Ground State of \boldsymbol{N} Coupled Nonlinear Schrödinger Equations in $\boldsymbol{R}^{n}, \boldsymbol{n} \leq \mathbf{3}$

Tai-Chia Lin ${ }^{1}$, Juncheng Wei ${ }^{2}$
${ }^{1}$ Department of Mathematics, National Taiwan University, Taipei, Taiwan, R.O.C. E-mail: tclin@math.ntu.edu.tw
${ }^{2}$ Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China. E-mail: wei@math.cuhk.edu.hk

Abstract

We establish some general theorems for the existence and nonexistence of ground state solutions of steady-state N coupled nonlinear Schrödinger equations. The sign of coupling constants $\beta_{i j}$'s is crucial for the existence of ground state solutions. When all $\beta_{i j}$'s are positive and the matrix Σ is positively definite, there exists a ground state solution which is radially symmetric. However, if all $\beta_{i j}$'s are negative, or one of $\beta_{i j}$'s is negative and the matrix Σ is positively definite, there is no ground state solution. Furthermore, we find a bound state solution which is non-radially symmetric when $N=3$.

1. Introduction

In this paper, we study solitary wave solutions of time-dependent N coupled nonlinear Schrödinger equations given by

$$
\left\{\begin{array}{l}
-i \frac{\partial}{\partial t} \Phi_{j}=\Delta \Phi_{j}+\mu_{j}\left|\Phi_{j}\right|^{2} \Phi_{j}+\sum_{i \neq j} \beta_{i j}\left|\Phi_{i}\right|^{2} \Phi_{j} \text { for } y \in R^{n}, t>0 \tag{1.1}\\
\Phi_{j}=\Phi_{j}(y, t) \in \mathbb{C}, \quad j=1, \ldots, N \\
\Phi_{j}(y, t) \rightarrow 0 \text { as }|y| \rightarrow+\infty, t>0
\end{array}\right.
$$

where $\mu_{j}>0$'s are positive constants, $n \leq 3$, and $\beta_{i j}$'s are coupling constants. The system (1.1) has applications in many physical problems, especially in nonlinear optics. Physically, the solution Φ_{j} denotes the $j^{t h}$ component of the beam in Kerr-like photorefractive media(cf. [1]). The positive constant μ_{j} is for self-focusing in the $j^{t h}$ component of the beam. The coupling constant $\beta_{i j}$ is the interaction between the $i^{t h}$ and the $j^{t h}$ component of the beam. As $\beta_{i j}>0$, the interaction is attractive, but the interaction is repulsive if $\beta_{i j}<0$. When the spatial dimension is one, i.e. $n=1$, the system (1.1) is integrable, and there are many analytical and numerical results on solitary wave solutions of the general N coupled nonlinear Schrödinger equations(cf. [8, 17-19]).

From physical experiment(cf. [23]), two dimensional photorefractive screening solitons and a two dimensional self-trapped beam were observed. It is natural to believe that there are two dimensional N-component $(N \geq 2)$ solitons and self-trapped beams. However, until now, there is no general theorem for the existence of high dimensional N -component solitons. Moreover, some general principles like the interaction and the configuration of two and three dimensional N-component solitons are unknown either. This may lead us to study solitary wave solutions of the system (1.1) for $n=2,3$. Here we develop some general theorems for N-component solitary wave solutions of the system (1.1) in two and three spatial dimensions.

To obtain solitary wave solutions of the system (1.1), we set $\Phi_{j}(y, t)=e^{i \lambda_{j} t} u_{j}(y)$ and we may transform the system (1.1) to steady-state N coupled nonlinear Schrödinger equations given by

$$
\left\{\begin{array}{l}
\Delta u_{j}-\lambda_{j} u_{j}+\mu_{j} u_{j}^{3}+\sum_{i \neq j} \beta_{i j} u_{i}^{2} u_{j}=0 \text { in } R^{n}, \tag{1.2}\\
u_{j}>0 \text { in } R^{n}, j=1, \ldots, N \\
u_{j}(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty
\end{array}\right.
$$

where $\lambda_{j}, \mu_{j}>0$ are positive constants, $n \leq 3$, and $\beta_{i j}$'s are coupling constants. Here we want to study the existence and the configuration of ground state solutions of the system (1.2). The existence of ground state solutions may depend on coupling constants $\beta_{i j}$'s. When all $\beta_{i j}$'s are positive and the matrix $\Sigma($ defined in (1.9)) is positively definite, there exists a ground state solution which is radially symmetric, i.e. $u_{j}(y)=u_{j}(|y|), j=1, \cdots, N$. Such a radially symmetric solution may support the existence of N circular self-trapped beams. However, if all $\beta_{i j}$'s are negative, or one of $\beta_{i j}$'s is negative and the matrix Σ is positively definite, there is no ground state solution. Furthermore, we find a bound state solution which is non-radially symmetric when $N=3$. We will prove these results in the rest of this paper.

Now we give the definition of ground state solutions as follows:
In the one component case ($N=1$), we may obtain a solution to (1.2) through the following minimization:

$$
\begin{equation*}
\inf _{\substack{u \geq 0 \\ u \in H^{1}\left(R^{n}\right)}} \frac{\int_{R^{n}}|\nabla u|^{2}+\lambda_{1} \int_{R^{n}} u^{2}}{\left(\int_{R^{n}} u^{4}\right)^{\frac{1}{2}}} . \tag{1.3}
\end{equation*}
$$

An equivalent formulation, called Nehari's manifold approach (see [6] and [7]), is to consider the following minimization problem:

$$
\inf _{u_{1} \in N_{1}} E\left[u_{1}\right],
$$

where

$$
\begin{equation*}
N_{1}=\left\{u \in H^{1}\left(R^{n}\right): u \not \equiv 0, \int_{R^{n}}|\nabla u|^{2}+\lambda_{1} \int_{R^{n}} u^{2}=\mu_{1} \int_{R^{n}} u^{4}\right\} . \tag{1.4}
\end{equation*}
$$

It is easy to see that (1.3) and (1.4) are equivalent. A solution obtained through (1.4) is called a ground state solution in the following sense: (1) $u>0$ and satisfies (1.2), (2)
$E[u] \leq E[v]$ for any other solution v of (1.2). Hereafter, we extend the definition of ground state solutions to N -component case. To this end, we define first

$$
\begin{align*}
& \mathbf{N}=\left\{\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right) \in\left(H^{1}\left(R^{n}\right)\right)^{N}: u_{j} \geq 0, u_{j} \not \equiv 0,\right. \tag{1.5}\\
&\left.\int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{j} \int_{R^{n}} u_{j}^{2}=\mu_{j} \int_{R^{n}} u_{j}^{4}+\sum_{i \neq j} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}, \quad j=1, \ldots, N\right\}
\end{align*}
$$

and consider the following minimization problem:

$$
\begin{equation*}
c=\inf _{u \in \mathbf{N}} E[\mathbf{u}], \tag{1.6}
\end{equation*}
$$

where the associated energy functional is given by

$$
\begin{align*}
E[\mathbf{u}]= & \sum_{j=1}^{N}\left(\frac{1}{2} \int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\frac{\lambda_{j}}{2} \int_{R^{n}} u_{j}^{2}-\frac{\mu_{j}}{4} \int_{R^{n}} u_{j}^{4}\right) \tag{1.7}\\
& -\frac{1}{4} \sum_{\substack{i, j=1, i \neq j}}^{N} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}
\end{align*}
$$

for

$$
\begin{equation*}
\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right) \in\left(H^{1}\left(R^{n}\right)\right)^{N} \tag{1.8}
\end{equation*}
$$

Since $n \leq 3$, by Sobolev embedding, $E[\mathbf{u}]$ is well-defined. A minimizer $\mathbf{u}^{0}=\left(u_{1}^{0}, \ldots\right.$, u_{N}^{0}) of (1.6), if it exists, is called a ground state solution of (1.2), and it may have the following properties:

1. $u_{j}^{0}>0, \forall j$, and \mathbf{u}^{0} satisfies (1.2);
2. $E\left[u_{1}^{0}, \ldots, u_{N}^{0}\right] \leq E\left[v_{1}, \ldots, v_{N}\right]$ for any other solution $\left(v_{1}, \ldots, v_{N}\right)$ of (1.2).

It is natural to ask when the ground state solution exists. As $N=1$, the existence of the ground state solution is trivial (see [6]). However, the existence of the ground state solution with multi-components is quite complicated.

For general $N \geq 2$, we introduce the following auxiliary matrix:

$$
\begin{equation*}
\sum=\left(\left|\beta_{i j}\right|\right), \text { where we set } \beta_{i i}=\mu_{i} \tag{1.9}
\end{equation*}
$$

Our first theorem concerns the all repulsive case:
Theorem 1. If $\beta_{i j}<0, \forall i \neq j$, then the ground state solution doesn't exist, i.e. c defined at (1.6) can not be attained.

Our second theorem concerns the all attractive case.
Theorem 2. If $\beta_{i j}>0, \forall i \neq j$, and the matrix \sum (defined at (1.9)) is positively definite, then there exists a ground state solution $\left(u_{1}^{0}, \ldots, u_{N}^{0}\right)$. All u_{j}^{0} must be positive, radially symmetric and strictly decreasing.

When attraction and repulsion coexist, i.e. some of $\beta_{i j}$'s are positive but some of them are negative, things become very complicated. Our third theorem shows that if one state is repulsive to all the other states, then the ground state solution doesn't exist.

Theorem 3. If there exists an i_{0} such that

$$
\begin{equation*}
\beta_{i_{0} j}<0, \forall j \neq i_{0}, \text { and } \beta_{i j}>0, \forall i \neq i_{0}, j \notin\left\{i, i_{0}\right\} \tag{1.10}
\end{equation*}
$$

and assume that the matrix Σ is positively definite, then the ground state solution to (1.2) doesn't exist.

Finally, we discuss the existence of bound states, that is, solutions of (1.2) with finite energy. We show that if repulsion is stronger than attraction, there may be non-radial bound states. To simplify our computations, we choose

$$
\begin{equation*}
N=3, \quad \lambda_{1}=\lambda_{2}=\lambda_{3}=\mu_{1}=\mu_{2}=\mu_{3}=1 \tag{1.11}
\end{equation*}
$$

Theorem 4. Assume that $N=3$ and

$$
\begin{equation*}
\beta_{12}=\delta \hat{\beta}_{12}=\beta_{13}=\delta \hat{\beta}_{13}>0, \quad \beta_{23}=\sqrt{\delta} \hat{\beta}_{23}<0 \tag{1.12}
\end{equation*}
$$

Thenfor δ sufficiently small, problem (1.2) admits a non-radial solution $\mathbf{u}^{\delta}=\left(u_{1}^{\delta}, u_{2}^{\delta}, u_{3}^{\delta}\right)$ with the following properties:

$$
u_{1}^{\delta}(y) \sim w(y), \quad u_{2}^{\delta}(y) \sim w\left(y-R^{\delta} e_{1}\right), \quad u_{3}^{\delta}(y) \sim w\left(y+R^{\delta} e_{1}\right),
$$

where

$$
R^{\delta} \sim \log \frac{1}{\delta}, \quad e_{1}=(1,0, \ldots, 0)^{T}
$$

and w is the unique solution of the following problem:

$$
\left\{\begin{array}{l}
\Delta w-w+w^{3}=0 \text { in } R^{n} \tag{1.13}\\
w>0 \text { in } R^{n}, w(0)=\max _{y \in R^{n}} w(y) \\
w(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty
\end{array}\right.
$$

Graphically, we have

Note that under condition (1.12), there is also a radially symmetric solution \mathbf{u}^{r} of the following form:

$$
\mathbf{u}^{r}=\left(u_{1}^{r}, u_{2}^{r}, u_{3}^{r}\right), u_{j}^{r}=\sqrt{\xi_{j}} w(y), j=1,2,3
$$

where ξ_{j} satisfies

$$
\begin{equation*}
\xi_{j}+\sum_{i \neq j} \beta_{i j} \xi_{i}=1, \quad j=1,2,3 \tag{1.14}
\end{equation*}
$$

Then we have
Corollary 1. Assume that $N=3$ and (1.12) holds. Then for δ sufficiently small, we have

$$
\begin{equation*}
E\left[\mathbf{u}^{\delta}\right]<E\left[\mathbf{u}^{r}\right], \tag{1.15}
\end{equation*}
$$

where \mathbf{u}^{δ} is constructed in Theorem 3. As a consequence, if the ground state solution exists, it must be non-radially symmetric.

