫

Rn

w4
λ,µ = λ

4−n
2 µ−1I [w]. (2.5)

We now collect some of the properties of wλ,µ.

Lemma 1. (1) w(|y|) is the unique solution to the following minimization problem:

inf
u∈H1(Rn),

u≥0

∫

Rn | � u|2 + ∫
Rn u2

(
∫

Rn u4)
1
2

. (2.6)

(2) The following eigenvalue problem:
{

�φ − λφ + 3µw2
λ,µφ = βφ

φ ∈ H 2(Rn)
(2.7)

admits the following set of eigenvalues:

β1 > 0 = β2 = . . . = βn+1 > βn+2 ≥ . . . ,

where the eigenfunctions corresponding to the zero eigenvalue are spanned by

K0 := span

{
∂wλ,µ

∂yj

, j = 1, . . . , n

}

= C0. (2.8)

As a result, the following map:

Lλ,µφ := �φ − λφ + 3µw2
λ,µφ

is invertible from K⊥
0 → C⊥

0 where

K⊥
0 =

{

u ∈ H 2(Rn)

∣
∣
∣
∣

∫

Rn

u
∂wλ,µ

∂yj

= 0 , j = 1, · · · , n

}

, (2.9)

C⊥
0 =

{

u ∈ L2(Rn)

∣
∣
∣
∣

∫

Rn

u
∂wλ,µ

∂yj

= 0 , j = 1, · · · , n

}

. (2.10)

Proof. (1) follows from the uniqueness of w(cf. [20]). (2) follows from Theorem 2.12
of [22] and Lemma 4.2 of [24].

Set also

Iλ,µ[u] = 1

2

∫

Rn

| � u|2 + λ

2

∫

Rn

u2 − µ

4

∫

Rn

u4. (2.11)
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We then have

Lemma 2. inf
u∈Nλ,µ

Iλ,µ[u] is attained only by wλ,µ,

where

Nλ,µ =
{

u ∈ H 1(Rn)

∣
∣
∣
∣

∫

Rn

| � u|2 + λ

∫

Rn

u2 = µ

∫

Rn

u4
}

. (2.12)

Proof. It is easy to see that inf
u∈Nλ,µ

Iλ,µ[u] is equivalent to

inf
u≥0,

u∈H1(Rn)

∫

Rn | � u|2 + λ
∫

Rn u2

(
∫

Rn u4)
1
2

.

The rest follows from (1) of Lemma 1.

The next lemma is not so trivial.

Lemma 3. inf
u∈N ′

λ,µ

Iλ,µ[u] is also attained only by wλ,µ,

where

N ′
λ,µ =

{

u ∈ H 1(Rn)

∣
∣
∣
∣

∫

Rn

| � u|2 + λ

∫

Rn

u2 ≤ µ

∫

Rn

u4
}

. (2.13)

Proof. Let uk be a minimizing sequence and u∗
k be its Schwartz symmetrization. Then

by the property of symmetrization
∫

Rn

| � u∗
k |2 + λ

∫

Rn

(u∗
k)

2 ≤
∫

Rn

| � uk|2 + λ

∫

Rn

u2
k ≤ µ

∫

Rn

u4
k = µ

∫

Rn

(u∗
k)

4,

(2.14)

and

Iλ,µ[u∗
k] ≤ Iλ,µ[uk]. (2.15)

Hence, we may assume thatuk is radially symmetric and decreasing. Sinceuk ∈ H 1(Rn),
and uk is strictly decreasing, it is well-known that

uk(r) ≤ Cr− N−1
2 ‖uk‖H 1 . (2.16)

So uk → u0(up to a subsequence) in L4(Rn), where u0 is also radially symmetric
and decreasing. Moreover, by Fatou’s Lemma, u0 ∈ N ′

λ,µ. Hence inf
u∈N ′

λ,µ

Iλ,µ[u] can be

attained by u0.
We then claim that

∫

Rn

| � u0|2 + λ

∫

Rn

u2
0 = µ

∫

Rn

u4
0. (2.17)

Suppose not. That is
∫

Rn

| � u0|2 + λ

∫

Rn

u2
0 < µ

∫

Rn

u4
0.
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Then u0 ∈ (N ′
λ,µ)0 - the interior of N ′

λ,µ. By standard elliptic theory, u0 is a critical
point of Iλ,µ[u], i.e.

� Iλ,µ[u0] = 0, (2.18)

where “�" means the derivative.
Multiplying (2.18) by u0, we have

∫

Rn |�u0|2+λ
∫

Rn u2
0 = µ

∫

Rn u4
0 a contradiction.

Hence u0 ∈ Nλ,µ. By Lemma 2, u0 =
√

λ
µ
w(

√
λ|y|) = wλ,µ(y).

We present another characterization of wλ,µ:

Lemma 4.

inf
u∈Nλ,µ

Iλ,µ[u] = inf
u≥0,

u∈H1(Rn)

sup
t>0

Iλ,µ[tu].

