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Abstract

We construct new examples of traveling wave solutions to the bistable and bal-
anced semilinear parabolic equation in RN+1, N ≥ 2. Our first example is that
of a traveling wave solution with two non planar fronts that move with the same
speed. Our second example is a traveling wave solution with a non convex mov-
ing front. To our knowledge no existence results of traveling fronts with these
type of geometric characteristics have been previously known. Our approach
explores a connection between solutions of the semilinear parabolic PDE and
eternal solutions to the mean curvature flow in RN+1. c© 2000 Wiley Periodi-
cals, Inc.
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1 Introduction

The problem of finding traveling wave solutions to an autonomous semilinear
parabolic PDEs:

∆v+ f (v) = vt , ∈ Rn× (−∞,∞),

has been studied extensively since the pioneering work of Kolmogorov, Petrovsky
and Piskunow [23] and Fisher [15]. A traveling wave solution propagating in a
fixed direction e∈Rn with speed c is, by definition, a solution of the form v(x, t) =
u(x−cte). When written in the Galilean frame, the traveling wave problem reduces
to the following semilinear elliptic PDE:

∆u+ ce ·∇u+ f (u) = 0, in Rn.(1.1)

The most typical scenario is that of a planar front. Taking the ansatz u(x) =
U(x ·e) reduces (1.1) to the ODE:

U ′′ + cU ′ + f (U) = 0, in R.
In this case several examples of existence are well known, most common is the
monostable nonlinearity f (u) = u(1−u) (KPP) and the bistable nonlinearity

f (u) = (u+a)(1−u2), a ∈ (−1,1).

In the former case a planar traveling front exists for any c > 2
√

f ′(0)> 0 while in
the latter case the the nonlinearity determines the speed uniquely

c =
∫ 1
−1 f (t)∫ 1
−1(U ′)2

.

Note that in the case of balanced bistable nonlinearity we have c = 0. This means
that the traveling wave is a standing wave. These are classical results and we refer
the reader for example to [14] for more information. Other related results in the
monostable and bistable cases can be found for example in [20], [21] (see also [3],
[17], [19], [2] and the references therein).

The case of non-planar fronts is much less understood. Since the subject of this
paper is to study the traveling waves with a bistable nonlinearity we will mention
some results in this direction. First let us consider f unbalanced i.e. a 6= 0. When
n = 2 a V-shaped traveling wave was found by Ninomiya and Taniguchi and in
higher dimension by Hamel, Monneau and Roquejoffre [18]. Let us comment on
the n = 2 case. Given a traveling wave solution u(x) its traveling front is the nodal
set {u(x) = 0}. It can be proven that the front is asymptotic to two straight lines y=
m|x|, and that it is convex at ∞ [25]. Moreover, it is shown that the traveling wave
solution is stable. These results are generalized to higher dimensions and fronts of
more complex geometric structure, which however has the general characteristics
of the V-shaped front i.e. the front profiles are asymptotically linear, convex, and
as solutions of the parabolic problem the traveling wave solutions are stable, see
[18], [26], [27].
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Let us now discuss the bistable balanced case. From now on we agree that
the direction of propagation will be fixed to coincide with one of the axis. It is
convenient to consider the traveling wave problem in RN+1, with xN+1 axis as the
fixed direction of motion and N corresponding to the dimension of the associated
traveling front. We will assume that N ≥ 2. Thus, if we look for solutions to the
parabolic Allen-Cahn equation

(1.2) ut = ∆u+u−u3, in RN+1× (−∞,∞), N ≥ 2,

in the following form:

(1.3) u(x, t) =U(x′,xN+1− ct), x = (x′,xN+1),

then U will satisfy the traveling wave Allen-Cahn equation

(1.4) ∆U + c∂xN+1U +U−U3 = 0.

In [4], the existence of a traveling wave in the form U(r,xN+1), |x′| = r, is
obtained for any speed c > 0. Furthermore, it is shown that asymptotically the
0−level set of U—denoted here by Γ , is paraboloid-like

lim
xN+1→+∞

(x′,xN+1)∈Γ

r2

2xN+1
=

N−1
c

, if N ≥ 2.

In the same paper the case N = 1 is treated as well and the traveling front is shown
to be asymptotic to a hyperbolic cosine curve. In all cases traveling fronts are
connected, convex surfaces.

The objective of this paper is to show that in the bistable balanced case there
exist traveling wave solutions whose traveling fronts are non-connected, multicom-
ponent surfaces (Theorem 1.1), and also that there are solutions whose fronts are
non-convex (Theorem 1.2). These results are, to our knowledge, the first examples
of this type for an autonomous traveling wave problem.

To introduce our results we review some well know facts about the relation
between (1.4) and the so called translating solutions to the mean curvature flow.
These solutions are also called eternal, since they exist for all t ∈ (−∞,∞). In gen-
eral, we say that an evolving in time family of surfaces moves by mean curvature
if the following is satisfied:

V = H,(1.5)

where H denotes the mean curvature vector and V the normal velocity of the sur-
face. Translating solutions of this problem are surfaces that do not change shape
and are translated by the mean curvature (MC) flow in a fixed direction and with
constant velocity. After a rigid motion and rescaling we may assume that a translat-
ing solution of the MC flow is represented by a family of surfaces {Σ +cteN+1}t∈R,
where Σ is a fixed N dimensional surface in RN+1, and c ∈ R is a fixed number.
From this we obtain the following equation to determine Σ :

(1.6) H = cνN+1,
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where H is the mean curvature and ν is the unit normal vector of the (oriented)
surface Σ (recall that H = Hν). Observe that the family {Σ + cteN+1}t∈R is a
translating solution of the mean curvature flow, which is translated in the direction
parallel to the xN+1-axis with the constant speed c.

Let us fix a surface Σ for which (1.6) holds and such that c = 1. Let us also
define its scaling Σε by

y ∈ Σε ⇐⇒ εy ∈ Σ .(1.7)

Then, denoting the mean curvatures of these surfaces by HΣ , HΣε
respectively we

see that if Σ is a translating solution to the mean curvature flow with speed 1 then
we have

HΣε
= ενN+1,(1.8)

which means that the scaled surface moves with the constant speed c = ε . In this
paper we will consider ε to be a small parameter, or in other words, we will be
interested in translating solutions of the MC flow moving with a small speed.

Several examples of translating solution to the MC equation are known, see for
example [1], [5], [24], [28]. Here we will discuss a special eternal solution of the
mean curvature flow for which Σ is a graph of a smooth function F : RN → R, that
is Σ = {(x′,F(x′)),x′ ∈ RN}. In this case (1.6) reduces to

(1.9) ∇(
∇F√

1+ |∇F |2
) =

1√
1+ |∇F |2

.

It is known from [1] and [5] that there exists a unique rotationally symmetric solu-
tion F of (1.9), with the following asymptotic behavior

(1.10) F(r) =
r2

2(N−1)
− logr+1+O(r−1), r� 1.

Notice that this asymptotic behavior corresponds (at leading order) to the asymp-
totic behavior of the nodal set of solutions to (1.4) found in [4]. In what follows
we will denote the rotationally symmetric translating solution of the MC flow by
Γ and the corresponding scaled surface by Γε . The latter surface is rotationally
symmetric, is translating with speed c = ε , and is given as a graph as well:

Γε = {xN+1 = ε
−1F(εr)}.

The first result in this paper is about existence of a traveling wave solution to (1.4)
whose zero level set consists of 2 disjoint components, each of which is asymp-
totically a paraboloid-like surface in a neighborhood of the rotationally symmetric
eternal solution to the mean curvature flow Γε . More precisely we have:

Theorem 1.1. For each sufficiently small ε , the traveling wave problem (1.4) has
a solution uε moving with speed c = ε , and with the following properties:

(1) The 0-level set of uε consists of 2 disjoint, rotationally symmetric and
smooth hypersurfaces Γ±ε .
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(2) The nodal surfaces Γ±ε divide the space into 3 disjoint and unbounded
components Ω±ε , Ω0

ε . Each of the sets Ω±ε is a neighborhood, respectively,
of (0,xN+1 =±∞) ∈RN+1, and it holds uε < 0 in Ω±ε . The set Ω0

ε contains
Γε and uε > 0 in Ω0

ε . Moreover:

lim
xN+1→±∞

uε(x′,xN+1) =−1, ∀x′ ∈ RN ,

while at the same time

lim
(x′,xN+1)→∞

(x′,xN+1)∈Γε

uε(x′,xN+1) = 1.

(3) For any r > 0 let Cr be the cylinder Cr = {(x′,xN+1) | |x′|= r}. Let Γ±ε (r)=
Γ±ε \Cr, and similarly Γε(r) = Γε \Cr. Then it holds:

d(Γ±ε (r),Γε(r)) = O
(

log
(1+ ε2r2

ε2

))
, as r→+∞,(1.11)

where d is the Hausdorff distance between sets.

Of course when uε is a solution so is −uε so our result provides automatically
existence of at least two traveling waves with multiple fronts.

Our construction of a traveling wave solutions of (1.4) with a two-component
traveling front gives a more precise information about the moving fronts Γ±ε and
their relation to Γε . In particular it is shown that Γ±ε are normal graphs over Γε of
certain functions f±ε : Γε → R, whose asymptotic behavior coincides with the one
described in (1.11) above. In section 2.2 we will discuss this in more details and
we will introduce, based on formal calculations, a system of nonlinear PDEs on Γε

which determines these functions. A schematic view of the situation is included in
Figures 1.1 and 1.2.

Our second result for the traveling wave problem (1.4) has to do with existence
of traveling waves whose fronts are non-convex surfaces. In fact in [5] it is proven
that in the case of translating solutions of the mean curvature flow in RN+1, N ≥ 2
there exists a family of rotationally symmetric surfaces ΣR, R> 0, of genus 0 which
satisfies:

HΣR = νR,N+1.

In other words ΣR is translated by the mean curvature flow in the direction of xN+1
axis with speed c = 1. Each of these surfaces is formed by taking the union of two
graphs of radial functions W±R : [R,∞)→ R in RN+1. These functions satisfy the
following asymptotic formulas:

W±R (r) =
r2

2(N−1)
− logr+C±+O(r−1), r� 1,(1.12)
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xN+1

r

F(r)

1
ε
F(εr)

FIGURE 1.1. Schematic view of the surface Γ represented as a graph
xN+1 = F(r) and moving with speed c = 1, and the surface Γε , repre-
sented as a graph xN+1 =

1
ε

F(εr) and moving with speed c = ε .

with some constants C±. The graphs of the functions W±R are called the ends of ΓR
and we will refer to them as the upper end Σ

+
R and the lower end Σ

−
R , respectively.

Comparing (1.12) with (1.10) we see that the ends of each of the surface ΣR are
asymptotically ”parallel” to the traveling graph Γ described above. It is easy to see
that ΣR divides the space into two disjoint components, we call them Ω

±
R , respec-

tively and agree that Ω
+
R is the component containing the vertical axis xN+1 and

Ω
−
R is the other one. Sometimes we refer to the surfaces ΣR as traveling catenoids.

We consider a scaling of ΣR by a small parameter ΣR,ε =
1
ε
ΣR. The scaled sur-

faces move now with speed c = ε . We will denote the ends of the scaled traveling
catenoid by Σ

±
R,ε . Note that Σ R

ε

6= ΣR,ε . Indeed, while both of these surfaces are

defined for r > R
ε

, Σ R
ε

is a traveling catenoid whose speed is c = 1, while ΣR,ε is
a traveling catenoid whose speed is c = ε . In other words the surfaces ΣR consid-
ered for different R are not simple scalings of one another. See Figure 1.3, which
illustrates the situation.

We show the following result:
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xN+1

r

Γ +
ε

Γε

Γ−ε

uε ≈−1

uε ≈−1

uε ≈ 1

FIGURE 1.2. Illustration of the results of Theorem 1. The surfaces Γ±ε
are presented as well as the asymptotic values of the traveling wave so-
lution uε .

Theorem 1.2. For each R > 0 and each ε sufficiently small there exists a traveling
wave solution uε of the problem (1.4) moving with speed c = ε , and such that the
following hold:

(1) The level set Σ̃R,ε = {uε = 0} is a rotationally symmetric, smooth surface
of genus 0.

(2) The surface Σ̃R,ε divides the space into two disjoint components D±R,ε such
that uε > 0 in D+

R,ε and uε < 0 in D−R,ε . Moreover, outside of a sufficiently
large ball the set Ω

−
R,ε , which is one of the two components into which the

traveling catenoid ΣR,ε divides RN+1, is contained in D−R,ε . We have also:

lim
xN+1→±∞

uε(x′,xN+1) = 1, ∀x′ ∈ RN .

At the same time

lim
|(x′,xN+1)|→∞

(x′,xN+1)∈D−R,ε∩Ω
−
R,ε

uε(x′,xN+1) =−1.

(3) Let Σ̃
±
R,ε denote the ends of the surface Σ̃R,ε . For each r > R we denote

Σ̃
±
R,ε(r) = Σ̃

±
R,ε \Cr. Correspondingly we introduce the surfaces Σ

±
R,ε(r) =
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R

xN+1

r

ΣR,ε

Γ
ΣR

FIGURE 1.3. Schematic view of the traveling catenoid ΣR and moving
with speed c = 1 and its rescaled version ΣR,ε , moving with speed c = ε .
The surface Γ is also represented for comparison.

Σ
±
R,ε \Cr. With these notations it holds

d(Σ̃±R,ε(r),Σ
±
R,ε(r)) = O

(
log
(1+ ε2r2

ε2

))
.

The existence results in Theorem 1.1 and Theorem 1.2 are rather counterintu-
itive in view of what happens with the planar fronts. To explain this, let us note that
because of the statement (2) in Theorem 1.1 the phase labeled −1 has a tendency
to invade the other phase. This is because when we take the limit uε(x′,xN+1), with
x′ fixed and xN+1 → ±∞ then uε(x′,xN+1)→ −1. In the one dimensional situa-
tion a solution to the parabolic Allen-Cahn equation with initial data satisfying this
condition at ∞ will eventually converge to 01. Thus, if this one dimensional inter-
action of fronts were the only mechanism present, the nodal hypersurfaces should
attract each other and eventually annihilate, and only one phase would remain in
the asymptotic limit of infinite time. Based on this a natural statement in higher
dimension would then be: if a traveling wave solution of the bistable and balanced
problem satisfies limxN+1 u(x′,xN+1) =−1 then u≡−1.

This turns out to be false because of the mediating effect of the geometry of
the front. Indeed, we see that in the situation described by the theorems one stable
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xN+1

r

Σ̃R,ε

uε ≈−1

ΣR,ε

uε ≈ 1

uε ≈ 1

FIGURE 1.4. Illustration of the results of Theorem 2. The surface Σ̃R,ε is
presented as well as the asymptotic values of the traveling wave solution
uε For comparison we include also the surface Σε,R.

phase, say −1, is ”surrounded” by the other phase, say +1, which is also stable
thanks to the fact that the nonlinearity is bistable. The nonlinearity being balanced
as well, the two phases move with equal speed, and their initial configuration is
translated with constant speed and is preserved for all times. As a result we have
an eternal solutions to the parabolic Allen-Cahn equation. The main effort in this
paper is to give a quantitive form of this by deriving and solving, a system of PDEs,
called the Jacobi-Toda system, for the moving fronts.

Before we close this section, we make several important remarks as well as
open questions.

Remark 1.3. The results of Theorems 1.1 and 1.2 hold for general balanced non-
linearity

(1.13) ∆U + c∂xN+1U + f (U) = 0

where f (U)=F
′
(U) and F ∈C 4(R) has two equal wells±1 with F(−1)=F(1)=

0 and f
′
(±1) < 0. The proofs are similar but the notation and details of some

computations become quite cumbersome. For this reason we chose here to work
with the cubic, balanced nonlinearity f (u) = u(1−u2).
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On the other hand it is also possible to construct solutions with multiple travel-
ing fronts when the nonlinearity is unbalanced (see [13]).

Remark 1.4. In the statement of Theorem 1.1 we have assumed that N ≥ 2. When
N = 1 the traveling wave solution to the mean curvature front is the well known
grim reaper and its properties are quite different. In particular the ends of the grim
reaper become parallel at ∞ and as a result to find multiple front traveling waves
for the traveling wave problem (1.1) one would have to take into account strong
interactions of the ends of the grim reaper. This situation resembles somewhat the
one of Theorem 1.2 but the problem seems quite technical and is beyond the scope
of this paper. In this context it is worth mentioning that according to a result of
Gui [16] traveling wave solutions (1.1) with one front must be even symmetric. An
interesting question would be then whether multiple front traveling wave solutions
with no even symmetry exist.

Remark 1.5. In the proof of Theorem 1.1, for brevity we have only dealt with the
case of k = 2 front traveling wave. The techniques can be extended to multiple front
traveling wave (k > 2) but the technical details render the proofs bit longer. The
main issue which is the solution of the Jacobi-Toda system can handled similarly
as in [12].

This paper is organized as follows. First, we explain on the formal level the
result in Theorem 1.1 introducing in the process the Jacobi-Toda system for a trav-
eling solution to the mean curvature flow. Next, we solve this system for Γε . This
is in fact the core of our paper. Then we use the infinite dimensional Lyapunov-
Schmidt reduction procedure to show the existence for (1.1). Finally, we prove
Theorem 1.2.

2 The Jacobi-Toda system and multi component traveling fronts

The discussion in this section is mostly formal however we think that it is useful
in order to understand the role played by the Jacobi-Toda system in the existence of
traveling wave with multiple components. We chose to work in the setting that is
more general than the one of Theorem 1.1 to emphasize the universality of this sys-
tem. The notations and many calculations presented here will be used throughout
the paper.

2.1 Geometric background
Let us consider a parametrized, regular, N dimensional surface Σ(t) for which

(1.6) is satisfied. We will consider its parametrization over a family of open sets
Uα ⊂ RN , α ∈ A , and associated smooth maps qα : Uα → RN+1 such that their
images cover Σ , namely

⋃
α∈A qα(Uα) = Σ . Furthermore we fix an orientation

on Σ and by ν we will denote the vector field of the unit normal vectors. Let us
consider a tubular neighborhood Dδ of Σ given by:

Dδ = {|dist(Σ ,x)|< δ} ⊂ RN+1,
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where dist denotes the signed distance. All our calculations below have local char-
acter and for this reason we will fix a pair (qα ,Uα) and, for simplicity of notation,
drop the subscript α . For each sufficiently small δ the map

(s,z) 7−→ X ∈ Dδ ∩q(U ), where X(s,z) = q(s)+ zν(s), s = (s1, . . . ,sN) ∈U ,

is a diffemorphism onto Dδ ∩q(U ) (we will consistently abuse the notation writing
ν(s) instead of ν(q(s))). In the sequel we will work with the scaled version of Σ ,
namely Σε , and we will denote its parametrization and the unit normal by qε , νε ,
respectively. It is easy to see that the following relations hold:

qε(s) = ε
−1q(εs), νε(s) = ν(εs), s ∈ ε

−1U ,

and that similar scaling formulas can be derived for other functions defined on Σε .
We also have local coordinates in Dδ/ε which we will still denote by (s,z) and the
map Xε defined by:

Xε(s,z) = qε(s)+ zνε(s).