It is known that (1.2) admits many radially symmetric bound states (see [17] and [18]). Theorem 4 suggests that there are many non-radially symmetric bound states which have lower energy than radially symmetric bound states. We consider the applications of Theorems $1-3$ to simple cases $N=2$ and $N=3$.

For the case $N=2$, we have
Corollary 2. If $N=2$, then

1. for $\beta_{12}<0$, the ground state solution doesn't exist,
2. for $0<\beta_{12}<\sqrt{\mu_{1} \mu_{2}}$, the ground state solution exists.

For the case $N=3$, the matrix Σ becomes

$$
\Sigma=\left(\begin{array}{ccc}
\mu_{1} & \left|\beta_{12}\right| & \left|\beta_{13}\right| \\
\left|\beta_{12}\right| & \mu_{2} & \left|\beta_{23}\right| \\
\left|\beta_{13}\right| & \left|\beta_{23}\right| & \mu_{3}
\end{array}\right) .
$$

Assume that $\beta_{i j} \neq 0$. Then we may divide into four cases given by
Case I: all repulsive: $\beta_{12}<0, \beta_{13}<0, \beta_{23}<0$,
Case II: all attractive: $\beta_{12}>0, \beta_{13}>0, \beta_{23}>0$,
Case III: two repulsive and one attractive: $\beta_{12}<0, \beta_{13}<0, \beta_{23}>0$,
Case IV: one repulsive and two attractive: $\beta_{12}>0, \beta_{13}>0, \beta_{23}<0$.
For Case I-III, we have a complete picture
Corollary 3. If $N=3$, then

1. for Case I, the ground state solution doesn't exist,
2. for Case II and assume Σ is positively definite, the ground state solution exists,
3. for Case III and assume Σ is positively definite, the ground state solution doesn't exist.

It then remains only to consider Case IV. Due to the existence of non-radial bound states in Theorem 4 and non-radial property of ground states in Corollary 1, Case IV becomes very complicated. Our results here will be very useful in the study of (1.2) for bounded domains which relates to multispecies Bose-Einstein condensates, and in the study of solitary wave solutions of N coupled nonlinear Schrödinger equations with trap potentials:

$$
\left\{\begin{array}{l}
\Delta u_{j}-V_{j}(x) u_{j}+\mu_{j} u_{j}^{3}+\sum_{i \neq j} \beta_{i j} u_{i}^{2} u_{j}=0, \quad x \in R^{n}, \tag{1.16}\\
u_{j}>0 \text { in } R^{n}, j=1, \ldots, N, \\
u_{j}(x) \rightarrow 0 \text { as }|x| \rightarrow+\infty
\end{array}\right.
$$

The main idea in proving Theorem 1-3 is by Nehari's manifold approach and Schwartz symmetrization technique. Theorem 4 is proved by the Liapunov-Schmidt reduction method combined with the variational method. The organization of the paper is as follows: In Sect. 2, we collect some properties of the function w-solution of (1.13) and Schwartz symmetrization. In Sect. 3, we state another equivalent approach of Nehari's method which is more useful in our proofs. It is here that we need that the matrix Σ is positively definite. The proofs of Theorems 1, 2, 3, 4 are given in Sects. 4, 5, 6, 7, respectively. Section 8 contains the proof of Corollary 1.

2. Some Preliminaries

In this section, we analyze some problems in R^{n}. Recall that w is the unique solution of (1.13). By Gidas-Ni-Nirenberg's Theorem, [14], w is radially symmetric. By a theorem of Kwong [20], w is unique. Moreover, we have

$$
w^{\prime}(|y|)<0 \text { for }|y|>0
$$

and

$$
\begin{gather*}
w(|y|)=A_{n} r^{-\frac{n-1}{2}} e^{-r}\left(1+O\left(\frac{1}{r}\right)\right), \text { as } r=|y| \rightarrow+\infty \tag{2.1}\\
w^{\prime}(|y|)=-A_{n} r^{-\frac{n-1}{2}} e^{-r}\left(1+O\left(\frac{1}{r}\right)\right), \text { as } r=|y| \rightarrow+\infty \tag{2.2}
\end{gather*}
$$

We denote the energy of w as

$$
\begin{equation*}
I[w]=\frac{1}{2} \int_{R^{n}}|\nabla w|^{2}+\frac{1}{2} \int_{R^{n}} w^{2}-\frac{1}{4} \int_{R^{n}} w^{4} . \tag{2.3}
\end{equation*}
$$

Let $w_{\lambda, \mu}$ be the unique solution to the following problem:

$$
\left\{\begin{array}{l}
\Delta w_{\lambda, \mu}-\lambda w_{\lambda, \mu}+\mu w_{\lambda, \mu}^{3}=0 \text { in } R^{n} \\
w_{\lambda, \mu}>0, w_{\lambda, \mu}(0)=\max _{y \in R^{n}} w_{\lambda, \mu}(y) \\
w_{\lambda, \mu}(y) \rightarrow 0 \text { as }|y| \rightarrow+\infty
\end{array}\right.
$$

It is easy to see that

$$
\begin{equation*}
w_{\lambda, \mu}(y)=\sqrt{\frac{\lambda}{\mu}} w(\sqrt{\lambda}|y|) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \int_{R^{n}}\left|\nabla w_{\lambda, \mu}\right|^{2}+\frac{\lambda}{2} \int_{R^{n}} w_{\lambda, \mu}^{2}-\frac{\mu}{4} \int_{R^{n}} w_{\lambda, \mu}^{4}=\lambda^{\frac{4-n}{2}} \mu^{-1} I[w] . \tag{2.5}
\end{equation*}
$$

We now collect some of the properties of $w_{\lambda, \mu}$.
Lemma 1.(1) $w(|y|)$ is the unique solution to the following minimization problem:

$$
\begin{equation*}
\inf _{\substack{u \in H^{1}\left(R^{n}\right), u \geq 0}} \frac{\int_{R^{n}}|\nabla u|^{2}+\int_{R^{n}} u^{2}}{\left(\int_{R^{n}} u^{4}\right)^{\frac{1}{2}}} . \tag{2.6}
\end{equation*}
$$

(2) The following eigenvalue problem:

$$
\left\{\begin{array}{l}
\Delta \phi-\lambda \phi+3 \mu w_{\lambda, \mu}^{2} \phi=\beta \phi \tag{2.7}\\
\phi \in H^{2}\left(R^{n}\right)
\end{array}\right.
$$

admits the following set of eigenvalues:

$$
\beta_{1}>0=\beta_{2}=\ldots=\beta_{n+1}>\beta_{n+2} \geq \ldots,
$$

where the eigenfunctions corresponding to the zero eigenvalue are spanned by

$$
\begin{equation*}
K_{0}:=\operatorname{span}\left\{\frac{\partial w_{\lambda, \mu}}{\partial y_{j}}, j=1, \ldots, n\right\}=C_{0} \tag{2.8}
\end{equation*}
$$

As a result, the following map:

$$
L_{\lambda, \mu} \phi:=\Delta \phi-\lambda \phi+3 \mu w_{\lambda, \mu}^{2} \phi
$$

is invertible from $K_{0}^{\perp} \rightarrow C_{0}^{\perp}$ where

$$
\begin{gather*}
K_{0}^{\perp}=\left\{u \in H^{2}\left(R^{n}\right) \left\lvert\, \int_{R^{n}} u \frac{\partial w_{\lambda, \mu}}{\partial y_{j}}=0\right., j=1, \cdots, n\right\}, \tag{2.9}\\
C_{0}^{\perp}=\left\{u \in L^{2}\left(R^{n}\right) \left\lvert\, \int_{R^{n}} u \frac{\partial w_{\lambda, \mu}}{\partial y_{j}}=0\right., j=1, \cdots, n\right\} . \tag{2.10}
\end{gather*}
$$

Proof. (1) follows from the uniqueness of w (cf. [20]). (2) follows from Theorem 2.12 of [22] and Lemma 4.2 of [24].

Set also

$$
\begin{equation*}
I_{\lambda, \mu}[u]=\frac{1}{2} \int_{R^{n}}|\nabla u|^{2}+\frac{\lambda}{2} \int_{R^{n}} u^{2}-\frac{\mu}{4} \int_{R^{n}} u^{4} \tag{2.11}
\end{equation*}
$$

We then have
Lemma 2. $\inf _{u \in N_{\lambda, \mu}} I_{\lambda, \mu}[u]$ is attained only by $w_{\lambda, \mu}$, where

$$
\begin{equation*}
N_{\lambda, \mu}=\left\{\left.u \in H^{1}\left(R^{n}\right)\left|\int_{R^{n}}\right| \nabla u\right|^{2}+\lambda \int_{R^{n}} u^{2}=\mu \int_{R^{n}} u^{4}\right\} . \tag{2.12}
\end{equation*}
$$

Proof. It is easy to see that $\inf _{u \in N_{\lambda, \mu}} I_{\lambda, \mu}[u]$ is equivalent to

$$
\inf _{\substack{u \geq 0, u \in H^{1}\left(R^{n}\right)}} \frac{\int_{R^{n}}|\nabla u|^{2}+\lambda \int_{R^{n}} u^{2}}{\left(\int_{R^{n}} u^{4}\right)^{\frac{1}{2}}} .
$$

The rest follows from (1) of Lemma 1.
The next lemma is not so trivial.
Lemma 3. $\inf _{u \in N_{\lambda, \mu}^{\prime}} I_{\lambda, \mu}[u]$ is also attained only by $w_{\lambda, \mu}$,
where

$$
\begin{equation*}
N_{\lambda, \mu}^{\prime}=\left\{\left.u \in H^{1}\left(R^{n}\right)\left|\int_{R^{n}}\right| \nabla u\right|^{2}+\lambda \int_{R^{n}} u^{2} \leq \mu \int_{R^{n}} u^{4}\right\} . \tag{2.13}
\end{equation*}
$$

Proof. Let u_{k} be a minimizing sequence and u_{k}^{*} be its Schwartz symmetrization. Then by the property of symmetrization

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla u_{k}^{*}\right|^{2}+\lambda \int_{R^{n}}\left(u_{k}^{*}\right)^{2} \leq \int_{R^{n}}\left|\nabla u_{k}\right|^{2}+\lambda \int_{R^{n}} u_{k}^{2} \leq \mu \int_{R^{n}} u_{k}^{4}=\mu \int_{R^{n}}\left(u_{k}^{*}\right)^{4}, \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\lambda, \mu}\left[u_{k}^{*}\right] \leq I_{\lambda, \mu}\left[u_{k}\right] . \tag{2.15}
\end{equation*}
$$

Hence, we may assume that u_{k} is radially symmetric and decreasing. Since $u_{k} \in H^{1}\left(R^{n}\right)$, and u_{k} is strictly decreasing, it is well-known that

$$
\begin{equation*}
u_{k}(r) \leq C r^{-\frac{N-1}{2}}\left\|u_{k}\right\|_{H^{1}} \tag{2.16}
\end{equation*}
$$

So $u_{k} \rightarrow u_{0}$ (up to a subsequence) in $L^{4}\left(R^{n}\right)$, where u_{0} is also radially symmetric and decreasing. Moreover, by Fatou's Lemma, $u_{0} \in N_{\lambda, \mu}^{\prime}$. Hence $\inf _{u \in N_{\lambda, \mu}^{\prime}} I_{\lambda, \mu}[u]$ can be attained by u_{0}.