Proof. This follows from a simple scaling.

Finally, we recall the following well-known result, whose proof can be found in
Theorem 3.4 of [21].

Lemma 5. Let u ≥ 0, v ≥ 0, u, v ∈ H 1(Rn) and u∗, v∗ be their Schwartz Symmetriza-
tion. Then

∫

Rn

uv ≤
∫

Rn

u∗v∗.

Our last lemma concerns some integrals.

Lemma 6. Let y1 �= y2 ∈ Rn. Then as |y1 − y2| → +∞, we have for λ1 < λ2,
∫

Rn

w2
λ1,µ1

(y − y1)w
2
λ2,µ2

(y − y2) ∼ w2
λ1,µ1

(y1 − y2)

∫

Rn

w2
λ2,µ2

(z)e
2
√

λ1

〈
z,

y1−y2|y1−y2 |
〉

dz.

(2.19)

If λ1 = λ2, then

w2+σ
λ1,µ1

(y1 − y2) ≤
∫

Rn

w2
λ1,µ1

(y − y1)w
2
λ2,µ2

(y − y2) ≤ w2−σ
λ1,µ1

(y1 − y2) (2.20)

for any 0 < σ < 1.

Proof. Let y = y2 + z. Then from (2.1), we have

w2
λ1,µ1

(y − y1)w
2
λ2,µ2

(y − y2)

= w2
λ1,µ1

(y2 − y1 + z)w2
λ2,µ2

(y − y2)

= w2
λ1,µ1

(y2 − y1)e
2
√

λ1(|y2−y1|−|y2−y1+z|)(1 + o(1))w2
λ2,µ2

(y − y2)

= w2
λ1,µ1

(y1 − y2)(1 + o(1))e
2
√

λ1

〈
z,

y1−y2|y1−y2 |
〉

w2
λ2,µ2

(z) .

Hence by Lebesgue Dominated Convergence Theorem gives (2.19). The proof of (2.20)
is similar.
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3. Nehari’s Manifold Approach

In this section, we consider the relation between two minimization problems

Problem 1.

c = inf
u∈N

E[u], (3.1)

where

N =
{

u ∈ (H 1(Rn))N
∣
∣
∣
∣

∫

Rn

| � uj |2 + λj

∫

Rn

u2
j = µj

∫

Rn

u4
j

+
∑

i �=j

βij

∫

Rn

u2
i u

2
j , j = 1, . . . , N

}

.

Problem 2.

m = inf
u≥0

sup
t1,... ,tN>0

E[
√

t1u1, . . . ,
√

tNuN ]. (3.2)

We have

Theorem 5. Suppose either βij < 0, ∀i �= j , or the matrix � defined by

� = (|βij |) with βii = µi

is positively definite. Then

c = inf
u∈N

E[u] = m = inf
u≥0

sup
t1,... ,tN>0

E[
√

t1u1, . . . ,
√

tNuN ].

Proof. We consider the following function

β(t1, . . . , tN ) = E[
√

t1u1, . . . ,
√

tNuN ].

First we assume u ∈ N.
Claim 1. β(t1, . . . , tN ) attains its global maximum at t1 = . . . = tN = 1. In fact,

β(t1, . . . , tN ) =
N∑

j= 1

tj

[∫

Rn

| � uj |2 + λju
2
j

]

−Q[t1, . . . , tN ],

where

Q[t1, . . . , tN ] = 1

4

N∑

j= 1

µj t
2
j

∫

Rn

u4
j + 1

4

N∑

i,j=1,
i �=j

βij ti tj

∫

Rn

u2
i u

2
j

= 1

4
tT �′t,

where t = (t1, ..., tN )T and

�′ =
(

βij

∫

Rn

u2
i u

2
j

)

. (3.3)
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If βij < 0, ∀i �= j , then since u ∈ N, we have

µj

∫

Rn

u4
j +

∑

i �=j

βij

∫

Rn

u2
i u

2
j =

∫

Rn

| � uj |2 + λj

∫

Rn

u2
j > 0 .

Moreover, we see that the matrix �′ is diagonally dominant and hence �′ is positively
definite.

If βij > 0 for all i �= j , then for tj > 0, j = 1, . . . , N ,

Q[t1, . . . , tN ] = 1

4

[∑

i,j

βij ti tj

∫

Rn

u2
i u

2
j

]

≥ 1

4

[ N∑

j=1

µj t
2
j

∫

Rn

u4
j

]

−1

4

N∑

i,j=1,
i �=j

|βij |
(∫

Rn

u4
i

) 1
2
(∫

Rn

u4
j

) 1
2

ti tj

> 0.

Again, Q[t1, . . . , tN ] is positively-definite. Thus β(t1, . . . , tN ) is concave and hence
there exists a unique critical point. Since u ∈ N, (1 . . . , 1) is a critical point. So we
complete the proof of Claim 1.

