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Abstract

We consider the boundary value problem

∆u = 0 in Ω,
∂u

∂ν
= 2λ sinhu on ∂Ω

where Ω is a smooth and bounded domain in R2 and λ > 0. We prove that

for any integer k ≥ 1 there exist at least two solutions uλ with the property

that the boundary flux satisfies up to subsequences λ→ 0,

2λ sinh(uλ) ⇀ 2π
2k∑

j=1

(−1)j−1 δξj
,

where the ξj are points of ∂Ω ordered clockwise in j.

Key words. Singularly perturbed elliptic problem, exponential Neumann

boundary condition, concentrating solutions
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1. Introduction

Let Ω be a bounded domain in R2 with smooth boundary ∂Ω. A very

common boundary condition arising in corrosion modelling in a planar sam-

ple represented by Ω is associated to the names of Butler and Volmer. In

its simplest form it asserts an exponential relationship between boundary

voltages and boundary normal currents which takes the form

∂u

∂ν
= λ(e2βu − e−2(1−β)u) + g on ∂Ω

where the constant 0 < β < 1 depends on the constituents of the electro-

chemical system but not on their concentrations. Here λ is a constant highly

dependent on their concentrations and g an externally imposed current. As-

suming the presence of no sources or sinks inΩ, the balanced situation β = 1
2

and g = 0, the boundary value problem satisfied by the voltage potential

becomes in ideal situation

∆u = 0 in Ω,
∂u

∂ν
= 2λ sinhu on ∂Ω. (1.1)

We refer the reader to [13] and [5] for the derivation of this and related

corrosion models and references to the applied literature.

We assume throughout this paper that λ > 0. We are interested in so-

lutions to this problem when λ assumes very small values. A surprising

example of explicit solution when Ω = D, the unit disk in R2, was exhib-

ited by Bryan and Vogelius in [3]. Consider 2k points on ∂D, ξ1, . . . , ξ2k
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corresponding to vertices of a regular polygon, ordered clockwise, and set

uλ(x) =
2k∑

j=1

(−1)j−1 log
1

|x− αkξj |2
(1.2)

where αk = [(k + 2λ)/(k − 2λ)]
1
2k . We observe the meaningful singular

concentration behavior the nonlinear boundary condition exhibits as λ→ 0.

Indeed we have that

2λ sinhuλ ⇀ 2π
2k∑

j=1

(−1)j−1 δξj

in the sense of measures in ∂D, where δξj
denote Dirac masses at points ξj .

In [10] possible behaviors of solutions uλ with boundary condition 2λ sinh(uλ)

of uniformly bounded mass is established: the limit of the boundary flux

along subsequences is a sum of Dirac masses located at a finite set of points

with weights greater than or equal to 4π potentially accompanied by a reg-

ular part which is one-signed. Solutions to the problem with this property

were found by Kavian and Vogelius in [8] via Ljusternik-Schnirelmann the-

ory, however their asymptotic behavior is only partly understood by virtue

of the above result. It remains an open question if solutions of the form

(1.2) exist in general two-dimensional domains.

The purpose of this paper is to show that in any domain Ω there are at

least two distinct families of solutions which exhibit exactly the qualitative

behavior of the explicit solution (1.2), namely with limiting boundary flux

given by an array of 2k Dirac masses with weight 2π and alternate signs.

The location of the 2k concentration points can be accurately characterized

as special critical points of a functional ϕk defined explicitly in terms of
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G(x, y), the Green’s function for the Neumann problem
∆xG(x, y) = 0 in Ω

∂G
∂νx

(x, y) = 2πδy(x)− 2π
|∂Ω| on ∂Ω∫

∂Ω
G(x, y)dx = 0.

(1.3)

We denote by H(x, y) its regular part:

H(x, y) = G(x, y)− log
1

|x− y|2
. (1.4)

For m ≥ 1 and points ξ1, . . . , ξm on ∂Ω ordered clockwise we define

ϕm(ξ1, . . . , ξm) =
m∑

l=1

H(ξl, ξl) +
∑
j 6=l

(−1)l+jG(ξj , ξl). (1.5)

Our main result states as follows.

Theorem 1. Let k ≥ 1 be a positive integer. There is a number λk > 0

such that for any 0 < λ < λk there are two solutions uλ1 6= −uλ2 with

λ

∫
∂Ω

| sinhuλl| → 8kπ as λ→ 0.

More precisely, given any sequence λ = λn → 0, there is a subsequence, two

arrays of 2k points of ∂Ω (ξl1, ξl2, . . . , ξl 2k) ordered clockwise and distinct

modulo cyclic permurations, positive constants µj = µlj, for j = 1, . . . , 2k,

and two solutions uλl of (1.1), l = 1, 2 such that, omitting the subindex l,

uλ(x) =
2k∑

j=1

(−1)j−1 log
2µj

|x− (ξj + λµjνj)|2
+ O(1)

where νj denotes unit outer normal to ∂Ω at ξj and

2λ sinhuλ ⇀ 2π
2k∑

j=1

(−1)j−1 δξj
.
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Moreover, the 2k-tuples (ξl1, . . . , ξl 2k) are critical points of ϕ2k, and the

constants µj are explicitly given by

log 2µj = H(ξj , ξj) +
∑
l 6=j

(−1)l+jG(ξj , ξl).

It is easily checked that the solutions (1.2) correspond exactly to this

description in the case Ω = D. Medville and Vogelius [10] have established

that if the limit boundary flux has no regular part, then the concentration

points (ξl1, . . . , ξl 2k) necessarily constitute a critical point of ϕ2k, and that

the weights of the delta functions are equal to 2π. They provide numerical

evidence that solutions with a boundary flux having a non-trivial regular

part exist but this remains an open question. Let us mention that in [11]

Medville and Vogelius considered the nonlinear boundary condition

∂u

∂ν
= Du+ 2λ sinhu on ∂Ω,

where D > 0. They analyze the difference in blow-up as λ approaches

0 from the right (pointwise blow-up) and from the left (blow-up ”almost

everywhere”).

It is interesting to mention the analogy existing between this result and

the problem −∆u = λeu under Dirichlet boundary conditions, whose solu-

tions with λ
∫

Ω
eu uniformly bounded have become well understood after

the works [12,2,9]. It follows from those results that concentration occurs

in the form λeu ⇀ 8π
∑
δξj . In [1,6,7] solutions with these properties have

been built. In [4] the problem

∆u− u = 0,
∂u

∂ν
= λeu (1.6)
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was analyzed and given any k ≥ 1, a solution peaking in such a way that

λeu ⇀ 2π
∑k

j=1 δξj was built up, using as basic cells (after suitable zooming-

up) explicit solutions of 
∆v = 0 in R2

+

∂v

∂ν
= ev on ∂R2

+,

(1.7)

where R2
+ denotes the upper half plane {(x1, x2) : x2 > 0} and ν the unit

exterior normal to ∂R2
+, given by

wt, µ(x1, x2) = log
2µ

(x1 − t)2 + (x2 + µ)2
(1.8)

where t ∈ R and µ > 0 are parameters. The solutions predicted in Theorem

1 are also constructed using these ones suitably scaled and projected to

make it up to a good order for the boundary condition. Solutions are found

as a small additive perturbation of these initial approximations. A lineariza-

tion procedure leads to a finite dimensional reduction, where the reduced

problem corresponds to that of adjusting variationally the location of the

concentration points. An important element in the reduction procedure is

the non-degeneracy of these solutions up to variations of the parameters t

and µ in (1.8). Problem (1.1) has a basic difficulty in comparison with (1.6),

linked to the fact that the limiting equation formally satisfied by the seeked

solution uλ is

∆u = 0,
∂u

∂ν
= 2π

2k∑
j=1

(−1)j−1δξj

whose solution is not unique but invariant under the addition of constants.

This is not such an innocent matter since this hidden limiting invariance is
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not present in the equation itself, and unlike the other “obvious” elements of

the limiting kernel (see (2.1), (2.2) below), it is not localized near the points

of concentration. To be mentioned is that the simple use of an additive

constant as an extra parameter in the solution does not suffice, basically

because the constant itself is not a good approximation of an element of

the kernel before reaching the limit. We are able to overcome this difficulty

by identifying an extra element of the approximate kernel (see (3.5) below),

which introduces another parameter to be adjusted in the problem. We will

devote the rest of this paper to the proof of Theorem 1.

2. Preliminaries

Let us define

z0 = 1− 2µ
x2 + µ

x2
1 + (x2 + µ)2

, (2.1)

and

z1 = −2
x1

x2
1 + (x2 + µ)2

, (2.2)

which correspond to derivatives of the basic solutions wt,µ with respect to its

parameters respectively of translation and dilation. These objects obviously

lie in the kernel of the linearization of problem (1.7) at the solution w0,µ,

namely they solve the problem
∆φ = 0 in R2

+

∂φ

∂ν
− 2µ
x2

1 + µ2
φ = 0 on ∂R2

+.
(2.3)

Reciprocally, we have the following.
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Lemma 1. Any bounded solution of (2.3) is a linear combination of z0 and

z1.

Proof. This result was established in [4]. For the sake of self-containedness,

we shall present a proof here. Let φ be a solution to (2.3) and set

w(y) = φ

(
y

|y|2
− (0, µ)

)
.

The function w is just the Kelvin transform of φ about the point (0,−µ).

The domain of w is the disk D = B((0, 1
2µ ), 1

2µ ) and w is a bounded function

that satisfies ∆w = 0 in D,

∂w

∂ν′
= 2µw on ∂D \ {0}, (2.4)

where ν′ is the exterior unit normal to D. To see this observe that the map

y 7→ K(y) = y
|y|2 − (0, µ) is anti-conformal (preserves angles and reverses

orientation) and maps the normal vector to D to a normal vector to ∂R2
+.

More precisely, if ν′ is the exterior unit normal vector to D then

∂w

∂ν′
=

1
|y|2

∂φ

∂ν
.

Thus on ∂D

∂w

∂ν′
=

1
|y|2

ew0,µ(K(y))w

and a calculation shows that

1
|y|2

ew0,µ(K(y)) =
1
|y|2

2µ
y2
1

|y|4 + µ2
= 2µ.

Since w is bounded, by elliptic regularity (2.4) holds in all ∂D.
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By translating in the y2 direction we can assume that D is the disk

centered at the origin with radius 1
2µ . We think of w as the real part of an

analytic function w and write

w(y) =
∞∑

k=0

akr
keikθ

with y = reiθ. Condition (2.4) is equivalent to

Re

( ∞∑
k=0

ak(k − 1)eikθ

)
= 0 ∀θ

and hence a0 = 0, ak = 0 for all k > 1. Looking at the real part of w,

and recalling that we shifted in the y2 direction we see that it is a linear

combination of y1 = x1
x2
1+(x2+µ)2

and y2 − 1
2µ = x2+µ

x2
1+(x2+µ)2

− 1
2µ . ut

In what remains of this paper we fix k ≥ 1 and denote m = 2k We will

provide a first approximation for the solutions of problem (1.1) predicted

in Theorem 1. For j = 1, . . . ,m, let ξj be clockwise ordered points on the

boundary of Ω and µj positive numbers. Define, for x ∈ Ω,

uλ
j (x) = log

2µj

|x− ξj − λµjνj |2
(2.5)

and Hλ
j (x) to be the unique solution of

∆Hλ
j = 0 in Ω, (2.6)

∂Hλ
j

∂ν
= −

∂uλ
j

∂ν
+ λeuλ

j − λ
1

|∂Ω|

∫
∂Ω

euλ
j on ∂Ω (2.7)

with the property that

∫
∂Ω

Hλ
j (x) dx = −

∫
∂Ω

uλ
j (x) dx. (2.8)
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We look for a solution to (1.1) of the form

u(x) = U(x) + Φ(x) (2.9)

where

U(x) =
m∑

j=1

(−1)j−1(uλ
j (x) +Hλ

j (x)) (2.10)

while Φ is a lower order term with respect to U .