We then claim that

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla u_{0}\right|^{2}+\lambda \int_{R^{n}} u_{0}^{2}=\mu \int_{R^{n}} u_{0}^{4} . \tag{2.17}
\end{equation*}
$$

Suppose not. That is

$$
\int_{R^{n}}\left|\nabla u_{0}\right|^{2}+\lambda \int_{R^{n}} u_{0}^{2}<\mu \int_{R^{n}} u_{0}^{4}
$$

Then $u_{0} \in\left(N_{\lambda, \mu}^{\prime}\right)^{0}$ - the interior of $N_{\lambda, \mu}^{\prime}$. By standard elliptic theory, u_{0} is a critical point of $I_{\lambda, \mu}[u]$, i.e.

$$
\begin{equation*}
\nabla I_{\lambda, \mu}\left[u_{0}\right]=0, \tag{2.18}
\end{equation*}
$$

where " ∇ " means the derivative.
Multiplying (2.18) by u_{0}, we have $\int_{R^{n}}\left|\nabla u_{0}\right|^{2}+\lambda \int_{R^{n}} u_{0}^{2}=\mu \int_{R^{n}} u_{0}^{4}$ a contradiction. Hence $u_{0} \in N_{\lambda, \mu}$. By Lemma 2, $u_{0}=\sqrt{\frac{\lambda}{\mu}} w(\sqrt{\lambda}|y|)=w_{\lambda, \mu}(y)$.

We present another characterization of $w_{\lambda, \mu}$:

Lemma 4.

$$
\inf _{u \in N_{\lambda, \mu}} I_{\lambda, \mu}[u]=\inf _{\substack{u \geq 0 \\ u \in H^{1}\left(R^{n}\right)}} \sup _{t>0} I_{\lambda, \mu}[t u] .
$$

Proof. This follows from a simple scaling.
Finally, we recall the following well-known result, whose proof can be found in Theorem 3.4 of [21].

Lemma 5. Let $u \geq 0, v \geq 0, u, v \in H^{1}\left(R^{n}\right)$ and u^{*}, v^{*} be their Schwartz Symmetrization. Then

$$
\int_{R^{n}} u v \leq \int_{R^{n}} u^{*} v^{*}
$$

Our last lemma concerns some integrals.
Lemma 6. Let $y_{1} \neq y_{2} \in R^{n}$. Then as $\left|y_{1}-y_{2}\right| \rightarrow+\infty$, we have for $\lambda_{1}<\lambda_{2}$,
$\int_{R^{n}} w_{\lambda_{1}, \mu_{1}}^{2}\left(y-y_{1}\right) w_{\lambda_{2}, \mu_{2}}^{2}\left(y-y_{2}\right) \sim w_{\lambda_{1}, \mu_{1}}^{2}\left(y_{1}-y_{2}\right) \int_{R^{n}} w_{\lambda_{2}, \mu_{2}}^{2}(z) e^{2 \sqrt{\lambda_{1}}\left|z, \frac{y_{1}-y_{2}}{y_{1}-y_{2} \mid}\right\rangle} d z$.

If $\lambda_{1}=\lambda_{2}$, then

$$
\begin{equation*}
w_{\lambda_{1}, \mu_{1}}^{2+\sigma}\left(y_{1}-y_{2}\right) \leq \int_{R^{n}} w_{\lambda_{1}, \mu_{1}}^{2}\left(y-y_{1}\right) w_{\lambda_{2}, \mu_{2}}^{2}\left(y-y_{2}\right) \leq w_{\lambda_{1}, \mu_{1}}^{2-\sigma}\left(y_{1}-y_{2}\right) \tag{2.20}
\end{equation*}
$$

for any $0<\sigma<1$.
Proof. Let $y=y_{2}+z$. Then from (2.1), we have

$$
\begin{aligned}
& w_{\lambda_{1}, \mu_{1}}^{2}\left(y-y_{1}\right) w_{\lambda_{2}, \mu_{2}}^{2}\left(y-y_{2}\right) \\
= & w_{\lambda_{1}, \mu_{1}}^{2}\left(y_{2}-y_{1}+z\right) w_{\lambda_{2}, \mu_{2}}^{2}\left(y-y_{2}\right) \\
= & w_{\lambda_{1}, \mu_{1}}^{2}\left(y_{2}-y_{1}\right) e^{2 \sqrt{\lambda_{1}}\left(\left|y_{2}-y_{1}\right|-\left|y_{2}-y_{1}+z\right|\right)}(1+o(1)) w_{\lambda_{2}, \mu_{2}}^{2}\left(y-y_{2}\right) \\
= & \left.w_{\lambda_{1}, \mu_{1}}^{2}\left(y_{1}-y_{2}\right)(1+o(1)) e^{2 \sqrt{\lambda_{1}}\left|z, \frac{y_{1}-y_{2}}{\left|y_{1}-y_{2}\right|}\right|}\right\rangle_{\lambda_{2}, \mu_{2}}^{2}(z) .
\end{aligned}
$$

Hence by Lebesgue Dominated Convergence Theorem gives (2.19). The proof of (2.20) is similar.

3. Nehari's Manifold Approach

In this section, we consider the relation between two minimization problems
Problem 1.

$$
\begin{equation*}
c=\inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}] \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{N}=\{u & \left.\in\left(H^{1}\left(R^{n}\right)\right)^{N}\left|\int_{R^{n}}\right| \nabla u_{j}\right|^{2}+\lambda_{j} \int_{R^{n}} u_{j}^{2}=\mu_{j} \int_{R^{n}} u_{j}^{4} \\
& \left.+\sum_{i \neq j} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}, j=1, \ldots, N\right\} .
\end{aligned}
$$

Problem 2.

$$
\begin{equation*}
m=\inf _{\mathbf{u} \geq 0} \sup _{t_{1}, \ldots, t_{N}>0} E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right] \tag{3.2}
\end{equation*}
$$

We have
Theorem 5. Suppose either $\beta_{i j}<0, \forall i \neq j$, or the matrix Σ defined by

$$
\Sigma=\left(\left|\beta_{i j}\right|\right) \text { with } \beta_{i i}=\mu_{i}
$$

is positively definite. Then

$$
c=\inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}]=m=\inf _{\mathbf{u} \geq 0} \sup _{t_{1}, \ldots, t_{N}>0} E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right] .
$$

Proof. We consider the following function

$$
\beta\left(t_{1}, \ldots, t_{N}\right)=E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right] .
$$

First we assume $\mathbf{u} \in \mathbf{N}$.
Claim 1. $\beta\left(t_{1}, \ldots, t_{N}\right)$ attains its global maximum at $t_{1}=\ldots=t_{N}=1$. In fact,

$$
\beta\left(t_{1}, \ldots, t_{N}\right)=\sum_{j=1}^{N} t_{j}\left[\int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right]-Q\left[t_{1}, \ldots, t_{N}\right],
$$

where

$$
\begin{aligned}
Q\left[t_{1}, \ldots, t_{N}\right] & =\frac{1}{4} \sum_{j=1}^{N} \mu_{j} t_{j}^{2} \int_{R^{n}} u_{j}^{4}+\frac{1}{4} \sum_{\substack{i, j=1, i \neq j}}^{N} \beta_{i j} t_{i} t_{j} \int_{R^{n}} u_{i}^{2} u_{j}^{2} \\
& =\frac{1}{4} \mathbf{t}^{T} \Sigma^{\prime} \mathbf{t}
\end{aligned}
$$

where $\mathbf{t}=\left(t_{1}, \ldots, t_{N}\right)^{T}$ and

$$
\begin{equation*}
\Sigma^{\prime}=\left(\beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}\right) . \tag{3.3}
\end{equation*}
$$

If $\beta_{i j}<0, \forall i \neq j$, then since $\mathbf{u} \in \mathbf{N}$, we have

$$
\mu_{j} \int_{R^{n}} u_{j}^{4}+\sum_{i \neq j} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}=\int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{j} \int_{R^{n}} u_{j}^{2}>0 .
$$

Moreover, we see that the matrix Σ^{\prime} is diagonally dominant and hence Σ^{\prime} is positively definite.

If $\beta_{i j}>0$ for all $i \neq j$, then for $t_{j}>0, j=1, \ldots, N$,

$$
\begin{aligned}
Q\left[t_{1}, \ldots, t_{N}\right] & =\frac{1}{4}\left[\sum_{i, j} \beta_{i j} t_{i} t_{j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}\right] \\
& \geq \frac{1}{4}\left[\sum_{j=1}^{N} \mu_{j} t_{j}^{2} \int_{R^{n}} u_{j}^{4}\right]-\frac{1}{4} \sum_{\substack{i, j=1, i \neq j}}^{N}\left|\beta_{i j}\right|\left(\int_{R^{n}} u_{i}^{4}\right)^{\frac{1}{2}}\left(\int_{R^{n}} u_{j}^{4}\right)^{\frac{1}{2}} t_{i} t_{j} \\
& >0 .
\end{aligned}
$$

Again, $Q\left[t_{1}, \ldots, t_{N}\right]$ is positively-definite. Thus $\beta\left(t_{1}, \ldots, t_{N}\right)$ is concave and hence there exists a unique critical point. Since $\mathbf{u} \in \mathbf{N},(1 \ldots, 1)$ is a critical point. So we complete the proof of Claim 1.