From Claim 1, we deduce that

inf
u∈N

E[u] ≥ inf
u≥0

sup
t1,... ,tN

E[
√

t1u1, . . . ,
√

tNuN ]. (3.4)

On the other hand, suppose that

sup
t1,... ,tN

E[
√

t1u1, . . . ,
√

tNuN ] = β(t0
1 , . . . , t0

N) < +∞ ,

where u = (u1, · · · , uN) ≥ 0. Certainly, (t0
1 , . . . , t0

N) is a critical point of β(t1, . . . , tN )

and hence (u0
1, . . . , u0

N) ≡
(√

t0
1 u1, . . . ,

√

t0
NuN

)

∈ N. So

E[u0
1, . . . , u0

N ] = β(t0
1 , . . . , t0

N) ≥ inf
u∈N

E[u]

which proves

c = inf
u∈N

E[u] ≤ m = inf
u≥0

sup
t1,... ,tN

E[
√

t1u1, . . . ,
√

tNuN ]. (3.5)

Combining (3.4) and (3.5), we obtain Theorem 5.
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4. Proof of Theorem 1

In this section, we prove Theorem 1.
First by Theorem 5,

c = inf
u≥0

sup
t1,... ,tN

E[
√

t1u1, . . . ,
√

tNuN ].

Now we choose

uj (y) := wλj ,µj
(y − jRe1), j = 1, . . . , N, (4.1)

where R >> 1 is a large number and e1 = (1, 0, . . . , 0)T .
By choosing R large enough and applying Lemma 5, we obtain that

∫

Rn

u2
i u

2
j =

∫

Rn

w2
λi ,µi

(y − iRe1)w
2
λj ,µj

(y − jRe1)

=
∫

Rn

w2
λi ,µi

(y)w2
λj ,µj

(y + (i − j)Re1)dy → 0

as R → +∞.
Let (tR1 , . . . , tRN ) be the critical point of β(t1, . . . , tN ). Then we have

∫

Rn

| � uj |2 + λj

∫

Rn

u2
j = µj t

R
j

∫

Rn

u4
j +

∑

i �=j

βij t
R
i

∫

Rn

u2
i u

2
j

since the matrix

(

βij

∫

Rn

u2
i u

2
j

)

is positively definite (similar to arguments in Sect. 3),

by implicit function theorem

tRj = 1 + o(1).

Thus

c ≤ lim
R→+∞

β(tR1 , . . . , tRN ) =
N∑

j= 1

[
1

2

(∫

Rn

| � wj |2 + λjw
2
j

)

− µj

4

∫

Rn

w4
j

]

. (4.2)

Next we claim that

c ≥
N∑

j= 1

[
1

2

(∫

Rn

| � wj |2 + λjw
2
j

)

− µj

4

∫

Rn

w4
j

]

. (4.3)

In fact, let (u1, . . . , uN) ∈ N, then since βij < 0, ∀i �= j ,

E[u1, . . . , uN ] ≥
n∑

j= 1

[
1

2

(∫

Rn

| � uj |2 + λju
2
j

)

−µj

4

∫

Rn

u4
j

]

(4.4)

=
n∑

j= 1

Iλj ,µj
[uj ] ,
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and
∫

Rn

| � uj |2 + λju
2
j ≤ µj

∫

Rn

u4
j . (4.5)

By Lemma 2,

E[u1, . . . , uN ] ≥
n∑

j= 1

Iλj ,µj
[uj ] (4.6)

≥
n∑

j= 1

inf
w∈N′

λj ,µj

Iλj ,µj
[w]

=
N∑

j= 1

Iλj ,µj
[wλj ,µj

]

which proves (4.3). Hence

c =
N∑

j= 1

Iλj ,µj
[wλj ,µj

]. (4.7)

If c is attained by some (u0
1, . . . , u0

N), then= (u0
1, . . . , u0

N) ∈ N and u0
j is a solution

of (1.2). By the Maximum Principle, u0
j > 0, j = 1, . . . , N . Then we have

c = E[u0
1, . . . , u0

N ] >

N∑

j= 1

Iλj ,µj
[u0

j ] ≥
N∑

j= 1

Iλj ,µj
[wλj ,µj

] (4.8)

which contradicts (4.7), and we may complete the proof of Theorem 1.