The function Hλ
j above resembles the shape of the regular part of the

Green’s function. Indeed, the following estimate for Hλ
j holds true.

Lemma 2. For any 0 < α < 1,

Hλ
j (x) = H(x, ξj)− log 2µj +O(λα) (2.11)

uniformly in Ω̄.

Proof.

The normal derivative of Hλ
j on the boundary of Ω can be computed

explicitly, namely

∂Hλ
j

∂ν
(x) = 2λµj

1− ν(ξj) · ν(x)
|x− ξj − λµjν(ξj)|2

+ 2
(x− ξj) · ν(x)

|x− ξj − λµjν(ξj)|2

− λ
1

|∂Ω|

∫
∂Ω

euλ
j (x).

Thus

lim
λ→0

∂Hλ
j

∂ν
(x) = 2

(x− ξj) · ν(x)
|x− ξj |2

− 2π
|∂Ω|

∀x 6= ξj (2.12)

since

λ

∫
∂Ω

euλ
j (x) = λ

∫
∂Ω

2µj

|x− ξj − λµjν(ξj)|2
= 2

∫
∂Ω−ξj

λµj

1
|y − ν(0)|2
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= 2

(∫ ∞

−∞

dt

1 + t2
−O(

∫ ∞

λ−1µ−1
j

dt

1 + t2
)

)
= 2π +O(arctan(λµj)−1 − π

2
)

= 2π +O(arctan(λµj))

= 2π +O(λµj). (2.13)

Define zλ(x) = Hλ
j (x) + log 2µj − H(x, ξj). Since the regular part of

the Green’s function H(x, ξj) is harmonic in Ω and satisfies the Neumann

boundary condition

∂H

∂νx
(x, y) = 2

(x− y) · ν(x)
|x− y|2

− 2π
|∂Ω|

x ∈ ∂Ω,

the difference zλ solves the problem
−∆zλ = 0 in Ω

∂zλ

∂ν
=
∂Hλ

j

∂ν
− 2

(x− ξj) · ν(x)
|x− ξj |2

+
2π
|∂Ω|

on ∂Ω.

Since zλ is harmonic in Ω, for any 1 ≤ p ≤ ∞, zλ ∈ W 1,p(Ω) and, by

Poincaré inequality, we get

‖zλ −
1

|∂Ω|

∫
∂Ω

zλ‖Lp(Ω) ≤ ‖Dzλ‖Lp(Ω).

Hence, by Lp theory, we have for any 0 < s < 1
p

‖zλ −
1

|∂Ω|

∫
∂Ω

zλ‖W 1+s,p(Ω) ≤ C‖∂zλ

∂ν
‖Lp(∂Ω) ≤ Cλ

1
p

where the last inequality can be obtained arguing like in Lemma 3.1, in [4],

and using (2.12). This implies the existence of a constant l such that, for

any α ∈ (0, 1),

zλ(x) = l +O(λα)

uniformly in Ω̄, where l = limλ→0
1

|∂Ω|
∫

∂Ω
zλ dx.
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In order to get the result, we are left to show that l = 0. We have

l = lim
λ→0

[
1

|∂Ω|

∫
∂Ω

Hλ
j (x) dx+ log 2µj −

1
|∂Ω|

∫
Ω

H(x, ξj) dx
]
. (2.14)

We directly compute from (2.8)

1
|∂Ω|

∫
∂Ω

Hλ
j (x) dx = − 1

|∂Ω|

∫
∂Ω

log
2µj

|x− ξj − λµjν(ξj)|2
dx

= − log 2µj −
1

|∂Ω|

∫
∂Ω

log
1

|x− ξj |2
dx

+
1

|∂Ω|

∫
∂Ω

log

(
1 + 2λµjν(ξj) ·

(x− ξj)
|x− ξj |2

+
λ2µ2

j

|x− ξj |2

)
dx

= − log 2µj +
1

|∂Ω|

∫
∂Ω

H(x, ξj) dx+O(λ)

where the last equality is consequence of the definition of the regular part

of the Green’s function. Hence (2.14) yields that l = 0. ut

By the following scaling,

x = λy, y ∈ Ωλ ≡
Ω

λ
, v(y) = u(λy)

solving problem (1.1) is equivalent to solving

∆v = 0 in Ωλ,
∂v

∂ν
= 2λ2 sinh v on ∂Ωλ. (2.15)

In the expanded domain Ωλ, the main term (2.10) of the ansatz (2.9)

looks now like

V (y) =
m∑

j=1

(−1)j−1

[
log

2µj

|y − ξ
′
j − µjν

′
j |2

− 2 log λ+Hλ
j (λy)

]
(2.16)

where ξ′j = λ−1ξj and ν′j = ν(ξ′j).

We call

vj(y) = uλ
j (λy) + 2 log λ = log

2µj

|y − ξ
′
j − µjν

′
j |2
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and

Vj(y) = vj(y)− 2 log λ+Hλ
j (y).

A function v of the form

v(y) = V (y) + φ(y), y ∈ Ωλ

is a solution for (2.15) if and only if φ solves
∆φ = 0 in Ωλ,

∂φ
∂ν −Wφ = R+N(φ) on ∂Ωλ,

(2.17)

where

W = 2λ2 coshV, (2.18)

R = −
[
∂V

∂ν
− 2λ2 sinhV

]
(2.19)

and

N(φ) = 2λ2 [sinh(V + φ)− sinhV − coshV φ] . (2.20)

We claim that V is a good approximation for a solution of (2.15) under

the assumption that we choose the parameters µj ’s to be given by the

relation

log 2µj = H(ξj , ξj) +
∑
l 6=j

(−1)l+jG(ξj , ξl). (2.21)

This is the content of estimate (2.22) contained in the following Lemma

Lemma 3. Assume (2.21) holds true. Then, for any α ∈ (0, 1), there exists

a positive constant C independent of λ such that, for any y ∈ Ωλ,

|R(y)| ≤ Cλα
m∑

j=1

1
1 + |y − ξ

′
j |
, ∀ y ∈ Ωλ, (2.22)
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and

W (y) =
m∑

j=1

2µj

|y − ξ
′
j − µjν′j |2

(1 + θλ(y)), (2.23)

with

|θλ(y)| ≤ Cλα + Cλ
m∑

j=1

|y − ξ
′

j |. (2.24)

Proof: First we observe that a direct consequence of condition (2.21) is

that for |y − ξ′j | ≤ δ
λ , the following expansion holds true

(−1)j−1Hλ
j (λy) +

∑
i 6=j

(−1)i−1

(
log

2µi

λ2|y − ξ′i − µiν(ξ′i)|2
+Hλ

i (λy)
)

= (−1)j−1 (H(ξj , ξj)− log 2µj)+
∑
i 6=j

(−1)i−1G(ξi, ξj)+O(λα)+O(λ|y−ξ′j |)

= O(λα) +O(λ|y − ξ′j |). (2.25)

We prove (2.22). By definition

−R =
m∑

j=1

(−1)j−1 2µj

|y − ξ′j − µjν(ξ′j)|2
− 2λ2 sinhV

− λ2

|∂Ω|

m∑
j=1

(−1)j−1

∫
∂Ω

euλ
j .

The last term in R can be controlled by O(λ2). Indeed, the following fact

holds true

λ

m∑
j=1

(−1)j−1

∫
∂Ω

euλ
j = O(λ

∑
j 6=i

|µj − µi|). (2.26)

as a direct consequence of (2.13).

On the other hand, if |y − ξ′j | ≤ δ
λ ,

2λ2 sinhV = λ2
[
exp

( m∑
j=1

(−1)j−1(uλ
j (λy) +Hλ

j (λy))
)

− exp
( m∑

j=1

(−1)j(uλ
j (λy) +Hλ

j (λy))
)]
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= λ2

(
2µj

λ2|y − ξ′j − µjν(ξ′j)|2

)(−1)j−1

×

exp

(−1)j−1Hλ
j (λy) +

∑
i 6=j

(−1)i−1

(
log

2µi

λ2|y − ξ′i − µiν(ξ′i)|2
+Hλ

i (λy)
)

−λ2

(
2µj

λ2|y − ξ′j − µjν(ξ′j)|2

)(−1)j

×

exp

(−1)j−1Hλ
j (λy) +

∑
i 6=j

(−1)i−1

(
log

2µi

λ2|y − ξ′i − µiν(ξ′i)|2
+Hλ

i (λy)
)

(using (2.25))

= λ2

( 2µj

λ2|y − ξ′j − µjν(ξ′j)|2

)(−1)j−1

−

(
2µj

λ2|y − ξ′j − µjν(ξ′j)|2

)(−1)j×

eO(λα)+O(λ|y−ξ′j |)

= (−1)j−1 2µj

|y − ξ′j − µjν(ξ′j)|2
(
1 +O(λα) +O(λ|y − ξ′j |)

)
+O(λ4). (2.27)

Hence, we get, for |y − ξ′j | ≤ δ
λ ,

R =
m∑

j=1

(−1)j−1 2µj

|y − ξ′j − µjν(ξ′j)|2
(
O(λα) +O(λ|y − ξ′j |)

)
.

If we are far away from the points, namely if |y − ξ′j | > δ
λ for all j, then

R = O(λ2). This implies (2.22).

Estimates (2.23) and (2.24) follow from the same arguments used to

obtain estimate (2.27). ut



16 J. Dávila, M. del Pino, M. Musso, J. Wei

3. Analysis of the linearized equation

In this section we study the linear problem
−∆φ = f in Ωλ

∂φ

∂ν
= Wφ+ h on ∂Ωλ

(3.1)

together with appropriate orthogonality conditions, where W is a function

that satisfies (2.23) and (2.24), and f , h are given. Throughout this section

we only assume that the numbers µj appearing in (2.23) satisfy 1
C ≤ µj ≤ C

independently of λ and that the points ξj ∈ ∂Ω are uniformly separated

|ξi − ξj | ≥ d ∀i 6= j, (3.2)

where d > 0 is fixed.

The orthogonality conditions mentioned above are related to the kernel

of (3.1) when λ → 0. Let us look at (3.1) with f ≡ 0, h ≡ 0 as λ → 0 at

a fixed distance from one of the points, say ξ′j , and let us translate and a

rotate so that ξ′j = 0 and Ωλ converges to the upper half plane R2
+. Then

equation (3.1) approaches (2.3). By lemma 1 we know that any bounded

solution to (2.3) is a linear combination of z0 and z1 defined in (2.1), (2.2).