From Claim 1, we deduce that

$$
\begin{equation*}
\inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}] \geq \inf _{\mathbf{u} \geq 0} \sup _{t_{1}, \ldots, t_{N}} E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right] . \tag{3.4}
\end{equation*}
$$

On the other hand, suppose that

$$
\sup _{t_{1}, \ldots, t_{N}} E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right]=\beta\left(t_{1}^{0}, \ldots, t_{N}^{0}\right)<+\infty
$$

where $\mathbf{u}=\left(u_{1}, \cdots, u_{N}\right) \geq 0$. Certainly, $\left(t_{1}^{0}, \ldots, t_{N}^{0}\right)$ is a critical point of $\beta\left(t_{1}, \ldots, t_{N}\right)$ and hence $\left(u_{1}^{0}, \ldots, u_{N}^{0}\right) \equiv\left(\sqrt{t_{1}^{0}} u_{1}, \ldots, \sqrt{t_{N}^{0}} u_{N}\right) \in \mathbf{N}$. So

$$
E\left[u_{1}^{0}, \ldots, u_{N}^{0}\right]=\beta\left(t_{1}^{0}, \ldots, t_{N}^{0}\right) \geq \inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}]
$$

which proves

$$
\begin{equation*}
c=\inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}] \leq m=\inf _{\mathbf{u} \geq 0} \sup _{t_{1}, \ldots, t_{N}} E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right] . \tag{3.5}
\end{equation*}
$$

Combining (3.4) and (3.5), we obtain Theorem 5.

4. Proof of Theorem 1

In this section, we prove Theorem 1.
First by Theorem 5,

$$
c=\inf _{\mathbf{u} \geq 0} \sup _{t_{1}, \ldots, t_{N}} E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right] .
$$

Now we choose

$$
\begin{equation*}
u_{j}(y):=w_{\lambda_{j}, \mu_{j}}\left(y-j R e_{1}\right), \quad j=1, \ldots, N \tag{4.1}
\end{equation*}
$$

where $R \gg 1$ is a large number and $e_{1}=(1,0, \ldots, 0)^{T}$.
By choosing R large enough and applying Lemma 5, we obtain that

$$
\begin{aligned}
\int_{R^{n}} u_{i}^{2} u_{j}^{2} & =\int_{R^{n}} w_{\lambda_{i}, \mu_{i}}^{2}\left(y-i R e_{1}\right) w_{\lambda_{j}, \mu_{j}}^{2}\left(y-j R e_{1}\right) \\
& =\int_{R^{n}} w_{\lambda_{i}, \mu_{i}}^{2}(y) w_{\lambda_{j}, \mu_{j}}^{2}\left(y+(i-j) R e_{1}\right) d y \rightarrow 0
\end{aligned}
$$

as $R \rightarrow+\infty$.
Let $\left(t_{1}^{R}, \ldots, t_{N}^{R}\right)$ be the critical point of $\beta\left(t_{1}, \ldots, t_{N}\right)$. Then we have

$$
\int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{j} \int_{R^{n}} u_{j}^{2}=\mu_{j} t_{j}^{R} \int_{R^{n}} u_{j}^{4}+\sum_{i \neq j} \beta_{i j} t_{i}^{R} \int_{R^{n}} u_{i}^{2} u_{j}^{2}
$$

since the matrix $\left(\beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}\right)$ is positively definite (similar to arguments in Sect. 3), by implicit function theorem

$$
t_{j}^{R}=1+o(1)
$$

Thus

$$
\begin{equation*}
c \leq \lim _{R \rightarrow+\infty} \beta\left(t_{1}^{R}, \ldots, t_{N}^{R}\right)=\sum_{j=1}^{N}\left[\frac{1}{2}\left(\int_{R^{n}}\left|\nabla w_{j}\right|^{2}+\lambda_{j} w_{j}^{2}\right)-\frac{\mu_{j}}{4} \int_{R^{n}} w_{j}^{4}\right] \tag{4.2}
\end{equation*}
$$

Next we claim that

$$
\begin{equation*}
c \geq \sum_{j=1}^{N}\left[\frac{1}{2}\left(\int_{R^{n}}\left|\nabla w_{j}\right|^{2}+\lambda_{j} w_{j}^{2}\right)-\frac{\mu_{j}}{4} \int_{R^{n}} w_{j}^{4}\right] . \tag{4.3}
\end{equation*}
$$

In fact, let $\left(u_{1}, \ldots, u_{N}\right) \in \mathbf{N}$, then since $\beta_{i j}<0, \forall i \neq j$,

$$
\begin{align*}
E\left[u_{1}, \ldots, u_{N}\right] & \geq \sum_{j=1}^{n}\left[\frac{1}{2}\left(\int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right)-\frac{\mu_{j}}{4} \int_{R^{n}} u_{j}^{4}\right] \tag{4.4}\\
& =\sum_{j=1}^{n} I_{\lambda_{j}, \mu_{j}}\left[u_{j}\right]
\end{align*}
$$

and

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2} \leq \mu_{j} \int_{R^{n}} u_{j}^{4} . \tag{4.5}
\end{equation*}
$$

By Lemma 2,

$$
\begin{align*}
E\left[u_{1}, \ldots, u_{N}\right] & \geq \sum_{j=1}^{n} I_{\lambda_{j}, \mu_{j}}\left[u_{j}\right] \tag{4.6}\\
& \geq \sum_{j=1}^{n} \inf _{w \in \mathbf{N}_{\lambda_{j}, \mu_{j}}^{\prime}} I_{\lambda_{j}, \mu_{j}}[w] \\
& =\sum_{j=1}^{N} I_{\lambda_{j}, \mu_{j}}\left[w_{\lambda_{j}, \mu_{j}}\right]
\end{align*}
$$

which proves (4.3). Hence

$$
\begin{equation*}
c=\sum_{j=1}^{N} I_{\lambda_{j}, \mu_{j}}\left[w_{\lambda_{j}, \mu_{j}}\right] . \tag{4.7}
\end{equation*}
$$

If c is attained by some $\left(u_{1}^{0}, \ldots, u_{N}^{0}\right)$, then $=\left(u_{1}^{0}, \ldots, u_{N}^{0}\right) \in \mathbf{N}$ and u_{j}^{0} is a solution of (1.2). By the Maximum Principle, $u_{j}^{0}>0, j=1, \ldots, N$. Then we have

$$
\begin{equation*}
c=E\left[u_{1}^{0}, \ldots, u_{N}^{0}\right]>\sum_{j=1}^{N} I_{\lambda_{j}, \mu_{j}}\left[u_{j}^{0}\right] \geq \sum_{j=1}^{N} I_{\lambda_{j}, \mu_{j}}\left[w_{\lambda_{j}, \mu_{j}}\right] \tag{4.8}
\end{equation*}
$$

which contradicts (4.7), and we may complete the proof of Theorem 1.

5. Proof of Theorem 2

Now we prove Theorem 2 in this section. Our main idea is by Schwartz symmetrization.
For $u_{j} \geq 0, u_{j} \in H^{1}\left(R^{n}\right)$, we denote u_{j}^{*} as its Schwartz symmetrization. By Lemma 6 , for $i \neq j$

$$
\begin{equation*}
\int_{R^{n}} u_{i}^{2} u_{j}^{2} \leq \int_{R^{n}}\left(u_{i}^{*}\right)^{2}\left(u_{j}^{*}\right)^{2} . \tag{5.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
E\left[u_{1}^{*}, \ldots, u_{N}^{*}\right] \leq E\left[u_{1}, \ldots, u_{N}\right] . \tag{5.2}
\end{equation*}
$$

The new function $\mathbf{u}^{*}=\left(u_{1}^{*}, \ldots, u_{N}^{*}\right)$ will satisfy the following inequalities:

$$
\begin{align*}
& \int_{R^{n}}\left|\nabla u_{j}^{*}\right|^{2}+\lambda_{1} \int_{R^{n}}\left(u_{j}^{*}\right)^{2}-\sum_{i \neq j} \beta_{i j} \int_{R^{n}}\left(u_{i}^{*}\right)^{2}\left(u_{j}^{*}\right)^{2} \tag{5.3}\\
\leq & \mu_{j} \int_{R^{n}}\left(u_{j}^{*}\right)^{4}
\end{align*}
$$

(by (5.1) and the fact that $\beta_{i j}>0$).

Therefore, we have

$$
c=\inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}] \geq \inf _{\mathbf{u} \in \mathbf{N}^{\prime}} E[\mathbf{u}]:=c^{\prime},
$$

where

$$
\begin{align*}
\mathbf{N}^{\prime}= & \left\{\left.\mathbf{u} \in\left(H^{1}\left(R^{n}\right)\right)^{N}\left|\int_{R^{n}}\right| \nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right. \\
& \left.\leq \mu_{j} \int_{R^{n}} u_{j}^{4}+\sum_{i \neq j} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}, j=1, \ldots, N\right\} . \tag{5.4}
\end{align*}
$$

We first study c^{\prime} and then we show that $c^{\prime}=c$.
By the previous argument, we may assume any minimizing sequence $\left(u_{1}, \ldots, u_{N}\right)$ of c^{\prime} must be radially symmetric and decreasing. We follow the proof of Lemma 2 to conclude that a minimizer for c^{\prime} exists and must be radially symmetric and decreasing. Moreover, we have

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{j} u_{j}^{2} \leq \mu_{j} \int_{R^{n}} u_{j}^{4}+\sum_{i \neq j} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}, \quad j=1, \ldots, N \tag{5.5}
\end{equation*}
$$

If all the inequalities of (5.5) are strict, then as for the proof of Lemma 2, we may have a contradiction. So we may assume at least one of (5.5) is an equality. Without loss of generality, we may assume that

$$
\begin{align*}
G_{j}[u]:= & \int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{j} \int_{R^{n}} u_{j}^{2}-\mu_{j} \int_{R^{n}} u_{j}^{4} \\
& -\sum_{i \neq j} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}=0, \quad j=1, \ldots, k<N . \tag{5.6}
\end{align*}
$$

Then we have

$$
\begin{equation*}
\nabla E\left[u_{1}, \ldots, u_{N}\right]+\sum_{j=1}^{k} \Lambda_{j} \nabla G_{j}\left[u_{1}, \ldots, u_{N}\right]=0 \tag{5.7}
\end{equation*}
$$

where G_{j} is defined at (5.6). We assume that $\Lambda_{k+1}=\ldots=\Lambda_{N}=0$ and we write (5.7) as

$$
\begin{equation*}
\nabla E\left[u_{1}, \ldots, u_{N}\right]+\sum_{j=1}^{N} \Lambda_{j} \nabla G_{j}\left[u_{1}, \ldots, u_{N}\right]=0 . \tag{5.8}
\end{equation*}
$$

From (5.6), we obtain

$$
\sum_{j=1}^{N} \Lambda_{j}\left\langle\nabla G_{j}, u_{j}\right\rangle=0
$$

which is equivalent to

$$
\sum_{j=1}^{N}\left(\beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}\right) \Lambda_{j}=0
$$

since the matrix Σ^{\prime} is positively define, the matrix

$$
\left(\beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}\right) \text { is non-singular }
$$

and hence $\Lambda_{j}=0, j=1, \ldots, N$. As for the proof of Lemma $1, \mathbf{u} \in \mathbf{N}$. Hence $c=c^{\prime}$ and c can be achieved by radially symmetric pairs $\left(u_{1}^{0}, \ldots, u_{N}^{0}\right)$. Hence $\left(u_{1}^{0}, \ldots, u_{N}^{0}\right)$ must satisfy (1.2).

