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Abstract

We consider the Shigesada-Kawasaki-Teramoto model of species segregation in the limit
of high cross diffusion rate of one species, and small diffusion rate of the other. Recently,
steady states in the shape of an inverted spike were constructed in this limit in one dimension
[Lou, Ni and Yotsutani, DCDS-A 10(1):435-458 2004; Wu and Xu, DCDS-A, 29(1):367-385
2011]. In this paper we consider the stability properties of such spiky states. We show that
K symmetric spikes are stable if the domain length is sufficiently large. More precisely, we
derive a sequence of thresholds 0 = L1 < L2 < L3 < L4 < L5 . . . such that K spikes on
the domain of size 2KL are stable if and only if L > LK . When K = 2, the instability
of a small eigenvalue is triggered first, resulting in a very slow drift of the two spikes, and
eventual absorption of one of them by the other. When K ≥ 3, the primary instability is
due to a large eigenvalue, resulting in a quick death of one or more spikes. We also extend
the construction of one dimensional steady states to a radially symmetric two-dimensional
spike at the center of a disk. In one dimension, hypergeometric functions are utilized to study
the large eigenvalues; thresholds for small eigenvalues are derived indirectly by classifying the
bifurcations of asymmetric patterns. Full numerical simulations in one and two dimensions are
performed to confirm the asymptotic results and to explore some of the dynamical scenarios
away from the equilibrium state.

1 Introduction

Back in 1979, Shigesada, Kawasaki and Teramoto proposed the following reaction-diffusion system to
model segregation phenomena in population dynamics [20],

{

ut = ∆ [(d1 + ρ12v) u] + u(a1 − b1u− c1v)
vt = ∆ [(d2 + ρ21u) v] + v(a2 − b1u− c1v)

(1)

Here, u, v represent the densities of the two competing species, and all parameters are assumed
positive. Without the spatial diffusion terms, this is just the classical Lotka-Volterra ODE system. The
terms d1,and d2 model the usual self-diffusion, while the cross-diffusion terms ρ12 and ρ21 model the
inter-species avoidance: upon spatial encounter, the species tend to disperse away from each other.

The inter-species avoidance has been documented for example among cheetahs, lions and hyenas
[2, 3]. It was demonstrated that, “lion avoidance [among cheetah] translated into a nonrandom spatial
distribution of cheetahs with the most reproductively successful females found near lower lion densities than
less successful females” [2]. In [3], cheetah were shown to actively move away upon hearing the recordings
of the lions. The author proposed that this mechanism helps to sustain the cheetah populations, since
(a) cheetah’s cubs are actively prayed upon by lions and (b) cheetah and lions compete for the same pray
[3].

Since the introduction of (1), various regimes have been studied in numerous papers, see for example
[15], [16], [17], [12], [13], [11], [26], [25]. Of particular importance is to understand the effect of the
cross-diffusion rates ρ12, ρ21. In fact, as was shown in [8], any non-constant solution is unstable in the
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absence of cross-diffusion (ρ12 = 0 = ρ21). This is true in any dimension at least for rectangular domains
(including a one dimensional interval), and is conjectured in [8] to be true for any convex domain.

In this paper we consider a simplified version of (1), where one of the cross-diffusion coefficients is
much bigger than the other. This simplification was first introduced in [16]; without loss of generality, we
may as well assume that ρ12 is dominant. Following [11] and [26] we also discard d1 and ρ21 and consider
as a starting point the following system:







ut = ρ (vu)xx + a1u− b1u
2 − c1uv

vt = dvxx + a2v − b2uv − c2v
2 ; a ≤ x ≤ b

ux(a, t) = 0 = ux(b, t); vx(a, t) = 0 = vx(b, t)
. (2)

where
d := d2; ρ := ρ12; d1 = ρ21 = 0

and as in [26], we furthermore assume the following asymptotic regime:

d� 1; ρ� 1; all other parameters are positive and of O(1). (3)

Biologically, when ρ is large, v acts as an inhibitor on u, so that u diffuses quickly in the regions of high
concentration of v. This effect is believed to be responsible for the segregation of the two species. It was
shown in [11] and [26] that under these assumptions, the system (2) may admit a steady state in the
form of a spike for u, and in the form of an inverted spike for v. An example of such solution is shown
on Figure 1. Note in particular that within the spike for u, the population of v is very low. This spatial
pattern is the result of the inter-species avoidance.

The main goal of this paper is to study the stability properties of the spiky solutions of (2) that were
constructed in [11], [26]. A secondary goal is to extend the computations of the steady state in [26] to
two dimensions. Let us first mention some of the previous results concerning the non-constant steady
states of (1) and their stability. In [16], the authors constructed non-constant steady states consisting of
interfaces (also called mesa patterns) for (1) under the assumption that ρ21 = 0. Numerically, they have
observed some of them to be stable. The stability was further analyzed in [7] using the SLEP method.
With regards to spike-type solutions, several of these were constructed in [11], [12], [13] in one dimension,
and under various assumptions on parameters; we are not aware of any results concerning spikes for (1)
in two dimensions. In [25], some of the spike solutions have been proven to be unstable; no stable spikes
were found. In light of the instability result in [25] it is natural to ask: Does there exist a regime for
which spike-type solutions are stable? In this paper, we not only answer this in the affirmative, but give
a full characterization of the instability thresholds. In addition, we also construct the spiky steady states
in two dimensions. To our knowledge, this is the first demonstration of stable spikes for this model; the
construction of solutions in two dimensions is also new.

We now summarize the main stability result of this paper. We consider stability of the following spiky
states (see Figure 1):

(i) a boundary spike at 0 on the interval [0, L]

(ii) A double boundary spike configuration, consisting of two boundary spikes at 0 and at 2L on a domain
[0, 2L]

(iii) K interior spikes on the domain [−L, (2K−1)L], whose centers are located at 0, 2L, 4L, . . .2(K−1)L.

Note that the steady states (ii) and (iii) are trivially constructed from (i) by appropriate reflections
and translations. The basic spike (i) has a property that v(0) is very close to zero whereas u(0) is large.
Such large spike solution was first shown to exist in [11]; more detailed asymptotics including its height
was computed in [26]. We review their construction in §2 (see Proposition 2.1).

While (ii), (iii) is trivially constructed from (i), the stability properties of (i), (ii) and (iii) are very
different. This is illustrated in Figure 2. Our main result is the precise characterization of their stability.
We summarize it as follows.
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Figure 1: Steady states configurations considered in this paper. (a,b,c): Half-spike on [0, L]. Both u
and v have boundary layers at zero, whereas τ = uv is nearly constant. Note that v(0) is small and
u(0) is large. Solid line shows the full numerical computation; asymptotic approximations derived in
Proposition 2.1 are shown using dashed line. Parameter values are d2 = 4× 10−3, ρ = 200, (a1, b1, c1) =
(5, 1, 1), (a2, b2, c2) = (5, 1, 5) and L = 1. (d) A single interior spike; (e) A double-boundary spike
configuration; (f) a two-spike configuration (i.e. L = 1,K = 2).

Principal Result 1.1 Suppose that

4
a1
a2

− b1
b2

− 3
c1
c2
> 0 (4)

and consider a spike steady state as constructed in Proposition 2.1. Define

ε :=
√

2d/a2;

ρK,small := ε−2/3L8/3 c2
2

(

b1
b2

π

2

)−2/3(

4
a1
a2

− b1
b2

− 3
c1
c2

)5/3

; (5)

ρb :=
1

2χc
ρK,small; where χc = 0.669 is as determined in Principal Result 4.2; (6)

ρK,large := ρK,small

1

(1− cos [π (1− 1/K)])χc
(7)

We have the following conclusions:

• A single boundary spike (i) is stable for all ρ.