We define appropriate versions of z0 and z1 in Ωλ through a diffeomorphism

Fj : Bρ(ξj) → N0 where ρ > 0 is fixed and N0 is an open neighborhood of

the origin such that Fj(Ω∩Bρ(ξj)) = R2
+∩N0, Fj(∂Ω∩Bρ(ξj)) = ∂R2

+∩N0,

and such that Fj preserves area. We define, for y ∈ Ωλ,

Fλ
j (y) =

1
λ
Fj(λy) (3.3)
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and

Zij(y) = zij(Fλ
j (y)) i = 0, 1 j = 1, . . . ,m,

where zij denotes the function zi with parameter µ = µj (i = 0, 1 j =

1, . . . ,m):

z0j = 1− 2µj
x2 + µj

x2
1 + (x2 + µj)2

, z1j = −2
x1

x2
1 + (x2 + µj)2

.

Next we fix a large constant R0 > 0 and a nonnegative smooth function

χ̄ : R → R so that χ̄(r) = 1 for r ≤ R0 and χ̄(r) = 0 for r ≥ R0 + 1,

0 ≤ χ̄ ≤ 1. Then set

χj(y) = χ̄(|Fλ
j (y)|). (3.4)

Let 0 < b < 1 and define

Z(y) =


min(1− λb, Z0j(y)) if |y − ξ′j | < δ

λ ,

1− λb if |y − ξ′j | ≥ δ
λ ∀j = 1, . . . ,m.

(3.5)

We will establish a-priori estimates for solutions to (3.1) under the or-

thogonality conditions∫
Ωλ

χjZ1jφ = 0 ∀j = 1, . . . ,m (3.6)

and ∫
Ωλ

χZφ = 0, (3.7)

where

χ =
m∑

j=1

χj .
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Let us introduce the norms

‖h‖∗ = sup
y∈∂Ωλ

|h(y)|∑m
j=1(1 + |y − ξ′j |)−1−σ

,

and

‖f‖∗∗ = sup
y∈Ωλ

|f(y)|∑m
j=1(1 + |y − ξ′j |)−2−σ

.

where σ > 0 is a fixed small constant.

Proposition 1. For fixed d > 0 there exist λ0 > 0, C such that if 0 < λ <

λ0, ξj ∈ ∂Ω (j = 1, . . . ,m) satisfy (3.2) and φ ∈ L∞(Ωλ) is a solution of

(3.1) such that (3.6) and (3.7) hold, then

‖φ‖L∞(Ωλ) ≤ C log
1
λ

(‖f‖∗∗ + ‖h‖∗).

We will prove this estimate by contradiction assuming that there exists a

sequence λ→ 0, points ξj ∈ Ω satisfying (3.2) (we omit the dependence on

λ in the notation) and functions h ∈ L∞(∂Ωλ), f ∈ L∞(Ωλ), φ ∈ L∞(Ωλ)

such that

‖φ‖L∞(Ωλ) = 1

log
1
λ
‖h‖∗ = o(1), log

1
λ
‖f‖∗∗ = o(1). (3.8)

Given 0 < α < 1 fix 0 < γ < β < α and consider the function p given

by

p(r) =



1 if r < λ−γ ,

log λ−β−log r
log λ−β−log λ−γ if λ−γ < r < λ−β ,

0 if r > λ−β .

(3.9)
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Define

Z̃0j(y) = z0j(Fλ
j (y))p(|Fλ

j (y)|) j = 1, . . . ,m.

Let

φ̃ = φ−
m∑

j=1

djZ̃0j ,

where the numbers dj are chosen so that
∫

Ωλ
χjZ0j φ̃ = 0 for any j =

1, . . . ,m, namely dj =
∫

Ωλ
χjZ0jφ∫

Ωλ
χjZ2

0j
. Observe that

dj = O(1), ‖φ̃‖L∞(Ωλ) = O(1).

Furthermore φ̃ solves the problem
−∆φ̃ = f +

m∑
j=1

dj∆Z̃0j in Ωλ

∂φ̃

∂ν
= Wφ̃+ h+

m∑
j=1

dj(WZ̃0j −
∂Z̃0j

∂ν
) on ∂Ωλ

(3.10)

and satisfies

∫
Ωλ

χjZij φ̃ = 0 ∀i = 0, 1 ∀j = 1, . . . ,m. (3.11)

To reach a contradiction we will establish the following

Lemma 4.

φ̃→ 0 uniformly in Ωλ.

Lemma 5.

dj → 0 ∀j = 1, . . . ,m.
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This will prove proposition 1.

We delay the proofs of these lemmas and mention first some key steps.

Lemma 6. For all j = 1, . . . ,m and R > 0

φ̃→ 0 uniformly in Ωλ ∩BR(ξ′j).

Proof. Assume that for some R > 0 and j = 1, . . . ,m there is c > 0

so that supBR(ξ′j)
|φ̃| ≥ c > 0 for a subsequence λ → 0. Translate and

rotate Ωλ so that ξ′j = 0 and Ωλ converges to the upper half plane R2
+. By

elliptic estimates φ̃ → φ̃0 uniformly on compact sets and φ̃0 is a nontrivial

solution of (2.3). Applying proposition 1 we conclude that φ̃0 is a linear

combination of z0 and z1. On the other hand, consider the limit as λ→ 0 of

the orthogonality conditions (3.11). After a translation and a rotation Zij

converges to zi implying
∫

R2
+
χ̄ziφ̃0 = 0 for i = 0, 1. This contradicts the

fact that φ̃0 6≡ 0. ut

Lemma 7.

φ̃ ≡ 1
|∂Ωλ|

∫
∂Ωλ

φ̃→ 0.

Proof. By potential theory

φ̃(y)− φ̃ =
1
2π

∫
∂Ωλ

G(λy, λz)(Wφ̃+ h+
∑

j

dj(WZ̃0j −
∂Z̃0j

∂ν
)) dz

+
1
2π

∫
Ωλ

G(λy, λz)(f +
∑

j

dj∆Z̃0j) dz,

where G is Green’s function defined in (1.3).
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Integrating equation (3.10) yields∫
∂Ωλ

Wφ̃+ h+
∑

j

dj(WZ̃0j −
∂Z̃0j

∂ν
) dz +

∫
Ωλ

(f +
∑

j

dj∆Z̃0j) dz = 0.

Taking into account that G(λy, λz) = log 1
λ2 +log 1

|y−z|2 +H(λy, λz), where

H is the regular part of Green’s function H (c.f. (1.4)) we have

φ̃(y)− φ̃ =
1
2π

∫
∂Ωλ

(log
1

|y − z|2
+H(λy, λz))×

(Wφ̃+ h+
∑

j

dj(WZ̃0j −
∂Z̃0j

∂ν
)) dz

+
1
2π

∫
Ωλ

(log
1

|y − z|2
+H(λy, λz))(f +

∑
j

dj∆Z̃0j) dz.

(3.12)

Let us sketch how the proof works postponing some of the calculations.

Since φ̃(y) → 0 uniformly on sets of the form |y− ξ′j | < R, we can select

a sequence Rλ →∞ such that

φ̃(y) → 0 uniformly for |y − ξ′j | < Rλ.

We can assume Rλ →∞ as slow as we need.

For each l = 1, . . . ,m select a point yl ∈ ∂Ωλ so that |yl − ξ′l| = Rλ. We

claim that when we evaluate (3.12) at yl all terms in the right hand side

of (3.12) converge to zero except for
∫

Ωλ
log 1

|yl−z|2∆Z̃0j dz = 2πδlj + o(1)

(where δlj is Kronecker’s delta). Thus, we claim that

φ̃(yj)− φ̃ = dj + o(1) ∀j = 1, . . . ,m. (3.13)

But the orthogonality condition (3.7) implies that

m∑
j=1

djaj = 0 where aj =
∫

Ωλ

χjZ
2
0j > 0. (3.14)
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Multiplying (3.13) by aj , adding and using (3.14) we find

m∑
j=1

aj φ̃(yj)− aφ̃ = o(1) where a =
m∑

j=1

aj .

Since φ̃(yj) → 0 and a is bounded away from zero we reach the conclusion

φ̃ = o(1).

In what follows we will obtain the necessary estimates to prove (3.13).

Claim.

∫
Ωλ

log
1

|yl − z|2
∆Z̃0j dz = 2πδlj + o(1) ∀j, l = 1, . . . ,m.

Proof. Let

z̃0j(x) = Z̃0j((Fλ
j )−1(x)) = z0j(x)p(|x|), (3.15)

where p was defined in (3.9). Let us write y = (Fλ
j )−1(x). Since p′(r) has a

jump at r = λ−γ and r = λ−β and is otherwise smooth we see that ∆xz̃0j

is a measure:

∆xz̃0j = 2∇z0j∇p+ z0j [p′(λ−γ)]µλ−γ + z0j [p′(λ−β)]µλ−β

= 2∇z0j∇p− z0j
λγ

(β − γ) log 1
λ

µλ−γ + z0j
λβ

(β − γ) log 1
λ

µλ−β ,

where [p′(r)] = p′(r+)− p′(r−) denotes the jump of p′ at r and let µr is the

1-dimensional measure on the circle of radius r.
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Changing variables yields

∫
Ωλ

∆Z̃0jϕ =
∫

λ−γ<|x|<λ−β

(
2∇p∇z0j +O(λ|x||∇2z̃0j |) +O(λ|∇z̃0j |)

)
×

ϕ((Fλ
j )−1(x)) dx

− λγ

(β − γ) log 1
λ

∫
r=λ−γ

(1 +O(λ|x|))z0jϕ((Fλ
j )−1(x)) dx

+
λβ

(β − γ) log 1
λ

∫
r=λ−β

(1 +O(λ|x|))z0jϕ((Fλ
j )−1(x)) dx

(3.16)

for any ϕ ∈ C(Ω).

Let us consider first the case l = j:

∫
Ωλ

log
1

|yj − z|2
∆Z̃0j dz =

∫
Ωλ

(log
1

|yj − z|2
− log

1
|ξ′j − z|2

)∆Z̃0j dz

+
∫

Ωλ

log
1

|ξ′j − z|2
∆Z̃0j dz.

(3.17)

By the previous remarks, using the fact that z0j(x) = 1 +O(|x|−1) and the

expansion (Fλ
j )−1(x) = ξ′j + x+O(λ|x|) (after rotation) we have

λγ

(β − γ) log 1
λ

∫
r=λ−γ

(1 +O(λ|x|))z0j log
1

|ξ′j − (Fλ
j )−1(x)|2

dx

=
λγ

(β − γ) log 1
λ

(1 +O(λ1−γ))(1 +O(λγ))πλ−γ(2 log λ−γ +O(λ1−γ))

= 2π
γ

β − γ
+O(λθ),

where we fix

0 < θ < min(γ, 1− β).
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Similarly

λβ

(β − γ) log 1
λ

∫
r=λ−β

z0j(1 +O(λ|x|)) log
1

|ξ′j − (Fλ
j )−1(x)|2

dx

= 2π
β

β − γ
+O(λθ),

and a calculation using ∇z0j = O( 1
|x| ), ∇

2z0j = O( 1
|x|2 ) shows that

∫
λ−γ<|x|<λ−β

(2∇p∇z0j +O(λ|x||∇2z̃0j |) + (λ|∇z̃0j |)) log
1

|ξ′j − (Fλ
j )−1(x)|2

dx

= O(λθ).