It is convenient to introduce the following notation for functions f : Dδ/ε → R:

(X∗ε f )(s,z) = ( f ◦Xε)(s,z).

The function X∗ε f : X−1
ε (Dδ/ε)→ R can be interpreted as the pull back of f via

parametrization Xε . In a similar way we define the pull back of a map f : Dδ/ε →
Rd , d ≥ 1 via Xε . By (X∗ f ) we denote the pull back of f : Dδ → Rd , via X .

We will now derive formulas expressing ∆ and ∂xN+1 in Dδ/ε , in terms of (s,z)∈
ε−1U . We define for each z ∈ (−δ/ε,δ/ε)

Σε,z = {x ∈ Dδ/ε | dist(Σε ,x) = z}.
In other words Σε,z is the surface obtained from Σε by translation in the direction
of the normal by z. Then the well known formula gives:

∆ = ∆Σε,z +∂
2
z −HΣε,z∂z,(2.1)

where HΣε,z denotes the mean curvature of Σε,z. We need to expand these operators
in terms of the variable z. By gΣε

and gΣε,z , respectively, we will denote the metric
on Σε , Σε,z (induced from RN+1). In terms of s ∈ ε−1U we get the following
expressions:

gΣε,z,i j = gΣε ,i j + εzaε,i j + ε
2z2bε,i j,(2.2)

where
gΣε ,i j = (∂ jq ·∂iq)(εs), aε,i j(s) = (∂ jq ·∂iν)(εs)+(∂iq ·∂ jν)(εs),

bε,i j(s) = (∂iν ·∂ jν)(εs).
(2.3)

Then, for the matrix g−1
Σε,z

= (gi j
Σε,z

)i, j=1,...,N we get, provided that |εz| is sufficiently
small:

g−1
Σε,z

= g−1
Σε

+ εzAε + ε
2z2Bε ,(2.4)
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where

Aε = A(εs), Bε = B(εs,εz),

and A : U →RN×RN , B : U × (−δ ,δ )→RN×RN are smooth matrix functions.
The expression for the Laplace-Beltrami operator on Σε in local coordinates is:

∆Σε
=

1√
det(gΣε

)
∂ j(
√

det(gΣε
)gi j

Σε
∂i)

= gi j
Σε

∂i j +
1√

det(gΣε
)
∂ j(
√

det(gΣε
)gi j

Σε
)∂i

= gi j
Σε

∂i j−gk`
Γ

i
Σε
,k`∂i,

where Γi
Σε
,k` are the Christoffell symbols. A similar formula holds for ∆Σε,z . Using

this we can write:

∆Σε,z = ∆Σε
+Aε,i j∂i j +Bε,i∂i.

where

Aε,i j = gi j
Σε,z
−gi j

Σε
,

Bε,i = gk`
Σε,z

[Γi
Σε,z ,k`

−Γ
i
Σε
,k`]+Γ

i
Σε
,k`[g

k`
Σε,z
−gk`

Σε
].

Expressions in local coordinates for Aε,i j, Bε,i can be further derived using the
above expansions, however their exact form is not crucial here. The point is that,
formally, these functions are small in terms of |εz|. Finally, for future reference,
we notice that if fε ∈ C 2(Σε) is identified with f ∈ C 2(Σ) through the formula
(X∗ε fε)(s) = (X∗ f )(εs), then

(X∗ε ∆Σε
fε)(s) = ε

2(X∗∆Σ f )(εs).(2.5)

Next, we will expand the mean curvature HΣε,z . To this end we will denote by
kε, j, j = 1, . . . ,N the principal curvatures of Σε . Then we have

HΣε,z =
N

∑
j=1

kε, j

1− zkε, j

=
N

∑
j=1

kε, j + z
N

∑
j=1

k2
ε, j + z2RΣε

,

= HΣε
+ z|AΣε

|2 + z2RΣε
,

(2.6)

where

RΣε
=

N

∑
j=1

k3
ε, j + z

N

∑
j=1

k4
ε, j + . . . ,
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and |AΣε
| is the norm of the second fundamental form on Σε . Denoting by k j, j =

1, . . . ,N the principal curvatures of Σ it is straightforward to see that (X∗ε kε, j)(s) =
ε(X∗k j)(εs), hence

(X∗ε |AΣε
|2)(s) = ε

2(X∗|AΣ |2)(εs).(2.7)

To compute the expression for ∂xN+1 ≡ ∂N+1 in local coordinates of Dδ/ε we
observe that for any function fε in Dδ/ε we have

∂N+1 fε = ∇ fε ·∇(πε,N+1),

where πε, j : Dδ/ε → R denotes the projection on the jth coordinate. Furthermore
we have the following formula for the gradient (interpreted as a vector field defined
on Dδ/ε ):

∇ fε = ∇Σε,z fε +∂z fε∂z,(2.8)

where ∇Σε,z denotes the gradient vector field on the hypersurface Σε,z.
The formula for the gradient in the local coordinates (s,z)∈ ε−1U ×(−δ/ε,δ/ε)

is given by

(X∗ε ∇ fε) = ∂ j(X∗ε fε)g
i j
Σε,z

∂i +∂z(X∗ε fε)∂z,

hence:

X∗ε (∂N+1 fε) = (X∗ε ∇Σε,z fε) · (X∗ε ∇Σε,zπε,N+1)+X∗ε (∂νε
fε)X∗ε (∂νε

πε,N+1)

= gi j
Σε,z

∂ j(X∗ε f )∂i(X∗ε πε,N+1)+∂z(X∗ε fε)∂z(X∗ε πε,N+1).

Observe that X∗ε πε,N+1 = qε,N+1+ zνε,N+1, hence, using (2.4) and neglecting those
terms that carry a factor of εz in front, we get the following asymptotic formula,
valid whenever |εz| is small:

X∗ε (∂N+1 fε)≈ gi j
Σε

∂ j(X∗ε f )∂i(qε,N+1)+∂z(X∗ε fε)νε,N+1.(2.9)

Here and below we denote f ≈ g when f −g is a lower order term.
To find the scaling formula for this expression we observe that if fε ∈C 2(Dδ/ε)

and f ∈ C 2(Dδ ) are related through the formula (X∗ε fε)(s,z) = (X∗ f )(εs,εz) then

X∗ε (∇Σε
fε) = εX∗(∇Σ f ),

and in particular, since we have:

(X∗ε πε,N+1)(s,z) = ε
−1(X∗πN+1)(εs,εz), νε,N+1(s) = νN+1(εs),

therefore

X∗ε (∂N+1 fε)(s,z)≈ εX∗(∂N+1 f )(εs,εz)

= ε
[(

X∗(∇Σ f ·∇Σ πN+1)
)
+
(
X∗(∂νN+1 f )(X∗∂νN+1πN+1)

)]
(εs,εz)

= ε
[
gi j

Σ
(∂ jX∗ f )(∂iqN+1)+∂z(X∗ f )νN+1

]
(εs,εz).

(2.10)
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2.2 A model for multi component traveling waves
In this section we will describe an approximate form of the multiple traveling

wave solution to the equation (1.4), where c = ε is considered to be a small param-
eter. This approximate solution models the multiple traveling waves in the sense
that the true solution to (1.4) with c = ε is its small perturbation, as ε→ 0. In gen-
eral it is reasonable to assume that each component of the multiple traveling wave
is a normal graph over an eternal, translating solution of the MC flow, represented
by the hypersurface Σε . Moreover, the profile of each component of the traveling
front should locally resemble one dimensional solution of (1.4) with ε = 0. Given
these observations we will proceed now with more precise definitions.

Let H be the unique odd and monotonically increasing heteroclinic solution of
(1.4) in one dimension:

H ′′+H(1−H2) = 0, in R.

For future reference let us recall that H(t) = tanh
( t√

2

)
Furthermore, let f j : Σ → R, j = 1, . . . ,k, k > 1 be smooth functions such that

f j < f j+1. We also set for convenience f0 = −∞ and fk+1 = ∞. In our formal
considerations we do not restrict k, however, to keep the paper at a reasonable
length the rigorous construction is carried on for k = 2 only (see Remark 1.5).

We now define the approximate solution uε , through its expression in local
coordinates (q,U ), by:

(X∗ε uε)(s,z) =
k

∑
j=1

(−1) j+1H
(
z− (X∗ f j)(εs)

)
+

1
2
(
1− (−1)k+1),

where s ∈ ε
−1U ,z ∈ (−δ/ε,δ/ε).

(2.11)

Later on we will have to be more specific about the way the approximate solution
is defined outside of Dδ/ε (which is in fact a nontrivial matter) but for our formal
considerations it suffices to know uε in Dδ/ε . In the sequel we will denote f j(εs) =
fε, j(s), so that fε, j : Σε → R and that the following relation holds (X∗ε fε, j)(s) =
(X∗ f j)(εs), s ∈ ε−1U .

In order to solve (1.4) we will further introduce a new unknown function φ , and
look for a solution in the form u = uε +φ . Substituting into (1.4) with c = ε we get

∆u+ ε∂xN+1u+ f (u) = S(uε)+L(φ)+N(φ), f (u) = u(1−u2),

where

S(uε) = ∆uε + ε∂xN+1uε + f (uε),

L(φ) = ∆φ + ε∂xN+1φ + f ′(uε)φ ,

N(φ) = f (uε +φ)− f (uε)− f ′(uε)φ .
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Then, roughly speaking, (1.4) is reduced to finding φ and fε, j, j = 1, . . . ,k such
that

L(φ)+S(uε)+N(φ) = 0.(2.12)

As we will see later on this problem requires further modification and in particular
to solve it we will analyze in details invertibility properties of the linear operator
L. Let us notice one important fact in this context. If by H ′

ε, j we denote

(X∗ε H ′ε, j)(s,z) = H ′
(
z− (X∗ fε, j)(s)

)
,

then

L(H ′ε, j) = o(1), ε → 0.

Thus the inverse of the linear operator L is not expected to be uniformly bounded
as ε → 0, since the function H ′

ε, j is in the approximate kernel of L. On the other
hand to solve (2.12) for φ we would like to use a fixed point argument for the
operator

φ 7−→ −L−1(S(uε)+N(φ)),

and this clearly requires that ‖L−1‖ be bounded independently on ε . A standard
way to deal with this difficulty is to employ the method of infinite dimensional
Lyapunov-Schmidt reduction. The idea is simple: for any function ψ : Dδ/ε → R
we define a projection operator Πε by

(X∗ε Πεψ) = (X∗ε H ′ε, j)(s,z)

∫ δ/ε

−δ/ε
[(X∗ε ψ)(X∗ε H ′

ε, j)](s,z)dz∫ δ/ε

−δ/ε
(X∗ε H ′

ε, j)
2(s,z)dz

.

Next we decompose φ = φ ‖+φ⊥ where

(X∗ε φ
‖) = (X∗ε Πεφ).

Then problem (2.12) reduces to:

Πε [L(φ)+S(uε)+N(φ)] = 0,(2.13)

(Id−Πε)[L(φ)+S(uε)+N(φ)] = 0.(2.14)

Neglecting formally terms involving N(φ) and L(φ) in (2.13), which should be
of lower order, this condition reads:∫

δ/ε

−δ/ε

(
X∗ε [S(uε)H ′ε, j]

)
(s,z)dz = 0, j = 1, . . . ,k, ∀s ∈ ε

−1U .(2.15)

Recall here that we work with a fixed pair (q,U ) belonging to the parametrization
(qα ,Uα)α∈A of Σ , but of course this condition needs to be satisfied for all Uα .
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We will now use equations (2.15) to derive the Jacobi-Toda system on Σε . We
will write for each fixed j:∫

δ/ε

−δ/ε

(
X∗ε (S(uε)H ′ε, j)

)
(s,z)dz

≈
∫

δ/ε

−δ/ε

X∗ε
(
(∆Hε, j + ε∂xN+1Hε, j + f (Hε, j))H ′ε, j)

)
(s,z)dz

+
∫

δ/ε

−δ/ε

X∗ε
(
[ f (

2

∑
i=0

Hε, j+i−1)−
2

∑
i=0

f (Hε, j+i−1)]H ′ε, j
)
(s,z)dz.

(2.16)

Observe that above we took into account only terms representing the interactions
of the jth wave with its ”immediate” neighbors. The remaining terms represent
interactions of the jth wave with those waves whose distances to the jth wave are
large enough to render their interactions negligible.

Now we will consider the integrand of the first of the integrals on the right hand
side of (2.16). Using the expressions for ∆, ∂xN+1 , and neglecting small terms (as
in the previous section), we get:

X∗ε S(Hε, j)≈ ∂zzX∗ε Hε, j +X∗ε f (Hε, j)

+X∗ε (ενN+1−HΣε
)∂zX∗ε Hε, j

+X∗ε
[(

∆Σε
− z|AΣε

|2∂z
)
Hε, j + ε∇Σε

Hε, j ·∇Σε
(πε,N+1)

]
.

Consecutive terms above are organized in such a way that the first term is simply 0
by definition of Hε, j, the second term is also 0 since Σε is an eternal solution of the
mean curvature flow translating with speed c = ε , and the third is of order O(ε2).
In this term we will separate those parts whose projection Πε onto H ′

ε, j is nonzero
from the rest:

X∗ε S(Hε, j)≈ X∗ε
[(
−∆Σε

fε, j−|AΣε
|2 fε, j− ε∇Σε

fε, j ·∇Σε
(πε,N+1)

)
H ′ε, j

]
+X∗ε (|∇Σε

fε, j|2H ′′ε, j)− (z−X∗ε fε, j)X∗ε (|AΣε
|2H ′ε, j).

(2.17)

Taking this formula into account it is not hard to show that∫
δ/ε

−δ/ε

X∗ε S(Hε, j)H ′ε, j

≈−c0X∗ε
(
∆Σε

fε, j + |AΣε
|2 fε, j + ε∇Σε

fε, j ·∇Σε
(πε,N+1)

)
(s)
)

=−ε
2c0X∗

(
∆Σ f j + |AΣ |2 f j +∇Σ f j ·∇Σ (πN+1)

)
(εs),

(2.18)

where c0 =
∫
R(H

′)2.
Similarly we will separate the integrand in the second integral in (2.16) into

the parts whose projection onto H ′
ε, j is nontrivial, and the rest. Here we use the

fact that from H(t) = tanh( t√
2
) we get 1−H2 =

√
2H ′. After some elementary
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manipulations we find

f (
2

∑
i=0

Hε, j+i−1)−
2

∑
i=0

f (Hε, j+i−1)≈ 3
√

2H ′ε, j(Hε, j−1−1)+3
√

2H ′ε, j(Hε, j+1 +1),

(2.19)

where the terms that we have neglected turn out to have small contributions when
projected onto H ′

ε, j. To compute the projection Πε let us recall that

H(t)−1≈−2e−
√

2t , t→ ∞, H(t)+1≈ 2e
√

2t , t→−∞.

Then, we obtain the following as the leading order term in the second integral in
(2.16):

(2.20)

3
√

2
∫

δ/ε

−δ/ε

X∗ε
[
(H ′ε, j)

2(Hε, j−1−1)
]
(s,z)dz+3

√
2
∫

δ/ε

−δ/ε

X∗ε
[
H ′ε, j(Hε, j+1+1)

]
(s,z)dz

≈ 6
√

2c1X∗ε (e
√

2( fε, j−1− fε, j)− e
√

2( fε, j− fε, j+1))(s)

= 6
√

2c1X∗(e
√

2( f j−1− fε, j)− e
√

2( f j− f j+1))(εs)

where

c1 =
∫

∞

−∞

(
H ′(t)

)2e
√

2t dt.

Denoting

α0 =
c0

6
√

2c1
=

1
6
√

2

∫
R(H

′)2∫
R
(
H ′(t)

)2e
√

2t
=

√
2

24
,

we find that to leading order (2.15) is equivalent to:

α0
(
∆Σε

fε, j + |AΣε
|2 fε, j +∇Σε

fε, j ·∇Σ (πε,N+1)
)

− e
√

2( fε, j−1− fε, j)+ e
√

2( fε, j− fε, j+1) = 0.
(2.21)

This system of k equations will be called the Jacobi-Toda system on Σε . Let us
recall that we have set fε,0 = −∞ and fε,k+1 = ∞ to close the system. Let us
also observe that by scaling back to Σ we get the following singular perturbation
problem:

α0ε
2(

∆Σ f j + |AΣε
|2 f j +∇Σ f j ·∇Σ (πN+1)

)
− eα1( f j−1− f j)+ eα1( f j− f j+1) = 0.

(2.22)

Solutions of (2.21) and (2.22) are related through the formula fε, j(·) = f j(ε·). We
should mention here that a similar system appears in the context of foliation by
interfaces [12] and [10].
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3 An existence result for the Jacobi-Toda system

3.1 Rotationally symmetric eternal solutions
The formal calculations of the previous section show that to prove Theorem

1.1 we need to find a suitbale approximation of the components of the traveling
front and this in turn requires solving the Jacobi-Toda system (2.22). This will be
done in several steps in this section. We begin by writing the Jacobi-Toda system
for a special solution of (1.6). Assuming that the surface Σ is given as a graph
Σ = {xN+1 = F(x′),x′ ∈ RN}, and that c = 1, we obtain that (1.6) is equivalent to:

(3.1) ∇(
∇F√

1+ |∇F |2
) =

1√
1+ |∇F |2

.

We will further assume that F(x′) = F(|x′|) i.e Σ is rotationally symmetric. Denot-
ing |x′|= r we get:

Frr

1+F2
r
+(N−1)

Fr

r
= 1.(3.2)

The following result is proven in [1] in the case N = 2 and in general in [5]:

Proposition 3.1. There exists an entire, rotationally symmetric, and strictly convex,
graphical eternal solution to the mean curvature flow. This solution satisfies (3.2)
and consequently it is translating with speed c = 1. Additionally the following
asymptotic expansion as r→ ∞ is valid:

F(r) =
r2

2(N−1)
− logr+1+O(r−1).(3.3)

In the sequel by Γ we will denote the surface corresponding to the rotationally
symmetric eternal solution described in Proposition 3.1.

The Jacobi-Toda system (2.22) for Γ becomes:

ε
2
α0(∆Γ f j + |AΓ |2 f j +∇Γ f j ·∇Γ F)− e

√
2( f j−1− f j)+ e

√
2( f j− f j+1) = 0.

