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Abstract. We study the uniqueness of positive solutions of the following cou-

pled nonlinear Schrödinger equations:
∆u1 − λ1u1 + µ1u31 + βu1u22 = 0 in RN ,

∆u2 − λ2u2 + µ2u32 + βu21u2 = 0 in RN ,

u1 > 0, u2 > 0, u1, u2 ∈ H1(RN )

where N ≤ 3, λ1, λ2, µ1, µ2 are positive constants and β ≥ 0 is a coupling con-
stant. We prove first the uniqueness of positive solution for sufficiently small

β > 0. Secondly, assuming that λ1 = λ2, we show that u1 = u2
√
β − µ1/

√
β − µ2

when β > max{µ1, µ2} and thus obtain the uniqueness of positive solution us-
ing the corresponding result of scalar equation. Finally, for N = 1 and λ1 = λ2,

we prove the uniqueness of positive solution when 0 ≤ β /∈ [min{µ1, µ2},max{µ1, µ2}]
and thus give a complete classification of positive solutions.

1. Introduction. We study the uniqueness of positive solutions in H1(RN ) ×
H1(RN ) of the following coupled nonlinear Schrödinger equations:{

∆u− λ1u+ µ1u
3 + βuv2 = 0 in RN ,

∆v − λ2v + µ2v
3 + βu2v = 0 in RN ,

(1.1)

where N ≤ 3, λ1, λ2, µ1, µ2 are positive constants and β is a coupling constant. Sys-
tem (1.1) has been well studied in recent years, both theoretically and numerically,
due to the fact that it gives solitary waves for Schrödinger systems that appears
in a number of physical problems, for instance in nonlinear optics (see [1], [5], [9],
[10], [12] and the references therein). In this paper, we concentrate on the attractive
case, i.e. β > 0.

System (1.1) has unique semi-trivial solutions of the form (U, 0) and (0, V ) where
U and V are radially symmetric positive (nontrivial) solutions of

∆U − λ1U + µ1U
3 = 0 in RN

and

∆V − λ2V + µ2V
3 = 0 in RN .

(The uniqueness is proved in [8].) By a nontrivial solution of (1.1) we mean a pair
(u, v) such that u 6= 0 6= v.
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Suppose we have a nontrivial solution (u, v) of system (1.1), such that u ≥ 0,
v ≥ 0 in RN . Note that u and v satisfy two linear equations

∆u−
(
λ1 − µ1u

2 − βv2
)
u = 0

and

∆v −
(
λ2 − µ2v

2 − βu2
)
v = 0.

So by the Strong Maximum Principle u and v are strictly positive in RN . By moving
plane method as in [2] u and v are radial and decrease with respect to some point in
RN . Note that it can be proved with the help of a classical ”bootstrap” argument
that solutions of (1.1) which are in H1(RN )×H1(RN ) are also in C2(RN )×C2(RN )
and tend to zero as x → ∞. In the following without loss of generality we assume
that u and v are radial with respect to 0 and the system (1.1) becomes

u′′(r) +
N − 1

r
u′(r)− λ1u+ µ1u

3 + βuv2 = 0, in [0,∞),

v′′(r) +
N − 1

r
v′(r)− λ2v + µ2v

3 + βu2v = 0, in [0,∞),

u(r), v(r) > 0 in [0,∞),
u′(0) = v′(0) = 0, and u(r), v(r)→ 0 as r →∞.

(1.2)

Nontrivial solutions does not always exit for all β > 0. (See [3] and [4].) In fact,
we multiply the equation for u in (1.1) by v, the equation for v by u, and integrate
resulting equations over RN . This yields∫

RN

(∇u · ∇v + λ1uv) =

∫
RN

uv(µ1u
2 + βv2),∫

RN

(∇u · ∇v + λ2uv) =

∫
RN

uv(βu2 + µ2v
2),

from which we have∫
RN

uv
[
(λ2 − λ1) + (µ1 − β)u2 + (β − µ2)v2

]
= 0, (1.3)

which is in a contradiction with the positivity of u and v as long as the three
constants (λ2−λ1), (µ1−β), (β−µ2) are of the same sign or zero, and one of them is
not zero. This implies that the system (1.1) does not have a nontrivial solution with
nonnegative components if λ1 = λ2, µ1 6= µ2 and min{µ1, µ2} ≤ β ≤ max{µ1, µ2}.