Therefore

∫
Ωλ

log
1

|ξ′j − z|2
∆Z̃0j dz = 2π +O(λθ).

For the first integral in the right hand side of (3.17) we can assume Rλ →∞

slow enough so that

λγRλ → 0.

Then

| log
1

|yj − z|2
− log

1
|ξ′j − z|2

| ≤ C
|yj − ξ′j |
λ−γ

and it follows that

|
∫

Ωλ

(log
1

|yj − z|2
− log

1
|ξ′j − z|2

)∆Z̃0j dz| = O(λγRλ).

Next we show that if l 6= j then

∫
Ωλ

log
1

|yl − z|2
∆Z̃0j dz = o(1).
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In fact

∫
Ωλ

log
1

|yl − z|2
∆Z̃0j dz =

∫
Ωλ

(log
1

|yl − z|2
− log

1
|yl − ξ′j |2

)∆Z̃0j dz

+
∫

Ωλ

log
1

|yl − ξ′j |2
∆Z̃0j dz.

We can assume that Rλ <
λ−γ

2 , so that

| log
1

|yl − z|2
− log

1
|yl − ξ′j |2

| ≤ Cλ|z − ξ′j |.

Thus

|
∫

Ωλ

(log
1

|yl − z|2
− log

1
|yl − ξ′j |2

)∆Z̃0j dz| = O(λθ).

Finally

∫
Ωλ

∆Z̃0j dz = −(2π +O(λ1−γ))(1 +O(λγ))
1

(β − γ) log 1
λ

+ (2π +O(λ1−β))(1 +O(λβ))
1

(β − γ) log 1
λ

+O(λγ)

= O(λθ) (3.18)

so

log
1

|yl − ξ′j |2

∫
Ωλ

∆Z̃0j dz = o(1).

ut

Claim. For any 0 < α < 1

W (y)Z̃0j(y)−
∂Z̃0j

∂ν
(y) = O(

λα

1 + |y − ξ′j |
) +O(

λ

log 1
λ

),

for |y − ξ′j | ≤
δ

λ
.

(3.19)
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Proof. Set

W̃ (x) = W ((Fλ
j )−1(x))

where the map Fλ
j is defined (3.3). Recall that W satisfies (2.23) and (2.24),

that is

W (y) =
2µj

|y − ξ′j − µjν′j |2
(1 +O(λα(1 + |y|))).

Since (Fλ
j )−1(x) = ξ′j + x+O(λ|x|) we find

W̃ (x) = W ((Fλ
j )−1(x)) = W (ξ′j + x+O(λ|x|))

=
2µj

x2
1 + µ2

j

+O(
λα

1 + |x|
) x = (x1, 0), |x| < δ

λ
. (3.20)

On the other hand

∂Z̃0j

∂ν
= −∂z̃0j

∂x2
+O(λ|x||∇z̃0j |)

and using the fact that p has zero normal derivative on ∂R2
+ we deduce

∂Z̃0j

∂ν
= −p∂z0j

∂x2
+O(λr(|∇p|z0j + p|∇z0j |)) (3.21)

= −p∂z0j

∂x2
+O(

λ

log 1
λ

) +O(
λ

1 + r
) r <

δ

λ
,

where r = |y − ξ′j | (observe that ∇p = O( 1
r log 1

λ

)).

Using (3.20) we find

∂Z̃0j

∂ν
(y)−W (y)Z̃0j(y) = O(

λ

log 1
λ

) +O(
λα

1 + |y − ξ′j |
) |y − ξ′j | <

δ

λ
.

ut

Claim. Similarly∫
∂Ωλ

log
1

|y − z|2
(WZ̃0j −

∂Z̃0j

∂ν
) dz = O(λ1−β) = o(1),

and this is uniformly for y ∈ ∂Ωλ.
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Proof. Using (3.19) and the fact that if |y − ξ′j | > δ
λ for all j we have

W (y) = O(λ2) and ∂Z̃0j

∂ν = O(λ2), we see that

∫
∂Ωλ

|WZ̃0j −
∂Z̃0j

∂ν
| = O(λ1−β 1

log 1
λ

). (3.22)

Since log 1
|y−z|2 = O(log 1

λ ) for |y − z| > R where R > 0 is fixed, and

∫
∂Ωλ∩BR(y)

| log
1

|y − z|2
| dz ≤ C

we conclude the validity of the assertion. ut

Claim.

∫
∂Ωλ

log
1

|y − z|2
h(z) dz = o(1) (3.23)

and

∫
Ωλ

log
1

|y − z|2
f(z) dz = o(1). (3.24)

Proof. We have log 1
|y−z|2 = O(log 1

λ ) for |y− z| > R where R > 0 is fixed,

and
∫

∂Ωλ∩BR(y)
| log 1

|y−z|2 | dz ≤ C and therefore

|
∫

∂Ωλ

log
1

|y − z|2
h dz| ≤ C log

1
λ
‖h‖∗ = o(1),

by hypothesis (3.8). The proof of the other assertion is similar. ut

Claim.

∫
∂Ωλ

log
1

|y − z|2
Wφ̃dz = o(1).

Proof. Arguing as before, it is sufficient to show that

log
1
λ

∫
∂Ωλ

Wφ̃ = o(1).
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Integrating equation (3.10) we find

∫
∂Ωλ

(Wφ̃+ h+
∑

j

dj(WZ̃0j −
∂Z̃0j

∂ν
) dz

+
∫

Ωλ

(f +
∑

j

dj∆Z̃0j) dz = 0.

The conclusion follows then from (3.18), (3.22), (3.8). ut

Claim.

A ≡
∫

∂Ωλ

H(λy, λz)(Wφ̃+ h+
∑

j

dj(WZ̃0j −
∂Z̃0j

∂ν
)) dz

+
∫

Ωλ

H(λy, λz)(f +
∑

j

dj∆Z̃0j) dz = o(1),

uniformly for y ∈ ∂Ωλ.

Proof. Let

ζ(r) =



1 if r < λ−1/2

log δ
λ−log r

log δ
λ−log λ−1/2 if λ−1/2 < r < δ

λ

0 if r > δ
λ

and set

ψ(z) =
m∑

j=1

H(λy, ξj)ζ(|z − ξ′j |).

Multiplying (3.10) by ψ and integrating by parts we have

∫
Ωλ

(f +
∑

j

dj∆Z̃0j)ψ +
∫

∂Ωλ

(Wφ̃+ h+
∑

j

dj(WZ̃0j −
∂Z̃0j

∂ν
))ψ

−
∫

∂Ωλ

φ̃
∂ψ

∂ν
+
∫

Ωλ

φ̃∆ψ = 0.
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Subtracting this from A we find

A =
∫

∂Ωλ

(H(λy, λz)− ψ)(Wφ̃+ h+
∑

j

dj(WZ̃0j −
∂Z̃0j

∂ν
)) dz

+
∫

Ωλ

(H(λy, λz)− ψ)(f +
∑

j

dj∆Z̃0j) dz

+
∫

∂Ωλ

φ̃
∂ψ

∂ν
−
∫

Ωλ

φ̃∆ψ.

Since H and ψ are bounded

|
∫

∂Ωλ

(H(λy, λz)− ψ)h dz| ≤ C‖h‖∗ = o(1) (3.25)

|
∫

Ωλ

(H(λy, λz)− ψ)f dz| ≤ C‖f‖∗∗ = o(1). (3.26)

A calculation shows that

∫
Ωλ

φ̃∆ψ = O(
1

log δ
λ

) = o(1),
∫

∂Ωλ

φ̃
∂ψ

∂ν
= O(

1
log δ

λ

) = o(1). (3.27)

For instance, the first integral in (3.27) can be estimated as follows

|
∫

Ωλ

φ̃∆ψ| ≤ ‖φ̃‖L∞(Ωλ)

∫
Ωλ

|∆ψ|.

But∆ψ is a measure with support on the arcs r = λ−1/2, r = δ
λ (r = |z−ξ′j |)

and

∫
Ωλ

|∆ψ| = O(λ−1/2 1
λ−1/2 log 1

λ

+
δ

λ

1
δ
λ log 1

λ

) = O(
1

log 1
λ

) = o(1).

Now, at distance greater that δ
λ from all ξ′j we have W = O(λ2) and H,

φ̃ are bounded, thus

∫
∂Ωλ\(∪jBδ/λ(ξ′j))

(H(λy, λz)− ψ)Wφ̃ = o(1). (3.28)
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On the other hand, at distance less than δ
λ from ξ′j we have H(λy, λz)−

H(λy, ξj) = O(λ|z − ξ′j |) and W = O( 1
r2 ), r = |z − ξ′j |. So

|
∫

∂Ωλ∩B
λ−1/2 (ξ′j)

(H(λy, λz)− ψ(z))Wφ̃dz|

= |
∫

∂Ωλ∩B
λ−1/2 (ξ′j)

(H(λy, λz)−H(λy, ξj))Wφ̃dz|

≤ λ

∫ δ/λ

1

1
r
dr = O(λ log

1
λ

) = o(1). (3.29)

In the region λ−1/2 < r = |z − ξ′j | < δ
λ we use that H, ζ, φ̃ are bounded

and that W = O( 1
r2 ), so

|
∫

∂Ωλ∩Bδ/λ(ξ′j)\Bλ−1/2 (ξ′j)

(H(λy, λz)− ψ(z))Wφ̃dz| ≤ C

∫ δ/λ

λ−1/2

1
r2
dr

= O(λ1/2) = o(1).

(3.30)

Collecting (3.25)–(3.30) and recalling (3.18), (3.19) we obtain the desired

conclusion. ut

Proof. of lemma 4 Let φ̂(x) = φ̃(x/λ), x ∈ Ω. Then φ̂ satisfies
−∆φ̂ =

1
λ2

(f̂ +
m∑

j=1

dj∆Ẑ0j) in Ω

∂φ̂

∂ν
=

1
λ

(
Ŵ φ̂+ ĥ

m∑
j=1

dj(Ŵ Ẑ0j −
∂Ẑ0j

∂ν
)
)

on ∂Ω

where f̂(x) = f(x/λ), ĥ(x) = h(x/λ), Ŵ (x) = W (x/λ) and Ẑ01(x) =

Z01(x/λ). For a given δ > 0 let Eδ = Ω \∪m
j=1Bδ(ξj). Then 1

λ2 ‖f̂‖L∞(Eδ) ≤

C‖f‖∗∗ → 0, 1
λ‖ĥ‖L∞(∂Eδ) ≤ C‖h‖∗ → 0, and 1

λ‖Ŵ φ̂‖L∞(Eδ) ≤ Cλ. Fur-

thermore, in Eδ we have that Ẑ0j ≡ 0. We also know: ‖φ̂‖L∞(Ω) ≤ 1, and
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−
∫

∂Ω
φ̂→ 0. From this it follows that φ̂→ 0 uniformly in Eδ and this implies

φ̃→ 0 uniformly in Ωλ \ ∪m
j=1Bδ/λ(ξ′j), for any δ > 0.