Our theory of solvability of the Jacobi-Toda system will be valid for functions
of the radial variable r only and so we need to express the Jacobi-Toda system on
Γ in terms of the radial variable r. For what follows it will be convenient to denote:

L[v] = ∆Γ v+ |AΓ |2v+∇Γ v ·∇Γ F.(3.4)

Now, we will find the expression of this operator when restricted to functions
v = v(r) i.e. functions depending on the radial variable only. The Laplace-Betrami
operator for a surface xN+1 = F(r) acting on v = v(r) is

∆Γ v =
1

rN−1
√

1+F2
r

∂

∂ r
(

rN−1√
1+F2

r

∂

∂ r
)v

=
vrr

1+F2
r
+(

N−1
r
− Fr

1+F2
r
)vr.

(3.5)
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The principal curvatures are given by

k1 = ...= kN−1 =
Fr

r
√

1+F2
r
, kN =

Frr

(1+F2
r )

3/2 ,(3.6)

hence

|AΓ |2 =
N

∑
j=1

k2
j =

(N−1)F2
r

r2(1+F2
r )

+
F2

rr

(1+F2
r )

3 .(3.7)

Finally we have:

∇Γ v ·∇Γ F =
vrFr

1+F2
r
,

hence we find the following expression for the operator L acting on radial functions
(we denote this operator by Lr):

Lr[v] =
vrr

1+F2
r
+

(N−1)vr

r
+
( (N−1)F2

r

r2(1+F2
r )

+
F2

rr

(1+F2
r )

3

)
v.(3.8)

3.2 Weighted Hölder norms on Γ

We will now proceed to define some weighted norms that we will use in the
sequel. First we recall that in general, for a function h given on a manifold Σ we
have, in some local coordinates:

∇Σ h = gi j
∂ jh∂i, (D2

Σ h)i j = gi j
∂i jh−gi j

Γ
k
i j∂kh.

We refer to the vector ∇Σ as the gradient and to matrix D2
Σ

as the second derivative
matrix of h.

Now, in the case at hand we can use the fact that the surface Γ is rotationally
symmetric to find ∇Γ and D2

Γ
. In particular, when h = h(r) i.e. we are dealing with

a radial function then we have the following relations:

|∇Γ h(r)| ≤ C|∂rh(r)|√
1+ |Fr(r)|2

,

|∂rh(r)| ≤C
√

1+ |Fr(r)|2|∇Γ h(r)|,

|D2
Γ h(r)| ≤ C(|∂ 2

r h(r)|+ r−1|∂rh(r)|
1+ |Fr(r)|2

,

|∂ 2
r h(r)| ≤C(1+ |Fr(r)|2)(|D2

Γ h(r)|+ |∇Γ h(r)|)

We define the following weighted norms for C 2,µ functions on Γ :

‖h‖
C 0,µ

β
(Γ )

= sup
y∈Γ

(1+ |Fr(|y′|)|2)β‖h‖C 0,µ (B(y,1)∩Γ ), y = (y′,yN+1),

‖h‖
C 2,µ

β
(Γ )

= ‖h‖
C 0,µ

β
(Γ )

+‖∇Γ h‖
C 0,µ

β
(Γ )

+‖D2
Γ h‖

C 0,µ
β

(Γ )
.
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3.3 A non-homogeneous Jacobi-Toda system
We observe that so far we were considering the Jacobi-Toda system with the

right hand side equal to 0. However, as we will we see later on, we have to deal
with a more general, non-homogeneous Jacobi-Toda system. This is because in our
formal considerations we neglected some terms, that are of lower order but need to
be eventually taken into account. Also in this case we assume k = 2 and thus we
get the following problem:

ε
2
α0L[ f1]+ e

√
2( f1− f2) = ε

2h1,

ε
2
α0L[ f2]− e

√
2( f1− f2) = ε

2h2.
(3.9)

where f j : Γ → R, h j : Γ → R. To solve the above problem we will assume that
f j,h j are radial functions. In the remaining part of this section we will consider the
problem of the existence of solutions to (3.9) under some assumptions about the
decay in r and smallness in ε for the right hand side. In general we will assume
that

‖h j‖C 0,µ
β

(Γ )
≤Cε

τ , τ > 0, β > 1.(3.10)

Let us explain briefly why a non-homogeneous problem (3.9) with this type of right
hand side appears in our considerations. Going back to the formal calculations in
section 2.2 we notice that in (2.17) we expanded the mean curvature according to
(2.6), and we neglected the error term RΣε

. In the case considered here i.e. Σ = Γ ,
this term is small in terms of ε , and it decays like O((1+ r2)−

3
2 ) when r→ ∞.

We have the following:

Proposition 3.2. Consider the Jacobi-Toda system (3.9) where h j, j = 1,2 are
radial functions satisfying (3.10). There exists a solution of this problem such that,
the functions u,v defined by

u =
√

2( f2− f1), v =
√

2( f1 + f2),

satisfy

u(r) = log
2
√

2
ε2α0|AΓ (r)|2

+O(log log
1

ε2|AΓ (r)|2
), as εr→ 0+, or εr� 1,

|v(r)| ≤Cε
τ(1+ r2)−

1
2 log(2+ r2),

(3.11)

where |AΓ (r)| is the norm of the second fundamental form on Γ .

To describe the strategy let us denote

h =

√
2

α0
(h2−h1), and g =

√
2

α0
(h2 +h1).
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Then we get the following decoupled system:

L[u]− 2
√

2
ε2α0

e−u = h(3.12)

L[v] = g(3.13)

Let us discuss briefly the second of the above equations. The key observation is
that the operator L has a decaying, positive element in its kernel

φ0(r) =
1√

1+F2
r
∼ 1

r
, r� 1,(3.14)

from which we can solve (3.13) by a standard ODE method.
The solvability theory for the nonlinear equation (3.12) is where the real dif-

ficulty lies. Our approach will be to first use an approximation scheme to find a
suitable asymptotic approximation of the solution of (3.12), after which we will be
in a position to use a fixed point argument to solve the non-homogeneous problem,
with the right hand side satisfying (3.10).

The following sections are devoted to the proof of Proposition 3.2.

3.4 Solvability theory for the operator L
We begin by proving the claim that we have made in (3.14), namely that φ0 is in

the kernel of L. Note that since Γ is an eternal graph solution to the MC flow then
so is Γ + τeN+1, namely the graph of xN+1 = F(x′) translated by τ in the direction
of the xN+1-axis. This results in an invariance of the nonlinear operator on the left
hand side of (3.2), which we will take advantage of in the proof of the following:

Lemma 3.3. The function φ0 = 1√
1+F2

r
satisfies L[φ0] = 0 i.e. it is a positive,

decaying element in KerL.

Proof. Let us consider the nonlinear operator

H (Φ) =
Φrr

1+Φ2
r
+(N−1)

Φr

r
.

Taking variations of this operator of the form Φσ = F +σφ , φ = φ(r) we get:

d
dσ

H (Φσ ) |σ=0 ≡H ′[φ ] =
φrr

1+F2
r
− 2FrrFrφr

(1+F2
r )

2 +
(N−1)φr

r
.

In particular we have H ′[1] ≡ 0. In addition the following relation is not hard to
prove, again assuming that φ = φ(r):

L[φ ] = H ′[φ
√

1+F2
r ].

From this the assertion of the lemma follows immediately. �

The existence result for (3.13) follows from the following.
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Lemma 3.4. Let g be a C 0,µ(Γ ) radial function such that

‖g‖
C 0,µ

β
(R+)

< ∞, β ≥ 1.

There exists a unique, bounded solution to

L[v] = g,(3.15)

such that:

‖v‖
C 2,µ

β−1(Γ )
≤C‖g‖

C 0,µ
β

(Γ )
.(3.16)

Proof. Since the function g in (3.15) is radial we can use ODE methods to solve the
equation. Given φ0 > 0 as in Lemma 3.3, which is a radial solution of L[φ ] = 0 we
find the second linearly independent solution φ1 of (1+ |Fr(r)|2)Lr[φ ] = 0 (recall
that Lr is the radial form of L) by the reduction of order formula:

φ1(r) = φ0(r)
∫

∞

r
(1+ |Fr(ρ)|2)exp[−A(ρ)]dρ,

A(ρ) =
∫

ρ

1

(N−1)(1+ |Fr(η)|2)
η

dη .

From this we readily get that

φ1(r)∼

{
logr, N = 2,
r2−N , N > 2,

r� 1, φ1(r)∼ re−r2
, r� 1.

Denoting by W (r) = W (1)exp[−A(r)] the Wronskian, and letting g̃(r) = (1 +
|Fr(r)|2)g(r) we write:

v(r) =−φ0(r)
∫ r

0

φ1(ρ)g̃(ρ)
W (ρ)

dρ +φ1(r)
∫ r

0

φ0(ρ)g̃(ρ)
W (ρ)

dρ.

The assertion of the Lemma follows from a straightforward argument, using the
asymptotic formulas for the functions φ0(r) and φ1(r). �

3.5 Solving for u: the approximate solution
Our goal in this and the following section is to solve the problem (3.12). Of

course once this is done the Proposition 3.2 will be proven. We begin by finding an
approximate solution of (3.12) assuming that h≡ 0, which is equivalent to solving:

Sδ [u] = 0,(3.17)

where

Sδ [u]≡ L[u]−δ
−2e−u, δ =

ε
√

α0

23/4 ,(3.18)

and L is the linear operator defined in (3.4). For the purpose of finding a suitable
approximate solution we will consider a sequence of approximations vk = v0+v1+
· · ·+ vk. Once an accurate enough approximation is found the nonlinear problem
(3.12) can be reduced to a fixed point problem. This step involves inverting the
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linear operator obtained by linearization of the nonlinear operator Sδ around the
approximate solution and will be dealt with in the next section.

The nonlinear operator Sδ can be written explicitly (using the notation of sec-
tion 3.1):

Sδ [v] = ∆Γ v+∇Γ v ·∇Γ F + |AΓ |2v−δ
−2e−v.

We will now describe the construction of an approximate solution of (3.17) . The
leading order term of this approximation is found by solving for v0 the following
equation:

|AΓ |2v0 =
1

δ 2 e−v0 =⇒ v0ev0 =
1

δ 2|AΓ |2
.(3.19)

For brevity we denote b(r) = |AΓ (y)|2, y = (y′,yN+1), r = |y′|. Now, equation
(3.19) implies that

v0(r) = log
1

δ 2b(r)
− log log

1
δ 2b(r)

+O(log log | logδ
2b(r)|).(3.20)

This asymptotic formula is valid when δ � 1. This follows from the fact that
b(r) = 1+O(r2), r→ 0 and on the other hand b(r) = N−1

r2 +O(r−4), r� 1.
Let us also observe the following relations:

v′0 =−
b′

b
v0

1+ v0
, v′′0 =−

(b′

b

)′ v0

1+ v0
−
(b′

b

)2 v0

(1+ v0)3 ,(3.21)

from which the asymptotic behavior of the derivatives of v0 of any order can be
readily deduced. In particular we observe that

|v( j)
0 | ≤

C
(r+1) j , j = 1,2, . . . .(3.22)

Accepting v0 as the leading order approximation, and assuming that the next
approximate solution is of the form v1 = v0 + v1, we are left with the following
problem:

|AΓ |2v1−
1

δ 2 (e
−v0−v1− e−v0) =−

[
∆Γ v0 +∇Γ v0 ·∇Γ F

]
≡ ρ0.(3.23)

This is a nonlinear equation with the right hand side that satisfies

|ρ0(y)| ≤
C

(1+ r)2 , r = |y′|.(3.24)

This follows from the fact that v0 is a smooth function on Γ and (3.22). Using this
we can find a smooth solution of the equation (3.23) which satisfies:

|v( j)
1 (y)| ≤ C

log
(2+r2

δ 2

) 1
(1+ r) j , j = 0,1, . . . .(3.25)

The next terms in the approximate solutions will be determined inductively. It
is important to keep in mind that the approximations we want to construct must
be decaying functions of both 1

logδ 2 and r. Given vk−1 = v0 + v1 + · · ·+ vk−1, for
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which we already know (suitably adapted) relations (3.24)–(3.25) we determine vk
by solving:

|AΓ |2vk−
1

δ 2 (e
−v0−v1−···−vk − e−v0−v1−···−vk−1) =−

[
∆Γ vk−1 +∇Γ vk−1 ·∇Γ F

]
≡ ρk−1.

(3.26)

Solving this equation gives vk = v0 + v1 + · · ·+ vk, where:

|v( j)
k (y)| ≤ C(

log 2+r2

δ 2

)k
1

(1+ r)k+ j−1 , j = 0,1, . . . ,(3.27)

and

|ρk(y)|=
∣∣∆Γ vk +∇Γ vk ·∇Γ F

∣∣≤ C(
log 2+r2

δ 2

)k
1

(1+ r)k+1 .(3.28)

Thus we have proven:

Lemma 3.5. For each k > 1 there exists a function vk such that

Sδ [vk]≤
C(

log 2+r2

δ 2

)k
1

(1+ r)k+1 .

Another parametrization of Γ

The next step in the proof of Proposition 3.2 it to linearize the operator Sδ

around vk and find a solution of Sδ [u] = g in the form u = vk + h using ODE
methods.

To have a convenient form of the linear operator S ′
δ
[vk] we define another

parametrization of Γ , which is obtained by taking the arc length along the curve
(r,F(r)). Thus we define:

(3.29) s =
∫ r

0

√
1+F2

r dρ.

Of course the function r 7→ s(r) is invertible and its inverse is s 7→ r(s). We also
note the following relations:

(3.30)
c|∂sh| ≤ |∇Γ h| ≤C|∂sh|

c(|∂ 2
s h|+ s−1|∂sh|)≤ |D2

Γ h| ≤C(|∂ 2
s h|+ s−1|∂sh|).

Using the asymptotic formula (3.3) for F we get that

s∼ r, r� 1, and, s =
r2

2(N−1)
+O(logr), r� 1.(3.31)

By a straightforward computation we obtain the following expression for the
operator L but now in terms of the arc-lenght variable s:

Ls[v] = vss +a(s)vs +b(s)v,(3.32)
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where

a(s) =
Fr(r(s))+ N−1

r(s)√
1+F2

r (r(s))
, b(s) = |AΓ (r(s))|2.(3.33)

Note that

a(s) =
N−1

s

(
1+O(s2)

)
, s� 1, a(s) = 1+O(s−1), s� 1,

b(s) =
N−1
r2(s)

+O(r−4) =
1
2s

+O(s−2 logs), s� 1,
(3.34)

and that in general a(s), b(s) > 0 since Γ is convex and Fr(0) = 0. We also have
b(0) = 1 and b′(0) = 0. Another important fact is that

b′′(0) =−N2 +4N +2
N4(N +2)

< 0, N = 2, . . . .(3.35)

This last identity follows by a direct computation. Setting bN = N2+4N+2
2N4(N+2) we have

b(s) = 1−bNs2 +O(s4), s→ 0.(3.36)

Definition of the linearized operator Lδ

From the above considerations we see that linearization of Sδ around the ap-
proximate solution vk expressed in terms of r is the following operator

(3.37) Lδ [h] =
hrr

1+F2
r
+

N−1
r

hr + pδ (r)h, pδ (r) = b(r)(1+ v0e−vk+v0).

We will often use the approximate solution vk expressed in terms of the arc length
variable s, which we will denote by uk(s) = vk(r(s)). We will also set u j(s) =
v j(r(s)), j = 0,1, . . . . We let b(s) = b(r(s)).

Later on we will consider the linearized operator in the space of functions which
decay both in s and log( s

δ 2 ) as s increases. We will see that for our purposes we
need to determine vk (or uk) for k sufficiently large.

With some abuse of notation we will denote by the same symbol Lδ the lin-
earized operator expressed in terms of the arc length variable s:

(3.38) Lδ [h] = hss+a(s)hs+ pδ (s)h, pδ (s) = b(s)
(
1+u0(s)e−(u1(s)+···+uk(s))

)
.

Our goal is to find a right inverse of Lδ . The idea is very simple. Since (3.38) is
an ODE an inverse can always be written using the variation of parameters formula.
To control the norm of L−1

δ
we need to understand the behavior of a fundamental

set. This is complicated by the fact that the operator, on the one hand depends on
δ , and on the other hand its properies change as s varies from 0 to ∞.

In fact we observe that from (3.19)–(3.20) and (3.26)–(3.27) it follows that

pδ (s)∼ log
1

δ 2 ,(3.39)
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when s≤ s̄ with some s̄ > 0 fixed, independent on δ , while when s� 1 we have

pδ (s)∼
log s

δ 2

s
.(3.40)

This can be summarized:

pδ (s)∼
1

2+ s
log
(2+ s

δ 2

)
,

for all s and δ � 1. At the same time a(s) ∼ 1
s s� 1 and a(s) ∼ 1, s� 1. In

particular we will need to study carefully Lδ in these ranges of s.

3.6 An inverse of Lδ

In this section, we solve the following problem

(3.41) Lδ [h] = g(s).

Clearly, solving this problem is the key to implement a fixed point argument needed
to solve (3.12). The point is to construct a right inverse of Lδ which is bounded in
suitable Hölder weighted norms. Let us define these norms first:

‖g‖
C 0,µ

β ,ν (R+)
= sup

s>1

{
(2+ s)β

(
log

2+ s
δ 2

)ν‖g‖C 0,µ ((s−1,s+1))
}
,

‖g‖
C `,µ

β ,ν (R+)
:=

`

∑
j=0
‖g( j)‖

C 0,µ
β ,ν (R+)

.

(3.42)

Because of the relations (3.30) these norms are easily translated into the norms of
g as a function (of the radial variable) on Γ .

More precisely we will show:

Lemma 3.6. Suppose that β > 0, ν > 0. Then there exists a constant C > 0 and a
solution h to (3.41) such that
(3.43)

‖h‖
C 0,µ

β ,ν (R+)
+‖h′‖

C 0,µ
β+1,ν (R+)

+‖h′′‖
C 0,µ

β+1,ν (R+)
≤C(log

1
δ 2 )

4+2β‖g‖
C 0,µ

β+1,ν+1(R+)
.

In the rest of this section we prove this important lemma.
To begin with we make the following transformation:

(3.44) ĥ = exp
(

1
2

∫ s

1
a(τ)dτ

)
h.

Then, when s→ 0, ĥ∼ s(N−1)/2h and when s→+∞, ĥ∼ es/2h, by (3.34). Equation
(3.41) is transformed to

(3.45) ĥ′′+(pδ (s)− â(s))ĥ(s) = ĝ,

where

â =
1
2

a′+
1
4

a2, ĝ = exp
(

1
2

∫ s

1
a(τ)dτ

)
g.
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In what follows we will mainly work with the transformed equation (3.45). The
idea of the proof of the lemma follows the same lines as the construction of the
approximate solutions. The situation now is more complicated since we have to
consider a second order ODE.