When λ1 = λ2 = λ, system (1.1) admits a bound state of the form

(u0, v0) =

(√
λ(β − µ2)

β2 − µ1µ2
w
(√

λx
)
,

√
λ(β − µ1)

β2 − µ1µ2
w
(√

λx
))

, (1.4)

where w is the unique positive solution of

∆w − w + w3 = 0 in RN , w(0) = max
x∈RN

w(x), w(x)→ 0 as |x| → ∞, (1.5)

as long as β /∈ [min{µ1, µ2},max{µ1, µ2}]. An interesting question is whether
the couple (u0, v0) is the unique positive solution to system (1.1) if 0 ≤ β /∈
[min{µ1, µ2},max{µ1, µ2}]. Note that when λ = 1, µ1 = µ2 = β = 1 system
(1.1) has infinitely many positive solutions

(cos θw, sin θw), θ ∈ (0, π/2). (1.6)
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Another interesting question is whether they are all positive solutions to system
(1.1) in this case.

In this paper we will give complete answers to the above questions in the case of
N = 1 and some partial answers in the case of N = 2, 3. Our first result answers
the uniqueness question.

Theorem 1.1. Suppose that N = 1, λ1 = λ2 = λ and 0 ≤ β /∈ [min{µ1, µ2},max{µ1, µ2}].
Then (u0, v0) is the unique positive solution to system (1.2).

Our second result gives the classification of all the positive solutions of system
(1.2) when N = 1, λ1 = λ2 = λ, µ1 = µ2 = β.

Theorem 1.2. Suppose that N = 1, λ1 = λ2 = λ > 0 and µ1 = µ2 = β > 0. Then
all the positive solutions of system (1.2) have the following form

(u(x), v(x)) =

(√
λ

β
w
(√

λx
)

cos θ,

√
λ

β
w
(√

λx
)

sin θ

)
, θ ∈ (0, π/2). (1.7)

In the higher dimensional case, we have the following result.

Theorem 1.3. Suppose that N = 2, 3.
(a) Solutions to system (1.2) are unique for sufficiently small β > 0.
(b) If β > max{µ1, µ2}, then (u0, v0) (defined at (1.4) is the unique positive

solution to system (1.2).

In Section 4, Theorem 1.3 can be extended to bounded or unbounded domains
with or without trapping potentials. From Theorem 1.1-1.3, we can also deduce
the nondegeneracy of positive solutions, an important property for constructing
concentrating solutions. In Section 5, we use the nondegeneracy to construct single
or multiple spike solutions to the following systems with trapping potential{

ε2∆u− V1(x)u+ µ1u
3 + βuv2 = 0 in RN ,

ε2∆v − V2(x)v + µ2v
3 + βu2v = 0 in RN .

(1.8)

Before we end the introduction, let us compare our results with existing literature.
In general, the question of uniqueness of positive solutions to nonlinear equations
is difficult. For scalar equation, the shooting method and Pohozaev’s indenty can
give uniqueness (a celebrated result is the uniqueness of solutions to (1.5) by Kwong
[8]). However for systems, there are very few results on uniqueness.

Theorems 1.1-1.2 give a complete classification of positive solutions to (1.2). As
far as we know, this seems to be the first such result in the literature. Part (a) of
Theorem 1.3 is not new. In fact, in [6], the author proved part (a) of Theorem 1.3
and also extended to radially symmetric solutions to (1.2) with trapping potentials.
The proof in [6] (and also our proof of (a)) is by perturbation argument. Part (b)
of Theorem 1.3 seems to be new.