For a given R1 > 0 let Aj denote the annulus

Aj = Bδ/λ(ξ′j) \BR1(ξ
′
j).

Given λ > 0 small enough there exist R1 > 0 independent of λ and ψj :

Ωλ ∩Aj → R smooth and positive so that

−∆ψj ≥
c

|y − ξ′j |2+σ
in Ωλ ∩Aj

∂ψj

∂ν
−Wψj ≥

c

|y − ξ′j |1+σ
on ∂Ωλ ∩Aj

c ≤ ψj ≤ C in Ωλ ∩Aj

where C, c > 0 can be made independent of λ. Indeed, the function

ψj(y) =
(y − ξ′j) · ν′j
|y − ξ′j |1+σ

+ C0(1−
1

|y − ξ′j |σ
)

with C0 a fixed large constant satisfies the requirements, see [4] Lemma 4.3.

Thanks to the barrier ψj we deduce that the following maximum prin-

ciple holds in Ωλ ∩Aj : if φ ∈ H1(Ωλ ∩Aj) satisfies

−∆φ ≥ 0 in Ωλ ∩Aj

∂φ

∂ν
−Wφ ≥ 0 on ∂Ωλ ∩Aj

φ ≥ 0 on Ωλ ∩Aj

then φ ≥ 0 in Ωλ∩Aj . By the properties of ψj and this maximum principle

we deduce that there exists a fixed C > 0 so that

|φ| ≤ Cψj( sup
Ωλ∩∂BR1 (ξ′j)

|φ|+ sup
Ωλ∩∂Bδ/λ(ξ′j)

|φ|+ ‖h‖∗ + ‖f‖∗∗) in Ωλ ∩Aj .
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But supΩλ∩∂BR1 (ξ′j)
|φ| → 0 by lemma 6, and supΩλ∩∂Bδ/λ(ξ′j)

|φ| → 0 as

shown above. This proves the result. ut

Proof. of lemma 5 Multiplying (3.10) by Z̃0j and integrating we obtain

dj

(∫
Ωλ

(−∆Z̃0j)Z̃0j +
∫

∂Ωλ

Z̃0j(
∂Z̃0j

∂ν
−WZ̃0j)

)
= −

∫
∂Ωλ

Z̃0jh

−
∫

Ωλ

Z̃0jf +
∫

∂Ωλ

φ̃(
∂Z̃0j

∂ν
−WZ̃0j) +

∫
Ωλ

φ̃(−∆Z̃0j).

We claim that

∫
Ωλ

(−∆Z̃0j)Z̃0j +
∫

∂Ωλ

Z̃0j(
∂Z̃0j

∂ν
−WZ̃0j) ≥

c

log 1
λ

, (3.31)

for some fixed c > 0. Assuming this for a moment we can prove the lemma,

since

|
∫

∂Ωλ

Z̃0jh| ≤ ‖h‖∗‖Z̃0j‖L∞(Ωλ) ≤ C log
1
λ
‖h‖∗

1
log 1

λ

= o(1)
1

log 1
λ

and

∫
Ωλ

Z̃0jf = o(1)
1

log 1
λ

.

Similarly the other terms can be estimated as follows

|
∫

∂Ωλ

φ̃(
∂Z̃0j

∂ν
−WZ̃0j)| ≤ ‖φ̃‖L∞(Ωλ)

∫
∂Ωλ

|∂Z̃0j

∂ν
−WZ̃0j | = O(λ1−β),

using (3.22); and

|
∫

Ωλ

φ̃(−∆Z̃0j)| ≤ ‖φ̃‖L∞(Ωλ)

∫
Ωλ

|∆Z̃0j | ≤
C

log 1
λ

‖φ̃‖L∞(Ωλ) = o(1)
1

log 1
λ

.
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Let us prove (3.31) using (3.16) to compute
∫

Ωλ
∆Z̃0jZ̃0j . For the part

of ∆Z̃0j supported on r = λ−γ we have

λγ

(β − γ) log 1
λ

∫
r=λ−γ

(1 +O(λ|x|))z2
0jp dx

=
λγ

(β − γ) log 1
λ

(1 +O(λ1−γ))(1 +O(λγ))2πλ−γ

=
πγ

(β − γ) log 1
λ

+O(λθ) 0 < θ < min(γ, 1− β).

Analogously, for the part supported on r = λ−β we find

λβ

(β − γ) log 1
λ

∫
r=λ−β

(1 +O(λ|x|))z2
0jp dx = 0

since p(λ−β) = 0. Also

∫
λ−γ<|x|<λ−β

(2∇p∇z0j +O(λ|x||∇2z̃0j |) + (λ|∇z̃0j |))z0jp dx

= O(λθ).

Thus

∫
Ωλ

∆Z̃0jZ̃0j = − πγ

(β − γ) log 1
λ

+O(λθ).

Finally, similarly as in (3.22)

∫
∂Ωλ

Z̃0j(
∂Z̃0j

∂ν
−WZ̃0j) = O(λ1−β),

and this proves (3.31). ut

Proposition 2. Let d > 0 and m a positive even integer. Then there exists

λ0 > 0 such that for any 0 < λ < λ0, any family of points ξ1, . . . , ξm ∈ ∂Ω
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satisfying (3.2) (i.e. |ξi − ξj | ≥ d ∀i 6= j), and any h ∈ L∞(∂Ωλ), f ∈

L∞(Ωλ) there is a unique solution φ ∈ L∞(Ωλ), c0, c1, . . . , cm ∈ R to
−∆φ = f in Ωλ

∂φ
∂ν −Wφ = h+

∑m
j=1 cjχjZ1j + c0χZ on ∂Ωλ∫

Ωλ
χjZ1jφ = 0 ∀j = 1, . . . ,m,

∫
Ωλ

χZφ = 0.

(3.32)

Moreover there is C > 0 independent of λ such that

‖φ‖L∞(Ωλ) ≤ C log
1
λ

(‖h‖∗ + ‖f‖∗∗),

max(|c0|, . . . , |cm|) ≤ C(‖h‖∗ + ‖f‖∗∗).

Proof. We deal first with the following linear problem
−∆φ = f +

∑m
j=1 djχjZ1j + d0χZ in Ωλ

∂φ
∂ν −Wφ = h on ∂Ωλ∫
Ωλ

χjZ1jφ = 0 ∀j = 1, . . . ,m,
∫

Ωλ
χZφ = 0,

(3.33)

where h ∈ L∞(∂Ωλ), f ∈ L∞(Ωλ) are given. Let us show that for any

φ ∈ L∞(Ωλ), d0, d1, . . . , dm solution to (3.33) we have

‖φ‖L∞(Ωλ) ≤ C log
1
λ

(‖h‖∗ + ‖f‖∗∗) (3.34)

|dj | ≤ C(‖h‖∗ + ‖f‖∗∗) ∀j = 0, . . . ,m. (3.35)

Since by proposition 1 we have

‖φ‖L∞(Ωλ) ≤ C log
1
λ

(‖h‖∗ + ‖f‖∗∗ +
m∑

j=0

|dj |), (3.36)

it suffices to prove that (3.35) holds.
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Consider a cut-off function η̄ such that

η̄ ≡ 1 in B δ
4λ

(0), η̄ ≡ 0 in R2 \B δ
3λ

(0)

0 ≤ η̄ ≤ 1, |∇η̄| ≤ Cλ/δ, |∇2η̄| ≤ Cλ2/δ2 in R2.

and for j = 1, . . . ,m set

ηj(y) = η̄(Fλ
j (y)),

where Fλ
j is defined in (3.3). Multiplying (3.33) by ηiZ1i, i = 1, . . . ,m and

integrating by parts we obtain

di

∫
Ωλ

χiZ
2
1i = −

∫
∂Ωλ

hηiZ1i −
∫

Ωλ

fηiZ1i +
∫

∂Ωλ

φ
∂ηi

∂ν
Z1i

+
∫

∂Ωλ

φηi(
∂Z1i

∂ν
−WZ1i)−

∫
Ωλ

φ∆(ηiZ1i).

(3.37)

Since Z1i = O( 1
1+r ) and ∇η̄ = O(λ) we have

|
∫

∂Ωλ

φ
∂ηi

∂ν
Z1i| ≤ C‖φ‖L∞(Ωλ)λ log

1
λ
. (3.38)

As in the proof of (3.19) we have

∂Z1i

∂ν
(y)−W (y)Z1i(y) = O(

λα

1 + |y − ξ′j |
) y ∈ ∂Ωλ, |y − ξ′j | <

δ

λ
,

and this implies∫
∂Ωλ

ηi|
∂Z1i

∂ν
−WZ1i| = O(λα′), i = 1, . . . ,m, (3.39)

where 0 < α′ < α. Since 0 < α < 1 is arbitrary so is α′ and so from now on

we will just write α.

We also compute

∆(ηiZ1i) = ∆ηiZ1i + 2∇ηi∇Z1i + ηi∆Z1i

= O(
λ2

1 + r
) +O(

λ

1 + r2
) + ηi∆Z1i.
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But ∆yZ1i = ∆xz1 +O(λ|x||∇2z1|) +O(λ|∇z1|) (where we have rotated Ω

appropriately and x = Fλ
i (y)). Thus

∆Z1i = O(
λ

1 + r2
) +O(

λ2

1 + r
)

and it follows that∫
Ωλ

|∆(ηiZ1i)| = O(λ log
1
λ

) = O(λα). (3.40)

Combining (3.37), (3.39) and (3.40) we conclude

di

∫
Ωλ

χiZ
2
1i ≤ C(‖h‖∗ + ‖f‖∗∗ + λα‖φ‖L∞(Ωλ))

and this together with (3.36) yields

|di| ≤ C(‖h‖∗ + ‖f‖∗∗ + λα
m∑

j=0

|dj |), i = 1, . . . ,m. (3.41)

On the other hand, multiplying (3.33) by Z we obtain

d0

∫
Ωλ

χZ2 = −
∫

Ωλ

fZ −
∫

∂Ωλ

hZ +
∫

∂Ωλ

φ(
∂Z

∂ν
−WZ)−

∫
Ωλ

φ∆Z.

(3.42)

We estimate as before

|
∫

∂Ωλ

φ(
∂Z

∂ν
−WZ)| ≤ ‖φ‖L∞(Ωλ)

∫
∂Ωλ

|∂Z
∂ν

−WZ| ≤ Cλb/2‖φ‖L∞(Ωλ)

(3.43)

and

|
∫

Ωλ

φ∆Z| ≤ ‖φ‖L∞(Ωλ)

∫
Ωλ

|∆Z| ≤ Cλb‖φ‖L∞(Ωλ). (3.44)

From (3.42) and (3.36) we see that

|d0| ≤ C(‖h‖∗ + ‖f‖∗∗ + λb/2
m∑

j=0

|dj |).
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Using this and (3.41) we deduce (3.35) and (3.34).