Let us denote

L̂δ [h] = h′′+ p̂δ h, p̂δ = pδ − â.

When we consider the opertator L̂δ for functions defined in the interval I1 = (0,s1),
for some s1 > 0 independent on δ then we refer to this problem as the inner prob-
lem. We speak of the outer problem when we take Isδ

= (sδ ,∞), sδ � s1 > 0 as the
domain of the functions involved.

First, we will describe the way we chose s1 and sδ . For s→ 0, we have, by
(3.34)–(3.36)

(3.46)
pδ (s) =

(
1−bNs2 +O(s4)

)(
log

1
δ 2 +1+O(s2)

)
,

â(s) = s−2[(N−2)2

4
− 1

4
]
+O(1).

As a consequence there exist an M > 0 and s1 >
M√

log 1
δ2

> 0, which is independent

of δ , such that

p̂δ (s) = pδ (s)− â(s)> 0,
M√

log 1
δ 2

≤ s≤ s1.(3.47)

When s→ ∞ we have by (3.34) that pδ satisfies (3.40) and

(3.48) â(s) =
1
4
+O(s−1),

with similar formulas for the derivatives. From this we can find the asymptotic
behavior of p̂δ (s) for s large, and infer the existence of s2 ≥ s1, again independent
of δ , such that for s > s2 it holds:

p̂′
δ
(s)≤ 0.(3.49)

Observe that s1 and s2 in general do not coincide and we need to solve an interme-
diate problem to glue the inner solution and the solution for s between s1 and s2.
Finally, we will assume that δ is chosen sufficiently small, so that

p̂δ (s)> 0, s1 < s < s2.(3.50)

This can be achieved since, when s is bounded away from 0 and ∞ independently
on δ , we have p̂δ (s) ∼ pδ (s) ∼ b(s) log 1

δ 2 . For future references we observe that
from (3.49) and (3.50) it follows that the exists a unique sδ such that p̂δ (sδ ) = 0
and

p̂δ (s)> 0, s1 ≤ s < sδ , p̂δ (s)< 0, s > sδ .(3.51)
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Actually, from (3.34) it follows that there exist constants M1 < M2 such that

sδ ∈ (M1 log
1

δ 2 ,M2 log
1

δ 2 ).(3.52)

One more observation we make is that on any interval I = (0,s∗), with s∗ <
C log 1

δ 2 , the norms ‖ · ‖
C `,µ

β ,ν (I)
and ‖ · ‖

C `,µ
β ,0 (I)

are equivalent in the following sense:

‖g‖
C `,µ

β ,ν (I)
≤C

(
log

1
δ 2

)ν‖g‖
C `,µ

β ,0 (I)
≤C‖g‖

C `,µ
β ,ν (I)

.

We agree that ‖ · ‖
C `,µ

β ,0 (I)
= ‖ · ‖

C `,µ
β

(I). We will use this equivalence of norms when

we consider the operator Lδ on the interval (0,sδ ).

The inner problem for the operator Lδ

In this section we will consider the following problem:

Lδ [hi] = g, in I1 = (0,s1)

hi(0) = 0, hi
′(0) = 0.

(3.53)

Our goal is to show that there exists a unique solution hi to (3.53) such that

(3.54) ‖hi‖C 2,µ
β

(I1)
≤C log

1
δ 2 ‖g‖C 0,µ

β+1(I1)
.

We will work with the transformed operator Lδ so that (3.53) becomes:

L̂δ [ĥi] = ĝ, in I1 = (0,s1),

ĥi(0) = 0, ĥi
′(0) = 0.

(3.55)

For convenience we will denote λ =
√

1+ log 1
δ 2 . Taking into account the asymp-

totic behavior of b(s) and â(s) when s→ 0 we see that the operator L̂δ can be
written in the form:

L̂δ [ĥ] = ĥ′′+
[
λ

2− s−2((N−2)2

4
− 1

4
)](

1+O(s2)
)
ĥ.

It is convenient to make further change of variables setting:

ĥi(s) = h̃i(λ s), ĝ(s) = g̃(λ s), p̂δ (s) = λ
−2 p̃(λ s) etc.

Then, denoting by L̃δ the re-scaled operator we have:

L̃δ [h̃] = h̃′′+
[
1− s−2((N−2)2

4
− 1

4
)](

1+O(λ−2s2)
)
h̃,

and (3.55) becomes

L̃δ [h̃i] = λ
−2g̃, in Iλ = (0,λ s1).
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Formally L̃δ [h̃] = 0 resembles the modified Bessel equation and the operator
L̃δ should have an element of the kernel h̃i,1 such that

h̃i,1(s)∼ s
1
2 JN−2

2
(s),(3.56)

where JN−2
2
(s) is the Bessel function. The second linearly independent element in

the kernel is such that

h̃i,2(s)∼ s
1
2 J−N+2

2
(s),(3.57)

when N−2
2 is not an integer and

h̃i,2(s)∼ s
1
2 YN−2

2
(s),

when N−2
2 is an integer, where YN−2

2
is the modified Bessel function of the second

kind [6].
We choose the solution to (3.55) given by

(3.58) h̃i(s) =−λ
−2h̃i,1(s)

∫ s

0
h̃i,2(τ)g̃(τ)dτ +λ

−2h̃i,2(s)
∫ s

0
h̃i,1(τ)g̃(τ)dτ.

Note that h̃i(0) = 0, h̃′i(0) = 0 since, after the change of variables, we have g̃(s) =
O(s

N−1
2 ).

To make use of the above formula and to estimate h̃i we need some information
about the functions h̃i, j, j = 1,2. We recall that the Bessel functions oscillate
and the same is expected for h̃i, j. We observe first, that passing to the limit over
compacts we can justify the asymptotic statements (3.56)–(3.57), and show the
uniform convergence of h̃i, j to the corresponding solutions of the Bessel equation
as λ → ∞. In particular it follows that for each K > 0 and each sufficiently large
λ the function h̃i,1 is uniformly bounded on the interval (0,K), and for each small
τ > 0 the function h̃i,2 is uniformly bounded over the interval (τ,K). Furthermore,
taking K sufficiently large, we may assume that

p̃(s) =
[
1− s−2((N−2)2

4
− 1

4
)](

1+O(λ−2s2)
)
> 0, s ∈ (K,λ s1).

In fact we even have

c1 ≤ p̃(s)≤ c2, s ∈ (K,λ s1),

with some constants c1,c2 > 0. Now we will make an important observation: let h̃
be a solution of L̃δ [h̃] = 0 in (K,λ s1) and consider the following expressions:

Q1(h̃)≡ [h̃′(s)]2 + p̃(s)[h̃(s)]2, Q2(h̃) =
[h̃′(s)]2

p̃(s)
+ [h̃(s)]2.

It is easy to see that

d
ds

Q1(h̃) = p̃′(h̃)2,
d
ds

Q2(h̃) =−
p̃′

p̃
(h̃′)2.(3.59)
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Let now K ≤ ξ1 < ξ2 < λ s1 be two points such that h̃′(ξ j) = 0. Then from (3.59)
and the bound on p̃ it follows that there exist constants C1,C2 such that

C2[h̃(ξ1)]
2 ≥ [h̃(ξ2)]

2 ≥C1[h̃(ξ1)]
2,(3.60)

as long as p̃′ does not change sign in the interval (ξ1,ξ2) (recall that p̃ > 0 in
(K,λ s1)).

We claim that from this, and the uniform bound for the functions h̃i, j for s < K,
which we have already proven, it follows that these functions are actually bounded
uniformly for s ≥ K as well. To prove this we observe that from (3.46) it follows
that

p̃(s) =
{
[1−bNλ

−2s2 +O(λ−4s4)]− s−2[(N−2)2

4
− 1

4
]}(

1+O(λ−2s2)
)
,

hence when N = 2,3 we have p̃′(s)< 0 for all s ∈ (0,λ s1) while when N > 3 there
exists a unique sλ <C

√
λ such that

p̃′(s)> 0, s ∈ (0,sλ ), p̃′(s)< 0, s ∈ (sλ ,λ s1).

Therefore when N = 2,3 the uniform bound on h̃i, j follows immediately from
(3.60). When N > 3 we need to consider the growth of h̃i, j between ζ1 < sλ < ζ2

where ζ` are zeros of h̃i, j. Observe that since p̃(s) is bounded uniformly for
0 < s < λ s1, therefore using the relations (3.59), but now considering those points
ζ at which h̃i, j(ζ ) = 0 we get, as long as ζ < sλ , that [h̃′i, j(ζ )]

2 is bounded uni-
formly in λ . Then, for each s ∈ (ζ1,sλ ), we get

d
ds

Q2(h̃i, j)(s)≤ 0 =⇒C[h̃′i, j(ζ1)]
2 ≥ [h̃′i, j(s)]

2 + p̃(s)[h̃i, j(s)]2,

and in particular [h̃′i, j(sλ )]
2 +[h̃i, j(sλ )]

2 is bounded. A similar argument, but using
Q1(h̃i, j)(s) for s ∈ (sλ ,ζ2), gives that [h̃′i, j(s)]

2+[h̃i, j(s)]2 is bounded as well. Now
(3.60) applies in (ζ2,λ s1) and the claim follows.

The asymptotic formulas (3.56)–(3.57) for s small, and the uniform bound on
h̃i, j, together with the variation of parameters formula (3.58), give the following
bound:

‖s
1−N

2 h̃i‖C 0(0,K) ≤
C
λ 2 ‖s

2+ 1−N
2 g̃‖C 0(0,K).(3.61)

On the other hand, the uniform bounds on h̃i, j yield:

‖s
1−N

2 h̃i‖C 0(K,λ s1) ≤
C
λ 2 ‖s

1+ 1−N
2 g̃‖C 0(K,λ s1).(3.62)

Scaling back this estimates we get for the solution of the inner problem the follow-
ing estimate

‖hi‖C 0,µ (I1) ≤C‖g‖C 0,µ (I1).

Using then equation (3.53) we can write:

hss +a(s)hs = g− pδ (s)h,
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and since pδ (s)∼ log 1
δ 2 on I1:

‖hi‖C 2,µ (I1) ≤C log
1

δ 2 ‖g‖C 0,µ (I1),

from where we get (3.54), using the fact on the interval I1 =(0,s1), with s1 bounded
independently on δ , the weight in the definition of C 0,µ

β
norm is bounded by a

constant.

Continuation of the solution from s = s1 to s = s2

Let s1 < s2 be as defined above (see (3.47)–(3.50)). We will solve now,

L̂δ [ĥn] = ĝ, in I2 = (s1,s2)

ĥn(s1) = ĥi(s1) ĥn
′(s1) = ĥ′i(s1).

(3.63)

Let us recall that in the interval considered here we have p̂δ (s) > 0, p̂δ (s) ∼
b(s) log 1

δ 2 , and s2 is a point such that p′
δ
(s)≤ 0, for s > s2.

The solution of (3.63) can be written using the variation of parameters formula

ĥn(s) = ĥn,1(s)ĥi(s1)+ ĥn,2(s)ĥ′i(s1)− ĥn,1(s)
∫ s

s1

ĥ2,n(τ)ĝ(τ)dτ

+ ĥn,2(s)
∫ s

s1

ĥ1,n(τ)ĝ(τ)dτ,
(3.64)

where the ĥn, j form a fundamental set of the ODE (3.63) with

ĥn,1(s1) = 1 = ĥ′n,2(s1), ĥ′n,1(s1) = 0 = ĥn,2(s1).

Using the fact that, by the choice of s1,s2 and δ in (3.47)–(3.50), p̂δ (s)> c > 0 in
I2, we can employ the identities (3.59) to obtain a uniform bound on [ĥn, j(s)]2 and
[ĥ′n, j(s)]

2 in I2.

Then from the estimate on ĥ j(s1) and ĥ′i(s1) and (3.64) we get, after changing
back to the original functions hn and g

‖hn‖C 0,µ (I2) ≤C log
1

δ 2 ‖g‖C 0,µ (I1∪I2),(3.65)

hence we get, again using the equation:

‖hn‖C 2,µ (I2) ≤C
(

log
1

δ 2

)2‖g‖C 0,µ (I1∪I2),(3.66)

and since s2 is bounded:

‖hn‖C 2,µ
β

(I2)
≤C

(
log

1
δ 2

)2‖g‖
C 0,µ

β+1(I1∪I2)
.(3.67)
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Continuation of the solution from s = s2 to s = sδ

Next we will solve,

L̂δ [ĥm] = ĝ, in I3 = (s2,sδ ),

ĥm(s2) = ĥn(s2) ĥm
′(s2) = ĥ′n(s2),

(3.68)

where sδ is defined in (3.51). Notice that in I3 we have p̂′
δ
(s) < 0 however p̂δ (s)

is not bounded away from 0 since by definition of sδ , p̂δ (sδ ) = 0. But we can still
use the quadratic form Q1(h) in (3.59) to find a uniform bound on [ĥ′m, j(s)]

2, where
the ĥm, j are elements of a fundamental set. From this we find:

|ĥm, j(s)| ≤C(1+(s− s2)), s ∈ I3.(3.69)

Then, the variation of parameters formula gives:

ĥm(s) = ĥm,1(s)ĥn(s2)+ ĥm,2(s)ĥ′n(s2)− ĥm,1(s)
∫ s

s2

ĥ2,m(τ)ĝ(τ)dτ

+ ĥm,2(s)
∫ s

s2

ĥ1,m(τ)ĝ(τ)dτ.
(3.70)

Multiplying this identity by exp{−1
2
∫ s

1 a(τ)dτ} and using (3.69) we infer that the
function

hm(s) = ĥm(s)exp{−1
2

∫ s

1
a(τ)dτ},

satisfies

‖hm‖C 0,µ (I3) ≤C
(

log
1

δ 2

)
(|hn(s2)|+ |hn

′(s2)|)+C
(

log
1

δ 2

)2‖g‖
C 0,µ

β+1(I3)
.

Taking into account (3.66) we find:

‖hm‖C 0,µ (I3) ≤C
(

log
1

δ 2

)3‖g‖
C 0,µ

β+1(I1∪I2∪I3)
,(3.71)

and then using the equation Lδ [hm] = g in I3:

‖hm‖C 2,µ (I3) ≤C
(

log
1

δ 2

)4‖g‖
C 0,µ

β+1(I1∪I2∪I3)
.(3.72)

Finally, noting that for s2 < s < sδ we have (2+ s)β ≤C
(

log 1
δ 2

)β we obtain the
following estimate:

‖hm‖C 2,µ
β

(I3)
≤C

(
log

1
δ 2

)4+β‖g‖
C 0,µ

β+1(I1∪I2∪I3)
.(3.73)
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The outer problem for the operator Lδ

Now we will find a solution ĥo of (3.45) such that

(3.74)
ĥ′′o + p̂δ ĥo = ĝ, s > sδ ,

ĥo(sδ ) = ĥm(sδ ), ĥ′o(sδ ) = ĥ′m(sδ ).

It is convenient to change variables s = sδ + t and regard at first this problem for
t ∈ R+. We will use the same symbols for the functions involved. Again we will
use the variation of parameters formula. To this end, we need to chose two linearly
independent solutions of the homogeneous problem such that

ĥo,1(t)→ ∞, and ĥo,2(t)→ 0, t→ ∞.

A fundamental set with these properties can be found (for instance see [22]) given
that p̂δ (sδ + t) =−1

4 +o(1) as t → ∞. Moreover we can chose ĥo, j in such a way
that

ĥo,1(0) = 0, ĥo,2(0) = 1,

ĥ′o,1(0) = 1, ĥ′o,2(0) =−η ,
(3.75)

where η > 0 is bounded independently on δ . Observe that the Wronskian of these
functions is W (ĥo,1, ĥo,2)(t) =−1. Then we get:

ĥo(sδ + t) = [η ĥo(sδ )+ ĥ′o(sδ )]ĥo,1(t)+ho(sδ )ĥo,2(t)

+ ĥo,1(t)
∫ t

0
ho,2(τ)ĝ(sδ + τ)dτ− ĥo,2(t)

∫ t

0
ho,1(τ)ĝ(sδ + τ)dτ.

(3.76)

Since p̂′
δ
(sδ + t) < 0 and p̂′′

δ
(sδ + t) > 0 for t > 0, therefore by the general

theory for second order linear ODEs (see for instance [22], chpt. 9.2) we get that
for some c j,C j > 0, j = 1,2:

C1 exp
{∫ t

0
[−p̂δ (sδ + τ)]1/2 dτ

}
≤ ĥo,1(t)≤C2 exp

{∫ t

0
[−p̂δ (sδ + τ)]1/2 dτ

}
,

c1 exp
{
−
∫ t

0
[−p̂δ (sδ + τ)]1/2 dτ

}
≤ ĥo,2(t)≤ c2 exp

{
−
∫ t

0
[−p̂δ (sδ + τ)]1/2 dτ

}
.

(3.77)

We note that for any α > 0, ν > 0 and δ sufficiently small, the functions:

(sδ + t)α
(

log
sδ + t

δ 2

)ν+1 exp
{∫ t

0

(
[−p̂δ (sδ + τ)]1/2− 1

2
a(sδ + τ)

)
dτ

}
(sδ + t)α

(
log

sδ + t
δ 2

)ν+1 exp
{∫ t

0

(
− [−p̂δ (sδ + τ)]1/2− 1

2
a(sδ + τ)

)
dτ

}
(3.78)
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are monotone decreasing for t > 0, hence using that sδ = O(log 1
δ
) and denoting

ωβ ,ν+1(sδ + t) = (sδ + t)β
(

log
sδ + t

δ 2

)ν+1 exp
{
−
∫ sδ+t

1
a(τ)dτ

}
,

we get by (3.73):

ωβ ,ν+1(sδ + t)|[η ĥo(sδ )+ ĥ′o(sδ )]ĥo,1(t)+ ĥo(sδ )ĥo,2(t)|

≤C
(

log
1
δ

)5+2β+ν‖g‖
C 0,µ

β+1,0(0,sδ )

≤C
(

log
1
δ

)4+2β‖g‖
C 0,µ

β+1,ν+1(0,sδ )
.