We remark that in [11], the author proved the uniqueness and nondegeneracy of
symmetric positive solutions to a related ODE system{

−w′′
+ aw − wv = 0

−v′′
+ bv − w2

2 = 0.
(1.9)

In this paper, we have classified the solutions in the case of λ1 = λ2. When
λ1 6= λ2, Dancer and Wei [5] proved that except for finite number of β′s, there
exists a branch of nondegenerate solutions.
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2. Proof of Theorem 1.1. Let (u, v) is a positive solution of system (1.1). Under

the hypotheses of Theorem 1.1 we define constant a =
√

β−µ1

β−µ2
and v(r) = v(r)/a,

then we only need to prove that v(r) = u(r) for all r ≥ 0 by the uniqueness result
of the single scalar equation ([8]). Without loss of generality, we may assume that
λ1 = λ2 = 1. Then (u, v) satisfies the following system

u′′ − u+ µ1u
3 + βa2uv2 = 0 in [0,∞),

v′′ − v + µ2a
2v3 + βu2v = 0 in [0,∞),

u(r) > 0, v(r) > 0 in [0,∞),
u′(0) = v′(0) = 0, u(r), v(r)→ 0 as r →∞.

(2.1)

Step 1: Multiplying the equation for u in system (2.1) by v we have

(u′v)′ − u′v′ − uv + µ1u
3v + βa2uv3 = 0. (2.2)

Similarly we get

(uv′)′ − u′v′ − uv + µ2a
2uv3 + βu3v = 0. (2.3)

Subtracting (2.2) by (2.3) gives

(u′v − uv′)′ + (µ1 − β)uv(u2 − v2) = 0. (2.4)

Integrating (2.4) over (0,∞) and using u′(0) = v′(0) = 0 = u(∞) = v(∞), we have

(µ1 − β)

∫ ∞
0

uv(u2 − v2) = 0, (2.5)

from which we know that u = v if u ≥ v or u ≤ v when β 6= µ1.

Step 2: In this step we prove that either u(r) ≥ v(r) or u(r) ≤ v(r) for all r.
Suppose not, then (u− v) changes sign. Similar to equality (2.5) we can prove that
u− v can not equal 0 in any nonempty interval. Since (u− v) satisfies

f ′′ − f +
[
µ1u

2 + (µ1 − β)uv + µ2a
2v2
]
f = 0 in [0,∞), (2.6)

and f(r) = u(r) − v(r) → 0 as r → ∞, then by Maximum Principle f(r) =
u(r)−v(r) changes sign only finite time. Without loss of generality we may assume
that f(r) > 0 for large r. Thus there exists r1 > 0 such that

u(r1)− v(r1) = 0 and u(r)− v(r) > 0 for r > r1, (2.7)

which implies

u′(r1)− v′(r1) ≥ 0. (2.8)

Integrating (2.4) over (r1,∞) we get

− (u′v − uv′)(r1) + (µ1 − β)

∫ ∞
r1

uv(u2 − v2) = 0 (2.9)

which then yields that

u′(r1)− v′(r1) > 0 (2.10)

and

−(u′v − uv′)(r1) = −u(r1) [u′(r1)− v′(r1)] > 0.

And from (2.7) we get

(µ1 − β)

∫ ∞
r1

uv(u2 − v2) < 0 if β > max{µ1, µ2}.

Hence a contradiction follows for β > max{µ1, µ2}.
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Now we consider the case of β < max{µ1, µ2}. we claim that there exists r2 > r1

such that

(u′v − uv′)(r2) = 0. (2.11)

If this claim is true, then integrating (2.4) over (r2,∞) we get

0 = −(u′v − uv′)(r2) + (µ1 − β)

∫ ∞
r2

uv(u2 − v2) = (µ1 − β)

∫ ∞
r2

uv(u2 − v2) > 0,

a contradiction follows.