By the maximum principle, $u_{j}^{0}>0$, since u_{j}^{0} satisfies

$$
\Delta u_{j}^{0}-\lambda_{j} u_{j}^{0}+\mu_{j}\left(u_{j}^{0}\right)^{3}+\sum_{i \neq j} \beta_{i j}\left(u_{i}^{0}\right)^{2} u_{j}^{0}=0, \quad \beta_{i j}>0
$$

by the moving plane method for cooperative systems (cf. [27]), u_{j}^{0} must be radially symmetric and strictly decreasing. Therefore we may complete the proof of Theorem 2.

6. Proof of Theorem 3

In this section, we prove Theorem 3. The proof combines those of Theorem 1 and Theorem 2.

Assume $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right) \in \mathbf{N}$. Without loss of generality, we may assume that $i_{0}=1$.
Then

$$
\beta_{1 j}<0, \forall j>0, \quad \text { and } \quad \beta_{i j}>0, \forall i>1, j \notin\{1, i\}
$$

We may divide the energy $E\left[u_{1}, \ldots, u_{N}\right]$ into two parts

$$
\begin{align*}
E\left[u_{1}, \ldots, u_{N}\right]= & \frac{1}{2} \int_{R^{n}}\left|\nabla u_{1}\right|^{2}+\frac{\lambda_{1}}{2} \int_{R^{n}} u_{1}^{2}-\frac{\mu_{1}}{4} \int_{R^{n}} u_{1}^{4} \\
& -\frac{1}{2} \sum_{j=2}^{N} \beta_{1 j} \int_{R^{n}} u_{1}^{2} u_{j}^{2}+E^{\prime}\left[u_{2}, \ldots, u_{N}\right], \tag{6.1}
\end{align*}
$$

where

$$
\begin{align*}
E^{\prime}\left[u_{2}, \ldots, u_{N}\right]= & \sum_{j=2}^{N}\left(\frac{1}{2} \int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\frac{\lambda_{j}}{2} \int_{R^{n}} u_{j}^{2}-\frac{\mu_{j}}{4} \int_{R^{n}} u_{j}^{4}\right) \tag{6.2}\\
& -\frac{1}{4} \sum_{\substack{i, j=2, i \neq j}}^{N} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2} .
\end{align*}
$$

Since $\beta_{1 j}<0$, for $j>1$,

$$
\begin{equation*}
E\left[u_{1}, \ldots, u_{N}\right] \geq I_{\lambda_{1}, \mu_{1}}\left[u_{1}\right]+E^{\prime}\left[u_{2}, \ldots, u_{N}\right] . \tag{6.3}
\end{equation*}
$$

On the other hand, u_{1} satisfies

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla u_{1}\right|^{2}+\lambda_{1} \int_{R^{n}} u_{1}^{2}-\mu_{1} \int_{R^{n}} u_{1}^{4}=\sum_{j=2}^{N} \beta_{1 j} \int_{R^{n}} u_{1}^{2} u_{j}^{2} \leq 0 \tag{6.4}
\end{equation*}
$$

and $u_{j}, j=2, \ldots, N$ satisfies

$$
\begin{equation*}
\int_{R^{n}}\left|\nabla u_{j}\right|^{2}+\lambda_{1} \int_{R^{n}} u_{j}^{2} \leq \mu_{j} \int_{R^{n}} u_{j}^{4}+\sum_{\substack{i=2, i \neq j}}^{N} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2} \tag{6.5}
\end{equation*}
$$

Here we have used the system (1.2) and the fact that $\beta_{1 j}<0$, for $j>1$. By the proof of Theorem 2,

$$
\begin{equation*}
E^{\prime}\left[u_{2}, \ldots, u_{N}\right] \geq \inf _{\left(u_{2}, \ldots, u_{N}\right) \in \mathbf{N}_{1}} E^{\prime}\left[u_{2}, \ldots, u_{N}\right]=c_{1} \tag{6.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{N}_{1}=\left\{\mathbf{u}^{\prime}=\left.\left(u_{2}, \ldots, u_{N}\right)\left|\int_{R^{n}}\right| \nabla u_{j}\right|^{2}\right. \\
& \left.\quad+\lambda_{j} \int_{R^{n}} u_{j}^{2}=\mu_{j} \int_{R^{n}} u_{j}^{4}+\sum_{\substack{i=2, i \neq j}}^{N} \beta_{i j} \int_{R^{n}} u_{i}^{2} u_{j}^{2}\right\} .
\end{aligned}
$$

On the other hand, by Lemma 3,

$$
\begin{equation*}
I_{\lambda_{1}, \mu_{1}}\left[u_{1}\right] \geq I_{\lambda_{1}, \mu_{1}}\left[w_{\lambda_{1}, \mu_{1}}\right] . \tag{6.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}] \geq I_{\lambda_{1}, \mu_{1}}\left[w_{\lambda_{1}, \mu_{1}}\right]+c_{1} \tag{6.8}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}]=I_{\lambda_{1}, \mu_{1}}\left[w_{\lambda_{1}, \mu_{1}}\right]+c_{1} \tag{6.9}
\end{equation*}
$$

In fact, by Theorem 5,

$$
c=\inf _{\mathbf{u} \in \mathbf{N}} E[\mathbf{u}]=\inf _{\mathbf{u} \geq 0} \sup _{t_{1}, \ldots, t_{N} \geq 0} E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right] .
$$

Now we choose

$$
u_{1}=w_{\lambda_{1}, \mu_{1}}\left(y-R e_{1}\right)
$$

and $u_{j}=u_{j}^{0}$ for $j \geq 2$, where $\left(u_{2}^{0}, \ldots, u_{N}^{0}\right)$ is a minimizer of c_{1} at (6.6). Then

$$
\int_{R^{n}} u_{1}^{2}\left(u_{j}^{0}\right)^{2} \rightarrow 0 \quad \text { as } R \rightarrow+\infty, \forall j>1
$$

Thus if we set

$$
\beta\left(t_{1}^{R}, \ldots, t_{N}^{R}\right)=\sup _{t_{1}, \ldots, t_{N} \geq 0} E\left[\sqrt{t_{1}} u_{1}, \ldots, \sqrt{t_{N}} u_{N}\right]
$$

then $t_{j}^{R}=1+o(1)$ and

$$
\begin{equation*}
c \leq \lim _{R \rightarrow+\infty} \beta\left(t_{1}^{R}, \ldots, t_{N}^{R}\right)=I_{\lambda_{1}, \mu_{1}}\left[w_{\lambda_{1}, \mu_{1}}\right]+c_{1} \tag{6.10}
\end{equation*}
$$

This, combined with (6.8), proves that

$$
c=I_{\lambda_{1}, \mu_{1}}\left[w_{\lambda_{1}, \mu_{1}}\right]+c_{1}
$$

Finally, we show that c is not attained. In fact, if c is attained by some $\left(u_{1}^{0}, \ldots, u_{N}^{0}\right)$, $u_{j}^{0}>0$, then

$$
\begin{aligned}
c=E\left[u_{1}^{0}, \ldots, u_{N}^{0}\right] & >I_{\lambda_{1}, \mu_{1}}\left[u_{1}^{0}\right]+E^{\prime}\left[u_{2}^{0}, \ldots, u_{N}^{0}\right] \\
& \geq I_{\lambda_{1}, \mu_{1}}\left[w_{\lambda_{1}, \mu_{1}}\right]+c_{1} .
\end{aligned}
$$

A contradiction!
Remark 1. Theorem 3 also holds if $\beta_{i j}$ satisfies

$$
\beta_{i j}<0, \text { for } i=i_{1}, \ldots, i_{k}, j \neq i_{1}, \ldots, i_{k}
$$

and

$$
\beta_{i j}>0, \text { for } i \notin\left\{i_{1}, \ldots, i_{k}\right\}, j \neq i
$$

7. Proof of Theorem 4

In this section, we construct non-radial bound state of (1.2) in the following case:

$$
\begin{gather*}
N=3, \quad \lambda_{1}=\lambda_{2}=\lambda_{3}=\mu_{1}=\mu_{2}=\mu_{3}=1, \tag{7.1}\\
\beta_{23}=\sqrt{\delta} \hat{\beta}_{23}<0 \tag{7.2}\\
\beta_{12}=\delta \hat{\beta_{12}}=\beta_{13}=\delta \hat{\beta_{13}}>0 . \tag{7.3}
\end{gather*}
$$

As we shall see, assumption (7.1) is not essential and it is just for simplification of our computations. The assumption (7.3) imposes some sort of symmetry which means that the role of u_{2} and u_{3} can be exchanged.

We shall make use of the so-called Liapunov-Schmidt reduction process and variational approach. The Liapunov-Schmidt reduction method was first used in nonlinear Schrödinger equations by Floer and Weinstein [13] in one-dimension, later was extended to higher dimension by Oh [25, 26]. Later it was refined and used in a lot of papers. See $[2-5,15,16,25,26,28,29]$ and the references therein. A combination of the LiapunovSchmidt reduction method and the variational principle was used in [3, 10, 11, 15] and [16]. Here we follow the approach used in [15].

Let us first introduce some notations: let

$$
\begin{align*}
& S_{j}[u]=\Delta u_{j}-u_{j}+u_{j}^{3}+\sum_{i \neq j} \beta_{i j} u_{i}^{2} u_{j}, \tag{7.4}\\
& \mathbf{S}[\mathbf{u}]=\left(\begin{array}{c}
S_{1}[u] \\
\vdots \\
S_{N}[u]
\end{array}\right)
\end{align*}
$$

$$
\begin{align*}
\mathbf{X}= & \left(H^{2}\left(R^{n}\right) \cap\left\{u \mid u\left(x_{1}, x^{\prime}\right)=u\left(x_{1},\left|x^{\prime}\right|\right)\right\}\right)^{3} \\
& \cap\left\{\left(u_{1}, u_{2}, u_{2}\right) \mid u_{2}\left(x_{1}, x^{\prime}\right)=u_{3}\left(-x_{1}, x^{\prime}\right)\right\}, \\
\mathbf{Y}= & \left(L^{2}\left(R^{n}\right) \cap\left\{u \mid u\left(x_{1}, x^{\prime}\right)=u\left(x_{1},\left|x^{\prime}\right|\right)\right\}\right)^{3} \\
& \cap\left\{\left(u_{1}, u_{2}, u_{2}\right) \mid u_{2}\left(x_{1}, x^{\prime}\right)=u_{3}\left(-x_{1}, x^{\prime}\right)\right\}, \\
w^{R_{j}}(y)= & w\left(y-R_{j} e_{1}\right), \tag{7.5}\\
\mathbf{X}= & \left(H^{2}\left(R^{n}\right) \cap\left\{u \mid u\left(x_{1}, x^{\prime}\right)=u\left(x_{1},\left|x^{\prime}\right|\right)\right\}\right)^{3}, \\
\mathbf{X}_{0}= & \mathbf{X} \cap\left\{\left(u_{1}, u_{2}, u_{3}\right) \mid u_{2}\left(x_{1}, x^{\prime}\right)=u_{3}\left(-x_{1}, x^{\prime}\right), u_{1}\left(x_{1}, x^{\prime}\right)=u_{1}\left(-x_{1}, x^{\prime}\right)\right\}, \\
\mathbf{Y}= & \left(L^{2}\left(R^{n}\right) \cap\left\{u \mid u\left(x_{1}, x^{\prime}\right)=u\left(x_{1},\left|x^{\prime}\right|\right)\right\}\right)^{3}, \\
\mathbf{Y}_{0}= & \mathbf{Y} \cap\left\{\left(u_{1}, u_{2}, u_{3}\right) \mid u_{2}\left(x_{1}, x^{\prime}\right)=u_{3}\left(-x_{1}, x^{\prime}\right), u_{1}\left(x_{1}, x^{\prime}\right)=u_{1}\left(-x_{1}, x^{\prime}\right)\right\} .
\end{align*}
$$