Now consider the Hilbert space

H =
{
φ ∈ H1(Ωλ) :

∫
Ωλ

χZφ = 0,
∫

Ωλ

χjZ1jφ = 0 ∀j = 1, . . . ,m
}

with the norm ‖φ‖2H1 =
∫

Ωλ
|∇φ|2, which is indeed a norm in H since by

choosing R0 large enough (the size of the support of the cut-off functions

χj , c.f.(3.4)) we have
∫

Ωλ
χZ 6= 0. Equation (3.33) can be formulated as to

find φ ∈ H such that

∫
Ωλ

∇φ∇ψ −
∫

∂Ωλ

Wφψ =
∫

Ωλ

fψ +
∫

∂Ωλ

hψ ∀ψ ∈ H.

By (3.34) this problem has at most one solution, and by Fredholm’s alter-

native we deduce that given f , h indeed there exists a solution.

For convenience of notation in the rest of the proof we write

Z0 = Z, χ0 = χ and Zj = Z1j ∀j = 1, . . . ,m.

Let Yi ∈ L∞(Ωλ), dij ∈ R i, j = 0, . . . ,m be the solution to (3.33) with

h = χiZ1i and f = 0, that is
−∆Yi =

∑m
j=0 dijχjZj in Ωλ

∂Yi

∂ν −WYi = −χiZi on ∂Ωλ∫
Ωλ

χjZjYi = 0 ∀j = 0, . . . ,m.

(3.45)

There exists a unique Yi ∈ L∞(Ωλ) solution to this equation and we have

the estimates

‖Yi‖L∞(Ωλ) ≤ C log
1
λ
, |dij | ≤ C, (3.46)
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for some constant C independent of λ. We shall show that dij = Aδij +

O(λb/2) where A > 0 is independent of λ. Indeed, writing η0 ≡ 1, let us

multiply (3.45) by ηjZj and integrate by parts

dij

∫
Ωλ

χjZ
2
j + δij

∫
∂Ωλ

χjZ
2
j =

∫
∂Ωλ

(
∂Zj

∂ν
−WZj)ηjYi +

∫
∂Ωλ

∂ηj

∂ν
ZjYi

−
∫

Ωλ

Yi∆(ηjZj)

= O(λb/2).

To estimate the integrales in the right hand side above for the case j =

1, . . . ,m, we argue exactly as in (3.38), (3.39), and (3.40). For the case

j = 0 we use (3.43) and (3.44).

It follows that the matrix D with entries dij i, j = 0, . . . ,m is invertible

for small λ and ‖D−1‖ ≤ C uniformly in λ. To prove the solvability of

(3.32) let f ∈ L∞(Ωλ), h ∈ L∞(∂Ωλ) be given. We find φ1, d0, . . . , dm the

solution to (3.33) and define

φ = φ1 +
m∑

i=0

ciYi

where ci is such that
∑m

i=0 cidij = −dj ∀j = 0, . . . ,m. Then φ satisfies

(3.32) and we have the estimate

‖φ‖L∞(Ωλ) ≤ ‖φ1‖L∞(Ωλ) +
m∑

i=0

|ci| ≤ C log
1
λ

(‖f‖∗∗ + ‖h‖∗) + C

m∑
i=1

|di|

≤ C log
1
λ

(‖f‖∗∗ + ‖h‖∗),

by (3.35). ut

The previous result implies that the unique solution φ = T (h) of (3.32)

with f = 0 defines a continuous linear map from L∞(∂Ωλ) with the norm
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‖ · ‖∗ into L∞(Ωλ). For fixed h ∈ L∞(∂Ω) let us compute derivative of

φ = T (h) with respect to ξ′l. Formally Y = ∂ξ′l
φ satisfies the equation

∆Y = 0 in Ωλ,

and on ∂Ωλ the boundary condition

∂Y

∂ν
−WY = ∂ξ′l

(W )φ+ cl ∂ξ′l
(Z1lχl) +

m∑
j=1

dj Z1jχj + c0∂ξ′l
(χZ) + d0χZ

where (still formally) dj = ∂ξ′l
(cj), j = 0, . . . ,m. The orthogonality condi-

tions now become

∫
Ωλ

Z1jχjY = 0, if j 6= l∫
Ωλ

Z1lχlY = −
∫

Ωλ

∂ξ′l
(Z1lχl)φ.∫

Ωλ

χZY = −
∫

Ωλ

∂ξ′l
(χZ)φ.

Let us write Ỹ = Y + blχlZ1l + b0χZ where b0, bl are defined through

b0

∫
Ωλ

χ2Z2 ≡
∫

Ωλ

φ ∂ξ′l
(χZ), bl

∫
Ωλ

χ2
lZ

2
1l ≡

∫
Ωλ

φ ∂ξ′l
(χlZ1l).

Hence
∫

Ωλ
Ỹ χjZ1j = 0 for all j and

∫
Ωλ

Ỹ χZ = 0, Ỹ satisfies the equation

∆Ỹ = a in Ωλ

and the boundary condition

∂Ỹ

∂ν
−WỸ = b+

m∑
j=1

dj Z1jχj + d0χZ,

where

a = bl∆(χlZ1l) + b0∆(χZ)
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and

b = ∂ξ′l
(W )φ+ cl ∂ξ′l

(Z1lχl) + c0∂ξ′l
(χZ) + bl(

∂(χlZ1l)
∂ν

−WχlZ1l)

+b0(
∂(χZ)
∂ν

−WχZ),

with

‖b‖∗ ≤ C log
1
λ
‖h‖∗, ‖a‖∗∗ ≤ C log

1
λ
‖h‖∗.

Thus

‖∂ξ′l
φ‖L∞(Ωλ) ≤ C(log

1
λ

)2‖h‖∗. (3.47)

4. The nonlinear problem with constraints

Let τ be a small parameter and consider

V1(y) = V (y) + τZ(y) y ∈ Ωλ (4.1)

where V is given by (2.16) and Z is the function introduced in (3.5) at the

beginning of section 3.

A function v of the form

v(y) = V1(y) + φ̃(y), y ∈ Ωλ

is a solution for (2.15) if and only if φ̃ solves
∆φ̃ = 0 in Ωλ,

∂φ̃
∂ν −W1φ̃ = R1 +N1(φ̃) on ∂Ωλ,

(4.2)

where

W1 = 2λ2 coshV1, (4.3)
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R1 = −
[
∂V1

∂ν
− 2λ2 sinhV1

]
(4.4)

and

N1(φ̃) = 2λ2
[
sinh(V1 + φ̃)− sinhV1 − cosh(V1)φ̃

]
. (4.5)

Observe that from the definition of the function Z we see that Z(y) =

O(1) all over Ωλ. This readily implies that

V1(y) = V (y) +O(|τ |) ∀y ∈ Ωλ. (4.6)

We consider first the following auxiliary nonlinear problem
∆φ1 = 0 in Ωλ,

∂φ1
∂ν −W1φ1 = R1 +N1(φ1) +

∑m
j=1 cjχjZ1j + c0χZ on ∂Ωλ,∫

Ωλ
χjZ1jφ1 = 0 ∀j = 1, ...,m,

∫
Ωλ

χZφ1 = 0

(4.7)

whereW1 is as in (4.3) and N1, R1 are defined in (4.5) and (4.4) respectively.

Lemma 8. Let m > 0, d > 0. Let α be any number in the interval (0, 1)

and τ = O(λθ) with θ > α
2 . Then there exist λ0 > 0, C > 0 such that for

0 < λ < λ0 and for any ξ1, . . . , ξm ∈ ∂Ω satisfying (3.2), problem (4.7)

admits a unique solution φ1, c0, c1, . . . , cm such that

‖φ1‖L∞(Ωλ) ≤ Cλα. (4.8)

Furthermore, the function (τ, ξ′) → φ1(τ, ξ′) ∈ C(Ω̄λ) is C1 and

‖Dξ′φ1‖L∞(Ωλ) ≤ C λα, ‖Dτφ1‖L∞(Ωλ) ≤ C λθ1 , θ1 < θ. (4.9)

Proof. First we observe that

W1(y) = W (y) + 2λ2 sinh(V )τZ + τ2λ2 cosh(V + τ̄Z)Z2,
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where |τ̄ | ≤ |τ |. The equation for φ1 can be written as
∆φ1 = 0 in Ωλ,

∂φ1
∂ν −Wφ1 = τBφ1 +R1 +N1(φ1) +

∑m
j=1 cjχjZ1j + c0χZ on ∂Ωλ,∫

Ωλ
χjZ1jφ1 = 0 ∀j = 1, ...,m,

∫
Ωλ

χZφ1 = 0,

(4.10)

where B = 2λ2 sinh(V )Z + τλ2 cosh(V + τ̄Z)Z2. Remark that from (2.23)

and (2.27) we have the estimate ‖B‖∗ ≤ C.

Let A be the operator that associates to any φ1 ∈ L∞(Ωλ) the unique

solution given by proposition 2 for h = τBφ1 + R1 + N1(φ1) and f = 0.

In terms of the operator A, equation (4.10) is equivalent to the fixed point

problem

φ1 = A(φ1) . (4.11)

Let us consider the set

F ≡ {φ ∈ C(Ω̄λ) : ||φ||L∞(Ωλ) ≤ λα}.

From proposition 2 we get

‖A(φ1)‖L∞(Ωλ) ≤ C| log λ|
[
|τ | ‖Bφ1‖∗ + ‖N1(φ1)‖∗ + ‖R1‖∗

]
.

Let us estimate ‖R1‖∗. We have

R1 = −
[
∂V

∂ν
+ τ

∂Z

∂ν
− 2λ2 sinh(V + τZ)

]

= R(y)− τ
∂Z

∂ν
+ 2λ2 sinh(V + τZ)− 2λ2 sinhV

= R(y)− τ

[
∂Z

∂ν
−WZ

]
+ λ2τ2 sinh(V + τ̄Z)Z2,
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where |τ̄ | ≤ |τ |. For |y − ξ′j | ≤ δ
λ , we have ∂Z

∂ν −WZ = O( λa

1+|y−ξ′j |
) where

0 < a < 1 will be fixed shortly, while for |y − ξ′j | > δ
λ we have ∂Z

∂ν −WZ =

O(λ2), thus ‖∂Z
∂ν −WZ‖∗ ≤ Cλa−σ. Similarly ‖R‖∗ ≤ Cλa−σ. On the other

hand ‖λ2 sinh(V + τ̄Z)Z2‖∗ ≤ C and hence

‖R1‖∗ ≤ ‖R‖∗ + |τ |λa−σ + Cτ2 ≤ C(λa−σ + λ2θ),

since τ = O(λθ). We choose 0 < a < 1 and σ > 0 small so that a−σ > α (σ

is the number that appears in the definition of the norms ‖ · ‖∗ and ‖ · ‖∗∗).

Furthermore, ‖N1(φ1)‖∗ ≤ C ‖φ1‖2L∞(Ωλ) as a direct consequence of

(4.5) and

|τ |‖Bφ1‖∗ ≤ |τ |‖φ1‖L∞(Ωλ)‖B‖∗ ≤ Cλα+θ.