(3.79)

On the other hand, for any β > 0,ν > 0 and δ sufficiently small, the functions:

(sδ + t)−β−1( log
sδ + t

δ 2

)−ν−1 exp
{∫ t

0

(
− [−p̂δ (sδ + τ)]1/2 +

1
2

a(sδ + τ)
)

dτ

}
,

(sδ + t)−β−1( log
sδ + t

δ 2

)−ν−1 exp
{∫ t

0

(
[−p̂δ (sδ + τ)]1/2 +

1
2

a(sδ + τ)
)

dτ

}
,

(3.80)

are monotone increasing for t > 0. Then, assuming ‖g‖
C 0,µ

β+1,ν+1(R+)
< ∞, we get

that the functions

y1(t) = ĥo,1(t)
∫ t

0
ho,2(τ)ĝ(sδ + τ)dτ

y2(t) = ĥo,2(t)
∫ t

0
ho,1(τ)ĝ(sδ + τ)dτ,

satisfy:

ωβ ,ν+1(sδ + t)(|y1(t)|+ |y2(t)|)≤C‖g‖
C 0,µ

β+1,ν+1(R+)(3.81)

We recall that

ho(sδ + t) = ĥo(sδ + t)exp
{
− 1

2

∫ sδ+t

1
a(τ)dτ

}
.

Thus, by the variation of parameters formula (3.76) and (3.79)–(3.81) it follows
that:

‖ho‖C 0,µ
β ,ν+1(sδ ,∞)

≤C
(

log
1
δ
)4+2β‖g‖C 0

β+1,ν (R+)
.(3.82)

To estimate the Hölder norms of the derivatives we write the equation for ho in the
form: (

h′o exp
{∫ s

s∗
a(τ)dτ

})′
= exp

{∫ s

s∗
a(τ)dτ

}
(g− pδ h),
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where s∗ < sδ is large and fixed independently on δ . Integrating this equation from
s∗ to s > sδ we get

∣∣∣∣h′o(s)exp
{∫ s

s∗
a(τ)dτ

}∣∣∣∣≤ |h′o(s∗)|+ ∣∣∣∣∫ s

s∗
exp
{∫

σ

s∗
a(τ)dτ

}
(g− pδ h)dσ

∣∣∣∣
≤ |h′o(s∗)|+C(‖g‖C 0

β+1,ν (R+)
+‖ho‖C 0,µ

β ,ν (R+)
)
∫ s

s∗
ω̃β ,ν(σ)dσ ,

(3.83)

where

ω̃β ,ν(σ) = (2+σ)−β−1( log
2+σ

δ 2

)−ν exp
{∫

σ

s∗
a(τ)dτ

}
.

When s∗ is taken sufficiently large we have for σ > s∗

ω̃β ,ν(σ)≤C(2+σ)−β−1( log
2+σ

δ 2

)−ν exp
{∫ s

s∗
a(τ)dτ

}
.

Using this for s ∈ (s∗,s∗+1) we find by (3.83):

(2+ s)β+1( log
2+ s
δ 2

)ν |h′o(s)| ≤C
(

log
1
δ
)4+2β‖g‖C 0

β+1,ν (R+)
,

by the previous argument. Then we argue inductively considering intervals of the
form (s∗+ k,s∗+ k+1) to show, that for s ∈ (s∗+ k,s∗+ k+1) we have an analo-
gous estimate. This gives at the end:

‖h′o‖C 0,µ
β+1,ν ((sδ ,∞))

≤C(log
1
δ
)4+2β‖g‖

C 0,µ
β+1,ν+1(R+)

.(3.84)

Then we estimate h′′o using the equation directly.
Now the solution of (3.41) can be written in the form

h = hiχI1 +hnχI2 +hmχI3 +hoχ(sδ ,∞),

where χI is the characteristic function of the interval I. We conclude the proof of
the Lemma 3.6 by combining estimates (3.54), (3.67), (3.73) and (3.84). For future
purposes we will denote the right inverse of Lδ by L−1

δ
. According to the statement

of the Lemma 3.6 we have in particular:

‖L−1
δ
(g)‖

C 0,µ
β ,ν (R+)

+‖(L−1
δ
(g))′‖

C 1,µ
β+1,ν (R+)

≤C(log
1

δ 2 )
4+2β‖g‖

C 0,µ
β+1,ν+1(R+)

.

(3.85)

Conclusion of the proof of Proposition 3.2
We will now use the theory of the previous two sections to solve (3.12)–(3.13)

and thereby complete the proof of the Proposition 3.2.
Notice that the existence of the function vε solving (3.13) has been established

already. Thus we only need to consider (3.12). We will use a fixed point argument
for the nonlinear operator Sδ . Let k > 0 be fixed and take the approximate solution
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vk, see Lemma 3.5. We define uk(s) = vk(r(s)). Then, the result of Lemma 3.5
reads:

|Sδ [uk](s)| ≤
C(

log 2+s
δ 2

)k
1

(1+ s)(k+1)/2 .

We will look for a solution in the form u = uk +φ . We will write:

Sδ [uk +φ ] = Lδ [φ ]+Sδ [uk]+Nδ (φ),

where

Nδ (φ) =−
1

δ 2 e−uk(e−φ −1+φ) =−b(s)u0
[
1+O

( 1
log 2+s

δ 2

)]
(e−φ −1+φ)

∼ 1
2+ s

log
(2+ s

δ 2

)
(e−φ −1+φ),

is a nonlinear function with quadratic growth in its argument. Thus, we need to
solve:

Lδ [φ ]+Sδ [uk]+Nδ (φ) = hδ ,

Now given the right inverse of Lδ we can put the above equation in the form of a
fixed point problem for:

Tδ [φ ] :=−L−1
δ
[Sδ [uk]+Nδ (φ)−hδ ].

Given the result of Lemma 3.6 and (3.85) the existence of φ can be established. To
see this let us fix real numbers β , ν , γ > 0 and a positive integer k, which satisfy in
addition:

1
2
> β , ν > 6+2β + γ, k > 4+2β +ν + γ.

With this choice one can verify that(
log

1
δ 2

)4+2β‖Sδ [uk]‖C 0,µ
β+1,ν+1(R+)

≤C
(

log
1

δ 2

)−γ
,(

log
1

δ 2

)4+2β‖Nδ (φ)‖C 0,µ
β+1,ν+1(R+)

≤C
(

log
1

δ 2

)−γ‖φ‖2
C 2,µ

β ,ν (R+)(
log

1
δ 2

)4+2β‖hδ‖C 0,µ
β+1,ν+1(R+)

≤C
(

log
1

δ 2

)−γ
.

(3.86)

Then we see that, for each sufficiently small δ , the map Tδ takes the set

{φ | ‖φ‖
C 0,µ

β ,ν (R+)
+‖φ ′‖

C 1,µ
β+1,ν (R+)

<
(

log
1

δ 2

)− 1
2 γ}

into itself. Also, one can verify in a similar manner that this map is a Lipschitz
contraction on this set and thus the proof of the Proposition follows.



TRAVELING WAVES WITH MULTIPLE AND NON-CONVEX FRONTS 37

4 Setting up the infinite dimensional reduction

4.1 Construction of the approximation
Let Γ be the eternal solution of the mean curvature flow with c = 1 and let Γε

be the corresponding surface translating with speed c = ε � 1. We will use the
natural representation of Γ as a graph of the radial function xN+1 = F(r). The
scaled surface is given by Γε = {xN+1 = Fε(r) | Fε(r) = ε−1F(εr)}. In general we
will take advantage of the radial symmetry of the eternal solution and employ the
infinite dimensional Lyapunov-Schmidt reduction method to reduce the original
PDE:

∆u+ ε∂xN+1u+u−u3 = 0, in RN+1,(4.1)

to a one dimensional system of two equations whose independent variable is the
radial variable r. This will be in fact the Jacobi-Toda system treated above.

We will now proceed to define an approximation of a solution of (4.1) which de-
pends on the radial variable r and the signed distance z to Γε . We will use the nota-
tion introduced in Sections 2.1–2.2, with obvious modifications taking into account
the fact that Γε is radially symmetric and thus has a globally defined parametriza-
tion.

A model for the multicomponent traveling wave near Γε

In the sequel it will be useful to keep in mind that a global system of coordinates
on Γ and Γε can be defined by:

Γ = {(rΘ,F(r)) | r > 0,Θ ∈ SN−1}, Γε = {(rΘ,
1
ε

F(εr)) | r > 0,Θ ∈ SN−1}.

There are other ways to introduce local coordinates on Γ . For instance around
each point y ∈ Γ we have the normal geodesic coordinates. It is not hard to show
that there exists δ0 > 0 such that these coordinates are well defined for each y ∈ Γ

at least in a neighborhood of y of the form Uy,δ0 = B(y,δ0)∩Γ . A similar statement
can be made when y ∈ Γε are considered, now with Uy,δ0/ε = B(y,δ0/ε)∩Γ .

We chose an orientation ν(y)= (−∇F(r(y)),1)√
1+|∇F(r(y))|2

on Γ and take z= z(x)= dist(x,Γ )

compatible with this orientation. Let us introduce the following weight functions:

ω(x) = 2+ |Fr(r)|2, ωε(x) = 2+ |Fr(εr)|2, x = (x′,xN+1),r = |x′|.

We recall here that Fr(r) ∼ r, r� 1. Also in what follows we will write ω(r),
ωε(r), understanding that r = r(x) = |x′|.

It is not hard to show that there exists an η0 > 0 such that for all points x such
that |z(x)| ≤ η0 logω(r) the map

x 7→ y+ zν(y), y ∈ Γ ,

is a diffeomorphism. We denote this diffeomorphism by X(x) = (y,z) and for a
function u given in a neighborhood of Γ we set (X∗u)(y,z) = (u◦X−1)(y,z). The
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coordinates (y,z) above are called Fermi coordinates of Γ . Similar claims are true
when we consider Γε and points x such that |z(x)| ≤ η0

ε
log(ωε(r)). Taking this into

account we introduce the following neighborhood of Γε :

UΓε
(M) =

{
x ∈ RN+1 | |z(x)|= |dist(x,Γε)| ≤M log

(ωε(r)
ε2

)}
.

Clearly Fermi coordinates are well defined in UΓε
(M) for all M > 0 large and ε > 0

small. If by Xε we denote the diffeomorphism in UΓε
(M) defined by Xε(x) = (y,z)

then for a function u defined in this neighborhood we set:

(X∗ε u)(y,z) = (u◦X−1
ε )(y,z).

We will describe functions f j representing the leading order for the location
of the nodal set of our traveling wave. To this end we appeal to the results of
Proposition 3.2 and let the functions f j, j = 1,2 to be solutions of the Jacobi-Toda
system (3.9) with h j ≡ 0. We get that functions f j satisfy:

f j(r) =
(−1) j

2
√

2
log

2
√

2
ε2α0|AΓ (r)|2

+O(log log
1

ε2|AΓ (r)|2
).(4.2)

In addition we have f1 =− f2.
In the sequel we will use scaled versions of these functions, namely fε, j : Γε →

R, defined by:

fε, j(r) = f j(εr), r = r(y) = |y′|, y = (y′,yN+1) ∈ Γε .

We recall here that ε2|AΓ (εr)|2 = |AΓε
(r)|2.

In reality functions fε, j give only the leading order behavior of the traveling
fronts and thus we further need two functions, which will be for a moment un-
known parameters to be determined in the course of the Lyapunov-Schmidt scheme
we use.

Thus we let h j, j = 1,2 be functions of the radial variable r on Γ such that for
some β ,τ ∈ (0,1) we have:

‖h j‖C 2,µ
β

(Γ )
≤ ε

τ .(4.3)

As before we introduce scaled versions of these functions hε, j : Γε → R defined
by hε, j(r) = h j(εr). Let us make an elementary observation about the relation
between the weighted norms on Γ and Γε . Defining the C 2,µ

β
(Γε) norm in a natural

way, namely using the weight function ω
β

ε (r) = ωβ (εr) and letting hε(y) = h(εy),
for y ∈ Γε we get:

‖hε‖C 2,µ
β

(Γε )
≤ ‖h‖

C 2,µ
β

(Γ )
≤ ε

−2−µ‖hε‖C 2,µ
β

(Γε )
.

In particular we get from this and (4.3):

‖hε, j‖C 2,µ
β

(Γε )
≤ ε

τ , j = 1,2.(4.4)
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Given the functions fε, j and hε, j as described above we will denote:

fε = ( fε,1, fε,2), hε = (hε,1,hε,2),

etc.
To define a model for the traveling profile we first recall that by H we have

denoted the unique, odd, and monotonically increasing solution of H ′′+H(1−
H2) = 0. Next we consider a cut off function:

χ(t) =

{
0, |t|< 1,
1, |t|> 2.

Now, let M > 0 be a fixed large number and let

χε(x) = χ
( z(x)

M log(ωε (r)
ε2 )

)
, z(x) = dist(x,Γε).(4.5)

Taking M large and ε small we define the initial approximation of the solution
in the support of χε by

(X∗ε uε)(r,z) = H
(
z− fε,1(r)−hε,1(r)

)
−H

(
z− fε,2(r)−hε,2(r)

)
−1.(4.6)

Next we define the initial approximation globally in RN+1 by:

wε(x) =
(
1−χε(x)

)
uε(x)−χε(x).(4.7)

4.2 Reduction to the nonlinear projected problem
We look for a solution of

S(u) = ∆u+ ε∂xN+1u+u(1−u2) = 0,

in the form u = wε +ϕε , where ϕε is a small function. We write:

S(wε +ϕε) = S(wε)+Lϕε +N(ϕε),

where

Lϕε = ∆ϕε + ε∂xN+1ϕε +(1−3w2
ε)ϕε ,

N(ϕε) =−3wεϕ
2
ε −ϕ

3
ε .

We will decompose our nonlinear problem into a system suitable to apply an infi-
nite dimensional Lyapunov-Schmidt reduction scheme. To this end we recall that
we have: given functions fε , and also unknown functions hε .

Given a large number M as in the definition of wε above we consider smooth
cutoff functions ζ j ≥ 0, j = 1,2 which satisfy the following conditions

ζ1(t)+ζ2(t) =

{
1, |t| ≤M,

0, |t| ≥ 2M,
ζ1(t) =

{
1, −M < t <−1,
0, t > 1.

(4.8)

We define cutoff functions ζε, j by:

(X∗ε ζε, j)(r,z) = ζ j
(
z− (

1
2
+δ )| fε,1(r)− fε,2(r)|

)
,(4.9)
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where δ is a small constant. Note that with this definition we have

ζε,1 +ζε,2 = 1, |z|< M+(
1
2
+δ )| fε,1(r)− fε,2(r)|,

ζε,1 +ζε,2 = 0, |z|> 2M+(
1
2
+δ )| fε,1(r)− fε,2(r)|.

Also we have

ζε, j(r,( fε, j +hε, j)(εr)) = 1.

Furthermore we chose cut off functions ζ̃ε, j such that

suppζε,1 = {−3M− 1
2
| fε,1(r)− fε,2(r)|< z < (

1
2
+2δ )| fε,1(r)− fε,2(r)|},

suppζε,2 = {3M+
1
2
| fε,1(r)− fε,2(r)|> z >−(1

2
+2δ )| fε,1(r)− fε,2(r)|},

and additionally

ζ̃ε, jζε, j = ζε, j.

Now we look for a solution of our problem ϕε in the form:

ϕε = ∑
j=1,2

ζε, jφε, j +ψε .

The functions φε, j, ψε must still be determined from a system of equations that we
will now describe. First we introduce functions H ′

ε, j defined by:

(X∗ε H ′ε, j)(y,z) = H ′(z− fε, j(εr)), r = |y′|.

We also introduce new unknowns cε, j, j = 1,2, which are functions on Γε . Next,
we ask that the functions φε, j, ψε , cε, j be solutions of the following coupled system
of equations:

ζ̃ε, jLφε, j = ζ̃ε, j{−(S(wε)+N)− (L−∆− ε∂xN+1 +2)ψε − [L,ζε, j]φε, j +cε, jH ′ε, j},

(4.10)

(∆+ ε∂xN+1−2)ψε =−
(
1− ∑

i=1,2
ζi,ε
){

S(wε)+N +[L,ζε,i]φε,i
}

−
(
1− ∑

i=1,2
ζε,i
)
(L−∆− ε∂XN+1 +2)ψε ,

(4.11)

where N = N(∑ j=1,2 φε, jζε j +ψε). Note that after multiplying (4.10) by ζε, j, j =
1,2, using the fact that ζε, jζ̃ε, j ≡ 1, and adding the resulting expression and (4.11)
we obtain:

Lϕε +S(wε)+N(ϕε) = ∑
j=1,2

cε, jH ′ε, jζε, j.(4.12)



TRAVELING WAVES WITH MULTIPLE AND NON-CONVEX FRONTS 41

As is usual in a Lyapunov-Schmidt reduction approach, the functions cε, j will be
initially determined in such a way that (4.10) has a solution for any given parameter
function hε . Later we will adjust the traveling front, whose location is represented
by fε +hε , so that cε, j ≡ 0. After this is done we will get the solution of our original
problem.

In fact a slight modification of (4.10), which we will describe now, is needed.
We introduce the following functions:

(X∗ε wε, j)(y,z) = H(z− fε, j(εr)), j = 1,2, r = |y′|,

and check that we have, say in the set ζ̃ε, j ≡ 1,

Lφε, j = ∆Γε
+∂

2
z φε, j + f ′(wε, j)φε, j

+[ f ′(wε)− f ′(wε, j)]φε, j +[∆Γε,z−∆Γε
]φε, j

− (HΓε,z− ενΓε ,N+1)∂zφε, j + ε∇Γε,z(πε,N+1) ·∇Γε,zφε, j.

Then, we can write (4.10) in the form:

∆Γε
φε, j +∂

2
z φε, j + f ′(wε, j)φε, j = gε, j +cε, jH ′ε, j,(4.13)

at least when ζ̃ε, j ≡ 1. However, it is convenient to view this problem in the set
Γε ×R. Indeed the operator Lε, j = ∆Γε

+ ∂ 2
z + f ′(wε, j) is defined on functions

whose domain is Γε ×R, while the right hand side is a function supported on a set
supp ζ̃ε, j. More precisely we have:

(4.14)

gε, j = ζ̃ε, j(S(wε)+N)− ζ̃ε, j(L−∆− ε∂xN+1 +2)ψε − ζ̃ε, j[L,ζε, j]φε, j

+ ζ̃ε, j[ f ′(wε)− f ′(wε, j)]φε, j + ζ̃ j,ε [∆Γε,z−∆Γε
]φε, j

+ ζ̃ε, j[(HΓε,z− ενΓε ,N+1)∂zφε, j− ε∇Γε,z(πε,N+1) ·∇Γε,zφε, j].

Again, multiplying (4.13) by ζε, j and adding the resulting equations and (4.11) we
get (4.12).

For future purposes we write (4.11) in the form

(∆+ ε∂xN+1−2)ψε = hε ,(4.15)

where by hε we have denoted the right hand side of (4.11). Note that if we assume
that φε, j and ψε are functions of (r,xN+1) only with r = |x′|, then so are the func-
tions gε, j and hε . Conversely, if we consider more generally problems of the form
(4.13) and (4.15) with gε, j and hε depending on (r,xN+1) only, then the solutions
of these problems φε, j and ψε will also depend on (r,xN+1) only.

