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Abstract. We study the spectrum of a new class of nonlocal eigenvalue problems (NLEPs) that characterize the linear stability properties
of localized spike solutions to the singularly perturbed two-component Gierer-Meinhardt (GM) reaction-diffusion (RD) system with a fixed
time-delay T in only the nonlinear autocatalytic activator kinetics. Our analysis of this model is motivated by the computational study of
Seirin Lee et al. [Bull. Math. Bio., 72(8), (2010)] on the effect of gene expression time delays on spatial patterning for both the GM and some
related RD models. For various limiting forms of the GM model, we show from a numerical study of the associated NLEP, together with an
analytical scaling law analysis valid for large delay T , that a time-delay in only the activator kinetics is stabilizing in the sense that there is a
wider region of parameter space where the spike solution is linearly stable than when there is no time delay. This enhanced stability behavior
with a delayed activator kinetics is in marked contrast to the de-stabilizing effect on spike solutions of having a time-delay in both the activator
and inhibitor kinetics. Numerical results computed from the RD system with delayed activator kinetics are used to validate the theory for the
1-D case.

1. Introduction. For activator-inhibitor two-component reaction-diffusion (RD) systems, it is a well-known result,

originating from Turing [21], that a small perturbation of a spatially uniform steady-state solution can become unstable

when the diffusivity ratio is large enough. This initial instability then leads to the generation of large-amplitude stable

spatial patterns. Although this mechanism for the development of spatially inhomogeneous patterns is well-understood,

and has been applied to a broad range of specific RD systems (cf. [7]) and modeling scenarios on various spatial scales,

what is less well-understood is the effect on pattern development of any time-delays in the reaction kinetics. Although

there are now general results for the linear stability of spatially uniform steady-states under the effect of a time-delay

(cf. [2]), which have been applied to the Gierer-Meinhardt (GM) model with saturated and time-delayed reaction kinetics

in [1], the effect of time-delays in the reaction kinetics on localized RD patterns is not nearly as well understood.

Time-delays in the reaction kinetics for modeling RD patterns on a cellular spatial scale are thought to be an important

biological mechanism, as there typically exists a time-delay between the initiation of protein signal transduction and the

time at which genes are ultimately produced (cf. [7]). In an effort to understand the effect of such gene expression time-

delays on pattern formation, various new two-component activator-inhibitor RD models with a fixed time delay in the

reaction kinetics were developed based on various hypothethical sub-cellular gene expression processes in [7], [15], [16],

[17] (see also the survey [18]). In these studies, pattern formation aspects of the time-delayed RD models were examined

through a Turing-type linear stability around a homogeneous steady-state and from large-scale numerical computations

of the PDE system on both fixed and slowly growing spatial domains. For some of these activator-inhibitor models with

time-delayed kinetics, related to the classical GM model and its variants (cf. [8]), it was shown that the delay induces

temporal oscillations in the spatial patterning, and that these oscillations can become very large and uncontrolled as the

time-delay increases, thereby suggesting a global breakdown of a robust stable patterning mechanism.

In [6], this de-stabilizing effect of a time-delay in the reaction kinetics was analyzed in detail for a general class of

GM models with a time-delay in either the inhibitor kinetics or in both the activator and inhibitor kinetics. This study of

[6], and the numerical simulations in [15], leads to the question of whether a time-delay in the reaction-kinetics can ever

be a stabilizing effect on pattern formation. The main new goal of this paper is to show that a time-delay in only the

autocatalytic term of the activator kinetics actually leads to an increase in the parameter range where localized spatial

patterns are linearly stable. This stabilizing effect of a time-delay in the activator kinetics will be analyzed in detail for
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the GM model with prototypical exponents of the nonlinearities.

The GM model [8] for the prototypical exponent set in the semi-strong interaction limit is a singularly perturbed

two-component RD system with a large diffusivity ratio. For the case where only the nonlinear activator kinetics has a

finite time delay T , the activator and inhibitor concentrations v and u, respectively, in a bounded domain Ω ∈ R
N are

solutions to the non-dimensional system

vt = ε2∆v − v + v2T /u , x ∈ Ω ; τut = D∆u− u+ ε−Nv2T , x ∈ Ω ; ∂nu = ∂nv = 0 , x ∈ ∂Ω . (1.1)

Here 0 < ε ≪ 1, vT ≡ v(x, t − T ), and the reaction-time constant τ and inhibitor diffusivity D are both O(1) positive

parameters. In the limit ε→ 0, it is well-known that the steady-state GM model has localized spike solutions whereby v

concentrates at certain points in Ω. We will study the linear stability of these spike solutions for three different variants

of this GM model with delayed activator kinetics: a one-spike solution for the 1-D shadow problem corresponding to the

large inhibitor diffusivity limit D → ∞, a one-spike solution in 1-D on the infinite line, and an M -spot pattern with

M ≥ 2 in a bounded 2-D domain in the weak-coupling regime D = O(− log ε). The study of these three variants of the

GM model will show in a rather broad sense the stabilizing effect of delayed activator kinetics on the linear stability of

localized spike solutions.

In the traditional scenario where there is no activator delay, results characterizing the existence of a Hopf bifurcation

threshold value of τ have been derived for the 1-D shadow problem in [22] and [10], for the 1-D infinite-line problem

in [5] and [23], and for the 2-D multi-spot problem in [26]. These previous results are all based on linearizing the RD

system around a localized spike (1-D) or spot (2-D) steady-state solution and then studying the spectrum of a nonlocal

eigenvalue problem (NLEP) that arises from the linearized stability problem. For the two 1-D problems, these previous

results with undelayed kinetics show that a one spike-solution is linearly stable only when 0 < τ < τH0, and that a

Hopf bifurcation occurs as τ crosses above some threshold τH0. Qualitatively similar results were found for the 2-D

problem in [26], although the analysis and results in [26] were more intricate owing to the existence of two distinct modes

of instability for the amplitudes of the spots, representing either in-phase (synchronous) or anti-phase (asynchronous)

instabilities of the amplitudes of the spots. Overall, the qualitative mechanism for an oscillatory instability is that as τ

increases, the inhibitor field can only respond relatively slowly to any local increase in the activator concentration due to

the autocatalytic term. Such a slow response by the inhibitor field leads to an instability of the spike.

The goal of this paper is to show for each of these three variants of the GM model that the effect of a time-delay in the

activator kinetics is stabilizing in the sense that there is a larger parameter range of τ , as compared with the corresponding

undelayed problems, where the steady-state spike (1-D) or spot (2-D) patterns are linearly stable. In particular, for the

1-D shadow and infinite-line problems we will show, using a combined analytical and numerical study of the associated

NLEP, that the Hopf bifurcation threshold for τ is a monotone increasing function of the delay T . A simple scaling law

for this Hopf bifurcation threshold for the case of large delay T ≫ 1 is derived analytically for the two 1-D problems.

Similar results showing that an activator time-delay has a stabilizing effect on 2-D multi-spot patterns are obtained from

a combined analytical and numerical study of the two specific NLEPs that are associated with either asynchronous or

synchronous instabilities of the amplitudes of the spots.

The mathematical challenge of this study is that the NLEP under the effect of activator delay is difficult to analyze

owing to the effect of the time-delay in both the local part of the operator as well as in the multiple of the nonlocal term.