5. Proof of Theorem 2

Now we prove Theorem 2 in this section. Our main idea is by Schwartz symmetrization.
For uj ≥ 0, uj ∈ H 1(Rn), we denote u∗

j as its Schwartz symmetrization. By
Lemma 6, for i �= j

∫

Rn

u2
i u

2
j ≤

∫

Rn

(u∗
i )

2(u∗
j )

2. (5.1)

Hence

E[u∗
1, . . . , u∗

N ] ≤ E[u1, . . . , uN ]. (5.2)

The new function u∗ = (u∗
1, . . . , u∗

N) will satisfy the following inequalities:
∫

Rn

| � u∗
j |2 + λ1

∫

Rn

(u∗
j )

2 −
∑

i �=j

βij

∫

Rn

(u∗
i )

2(u∗
j )

2 (5.3)

≤ µj

∫

Rn

(u∗
j )

4

(by (5.1) and the fact that βij > 0).
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Therefore, we have

c = inf
u∈N

E[u] ≥ inf
u∈N′ E[u] := c′,

where

N′ =
{

u ∈ (H 1(Rn))N
∣
∣
∣
∣

∫

Rn

| � uj |2 + λju
2
j

≤ µj

∫

Rn

u4
j +

∑

i �=j

βij

∫

Rn

u2
i u

2
j , j = 1, . . . , N

}

. (5.4)

We first study c′ and then we show that c′ = c.
By the previous argument, we may assume any minimizing sequence (u1, . . . , uN)

of c′ must be radially symmetric and decreasing. We follow the proof of Lemma 2 to
conclude that a minimizer for c′ exists and must be radially symmetric and decreasing.
Moreover, we have

∫

Rn

| � uj |2 + λju
2
j ≤ µj

∫

Rn

u4
j +

∑

i �=j

βij

∫

Rn

u2
i u

2
j , j = 1, . . . , N. (5.5)

If all the inequalities of (5.5) are strict, then as for the proof of Lemma 2, we may have
a contradiction. So we may assume at least one of (5.5) is an equality. Without loss of
generality, we may assume that

Gj [u] :=
∫

Rn

| � uj |2 + λj

∫

Rn

u2
j − µj

∫

Rn

u4
j

−
∑

i �=j

βij

∫

Rn

u2
i u

2
j = 0, j = 1, . . . , k < N. (5.6)

Then we have

� E[u1, . . . , uN ] +
k∑

j= 1

�j � Gj [u1, . . . , uN ] = 0, (5.7)

where Gj is defined at (5.6). We assume that �k+1 = . . . = �N = 0 and we write
(5.7) as

� E[u1, . . . , uN ] +
N∑

j= 1

�j � Gj [u1, . . . , uN ] = 0. (5.8)

From (5.6), we obtain

N∑

j= 1

�j

〈�Gj, uj

〉 = 0

which is equivalent to

N∑

j= 1

(

βij

∫

Rn

u2
i u

2
j

)

�j = 0
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since the matrix �′ is positively define, the matrix
(

βij

∫

Rn

u2
i u

2
j

)

is non-singular

and hence �j = 0, j = 1, . . . , N . As for the proof of Lemma 1, u ∈ N. Hence c = c′
and c can be achieved by radially symmetric pairs (u0

1, . . . , u0
N). Hence (u0

1, . . . , u0
N)

must satisfy (1.2).
By the maximum principle, u0

j > 0, since u0
j satisfies

�u0
j − λju

0
j + µj (u

0
j )

3 +
∑

i �=j

βij (u
0
i )

2u0
j = 0, βij > 0

by the moving plane method for cooperative systems (cf. [27]), u0
j must be radially

symmetric and strictly decreasing. Therefore we may complete the proof of Theorem 2.

6. Proof of Theorem 3

In this section, we prove Theorem 3. The proof combines those of Theorem 1 and The-
orem 2.

Assume u = (u1, . . . , uN) ∈ N. Without loss of generality, we may assume that
i0 = 1.
Then

β1j < 0, ∀j > 0, and βij > 0, ∀i > 1, j �∈ {1, i}.
We may divide the energy E[u1, . . . , uN ] into two parts

E[u1, . . . , uN ] = 1

2

∫

Rn

| � u1|2 + λ1

2

∫

Rn

u2
1 − µ1

4

∫

Rn

u4
1

−1

2

N∑

j=2

β1j

∫

Rn

u2
1u

2
j + E′[u2, . . . , uN ], (6.1)

where

E′[u2, . . . , uN ] =
N∑

j= 2

(
1

2

∫

Rn

|� uj |2 + λj

2

∫

Rn

u2
j − µj

4

∫

Rn

u4
j

)

(6.2)

−1

4

N∑

i,j=2,
i �=j

βij

∫

Rn

u2
i u

2
j .

Since β1j < 0, for j > 1,

E[u1, . . . , uN ] ≥ Iλ1,µ1 [u1] + E′[u2, . . . , uN ]. (6.3)

On the other hand, u1 satisfies

∫

Rn

| � u1|2 + λ1

∫

Rn

u2
1 − µ1

∫

Rn

u4
1 =

N∑

j=2

β1j

∫

Rn

u2
1u

2
j ≤ 0 (6.4)
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and uj , j = 2, . . . , N satisfies

∫

Rn

| � uj |2 + λ1

∫

Rn

u2
j ≤ µj

∫

Rn

u4
j +

N∑

i=2,
i �=j

βij

∫

Rn

u2
i u

2
j . (6.5)

Here we have used the system (1.2) and the fact that β1j < 0, for j > 1. By the proof
of Theorem 2,

E′[u2, . . . , uN ] ≥ inf
(u2,... ,uN )∈N1

E′[u2, . . . , uN ] = c1, (6.6)

where

N1 =
{

u′ = (u2, . . . , uN)

∣
∣
∣
∣

∫

Rn

| � uj |2

+λj

∫

Rn

u2
j = µj

∫

Rn

u4
j +

N∑

i=2,
i �=j

βij

∫

Rn

u2
i u

2
j

}

.