Note that $\mathbf{S}[\mathbf{u}]$ is invariant under the map

$$
\begin{align*}
& \mathbf{T}:\left(u_{1}\left(x_{1}, x^{\prime}\right), u_{2}\left(x_{1}, x^{\prime}\right), u_{3}\left(x_{1}, x^{\prime}\right)\right) \tag{7.6}\\
& \rightarrow\left(u_{1}\left(-x_{1}, x^{\prime}\right), u_{3}\left(-x_{1}, x^{\prime}\right), u_{2}\left(-x_{1}, x^{\prime}\right)\right)
\end{align*}
$$

Thus \mathbf{S} is map from \mathbf{X}_{0} to \mathbf{Y}_{0}.
Fix $R \in \Lambda_{\delta}$, where

$$
\begin{equation*}
\Lambda_{\delta}=\left\{R \left\lvert\, w(R)<\delta^{\frac{1}{4}-\sigma}\right.\right\} \tag{7.7}
\end{equation*}
$$

Here we may choose

$$
\sigma=\frac{1}{1000}
$$

We define

$$
\begin{align*}
\mathbf{u}^{R} & :=\left(w(y), w\left(y-R e_{1}\right), w\left(y+R e_{1}\right)\right)^{T} \tag{7.8}\\
& =\left(w, w^{R}, w^{-R}\right)^{T}
\end{align*}
$$

We begin with
Lemma 7. The map

$$
\mathbf{L}_{0} \Phi=\left(\begin{array}{l}
\Delta \phi_{1}-\phi_{1}+3 w^{2} \phi_{1} \tag{7.9}\\
\Delta \phi_{2}-\phi_{2}+3\left(w^{R}\right)^{2} \phi_{2} \\
\Delta \phi_{3}-\phi_{3}+3\left(w^{-R}\right)^{2} \phi_{3}
\end{array}\right): \mathbf{X}_{0} \rightarrow \mathbf{Y}_{0}
$$

has its kernel

$$
\begin{equation*}
\mathbf{K}_{0}=\operatorname{span}\left\{\left(0, \frac{\partial w^{R}}{\partial y_{1}},-\frac{\partial w^{-R}}{\partial y_{1}}\right)^{T}\right\} \tag{7.10}
\end{equation*}
$$

and cokernel

$$
\begin{equation*}
\mathbf{C}_{0}=\operatorname{span}\left\{\left(0, \frac{\partial w^{R}}{\partial y_{1}},-\frac{\partial w^{-R}}{\partial y_{1}}\right)^{T}\right\} . \tag{7.11}
\end{equation*}
$$

Proof. In fact, $\mathbf{L}_{0} \Phi=0$. Then we have by Lemma 1 (2),

$$
\begin{equation*}
\phi_{1}=\sum_{j=1}^{n} c_{1, j} \frac{\partial w}{\partial y_{j}}, \quad \phi_{2}=\sum_{j=1}^{n} c_{2, j} \frac{\partial w^{R}}{\partial y_{j}}, \quad \phi_{3}=\sum_{j=1}^{n} c_{3, j} \frac{\partial w^{-R}}{\partial y_{j}} . \tag{7.12}
\end{equation*}
$$

Since $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)^{T} \in \mathbf{X}_{0}$, we have $\phi_{1}\left(x_{1},\left|x^{\prime}\right|\right)=\phi_{1}\left(-x_{1},\left|x^{\prime}\right|\right)=\phi_{1}\left(x_{1}, x^{\prime}\right)$. This forces $\phi_{1}=0$. Similarly, we have $c_{2,2}=\cdots=c_{2, n}=0, c_{3,2}=\cdots=c_{3, n}=0$. On the other hand, $\phi_{2}\left(x_{1}, x^{\prime}\right)=\phi_{3}\left(-x_{1}, x^{\prime}\right)$. So we have $c_{2,1}=-c_{3,1}$. This proves (7.10). Since \mathbf{L}_{0} is a self-adjoint operator, (7.11) follows from (7.10).

From Lemma 7, we deduce that
Lemma 8. The map

$$
\begin{equation*}
\mathbf{L}:=\mathbf{S}^{\prime}\left[\mathbf{u}^{R}\right] \tag{7.13}
\end{equation*}
$$

is uniformly invertible from

$$
\begin{equation*}
\mathbf{L}:=\mathbf{K}_{0}^{\perp} \rightarrow \mathbf{C}_{0}^{\perp} . \tag{7.14}
\end{equation*}
$$

Proof. We may write

$$
\begin{equation*}
\mathbf{L}=\mathbf{L}_{0}+\sqrt{\delta} \mathbf{B} \tag{7.15}
\end{equation*}
$$

where \mathbf{B} is a bounded and compact operator. Since \mathbf{L}_{0}^{-1} exists, by standard perturbation theory, \mathbf{L} is also invertible for δ sufficiently small.

Using Lemma 8, we derive the following proposition:
Proposition 1. For δ sufficiently small, and $R \in \Lambda_{\delta}$, there exists a unique solution $\mathbf{v}^{R}=\left(v_{1}^{R}, v_{2}^{R}, v_{3}^{R}\right)$ such that

$$
\begin{gather*}
S_{1}\left[\mathbf{u}^{R}+\mathbf{v}^{R}\right]=0, \tag{7.16}\\
S_{2}\left[\mathbf{u}^{R}+\mathbf{v}^{R}\right]=c_{R} \frac{\partial w^{R}}{\partial y_{1}}, \tag{7.17}\\
S_{3}\left[\mathbf{u}^{R}+\mathbf{v}^{R}\right]=-c_{R} \frac{\partial w^{-R}}{\partial y_{1}}, \tag{7.18}
\end{gather*}
$$

for some constant c_{R}. Moreover, \mathbf{v}^{R} is of C^{1} in R and we have

$$
\begin{equation*}
\left\|\mathbf{v}^{R}\right\|_{H^{2}\left(R^{n}\right)} \leq c \delta^{1-2 \sigma} \tag{7.19}
\end{equation*}
$$

Proof. Let $R_{1}=0, R_{2}=R, R_{2}=-R$ and

$$
w^{R_{j}}=w\left(y-R_{j} e_{1}\right)
$$

We choose $v \in B$, where

$$
\begin{equation*}
B=\left\{\mathbf{v} \in \mathbf{X} \mid\|\mathbf{v}\|_{H^{2}}<\delta^{1-2 \sigma}\right\} \tag{7.20}
\end{equation*}
$$

and then expand

$$
\begin{aligned}
S_{1}\left[\mathbf{u}^{R}+\mathbf{v}\right]= & \Delta v_{1}-v_{1}+3\left(w^{R_{1}}\right)^{2} v_{1}+\left[\left(w^{R_{1}}+v_{1}\right)^{3}-\left(w^{R_{1}}\right)^{3}-3\left(w^{R_{1}}\right)^{2} v_{1}\right] \\
& +\delta\left[\hat{\beta}_{12}\left(w^{R_{2}}+v_{2}\right)^{2}+\hat{\beta}_{13}\left(w^{R_{3}}+v_{3}\right)^{2}\right]\left(w^{R_{1}}+v_{1}\right) \\
= & L_{1} v_{1}+H_{1}\left[v_{1}\right]+E_{1}
\end{aligned}
$$

where

$$
\begin{gathered}
L_{1} v_{1}=\Delta v_{1}-v_{1}+3\left(w^{R_{1}}\right)^{2} v_{1} \\
E_{1}=\delta\left[\hat{\beta}_{12}\left(w^{R_{2}}+v_{2}\right)^{2}+\hat{\beta}_{13}\left(w^{R_{3}}+v_{3}\right)^{2}\right]\left(w^{R_{1}}+v_{1}\right)
\end{gathered}
$$

and

$$
H_{1}\left[v_{1}\right]=\left[\left(w^{R_{1}}+v_{1}\right)^{3}-\left(w^{R_{1}}\right)^{3}-3\left(w^{R_{1}}\right)^{2} v_{1}\right]=O\left(\left|v_{1}\right|^{2}\right)
$$

Here we have

$$
\begin{align*}
E_{1} & =O(\delta)\left(w^{R_{2}} w^{R_{1}}+w^{R_{3}} w^{R_{1}}\right) \tag{7.21}\\
& =O(\delta)\left(w\left(\left|R_{1}-R_{2}\right|\right)+w\left(\left|R_{1}-R_{3}\right|\right)\right. \\
& =O\left(\delta^{\frac{5}{4}-\sigma}\right)
\end{align*}
$$

Similarly,

$$
\begin{aligned}
& S_{2}\left[\mathbf{u}^{R}+\mathbf{v}\right]=L_{2} v_{2}+H_{2}\left[v_{2}\right]+E_{2}, \\
& S_{3}\left[\mathbf{u}^{R}+\mathbf{v}\right]=L_{3} v_{3}+H_{3}\left[v_{3}\right]+E_{3},
\end{aligned}
$$

where

$$
\begin{align*}
L_{2} v_{2} & =\Delta v_{2}-v_{2}+3\left(w^{R_{2}}\right)^{2} v_{2}, \tag{7.22}\\
L_{3} v_{3} & =\Delta v_{3}-v_{3}+3\left(w^{R_{3}}\right)^{2} v_{3}, \\
E_{2} & =O(1)\left[\delta \hat{\beta}_{12}\left(w^{R_{1}}\right)^{2}+\sqrt{\delta} \hat{\beta}_{23}\left(w^{R_{3}}\right)^{2}\right] w^{R_{2}}, \\
& =O\left(\delta\left(\delta^{\frac{5}{4}-\sigma}+\delta^{1-\sigma}\right)=O\left(\delta^{1-\sigma}\right),\right. \\
E_{3} & =O(1)\left[\delta \hat{\beta}_{13}\left(w^{R_{1}}\right)^{2}+\sqrt{\delta} \hat{\beta}_{23}\left(w^{R_{2}}\right)^{2}\right] w^{R_{3}}=O\left(\delta^{1-\sigma}\right), \\
H_{2}\left[v_{2}\right] & =\left[\left(w^{R_{2}}+v_{2}\right)^{3}-\left(w^{R_{2}}\right)^{3}-3\left(w^{R_{2}}\right)^{2} v_{2}\right]=O\left(\left|v_{2}\right|^{2}\right), \\
H_{3}\left[v_{3}\right] & =\left[\left(w^{R_{3}}+v_{3}\right)^{3}-\left(w^{R_{3}}\right)^{3}-3\left(w^{R_{3}}\right)^{2} v_{3}\right]=O\left(\left|v_{3}\right|^{2}\right) .
\end{align*}
$$