Step 3: In this step we will prove that our claim (2.11) is true. Suppose not, then

(u′v − uv′)(r) > 0 for all r > r1 (2.12)

since

(u′v − uv′)(r1) > 0 (2.13)

and (u′v − uv′) is continuous in [0,∞). Multiplying the equation for u in (2.1) by
u′ we get

1

2
[(u′)2]′ − 1

2
(u2)′ +

1

4
µ1(u4)′ +

1

4
βa2(u2v2)′ +

1

2
βa2uv(u′v − uv′) = 0. (2.14)

Similarly we get

1

2
[(v′)2]′ − 1

2
(v2)′ +

1

4
µ2a

2(v4)′ +
1

4
β(u2v2)′ +

1

2
βuv(uv′ − u′v) = 0. (2.15)

Subtracting (2.14) by (2.15) and integrating the result equality over (r1,∞) gives

− 1

2

[
(u′)2 − (v′)2

]
(r1) +

a2 + 1

2
β

∫ ∞
r1

uv(u′v − uv′) = 0, (2.16)

because u(r1) = v(r1), u′(∞) = v′(∞) = 0 and µ1 + βa2−µ2a
2− β = 0. But using

0 > u′(r1) > v′(r1) and (2.12) we have

− 1

2

[
(u′)2 − (v′)2

]
(r1) +

a2 + 1

2
β

∫ ∞
r1

uv(u′v − uv′) > 0, since β > 0, (2.17)

a contradiction follows and we complete the proof.

3. Proof of Theorem 1.2. Without loss of generality we can assume that λ1 =
λ2 = µ1 = µ2 = β = 1 via the transformation

(u(x), v(x))→

(√
β

λ
u

(
x√
λ

)
,

√
β

λ
v

(
x√
λ

))
. (3.1)

Define the energy functional E(r) of the system (2.1) by

E(r) =
1

2

[
(u′)2 + (v′)2

]
+

1

4
(u4 + v4) +

β

2
u2v2 − 1

2
(u2 + v2). (3.2)

Thanks to N = 1 we can get E′(r) = 0. Since we assume that u(r), v(r) → 0 as
r →∞, then we have E(r) = 0 for all r ≥ 0. In particular, letting r = 0 and using
u′(0) = v′(0) = 0, we get

u4(0) + v4(0) + 2u2(0)v2(0)− 2u2(0)− 2v2(0) = 0, (3.3)

which implies that

u2(0) + v2(0) = 2. (3.4)
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Thus u(0) =
√

2 cos θ and v(0) =
√

2 sin θ for some θ ∈ (0, π/2). By the uniqueness
theorem of ODE system for initial value problem, we get (u(r), v(r)) = (w(r) cos θ, w(r) sin θ).

4. Extensions and remarks: Proof of Theorem 1.3. In this section, we con-
sider various extensions of Theorems 1.1.

4.1. Uniqueness for small β. We first consider the uniqueness of solution to
system (1.2) when β is small. We work on the space E = Cr,0(RN ) × Cr,0(RN ),
where Cr,0(RN ) denotes the space of continuous radial functions vanishing at ∞.
The following theorem is our first uniqueness result.

Theorem 4.1. Suppose that N = 2, 3. Then solutions to system (1.2) are unique
for sufficiently small β > 0.

Proof. Let u0 is the unique radial solution to system (1.2) when β = 0. Denote
u = (u1, u2) ∈ E and set Φ(β, u) = I ′β(u), where

Iβ(u) =
1

2

∫
RN

[
|∇u1|2 + |∇u2|2 + λ1u

2
1 + λ2u

2
2

]
dx

− 1

4

∫
RN

[
µ1u

4
1 + µ2u

4
2

]
dx− β

2

∫
RN

u2
1u

2
2dx. (4.1)

Then it is clear that Φ(0, u0) = 0. Moreover, Φu(0, u0) = I ′′0 (u0) is invertible. By the
implicit function theorem, there exist β0 > 0, r0 > 0 and φ : (−β0, β0) → Br0(u0)
such that for any β ∈ (−β0, β0), Φ(β, u) = 0 has a unique solution u = φ(β) in
Br0(u0). On the other hand, by Lemma 2.4 of [5], the set of radial solutions to
system (1.2) is compact. Thus for β sufficiently small, the set of solutions to system
(1.2) is contained in Br0(u0). Thus we complete the proof.