• A double-boundary steady state (ii) is stable if ρ < ρb and is unstable otherwise. The instability is
due to a large eigenvalue.
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(a) (b) (c) (d)

Figure 2: Various instabilities of Principal Result 1.1. (a) Two stable spikes. Parameter values in (2) are
d2 = 10−3, ρ = 200, (a1, b1, c1) = (5, 1, 1), (a2, b2, c2) = (5, 1, 5) and L = 1.5, K = 2, with b− a = 2KL.
(b) Slow instability: two spikes persist as a transient state until t ∼ 1.2× 104. Parameter values are the
same as (a) except that L = 1. (c) Fast instability of two boundary spikes: Parameter values are the same
as (b), except that b − a = 2. (d) Fast instability of three spikes (note log time scale): the middle spike
disappears at t ∼ 20. The remaining two spikes slowly drift towards a symmetric equilibrium. Parameter
values are the same as (b) except K = 3.

• A K-interior spike steady state (iii) with K ≥ 2 is stable if ρ < min (ρK,small, ρK,large) and is
unstable otherwise. When K = 1, it is stable provided that ρ is not exponentially large in ε.

Several remarks are in order. First, there are two distinct types of instabilities that can occur: either
small or large eigenvalues can be destabilized. The instability with respect to small eigenvalues typically
results in a slow drift of one or more spikes, and eventually may lead to spike death over a long time.
This is illustrated for example in Figure 2(b). On the other hand, the instability with respect to a large
eigenvalue, also called competition instability, results in spike death that occurs at O(1) time. This is
illustrated in Figure 2(c,d).

Second remark is that the critical scaling for the instability thresholds for both small and large
eigenvalues is

ρ = O(d−1/3). (8)

In particular, K spikes are always stable whenever 1 � ρ � d−1/3 (since in this case ρ < ρK,small and
ρ < ρK,large) and unstable when K ≥ 2 and ρ � d−1/3 (since in this case ρ > ρK,small and ρ > ρK,large

so both small and large eigenvalues become unstable). Finally, note that

1

(1− cos [π (1− 1/K)])χc
=







1.494, K = 2
0.996, K = 3
0.875, K = 4

so that ρK,large > ρK,small if K = 2 but ρK,large < ρK,small if K ≥ 3. It follows that the primary instability
is due to small eigenvalues if K = 2 but is due to large eigenvalues if K ≥ 3. This is in agreement with
numerical simulations, some of which are shown in Figure 2 (see also §7, experiment 3).

The outline of this paper is as follows. In §2 we review the construction of the steady state (Proposition
2.1). A similar computation was performed in [26] where in particular the height u(0) was also derived;
however we simplify it significantly here, in that we avoid using certain complicated exact integrals
as was done in [26] (this simplification also allows us to construct the solution in 2D in §6, where
such exact integrals are no longer available). The main stability result is then derived in §§3–5. For
the spiky patterns, there are two types of eigenvalues that need to be considered, so called large and
small eigenvalues. In §3 we first derive the reduced eigenvalue problem for the large eigenvalues. We
then use hypergeometric functions to study it in §4. In §5 we turn our attention to the instability
due to small eigenvalues. Rather than computing the small eigenvalues directly, we derive only their
instability thresholds. This is done by by calculating the bifurcation point at which asymmetric spike-
patterns bifurcate off the solution branch corresponding to spikes of equal height. In analogy to studies of
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similar models such as GM system [4], [19], we expect the small eigenvalues to become unstable at these
bifurcation points. This is verified numerically. Radially symmetric steady states inside a two-dimensional
disk are constructed in §6. In §7 we perform full numerical simulations in one and two dimensions to
confirm our asymptotic results. Finally in §8 we discuss our results and present some future directions.

The methods used in this paper are based on formal asymptotics. A critical computation in §4 to show
the stability of the large eigenvalues involves the hypergeometric functions had to be done numerically.
It remains an open challenge to provide a rigorous foundation, especially for the key step in §4.

2 Steady state computation in one dimension

Before stating our stability results, let us summarize the asymptotic shape of the spiky steady state,
which was first considered in [11], [26].

Proposition 2.1 (See [26]) Consider the steady state equations

0 = dvxx + a2v − b2uv − c2v
2; 0 = ρ (vu)xx + a1u− b1u

2 − c1uv (9)

on the interval [0, L] with Neumann boundary conditions. Suppose that

4
a1
a2

− b1
b2

− 3
c1
c2
> 0 (10)

and consider the asymptotic limit
d� 1; ρ� 1. (11)

The system (9) admits a solution such that v(x) has the form of an inverted spike at x = 0, with its
minimum close to zero. More precisely, we have

v(x) ∼ a2
2c2

[

3

2
tanh2

( x

2ε

)

+ δ
(

2− 3 tanh2
( x

2ε

))

]

; (12)

u ∼ τ0
v(x)

(13)

where

ε :=

√

2d

a2
; (14)

τ0 :=
3

16

a22
b2c2

; (15)

δ := (ε/L)2/3
3

4

(

b1
b2

π

2

)2/3(

4
a1
a2

− b1
b2

− 3
c1
c2

)−2/3

. (16)

Note that the solution given by (12, 13) is valid uniformly throughout the entire interval [0, L]. An
example of this is shown in Figure 1.

We define
τ = uv

and replacing u = τ/v in (9) we obtain

0 = dvxx + a2v − b2τ − c2v
2; (17)

0 = ρτxx + τ
(a1
v

− b1
τ

v2
− c1

)

(18)

with Neumann boundary conditions for v and τ on [0, L]. Due to the assumption ρ� 1, to leading order,
we have τxx = 0 so that Neumann boundary conditions imply that τ(x) ∼ τ0 is constant throughout the
domain, with τ0 to be determined. Upon integrating (18) on [0, L], we then obtain an integral constraint

∫ L

0

τ
(a1
v

− b1
τ

v2
− c1

)

dx = 0. (19)
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Estimating τ(x) ∼ τ0 we then obtain the leading order constraint

Lc1 ∼
∫ L

0

(a1
v

− b1
τ0
v2

)

dx. (20)

To satisfy this constraint, we seek solutions for v(x) in the form of an inverted spike such as shown in
Figure 1, so that v(0) is very close to zero. In order to construct such a solution, consider the unique
ground state solution

w(y) =
3

2
sech2(y/2) (21)

to the problem
wyy − w + w2 = 0; w → 0 as |y| → ∞, w′(0) = 0, w > 0. (22)

Next, define

V0(y) :=
3

2
− w(y) =

3

2
tanh2(y/2)

so that V0(y) satisfies

V0yy + 2V0 − V 2
0 − 3

4
= 0; V0(0) = 0, V ′

0(0) = 0, V0 → 3/2 as |y| → ∞. (23)

We now scale v and x so that the leading order of (17) can be mapped into (23). In the inner region we
let

v = αV (y), x = εy

where ε is the extent of the inner layer to be determined. Then (17) becomes

0 = dε−2Vyy + a2V − b2τ/α− c2αV
2.

In the inner region, we expand the solution as

V = V0 + εpV1 + . . . ; τ = τ0 + εpτ1 + . . . , (24)

where the power p > 0 is to be determined. The leading order equation for V0 in the inner region is

dε−2V0yy + a2V0 − b2τ0/α− c2αV
2
0 = 0.

Matching to (23) we have
a2ε

2

d
= 2;

b2τ0ε
2

αd
=

3

4
;
c2αε

2

d
= 1,

so that

ε =

√

2d

a2
; τ0 =

3

16

a22
b2c2

; α =
a2
2c2

.

Thus, at leading order, we obtain:

v(x) ∼ a2
2c2

V0(x/ε), ε =

√

2d

a2
; V0(y) =

3

2
tanh2(y/2).

Going back to the full problem, note that u(x) ∼ τ0/v(x) also has a form of the spike; however to
determine its height u(0), it is necessary to find the corrections to v(0). Therefore it is necessary to
compute V1. We have

V1yy + 2V1 − 2V0V1 − 4
b2c2
a22

τ1 = 0; τ1yy = 0 (25)

so that τ1 is constant. We write (25) as
L0V1 = δ0 (26)
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where

δ0 ≡ 4
b2c2
a22

τ1 (27)

and
L0Φ ≡ Φyy − Φ + 2Φw

is the operator that arises from the linearization of the ground state (22). To solve (26), note the following
identities:

L0(1) = −1 + 2w; L0

(ywy

2
+ w

)

= w (28)

so that
V1 = −δ0 + 2δ0

(ywy

2
+ w

)

.