Since $\mathbf{L}: \mathbf{K}_{0}^{\perp} \rightarrow \mathbf{C}_{0}^{\perp}$ is invertible, solving (7.16)-(7.18) is equivalent to solving

$$
\begin{equation*}
\Pi \circ[\mathbf{L v}+\mathbf{H}[\mathbf{v}]+\mathbf{E}]=0, \quad \mathbf{v} \in \mathbf{K}_{0}^{\perp}, \tag{7.23}
\end{equation*}
$$

where Π is the orthogonal projection on \mathbf{C}_{0}^{\perp} and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)^{T}, \mathbf{H}[\mathbf{v}]=\left(H_{1}, H_{2}, H_{3}\right)^{T}$, $\mathbf{E}=\left(E_{1}, E_{2}, E_{3}\right)^{T}$. Equation (7.23) can be written in the following form:

$$
\begin{equation*}
\mathbf{v}=G[\mathbf{v}]:=\left(\Pi \circ \mathbf{L} \circ \Pi^{\prime}\right)^{-1}[-\mathbf{H}[\mathbf{v}]-\mathbf{E}], \tag{7.24}
\end{equation*}
$$

where Π^{\prime} is the orthogonal projection on \mathbf{K}_{0}^{\perp}.
Since $\mathbf{H}[\mathbf{v}]=O\left(|\mathbf{v}|^{2}\right)$ and $\mathbf{E}=O\left(\delta^{1-\sigma}\right)$, it is easy to see that the map G defined at (7.24) is a contraction map from B to B. By the contraction mapping theorem, (7.23) has a unique solution $\mathbf{v}^{R}=\left(v_{1}^{R}, v_{2}^{R}, v_{3}^{R}\right) \in \mathbf{K}_{0}^{\perp}$ with the property that

$$
\begin{align*}
\left\|\mathbf{v}^{R}\right\|_{H^{2}\left(R^{n}\right)} & \leq C\|\mathbf{E}\|_{L^{2}\left(R^{n}\right)}^{1-\sigma} \tag{7.25}\\
& \leq C\left(\delta^{(1-\sigma)(1-\sigma)}\right) \\
& \leq C \delta^{1-2 \sigma} .
\end{align*}
$$

The C^{1} property of \mathbf{v}^{R} follows from the uniqueness of \mathbf{v}^{R}. See a similar proof in Lemma 3.5 of [15].

Now we let

$$
M[R]=E\left[\mathbf{u}^{R}+\mathbf{v}^{R}\right]: \Lambda_{\delta} \rightarrow R^{1}
$$

where \mathbf{v}^{R} is given by Proposition 1. We have
Lemma 9. For $R \in \Lambda_{\delta}$ and δ sufficiently small, we have

$$
\begin{align*}
M[R]= & 3 I[w] \tag{7.26}\\
& -\frac{1}{2}\left[\sqrt{\delta} \hat{\beta}_{23} \int_{R^{n}}\left(w^{R}\right)^{2}\left(w^{-R}\right)^{2}+2 \delta \hat{\beta}_{12} \int_{R^{n}} w^{2}\left(w^{R}\right)^{2}\right] \\
& +O\left(\delta^{\frac{3}{2}+\frac{\sigma}{2}}\right) .
\end{align*}
$$

Proof. We may calculate that

$$
\begin{aligned}
M[\mathbf{R}]= & E\left[\mathbf{u}^{R}+\mathbf{v}^{R}\right] \\
= & \sum_{j=1}^{3}\left\{\frac{1}{2}\left[\int_{R^{n}}\left|\nabla\left(w^{R_{j}}+v_{j}^{R}\right)\right|^{2}+\int_{R^{n}}\left(w^{R_{j}}+v_{j}^{R}\right)^{2}\right]-\frac{1}{4} \int_{R^{n}}\left(w^{R_{j}}+v_{j}^{R}\right)^{4}\right\} \\
& -\frac{1}{4} \sum_{\substack{i, j \\
i \neq j}} \beta_{i j} \int_{R^{n}}\left(w^{R_{i}}+v_{i}^{R}\right)^{2}\left(w^{R_{j}}+v_{j}^{R}\right)^{2} \\
= & E\left[\mathbf{u}^{R}\right]+\sum_{j=1}^{3} \frac{1}{2}\left[\int_{R^{n}}\left(\left|\nabla v_{j}^{R}\right|^{2}+\left(v_{j}^{R}\right)^{2}\right)-3\left(w^{R_{j}}\right)^{2}\left(v_{j}^{R}\right)^{2}\right] \\
& -\frac{1}{2} \sum_{\substack{i, j \\
i \neq j}} \beta_{i j} \int_{R^{n}}\left[w^{R_{i}} v_{i}^{R}\left(w^{R_{j}}\right)^{2}+w^{R_{j}} v_{j}^{R}\left(w^{R_{i}}\right)^{2}\right]+O\left(\delta^{2-4 \sigma}\right) \\
= & E\left[\mathbf{u}^{R}\right]+O\left(\delta^{2-4 \sigma}\right)-\left[\beta_{23}\left(\int_{R^{n}} v_{2}^{R} w^{R_{2}}\left(w^{R_{3}}\right)^{2}+\int_{R^{n}} v_{3}^{R}\left(w^{R_{3}}\right)\left(w^{R_{2}}\right)^{2}\right)\right] \\
= & E\left[\mathbf{u}^{R}\right]+O\left(\delta^{\frac{3}{2}+\frac{\sigma}{2}}\right) .
\end{aligned}
$$

Here we have used the assumption (1.12), Eq. (1.13), and Proposition 1.

Since

$$
\begin{aligned}
E\left[\mathbf{u}^{R}\right]=3 I[w]-\frac{1}{2}[& \sqrt{\delta} \hat{\beta}_{23} \int_{R^{n}}\left(w^{R_{2}}\right)^{2}\left(w^{R_{3}}\right)^{2} \\
& \left.+\delta \hat{\beta}_{12} \int_{R^{n}}\left(w^{R_{1}}\right)^{2}\left(w^{R_{2}}\right)^{2}+\delta \hat{\beta}_{13} \int_{R^{n}}\left(w^{R_{1}}\right)^{2}\left(w^{R_{3}}\right)^{2}\right]
\end{aligned}
$$

and $\beta_{12}=\beta_{13}, R_{2}=-R_{3}$, we obtain (7.26).
Next we have
Lemma 10. If $R^{\delta} \in\left(\Lambda_{\delta}\right)^{0}$ - the interior of Λ_{δ} is a critical point of $M[R]$, then the corresponding solution $\mathbf{u}^{\delta}=\mathbf{u}^{R^{\delta}}+\mathbf{v}^{R^{\delta}}$ is a critical point of $E[\mathbf{u}]$.
Proof. Since $R^{\delta} \in\left(\Lambda_{\delta}\right)^{0}$ - the interior of Λ_{δ} is a critical point of $M[R]$, we then have

$$
\left.\frac{d}{d R} M[R]\right|_{R=R^{\delta}}=0
$$

which is equivalent to

$$
<\nabla E\left[\mathbf{u}^{R}+\mathbf{v}^{R}\right], \frac{d}{d R}\left(\mathbf{u}^{R}+\mathbf{v}^{R}\right)>\left.\right|_{R=R^{\delta}}=0
$$

Using Proposition 1, we obtain

$$
\begin{equation*}
c_{R} \int_{R^{n}} \frac{\partial w^{R}}{\partial y_{1}} \frac{d}{d R}\left(w^{R}+v_{2}^{R}\right)-c_{R} \int_{R^{n}} \frac{\partial w^{-R}}{\partial y_{1}} \frac{d}{d R}\left(w^{-R}+v_{3}^{R}\right)=0 \tag{7.27}
\end{equation*}
$$

for $R=R^{\delta}$. Note that since $\mathbf{v} \in \mathbf{K}_{0}^{\perp}$, we have

$$
\begin{equation*}
\int_{R^{n}}\left[\frac{\partial w^{R}}{\partial y_{1}} v_{2}^{R}-\frac{\partial w^{-R}}{\partial y_{1}} v_{3}^{R}\right]=0 \tag{7.28}
\end{equation*}
$$

Differentiating (7.28) with respect to R, we obtain that

$$
\begin{gather*}
\int_{R^{n}}\left[\frac{\partial w^{R}}{\partial y_{1}} \frac{d}{d R} v_{2}^{R}-\frac{\partial w^{-R}}{\partial y_{1}} \frac{d}{d R} v_{3}^{R}\right] \\
=-\int_{R^{n}}\left[\frac{\partial^{2} w^{R}}{\partial R \partial y_{1}} v_{2}^{R}-\frac{\partial^{2} w^{-R}}{\partial R \partial y_{1}} v_{3}^{R}\right]=O\left(\delta^{1-2 \sigma}\right) . \tag{7.29}
\end{gather*}
$$

On the other hand, we see that

$$
\begin{equation*}
\int_{R^{n}}\left[\frac{\partial w^{R}}{\partial y_{1}} \frac{d}{d R}\left(w^{R}\right)-\frac{\partial w^{-R}}{\partial y_{1}} \frac{d}{d R}\left(w^{-R}\right)\right]=-2 \int_{R^{n}}\left(\frac{\partial w}{\partial y_{1}}\right)^{2} \tag{7.30}
\end{equation*}
$$

From (7.27), (7.29) and (7.30), we deduce that

$$
\begin{equation*}
c_{R}=0, \text { for } R=R^{\delta}, \tag{7.31}
\end{equation*}
$$

which then implies that the corresponding solution $\mathbf{u}^{\delta}=\mathbf{u}^{R^{\delta}}+\mathbf{v}^{R^{\delta}}$ is a critical point of $E[\mathbf{u}]$.

Finally, we prove Theorem 4.
Proof of Theorem 4. We consider the following minimization problem:

$$
\begin{equation*}
M_{0}=\min _{R \in \bar{\Lambda}_{\delta}} M[R], \tag{7.32}
\end{equation*}
$$

since $M[R]$ is continuous and $\bar{\Lambda}_{\delta}$ is closed, $M[R]$ attains its minimum at a $R^{\delta} \in \bar{\Lambda}_{\delta}$.
We claim that $R^{\delta} \notin \partial \bar{\Lambda}_{\delta}$. Suppose not. That is $R^{\delta} \in \partial \bar{\Lambda}_{\delta}$. Then we have $w\left(R^{\delta}\right)=$ $\delta^{\frac{1}{4}-\sigma}$.