4.2. Uniqueness for large β. Next we consider generalizations of Theorem 1.1
to the following coupled nonlinear Schrödinger equations with trapping potentials:

∆u1 − V1(x)u1 + µ1u
3
1 + βu1u

2
2 = 0 in Ω ,

∆u2 − V2(x)u2 + µ2u
3
2 + βu2

1u2 = 0 in Ω ,

u1, u2 > 0 in Ω , u1 = u2 = 0 on ∂Ω ,

(4.2)

where Ω ⊂ RN , (N ≤ 3) is a smooth (bounded or unbounded) domain, V1(x) and
V2(x) are trapping potentials and µ1, µ2, β are positive constants.

Now we consider the case of large β and pose the following conditions on the
trapping potentials and the coupling constant:

V1(x) = V2(x) = V (x) > 0 in Ω , (4.3)

β > max{µ1, µ2}. (4.4)

Using only integration by part, we obtain the following result.

Theorem 4.2. Let (u1, u2) is a solution of system (4.2), then under the conditions
(4.3), (4.4), we obtain

u2(x) = au1(x), where a =

√
β − µ1

β − µ2
is a constant (4.5)

and u1 satisfies the following scalar equation:

∆u− V (x)u+
β2 − µ1µ2

β − µ2
u3 = 0. (4.6)
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By the above theorem and the uniqueness result for scalar equation in [8], we
obtain the following uniqueness result.

Corollary 4.3. Let N = 2, 3 and β > max{µ1, µ2}, then the only solution to (1.2)
is (u0, v0) (defined at (1.4).

Remark. (1) The same conclusion is also true for the homogeneous Neumann
boundary condition: ∂u1

∂n = ∂u2

∂n = 0 on ∂Ω.
(2) The conclusion does not hold for all β > 0 as there are the examples in the case
of Ω = RN , V1 = V2 ≡ 1, µ1 = µ2 = β = 1.
(3) As conjectured in [12], we conjecture that Corollary 4.3 is also true when 0 <
β < min{µ1, µ2}.
(4) It seems difficult to generalize the proof of Theorem 4.2 to nonlinear Schrodinger
equations with more than two components.

Proof. Define ũ2(x) = a−1u2(x). Then (u1, ũ2) satisfies
∆u1 − V1(x)u1 + µ1u

3
1 + βa2u1ũ

2
2 = 0 in Ω ,

∆ũ2 − V2(x)ũ2 + µ2a
2ũ3

2 + βu2
1ũ2 = 0 in Ω ,

u1, ũ2 > 0 in Ω , u1 = ũ2 = 0 on ∂Ω .

(4.7)

Let Ω+ ≡ {x ∈ Ω|u1(x) − ũ2(x) > 0}. Then Ω+ is a piecewise C1 smooth
domain. Multiplying the first equation in (4.7) by ũ2 and the second equation in
(4.7) by u1 and then integrating by parts on Ω+ and subtracting together, we obtain
the following integral identity∫

∂Ω+

(ũ2
∂u1

∂n
− u1

∂ũ2

∂n
) +

∫
Ω+

(µ1 − β)u1ũ2(u2
1 − ũ2

2) = 0 , (4.8)

where n denotes the unit outward normal to ∂Ω+.
On one hand, by the boundary condition and the definition of Ω+, we obtain∫

∂Ω+

⋂
∂Ω

(ũ2
∂u1

∂n
− u1

∂ũ2

∂n
) = 0 , (4.9)

since u1 = ũ2 = 0 on ∂Ω , and∫
∂Ω+−∂Ω

(ũ2
∂u1

∂n
− u1

∂ũ2

∂n
) =

∫
∂Ω+−∂Ω

u1
∂(u1 − ũ2)