We get, for any ψ1, ψ2, ψ ∈ F , the existence of a positive constant C,

such that

‖A(ψ)‖L∞(Ωλ) ≤ C| log λ|
[
λα+θ + λ2α + λa−σ + λ2θ

]
,

‖A(ψ1)−A(ψ2)‖L∞(Ωλ) ≤ C | log λ|(λθ + λα) ‖ψ1 − ψ2‖L∞(Ωλ).

It follows that for all λ sufficiently small A is a contraction mapping of F ,

and therefore a unique fixed point of A exists in F .

Let us now discuss the differentiability of φ1. Since R1 depends contin-

uously (in the *-norm) on

(τ, ξ′) = (τ, ξ′1, . . . , ξ
′
m),

using the fixed point characterization (4.11) we deduce that the map (τ, ξ′) 7→

φ1 is also continuous. Then, formally, for β = ξ′k or β = τ ,

−∂βN1(φ1) = 2λ2
[(

cosh(V1 + φ1)− coshV1 − sinhV1φ1

)
∂βV1
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+
(

sinh(V1 + φ1)− coshV1

)
∂β φ1

]
.

It can be checked that ‖∂βV1‖∗ is uniformly bounded, for both β = ξ′k and

β = τ , so we conclude

‖∂βN1(φ1)‖∗ ≤ C
[
‖φ1‖L∞(Ωλ) + ‖∂βφ1‖L∞(Ωλ)

]
‖φ1‖L∞(Ωλ)

≤ C
[
λα + ‖∂βφ1‖L∞(Ωλ)

]
λα .

Using the notation T (h) for the operator that to h ∈ L∞(Ωλ) associates the

solution of the linear problem (3.32) with f = 0 we may write, for β = ξ′k,

∂ξ′k
φ1 = (∂ξ′k

T )
(
τBφ1 +N1(φ1) +R1

)
+ T

(
∂ξ′k

[
τBφ1 +N1(φ1) +R1

])
,

while for β = τ ,

∂τφ1 = T (Bφ1 + τ∂τ (Bφ1) + ∂τN1(φ1) + ∂τR1).

Thus, from proposition 2 and (3.47) we deduce for β = ξ′k

‖∂ξ′k
φ1‖L∞(Ωλ) ≤ C | log λ|2‖(N1(φ1) +R1)‖∗ + | log λ|‖∂ξ′k

N1(φ1)‖∗

+ ‖∂ξ′k
R1‖∗)

≤ C λa−σ| log λ|2 ≤ Cλα,

since it can be seen that ‖∂ξ′k
R1‖∗ ≤ Cλα. For β = τ we get

‖∂τφ1‖L∞(Ωλ) ≤ C| log λ|(‖φ1‖L∞(Ωλ) + λ1−σ + λθ) ≤ Cλθ1 , θ1 < θ

since ‖∂τR1‖∗ ≤ C(‖∂Z
∂ν −WZ‖∗ + τ‖λ2 sinh(V + τ̄Z)Z2‖∗) ≤ Cλθ.

The above computation can be made rigorous by using the implicit func-

tion theorem and the fixed point representation (4.11) which guarantees C1

regularity in τ and ξ′. ut
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Remark. It is possible to verify that given τ1, τ2 = O(λθ), with θ > α
2 , the

unique solutions φ1, φ2 of lemma 8 satisfy

‖φ1 − φ2‖L∞(Ωλ) ≤ Cλθ|τ1 − τ2|. (4.12)

This follows from the fixed point characterization (4.11) of these solutions.

Indeed, let A(τ, φ) be the nonlinear operator introduced in this lemma,

i.e., the one that to φ ∈ L∞(Ωλ) associates the unique solution given by

proposition 2 for h = τBφ+R1(τ)+N1(φ1) and f = 0. Using proposition 2

we see that

‖A(τ1, φ)−A(τ2, φ)‖L∞(Ωλ) ≤ Cλθ|τ1 − τ2|.

Lemma 9. Let m > 0, d > 0. For any 0 < α < 1 there exist λ0 > 0, C > 0

such that for 0 < λ < λ0, any ξ1, . . . , ξm ∈ ∂Ω satisfying (3.2), there exists

a unique τ with |τ | < Cλα−b/2 such that problem (4.7) admits a unique

solution φ, c0, c1, . . . , cm with c0 = 0 and such that

‖φ‖L∞(Ωλ) ≤ Cλα. (4.13)

Furthermore, the function ξ′ → φ(ξ′) is C1 and

‖Dξ′φ‖L∞(Ωλ) ≤ Cλα.

Proof. Given ξ1, . . . , ξm in ∂Ω such that |ξi − ξj | > d and τ = O(λθ) with

α
2 < θ < α, let φ1, c0, c1, . . . , cm be solutions to (4.7). Multiplying (4.7)
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against Z and integrating by parts, we get

c0

∫
∂Ωλ

χZ2 = −
∫

∂Ωλ

φ1(W1Z −
∂Z

∂ν
)−

∫
∂Ωλ

R1Z −
∫

∂Ωλ

N1(φ1)Z

−
∫

Ωλ

φ1∆Z −
m∑

j=1

cj

∫
∂Ωλ

χjχZ1jZ.

(4.14)

Now we have:

|
∫

Ωλ

φ1∆Z| ≤ C‖φ1‖L∞(Ωλ)λ
b ≤ Cλα+b;

|
∫

∂Ωλ

N1(φ1)Z| ≤ C‖φ1‖2L∞(Ωλ) ≤ Cλ2α;

|
∫

∂Ωλ

φ1(W1Z −
∂Z

∂ν
)| ≤ Cλα‖φ1‖L∞(Ωλ) ≤ Cλ2α

|
∫

∂Ωλ

χjχZ1jZ| ≤ Cλ∫
∂Ωλ

R1Z =
∫

∂Ωλ

RZ + τ

∫
∂Ωλ

[−∂Z
∂ν

+WZ]Z + τ2λ2

∫
∂Ωλ

sinh(V + τ̄Z)Z3

Let us estimate the second integral in the right hand side. Observe that in

the regions {Z < 1− λb} (which are of size |y − ξ′j | < µjλ
−b/2) we have by

a calculation similar to (3.19)∫
|y−ξ′j |<µjλ−b/2,y∈∂Ωλ

[−∂Z
∂ν

+WZ]Z = O(λα).

For the rest, that is at distance µjλ
−b/2 < |y − ξ′j | < δ

λ we have that Z is

constant, so for a given j = 1, . . . ,m∫
µjλ−b/2<|y−ξ′j |<

δ
λ ,y∈∂Ωλ

[−∂Z
∂ν

+WZ]Z =
∫

µjλ−b/2<|y−ξ′j |<
δ
λ ,y∈∂Ωλ

WZ2

= 4λb/2 + o(λb/2).

Hence ∫
∂Ωλ

[−∂Z
∂ν

+WZ]Z = 4mλb/2 + o(λb/2).
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We also have

|
∫

∂Ωλ

RZ| ≤ Cλα

and from the expansion (2.27)

λ2

∫
∂Ωλ

sinh(V + τ̄Z)Z3 = O(λb/2).

This shows that it is possible to find τ = O(λα−b/2) so that c0 = 0. The

uniqueness of τ can be seen also from the previous estimates. Indeed, sup-

pose we have τ, τ̃ = O(λθ) and solutions φ, φ̃ such that for the corresponding

coefficients we have c0 = c̃0 = 0. From equation (4.14) and the estimates

that follow we obtain

λb/2|τ − τ̃ | ≤ Cλα‖φ− φ̃‖L∞(Ωλ) + C|τ − τ̃ |(|τ |+ |τ̃ |)λb/2

and using (4.12) we deduce τ = τ̃ .

Let us now discuss the differentiability of φ with respect to ξ′. We have

φ(ξ′) = φ1(τ(ξ′), ξ′)

where φ1 is the solution to problem (4.7) given by lemma 8 while τ(ξ′) is

the unique positive number so that in problem (4.7) we have c0 = 0.

Hence,

Dξ′k
φ(ξ′) = Dτφ1(τ(ξ′), ξ′)Dξ′k

τ(ξ′) +Dξ′k
φ1(τ(ξ′), ξ′).

Since from (4.14) with c0 = 0 we can deduce that |Dξ′k
τ(ξ′)| ≤ Cλθ , from

(4.8) and (4.9) we conclude that

‖Dξ′k
φ(ξ′)‖L∞(Ωλ) ≤ Cλα.

ut
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5. Variational reduction

In view of lemma 8 and lemma 9, given ξ = (ξ1, . . . , ξm) ∈ ∂Ωm satisfy-

ing |ξi − ξj | ≥ d ∀i 6= j, we define φ(ξ) and cj(ξ) to be the unique solution

to (4.7) with c0 = 0 satisfying the bounds (4.8) and (4.9).

Let

Jλ(u) =
1
2

∫
Ωλ

|Du|2 − 2λ2

∫
∂Ωλ

coshu dx.

Given ξ = (ξ1, . . . , ξm) ∈ ∂Ωm, define

Fλ(ξ) = Jλ(V1(ξ) + φ(ξ)) (5.1)

where V1(ξ) = V (ξ) + τ(ξ)Z(ξ) with τ(ξ) given by lemma 9.

Lemma 10. If ξ = (ξ1, . . . , ξm) ∈ (∂Ω)m satisfying (3.2) is a critical point

of Fλ then v = V1(ξ) + φ(ξ) is a critical point of Jλ, that is, a solution to

(2.15).

Proof. Let ξ′ = ξ/λ. Therefore

∂Fλ

∂ξk
=

1
λ

∂Iλ(V1(ξ′) + φ(ξ′))
∂ξ′k

=
1
λ
DIλ(V1(ξ′) + φ(ξ′))

[∂V1(ξ′)
∂ξ′k

+
∂φ(ξ′)
∂ξ′k

]
.

Since v′ = V1(ξ′) + φ(ξ′) solves (4.7) with c0 = 0

∂Fλ

∂ξk
=

1
λ

m∑
i=1

ci

∫
∂Ωλ

χiZ1i

[∂V1(ξ′)
∂ξ′k

+
∂φ(ξ′)
∂ξ′k

]
.

Let us assume that DFλ(ξ) = 0. From the previous equation we conclude

that

m∑
i=1

ci

∫
∂Ωλ

χiZ1i

[∂V1(ξ′)
∂ξ′k

+
∂φ(ξ′)
∂ξ′k

]
= 0 ∀k = 1, . . . ,m.
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Since ‖∂φ(ξ′)
∂ξ′k

‖L∞(Ωλ) ≤ Cλα and ∂V (ξ′)
∂ξ′k

= ±Z1k + o(1) where o(1) is in

the L∞ norm as a direct consequence of (4.6), it follows that

m∑
i=1

ci

∫
∂Ωλ

χiZ1i(±Z1k + o(1)) = 0 ∀k = 1, . . . ,m,

which is a strictly diagonal dominant system. This implies that ci = 0

∀i = 1, . . . ,m.

ut

In order to solve for critical points of the function Fλ, a key step is its

expected closeness to the function Jλ(V1(ξ)), which we will analyze in the

next section.

Lemma 11. Assume α ∈ ( 1
2 , 1). The following expansion holds

Fλ(ξ) = Jλ(V ) + θλ(ξ) ,

where

|θλ| → 0,

uniformly on points satisfying the constraints (3.2).