Thus, to two orders, we obtain,

V ∼ 3

2

(

tanh2 (y/2)
)

+ δ

(

2− 3 tanh2 (y/2)− 3

2
y tanh(y/2) sech2(y/2)

)

+O
(

δ2
)

. (29)

where

δ ≡ δ0ε
p = 4

b2c2
a22

τ1ε
p. (30)

Note that (29) is valid uniformly throughout the domain y ∈ [0, L/ε]. It remains to determine εpτ1. To
do so, we use the solvability condition (20). We start by evaluating

∫ L

0

a1
v
dx =

2c2a1
a2

∫ L

0

1

V
dx.

We choose a number σ with εδ1/2 � σ � ε and split the integration range as

∫ L

0

1

V
dx ∼

∫ σ

0

1

V
dx+

∫ L

σ

1

V
dx.

To evaluate
∫ σ

0
1

V (x)dx, we make a change of variables x = δ1/2εz. By assumption σ � ε, we have y � 1

so we expand (29) in Taylor series to obtain

V ∼ δ

(

3

8
z2 + 2

)

+O(δ2). (31)

We then obtain

∫ σ

0

1

V
dx ∼ δ1/2ε

∫ σ

εδ1/2

0

dz

δ
(

3
8z

2 + 2
) ∼ εδ−1/2 8

3

(

∫ ∞

0

dz

z2 + 16
3

−
∫ ∞

σ

εδ1/2

z−2

)

∼ π√
3

ε√
δ
− ε2

σ

8

3
. (32)

On the other hand to estimate
∫ L

σ
1
V dx, note that by assumption σ � εδ1/2, we have y � δ1/2 and

tanh2(y/2) � δ, so that V ∼ 3
2 tanh

2 (y/2) . We then estimate

∫ L

σ

1

V
dx ∼ 2

3
ε

∫ L/ε

σ/ε

1

tanh2 (y/2)
dy.

The integral on the right hand side has the following asymptotics:

∫ M

m

dy

tanh2(y/2)
∼M +

4

m
+O(1); in the limit M � 1 and m� 1. (33)
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To show (33), we add and substract (y/2)−2 from the integrand to split off the singularity. Let a be any
number with 1 � a�M. We have,

∫ M

m

dy

tanh2(y/2)
=

∫ M

m

(

1

tanh2(y/2)
− 4

y2

)

dy +

∫ M

m

4

y2
dy

∼
∫ a

m

(

1

tanh2(y/2)
− 4

y2

)

dy +

∫ M

a

dy +
4

m
+O(M−1)

∼ O(a) +M +
4

m
.

Taking the limit a → O(1) we obtain (33). [Alternatively, an exact formula for the indefinite integral
∫

ds/ tanh2 (s) is available, from which (33) can be explicitly derived]. Thus we obtain

∫ L

σ

1

V
dx ∼ 2

3
ε

(

L/ε+
4ε

σ

)

. (34)

Adding (32) and (34) together, note that the terms involving σ in (32) and (34) cancel each other out
so that we obtain the asymptotic result

∫ L

0

1

V
dx ∼ π√

3

ε√
δ
+

2

3
L

which is independent σ (as it should be). In a similar manner, we compute

∫ L

0

b1
τ0
v2
dx =

3

4

b1
b2
c2

∫ L

0

1

V 2
dx

and

∫ L

0

1

V 2
dx ∼ εδ−3/2

∫ ∞

0

dz
(

3
8z

2 + 2
)2 +

4

9
L

∼ 1

12

√
3δ−3/2επ +

4

9
L

where we have used the fact that
∫∞
0

dy
(y2+a)2

= a−3/2π/4. Thus to leading order, we get

Lc1 ∼ c2a1
a2

(

2π√
3

ε√
δ
+

4

3
L

)

− 3

4

b1
b2
c2

(

1

12

√
3δ−3/2επ +

4

9
L

)

.

b1
b2

1

16

√
3δ−3/2επ ∼ 1

3

(

4
a1
a2

− b1
b2

− 3
c1
c2

)

L

δ ∼ 3

4

(

b1
b2

π

2

)2/3(

4
a1
a2

− b1
b2

− 3
c1
c2

)−2/3

(ε/L)2/3

Recalling (30) we then obtain

p =
2

3
(35)

and

τ1 =
3

16

a22
b2c2

(

b1
b2

π

2

)2/3(

4
a1
a2

− b1
b2

− 3
c1
c2

)−2/3

L−2/3. (36)

This completes the construction of the steady state. �
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3 Stability, large eigenvalues

Next we consider the stability. After change of variables τ = uv, the full equations (2) become

vt = dvxx + a2v − b2τ − c2v
2;

(τ/v)t = ρτxx + τ
(a1
v

− b1
τ

v2
− c1

)

.

We linearize around the steady state v(x), τ(x) :

v(x, t) = v(x) + eλtφ(x); τ(x, t) = τ(x) + eλtψ(x)

The linearized equations are

λφ = dφxx + a2φ− b2ψ − c22vφ; (37)

λ

(

1

v
ψ − τ

v2
φ

)

= ρψxx +
(a1
v

− b12
τ

v2
− c1

)

ψ +

(

−a1τ
v2

+ 2b1
τ2

v3

)

φ. (38)

The stability analysis consists of looking at both small and large eigenvalues. In this section, we construct
the reduced eigenvalue problem for the large eigenvalues, which are the eigenvalues with λ → λ0 6= 0 as
ε→ 0. The reduced problem is independent of the small diffusion d, and is then analysed in more detail
in §4. On the other hand, the small eigenvalues arise due to translation invariance of the inner problem
and satisfy λ→ 0 as d→ 0. The stability with respect to small eigenvalues is studied indirectly in §5, by
determining the parameter values for which the asymmetric spike patterns bifurcate off the symmetric
branch, and without actually computing the small eigenvalues themselves.

Two boundary spikes. We first consider a steady state that consists of two boundary spikes on
the domain [0, 2L] (that is, a half-spike on [0, L] reflected in the line x = L, as shown in Figure 1(e)).
Such a configuration admits two distinct eigenfunctions, one is even about x = L and another is odd
about x = L. The former corresponds to the boundary conditions φ′(L) = ψ′(L) = 0 whereas the latter
corresponds to the boundary conditions φ(L) = ψ(L) = 0; both have Neumann boundary conditions at
the origin: φ′(0) = ψ′(0) = 0.

In the outer region ε� x < L away from the spike at x = 0, we drop the term dφxx. We then obtain

φ ∼
(

b2
a2 − 2c2v? − λ

)

ψ; ψxx ∼ 0.

where v? ≡ 3a2

4c2
is the leading-order behaviour of v(x) in the outer limit, obtained by taking x� O(ε) in

(12). We then obtain

φ ∼ −b2
a2/2 + λ

ψ.

In the inner region, we change variables as in §2,

v(x) ∼ a2
2c2

V (y); y =
x

ε
;

φ(x) = Φ(y); ψ(x) = Ψ(y).

We then obtain, to leading order, Ψyy = 0 =⇒ Ψ(y) = Ψ0 is a constant; and

λ
2

a2
Φ = Φyy + (−1 + 2w) Φ− 2b2

a2
Ψ0.

We now determine Ψ0 by matching the inner and outer region.
First, consider the eigenfunction which is odd at L, that is, ψ(L) = 0. The matching condition is that

ψ(x) → Ψ0 as x→ 0. Solving in the outer region for ρ� 0, we have ψxx ∼ 0 so that

ψ ∼ 1

L
(L − x)Ψ0. (39)
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As before, choose a number σ with εδ1/2 � σ � ε and integrate (38) on the interval [0, σ]. Using
ψ′(0) = 0, we then obtain, to leading order,

ρψ′(σ) + 2b1τ
2

∫ σ

0

φ

v3
∼ 0. (40)

while matching with (39) we also get
ψ′(σ) = −Ψ0/L. (41)

Next we estimate the integral as follows:

I =

∫ σ

0

φ

v3
∼
(

2c2
a2

)3

ε

∫ ∞

0

Φ(y)dy

(V (y))3

∼
(

2c2
a2

)3

ε

∫ ∞

0

Φ(y)dy
(

3
8y

2 + 2δ
)3

where δ � 1 is defined in (16). We change the variables y =
√
δz; δ � 1 and obtain

I ∼
(

2c2
a2

)3

Φ(0)δ−5/2ε

∫ ∞

0

dz
(

3
8z

2 + 2
)3

∼ c32
a32
δ−5/2επ

√
3

4
Φ(0).