In the 1-D case, this NLEP has the form

LµΦ− χ(τλ)µw2

∫∞
−∞ wΦ dy
∫∞
−∞ w2 dy

= λΦ , −∞ < y <∞ ; Φ ∈ H1(R) , µ ≡ e−λT , (1.2)
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for some χ(τλ) that is analytic in Re(λ) ≥ 0. In (1.2) the delayed local operator is defined by LµΦ ≡ Φ′′ − Φ + 2wµΦ,

where w = 3
2 sech

2 (y/2). We will provide a new detailed analytical study of spectra of the delayed local eigenvalue problem

Lµφ = λφ with φ ∈ H1(R). By reducing this spectral problem to the study of hypergeometric functions, similar to that

in [4], we derive transcendental equations characterizing all complex or real-valued spectra of Lµ. After deriving a few

key properties of the NLEP (1.2), and then showing how the nonlocal term eliminates unstable spectra of Lµ, we use a

simple numerical method together with an analytical scaling law to determine the boundary τH = τH(T ) in the τ versus T

parameter space where (1.2) undergoes a Hopf bifurcation for both the 1-D shadow problem and 1-D infinite-line problem.

Similar results for a related NLEP are derived in a 2-D context.

A key qualitative conclusion from our analysis is that a time-delay in only the activator kinetics has a stabilizing

influence on the stability of localized spike solutions. This result is in marked contrast to the results found in [6] where a

time-delay was assumed in both the activator and inhibitor kinetics, or only in the inhibitor kinetics. In the former case,

the associated NLEP is (1.2) where χ(τλ)µ is replaced by χ(τλ)µ2, whereas in the latter case (1.2) holds, but with LµΦ

replaced with its undelayed counterpart LΦ ≡ Φ′′ − Φ + 2wΦ. With either of these two seemingly slight modifications

of the NLEP (1.2) induced by delayed inhibitor kinetics, it was shown in [6] that the Hopf bifurcation threshold τH is

monotone decreasing in the delay T , and that, moreover, there is a finite non-zero critical value T ⋆ of T for which a

one-spike steady-state solution in 1-D is linearly unstable for all τ ≥ 0. In this sense, [6] showed that a steady-state spike

solution can become highly unstable when inhibitor delay effects are included.

The outline of this paper is as follows. In §2, we describe the three variants of the GM model with activator time-delay

and, for each variant, give the specific NLEP whose spectrum characterizes the linear stability of spike solutions. In §3,
we derive a few explicit and rigorous results for spectral properties of the delayed local operator and for a general class

of NLEPs in 1-D and in 2-D that are associated with delayed activator kinetics. In §4, we use the NLEP to calculate

the Hopf bifurcation threshold for both the 1-D shadow and infinite-line problems, and we derive a scaling law for these

boundaries in the large delay limit. Hopf bifurcation thresholds associated with the 2-D NLEP, corresponding to the 2-D

multi-spot problem, are studied in §5 for both synchronous and asynchronous instabilities of the spot amplitudes. A brief

discussion in §6 concludes the paper.

2. Formulation of the NLEP Problems. We first study the linear stability of a one-spike steady-state solution

to two variants of the prototypical GM model [8] in one-space dimension when there is a time-delay in only the activator

kinetics. Our first variant is the infinite-line problem where, without loss of generality, we take the inhibitor diffusivity as

D = 1. This problem is formulated as

vt = ε2vxx − v + v2T /u , τut = uxx − u+ ǫ−1v2T , −∞ < x <∞ , t > 0 , (2.1)

where vT ≡ v(x, t − T ). For ε → 0 it was shown in [23] that a one-spike steady-state solution ve, ue to (2.1), which is

centered at x = 0, is given by

ve(x) ∼ U0w
(

ε−1x
)

, ue(x) ∼ U0e
−|x| , U0 = 2

(
∫ ∞

−∞
w2 dy

)−1

, (2.2)

where w(y) = 3
2 sech

2 (y/2) is the homoclinic solution on −∞ < y <∞ to w′′ −w+w2 = 0 with w(0) > 0, w′(0) = 0, and

w → 0 as |y| → ∞.

In addition, we will study the so-called limiting shadow problem for v(x, t) and u(t) (cf. [10]) on the interval |x| ≤ 1,

which corresponds to taking the large inhibitor diffusivity limit D → ∞ in (1.1). This shadow problem is

vt = ε2vxx − v + v2T /u , −1 < x < 1 , vx(±1, t) = 0 ; τut = −u+
1

2ε

∫ 1

−1

v2T dx . (2.3)

3



For ε→ 0, a one-spike steady-state solution ve, ue for (2.3) is given by (cf. [10])

ve ∼ uew (x/ε) , ue ∼ 2

(
∫ ∞

−∞
w2 dy

)−1

. (2.4)

To study the linear stability of the steady-state solution for each of these two models we linearize either (2.1) or (2.3)

about the steady-state by introducing v = ve + eλtΦ(x/ε), and u = ue + eλtη. After a short calculation, similar to that

done in [6], we obtain that Φ(y) and λ are eigenpairs of the nonlocal eigenvalue problem (NLEP)

LµΦ− χ(τλ)µw2

∫∞
−∞ wΦ dy
∫∞
−∞ w2 dy

= λΦ , −∞ < y <∞ ; Φ → 0 as |y| → ∞ , µ ≡ e−λT , (2.5a)

where the delayed local operator, Lµ, is defined by LµΦ ≡ Φ′′ − Φ + 2wµΦ. In (2.5a), the multiplier χ of the nonlocal

term for either the infinite-line or shadow problems is

χ(τλ) ≡ 2

1 + τλ
, (shadow problem) ; χ(τλ) ≡ 2√

1 + τλ
, (infinite-line problem) . (2.5b)

In (2.5b) we must specify the principal branch of
√
1 + τλ (cf. [23]).

The NLEP (2.5) characterizes the linear stability of a one-spike solution on an O(1) time-scale to perturbations in

the amplitude of the spike (cf. [23], [6]). It is readily shown that any unstable eigenvalue of (2.5), satisfying Re(λ) > 0,

must be a root of g(λ) = 0, where

g(λ) ≡ 1

µχ(τλ)
−Fµ(λ) ; Fµ(λ) ≡

∫∞
−∞ w

[

(Lµ − λ)−1w2
]

dy
∫∞
−∞ w2 dy

, µ ≡ e−λT . (2.6)

2.1. The 2-D NLEP Problem. Next, we formulate the linear stability problem for an M -spot pattern, with

M ≥ 2, for the GM model (1.1) with delayed activator kinetics in a bounded 2-D domain. A localized spot pattern is one

for which the steady-state solution for v concentrates at a discrete set of points xj ∈ Ω, for j = 1, . . . ,M , as ǫ → 0. For

the 2-D GM model with no delayed reaction kinetics, in [26] the linear stability properties of such patterns were analyzed

in the weak coupling regime D = O(ν−1) where ν = −1/ ln ǫ. By setting D = D0/ν in (1.1) with N = 2, we can readily

extend the analysis of [26] to show that the linear stability of an M -spot solution with delayed activator kinetics, and

with τ = O(1), is characterized by the spectrum of the NLEP

LµΦ− χ(τλ)µw2

∫∞
0
ρwΦ dρ

∫∞
0
ρw2 dρ

= λΦ , 0 < ρ <∞ ; Φ′(0) = 0 , Φ → 0 as ρ→ ∞ , (2.7a)

where LµΦ ≡ ∆ρΦ − Φ + 2wµΦ, µ ≡ e−λT , and ∆ρΦ ≡ ∂ρρΦ + ρ−1∂ρΦ: Here w(ρ) is the positive radially symmetric

ground-state solution to ∆ρw−w+w2 = 0 with w(0) > 0, w′(0) = 0, and w → 0 as ρ→ ∞. In (2.7a), χ(τλ) can assume

either of the two forms (cf. [26])

χ(τλ) ≡ 2

1 + β
, (asynchronous mode) ; χ(τλ) ≡ 2

1 + β

(

1 + β + τλ

1 + τλ

)

, (synchronous mode) , (2.7b)

where β ≡ 2πMD0/|Ω| and |Ω| is the area of Ω. These two choices for χ correspond to either asynchronous (anti-phase)

or synchronous (in-phase) instabilities of the amplitudes of the spots (cf. [26]). Both such modes of instability are possible

when M ≥ 2. Although there are M −1 possible anti-phase modes of instability of the spot amplitudes, from the leading-

order asymptotic theory of [26] leading to (2.7b) with χ = 2/(1 + β), these modes have a common stability threshold.