4.3 Further modification of (4.13)
Let us look now at the equation (4.13) more closely. We have in general the

following system to solve:

[∆Γε
+∂

2
z + f ′(wε, j)]φε, j = gε, j, in Γε ×R, j = 1,2.
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It is convenient to rewrite this system in the following way: first, we introduce
shifted Fermi coordinates

t j = z− fε, j(r), j = 1,2.

Second, we write each of the operators above in terms of these new coordinates:

∆Γε
+∂

2
z + f ′(wε, j) = ∆Γε

+∂
2
t j
+ f ′(H(t j))

−∆Γε
fε, j∂t j −∇Γε

fε, j ·∇Γε
∂t j + |∇Γε

fε, j|2∂
2
t j
.

Usually the second line above is relatively small in the sense that its norm can be
controlled by the norm of the solution times a small factor and thus we can absorb
it on the right hand side of the corresponding equation. Note also that variables t j
are related through the formula:

t1−t2 = fε,2− fε,1.(4.16)

Then letting

g̃ε, j(y,t j) = gε, j + ζ̃ε, j
[
∆Γε

fε, j∂t j +∇Γε
fε, j ·∇Γε

∂t j −|∇Γε
fε, j|2∂

2
t j

]
φε, j,

we obtain the following system:

[∆Γε
+∂

2
t j
+ f ′(H(t j))]φε, j = g̃ε, j(y,t j)+cε, jH ′(t j), j = 1,2,(4.17)

where now, with some abuse of notation, φε, j = φε, j(y,t j). This system can be
considered as a system for functions defined on two copies Γε ×R, and it looks at
first sight as being decoupled. However in reality we have, in the original setting:

g̃ε, j = g̃ε, j(y,z;φε,1,φε,2,ψε).

Therefore when considering for instance the equation for φε,1 in the shifted variable
t1 we need to use the above relation between t1 and t2 to express all functions
involved in terms of y ∈ Γε and t1 ∈ R. Of course the same must be done with the
second equation. As a result we will obtain a nonlinear and nonlocal system for
φε, j, j = 1,2. The advantage of making this transformation is that we always work
with the same, basic linearized operator on the left hand side. Again we point out
that all the functions involved depend on y through the radial variable r = |y′|.

5 Linear theory

We recall that we have denoted ω(r(y)) = 1+ |∇F(r(y))|2, ωε(r) = ω(εr).
Given a C 2,µ(Γε ×R) function u we define its weighted norms by:
(5.1)
‖u‖

C 0,µ
β ,η (Γε×R)

= sup
(y,z)∈Γε×R

(coshz)η
ω

β

ε (r(y))‖u‖C 0,µ (B(y,1)∩Γε×(z−1,z+1))

‖u‖
C 2,µ

β ,η (Γε×R)
= ‖u‖

C 0,µ
β ,η (Γε×R)

+‖∇Γε×Ru‖
C 0,µ

β ,η (Γε×R)
+‖D2

Γε×Ru‖
C 0,µ

β ,η (Γε×R)
.
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Above ∇Γε×R and D2
Γε×R denote the gradient and second derivative on the mani-

fold Γε ×R equipped with a natural product metric and the associated Levi-Civita
connection.

In this section we will consider the following basic linearized operator:

∆Γε
φ +∂

2
z φ + f ′(H(z))φ ≡ Lεφ .

We note that

∂
2
z H ′+ f ′(H)H ′ = 0.

In fact H ′ is the unique bounded element in the kernel of ∂ 2
z + f ′(H). In particular

we have, with some ν0 > 0:∫
R
|φ ′(z)|2− f ′(H(z))|φ(z)|2 ≥ ν0

∫
R
|φ(z)|2,

whenever φ satisfies: ∫
R

φ(z)H ′(z)dz = 0.

In general we will consider the following problem:

∆Γε
φ +∂

2
z φ + f ′(H)φ = g, in Γε ×R,∫

∞

−∞

φ(y,z)H ′(z)dz = 0, y ∈ Γε .
(5.2)

We will assume that

‖g‖
C 0,µ

β ,η (Γε×R)
≤ ∞,

with some β ,η > 0. In the case at hand we have β ∈ (0,1) and η ∈ (0,
√

2).

5.1 A priori estimates
Most of what will be said in this section follows the argument of [8] and so we

will only outline the main points.
First we need the following:

Lemma 5.1. The only bounded solutions of

∆φ +∂
2
z φ + f ′(H(z))φ = 0, in RN+1, N ≥ 0,

are of the form φ = cH ′(z), with some constant c.

This lemma is proven in [11] (see also [9]) .
Next, we show the following a priori estimate:

Lemma 5.2. Let φ be a solution of the problem (5.2). There holds:

‖φ‖
C 2,µ

β ,η (Γε×R)
≤C‖g‖

C 0,µ
β ,η (Γε×R)

.(5.3)
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Proof. The proof of this lemma follows arguments in [11] and [9], with only small
changes due to the fact that here we use slightly different norms.

We argue by contradiction. Thus we assume that there exists sequences {εn},
{φεn}, {gεn} such that

∆Γεn
φεn +∂

2
z φεn + f ′(H)φεn = gεn , in Γεn×R,∫

∞

−∞

φεn(y,z)H
′(z)dz = 0, y ∈ Γεn ,

and such that as εn→ 0:

‖φεn‖C 2,µ
β ,η (Γεn×R)

= 1, ‖gεn‖C 0,µ
β ,η (Γεn×R)

→ 0.

In particular from the definition of the norm there exists yn ∈ Γεn and zn ∈ R such
that:

(coshzn)
η

ω
β

εn(r(yn))‖φεn‖C 0,µ (B(yn,1)∩Γεn×(zn−1,zn+1)) >
1
2
.(5.4)

We consider 4 cases depending on the behavior of the sequences {εnr(yn)}, {zn}.
The various possibilities are for example: (1) εnr(yn) and zn bounded, (2) εnr(yn)→
∞ while zn bounded etc. In each of these cases we use essentially the same argu-
ment with just slight modifications. This has been done in detail in [11] and [9].

To get the idea of the general scheme we assume for instance that {εnr(yn)}
and {zn} are bounded. We take the normal geodesic coordinates on Γεn , which are
defined around each yn at least in the set Un = B(yn,δ0/εn)∩Γεn , where δ0 > 0
is a small number independent on yn. We denote the coordinates of an y ∈Un by
ξ = (ξ1, . . . ,ξN) and set:

φ̃n(ξ ,z) = φεn(y,z), (y,z) ∈Un×R.

In the local coordinates we have

∆Γεn
φεn +∂

2
z φεn + f ′(H)φεn = ∆φ̃n +∂

2
z φ̃n + f ′(H)φ̃n

+aεn,i j∂i jφ̃n +bεn, j∂ jφ̃n.

Passing to the limit over compacts we obtain that φ̃n→ φ̃ in C 2,µ ′
loc (RN×R), µ ′< µ ,

where φ̃(0)> 0 and φ̃ is bounded, and at the same time

∆φ̃ +∂
2
z φ̃ + f ′(H)φ̃ = 0.

Lemma 5.1 implies that φ̃ = cH ′ but this contradicts the fact that we also have∫
R

φ̃(·,z)H ′(z)dz = 0,

passing to the limit in the orthogonality condition.
To get an idea of how the other cases are handled let us consider the case

εnr(yn)→ ∞ while {zn} remains bounded. Then we proceed in a similar manner
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as above letting

φ̃n(ξ ,z) = ω
β

ε (r(y))φεn(y,z).

For the remaining cases we refer the reader to [11] (see also [9]). �

5.2 An existence result for the model linear problem
Proposition 5.3. Given g ∈ C 0,µ

β ,η (Γε ×R) such that
∫
R g(·,z)H ′(z)dz = 0, there

exists a unique solution of (5.2).

Proof. We will argue by approximations. Let us replace g in (5.2) by a function
gR(y,z) = g(y,z)χ(0,R)(y) where we will take R→ ∞ later on. With this right hand
side we can give to the problem (5.2) a weak formulation in the closed subspace the
Sobolev space H1(Γε ×R) of functions which satisfy the orthogonality conditions
in (5.2). Thus we have

(5.5)
∆Γε

φR +∂
2
z φR + f ′(H(z))φR = gR,∫
R

φR(y,z)H ′(z)dz = 0,

With this operator we associate the bilinear form

aR(φ ,ψ) =
∫

Γε×R
[∇Γε

φ ·∇Γε
ψ +∂zφ∂zψ− f ′′(H(z))φψ]dV (Γε)dz.

Then we say that that φR is a weak solution of this problem if for all tests functions
ψ we have

aR(φR,ψ) =
∫

Γε∩B(0,R)×R
gRψ dV (Γε)dz.

Since we have as well, by our assumption,∫
R
gR(y,z)H ′(z)dz = 0, ∀y ∈ Γε ,

and, under the orthogonality conditions, the bilinear form aR(ψ,η) is actually pos-
itive definite, it follows that there exists a unique φR ∈ H1(Γε ×R) which satisfies
weakly the equation and the orthogonality condition.

Letting R→+∞ and using the uniform a priori estimates valid for the approxi-
mations completes the proof of the Proposition. �

5.3 A priori estimates and existence for (4.11)
In this section we will consider the following problem:(

∆+∂
2
xN+1

+ ε∂xN+1−2
)
ψ = h,(5.6)

We observe that if h depends on r = |x′|, x′ ∈ RN−1 and xN+1 only, so does ψ .
We will use the following weighted norms:

‖h‖
C 0,µ

β
(RN×R) = sup

x′∈RN
(1+ ε

2|x′|2)β‖h‖C 0,µ (B(x′,1)×R), β > 0.
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The weighted Hölder norms C 2,µ
β

(RN ×R) are defined similarly. Note that the
definition of the norm implies in particular that

‖h‖
C 0,µ

β
(RN×R) < ∞ =⇒‖h‖C 0,µ (RN×R) < ∞,

and thus, by a standard argument, we obtain the existence of a solution to (5.6),
ψ ∈ C 2,µ(RN×R). Now, to show that in fact

‖ψ‖
C 2,µ

β
(RN×R) ≤C‖h‖

C 0,µ
β

(RN×R).

one can use a comparison argument based on the fact that the reciprocal of the
weight function (1+ ε2|x′|2)β is a positive supersolution of (5.6). Details are left
to the reader.

6 Infinite dimensional reduction

6.1 Estimates for the error of the initial approximation
Our first goal is to estimate the functions g̃ε, j, defined in (4.14) and (4.16).

Whenever convenient we will indicate the fact that these functions depend on their
functional arguments by writing g̃ε, j = g̃ε, j(φε,1,φε,2,ψε ,hε). In general, besides
the assumptions on hε , which we have made in (4.3)–(4.4) we will also assume
that for some σ ∈ (0,

√
2) and K > 0 we have, with βσ = 1− σ√

2
,

‖φε, j‖C 2,µ
βσ ,σ (Γε×R)

≤ Kε
2−σ
√

2(6.1)

About the function ψε we assume that, with some κ > 3, we have

‖ψ‖
C 2,µ

κ (RN×R) ≤ Kε
3.(6.2)

Lemma 6.1. Under the preceding hypothesis there exists a σ ∈ (0,
√

2) such that
the following estimate holds:

‖g̃ε, j‖C 0,µ
βσ ,σ (Γε×R)

≤C{ε2−σ
√

2 +o(1) ∑
j=1,2
‖φε, j‖C 2,µ

βσ ,σ (Γε×R)
+‖ψε‖C 2,µ

κ (RN×R)}.
(6.3)

The function gε, j is a Lipschitz function of its arguments and we have:

(6.4)

‖g̃ε, j(φ
(1)
ε,1 ,φ

(1)
ε,2 ,ψ

(1)
ε ,h(1)

ε )− g̃ε, j(φ
(2)
ε,1 ,φ

(2)
ε,2 ,ψ

(2)
ε ,h(2)

ε )‖
C 0,µ

βσ ,σ (Γε×R)

≤C{ε2−σ
√

2‖h(1)
ε −h(2)

ε ‖C 2,µ
βσ

(Γε )
+o(1) ∑

j=1,2
‖φ (1)

ε, j −φ
(2)
ε, j ‖C 2,µ

βσ ,σ (Γε×R)

+‖ψ(1)
ε −ψ

(2)
ε ‖C 2,µ

κ (RN×R)}.

Proof. The proof of this lemma follows by a somewhat tedious but rather straight-
forward calculation. Similar calculations can be also found in [7] and [8]. We will
outline the main part which is the estimate of the term involving S(wε). Note that
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ζ̃ε, jS(wε) = ζ̃ε, jS(uε), (see (4.6)–(4.7)). Let us denote ũε(y,z) = (X∗ε uε)(y,z). We
expand ∆ near Γε in terms of the Fermi coordinates to get:
(6.5)

(X∗ε S(uε)) = ∆Γε
ũε +[∂ 2

z ũε + f (ũε)]+ [ε∂z(πε,N+1)−HΓε
]∂zũε − z|AΓε

|2∂zũε

+ ε∇Γε
(πε,N+1) ·∇Γε

ũε +Aε [ũε ]+Bε [ũε ]− z2RΓε
∂zũε .

Above, Aε and Bε are linear differential operators of second and first order, respec-
tively, whose expressions in terms of local coordinates on Γε are given in section
2.1. Most of the terms in (6.5) are estimated directly. The leading order term is in
fact given by:

∂
2
z ũε + f (ũε) = f (ũε)− f (H(z− fε,1−hε,1))− f (−H(z− fε,2−hε,2)).

Using this, the definition of ũε and (2.19), we can estimate, taking σ ∈ (0,
√

2):

|∂ 2
z ũε + f (ũε)| ≤C{H ′(z− fε,1−hε,1)[1+H(z− fε,2−hε,2)]

+H ′(z− fε,2−hε,1)[1−H(z− fε,1−hε,1)]}

≤C max
j
{e−σ |z− fε, j|}exp

(
−
√

2−σ√
2

log
ωε

ε2

)
≤Cε

2−σ
√

2 max
j
{e−σ |z− fε, j|}ω−βσ

ε .

Since we have ε∂z(πε,N+1)−HΓε
= 0 the remaining non-zero term in the first line

in (6.5) is

(6.6)

∆Γε
ũε − z|AΓε

|2∂zũε = ∑
j=1,2

(−1) jH ′(z− fε, j−hε, j)∆Γε
( fε, j +hε, j)

+ |AΓε
|2 ∑

j=1,2
( fε, j +hε, j)H ′(z− fε, j−hε, j)

+ ∑
j=1,2

H ′′(z− fε, j−hε, j)|∇Γε
( fε, j−hε, j)|2

+ |AΓε
|2 ∑

j=1,2
(z− fε, j−hε, j)H ′(z− fε, j−hε, j)

We note that

|AΓε
(r)|2 = ε

2|AΓ (εr)|2 ≤Cε
2
ω
−2
ε (r).(6.7)

Each term in (6.6) is then estimated directly. The second line in (6.5) is seen
easily to be smaller relative to the terms we have just considered. As for the terms
involving functions φε, j we observe that the largest among them is:

[L,ζε, j]φε, j = ∆(ζε, jφε, j)−ζε, j∆φε, j.

Using the fact that ∆ζε, j = o(1) and ∇ζε, j = o(1), which follows from the choice
of the cutoff functions ζε, j, we can estimate this term by o(1)‖φε, j‖C 2,µ

βσ ,σ (Γε×R)
.

The rest of the proof is straightforward and we leave the details to the reader.
�
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Going back to the system (4.17), and taking into account the theory of the
preceding section we see that the functions cε, j need to be determined from the
formula:

cε, j =

∫
R g̃ε, j(y,t j)H ′(t j)dt j∫

R(H ′(t j))2ζε, j(y,t j)dt j
.(6.8)

Using Lemma 6.1 we see that statements analogous to (6.3 ) and (6.4) hold when
we replace g̃ε, j by g̃ε, j +cε, jH ′(t j)ζε, j.

Next we will consider the right hand side of the equation (4.15). We have:

Lemma 6.2. Under the same hypothesis as in Lemma 6.1, and assuming that the
constant M > 0 in (4.5) and (4.8) is large enough, there exist κ > 3 and γ > 1 such
that we have

(6.9)
‖hε‖C 0,µ

κ (RN×R) ≤C{ε3 + ε
γ

∑
j=1,2
‖φε, j‖C 2,µ

βσ ,σ (Γε×R)

+o(1)‖ψε‖C 2,µ
κ (RN×R)}.

Considering hε as a function of (φε,1,φε,2,ψε ,hε)

(6.10)

‖hε(φ
(1)
ε,1 ,φ

(1)
ε,2 ,ψ

(1)
ε ,h(1)

ε )−hε(φ
(2)
ε,1 ,φ

(2)
ε,2 ,ψ

(2)
ε ,h(2)

ε )‖
C 0,µ

βσ +σδ
(RN×R)

≤C{ε3‖h(1)
ε −h(2)

ε ‖C 2,µ
βσ

(Γε )
+ ε

γ
∑

j=1,2
‖φ (1)

ε, j −φ
(2)
ε, j ‖C 2,µ

βσ ,σ (Γε×R)

+o(1)‖ψ(1)
ε −ψ

(2)
ε ‖C 2,µ

κ (RN×R)}.

A proof of this estimates is omitted, since similar results are proven in [7] or
[8] and no essentially new elements are needed to carry out the argument in the
present case. We only point out that the support of the function hε is in the set
where |z− fε, j| > M log ωε

ε2 , from which it follows that all exponentially decaying
terms are very small, like O(ε3) at least.

6.2 Projected nonlinear problem
Our objective in this section is to solve (4.13)–(4.15). Given the linear theory

available and the results of the preceding section, we will achieve this by a simple
fixed point argument.