(above, we estimated Φ(z) ∼ Φ(0), since in the z variable, the leading order equation for Φ becomes
Φzz ∼ 0, so that Φ is constant for the extent of z). Combining (40) (41) and (15) we obtain

Ψ0 = −Lψ′(σ)

∼ L

ρ
2b1τ

2 c
3
2

a32
δ−5/2επ

√
3

4
Φ(0)

∼ L

ρ
b1
c2a2
b22

δ−5/2επ
9
√
3

512
Φ(0)

so that the eigenvalue problem becomes

λ0Φ = Φyy + (−1 + 2w)Φ− χΦ(0) (42)

where

λ0 ≡ λ
2

a2
;

χ ∼ L

ρ
c2
b1
b2
δ−5/2επ

9
√
3

256
.

Simplifying further, we get that χ = χb where

χb =
ε−2/3

4ρ

(

4
a1
a2

− b1
b2

− 3
c1
c2

)5/3

c2

(

b1
b2

π

2

)−2/3

L8/3. (43)

In particular, χb = O(1) when ρ = O(ε−2/3).
For the even eigenvalue ψ′(L) = 0, the analysis is similar to the previous construction; the reduced

problem is still (42) but with

χ = O
(

ε−2/3
)

� 1.
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Stability of K interior spikes. We now modify the computation above to the case of K spikes.
We follow the methods used in [4] and [19]. We first consider the linearized problem (37, 38) with K
spikes on the interval [−L, (2K − 1)L], and with periodic boundary conditions,

φ(−L) = φ((2K − 1)L); φ′(−L) = φ′((2K − 1)L); (44)

ψ(−L) = ψ((2K − 1)L); ψ′(−L) = ψ′((2K − 1)L).

To solve this, first consider the following boundary conditions on [−L,L]:

φ(L) = zφ(−L); φ′(L) = zφ′(−L); (45)

ψ(L) = zψ(−L); ψ′(L) = zψ′(−L) (46)

where z is a parameter to be chosen later; then we extend ψ, φ to the whole interval l [−L, (2K − 1)L]
by imposing continuity at L, 3L... of φ, ψ and their first derivative. It then follows that φ((2K − 1)L) =
zKφ(−L) etc. Therefore (45) are equivalent to (44), whenever zK = 1 or

z = exp(iθ); θ =
2πk

K
, k = 0 . . .K − 1. (47)

The outer problem is as before, ψxx = 0; but the boundary conditions are now given by (46). Similar to
previous computation, we choose a number σ+ > 0 with εδ1/2 � σ+ � ε and another number σ− < 0
with εδ1/2 � −σ− � ε and integrate (38) on the interval [σ−, σ+]. We then obtain, to leading order,

ρ
[

ψ′(σ+)− ψ′ (σ−)]+ 2b1τ
2

∫ σ+

σ−

φ

v3
∼ 0.

where we simplify as before,
∫ σ+

σ−

φ

v3
∼ c32
a32
δ−5/2επ

√
3

2
Φ(0).

Therefore we may write

ψ (x) =

(

−2b1τ
2

ρ

c32
a32
δ−5/2επ

√
3

2
Φ(0)

)

η(x)

where η(x) solves






ηxx = 0
ηx (0

+)− ηx (0
−) = 1, η(0+) = η(0−)

η(L) = zη(−L); z = exp(iθ)
(48)

To satisfy the boundary conditions, we must have

η(x) =

{

Ax+B, x < 0
z (Ax+B − 2AL) , x > 0

;

Imposing the jump conditions we obtain

(z − 1)A = 1, B = z (B − 2AL) .

We compute

B = 2AL
z

z − 1
; A =

z − 1

(z − 1)2
;

so that

η(0) = B =
2Lz

(z − 1)2
.

Note that (z−1)2

z = z + z̄ − 2 = 2 (cos θ − 1) so that

η(0) =
L

(cos θ − 1)
.

11



Therefore we obtain the problem (50), but with χ in (42) given by

χθ =
2

1− cos θ
χb (49)

where χb is given by (43).
Finally we show that the stability of K spike pattern with Neumann boundary conditions can be

derived from the stability of 2K spike pattern with periodic boundary conditions. Suppose that φ is a
Neumann eigenfunction on the interval [0, a]. Extend it by even reflection around to an eigenfunction
on the interval of size [−a, a]. Such an extension then satisfies periodic boundary conditions on [0, 2a].
It follows that the Neumann spectrum of K spikes is a subset of a periodic spectrum of 2K spikes. On
the other hand, if φ is a periodic eigenfunction on [−a, a], then define φ̂(x) = φ(x) + φ(−x). Then φ̂

is a Neumann eigenfunction on [0, a], provided that φ̂ is not identically zero. Since φ̂′(0) = 0, this is

equivalent to φ̂ (0) 6= 0, or φ (0) 6= 0. A direct verification shows that this corresponds to choosing θ in
(49) to be one of

θ =
πk

K
, k = 0 . . .K − 1.

Moreover (49) attains its minimum when k = K − 1; this is the first unstable mode as ρ is increased.
The stability of large eigenvalues now reduces to the study of the reduced problem (42), which is the

topic of the next section. It is found that (42) is stable for χ > χc = 0.669 and is unstable otherwise.
This completes the analysis of the large eigenvalues and the derivation of the thresholds (6), (7).

4 Reduced eigenvalue problem

We now turn to the analysis of the reduced problem for the large eigenvalues:

{

λΦ = Φyy + (−1 + 2w)Φ− χΦ(0)
Φ is even and is bounded as |y| → ∞ (50)

This is a novel problem which we will call point-weight eigenvalue problem (PWEP). See discussion in §8
for related, non-local eigenvalue problems (NLEP) that occur in many other reaction-diffusion systems.
We show the following two results.

Proposition 4.1 The point spectrum to (50) can be written implicitly in terms of hypergeometric func-
tion as the solution to the following transcendental equation for λ:

λ = −1− χ+ 2χΦ0(0) (51)

where

Φ0(0) =
6πλ (λ+ 1)

sin (πα) (4λ− 5) (4λ+ 3)
− 3

2λ

{

3F2

(

1, 3,−1/2
2 + α, 2− α

; 1

)}

(52)

and
α =

√
1 + λ (53)

Using Proposition 4.1, we can numerically compute the bifurcation diagram. We used Maple to
evaluate (52) numerically. Figure 6 shows the resulting bifurcation diagram. When χ = 0, (50) admits
two eigenvalues, λ = 5/4 and λ = −3/4 (see for example [10]). Also when χ = 1

2 , the negative eigenvalue
crosses through zero. Shortly thereafter the eigenvalues become complex-valued, and eventually stability
is achieved through a Hopf bifurcation at χ = χc = 0.669; see Figure 6(b). Let us summarize these
observations as follows.

Principal Result 4.2 Suppose that χ < 1
2 . Then the problem (50) admits a strictly positive eigenvalue.

On the other hand, there exists a number χc such that all eigenvalues λ of (50) have negative real parts
whenever χ > χc. Numerically, we find that χc = 0.669.
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The derivation of instability for χ < 1
2 is done rigorously below. To show stability, we make use of a

winding number argument similar to [21]. However the final part of our argument relies on a numerical
computation as will be shown below. Unlike the related NLEP problems (99), A fully rigorous proof of
the stability of NWEP problem (50) is still an open question, see §8.