With either form for χ, the discrete eigenvalues of the NLEP (2.7) are roots g(λ) = 0, where

g(λ) ≡ 1

µχ(τλ)
−Fµ(λ) ; Fµ(λ) ≡

∫∞
0
ρw
[

(Lµ − λ)−1w2
]

dρ
∫∞
0
ρw2 dρ

, µ ≡ e−λT . (2.8)
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3. Some General Results for the Delayed Operator. For either N = 1 or N = 2, in this section we derive

some properties for the general NLEP for Φ = Φ(y), given by

LµΦ− χ(τλ)µw2

∫

wΦ
∫

w2
= λΦ , Φ ∈ H1(RN ) ; LµΦ = ∆Φ− Φ+ 2µwΦ , µ ≡ e−λT , (3.1)

where χ(τλ) is given in (2.5b) when N = 1 and in (2.7b) when N = 2. For simplicity of notation, for N = 1 in (3.1) we

have Φ = Φ(y), w = w(y) = 3
2 sech

2(y/2) and the integration in (3.1) is over the real line. For N = 2, we have Φ = Φ(ρ)

and w = w(ρ), with ρ = |y|, and the integration in (3.1) is over R
2. With this notation, it readily follows that the

eigenvalues λ of (3.1) are the roots of g(λ) = 0, where

g(λ) ≡ 1

χ(τλ)µ
−Fµ(λ) , Fµ(λ) ≡

∫

w
[

(Lµ − λ)−1w2
]

∫

w2
. (3.2)

To analyze (3.2), we must first consider some properties of the delayed local eigenvalue problem, defined by

LµΦ = λΦ , Φ ∈ H1(RN ) . (3.3)

This is done in detail for N = 1 in §3.1 by using an analysis based on hypergeometric functions. Some partial results for

the case N = 2 are given in §3.2.

3.1. Delayed Local Operator: One-Dimensional Case. When N = 1, we can derive transcendental equations

for all of the eigenvalues (complex or real) of (3.3) by following the approach used in [25] for the case where µ is a fixed

complex constant. For the convenience of the reader, the derivation of these equations is given in Appendix A.

As shown in (A.10) of Appendix A (see also page 1071 of [25]), we obtain that any eigenvalue λ of (3.3) when N = 1

must be a root of one of the transcendental equations Kl(λ) = 0, for l = 0, 1, 2, . . ., defined by

Kl(λ) ≡ 4
√
1 + λ+ 1−

√

1 + 48µ+ 2l = 0 , l = 0, 1, 2, . . . ; µ ≡ e−λT . (3.4)

We first observe that the translation mode λ = 0, Φ = w′, must be an eigenpair for all T ≥ 0. This eigenvalue corresponds

to setting l = 1 in (3.4).

Next, we characterize any non-zero real-valued eigenvalue satisfying λ > −1 that exists for all T ≥ 0. It is easy to

see that such eigenvalues can only occur when l = 0 or l = 2 in (3.4). In particular, for the case l = 0, we calculate that

K0(0) < 0, K0(λ) → +∞ as λ → +∞, and K0(λ) is monotone increasing on λ > 0. Consequently, (3.4) with l = 0 has

a unique root λ0 = λ0(T ) > 0 for any T ≥ 0. We readily find from (3.4) that λ0(0) = 5/4, λ0 ∼ log(2)/T for T ≫ 1,

and λ0(T ) is monotone decreasing in T . In the left panel of Fig. 3.1 we plot λ0(T ) versus T , as computed numerically

from (3.4). The only other real non-zero eigenvalue that exists for any T ≥ 0 is obtained from (3.4) with l = 2. Since

K2(−1) < 0, K2(0) = 2 > 0, and K2(λ) is monotone increasing in λ, K2(λ) = 0 has a unique root λ2(T ) satisfying

−1 < λ2(T ) < 0 for any T ≥ 0. We readily find that λ2 → −3/4 as T → 0 and λ2 ∼ log (3/5) /T for T ≫ 1.

Next, we observe from (3.4) for l ≥ 3 that a discrete real eigenvalue emerges from the continuous spectrum λ ≤ −1

when the delay T exceeds a critical threshold T l
edge > 0. By setting Kl(−1) = 0 and solving for T , we identify that

T l
edge ≡ log

(

l2 + l

12

)

, l = 3, 4, . . . , (3.5)

so that T l+1
edge > T l

edge. Curiously, we find T 3
edge = 0, so that a discrete real eigenvalue emerges as soon as the delay is

turned on. Since for each l ≥ 3 we have Kl(0) > 0, Kl(λ) is monotone increasing on −1 < λ < 0, and Kl(−1) < 0 whenever
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T > T l
edge, it follows that there is a unique root λl(T ) to (3.4) in −1 < λ < 0 when T > T l

edge. A simple calculation using

(3.4) shows that, for each l ≥ 3, this eigenvalue has the following limiting asymptotics:

λl(T ) ∼ cl/T , cl ≡ log

(

12

(l + 3)(l + 2)

)

, as T → ∞ . (3.6)

This expression shows that all of these discrete eigenvalues that bifurcate from the continuous spectrum at critical values

of the delay eventually accumulate on the stable side of the origin λ = 0 as T → ∞.
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Fig. 3.1: Left panel: The positive real eigenvalue λ0(T ) of the delayed local problem LµΦ = λΦ when N = 1 as obtained by solving
(3.4) numerically with l = 0. Right panel: all the paths of complex-valued spectra of Lµ in Re(λ) ≥ 0 for T 1

H ≤ T ≤ T 5
H, as

computed from (3.4) for l = 0. Here T j

H
for j ≥ 1 is the j-th value of T where Lµ has a pure imaginary eigenvalue λ = iλI

with λI ≈ 2.1015 (see (3.10)). The path with imaginary eigenvalue when T = T j

H
is labeled by λj . For even larger values

of T , these paths all tend to the origin λ = 0, but in the half-space Re(λ) > 0. For each path, we also plot its continuation
into Re(λ) < 0 for smaller delays.

In summary, with regards to real-valued eigenvalues of Lµ when N = 1, the spectral problem (3.3) has exactly three

real eigenvalues that exist for any T ≥ 0. They are λ = λ0(T ) > 0, λ = 0, and λ = λ2(T ), where −1 < λ2(T ) < 0.

In addition, real eigenvalues bifurcate from the edge λ = −1 of the continuous spectrum at the critical values T l
edge for

l = 3, 4, . . . of the delay, as given explicitly in (3.5). For each l ≥ 3, this additional real eigenvalue remains in −1 < λ < 0

for all T ≥ T l
edge, and it tends to the origin as T → ∞ with the asymptotic rate given in (3.6).