On the other hand, by Lemma 3,

Iλ1,µ1 [u1] ≥ Iλ1,µ1 [wλ1,µ1 ]. (6.7)

Hence

inf
u∈N

E[u] ≥ Iλ1,µ1 [wλ1,µ1 ] + c1. (6.8)

Now we claim that

inf
u∈N

E[u] = Iλ1,µ1 [wλ1,µ1 ] + c1. (6.9)

In fact, by Theorem 5,

c = inf
u∈N

E[u] = inf
u≥0

sup
t1,... ,tN≥0

E[
√

t1u1, . . . ,
√

tNuN ].

Now we choose

u1 = wλ1,µ1(y − Re1)

and uj = u0
j for j ≥ 2, where (u0

2, . . . , u0
N) is a minimizer of c1 at (6.6). Then

∫

Rn

u2
1(u

0
j )

2 → 0 as R → +∞ , ∀j > 1 .

Thus if we set

β(tR1 , . . . , tRN ) = sup
t1,... ,tN≥0

E[
√

t1u1, . . . ,
√

tNuN ] ,

then tRj = 1 + o(1) and

c ≤ lim
R→+∞

β(tR1 , . . . , tRN ) = Iλ1,µ1 [wλ1,µ1 ] + c1. (6.10)
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This, combined with (6.8), proves that

c = Iλ1,µ1 [wλ1,µ1 ] + c1.

Finally, we show that c is not attained. In fact, if c is attained by some (u0
1, . . . , u0

N),
u0

j > 0, then

c = E[u0
1, . . . , u0

N ] > Iλ1,µ1 [u0
1] + E′[u0

2, . . . , u0
N ]

≥ Iλ1,µ1 [wλ1,µ1 ] + c1.

A contradiction!

Remark 1. Theorem 3 also holds if βij satisfies

βij < 0, for i = i1, . . . , ik, j �= i1, . . . , ik

and

βij > 0, for i �∈ {i1, . . . , ik}, j �= i.

7. Proof of Theorem 4

In this section, we construct non-radial bound state of (1.2) in the following case:

N = 3, λ1 = λ2 = λ3 = µ1 = µ2 = µ3 = 1, (7.1)

β23 =
√

δβ̂23 < 0 , (7.2)

β12 = δ ˆβ12 = β13 = δ ˆβ13 > 0. (7.3)

As we shall see, assumption (7.1) is not essential and it is just for simplification of our
computations. The assumption (7.3) imposes some sort of symmetry which means that
the role of u2 and u3 can be exchanged.

We shall make use of the so-called Liapunov-Schmidt reduction process and varia-
tional approach. The Liapunov-Schmidt reduction method was first used in nonlinear
Schrödinger equations by Floer and Weinstein [13] in one-dimension, later was extended
to higher dimension by Oh [25, 26]. Later it was refined and used in a lot of papers. See
[2–5, 15, 16, 25, 26, 28, 29] and the references therein. A combination of the Liapunov-
Schmidt reduction method and the variational principle was used in [3, 10, 11, 15] and
[16]. Here we follow the approach used in [15].

Let us first introduce some notations: let

Sj [u] = �uj − uj + u3
j +

∑

i �=j

βij u
2
i uj , (7.4)

S[u] =






S1[u]
...

SN [u]




 ,
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XI = (H 2(Rn) ∩ {u | u(x1, x
′) = u(x1, |x′|)})3

∩{(u1, u2, u2) | u2(x1, x
′) = u3(−x1, x

′)},
YI = (L2(Rn) ∩ {u | u(x1, x

′) = u(x1, |x′|)})3

∩{(u1, u2, u2) | u2(x1, x
′) = u3(−x1, x

′)},
wRj (y) = w

(
y − Rje1

)
, (7.5)

X = (H 2(Rn) ∩ {u | u(x1, x
′) = u(x1, |x′|)})3,

X0 = X ∩ {(u1, u2, u3) | u2(x1, x
′) = u3(−x1, x

′) , u1(x1, x
′) = u1(−x1, x

′)},
Y = (L2(Rn) ∩ {u | u(x1, x

′) = u(x1, |x′|)})3,

Y0 = Y ∩ {(u1, u2, u3) | u2(x1, x
′) = u3(−x1, x

′) , u1(x1, x
′) = u1(−x1, x

′)}.