∂n
≤ 0 , (4.10)

since u1(x)− ũ2(x) > 0 in Ω+ and u1(x)− ũ2(x) = 0 on ∂Ω+ − ∂Ω.
On the other hand, because µ1 − β < 0 and u1(x)− ũ2(x) > 0 in Ω+, we have∫

Ω+

(µ1 − β)u1ũ2(u2
1 − ũ2

2) ≤ 0. (4.11)

Hence from the equalities (4.8)-(4.11), Ω+ = ∅. Similarly, we may prove that the
set Ω− ≡ {x ∈ Ω|u1(x)− ũ2(x) < 0} is also an empty set. Therefore, u1(x) = ũ2(x)
in Ω and we complete the proof.
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4.3. Nondegeneracy of positive solutions. Let (u1, u2) be a solution of (1.1).
We say that (u1, u2) is nondegenerate if the solution set of the linearized equation ∆φ1 − λ1φ1 + 3µ1u

2
1φ1 + βu2

2φ1 + 2βu1u2φ2 = 0,
∆φ2 − λ2φ2 + 3µ2u

2
2φ2 + βu2

1φ2 + 2βu1u2φ1 = 0,
|φ1|+ |φ2| ≤ 1

(4.12)

is exactly N -dimensional, namely,

(
φ1

φ2

)
=

N∑
j=1

aj


∂u1

∂zj
∂u2

∂zj

 (4.13)

for some constants aj .
Assume that λ1 = λ2. By Theorem 1.1 and Theorems 4.1-4.2, we conclude that

(u1, u2) = (u0, v0), where (u0, v0) is defined by (1.4), provided

β ∈ [β0(N),maxµ1, µ2] (4.14)

where β0(N) ≤ minµ1, µ2 and β0(1) = minµ1, µ2. By Lemma 2.2 and Theorem 3.1
of [5], (u0, v0) is nondegenerate. We state it in the following corollary

Corollary 4.4. Assume that λ1 = λ2 and (4.14) holds. Then the positive solution
to (1.1) is nondegenerate.

Finally, Theorem 1.3 is a consequence of Theorems 4.1-4.2.

5. Existence of bound states in systems with trapping potentials. In
[10], the authors constructed ground states in two-component systems of nonlinear
Schrödinger equations with trapping potentials. Using the nondegeneracy result,
we can consider bound states for the following system{

ε2∆u− V1(x)u+ µ1u
3 + βuv2 = 0 in R1,

ε2∆v − V2(x)v + µ2v
3 + βu2v = 0 in R1.

(5.1)

To simplify the technical difficulties, we assume that C1 ≤ V1, V2 ≤ C2. We have
the following two results.

Theorem 5.1. Assume that V1 and V2 have a local mimimum at x0. That is, there
exists δ > 0 such that V1(x) > V1(x0), V2(x) > V2(x0) for x ∈ (x0− δ, x0 + δ)\{x0}.
Furthermore we assume that

V1(x0) = V2(x0), β 6∈ [min(µ1, µ2),max(µ1, µ2)] (5.2)

Then for ε sufficiently small, problem (5.1) has a solution (uε, vε) with spikes near
x0.

Theorem 5.2. Assume that V1 and V2 have a local maximum at x0. That is, there
exists δ > 0 such that V1(x) < V1(x0), V2(x) < V2(x0) for x ∈ (x0− δ, x0 + δ)\{x0}.
Furthermore suppose (5.2) holds. Then for positive integer K ≥ 2 and ε sufficiently
small, problem (5.1) has a solution (uε, vε) with K spikes near x0.

Theorem 5.2 seems to be the first result on the existence of bound states with
multiple spikes.

Under the condition (5.2), we have uniqueness and nondegeneracy of the limiting
equations. The proofs of both Theorem 5.1 and Theorem 5.2 follow from the same
reduction procedure in [7] for single equations. We omit the details.
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