Proof of Proposition 4.1. We decompose Φ(y) = Φ? + Φ0(y) such that Φ? is a constant and
Φ0 → 0 as |y| → ∞. Substituting into (50), we find that λΦ? = −Φ? − χ (Φ0(0) + Φ?) and Φ0 satisfies
λ0Φ0 = Φ0yy −Φ0 +2wΦ0 +2wΦ?. We then obtain Φ? = −χΦ0(0)/(χ+λ+1), so that the problem (50)
becomes

λ0Φ0 = Φ0yy − Φ0 + 2wΦ0 −
2χ

χ+ λ+ 1
Φ0(0)w (54)

We also scale Φ (y) so that 2χ
χ+λ+1Φ0(0) = 1; the problem (54) then becomes







Φ0yy − α2Φ0 + 2wΦ0 = w
λ = −1− χ (1− 2Φ0 (0))

α =
√
1 + λ

(55)

where we take the branch of the root so that Re(α) ≥ 0. Next, we will use hypergeometric functions to
study (55).

We make a change of variables
Φ0 = wαG

to get

Gyy + 2α
w′

w
G′ + wG

{

2− 2

3
α2 − 1

3
α

}

= w1−α.

Next we make a change of dependent variables; let

z =
2

3
w(y)

Note that z(y) is one-to-one with z → 0 as y → ∞ and z → 1 as y → 0. Using the identity

w′2 = w2 − 2

3
w3

we then obtain
z(1− z)Gzz + (c− (a+ b+ 1) z)Gz − abG =

(

3
2

)1−α
z−α;

with c := 1 + 2α; a := 2 + α; b := α− 3
2 .

(56)

This is hypergeometric ODE with an inhomogeneity. To study (56), we proceed as in [24]; see also [19].
To determine a particular solution, we seek the series solution of the form

Gp = zs
∞
∑

0

ckz
k.

We then determine that
s = 1− α;

c0 = (3/2)
1−α 1

1− α2
;

ck =
(k + 2)

(

k − 3
2

)

(k + 1 + α) (k + 1− α)
ck−1, k ≥ 1.

Therefore Gp can be written as

Gp = (3/2)
1−α 1

1− α2
z1−α

3F2

(

1, 3,−1/2
2 + α, 2− α

; z

)

13



Recalling that a homogeneous solution to (56) is given

Gh = A12F1

(

a, b
c

; z

)

+A2z
1−c

2F1

(

b− c− 1, a− c+ 1
2− c

; z

)

we then obtain that

Φ0(y) = B1z
α
2F1

(

2 + α, α− 3/2
1 + 2α

; z

)

+B2z
−α

2F1

(

−α− 3/2, 1− α
1− 2α

; z

)

+
3

2

1

1− α2
z3F2

(

1, 3,−1/2
2 + α, 2− α

; z

)

where the constants B1 and B2 are to be determined. First note that B2 = 0, since Φ0(∞) is finite. Next
we outline the determination of B1, which will be chosen to satisfy Φ′

0(0) = 0. Note that

dφ

dy
=
dφ

dz
z (1− z)

1/2

and let

f(z) = 3F2

(

1, 3,−1/2
2 + α, 2− α

; z

)

Written explicitly, we have
f(z) = c0 + c1z + c2z

2 . . .

where

c0 = 1; ck =
(k + 2) (k − 3/2)

(k + 1− α) (k + 1 + α)
ck−1, k ≥ 1.

Expanding for large k, we note that

(k + 2) (k − 3/2)

(k + 1− α) (k + 1 + α)
∼ 1− 3

2

1

k
as k → ∞

so that

ck ∼
k
∏

j=1

(

1− 3

2

1

j

)

∼ exp

{

k
∑

ln

(

1− 3

2

1

j

)

}

∼ exp

{

−3

2

k
∑ 1

j

}

∼ ĉ

k3/2
as k → ∞

where

ĉ = lim
K→∞

K3/2
K
∏

k=1

(k + 2) (k − 3/2)

(k + 1− α) (k + 1 + α)
.

In particular, for z → 1, the sum for f(z) behaves like

f(z) ∼ ĉ

∞
∑ zn

n3/2
+ C0 +O(1− z) as z → 1,

where C0 is some constant independent of z. Note that

f ′ (z) ∼ ĉ

∞
∑ zn−1

n1/2
as z → 1

so that f ′(z) → ∞ as z → 1. However, the limit limz→1 f
′(z) (1− z)

1/2
turns out to be finite, as we now

compute. Consider

u(h) =

∞
∑ (1− h)n−1

n1/2
h1/2.
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In the limit h→ 0, we estimate

u(h) ∼
∞
∑ exp(−nh)

n1/2
h1/2 ∼

∫ ∞

0

exp (−ht)√
t

√
hdt ∼

∫ ∞

0

2 exp
(

−s2
)

ds ∼
√
π as h→ 0

Thus
lim
z→1

f ′(z) (1− z)
1/2

= ĉ
√
π.

Similarly, we let

g(z) = 2F1

(

2 + α, α− 3/2
1 + 2α

; z

)

and as with f(z), we find that

lim
z→1

g′(z) (1− z)
1/2

= d̂
√
π

where

d̂ = lim
K→∞

K3/2
K
∏

k=1

(k + 1 + α)
(

k + α− 5
2

)

(k + 2α) k
.

Therefore we obtain

Φ′
0(0) = B1d̂

√
π +

3

2

1

1− α2
ĉ
√
π = 0

which yields,

B1 =
−3

2

1

1− α2

∞
∏

k=1

(k + 2)
(

k − 3
2

)

(k + 2α) k

(k + 1 + α) (k + 1 + α)
(

k + α− 5
2

)

(k + 1− α)
.

Next we make use of the following identity:

∞
∏

k=0

(k + a− b)(k + b+ c)

(k + a+ d)(k + c− d)
=

Γ (a+ d) Γ (c− d)

Γ (a− b) Γ (b+ c)
(57)

to simplify B1 further. Using (57) we find that

∞
∏

k=1

(k + 2) (k + 2α)

(k + 1 + α) (k + 1 + α)
=

∞
∏

k=0

(k + 3) (k + 1 + 2α)

(k + 2 + α) (k + 2 + α)
=

Γ (2 + α) Γ (2 + α)

Γ (3) Γ (1 + 2α)
;

∞
∏

k=1

(

k − 3
2

)

k
(

k + α− 5
2

)

(k + 1− α)
=

∞
∏

k=0

(

k − 1
2

)

(k + 1)
(

k + α− 3
2

)

(k + 2− α)
=

Γ
(

α− 3
2

)

Γ (2− α)

Γ
(

− 1
2

)

Γ (1)

so that

B1 =
−3

2

1

1− α2

Γ (2 + α) Γ (2 + α)

Γ (3) Γ (1 + 2α)

Γ
(

α− 3
2

)

Γ (2− α)

Γ
(

− 1
2

)

Γ (1)
.

We then use the standard identities

Γ (1− z) Γ(z) =
π

sin (πz)
; Γ(2z) = Γ(z)Γ(z +

1

2
)22z−1π−1/2; Γ(

1

2
) =

√
π

2F1

(

a, b
c

; 1

)

=
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)

to arrive at the formula (52).�
Derivation of Principal Result 4.2. We define

L0Φ := Φyy + (−1 + 2w) Φ (58)

so that (54) can be written as

(L0 − λ)Φ0 = Φ0(0)
2χ

χ+ 1 + λ
w. (59)
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Now note that L0(w + 1
2ywy) = w and if we take Φ0 = w + 1

2ywy then Φ0(0) =
3
2 so that (59) would be

satisfied with λ = 0 and χ = 1/2. We now show that for χ ∈ [0, 12 ), there is a strictly positive eigenvalue
to (59). Define ρ (λ) to be

ρ (λ) := Φ0(0) where Φ0 = (L0 − λ)−1w (60)

Then (59) is equivalent to solving

ρ (λ) =
1 + λ+ χ

2χ
. (61)

We note that L−1
0 w = w + 1

2ywy so that

ρ(0) =
3

2
. (62)

On the other hand, ρ(λ) has a vertical asymptote at the eigenvalue λ = λ0 = 5/4 of the local operator
L0. To determine the behaviour of ρ(λ) near λ0, we expand λ and φ near λ0 as

λ = λ0 + δ; Φ0 =
a

δ
φ0 + φ1 + . . . ; δ � 1 (63)

where φ0 is the eigenfunction of the local operator L0, satisfying (L0 −λ0)φ0 = 0 and where a is an O(1)
constant to be determined. We then obtain

(L0 − λ0)φ1 = aφ0 + w +O(δ).