Next, we consider complex-valued roots of (3.4). We will only characterize those complex-valued branches of roots of

(3.4) as T is varied that can exist in the unstable right-half plane Re(λ) ≥ 0. To do so, we first focus on determining any

values of the delay T for which (3.3) has a pure imaginary eigenvalue λ = iλI with λI > 0. As shown in Appendix A,

(3.4) can only have a pure imaginary root λ = iλI for the case l = 0. As derived in Appendix A, such a pure imaginary

eigenvalue occurs at the discrete values Tn
H , given by

T = Tn
H ≡ (θ0 + 2πn)

λI
, n = 1, 2, 3, . . . . (3.7)

Here λI , which is independent of n, is given explicitly by

λI =
1

8
Re
(

−1 +
√

1 + 48µ
)

Im
(

√

1 + 48µ
)

, µ ≡ e−i(θ0+2πn) = cos θ0 − i sin θ0 , (3.8)

in terms of the unique root θ0 in −π/3 ≤ θ ≤ 0 of the function H(θ), defined by

H(θ) ≡ (24 cos θ − 7)
2 (

12 cos2 θ − 8 cos θ + 1
)

− 12 sin2 θ . (3.9)

The uniqueness of this root follows from the fact that H(0) > 0, H(−π/3) < 0, and H(θ) is monotonic on −π/3 < θ < 0.
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From simple numerical computations based on this explicit characterization, we obtain that θ0 ≈ −0.99046 and

λI ≈ 2.1015. The first few critical values of the delay are

T 1
H ≈ 2.5185 , T 2

H ≈ 5.5084 , T 3
H ≈ 8.4982 , T 4

H ≈ 11.488 , T 5
H ≈ 14.478 . (3.10)

With these explicit values for which (3.4) has a pure imaginary eigenvalue when l = 0, we then readily use Newton’s

method on (3.4) with l = 0 and numerically path-follow branches of spectra of Lµ for T > Tn
H . As shown in the right

panel of Fig. 3.1 for n = 4, these branches lie in the unstable right-half plane Re(λ) > 0 and accumulate near λ = 0 as

T → ∞. By path-following these same branches on the range 0 < T < Tn
H these branches of spectra are in Re(λ) < 0, as

expected, and were created from a singular limit process T → 0+ and |λ| ≫ 1 with Re(λ) < 0. This singular behavior as

T → 0+ is a well-known feature of quasipolymomials in the eigenvalue parameter that arise as the characteristic equation

for traditional ODE delay equations.

Finally, we briefly discuss a general method to determine all the eigenvalues of Lµ with N = 1 that exist near the

origin λ = 0 in the limit T → ∞. This approach is based on the following result:

Lemma 3.1. Consider the auxiliary spectral problem for Ψ(y) and ξ on −∞ < y <∞ given by

Ψ′′ −Ψ+ ξwΨ = 0 , Ψ ∈ H1(R) . (3.11)

There is a countably infinite number of eigenvalues ξl for l = 0, 1, 2, . . ., with ξl < ξl+1 for l ≥ 0, given explicitly by

ξ0 = 1 , ξ1 = 2 ; ξl =
(l + 2)(l + 3)

6
, l = 2, 3, . . . . (3.12)

The first two eigenfunctions are Ψ0 = w and Ψ1 = w′.

Proof: We simply set λ = 0 and µ = ξ/2 in (3.4) to obtain 5 + 2l =
√
1 + 24ξ. Upon solving for ξ, we obtain (3.12).

The first two eigenfunctions follow trivially from using w′′ − w + w2 = 0 and (w′)′′ − w′ + 2ww′ = 0.

We now illustrate the use of this lemma by seeking all eigenvalues of Lµ near λ = 0 when T ≫ 1. We let λ ∼ c/T for

T ≫ 1 and from (3.3) obtain that

Φ′′ − Φ+ 2
[

e−c +O(T−1)
]

wΦ = O(T−1)Φ .

To leading order we put Φ = Ψ + O(T−1) so that Ψ is an eigenfunction of (3.11) with eigenvalue ξ ≡ 2e−c. These

eigenvalues are given in (3.12). If we set ξ0 = 1, we have 1 = 2e−c, so that c = log(2) + 2nπi for n = 0,±1,±2, . . ..

This gives λ ∼ [log(2) + 2nπi] /T for T ≫ 1. Setting n = 0, we obtain the asymptotics of the positive real eigenvalue

λ0(T ) ∼ log(2)/T , derived earlier. In addition, the choices n = ±1,±2, . . . correspond to the limiting behavior as T → ∞
of the paths of complex-valued eigenvalues in Reλ > 0 (see the right panel of Fig. 3.1). In contrast, if we use ξl in (3.12)

with l ≥ 2, we obtain e−c = ξl/2 for l ≥ 2. This yields the large T behavior for the negative real eigenvalues λl(T ) for

l ≥ 2, as given in (3.6).

3.2. Delayed Local Operator: Two-Dimensional Case. When N = 2, the explicit expression (3.4) no longer

holds, and so only we must proceed indirectly and through numerical computations. For positive real eigenvalues we can

still claim the following:

Lemma 3.2. For each T ≥ 0, there exists a unique eigenvalue real positive eigenvalue λ = λ0(T ) to (3.3).

Proof: For each µ ∈ ( 12 , 1), it is it is easy to see that there exists a unique principal eigenvalue, called λ(µ), to (3.3), with

positive principal eigenfunction. In fact, it admits the variational characterization

−λ(µ) = inf
φ∈H1(R2),φ 6=0

∫

(|∇φ|2 + φ2)− 2µwφ2
∫

φ2
. (3.13)
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We only consider the range µ > 1/2, since if µ < 1/2, i.e. 2µ < 1, it holds from Lemma 5.1 (part 2) of [25]
∫

(|∇φ|2 + φ2)− wφ2 ≥ 0 , (3.14)

where the equality holds iff φ = Cw. Hence for µ ≤ 1/2, λ(µ) ≤ 0 and if µ = 1/2, then λ(1/2) = 0 is the principal

eigenvalue with eigenfunction w. For µ > 1/2, we have λ(µ) > 0, as can be verified by using the trial function φ = w in

(3.13), which yields

−λ(µ) ≤
∫

(|∇w|2 + w2)− 2µw3

∫

w2
= (1− 2µ)

∫

w3

∫

w2
, (3.15)

This implies λ(µ) > 0 when µ > 1/2. Next, for µ = 1 we recall that L1 admits only one positive eigenvalue ν0, and that

the second eigenvalue is zero. By a min-max variational characterization of eigenvalues based on (3.13), it follows that the

eigenvalues of Lµ are monotone decreasing in µ. Thus for µ < 1, the second eigenvalue Lµ, is strictly less than the second

eigenvalue of L1, which is 0. Therefore, the only positive eigenvalue is the first eigenvalue and hence it is principal, which

must be simple by definition. By uniqueness, λ(µ) is a smooth function of µ. Then, recalling µ = e−λT , the problem (3.3)

can be rewritten as the transcendental equation

λ(µ) = − log µ

T
. (3.16)

Note that λ (1/2) = 0 while λ(1) = ν0, and λ(µ) is an increasing of µ. On the other hand, the right-hand side of (3.16)

is a decreasing function of µ. Hence there exists a unique µ satisfying (3.16). This implies that there exists a unique

positive real eigenvalue λ = λ0 to (3.3).

We now relabel this unique positive eigenvalue of (3.3) as λ0(T ). Next, for N = 2, we determine approximations to

λ0(T ) that are valid when either T ≪ 1 or T ≫ 1. We first determine an approximation valid for small delay. When

T = 0, we know that L1Ψ = νΨ with Ψ → 0 as ρ → ∞ has a unique positive eigenvalue ν0 with eigenfunction Ψ0 > 0

(cf. [26]). To determine an approximation for T ≪ 1 we perform a standard perturbation analysis of a simple eigenvalue.

We write λ0 = ν0+Tν1+ · · · and φ0 = Ψ+Tφ1+ · · · . Upon substituting these expansions into Lµφ = λ0φ, and equating

the O(T ) terms, we obtain that

(L1 − ν0)φ ≡ ∆ρφ− φ1 + 2wφ1 − ν0φ1 = ν1Ψ0 + 2ν0wΨ0 .

Since (L1 − ν0)Ψ0 = 0, and L1 is self-adjoint, the solvability condition for this problem is that the right-hand side of this

expression is orthogonal to Ψ0. This determines ν1.