Let functions φ̃ε, j, j = 1,2 and ψ̃ε satisfying assumptions (6.1)–(6.2) be fixed.
We will also chose hε satisfying (4.4). We first use the linear theory of Section 5
to solve the following system:

(
∆Γε

+∂
2
t j
+ f ′(H(t j))

)
φε, j = g̃ε, j(y,t j; φ̃ε,1, φ̃ε,2, ψ̃ε ,hε)+cε, jH ′(t j), j = 1,2,∫

R
φε, j(y,t j)H ′(t j)dt j = 0, j = 1,2,

(6.11)

(∆+ ε∂xN+1−2)ψε = hε(x; φ̃ε,1, φ̃ε,2, ψ̃ε ,hε),

(6.12)
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This is equivalent to (4.13)–(4.15) when φ̃ε, j = φε, j and ψ̃ε = ψε . In fact, using
Lemma 6.1 and Lemma 6.2, we obtain existence of such a fixed point satisfying
(6.1)–(6.2) by the Banach fixed point theorem. To do this we first solve (6.12) for
ψε as a function of (φ̃ε,1, φ̃ε,2,hε). Existence of ψε follows follows by a fixed point
argument using Lemma 6.2 and the results in section 5.3. We have in fact:

‖ψε‖C 2,µ
κ (RN×R) ≤C{ε3 + ε

γ
∑

j=1,2
‖φε, j‖C 2,µ

βσ ,σ (Γε×R)
},

with a similar estimate showing Lipschitz character of ψε . Given this we solve
(6.11) using again the Banach fixed point theorem. Let us summarize this:

Lemma 6.3. Under the above hypothesis there exists a unique solution (φε,1,φε,2,ψε)
of (6.11) and (6.12) satisfying (6.1) and (6.2).

6.3 Solution of the reduced problem
At this point we are left with the task of adjusting hε in such a way that cε, j ≡ 0.

For this let us observe that the map

(φ̃ε,1, φ̃ε,2, ψ̃ε ;hε) 7−→ (φε,1,φε,2,ψε).

is a uniform contraction (with a small Lipschitz constant) with respect to hε . It
follows that (φε,1,φε,2,ψε) are Lipschitz functions of hε with small Lipschitz con-
stants. This last fact can be seen easily from Lemma 6.1 and Lemma 6.2. Another
important fact is that since we have assumed initially that fε, j and hε, j are func-
tions of r, where r = |x′|, (x′,xN+1) ∈ RN+1 therefore (φε,1,φε,2,ψε) are functions
of (r,z) only, at least near Γε , i.e. where the Fermi coordinates are defined. In
fact, instead of working in an abstract setting, which does not refer to the rotational
symmetry of Γε , we could have reduced the whole problem to the one in the half
plane R2

+ = (r,xN+1), and think of Γε as a curve, with (r,z) as its Fermi coordinates.
Then the end result, from the point of view of existence of (φε,1,φε,2,ψε), would be
of course the same. Summarizing, all functions involved depend on x = (x′,xN+1),
through r(x) = |x′| and xN+1, and when expressed in Fermi coordinates (y,z) they
depend on r(y) = |y′| and z only.

Now, we will find the exact conditions for hε which guarantee that cε, j ≡ 0. We
will show that they result in a non-homogeneous and nonlocal Jacobi-Toda system,
quite similar to the one already studied in Section 3. From the theory developed in
this section the existence of hε will follow immediately, thus completing the proof
of Theorem 1.1. Our first task is then to justify rigorously the formal calculations
in section (2.2). In fact, with the notations as in the previous sections we need to
adjust hε so that ∫

R
g̃ε, j(r,t j)H ′(t j)dt j = 0, j = 1,2,

Let us recall that g̃ε, j depends on (φε,1,φε,2,ψε ,hε), that (φε,1,φε,2,ψε) depend
non-locally on hε , and that this dependence involves second derivatives of hε . Thus
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its projection onto H ′(t j) will be a non-local, second order ODE in terms of the
radial variable r.

Let us write

g̃ε, j = ζ̃ε, jS(wε)+ ĝε, j, ĝε, j = ĝε, j(φε,1,φε,2,ψε ,hε).

Examining the expression for S(uε) in (6.5) we see that as a function of (r,t j) it has
general form (say, where ζ̃ε, j ≡ 1), S(uε)(r,t j) = S(uε)(r,t j−hε, j). It is therefore
more convenient to integrate g̃ε, j against H ′(t j− hε, j) rather H ′(t j). It is easily
seen that c j,ε = 0 when:

(6.13)

∫
R
g̃ε, j(r(y),t j)H ′(t j−hε, j)dt j =

∫
R

ζ̃ε, jS(wε)(r(y),t j)H ′(t j−hε, j)t j

+
∫
R
ĝε, jH ′(t j−hε, j)dt j

= Πε, j + Π̂ε, j = 0.

As we have argued in section (2.2) the main term in the above integral (remem-
bering that by definition wε = uε in suppζε, j) comes from:

Πε, j =
∫
R

ζε, jS(uε)(r(y),t j)H ′(t j−hε, j)t j,

while the remaining part of the projection, denoted by Π̂ε, j is a lower order term.
Repeating calculations in section 2.2 and taking into account formula (6.5) one

can derive the following expression:

Πε, j = α0JΓε
( fε, j +hε, j)+T j(fε +hε)+qε, j(fε +hε),(6.14)

where, for a vector function v = (v1,v2), on Γε we have denoted:

(6.15)
JΓε

(v j) = ∆Γε
v j + |AΓε

|2v j + ε∇Γε
(πε,N+1) ·∇Γε

v j,

T j(v) =−e
√

2(v j−1−v j)+ e
√

2(v j−v j+1).

We observe that the main order term in qε, j (see (6.5)) comes from

z2
ζ̃ε, jRΓε

∂zũε ≈ (t j− fε, j)
2

N

∑
`=1

k3
Γε ,`

H ′(t j−hε, j),

where kΓε ,` are the principal curvatures of Γε . Direct calculations show that

|k3
Γε ,`
| ≈ ε

3
ω
−3/2
ε .

Taking into account the assumptions we have made at the beginning on fε , and hε

in (4.2)–(4.3), we see that there exist β > 0 and ρ > 0 such that

‖qε, j‖C 0,µ
1+β

(Γε )
≤Cε

2+ρ .
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Identifying functions on Γε and Γ by vε(r) = v(εr), so that qε, j(r) = q j(εr) we get
from the above:

‖q j‖C 0,µ
1+β

(Γ )
≤Cε

2+ρ−µ .

Function q j now depends on the functions f and h defined on Γ . Similar statements
hold for the remaining term in (6.13), namely we have:

‖Π̂ε, j‖C 0,µ
1+β

(Γε )
≤Cε

2+ρ ,

and, scaling back to Γ , we can write:

‖Π̂ j‖C 0,µ
1+β

(Γ )
≤Cε

2+ρ−µ .

We let µ > 0 be a small number and set κ = ρ − µ > 0, also choosing it in such
a way that τ < κ (see (4.3)). Denoting by JΓ the scaled operator in (6.15), and
setting q̂ j = q j + Π̂ j we get then:

α0ε
2JΓ ( f j +h j)+T j(f+h) = q̂ j.(6.16)

This is a Jacobi-Toda system, which can be solved using the theory we developed
in the proof of Proposition 3.2 and in particular the result of Lemma 3.6. In fact
q̂ j is a Lipschitz function of h since it follows from the Lipschitz character of
S(wε),φε, j,ψε as functions of h that:

‖q̂ j(h(1))− q̂ j(h(2))‖
C 0,µ

1+β
(Γ )
≤Cε

2+κ‖h(1)−h(2)‖
C 2,µ

β
(Γ )

.

Defining

T j(f+h)−T j(f)−T ′
j (f)h = N j(h),

we also have:

‖N j(h)‖C 0,µ
1+β

(Γ )
≤Cε

2+τ‖h‖
C 2,µ

β
(Γ )

.

Similarly, N j(h) is a Lipschitz function of h. Since we have chosen f to be a
solution of the homogeneous version of (6.16) we are left with:

α0ε
2JΓ (h j)+T ′

j (f)(h) = q̃ j, q̃ j = q̂ j−N j.(6.17)

The left hand side of this equation is the linearized Jacobi-Toda system, and now
Lemma 3.6 can be employed directly to solve (6.16) using Banach fixed point
theorem. As similar arguments can be found for instance in [7] and [8] we omit the
details here. With this last step we complete our proof.

7 An example of a traveling wave with a non-convex front

In this section we will prove Theorem 1.2. We will begin with some preliminary
facts about the asymptotic form of the non-convex traveling front.
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7.1 Traveling, catenoid-like surface
We will summarize here an existence result proven in [5].

Proposition 7.1. For each R > 0 there exist a rotationally symmetric, graphical
solutions to the mean curvature flow, given by F±R : RN \ BR(0)×R → R, and
translating with speed c = 1, where:

F±R (r, t) = t +W±R (r).

The functions W±R satisfy

W±R (r) =
r2

2(N−1)
− logr+C±+O(r−1), r→ ∞.(7.1)

Moreover, the union of these graphs forms a complete non-convex translating so-
lution to the mean curvature flow.

In what follows by Σ we denote the surface obtained by taking the union of
the graphs of W±R , and by Σε we denote its scaled version. The individual graphs
of each function W±R will be referred to as the ends of Σ and will be denoted by
Σ±, respectively, with a similar notation for the scaled versions. We assume that
the constants C± appearing in (7.1) are such that C− < C+ and we will call Σ−

(Σ+) the lower (the upper) end of Σ . Also, in order to not to complicate notations
we will not indicate explicitly the dependence of the surface Σ on R. Nevertheless
the reader should keep in mind that our results are valid for the whole family of
traveling catenoids parametrized by R.

The surface Σ is an embedded, rotationally symmetric and genus 0 surface in
RN , and in some sense it is a counterpart of the usual catenoid, now in the context
of the eternal solutions of the mean curvature flow. Another important, obvious
property is its non convexity.

Comparing the asymptotic formula (7.1) with the asymptotic formula for F we
notice that as r→ ∞ the ends of Σ remain at a constant distance from Γ . Indeed,
we have:

|F(r)−1−W±R (r)+C±|= O(r−1), r→ ∞.(7.2)

This is important in calculation of various geometric characteristics of Σ . In fact
formula (7.2) says that the mean curvature HΣ , the second fundamental form AΣ ,
∇Σ , and ∆Σ are, for r sufficiently large, very close to their counterparts on Γ .
Thus in the sequel we may omit many of the explicit calculations and appeal to the
calculation we have already done for Γ .

7.2 An improvement of the initial profile
The fact that the ends of Σ are asymptotically parallel means that if we want to

use its scaled version Σε as a model for a traveling wave with the speed c = ε we
must perturb the ends of the surface. To see this let us denote the signed distance
to Σε by z = z(x), for x ∈ RN+1 close to Σε . Then it is natural to take uε = H(z)
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as the first approximation to the solution. A short calculation will convince the
reader that, since the ends of Σε are parallel, the error S(uε) of this approximation
contains a term of order O(e−

1
ε ). This means that S(uε) is globally a very small

function of ε but in is not a decaying function of r = |x′| along Σε .
To remedy this situation we will consider an improvement of the initial profile

Σε . In general we want a new surface Σ̃ε to be a normal graph over Σε , to be
identical with Σε on a compact set and to have ends that are diverging from one
another as r→ ∞.

To give a formal definition we need to introduce some notations. We let χ be
a smooth cutoff function such that χ(t) = 0, t ≤ 1, and χ(t) = 1, t ≥ 2. By rε we
denote a number to be determined later on and about which we assume initially
that, with some c <C,

rε � e
c
ε , and rε � e

C
ε .(7.3)

Next, we will fix an orientation on Σ in such a way that a unit normal n is interior to
this component of RN+1\Σ which contains the origin. By nε(y) = n(εy) we denote
the corresponding normal on Σε and by n± and n±ε we denote the restrictions of n
and nε to the ends of Σ . Finally by Θ ∈ SN−1 we denote both points on SN−1.

The new surface Σ̃ε will be a union of its lower and upper ends Σ̃±ε given by:

Σ̃
±
ε =

{(
rΘ ,

1
ε

W±R (εr)
)
+χ
( r

rε

)
n±(εr,Θ) f±(εr) | r ≥ R,Θ ∈ SN−1},(7.4)

where the radial functions f± : Σ → R are still to be determined.

Construction of f±

Choosing the functions f± is a subtle point of our problem. To give some
motivation let us recall how in the preceding considerations we have determined the
functions f1, f2 : Γ → R, which model the traveling fronts near Γε . Restricting our
attention to r� 1 we observe that, to main order we needed to solve an algebraic
equation:

|AΓ |2u =
e−u

δ 2 , δ =
ε
√

α0

23/4 ,(7.5)

and then we obtained, to main order,

f1 ≈−
1

2
√

2
u, f2 ≈

1
2
√

2
u.

Equation (7.5) describes a balance between the interactions of the ends due to the
exponential decay of the heteroclinic to the stable phases ±1 and the geometry of
the moving front Γ . Now we need to discover the analog of (7.5) with Γ replaced
by Σ . The natural guess would be to take |AΣ |2 on the right hand side leaving
the exponential function on the left. However the story is not so simple because,
altering the ends of Σ by adding normal perturbations as described above, we have
changed the character of the surface—the new surface is not a translating solution
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of the mean curvature flow anymore. To take this into account we solve (instead of
(7.5)) the following problem:

Frr

1+ |Fr|2
u =

e−u

δ̃ 2
, δ̃ = α̃ε,(7.6)

where α̃ > 0 is a constant to be specified later. In the sequel we will show that we
can chose α̃ in such a way that defining

f± =
1

2
√

2
u,(7.7)

and using the modified surface as a model for the traveling wave we can achieve
the following:

(1) If the approximate solution is defined by uε = H(z), where z is the signed
distance from Σ̃ε then, at least near this surface, the error of the approx-
imation S(uε) is a small function of ε , and also it decays as r→ ∞ at an
algebraic rate in r.

(2) The projection of the error onto H ′(z), namely
∫
R S(uε)H ′(z) is a function

that behaves like ε2+κ

(1+ε2r2)1+β
as r→ ∞.

These two claims, which we will make more precise later, are sufficient to imple-
ment a Lyapunov-Schmidt construction quite similar to the one presented in the
previous sections and, as a result, prove Theorem 1.2.

Let us go back to equation (7.6). Based on the known asymptotic behavior of
the function F(r) and its derivatives one can prove the following:

Lemma 7.2. Let u = u(r) be the solution of (7.5) and let f± = f±(r) be the func-
tions defined in (7.7). There exist r0 > R and C > 0 such that for all r > r0 it
holds:

( f+(r)+ f−(r))≥ 2√
2

log
(1+ r2

ε2

)
−C log log

(1+ r2

ε2

)
.(7.8)

From now on Σ̃ε will be the surface we defined in (7.4) with f± as in the Lemma
7.2. By ñε we will denote its unit normal, and by ñ the unit normal of its scaled
version Σ̃ . These vectors are chosen in such a way that ñε is interior with respect
to the connected component of RN+1 \ Σ̃ε which contains the origin.

7.3 Construction of the initial approximation
We will consider the Fermi coordinates associated with the surface Σ̃ε :

x 7−→ (y,z), y ∈ Σ̃ε , z = dist(x, Σ̃ε),
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in a neighborhood of Uε of this surface. We let Uε to be such that this map is a
diffeomorphism, namely we define:

Uε :=

{
x ∈ RN+1

∣∣∣∣∣ |z| ≤ C(Σ)
ε

[
1−χ

( r
rε

)]
+ 1

2 χ
( r

rε

)
( f+(εr)+ f−(εr)),

x = y+ zñε(y),r = r(y)

}
.

(7.9)

The constant C(Σ)> 0 depends on Σ only. As before, for u : Uε→Rk, by (X∗ε u)(y,z)
we denote the pullback of f by this diffeomorphism. At this point we will chose
conveniently the value of rε by letting it be a solution of the following equation:

C(Σ)

ε
=

1
2
( f+(2εrε)+ f−(2εrε)) =⇒ rε ∼ e

c̃
ε .(7.10)

As a next step we define a smooth cutoff function ρε which is supported in Uε

and such that

(X∗ε ρε)(y,z) = 1, dist(x,∂Uε)≤ 1, x = y+ zñε(y).

To be more precise we take for instance a smooth cutoff function ρ(t) such that
ρ(t) = 1, t ≤−1 and ρ(t) = 0, t ≥ 0 and set:

(X∗ε ρε)(y,z) = ρ
(
|z|−C(Σ)

ε
[1−χ

( r
rε

)]
− 1

2
χ
( r

rε

)
| f+(εr)+ f−(εr)|

)
.(7.11)

In order to use a Lyapunov-Schmidt reduction procedure we have to allow
possible further perturbations of the surface Σ̃ε . They will be given as normal
graphs over Σ̃ε of C 2,µ

β
(Σ̃ε) functions. More precisely we start with radial func-

tions h : Σ̃ → R such that

‖h‖
C 2,µ

β
(Σ̃)
≤ ε

τ , some τ > 0,β > 0.(7.12)

We will also make the usual identification hε(r) = h(εr) and consider normal
graphs of these functions over Σ̃ε as admissible perturbations. Numbers τ,β > 0
will be specified later on.

We denote the two components of RN+1 \Σε by D±ε respectively. We agree that
D+

ε is the component containing the set Uε ∩{z > 0}, and D−ε is ”interior” to Σ̃ε .
Finally by χD±ε we denote the characteristic functions of these sets.

With these notations we set:

(X∗ε uε)(y,z) = H(z−hε(r)), r = |y′|,

and define the approximate solution

wε(x) = ρε(x)uε(x)+
(
1−ρε(x)

)(
χD+

ε
(x)−χD−ε (x)

)
.(7.13)
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7.4 The error of the approximation
In this section we will compute the error of the approximation, namely:

S(wε) = ∆wε + ε∂xN+1wε +wε(1−w2
ε).

Using (7.13) we can write:

(7.14)

S(wε) = ρεS(uε)+wε(1−w2
ε)−ρεuε(1−u2

ε)︸ ︷︷ ︸
I

+[∆,ρε ]uε − (∆ρε)(χD+
ε
−χD−ε )+ ε∂xN+1ρε(uε −χD+

ε
+χD−ε )︸ ︷︷ ︸

J

.

As in (6.5) we write S(uε) in Fermi coordinates and denote for brevity (X∗ε u)(y,z)=
ũε(y,z). Thus we get:
(7.15)

(X∗ε S(uε)) = ∆
Σ̃ε

ũε +[∂ 2
z ũε + f (ũε)]+ [ε∂z(πε,N+1)−H

Σ̃ε
]∂zũε − z|A

Σ̃ε
|2∂zũε

+ ε∇
Σ̃ε
(πε,N+1) ·∇Σ̃ε

ũε +Aε [ũε ]+Bε [ũε ]− z2R
Σ̃ε

∂zũε .

To proceed we need to calculate various geometric quantities appearing in (7.15) in
terms of the parametrization of Σ̃ε given in (7.4). These are standard computations
and we will only summarize the most important points in the form of a lemma.

Lemma 7.3. Let n±ε be the unit normal, g±
ε,i j be the coefficients of the metric and

k±
ε, j be the principal curvatures of the ends Σ±ε of the surface Σε and let ñ±ε , g̃±

ε,i j

and k̃±
ε, j be the corresponding quantities on Σ̃±ε , expressed in terms of the local

coordinates (r,Θ) ∈ R+×SN−1.
Then, it holds:

ñε(r,Θ) = nε(r,Θ)∓
(
0,εχ

( r
rε

)∂ 2
r W±R (εr) f±(εr)
1+ |∂rW±R (εr)|2

)
+ εχ

( r
rε

)
O
( | f±(εr)|
(1+ ε2r2)3/2

)
.