Multiplying both sides by φ0 and integrating yields

a = −
∫

wφ0
∫

φ20
< 0

Therefore we obtain

ρ(λ0 + δ) ∼ −
∫

wφ0
∫

φ20
φ0(0)

1

δ
+O(1) as δ → 0. (64)

In particular,
ρ (λ) → +∞ as λ→ λ−0 . (65)

By the intermediate value theorem, it follows from (65), (62) that (61) admits a solution λ > 0 whenever
0 ≤ χ < 1

2 .
To show stability of (50) for large χ, we first claim that Reλ ≤ C for some constant C independent of

χ. Otherwise, there exists a sequence χk, λk with |λk| → ∞ as k → ∞ and with χk, λk being a solution
to (54). But then 2χk

1+λk+χk
→ 0 and (54) becomes λkφ ∼ L0φ. However this problem has bounded

eigenvalues, contradicting λk → ∞.
Since |λ| < C, we may take the limit χ→ ∞; we then obtain

{

λΦ0 = Φ0yy + (−1 + 2w)Φ0 − 2Φ0(0)w
Φ0 is even and decays as |y| → ∞ (66)

This problem is equivalent to solving

ρ(λ)− 1

2
= 0. (67)

To determine the number of roots of (67), we will compute the winding number along an oriented contour
C that consists of the semi-circle C2 = R exp(iθ), θ = [−π/2, π/2] and segment C1 = [iR,−iR] along
the imaginary axis traversed downwards. Taking the limit R → ∞ yields the right half-plane.

Note that the solution to (L0−λ)Φ0 = w has the asymptotics Φ0 ∼ w/λ for |λ| � 0, so that along the
semicircle |λ| = R � 1, we have ρ(λ) ∼ 3

2R exp (−iθ) ; it follows that ∆argC1

[

ρ− 1
2

]

= 0. To compute
∆argC2

ρ consider the functions ρR(t) = Re ρ(it) and ρI(t) = Im ρ(it) with t > 0. Using Proposition 4.1,
we computed their graphs as shown on Figure 3. We make the following observations:

ρR(0)− 1/2 = 1 and ρR(t)− 1/2 → −1/2 as t→ ∞; (68)
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Figure 3: Graphs of ρr(λ) and ρi(λ)

ρI(0) = 0, ρI(t) → 0 as t→ 0 and ρI(t) > 0 for t > 0. (69)

The asymptotics at t = ∞ and 0 are easily proved; on the other hand, the positivity of ρI must
be verified numerically. From (68) and (69) it follows that the change in argument as ρ(t) − 1

2 is
traversed from t = +i∞ to t = 0 is −π; by symmetry, ∆ argC1

ρ = −2π as R → ∞. and ∆argC ρ =
−2π = 2π (N − S) where N is the number of zeros of ρ inside C and S is the number of singularities,
counted with multiplicities. Note that ρ(λ) is singular whenever λ is the eigenvalue of L0 corresponding
to an even eigenfunction; since L0 has one such positive eigenvalue, we conclude that S = 1 and thus
N = 0. This shows the absence of positive eigenvalues of (66), so that (50) is stable for sufficiently large
χ.�

5 Small eigenvalues via asymmetric patterns

We now study the small eigenvalues. Rather than directly computing them, we first construct asymmetric
patterns, and then compute the parameter value at which the asymmetric patterns bifurcate from the
symmetric steady state. For the classical Gierer-Meinhadt system, it was observed in [22] that such
bifurcation corresponds precisely to the instability thresholds for the small eigenvalues; similar structure
was found to exist in for general reaction diffusion systems that admit interface solutions [14]. Based on
numerical evidence it appears that this correspondence also occurs for (2).

To construct an asymmetric pattern, we first consider a half-spike at the origin on the domain [0, L].
It will be confirmed later that the critical scaling is ρ = O(ε−2/3). We therefore expandnin the outer
region as

ρ = ρ0ε
−2/3 (70)

τ = τ0 + ε2/3τ1 + . . . ; v = v0 + . . . (71)

where τ0 is given by (15). In the outer region we get

τ1xx = g

where

g =
1

ρ0

(

−τ0a1
v0

+
τ20 b1
v20

+ τ0c1

)
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We recall (see Proposition 2.1) that in the outer region,

v0 =
3a2
4c2

; τ =
3

16

a22
b2c2

so that

g ∼ 1

ρ0

a22
4b2

(

−a1
a2

+
b1
4b2

+
3

4

c1
c2

)

;

τ1 = τ1(0) +
(x − L)2 − L2

2
g. (72)

On the other hand, matching the inner and outer region, we see that τ1(0) is given by (36). Therefore
we obtain

τ1(L) = L−2/3 3

16

a22
b2c2

(

b1
b2

π

2

)2/3(

4
a1
a2

− b1
b2

− 3
c1
c2

)−2/3

+ L2 1

ρ0

a22
32b2

(

4
a1
a2

− b1
b2

− 3
c1
c2

)

. (73)

Note that the function L→ τ1(L) is convex, with τ1 → ∞ as L→ 0 or L→ ∞; and it attains a minimum
when

ρ0 = L8/3 c2
2

(

b1
b2

π

2

)−2/3 (

4
a1
a2

− b1
b2

− 3
c1
c2

)5/3

. (74)

(see Experiment 2 in §7 and Figure 6(a) for an example and a comparison with full numerics). This
corresponds precisely to the bifurcation point: for values of ρ0 above (74), an asymmetric solution can be
constructed, whereas for ρ0 below (74), only symmetric branch can exist. The value of ρK,small in (5) is
then derived substituting (74) into (70). This completes the derivation of Principal Result 1.1.

6 Construction of a spike in two dimensions

We now mimic the one dimensional spike computations of §2 to derive the asymptotics of the radially
symmetric spike in two dimensions. As in §2, we introduce

τ = uv

to obtain the steady state problem for τ(x), v(x)

0 = d∆v + a2v − b2τ − c2v
2; (75)

0 = ρ∆τ + τ
(a1
v

− b1
τ

v2
− c1

)

. (76)

We seek steady state solutions with Neumann boundary conditions inside a radially symmetric domain
Ω with a spike at the origin and ρ � 1; d � 1.To leading order, τ = τ0 is constant and we have the
integral constraint

|Ω| c1 =

∫

Ω

(a1
v

− b1
τ0
v2

)

. (77)

As in §2, we seek solutions for v(x) in the form of an inverted spike so that v(0) is very close to zero. We
start with the standard spike ground state in two dimensions which satisfies,

∆w − w + w2 = 0; w → 0 as |y| → ∞, maxw = w(0)

and define
m := maxw(y) = w(0).

Making a change of variables
V0(y) := m− w(y)
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we obtain
∆V0 + (2m− 1)V0 − V 2

0 −m (m− 1) = 0. (78)

In the inner region we transform
v (x) = αV (y), x = εy

where the constants α and ε are to be specified later; then (75) becomes

0 = ∆yV +
ε2a2
d

V − ε2b2τ

dα
− ε2c2α

d
V 2. (79)

In the inner region, we expand as

V = V0 + εpV1 + . . . ; τ = τ0 + εpτ1 + . . . , (80)

where the power p > 0 is to be determined; we then choose τ0, ε α so that the leading order of (79)
becomes (78); that is,

ε =

√

(2m− 1)d

a2
; τ0 =

(m− 1)m

(2m− 1)
2

a22
b2c2

; α =
1

2m− 1

a2
c2
.