To determine an approximation for large delay we use the scaling law ansatz λ0 ∼ λc/T for T ≫ 1, which yields that

∆ρφ − φ + 2
[

e−λc + · · ·
]

wφ = O(T−1). Therefore, φ = w + O(T−1), and upon using ∆ρw − w = −w2, we obtain that

this equation holds when w2
(

2e−λc − 1
)

= 0. This yields that λc = log 2.

In this way, we conclude that λ0(T ) has the following limiting asymptotics for small and large delay:

λ0(T ) ∼ ν0 − 2ν0T

∫∞
0
ρwΨ2

0 dρ
∫∞
0
ρΨ2

0 dρ
+ · · · , as T → 0 ; λ0(T ) ∼ log 2/T + · · · , as T → ∞ . (3.17)

In the left panel of Fig. 3.2 we show numerical results of a Newton iteration scheme applied to LµΦ = λΦ to compute

λ0(T ) for any T > 0 when N = 2. The limiting asyptotics (3.17) are found to compare favorably with these results.

Next, we study complex eigenvalues of (3.3). We first observe that if Φ, λ is an eigenpair of (3.3) then so is Φ̄ and λ̄.

We first seek a necessary condition for which λ = iλI with λI > 0 is an eigenvalue of (3.3). We write Φ = ΦR + iΦI and

µ = e−iλIT = µR + iµI in (3.3), and after separating into real and imaginary parts we get

∆ΦR − ΦR + 2wµRΦR − 2wµIΦI = −λIΦI , ∆ΦI − ΦI + 2wµRΦI + 2wµIΦR = λIΦR . (3.18)
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Fig. 3.2: Left panel: the positive real eigenvalue λ0(T ) of LµΦ = λΦ when N = 2 (solid curve), as computed numerically from a
BVP solver. The asymptotic results (3.17) for small and large delay are the dashed curves.

Upon multiplying the first equation by ΦI and the second by ΦR, we subtract the resulting expressions and use Green’s

identity to obtain

2µI

∫

(

Φ2
I +Φ2

R

)

w = λI

∫

(

Φ2
I +Φ2

R

)

. (3.19)

Since λI > 0, this shows that µI = − sin(λIT ) < 0. Next, we multiply the first equation in (3.18) by ΦR and the second

by ΦI , and add the resulting equations. After using ∇ · (ΦR∇ΦR) = |∇ΦR|2 +ΦR∆ΦR. This readily yields

2µR

∫

(

Φ2
I +Φ2

R

)

w =

∫

(

|∇ΦR|2 + |∇ΦI |2 +Φ2
R +Φ2

I

)

, (3.20)

so that µR = cos(λIT ) > 0 at any HB point. In summary, we have shown that at any HB point with λI > 0 we must

have cos(λIT ) > 0 and sin(λIT ) < 0.

The next result establishes the existence of a HB point for Lµ when N = 2.

Lemma 3.3. The delayed local eigenvalue problem (3.3) in 2-D has a HB point.

Proof: Let w(ρ) be the ground-state solution to ∆ρw −w +w2 = 0 and define θ ≡ λIT . We now show that there is

a value θ0 of θ for which

∆ρΦ− Φ+ 2we−iθΦ = iλIΦ , Φ ∈ H1(R2) , (3.21)

has a solution λI > 0. In fact, we consider the following eigenvalue problem

∆ρΦ− Φ+ 2we−iθΦ = λΦ , Φ ∈ H1(R2) , (3.22)

where we vary θ ∈ (−π
3 , 0). When θ = 0, e−iθ = 1, it is known that (3.22) has a unique positive eigenvalue. On the other

hand, when θ = −π/3, so that e−iθ = 1
2 + i

√
3
2 , we claim that all eigenvalues of (3.22) must lie on the left-hand side of

the complex λ plane. To see this, we multiply (3.22) by the conjugate of Φ and integrate to obtain the identity

−
∫

(|∇Φ|2 + |Φ|2 − 2 cos(θ)w|Φ|2) = λR

∫

|Φ|2 , (3.23)

and

−2 sin(θ)

∫

(w|Φ|2) = λI

∫

|Φ|2 . (3.24)
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Upon setting cos(θ) = 1/2, we observe from (3.23) and (3.14) that −λR ≥ 0, so that λR ≤ 0. If λR = 0, we must have

Φ = cw for some constant c. Substituting into the equation, we see that this is impossible. By the continuity argument

(see [3]), as θ varies from 0 to −π
3 , the eigenvalue must cross the imaginary axis at some θ0 ∈ (−π

3 , 0). From (3.23)

and the fact that sin(θ) 6= 0 in this open interval, we have that λ 6= 0. Therefore the crossing point must be a Hopf

bifurcation point. From (3.24) we see that λI > 0. Since θ0 ∈ (−π
3 , 0), cos(θ0) > 0 and sin(θ0) < 0, the HB values of T

are Tn
H ≡ (θ0 + 2πn) /λI for n = 1, 2, 3, . . ..

From simple numerical computations of a matrix eigenvalue problem obtained from a finite difference approximation

of (3.21), we calculate that θ0 ≈ −0.9303 and λI ≈ 2.691. The first few critical values of the delay are then

T 1
H ≈ 1.989 , T 2

H ≈ 4.324 , T 3
H ≈ 6.659 , T 4

H ≈ 8.995 , T 5
H ≈ 11.33 . (3.25)

Paths in the complex plane for T > T j
H are then similar to those shown in the right panel of Fig. 3.1 for the case N = 1.

3.3. A Monotonicity Property for Fµ(λ). Next, we show for either N = 1 or N = 2 that Fµ(λ), as defined in

(3.2), is monotone increasing in λ > 0 real with λ 6= λ0(T ), where λ0(T ) > 0 is the unique real positive eigenvalue of LµΦ.

We first compute that

Lµw = (2µ− 1)w2 , (Lµ − λ)−1(w2) =
1

2µ− 1
(Lµ − λ)−1(Lµw) =

w

2µ− 1
+

λ

2µ− 1
(Lµ − λ)−1(w) . (3.26)

Hence (3.2) becomes

g(λ) =
1

χ(τλ)µ
−Fµ(λ) , Fµ(λ) ≡

1

2µ− 1
+

λ

2µ− 1
P (λ) , where P (λ) ≡

∫

w(Lµ − λ)−1w
∫

w2
. (3.27)

Therefore, upon setting g(λ) = 0, we conclude that λ must satisfy

1

χ(τλ)µ
= Fµ(λ) =

1

2µ− 1
+

λ

2µ− 1
P (λ) , (3.28)

where P (λ) is defined in (3.27). We now claim that P (λ), and hence Fµ(λ) is monotone increasing.

Lemma 3.4. For λ > 0 real and λ 6= λ0(T ), we have P ′(λ) > 0.

Proof: We define ψ ≡ (Lµ − λ)−1w, so that ψ solves

∆ψ − ψ + 2e−λTwψ = λψ + w . (3.29)

Upon differentiating this equation with respect to λ we obtain

∆ψ′ − ψ′ + 2e−λTwψ′ − λψ′ = 2Te−λTwψ + ψ . (3.30)

Hence, upon using (3.27) for P (λ), and integrating by parts, we obtain that

P ′(λ) =

∫

wψ
′

∫

w2
=

∫

w(Lµ − λ)−1(2Te−λTwψ + ψ)
∫

w2

= 2Te−λT

∫

w(Lµ − λ)−1(wψ)
∫

w2
+

∫

w(Lµ − λ)−1ψ
∫

w2
,

= 2Te−λT

∫

((Lµ − λ)−1w)(wψ)
∫

w2
+

∫

w(Lµ − λ)−2w
∫

w2
,

= 2Te−λT

∫

wψ2

∫

w2
+

∫

w(Lµ − λ)−2w
∫

w2
= 2Te−λT

∫

wψ2

∫

w2
+

∫ [

(Lµ − λ)−1w
]2

∫

w2
> 0 ,
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which proves the claim.