(7.16)

Furthermore, the matrices g±
ε,i j and g̃±

ε,i j are diagonal and we have the following
formulas:

g̃ε,i j = gε,i j

(
1+ εχ

( r
rε

)
O
( | f±(εr)|
(1+ ε2r2)1/2

))
.

The principal curvatures satisfy:

k̃±
ε,1 = k±

ε,1

(
1+ εχ

( r
rε

)
O
( | f±(εr)|
(1+ ε2r2)1/2

))
,

k̃±
ε, j = k±

ε, j

(
1+ εχ

( r
rε

)
O
( | f±(εr)|
(1+ ε2r2)

))
, j = 2, . . . ,N.

Let us recall that asymptotically, as r→∞, the ends of Σε are parallel to Γε . As
a result in the above formulas we can replace g±

ε,i j and k±
ε, j in the right hand side by

the coefficients of the metric and principal curvatures computed on Γε . The error
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created this way will be very small. Another observation we make is that if we take
rε as in (7.10), then we have

χ
( r

rε

) | f±(εr)|
(1+ ε2r2)β

≤ Cε2

(1+ ε2r2)β ′

for all β ′ < β provided that ε is taken sufficiently small.
Then, straightforward calculations show that the error of the initial approxima-

tion is essentially of the same size in C 0,µ
β ,σ (Σ̃ε) sense. Namely, we can show the

exact analog of the Lemma 6.1 for this part of the error:

‖ρεS(uε)‖C 0,µ
βσ ,σ (Σ̃ε )

≤Cε
2−σ
√

2, βσ = 1−σ
√

2.(7.17)

Now we will estimate the second term in (7.14) denoted by I . For future
purposes it is convenient to have an explicit formula:

I =

{
3(uε +1)2ρε(ρε −1)+(uε +1)3ρε(1−ρ2

ε ), in D−ε ,
3(uε −1)2ρε(1−ρε)+(uε −1)3ρε(1−ρ2

ε ), in D−ε .
(7.18)

From this, using H(t) = ±1+O(e−
√

2|t|), and also the asymptotic formula (7.8),
we find, with some σ > 0:

‖I ‖
C 0,µ

βσ ,σ (Σ̃ε )
≤Cε

2−σ
√

2.(7.19)

Our final calculation involves the third term in (7.14) denoted by J . This term
is quite important since it represents the interactions between the ends of Σ̃ε . We
write:

J = (∆ρε + ε∂xN+1ρε)(uε −χD+
ε
+χD−ε )+2∇ρε ·∇uε .

Since H ′(t) = O(e−
√

2|t|) we can estimate:

|J | ≤Ce−
√

2|t|
χ{0<ρε<1}

≤Ce−σ |z| exp
(
−(
√

2−σ)
{C(Σ)

ε
[1−χ

( r
rε

)]
+

1
2

χ
( r

rε

)
| f+(εr)− f−(εr)|

})
.

By (7.8) we have:

‖J ‖
C 0,µ

βσ ,σ (Σ̃ε )
≤Cε

2−σ
√

2.(7.20)

We will summarize (7.17)–(7.20).

Lemma 7.4. Let wε be the approximate solution defined in (7.13). For any σ ∈
(0,1) the error of this approximation S(wε) satisfies the following estimate:

‖S(wε)‖C 0,µ
βσ ,σ (Σ̃ε )

≤Cε
2−σ
√

2, βσ = 1−σ
√

2.(7.21)

Assuming that the admissible perturbation of Σ̃ε satisfies (7.12), the constant C
appearing above depends on σ but not on this perturbation.
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In addition, as a function of the admissible perturbations, S(wε) is a Lispchitz
function from C 2,µ

β
(Σ̃ε) into C 0,µ

βσ ,σ (Σ̃ε) with a Lispchitz constant proportional to

ε2−σ
√

2.

7.5 An outline of the Lyapunov-Schmidt reduction
Given the results of Lemma 7.4 it is rather straightforward to implement a

Lyapunov-Schmidt reduction procedure similar to the one used in the proof of
Theorem 1.1. In fact large parts are simply repetitions with some natural changes.
Thus we will only give a brief outline of the general scheme. As before we look
for a solution of the problem

S(u) = ∆u+ ε∂xN+1u+u(1−u2) = 0, in RN+1,

in the form u = wε +ϕε . Now we write

ϕε = ρεφε +ψε ,

and decompose the original problem into a system as described in section 4.2. As
a result we get the following analog of (4.13)–(4.15):

∆
Σ̃ε

φε +∂
2
z φε + f ′(uε)φε = gε +cεH ′(z−hε), in Σ̃ε ×R,(7.22)

(∆+ ε∂xN+1−2)ψε = hε , in RN+1.(7.23)

The functions gε and hε are similar to their counterparts in 4.2 and it can be proven
that they have all the properties described in 6.1. Also all the linear theory needed
is a verbatim repetition of the content of section 5. This leads us to the existence
result for the nonlinear projected problem as in section 6.2. Namely, we have a
solution of the system (7.22)–(7.23), with

cε =

∫
R gεH ′(z−hε)dz∫
R[H ′(z−hε)]2 dz

.

At this point all that remains to be done is to find hε such that cε = 0. Next we will
address this problem.

7.6 Solution of the reduced problem
We note that the leading terms in the projection of gε onto H ′(z− hε) come

from the projection of the error of the approximation S(wε). To prove this requires
somewhat tedious calculations that we omit. Thus we concentrate on

∫
R

S(wε)H ′(z−hε)dz =
∫
R

ρεS(uε)H ′(z−hε)dz+
∫
R
(I +J )H ′(z−hε)dz.

(7.24)

Using (7.14) and analyzing the terms involved we observe that
(7.25)∫
R

ρεS(uε)H ′(z−hε)dz =−c0JΣ̃ε
(hε)+

∫
R

ρε [ε∂z(πε,N+1)−H
Σ̃ε
](H ′(z−hε)]

2 dz

+Ξε(hε),
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where J
Σ̃ε

is essentially the Jacobi operator on Σ̃ε :

J
Σ̃ε
(hε) = ∆

Σ̃ε
hε + ε∇

Σ̃ε
(πε,N+1) ·∇Σ̃ε

hε + |AΣ̃ε
|2hε ,

and Ξε(hε) is a small term for all admissible functions hε , in the sense that we
have:

‖Ξε‖C 0,µ
β

(Σ̃ε )
≤Cε

2+τ , some β >,τ > 0.

It remains to calculate the second term on the right hand side of (7.25). We observe
that since Σε is a translating solution to the mean curvature flow this term would
have been zero if we had not modified Σε to Σ̃ε . Using the fact that ∂z(πε,N+1) =
ñε,N+1, i.e. it is simply the (N + 1)th component of the normal on Σ̃ε we get, by
(7.16) in Lemma 7.3:
(7.26)∫

R
ρε [ε∂z(πε,N+1)−H

Σ̃ε
][H ′(z−hε)]

2

=−ε
2
∫
R

ρ
±
ε χ
( r

rε

)∂ 2
r W±R (εr) f±(εr)
1+ |∂rW±R (εr)|2

[H ′(z−hε)]
2 dz+O

C 0,µ
β

(Σ̃ε )
(ε2+τ)

=−ε
2
∫
R

ρ
±
ε χ
( r

rε

)∂ 2
r F(εr) f±(εr)
1+ |∂rF(εr)|2

[H ′(z−hε)]
2 dz+O

C 0,µ
β

(Σ̃ε )
(ε2+τ)

=−a0ε
2
χ
( r

rε

)∂ 2
r F(εr)[ f+(εr)+ f−(εr)]

1+ |∂rF(εr)|2
+O

C 0,µ
β

(Σ̃ε )
(ε2+τ).

where a0 > 0 is a constant and

ρ
±
ε (y,z) =

{
ρε(y,z), y ∈ Σ̃±ε ,

0, otherwise.

In (7.26) we have omitted terms that are at most of a size comparable with ε2+τ in
the sense of C 0,µ

β
(Σ̃ε), as indicated by the notation. We observe as well that the

error in replacing ∂ 2
r W±R (εr) and ∂rW±R (εr) by ∂ 2

r F(εr) and ∂rF(εr), respectively,
again results in a lower order term. This justifies the third line in (7.26).

Going back to (7.24) we observe that the projection on I is again negligible
since, by (7.18), we see that I ≈ e−2

√
2|z|χ{0<ρε<1}. Thus it remains to calculate:

(7.27)

∫
R

J H ′(z−hε)dz

=
∫
R

[
(∆ρε + ε∂xN+1ρε)(uε −χD+

ε
+χD−ε )+2∇ρε ·∇uε

]
H ′(z−hε)dz
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Using definition of ρε in (7.11), and the identity 1−H2 =
√

2H ′, after some inte-
grations by parts we get:
(7.28)∫
R

J H ′(z−hε)dz

=
∫
R
[ρ ′′ε (H

′(z−hε)−χD+
ε
+χD−ε )+2ρ

′
εH ′(z−hε)]H ′(z−hε)dz+O

C 0,µ
β

(Σ̃ε )
(ε2+τ)

= 2
∫
R

ρ
′
ε [H

′(z−hε)]
2 dz+O

C 0,µ
β

(Σ̃ε )
(ε2+τ)

= a1 exp{−2
√

2
C(Σ)

[
1−χ

( r
rε

)]
ε

}exp{−
√

2χ
( r

rε

)
( f+(εr)+ f−(εr))}e−2

√
2hε

+O
C 0,µ

β
(Σ̃ε )

(ε2+τ).

Summarizing (7.25),(7.26) and (7.28) we get that the reduced problem amounts to
solving for hε the following equation:
(7.29)

c0JΣ̃ε
(hε)+ c̃1 exp{−2

√
2

C(Σ)
[
1−χ

( r
rε

)]
ε

}exp{−
√

2χ
( r

rε

)
( f+(εr)+ f−(εr))}hε

= a0ε
2
χ
( r

rε

)∂ 2
r F(εr)[ f+(εr)+ f−(εr)]

1+ |∂rF(εr)|2

−a1 exp{−2
√

2
C(Σ)

[
1−χ

( r
rε

)]
ε

}exp{−
√

2χ
( r

rε

)
( f+(εr)+ f−(εr))}

+O
C 0,µ

β
(Σ̃ε )

(ε2+τ).

This is of course a fixed point problem for hε and the term which we have denoted
by O

C 0,µ
β

(Σ̃ε )
(ε2+τ) depends in a nonlinear and nonlocal way on hε . It can be shown

that this term in fact is a Lipschitz contraction of hε (and consequently of the ad-
missible functions hε ). This is quite similar as in the previous part. We concentrate
on analyzing the invertibility of the linear operator on the right hand side of (7.29).

We make first an observation that by the choice of f± we have that for r > 2rε :

a0ε
2 ∂ 2

r F(εr)[ f+(εr)+ f−(εr)]
1+ |∂rF(εr)|2

−a1 exp{−
√

2( f+(εr)+ f−(εr))}= 0.(7.30)

Second, when r ≤ 2rε then by the choice of rε we have that the whole right hand
side is an O

C 0,µ
β

(Σ̃ε )
(ε2+τ) term. As a consequence, arranging some terms suitably,

we are left with solving the following problem:

−c0JΣ̃ε
(hε)+χ

( r
rε

)
exp{−

√
2( f+(εr)+ f−(εr))}hε = O

C 0,µ
β

(Σ̃ε )
(ε2+τ).
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Scaling back to the surface Σ̃ we are left with the problem of the form:

∆
Σ̃

h+∇
Σ̃
(πN+1) ·∇Σ̃

h+ |A
Σ̃
|2h+

1
ε2 χ

( r
εrε

)
exp{−

√
2( f+(r)+ f−(r))}h

= O
C 0,µ

β
(Σ̃)

(ετ).

(7.31)

Since we consider only the radial perturbations of the original surface Σ as admis-
sible, then Σ̃ is also rotationally symmetric, and the above problem reduces to an
ODE. Thus we may use a similar technique as in the previous part, namely solve it
by variation of parameters formula, gluing various parts. When r < εrε our opera-
tor is essentially identical with the linearization of the translating graph solution to
the mean curvature flow (c.f Lemma 7.3). Inverting this operator is the only more
significantly different part of the theory and thus we will present it in some details.
Note that when r > εrε the operator above resembles the linearized operator Lδ ,
treated extensively in section 3.6. An argument similar to the one in section 3.6
can be used to to control a fundamental set and to write the variation of parameters
formula.

7.7 The Jacobi operator of the traveling catenoid Σ

Our goal is to prove the following:

Lemma 7.5. Let g ∈ C 0,µ
β

(Σ̃), β > 1, be a function depending on the radial vari-
able only. There exists a solution v = v(r) of the problem:

[∆
Σ̃
+∇

Σ̃
(πN+1) ·∇Σ̃

+ |A
Σ̃
|2]v+ 1

ε2 χ
( r

εrε

)
exp{−

√
2( f+(r)+ f−(r))}v = g,

with

‖v‖
C 2,µ

β−1(Σ̃)
≤C‖g‖

C 0,µ
β

(Σ̃)
.

In the region where r < εrε the surface Σ̃ coincides with the original traveling
catenoid Σ . This is where our problem is different and we need the following
result:

Lemma 7.6. Let us consider the following problem:

JΣ (v) = [∆Σ +∇Σ (πN+1) ·∇Σ + |AΣ |2]v = g,(7.32)

where g ∈ C 0,µ
1+β

(Σ), with β > 0, is a function that depends on the radial variable
r only. There exist a solution v = v(r) of this problem such that

‖v‖
C 0,µ

β
(Σ)
≤C‖g‖

C 0,µ
1+β

(Σ)
.(7.33)

Proof. We observe that the Jacobi operator for the surface Σ can not be anymore
expressed in terms of the radial variable globally. In fact we need to use three
charts on Σ to write conveniently equation (7.31) in local variables. This in fact is
the only new element.
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Near the point of the traveling catenoid where r = R we will express the surface
as a graph over the xN+1-axis. Thus we have, following the results in [5]:

Σ ∩BR1 = {(q(z)Θ ,z) | z ∈ (−z0,z0)},
where R1 > R and q satisfies:(N−1

q
−q′

)(
1+(q′)2)= q′′.

With this in mind we express the radial function g on the right hand side of (7.32)
in terms of z = q−1(r). We will abuse notation and denote this, and other functions
involved, by the same symbols g, v etc.

We write the Jacobi operator JΣ restricted to functions of v = v(z) in this chart
and get the following ODE:

v′′

1+ |q′|2
+
(N−1

h
+

1
1+ |q′|2

)
v′+

[ |q′|2

(1+ |q′|2)3 +
N−1

q2(1+ |q′|2)
]
v = g.(7.34)

We multiply this equation through by 1+ |q′|2 and arrive at the equation in the
following form:

v′′+ p1(z)v′+ p2(z)v = (1+ |q′|2)g = g̃.

Let φ0 and φ1 be two linearly independent elements of a fundamental set of the
operator chosen so that

φ0(0) = 0, φ1(0) = 1

φ
′
0(0) = 1, φ

′
1(0) = 0.

Finally let P1(z) be a primitive of p1. Then we can write explicitly:

v(z) =
∫ z

−z0

e−P1(ζ )

φ 2
0 (ζ )

∫
ζ

−z0

g̃(ζ ′)φ0(ζ
′)eP1(ζ

′) dζ
′+a0φ0(z)+a1φ(z).(7.35)

Next we write JΣ on the ends Σ± \Br0 , where r0 is chosen so that R < r0 < R1
and the various local charts overlap. The natural parametrization is of course:

Σ
± \Br0 = {(rΘ ,W±R (r)) | (Θ ,r) ∈ SN−1×R+}.

In this chart JΣ can be written as an ODE in r for each of the two ends. This is
very similar to what we did in Lemma 3.4. Denoting by φ

±
0 , φ

±
1 the elements of

a fundamental set corresponding to φ0, φ1 in Lemma 3.4, and letting g̃± = (1+
|∂rW±R |2) we get the following formula:

v±(r) =−φ
±
0

∫ r

r0

φ
±
1 (ρ))g̃±(ρ)

W±(ρ)
dρ +φ

±
1

∫ r

r0

φ
±
0 (ρ))g̃±(ρ)

W±(ρ)
dρ +a±1 φ

±
1 (r),

(7.36)

for a general solution v in C 2,µ
β

(Σ). Note that we have

φ
±
0 (r)∼ 1

1+ r
, φ

±
1 (r)∼ re−r2

, r� 1,
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which is the reason why in (7.36) we have included only constant multiplicities of
φ
±
1 .

Next we need to choose the four constants a0,a1 and a±1 in such a way that

v±(r0) = v◦ (W±R )−1(r0),

∂rv±(r0) = ∂rv◦ (W±R )−1(r0).

This is a matter of solving a simple system of 4 linear equations.
After this is done we have a solution defined now on the whole surface Σ .

Estimate (7.33) follows directly from the explicit formulas we have derived. This
ends the proof. �

Next, we describe how to solve the linearized problem (7.31). Note that as long
as r < εrε we are dealing with the Jacobi operator discussed in the Lemma above.
Thus, at least up to r = εrε , we will have no problem in defining a solution v in
C 2,µ

β−1(Σ ∩{r < rε}) (here we take β > 1). What is left is to solve a problem of the
form:

J
Σ̃±(v

±)+
1
ε2 χ

( r
εrε

)
exp{−

√
2( f+(r)+ f−(r))}v = g±,(7.37)

on each end Σ±, with r > rε for radial functions v±, with initial data given by the
solution v, already found, at r = εrε .

Now, we notice that because of the definition on f± in (7.6)–(7.7), the operator
appearing in (7.37) is very similar to the operator Lδ considered in section 3.5. In
fact, we can write (7.37) in the form:

(1+o(1))v±rr

1+ |∂rW±R |2
+

(N−1)(1+o(1))v±r
r

+ p±ε (r)v
± = g±, r > εrε ,

where

pε(r)∼
1

1+ r2 log
(1+ r2

ε2

)
, r > εrε

which is in agreement with the behavior of the function pδ in (3.37) and the o(1)
term above means terms that are small both in ε and r. Since we are interested
in this problem only for large values of r ≥ εrε ∼ e

c̃
ε we see that the argument

in section 3.6 can be repeated verbatim to solve finally our problem. Having the
inverse of the operator in (7.31) at hand we proceed in the same way as in the
previous case to solve finally a fixed point problem for h. We omit the details.
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