Proceeding as in one dimension, at the next order we get L0V1 = δ0 with L0Φ ≡ ∆Φ− Φ+ 2Φw and

δ0 ≡ b2c2(2m− 1)2

a22
τ1

so that, using the identities L01 = −1 + 2w and L0

(

y·∇w
2 + w

)

= w, we obtain

V1 = −δ0 + 2δ0

(

y · ∇w
2

+ w

)

(81)

In summary, to two orders we have

V ∼ m− w + δ (2w − 1 + y · ∇w) ; δ ≡ δ0ε
p =

b2c2(2m− 1)2

a22
τ1ε

p.

Next we expand for small y. Note that

w(y) ∼ m− m(m− 1)

2
R2, R = |y| � 1;

so that

V (y) ∼ m(m− 1)

2
R2 + (2m− 1) δ, R = |y| � 1.

and in the outer region we have
V ∼ m, |y| � 1.

Next we estimate
∫

Ω
1
V 2 . Write

∫

Ω

1

V 2
∼
∫

Bγ

1

V 2
+

∫

Ω\Bγ

1

V 2

where Bγ is a disk of small radius γ to be specified later. We compute
∫

Ω\Bγ

1

V 2
∼ 2πε2

∫
γ
ε

0

RdR

(V (R))
2

∼ 2π
ε2

δ

∫
γ

ε
√

δ

0

sds
(

m(m−1)
4 s2 + (2m− 1)

)2

∼ 2π
ε2

δ

16

(m2 −m)
2

∫ ∞

0

sds
(

s2 + (2m−1)4
m2−m

)2

∼ ε2

δ

4π

(m2 −m) (2m− 1)
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To balance other terms in (77), we will need to choose δ = O(ε2) so that p = 2. On the other hand, for the
computation above to be valid, we also assumed that and γ

ε
√
δ
� 1 and γ/ε� 1. These assumptions can

be satisfied by choosing ε2 � γ � ε, so that the approximation is self-consistent. We therefore obtain

∫

Ω

1

V 2
∼ ε2

δ

4π

(m2 −m) (2m− 1)
+

|Ω|
m2

. (82)

A similar computation yields
∫

Ω

1

V
∼ |Ω|

m
+ o(1). (83)

Substituting (82), (83) into (77) we get

|Ω| c1 ∼ a1c2
a2

(2m− 1) |Ω|
m

− b1c2
b2

(

ε2

δ

4π

(2m− 1)
+

|Ω| (m− 1)

m

)

;

δ ∼ ε2

|Ω|
4πb1m

b2 (2m− 1)

1
(

a1

a2
(2m− 1)− (m− 1) b1

b2
−m c1

c2

) .

In summary, we obtain

Proposition 6.1 Consider the steady state equations

0 = d∆v + a2v − b2uv − c2v
2; 0 = ρ∆(vu) + a1u− b1u

2 − c1uv (84)

on a disk Ω ∈ R
2 centered at the origin with Neumann boundary conditions. Let w be the unique ground

state solution of (22) and define
m = maxw ≈ 2.39195.

Suppose that
a1
a2

(2m− 1)− (m− 1)
b1
b2

−m
c1
c2
> 0 (85)

and consider the asymptotic limit
d� 1; ρ� 1. (86)

The system (84) admits a solution such that v(x) has the form of an inverted spike at x = 0, with its
minimum close to zero. More precisely, we have

v(x) ∼ 1

2m− 1

a2
c2

(m− w(R) + δ (2w(R)− 1 +Rw′(R))) ; R = |x| /ε

u ∼ τ0
v(x)

where

ε :=

√

(2m− 1)d

a2
; τ0 :=

(m− 1)m

(2m− 1)
2

a22
b2c2

; (87)

δ ∼ ε2

|Ω|
4πb1m

b2 (2m− 1)

1
(

a1

a2
(2m− 1)− (m− 1) b1

b2
−m c1

c2

) . (88)

In particular,

v(0) ∼ a2
c2
δ; u(0) ∼ (m− 1)m

(2m− 1)
2

a2
b2

1

δ
. (89)
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7 Numerics

We turn to numerics to validate our asymptotic results. We have used the software FlexPDE [5] to
perform the simulations of the full system (2). In one dimension, due to the peculiarity of the critical
scaling ρ = O(d−1/3), the error in asymptotic results can be seen to be of O(d1/3). This means that
generally an extremely small value of d is required to obtain a decent comparison with the asymptotic
results.

Experiment 1: steady state. We first consider a steady state consisting of a half-spike at the origin
on [0, L], as constructed in Proposition 2.1. In particular, we explore the expected error as a function of
d. We recall from Proposition 2.1 the asymptotic formulae

v(0) ∼ (ε/L)2/3
3

4

a2
c2

(

b1
b2

π

2

)2/3 (

4
a1
a2

− b1
b2

− 3
c1
c2

)−2/3

(90)

u(0) ∼ (ε/L)−2/3 1

4

a2
b2

(

b1
b2

π

2

)−2/3(

4
a1
a2

− b1
b2

− 3
c1
c2

)2/3

. (91)

We take
L = 1, ρ = 200, (a1, b1, c1) = (5, 1, 1), (a2, b2, c2) = (5, 1, 5) (92)

and we vary d. We then read off the numerically computed u(0) and compare it the asymptotic result
(91) The following table summarizes our results.

d ε =
√

2d/a2 u(0) from numerics u(0) from asymptotics (91) %error=(col2-col3)/col3

10−1 0.2 8.8078 4.8486 81.65%
10−2 0.0632 14.6938 10.446 40.66%
10−3 0.02 27.0225 22.505 20.07%
10−4 0.0632 53.2865 48.486 9.90%
10−5 0.002 109.634 104.46 4.95%

Note that decreasing d by a factor of 103 decreases the relative error by a factor of about 10. This
demonstrates that as expected, the error behaves like O(d1/3). Also note that even with d = 10−3, the
error is about 20%. Therefore a very small value of d is required to obtain good agreement with numerics.

Experiment 2: asymmetric states. We fix

d = 10−3, ρ = 200, (a1, b1, c1) = (5, 1, 1), (a2, b2, c2) = (5, 1, 5) (93)

and numerically compute τ(L) = v(L)u(L) for several values of L. From τ(L), we then numerically
compute τ1(L) = [τ(L)− τ0] ε

−2/3, where τ0 is given by (15). We then compare this computation with
the asymptotic result for τ1(L) as given by (73). The results are summarized in the following table.

L τ1(L) from numerics τ1(L) from asymptotics (73)

0.80 0.75054 0.9015
0.85 0.73832 0.87952
0.90 0.72882 0.8612
0.95 0.72176 0.84613
1.00 0.71661 0.83395
1.05 0.71321 0.82438
1.10 0.71172 0.81716
1.15 0.71186 0.81211
1.20 0.7134 0.80905
1.25 0.71693 0.80784
1.30 0.72149 0.80834
1.35 0.72752 0.81046
1.40 0.73479 0.8141
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The graph of τ1(L) is given in Figure 6(a). The instability threshold for the small eigenvalue corre-
sponds to the minimizer of the function L → τ(L), shown in bold in the table above. Asymptotically,
solving (5) with ρK,small = ρ for L = LK,small we obtain

LK,small = 1.2598. [asymptotics]

On the other hand, from the table above, the minimum occurs at around

LK,small = 1.1. [numerics]

The relative error is about 15% and is of the same magnitude as the relative error in the steady state
itself [see Experiment 1].

Experiment 3. We take parameter values as in (93) and vary K and L. First, consider the case of
K interior spikes with K = 2, 3. Taking L = 1.5, we obtain from Principal Result 1.1 that ρ2,small =
ρ3,small = 318.5 > ρ and ρ2,large = 476.1 > ρ, ρ3,large = 317.4 > ρ. Therefore a pattern consisting of
either two or three interior spikes is expected to be stable. This is indeed confirmed by direct numerical
simulations. The case K = 2 is shown in Figure 2(a); the figure is similar for K = 3 (not shown).

Next, we take L = 1.We then compute ρ2,small = ρ3,small = 108.0 < ρ, ρ2,large = 161 < ρ, ρ3,large =
108 < ρ. Therefore either two or three interior spikes are unstable with respect to small and large
eigenvalues. On the other hand, numerically, we observe that two interior spikes are stable with respect
to large eigenvalues whereas three interior spikes are unstable with respect to both small and large
eigenvalues (Figure 2(b) and (d)): two spikes slowly drift away from their symmetric equilibria until one
of them disappears but only after a long time t ∼ 12000; whereas three spikes are destabilized in O(1)
time and one of them disappears at t ∼ 20.