As a remark, by using L−1
1 w = w + ρw′/2 for N = 2 and L−1

1 w = w + yw′/2 for N = 1, we can calculate that

P (λ) > P (0) =

∫

wL−1
1 w

∫

w2
=

4−N

4
.

As a numerical confirmation of this key monotonicity result for Fµ, for both N = 1 and N = 2 in Fig. 3.3 we plot

Fµ(λ), defined in (3.2), on the interval 0 < λ < λ0(T ) of the real λ-axis for three values of the delay T . This confirms

that Fµ(λ) is monotone increasing on this interval with Fµ(λ) → +∞ as λ → λ0(T ) from below. Using L−1
1 w2 = w, it

also follows that Fµ(0) = 1 for all T ≥ 0. We remark that this monotonicity property is qualitatively similar to that for

the undelayed operator L1 (see [22] and [23]).
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Fig. 3.3: Plot of the numerically computed function Fµ(λ), defined in (3.2), when N = 1 (left panel) and when N = 2 (right panel)
on the positive real axis for 0 < λ < λ0(T ) for three values of the delay T as indicated in the figure. We confirm that
Fµ(λ) is monotone increasing on 0 < λ < λ0(T ), with Fµ(λ) → +∞ as λ → λ0(T ) from below.

This monotonicity result yields two key qualitative results for the roots of (3.28), which follow immediately from the

facts that Fµ(0) = 1, Fµ(λ) is monotone increasing on 0 < λ < λ0(T ) and Fµ(λ) → ∞ as λ→ λ0(T ) from below.

Theorem 3.1. Consider the NLEP (3.1), for which the eigenvalues are roots of (3.28). (I) Suppose that χ(0) < 1. Then,

the NLEP has a positive real eigenvalue on 0 < λ < λ0(T ) for any T ≥ 0 and τ ≥ 0. (II) Fix T ≥ 0, and suppose

χ(0) > 1, where χ(τλ) is given in (2.5b) and (2.7b). Then, there are at least two roots to (3.28), and hence at least two

positive real eigenvalues for the NLEP (3.1), when τ ≫ 1.

3.4. Continuous dependence on T . We write (3.1) in the following form:

LλΦ := LµΦ− χ(τλ)µw2

∫

wΦ
∫

w2
= λΦ . (3.31)

We claim that branches of eigenvalues of this NLEP are continuous in T ≥ 0 on S ≡ {λ |Re(λ) > −1 , χ(τλ) is analytic}.
We will only work in the class of radially symmetric functions. We first look at Fredholm properties. Since the map

Φ → µwΦ− χ(τλ)w2 is relatively compact as a map of H2 to L2, we see that the operator Lµ − λ is Fredholm of index

zero. Next we note that, if λ0 is an eigenvalue of LλΦ = λΦ then its geometric multiplicity on L2
r, where Lr is the operator

Lµ restricted to the radial class, is 1 unless λ = λ0. To see this, note that if we have two linearly independent eigen-

functions, a possible combination will make
∫

wφ = 0, and hence we obtain that λ satisfies the local eigenvalue problem

(3.3), which is impossible. The analyticity of our operator in λ on the set S, which can be seen from the definitions, the

Fredholm property and Theorem 3.6 of Gokhberg and Krein (cf. [9]) implies that all eigenvalues of (3.31) are isolated.

Finally, we show that the algebraic multiplicity is also one. This follows from Dancer’s argument (see page 248 of [3]).
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In conclusion, we have shown that for each fixed T , the eigenvalues of (3.31) are isolated with geometric and algebraic

multiplicity one. Applying the classical theory of Kato [13], we conclude the eigenvalues vary continuously in T .
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Fig. 3.4: HB threshold for (3.32) versus the constant multiplier χ0 of the nonlocal term in (3.32). Left panel: The minimum value
TH of T versus χ0 where a HB occurs. Right panel: The HB frequency λIH versus χ0. A HB occurs only on 0 ≤ χ0 < 1
with λIH → 0+ and TH → +∞ as χ0 → 1−. For χ0 > 1 the NLEP (3.32) does not have any HB as T is increased.

To illustrate the use of this result, we let N = 1 and study numerically how the unstable complex conjugate eigenvalues

for Lµ are pushed into the stable left half-plane Re(λ) < 0 for the following NLEP with a constant multiplier χ0 > 0:

LµΦ− χ0µw
2

∫

wΦ
∫

w2
= λΦ , Φ ∈ H1(R1) ; LµΦ = ∆Φ− Φ+ 2µwΦ , µ ≡ e−λT . (3.32)

As a starting point, we let χ0 = 0 and choose the minimum value T 1
H of the delay for which Lµ has a pure imaginary

eigenvalue λIH , and we then numerically track this HB point as χ0 is increased. With this homotopy, the HB threshold

value of T and frequency as a function of χ0 are shown in the left and right panels of Fig. 3.4. From this figure, we

observe that a HB occurs only when 0 ≤ χ0 < 1, and that λIH → 0+ and TH → +∞ as χ0 → 1−. For χ0 > 1 the NLEP

(3.32) does not undergo any HB as T is increased. Since when T = 0 we have Re(λ) ≤ 0, with equality holding iff Φ = w′

(cf. [24]), and that unstable eigenvalues can only enter Re(λ) > 0 through a HB, we conclude, by continuity in T , that

Re(λ) ≤ 0 for any T > 0 whenever χ0 > 1.

We remark that an extension of this result to N = 2 is used in §5.2 to characterize HB points for the NLEP (2.7)

with the constant multiplier χ = 2/(1 + β), which applies to asynchronous instabilities of multi-spot patterns in 2-D.

4. The 1-D Problems: NLEP Computations and a Scaling Law. In this section, we consider the NLEP (2.5)

for the 1-D case. From this spectral problem, we numerically determine the threshold conditions for a Hopf Bifurcation

(HB) for both the infinite-line (2.1) and the shadow (2.3) problems. We also derive a scaling law for the HB thresholds

in the limit of large delay T . We first note that when τ = 0 in (2.5), we have χ(τλ) = 2, and so by the result in §3.4 (see

Fig. 3.4), we have Re(λ) ≤ 0 for all T ≥ 0. Fixing T , we have from Theorem 3.1 that there are at least two positive real

eigenvalues when τ is large enough. By continuity in τ , there must be a HB at some τ = τH > 0 depending on T .

To determine the threshold conditions for such a HB, we set Re (g(iλIH)) = 0 and Im (g(iλIH)) = 0 in (2.6), where

λIH > 0. This yields a 2× 2 nonlinear system for the HB values τH and λIH at a particular value of the delay T ≥ 0. By

using Newton’s method on this system, together with a numerical computation of (Lµ − iλIH)−1w2, in the left panel of

Fig. 4.1 we plot the numerically computed HB boundary τH versus T for the shadow problem (2.3). Our numerical results

show that the spike solution is linearly stable for τ < τH . The corresponding HB frequency λIH is plotted versus T in the

middle panel of Fig. 4.1. In the right panel of Fig. 4.1 we show that τH/T and λIHT both tend to finite non-zero limiting
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values as T → ∞. As shown in Fig. 4.2, we obtain qualitatively similar results for a HB for the infinite-line problem

(2.1). Our key conclusion that τH is monotone increasing in T shows that a time-delay in only the activator kinetics has

a stabilizing effect on a spike solution for (2.3) and (2.1).
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Fig. 4.1: HB threshold τH (left panel) and frequency λIH (solid curve in middle panel) versus T , as computed from (2.6) for the
shadow problem (2.3). For τ < τH (shaded region), the spike solution is linearly stable. The dashed curve in the middle
panel is the large-delay asymptotic result for λIH given in (4.4). Right panel: plot of τH/T (monotone decreasing solid
curve) and λIHT (monotone increasing solid curve), as computed from (2.6). The asymptotes (dashed lines) are the
theoretically predicted limiting values limT→∞ τH/T ≈

√
3/π and limT→∞ λIHT ≈ π/3, as obtained from (4.4).
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Fig. 4.2: HB values for the infinite-line problem (2.1), with the same caption as in Fig. 4.1. In the middle panel, the large-delay
asymptotic result (dashed curve) is λIH ∼ c0/T with c0 ≈ 0.782. In the right panel the theoretically predicted horizontal
asymptotes are limT→∞ τH/T ≈ 1.99 and limT→∞ λIHT ≈ 0.782, as obtained from (4.8).