Proof. We write

Jλ(V1 + φ)− Jλ(V ) = [Jλ(V1 + φ)− Jλ(V1)] + [Jλ(V1)− Jλ(V )]

= A+B.

Let us estimate A first. Taking into account that DJλ(V1 + φ)[φ] = 0, a

Taylor expansion and an integration by parts give

A =
∫ 1

0

D2Jλ(V1 + tφ)[φ]2 (1− t) dt
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=
∫ 1

0

(
2λ2

∫
∂Ωλ

[cosh(V1 + tφ)− cosh(V1 + φ)]φ2

+
∫

∂Ωλ

[N1(φ) +R1]φ
)

(1− t) dt,

(5.2)

so we get

Jλ(V1 + φ)− Jλ(V1) = O(λ2α)

taking into account that ‖φ‖L∞(Ωλ) ≤ Cλα.

On the other hand

B = τJ ′λ(V + τ̄Z)[Z]

for |τ̄ | ≤ |τ |, and hence, since Z is almost an element of the kernel of J ′λ(V ),

we get

Jλ(V1)− Jλ(V ) = o(1)τ → 0.

Hence |θλ(ξ)| = o(1) uniformly on points satisfying (3.2).

The continuity in ξ of all these expressions is inherited from that of φ

and its derivatives in ξ in the L∞ norm. ut

6. Energy Computations and proof of the Theorem

In this section we compute the expansion of the energy functional Jλ

evaluated at V and we give the proof of Theorem 1.

We have

Lemma 12. Let m > 0, d > 0. Let µj be given by (2.21) and let V be the

function defined in (2.16). Then for any 0 < α < 1 the following expansion

holds true

Jλ(V ) = 2mπ log
1
λ

+m(β0 − 2π + 2π log 2) (6.1)



Singular Limits 51

−πϕm(ξ) +O(λα)

uniformly on points ξ = (ξ1, . . . , ξm) ∈ (∂Ω)m such that |ξi− ξj | > d for all

i 6= j. In the previous formula, ϕm(ξ) is the function introduced in (1.5),

namely

ϕm(ξ) = ϕm(ξ1, . . . , ξm) =

[
m∑

l=1

H(ξl, ξl) +
∑
j 6=l

(−1)l+jG(ξj , ξl)

]

while β0 is the constant defined by

β0 =
∫

R

1
1 + x2

log
1

1 + x2
.

Proof: Since V (y) =
∑m

j=1(−1)j−1(uλ
j (λy) +Hλ

j (λy)) satisfies ∆V = 0 in

Ωλ, we write

Jλ(V ) =
1
2

∫
∂Ωλ

V
∂V

∂ν
− 2λ2

∫
∂Ωλ

cosh(V ).

We compute the second term first:

2λ2

∫
∂Ωλ

cosh(V ) = λ2
m∑

l=1

∫
∂Ωλ∩Bδ/λ(ξ

′
l )

(eV + e−V ) +O(λα)

Suppose l is odd first. Then, recalling the notation introduced in section 2

vl(y) = uλ
l (y) + 2 log λ, we get

λ2

∫
∂Ωλ∩Bδ/λ(ξ

′
l )

(eV + e−V ) = λ2

∫
∂Ωλ∩Bδ/λ(ξ

′
l )

eV +O(λα)

=
∫

∂Ωλ∩Bδ/λ(ξ
′
l )

evl e(−1)l−1Hλ
l +

∑
j 6=l(−1)j−1(uλ

j +Hλ
j ) +O(λα)

= 2π +O(λα).

Thus

λ2

∫
∂Ωλ∩Bδ/λ(ξ

′
l )

(eV + e−V ) = 2π +O(λα). (6.2)
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Similarly for l even, we also have (6.2). So we obtain

2λ2

∫
∂Ωλ

cosh(V ) = 2mπ +O(λα). (6.3)

It remains to compute
∫

∂Ωλ
V ∂V

∂ν :

∫
∂Ωλ

V
∂V

∂ν
=
∫

∂Ωλ

(
m∑

j=1

(−1)j−1(uλ
j +Hλ

j )

)
·

·

(
m∑

i=1

(−1)i−1evi − 1
|∂Ωλ|

m∑
i=1

(−1)i−1

∫
∂Ωλ

evi

)

=
∫

∂Ωλ

(
m∑

j=1

(−1)j−1(uλ
j +Hλ

j )

)(
m∑

i=1

(−1)i−1evi

)

− 1
|∂Ωλ|

(
m∑

i=1

(−1)i−1

∫
∂Ωλ

evi

)∫
∂Ωλ

(
m∑

j=1

(−1)j−1(uλ
j +Hλ

j )

)

=
m∑

i,j=1

(−1)i+j

∫
∂Ωλ

evi(uλ
j +Hλ

j ) +O(λα)

since by (2.26)

m∑
j=1

(−1)j−1

∫
∂Ωλ

evj = O(λ).

For j 6= i, we have

∫
∂Ωλ

evi(uλ
j +Hλ

j ) = 2πG(ξj , ξi) +O(λα). (6.4)

For j = i, we have

∫
∂Ωλ

evi(uλ
i +Hλ

i ) =
∫

∂Ωλ

2µj

|y − µjν
′
j |2

(
(log

1
λ2

) + log
2µj

|y − µjν
′
j |2

+H(ξj , ξj + λy)− log(2µj)

)
+O(λα)

= 2π log
1
λ2

+ 2π(H(ξj , ξj)− log 2µj) + 2β0 +O(λα)
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(using (2.21)) so

∫
∂Ωλ

evi(uλ
i +Hλ

i ) = 2π log
1
λ2

+ 2β0 + 4π log 2 (6.5)

+ 2π

(
−H(ξj , ξj)− 2

∑
i 6=j

(−1)i+jG(ξj , ξi)

)
+O(λα)

Combining (6.4) and (6.5), we obtain that

∫
∂Ωλ

V
∂V

∂ν
=

m∑
i,j=1

(−1)i+j

∫
∂Ωλ

evi(uλ
j +Hλ

j ) +O(λα)

= 2mπ log
1
λ2

+ 2mβ0 + 4mπ log 2 (6.6)

+ 2π

(
−

m∑
i=1

H(ξi, ξi)−
∑
j 6=i

(−1)i+jG(ξj , ξi)

)
+O(λα)

Summing up equations (6.3) and (6.6), we finally arrive at

Jλ(V ) = 2mπ log
1
λ

+m(β0 − 2π + 2π log 2)

−π

[
m∑

l=1

H(ξl, ξl) +
∑
j 6=l

(−1)l+jG(ξj , ξl)

]
+O(λα)

ut

We now have all ingredients to give the proof of Theorem 1.

Proof of Theorem 1. Define, for ξ = (ξ1, . . . , ξm) ∈ (∂Ω)m with |ξi−ξj | ≥

d, the function

v(y) = V1(ξ)(y) + φ(ξ)(y) y ∈ Ωλ

where V1(ξ) is given by (4.1) and φ(ξ) is the unique solution to problem

(4.7) with c0 = 0, whose existence and properties are established in Lemma

9. Then, according to Lemma 8, v is solution to (2.15) provided that ξ is a
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critical point of the function Fλ(ξ) defined in (5.1), or equivalently, ξ is a

critical point of

F̃λ(ξ) =
1
π

(
2mπ log

1
λ

+m(β0 − 2π + 2π log 2)− Fλ(ξ)
)
.

Let m = 2k and Ω̃m be the set of points ξ = (ξ1, . . . , ξm) ∈ (∂Ω)m ordered

clockwise along a given connected component of ∂Ω and such that |ξi−ξj | ≥

d for all i 6= j, for some d > 0 sufficiently small so that all the previous

results hold true. Namely, if we denote by p : [0, 2π] → ∂Ω a continuous

parametrization of this connected component of ∂Ω, then we can write

Ω̃m = {ξ = (p(θ1), . . . , p(θm)) ∈ (∂Ω)m : |p(θi)− p(θj)| ≥ d if i 6= j}.

It is not restrictive to assume that 0 ∈ ∂Ω. Lemmas 11 and 12 guarantee

that for ξ ∈ Ω̃m,

F̃λ(ξ) = ϕm(ξ) + λαΘλ(ξ) (6.7)

where Θλ is uniformly bounded in the considered region as λ→ 0. We will

show that F̃λ has at least two distinct critical points in this region, fact that

will prove our result. The function ϕm is C1, bounded from above in Ω̃m

and if two consecutive points get closer it becomes unbounded from below,

which implies that

ϕm(ξ1, . . . , ξm) → −∞ as |ξi − ξj | → 0 for some i 6= j.

Hence, since d is arbitrarily small, ϕm has an absolute maximum M0 in Ω̃m,

so does F̃λ whenever λ is sufficiently small. Let us call Mλ this value, so that

Mλ = M0 + o(1) as λ → 0. On the other hand, Ljusternik-Schnirelmann
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theory is applicable in our setting, so we can estimate the number of critical

points of ϕm in Ω̃m by cat (Ω̃m), the Ljusternik-Schnirelmann category of

Ω̃m relative to Ω̃m. We claim that cat (Ω̃m) > 1. Indeed, by contradiction,

assume that cat(Ω̃m) = 1. This means that Ω̃m is contractible in itself,

namely there exist a point ξ0 ∈ Ω̃m and a continuous function Γ : [0, 1] ×

Ω̃m → Ω̃m such that, for all ξ ∈ Ω̃m,

Γ (0, ξ) = ξ, Γ (1, ξ) = ξ0.

Let f : S1 → Ω̃m be the continuous function defined by

f(x) = (p(θ), p(θ + 2π
1
m

), . . . , p(θ + 2π
m− 1
m

)), x = eiθ, θ ∈ [0, 2π].

Let η : [0, 1]× S1 → S1 be the well defined continuous map given by

η(t, x) =
π1 ◦ Γ (t, f(x))
‖π1 ◦ Γ (t, f(x))‖

where π1 denotes the projection on the first component. The function η

is a contraction of S1 to a point and this gives a contradiction. Thus we

conclude that

c0 = sup
C∈Ξ

inf
ξ̄∈C

ϕm(ξ̄), (6.8)

where

Ξ = {C ⊂ Ω̃m : C closed and cat (C) ≥ 2},

is a finite number, and a critical level for ϕm. Call cλ the number (6.8) with

ϕm replaced by F̃λ, so that cλ = c0 + o(1). If cλ 6= Mλ, we conclude that

there are at least two distinct critical points for F̃λ (distinct up to cyclic

permutations) in Ω̃m. If cλ = Mλ, we get that there must be a set C, with
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cat (C) ≥ 2, where the function F̃λ reaches its absolute maximum. In this

case we conclude that there are infinitely many critical points for F̃λ in

Ω̃m. Since cyclic permutations are only in finite number, the result is thus

proven. ut
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Departamento de Matemática, Pontificia Universidad Catolica deChile,

Vicuña Mackenna 4860, Macul, Chile.

e-mail: mmusso@mat.puc.cl

and

J. Wei: Department of Mathematics, The Chinese University of Hong-Kong,

Shatin, Hong Kong.

e-mail: wei@math.cuhk.edu.hk