Let

$$
\begin{equation*}
\rho(R)=\int_{R^{n}} w^{2}(y) w^{2}\left(y-R e_{1}\right) \tag{7.33}
\end{equation*}
$$

Then from Lemma 9, we have

$$
\begin{equation*}
M[R]=3 I[w]-\frac{1}{2} \sqrt{\delta} \hat{\beta}_{23} \rho(2 R)-\delta \hat{\beta}_{12} \rho(R)+O\left(\delta^{\frac{3}{2}+\frac{\sigma}{2}}\right) . \tag{7.34}
\end{equation*}
$$

By Lemma $6, \rho(2 R) \geq(\rho(R))^{2+\frac{\sigma}{4}}$ and $\rho(R) \geq w^{2}(R)$, we have for $R=R^{\delta}$,
$-\sqrt{\delta} \hat{\beta}_{23} \rho\left(2 R^{\delta}\right)-2 \delta \hat{\beta}_{12} \rho\left(R^{\delta}\right) \geq-\sqrt{\delta} \hat{\beta}_{23}\left(\rho\left(R^{\delta}\right)\right)^{2+\frac{\sigma}{4}}-2 \delta \hat{\beta}_{12} \rho\left(R^{\delta}\right)$

$$
\begin{align*}
& \geq \rho\left(R^{\delta}\right)\left[\sqrt{\delta}\left(-\hat{\beta}_{23}\right) \rho^{1+\frac{\sigma}{4}}\left(R^{\delta}\right)-2 \delta \hat{\beta}_{12}\right] \tag{7.35}\\
& \geq \rho\left(R^{\delta}\right)\left[\sqrt{\delta} \delta^{\left(\frac{1}{2}-2 \sigma\right)\left(1+\frac{\sigma}{4}\right)}\left(-\hat{\beta}_{23}\right)-2 \delta \hat{\beta}_{12}\right] \\
& >2 \rho\left(R^{\delta}\right) \delta^{1-\sigma},
\end{align*}
$$

and thus by (7.34)

$$
\begin{equation*}
M\left[R^{\delta}\right]>3 I[w]+\rho\left(R^{\delta}\right) \delta^{1-\sigma} . \tag{7.36}
\end{equation*}
$$

On the other hand, by choosing $\bar{R} \in \Lambda_{\delta}$ such that

$$
\begin{equation*}
\sqrt{\delta} \hat{\beta}_{23} \rho(2 \bar{R})+\delta \hat{\beta}_{13} \rho(\bar{R})=0, \tag{7.37}
\end{equation*}
$$

then we have

$$
\begin{equation*}
M\left[R^{\delta}\right] \leq M[\bar{R}] \leq 3 I[w]-\delta \hat{\beta}_{12} \rho(\bar{R})+O\left(\delta^{\frac{3}{2}+\frac{\sigma}{2}}\right) \leq 3 I[w], \tag{7.38}
\end{equation*}
$$

a contradiction to (7.36).
It remains to show that (7.37) is possible since from (7.37) we have

$$
w^{2}(\bar{R}) \leq \rho(\bar{R}) \leq C \delta^{\frac{1}{2}\left(1+\frac{\sigma}{4}\right)^{-1}}<\delta^{\frac{1}{2}-2 \sigma}
$$

and hence it is possible to have $\bar{R} \in \Lambda_{\delta}$, where C is a positive constant depending only on $\hat{\beta}_{13}$ and $\hat{\beta}_{23}$. Here we have used the fact that

$$
\rho(2 R) \geq(\rho(R))^{2+\frac{\sigma}{4}} \quad \text { and } \quad \rho(R) \geq w^{2}(R) .
$$

This proves that $R^{\delta} \in\left(\bar{\Lambda}_{\delta}\right)^{0}$. So R^{δ} is a critical point of $M[R]$. By Lemma 10, $\mathbf{u}^{\delta}=$ $\mathbf{u}^{R^{\delta}}+\mathbf{v}^{R^{\delta}}$ is a critical point of $E[\mathbf{u}]$ and hence a bound state of (1.2).

8. Proof of Corollary 1

In this section, we prove Corollary 1.
First, substituting $u_{j}=\sqrt{\xi_{j}} w$ into Eq. (1.2), we obtain the following algebraic equation

$$
\begin{equation*}
\xi_{j}+\sum_{i \neq j} \beta_{i j} \xi_{i}=1, \quad j=1,2,3 \tag{8.1}
\end{equation*}
$$

Since by our assumption $\left|\beta_{i j}\right| \ll 1$, we see that solution to (8.1) exists and moreover, we have

$$
\begin{equation*}
\xi_{j}=1-\sum_{i \neq j} \beta_{i j}+O(\delta), \quad j=1,2,3 \tag{8.2}
\end{equation*}
$$

Now we compute

$$
\begin{align*}
E\left[\mathbf{u}^{r}\right] & =\left[\sum_{j=1}^{3}\left(\frac{\xi_{j}}{2}-\frac{\xi_{j}^{2}}{4}\right)-\frac{1}{4} \sum_{\substack{i, j \\
i \neq j}} \beta_{i j} \xi_{i} \xi_{j}\right] \int_{R^{n}} w^{4} \\
& \geq \frac{3}{4} \int_{R^{n}} w^{4}-\frac{1}{4} \sum_{\substack{i, j \\
i \neq j}} \beta_{i j} \int_{R^{n}} w^{4}+O(\delta) \\
& =\frac{3}{4} \int_{R^{n}} w^{4}+\frac{1}{2} \sqrt{\delta}\left|\hat{\beta}_{23}\right| \int_{R^{n}} w^{4}+O(\delta) \tag{8.3}
\end{align*}
$$

On the other hand, by (7.38), we have

$$
\begin{equation*}
E\left[\mathbf{u}^{\delta}\right]<\frac{3}{4} \int_{R^{n}} w^{4} \tag{8.4}
\end{equation*}
$$

From (8.3) and (8.4), we arrive at the following:

$$
\begin{equation*}
E\left[\mathbf{u}^{\delta}\right]<E\left[\mathbf{u}^{r}\right] . \tag{8.5}
\end{equation*}
$$

Now if we have a ground state solution \mathbf{u}_{δ} which is radially symmetric, we have to show that for δ small, $\mathbf{u}_{\delta}=\mathbf{u}^{r}$. In fact, since \mathbf{u}_{δ} is a ground state solution, we have that \mathbf{u}_{δ} is uniformly bounded. Letting $\delta \rightarrow 0$, we see that $\mathbf{u}_{\delta} \rightarrow \mathbf{u}_{0}=(w, w, w)^{T}$. Thus $\mathbf{u}_{\delta}-\mathbf{u}^{r}=o(1)$ as $\delta \rightarrow 0$.

To show that $\mathbf{u}_{\delta}=\mathbf{u}^{r}$, we let $\mathbf{u}_{\delta}=\mathbf{u}^{r}+\mathbf{v}_{\delta}$. Then it is easy to see that \mathbf{v}_{δ} satisfies

$$
\begin{equation*}
\Delta v_{\delta, j}-v_{\delta, j}+3 w^{2} v_{\delta, j}+O\left(\sqrt{\delta} w\left|\mathbf{v}_{\delta}\right|+\left|\mathbf{v}_{\delta}\right|^{2}\right)=0, \quad j=1,2,3 \tag{8.6}
\end{equation*}
$$

Since the operator $L_{1,1}$ is uniformly invertible in radially symmetric function class (by Lemma 1) and $\mathbf{v}_{\delta}=o(1)$, we see that

$$
v_{\delta, j}=L_{1,1}^{-1} \circ O\left(\sqrt{\delta} w\left|\mathbf{v}_{\delta}\right|+\left|\mathbf{v}_{\delta}\right|^{2}\right)=O\left(\sqrt{\delta} w\left|\mathbf{v}_{\delta}\right|+\left|\mathbf{v}_{\delta}\right|^{2}\right), \quad j=1,2,3
$$

and hence $\mathbf{v}_{\delta}=0$ for δ small.
This proves Corollary 1.

References

1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661 (1999)
2. Alikakos, N., Kowalczyk, M.: Critical points of a singular perturbation problem via reduced energy and local linking. J. Diff. Eqns. 159, 403-426 (1999)
3. Bates, P., Dancer, E. N., Shi, J.: Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability. Adv. Differ. Eqs. 4, 1-69 (1999)
4. Bates, P., Fusco, G.: Equilibria with many nuclei for the Cahn-Hilliard equation. J. Diff. Eqns. 4, 1-69 (1999)
5. Bates, P., Shi, J.: Existence and instability of spike layer solutions to singular perturbation problems. J. Funct. Anal. 196(2), 211-264 (2002)
6. Berestycki, H., Lions, P. L.: Nonlinear scalar field equaiton I. Existence of a ground state. Arch. Rat. Mech. Anal. 82(4), 313-345 (1983)
7. Berestycki, H., Lions, P. L.: Nonlinear scalar field equaiton II. Existence of infinitely many solutions. Arch. Rat. Mech. Anal. 82(4), 347-375 (1983)
8. Chow, K. W.: Periodic solutions for a system of four coupled nonlinear Schrodinger equations. Phys. Lett. A 285, 319-V326 (2001)
9. Christodoulides, D. N., Coskun, T. H., Mitchell, M., Segev, M.: Theory of incoherent self-focusing in biased photorefractive media. Phys. Rev. Lett. 78, 646 (1997)
10. Dancer, E. N., Yan, S.: Multipeak solutions for a singular perturbed Neumann problem. Pacific J. Math. 189, 241-262 (1999)
11. Dancer, E. N., Yan, S.: Interior and boundary peak solutions for a mixed boundary value problem. Indiana Univ. Math. J. 48, 1177-1212 (1999)
12. Esry, B. D., Greene, C. H., Burke, Jr. J. P., Bohn, J. L.: Hartree-Fock theory for double condensates. Phys. Rev. Lett. 78, 3594-3597 (1997)
13. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397-408 (1986)
14. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in R^{n}, In: "Mathematical Analysis and Applications, Part A", Sdv. Math. Suppl. Studies 7A, New York: Academic Press, 1981, pp. 369-402
15. Gui, C., Wei, J.: Multiple interior spike solutions for some singular perturbed Neumann problems. J. Diff. Eqs, 158, 1-27 (1999)
16. Gui, C., Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Can. J. Math. 52, 522-538 (2000)
17. Hioe, F. T.: Solitary Waves for N Coupled Nonlinear Schrödinger Equations. Phys. Rev. Lett. 82, 1152-1155 (1999)
18. Hioe, F. T., Salter, T. S.: Special set and solutions of coupled nonlinear schrödinger equations. J. Phys. A: Math. Gen. 35, 8913-8928 (2002)
19. Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86, 5043 (2001)
20. Kwong, M. K.: Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in R^{n}. Arch. Rational Mech. Anal. 105, 243-266 (1989)
21. Lieb, E., Loss, M.: Analysis. Providence, RI: American Mathematical Society, 1996
22. Lin, C.-S., Ni, W.-M.: On the diffusion coefficient of a semilinear Neumann problem. Calculus of variations and partial differential equations (Trento, 1986), Lecture Notes in Math. 1340, BerlinNew York: Springer, 1988, pp. 160-174.
23. Mitchell, M., Chen, Z., Shih, M., Segev, M.: Self-Trapping of partially spatially incoherent light. Phys. Rev. Lett. 77, 490-493 (1996)
24. Ni, W.-M., Takagi, I.: Locating the peaks of least energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247-281 (1993)
25. Oh, Y. G.: Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_{a}$. Comm. PDE 13(12), 1499-1519 (1988)
26. Oh, Y.G.: On positive multi-bump bound states of nonlinear Schrödinger equations under multiplewell potentials. Commun. Math. Phys. 131, 223-253 (1990)
27. Troy, W. C.: Symmetry properties in systems of semilinear elliptic equations. J. Diff. Eq. 42(3), 400-413 (1981)
28. Wei, J., Winter, M.: Stationary solutions for the Cahn-Hilliard equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 459-492 (1998)
29. Wei, J., Winter, M.: Multiple boundary spike solutions for a wide class of singular perturbation problems. J. London Math. Soc. 59, 585-606 (1999)