The numerical results shown in Fig. 4.1 and Fig. 4.2 show that the HB threshold and frequency satisfy τH → ∞ and

λIH → 0 as T → ∞, respectively, with τH/T and λIHT both tending to finite non-zero limiting values as T → ∞.

We now characterize this large delay limiting behavior analytically. Our explicit results, described below, are shown

by the dashed lines in the middle and right panels of Fig. 4.1 and Fig. 4.2. For T → ∞, we pose τH ∼ τ0T and λ ∼ ic0/T

for some c0 > 0 and τ0 > 0 to be found. With this scaling law, (2.5a) reduces to leading-order to

Φ′′ − Φ+ 2w
[

e−ic0 + · · ·
]

Φ−
[

χ0e
−ic0 + · · ·

]

w2

∫∞
−∞ wΦ dy
∫∞
−∞ w2 dy

=

[

ic0
T

+ · · ·
]

Φ , (4.1)

where χ0 ≡ χ(ic0τ0). Since w
′′ − w + w2 = 0, (4.1) yields that Φ ∼ w +O(T−1), provided that c0 and τ0 are roots to

eic0 = 2− χ0 . (4.2)
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For the shadow problem, where from (2.5b) we have χ = 2/(1 + τλ), the complex-valued equation (4.2) becomes

eic0 =
2ic0τ0

1 + ic0τ0
. (4.3)

By setting the modulus of the right-hand side of (4.3) to unity, and defining ξ ≡ c0τ0, we get 2ξ =
√

1 + ξ2, so that

c0τ0 = 1/
√
3. Then, (4.3) yields eic0 = eiπ/3, which has c0 = π/3 as its minimal root. In this way, the scaling law for a

HB for the shadow problem (2.3) is

τH ∼
√
3

π
T ; λ = iλIH , λIH ∼ π

3T
, as T → ∞ . (4.4)

The asymptotics for λIH , given by the dashed curve in the middle panel of Fig. 4.1, agree well with the numerical results. In

addition, the theoretically predicted horizontal asymptotes limT→∞ τH/T = τ0 ≈ 0.551 and limT→∞ λIHT = c0 ≈ 1.047,

shown in the right panel of Fig. 4.1, agree well with the numerically computed results from (2.6).

A similar analysis can be done for the infinite-line problem where, from (2.5b), χ = 2/
√
1 + τλ. Then, (4.2) becomes

eic0 =
2
[√

1 + iτ0c0 − 1
]

√
1 + iτ0c0

. (4.5)

By setting the modulus of the right-hand side of (4.5) to unity, we get that 2|z−1| = |z|, where z ≡
√
1 + iξ and ξ ≡ c0τ0.

Upon separating z into real and imaginary parts, as z = zR + izI , we get

3(z2R + z2I ) = 8zR − 4 , where zR =

√

α+ 1

2
, zI =

√

α− 1

2
, α ≡

√

1 + ξ2 , (4.6)

which can be combined to obtain 3α = 4
√

2(1 + α)− 4. This yields that α = 4(1 +
√
10)/9, and consequently

ξ = c0τ0 = lim
T→∞

λIHτH =

√

95 + 32
√
10

9
≈ 1.5563 . (4.7)

With c0τ0 known, we take the imaginary part of (4.5) to obtain that sin(c0) = 2zI/(z
2
R + z2I ). From the expressions for

zR and zI in (4.6), we obtain c0 and τ0 in terms of α = 4(1 +
√
10)/9 as

c0 = sin−1

(√
2

α

√
α− 1

)

≈ 0.782106 , τ0 =

√

95 + 32
√
10

9c0
≈ 1.9899 . (4.8)

With these values of c0 and τ0, the scaling law for a HB for the infinite-line problem (2.1) is τH ∼ τ0T and λ = iλIH

with λIH ∼ c0/T as T → ∞. The asymptotics λIH ∼ c0/T is shown by the dashed curve in the middle panel of Fig. 4.2.

The theoretically-predicted limiting values limT→∞ τH/T = τ0 ≈ 1.99 and limT→∞ λIHT = c0 ≈ 0.782, given by the

horizontal asymptotes in the right panel of Fig. 4.2, agree well with the numerically computed results from (2.6).

4.1. Numerical Validation of the Theory. In order to readily compare our theoretical results for the HB threshold

with full numerical results from the delayed RD system we need to extend our theory to the case of a finite 1-D domain

|x| ≤ L so as to be more readily able to compute solutions to the full PDE system. As such, we consider a one-spike

solution centered at x = 0 for the finite-domain problem

vt = ε2vxx − v + v2T /u , τut = uxx − u+ ǫ−1v2T , |x| ≤ L , t > 0 , (4.9)

where vx = ux = 0 at x = ±L. By first constructing a one-spike solution and then analyzing the linear stability problem,

a simple calculation, similar to that in [6] and [23], shows that the linear stability problem reduces to determining the

roots of (2.6), where χ(τλ) is now defined in terms of the principal branch of
√
1 + τλ by

χ(τλ) =
2√

1 + τλ

(

tanh(L)

tanh
(

L
√
1 + τλ

)

)

. (4.10)
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Fig. 4.3: Plot of the HB threshold τH versus T for the 1-D finite-domain problem (4.9) on |x| ≤ L where L = 0.2 (dashed curve),
L = 1 (dashed-dotted curve), L = 2 (solid curve), and L = 10 (heavy solid curve). The threshold was computed numerically
from (2.6) with χ(τλ) as given in (4.10). The one-spike solution is linear stable when τ < τH . The threshold for L = 10
closely approximates that for the infinite-line problem, which was given in the left panel of Fig. 4.2.

We then set λ = iλIH and numerically compute the roots of g(iλIH) = 0 using a Newton iteration scheme, where g(λ) is

defined in (2.6) in terms of χ as given in (4.10). The resulting HB curves τH versus T for four values of L are shown in

Fig. 4.3. As L increases we see there is a wider range of τ at a given delay T where a one-spike solution is linearly stable.
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Fig. 4.4: Plot of the amplitude v(0, t) of the spike versus t for τ = 5.3 (left panel), τ = 5.6 (middle panel), and τ = 10 (right
panel), as computed numerically by discretizing (4.9) with 151 spatial meshpoints on [−2, 2] with ǫ = 0.05 and T = 2.
The theoretical HB prediction is τH ≈ 5.573 (see Fig. 4.3 with L = 2 and T = 2). The numerics shows a slowly decaying
(growing) oscillation when τ = 5.3 (τ = 5.6), respectively. A large oscillation leading to a collapse of the spike occurs
when τ is well-above the HB threshold (right panel).