Note that S[u] is invariant under the map

T : (u1(x1, x
′), u2(x1, x

′), u3(x1, x
′)) (7.6)

→ (u1(−x1, x
′), u3(−x1, x

′), u2(−x1, x
′)).

Thus S is map from X0 to Y0.
Fix R ∈ �δ , where

�δ = {R | w(R) < δ
1
4 −σ }. (7.7)

Here we may choose

σ = 1

1000
.

We define

uR := (w(y), w(y − Re1), w(y + Re1))
T (7.8)

= (w, wR, w−R)T .

We begin with

Lemma 7. The map

L0� =



�φ1 − φ1 + 3w2φ1

�φ2 − φ2 + 3(wR)2φ2

�φ3 − φ3 + 3(w−R)2φ3



 : X0 → Y0 (7.9)

has its kernel

K0 = span

{(

0,
∂wR

∂y1
, −∂w−R

∂y1

)T }

(7.10)

and cokernel

C0 = span

{(

0,
∂wR

∂y1
, −∂w−R

∂y1

)T }

. (7.11)
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Proof. In fact, L0� = 0. Then we have by Lemma 1 (2),

φ1 =
n∑

j= 1

c1,j

∂w

∂yj

, φ2 =
n∑

j= 1

c2,j

∂wR

∂yj

, φ3 =
n∑

j= 1

c3,j

∂w−R

∂yj

. (7.12)

Since (φ1, φ2, φ3)
T ∈ X0, we have φ1(x1, |x′|) = φ1(−x1, |x′|) = φ1(x1, x

′). This
forces φ1 = 0. Similarly, we have c2,2 = · · · = c2,n = 0, c3,2 = · · · = c3,n = 0. On
the other hand, φ2(x1, x

′
) = φ3(−x1, x

′
). So we have c2,1 = −c3,1. This proves (7.10).

Since L0 is a self-adjoint operator, (7.11) follows from (7.10).

From Lemma 7, we deduce that

Lemma 8. The map

L := S′[uR] (7.13)

is uniformly invertible from

L := K⊥
0 → C⊥

0 . (7.14)

Proof. We may write

L = L0 +
√

δB, (7.15)

where B is a bounded and compact operator. Since L−1
0 exists, by standard perturbation

theory, L is also invertible for δ sufficiently small.

Using Lemma 8, we derive the following proposition:

Proposition 1. For δ sufficiently small, and R ∈ �δ , there exists a unique solution
vR = (vR

1 , vR
2 , vR

3 ) such that

S1[uR + vR] = 0, (7.16)

S2[uR + vR] = cR

∂wR

∂y1
, (7.17)

S3[uR + vR] = −cR

∂w−R

∂y1
, (7.18)

for some constant cR . Moreover, vR is of C1 in R and we have

‖vR‖H 2(Rn) ≤ cδ1−2σ . (7.19)



648 T.-C. Lin, J. Wei

Proof. Let R1 = 0, R2 = R, R2 = −R and

wRj = w(y − Rje1).

We choose v ∈ B, where

B = {v ∈ X | ‖v‖H 2 < δ1−2σ } (7.20)

and then expand

S1[uR + v] = �v1 − v1 + 3(wR1)2v1 + [(wR1 + v1)
3 − (wR1)3 − 3(wR1)2v1]

+δ[β̂12(w
R2 + v2)

2 + β̂13(w
R3 + v3)

2](wR1 + v1)

= L1v1 + H1[v1] + E1,

where

L1v1 = �v1 − v1 + 3(wR1)2v1,

E1 = δ[β̂12(w
R2 + v2)

2 + β̂13(w
R3 + v3)

2](wR1 + v1),

and

H1[v1] = [(wR1 + v1)
3 − (wR1)3 − 3(wR1)2v1] = O(|v1|2).

Here we have

E1 = O(δ)(wR2wR1 + wR3wR1) (7.21)

= O(δ)(w(|R1 − R2|) + w(|R1 − R3|)
= O(δ

5
4 −σ ).

Similarly,

S2[uR + v] = L2v2 + H2[v2] + E2,

S3[uR + v] = L3v3 + H3[v3] + E3,

where

L2v2 = �v2 − v2 + 3(wR2)2v2, (7.22)

L3v3 = �v3 − v3 + 3(wR3)2v3,

E2 = O(1)[δβ̂12(w
R1)2 +

√
δβ̂23(w

R3)2]wR2 ,

= O(δ
5
4 −σ + δ1−σ ) = O(δ1−σ ),

E3 = O(1)[δβ̂13(w
R1)2 +

√
δβ̂23(w

R2)2]wR3 = O(δ1−σ ),

H2[v2] = [(wR2 + v2)
3 − (wR2)3 − 3(wR2)2v2] = O(|v2|2),

H3[v3] = [(wR3 + v3)
3 − (wR3)3 − 3(wR3)2v3] = O(|v3|2).