The fact that two spikes are observed to be numerically stable with respect to large eigenvalues even
though ρ2,large < ρ is not surprising since ρ = 200 and ρ2,large = 161 is within 20% of ρ. This is within
expected error range (see Experiment 2). As an additional test and to verify that this discrepancy is
due to d being insufficiently small, we next decreased d by 10 so that d = 10−4, while at the same time
increasing ρ by 101/3 so that ρ = 200 × 101/3 = 430.88. Keeping all other parameters as before, this
preserves the critical scaling ρ = O(d−1/3) and the predicted behaviour for two spikes is the same as
before: unstable with respect to both large and small eigenvalues. And indeed, with the decreased d, fast-
scale instability was observed with one of the spikes disappearing at t ≈ 20. Moreover, O(1) oscillations
were observed before spike death; this confirms the fact that the instability of the large eigenvalue is due
to a Hopf bifurcation.

Finally, consider the case of double boundary spike with L = 1. Then ρb = 80.7 < ρ so that
such configuration is unstable with respect to large eigenvalues. This is indeed observed numerically as
illustrated in Figure 2(c). On the other hand, if L = 1.5 then ρb = 238 > ρ and the double-boundary
configuration is predicted to be stable; we have verified numerically that this is indeed the case.

Experiment 4: ρ = O(1). We explore numerically what happens when ρ is decreased. When
ρ = O(1), the outer region for τ is no longer nearly constant. Numerically, we observe spike insertion
when ρ is sufficiently small: a spike appears when the distance between two spikes becomes too big – see
Figure 4. With ρ = 7 and d = 5× 10−4, peak insertion is observed. Similar complicated dynamics were
observed when d was decreased to d = 10−5 while keeping other parameters constant. Finally, we took
ρ = 20 and varied d from 10−2 to 10−5. No peak insertion was observed. This confirms that as expected,
spike insertion is independent of d, i.e. it occurs when ρ = O(1). A similar phenomenon was observed
in the model of volume-filling chemotaxis [6]. A related phenomenon of self-replication is well known for
other reaction-diffusion systems, see for example [9], [18]. It is possibly due to the disappearence of the
solution in the outer region. A full explanation of this phenomenon is left for future work.

Experiment 5: 2d steady state. We take the domain Ω to be the unit disk and compute the
radially symmetric two dimensional spike centered at the origin; we then read off u(0) and compare with
the analytical result of Proposition 6.1 We take

ρ = 50, (a1, b1, c1) = (5, 1, 1), (a2, b2, c2) = (5, 1, 5) (94)

and vary d as follows:
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Figure 4: Sensitivity to initial conditions. The left and right figure differ only in the initial conditions.
On the left, symmetric initial conditions result in an intricate a time-periodic solution. On the right, the
initial condition is the same as on the left, except for a shift of 0.1 units to the right. dynamics eventually
settle to a 5-spike stable pattern. Parameter values for both figures are ρ = 7, d2 = 0.0005, (a1, b1, c1) =
(5, 1, 1); (a2, b2, c2) = (1, 1, 2).

d ε from (87) δ from (88) u(0) from numerics u(0) using (89) %er=(col4-col5)/col5

0.08 0.246 0.08 21.34 25.398 46.5%
0.04 0.173 0.04 37.00 29.067 27%
0.02 0.123 0.02 67.64 58.134 16.4%
0.01 0.0869 0.01 128.1 116.269 10.2%
0.005 0.0615 0.005 248.8 232.539 7%

From the table, we note that decreasing d by a factor of 2 decreases the relative error by a factor
of 22/3. Hence the expected relative error is of O(d2/3). Such error behaviour is much better than the
O(d1/3) error that was observed in one dimension.

Experiment 6: dynamics in 2d. We take the parameter values as in (94) except for ρ which we
vary. A wide range of possible dynamical behaviour is observed for different ranges of ρ, see Figure 5.

8 Discussion

The instability thresholds of Principal Result 1.1 are qualitatively similar to other reaction-diffusion
models without cross-diffusion. One of the most well studied is the Gierer-Meinhardt system, whose
stability was studied in great detail in [4] and [19]. To be concrete, consider the “standard” GM system,

at = ε2axx − a+ a2/h; 0 = Dhxx − h+ a2. (95)

The steady state for GM system considered in [4] consists of K spikes, concentrated at K symmetrically
spaced points. The authors derived a sequence of thresholds

D?
1 = ε2 exp(2/ε)/125 (96)

D?
K =

1
[

K ln
(√

2 + 1
)]2 , K ≥ 2 (97)
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Figure 5: Various dynamics observed in two dimensional disk. Parameter values are as given by (94)
except for ρ as specified below. Row 1: ρ = 2. Spot splits into three spots. Row 2: ρ = 4. Initially, spot
splits into two, final steady state consists of two boundary and one center spot. Row 3: ρ = 6. Row 4:
ρ = 500. The interior spike is unstable and slowly drifts to the boundary. Once it reaches the boundary,
it starts to oscillate indefinitely.

such that K spikes on the interval [−1, 1] are stable if D < D?
K and unstable if D > D?

K . Moreover,
it was found that the instability is always triggered by small eigenvalues. By comparison, the stability
thresholds for K spikes of (2) on the interval of length 2 (Principal Result 1.1 with L = 1

K ) become

ρK,small := ε−2/3K−8/3C0; ρK,large := ρK,small
1.494

1− cos [π (1− 1/K)]
(98)

where C0 := c2
2

(

b1
b2

π
2

)−2/3 (

4a1

a2
− b1

b2
− 3 c1

c2

)5/3

and pattern is stable if and only if ρ < min (ρK,large, ρK,small) .

The key qualitative difference is that the instability is triggered by small eigenvalues only if K = 2; for
K ≥ 3, the large eigenvalues become unstable first. Analytically, the study of large eigenvalues for (95)
reduces to the following nonlocal eigenvalue problem:

λΦ = Φyy + (−1 + 2w)Φ− χw2

∫

wφ
∫

w2
; χ :=

4 sinh2
(

L√
D

)

2 sinh2
(

L√
D

)

+ 1− cos [π(1− 1/K)]
(99)

Its stability has been rigorously and fully characterized in any dimension in [23]; in particular it was
shown that the large eigenvalues are stable iff χ > 1. On the other hand, the reduced problem (50)
is not as well understood: in part, numerical computations were necessary to compute the instability
thresholds, and it remains an open problem to justify this fully without relying on numerics. Moreover,
unlike for GM model, the instability of large eigenvalues for (2) is due to a Hopf bifurcation (see §4).

As mentioned in the introduction, in §5 we computed the instability thresholds ρK,small for small
eigenvalues indirectly, by calculating the bifurcation point at which asymmetric spike-patterns bifurcate
off the solution branch corresponding to spikes of equal height. These thresholds were then verified
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Figure 6: (a) The graph of the function L → τ1(L) (see §5). Full numerics are shown by circles; dashed
line shows the asymptotics. See Experiment 2 of §7 for details and parameter values. (b) Bifurcation
diagram for the problem (50). A hopf bifurcation occurs at χ = χc = 0.669. For χ < χc, the problem is
unstable. It becomes stable for χ > χc.

numerically; the small eigenvalues themselves were never actually computed. This remains an open
problem, although we expect that techniques similar to those used in [4], [19] may work to derive the
small eigenvalues and the corresponding instability thresholds in a more systematic manner.

When constructing a spike in two dimensions, we assumed the radial symmetry of the domain. Ac-
tually, our main result in two dimensions (Proposition 6.1) still holds even for non-radial domains; the
problem then is to determine the location of the spike. For this, a higher order solvability is needed and it
is left for future work. The various stability thresholds for two dimensional problem is also left for future
work. Finally, the spike insertion observed in Experiment 4 of §7 is another interesting and unexplored
phenomenon.
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