Since L : K⊥
0 → C⊥

0 is invertible, solving (7.16)–(7.18) is equivalent to solving

� ◦ [Lv + H[v] + E] = 0 , v ∈ K⊥
0 , (7.23)
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where � is the orthogonal projection on C⊥
0 and v=(v1, v2, v3)

T , H[v]=(H1, H2, H3)
T ,

E = (E1, E2, E3)
T . Equation (7.23) can be written in the following form:

v = G[v] := (� ◦ L ◦ �
′
)−1[−H[v] − E], (7.24)

where �
′

is the orthogonal projection on K⊥
0 .

Since H[v] = O(|v|2) and E = O(δ1−σ ), it is easy to see that the map G defined at
(7.24) is a contraction map from B to B. By the contraction mapping theorem, (7.23)
has a unique solution vR = (vR

1 , vR
2 , vR

3 ) ∈ K⊥
0 with the property that

‖vR‖H 2(Rn) ≤ C‖E‖1−σ

L2(Rn)
(7.25)

≤ C(δ(1−σ)(1−σ))

≤ Cδ1−2σ .

The C1 property of vR follows from the uniqueness of vR . See a similar proof in Lemma
3.5 of [15].

Now we let

M[R] = E[uR + vR] : �δ → R1,

where vR is given by Proposition 1. We have

Lemma 9. For R ∈ �δ and δ sufficiently small, we have

M[R] = 3I [w] (7.26)

−1

2

[√
δβ̂23

∫

Rn

(wR)2(w−R)2 + 2δβ̂12

∫

Rn

w2(wR)2
]

+O

(

δ
3
2 + σ

2

)

.

Proof. We may calculate that

M[R] = E[uR + vR]

=
3∑

j= 1

{
1

2

[∫

Rn

| � (wRj + vR
j )|2 +

∫

Rn

(wRj + vR
j )2
]

−1

4

∫

Rn

(wRj + vR
j )4
}

−1

4

∑

i,j
i �=j

βij

∫

Rn

(wRi + vR
i )2(wRj + vR

j )2

= E[uR] +
3∑

j= 1

1

2

[∫

Rn

(| � vR
j |2 + (vR

j )2) − 3(wRj )2(vR
j )2
]

−1

2

∑

i,j
i �=j

βij

∫

Rn

[

wRi vR
i (wRj )2 + wRj vR

j (wRi )2
]

+O(δ2−4σ )

= E[uR] + O(δ2−4σ ) −
[

β23

(∫

Rn

vR
2 wR2(wR3)2 +

∫

Rn

vR
3 (wR3)(wR2)2

)]

= E[uR] + O(δ
3
2 + σ

2 ).

Here we have used the assumption (1.12), Eq. (1.13), and Proposition 1.
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Since

E[uR] = 3I [w] − 1

2

[√
δβ̂23

∫

Rn

(wR2)2(wR3)2

+δβ̂12

∫

Rn

(wR1)2(wR2)2 + δβ̂13

∫

Rn

(wR1)2(wR3)2
]

,

and β12 = β13, R2 = −R3, we obtain (7.26).

Next we have

Lemma 10. If Rδ ∈ (�δ)
0 – the interior of �δ is a critical point of M[R], then the

corresponding solution uδ = uRδ + vRδ
is a critical point of E[u].

Proof. Since Rδ ∈ (�δ)
0 – the interior of �δ is a critical point of M[R], we then have

d

dR
M[R]

∣
∣
∣
∣
R=Rδ

= 0

which is equivalent to

< ∇E[uR + vR],
d

dR
(uR + vR) >

∣
∣
∣
∣
R=Rδ

= 0.

Using Proposition 1, we obtain

cR

∫

Rn

∂wR

∂y1

d

dR
(wR + vR

2 ) − cR

∫

Rn

∂w−R

∂y1

d

dR
(w−R + vR

3 ) = 0 (7.27)

for R = Rδ . Note that since v ∈ K⊥
0 , we have

∫

Rn

[
∂wR

∂y1
vR

2 − ∂w−R

∂y1
vR

3

]

= 0. (7.28)

Differentiating (7.28) with respect to R, we obtain that
∫

Rn

[
∂wR

∂y1

d

dR
vR

2 − ∂w−R

∂y1

d

dR
vR

3

]

= −
∫

Rn

[
∂2wR

∂R∂y1
vR

2 − ∂2w−R

∂R∂y1
vR

3

]

= O(δ1−2σ ). (7.29)

On the other hand, we see that
∫

Rn

[
∂wR

∂y1

d

dR
(wR) − ∂w−R

∂y1

d

dR
(w−R)

]

= −2
∫

Rn

(
∂w

∂y1

)2

. (7.30)

From (7.27), (7.29) and (7.30), we deduce that

cR = 0, for R = Rδ, (7.31)

which then implies that the corresponding solution uδ = uRδ + vRδ
is a critical point

of E[u].
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Finally, we prove Theorem 4.

Proof of Theorem 4. We consider the following minimization problem:

M0 = min
R∈�̄δ

M[R], (7.32)

since M[R] is continuous and �̄δ is closed, M[R] attains its minimum at a Rδ ∈ �̄δ .
We claim that Rδ �∈ ∂�̄δ . Suppose not. That is Rδ ∈ ∂�̄δ . Then we have w(Rδ) =

δ
1
4 −σ .

Let

ρ(R) =
∫

Rn

w2(y)w2(y − Re1). (7.33)

Then from Lemma 9, we have

M[R] = 3I [w] − 1

2

√
δβ̂23ρ(2R) − δβ̂12ρ(R) + O(δ

3
2 + σ

2 ). (7.34)

By Lemma 6, ρ(2R) ≥ (ρ(R))2+ σ
4 and ρ(R) ≥ w2(R), we have for R = Rδ ,

−
√

δβ̂23ρ(2Rδ) − 2δβ̂12ρ(Rδ) ≥ −
√

δβ̂23(ρ(Rδ))2+ σ
4 − 2δβ̂12ρ(Rδ) (7.35)

≥ ρ(Rδ)

[√
δ(−β̂23)ρ

1+ σ
4 (Rδ) − 2δβ̂12

]

≥ ρ(Rδ)

[√
δδ( 1

2 −2σ)(1+ σ
4 )(−β̂23) − 2δβ̂12

]

> 2ρ(Rδ)δ1−σ ,

and thus by (7.34)

M[Rδ] > 3I [w] + ρ(Rδ)δ1−σ . (7.36)

On the other hand, by choosing R̄ ∈ �δ such that
√

δβ̂23ρ(2R̄) + δβ̂13ρ(R̄) = 0 , (7.37)

then we have

M[Rδ] ≤ M[R̄] ≤ 3I [w] − δβ̂12ρ(R̄) + O(δ
3
2 + σ

2 ) ≤ 3I [w], (7.38)

a contradiction to (7.36).
It remains to show that (7.37) is possible since from (7.37) we have

w2(R̄) ≤ ρ(R̄) ≤ Cδ
1
2 (1+ σ

4 )
−1

< δ
1
2 −2σ

and hence it is possible to have R̄ ∈ �δ , where C is a positive constant depending only
on β̂13 and β̂23. Here we have used the fact that

ρ(2R) ≥ (ρ(R))2+ σ
4 and ρ(R) ≥ w2(R) .

This proves that Rδ ∈ (�̄δ)
0. So Rδ is a critical point of M[R]. By Lemma 10, uδ =

uRδ + vRδ
is a critical point of E[u] and hence a bound state of (1.2).
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8. Proof of Corollary 1

In this section, we prove Corollary 1.
First, substituting uj = √

ξjw into Eq. (1.2), we obtain the following algebraic
equation

ξj +
∑

i �=j

βij ξi = 1, j = 1, 2, 3. (8.1)

Since by our assumption |βij | << 1, we see that solution to (8.1) exists and moreover,
we have

ξj = 1 −
∑

i �=j

βij + O(δ), j = 1, 2, 3. (8.2)

Now we compute

E[ur ] =
[ 3∑

j=1

(
ξj

2
−

ξ2
j

4
) − 1

4

∑

i,j
i �=j

βij ξiξj

]∫

Rn

w4

≥ 3

4

∫

Rn

w4 − 1

4

∑

i,j
i �=j

βij

∫

Rn

w4 + O(δ)

= 3

4

∫

Rn

w4 + 1

2

√
δ|β̂23|

∫

Rn

w4 + O(δ) . (8.3)

On the other hand, by (7.38), we have

E[uδ] <
3

4

∫

Rn

w4. (8.4)

From (8.3) and (8.4), we arrive at the following:

E[uδ] < E[ur ]. (8.5)

Now if we have a ground state solution uδ which is radially symmetric, we have to
show that for δ small, uδ = ur . In fact, since uδ is a ground state solution, we have that
uδ is uniformly bounded. Letting δ → 0, we see that uδ → u0 = (w, w, w)T . Thus
uδ − ur = o(1) as δ → 0.

To show that uδ = ur , we let uδ = ur + vδ . Then it is easy to see that vδ satisfies

�vδ,j − vδ,j + 3w2vδ,j + O(
√

δw|vδ| + |vδ|2) = 0, j = 1, 2, 3. (8.6)

Since the operator L1,1 is uniformly invertible in radially symmetric function class (by
Lemma 1) and vδ = o(1), we see that

vδ,j = L−1
1,1 ◦ O(

√
δw|vδ| + |vδ|2) = O(

√
δw|vδ| + |vδ|2), j = 1, 2, 3,

and hence vδ = 0 for δ small.
This proves Corollary 1. ��
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