As a partial verification of the results of Fig. 4.3 for the HB stability threshold, we took ǫ = 0.05, L = 2, and T = 2,

and discretized (4.9) with 151 spatial meshpoints using a method of lines approach. We then used the dde23 solver of

MATLAB to solve the system of delay (ordinary) differential equations (DDEs) for a value of τ slightly below and then

slightly above the theoretically predicted HB threshold of τH ≈ 5.573. The numerical results shown in the left and middle

panels of Fig. 4.4 confirm our prediction of the HB threshold. In the right panel of Fig. 4.4 we show that the spike

amplitude first oscillates and then collapses for a value of τ that is considerably above the HB threshold.

5. The 2-D NLEP Problem: Computations and a Scaling Law. In this section we study the NLEP (2.7)

characterizing the linear stability of an M -spot pattern, with M ≥ 2, for the GM model (1.1) with delayed activator

kinetics in a bounded 2-D domain. For both the synchronous and asynchronous modes of instability, we will show that a
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time-delay in the activator kinetics leads to a wider parameter range where spot patterns are linearly stable.

5.1. The Synchronous Mode. We first consider the NLEP (2.7) for the synchronous mode by determining a

parameterization of the HB curve in the τ versus β plane for a fixed delay T ≥ 0. We substitute χ for the synchronous

mode, as given in (2.7b), into (2.8) and set λ = iλI , with λI ≥ 0, to obtain that

(1 + β)

2
eiλIT

(

1 + iτλI
1 + β + iτλI

)

= Fµ(iλI) . (5.1)

We solve this equation for β to get

β = −1 +
2iτλIFµ(iλI)

eiλIT (1 + iτλI)− 2Fµ(iλI)
, (5.2)

and, upon taking the imaginary part of this expression, we conclude that

Im

(

2iτλIFµ(iλI)

eiλIT (1 + iτλI)− 2Fµ(iλI)

)

= 0 . (5.3)

We then separate Fµ(iλI) into real and imaginary parts as

Fµ(iλI) = FRµ(λI) + iFIµ(λI) . (5.4)

Upon substituting (5.4) into (5.3), we solve for τ = τH(λI) to obtain the parameterization

τH =
2|Fµ|2 −FRµ cos(λIT )−FIµ sin(λIT )

λI (FIµ cos(λIT )−FRµ sin(λIT ))
, (5.5)

where FRµ ≡ FRµ(λI), FIµ ≡ FIµ(λI), and |Fµ| ≡
√

F2
Rµ + F2

Iµ.

Similarly, if we solve (5.1) for iτλI , we get

iτλI = (1 + β)

(

2Fµ(iλI)− eiλIT

eiλIT (1 + β)− 2Fµ(iλI)

)

. (5.6)

By setting the real part of the right-hand side of (5.6) to zero, and upon solving the resulting equation for β, we obtain

the parameterization β = βH(λI) where

βH =
4|Fµ|2 + 1− 4FRµ cos(λIT )− 4FIµ sin(λIT )

2FRµ cos(λIT ) + 2FIµ sin(λIT )− 1
. (5.7)

The expressions (5.5) and (5.7) parametrize the HB threshold in the τ versus β plane in terms of λI > 0, at a fixed

value of the delay T . We remark that if we replace Fµ with F1, corresponding to setting T = 0 in (5.5) and (5.7),

we recover the parameterization given in equation (4.16) of [6] (see also Fig. 4.1 of [6]) for the 2-D GM model with no

activator or inhibitor delays.

To implement (5.5) and (5.7) numerically, we write Fµ(iλI) in terms of the complex-valued ψ ≡ (Lµ − iλI)
−1w2 as

Fµ(iλI) =

∫∞
0
ρwψ dρ

∫∞
0
ρw2 dρ

, where ∆ρψ − ψ + 2w (cos(λIT )− i sin(λIT ))ψ − iλIψ = w2 , (5.8)

where w(ρ) > 0 is the ground-state solution satisfying ∆ρw−w+w2 = 0. We solve for the ground-state numerically and

then determine ψ = ψR+ iψI from a BVP solver applied to ψ. In this way, we can readily compute FRµ(λI) and FIµ(λI)

from (5.8), which is needed in our expressions (5.5) and (5.7) for the HB threshold.
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Fig. 5.1: HB thresholds for the synchronous mode computed from (5.5) and (5.7). Left panel: The HB threshold τH versus β for
T = 0 (heavy solid curve). The spot pattern is linearly stable for all β < 1 and for τ < τH when β > 1. From bottom
to top, the various dashed curves are HB thresholds for T = 1, T = 2, T = 5 and T = 10. The thin solid curve is the
asymptotic scaling law (5.12) for τH when T = 10. The effect of activator delay leads to a wider parameter range for
stability. Right panel: plot of the HB frequency λIH versus β on β > 1 with the same labeling as in the left panel, except
that now as λIH decreases as T increases. The thin solid curve is the asymptotic scaling law (5.12) for λIH when T = 10.

With this numerical approach, in the left panel of Fig. 5.1 we plot the HB threshold in the τ versus β plane for T = 0

and four nonzero values of the delay. The corresponding HB frequency, λIH , is plotted versus β in the right panel of

Fig. 5.1. From this figure, we observe that a HB exists only on the range β > 1, and that τH → +∞ as β → 1+. We also

observe that at a fixed β > 1, τH increases as T increases, so that the effect of delayed activator kinetics is to increase the

parameter range for the linear stability of the multi-spot pattern.

To determine the limiting behavior of τH for T ≫ 1 at a fixed β > 1, we pose the scaling law τH ∼ τ0T , λ ∼ ic0/T

where c0 > 0 and τ0 > 0 are to be found. Upon substituting this into (3.1) we get

∆ρΦ− Φ+ 2w
[

e−ic0 + · · ·
]

Φ−
[

χ0e
−ic0 + · · ·

]

w2

∫∞
0
wΦρ dρ

∫∞
0
w2ρ dρ

=

[

ic0
T

+ · · ·
]

Φ , (5.9)

where χ0 = χ(ic0τ0) is given in (2.7b). Setting Φ = w+O(T−1), and using ∆ρw−w+w2 = 0, we get −1+(2−χ0)e
−ic0 = 0.

This yields that

eic0 = 2− 2

1 + β

(

1 + β + iτ0c0
1 + iτ0c0

)

=
2β

1 + β

(

iτ0c0
1 + iτ0c0

)

. (5.10)

Upon taking the modulus of (5.10), and solving for τ0c0, we get

τ0c0 =
1

√

f2 − 1
, where f ≡ 2β

1 + β
, (5.11)

provided that f > 1, which implies that β > 1. Then, by taking the imaginary part of (5.10) we get

c0 = sin−1

(

fτ0c0
1 + τ20 c

2
0

)

.

In this way, we obtain for β ≡ 2πMD0/|Ω| > 1, that as T → +∞, there is a HB for the synchronous mode with the

scaling law

τH ∼ τ0T , τ0 =

(

1
√

f2 − 1

)

1

sin−1
(

√

f2 − 1/f
) , f ≡ 2β

β + 1
, (5.12a)

λ = iλIH , λIH ∼ c0/T , c0 = sin−1
(

√

f2 − 1/f
)

. (5.12b)
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We observe that for a fixed T with T ≫ 1, we have τH → +∞ and λIH → 0 as β → 1+. A plot of the asymptotic results

for λIH and τH versus β on β > 1 when T = 10 are shown in Fig. 5.1 to compare very well with full numerical results

computed from the parameterization (5.5) and (5.7).

5.2. The Asynchronous Mode. We now consider the NLEP (2.7) for the asynchronous mode where χ = 2/(1 + β).

We recall from Theorem 3.1 that there is a positive eigenvalue for any T ≥ 0 when χ < 1. Consequently, we conclude

that the multi-spot pattern is unstable for any T ≥ 0 when β ≡ 2πMD0/|Ω| > 1.

Next, we calculate the HB threshold in the T versus β plane, obtained by solving (2.8), which we write as a coupled

system for T = TH and λIH , satisfing

(1 + β)

2
cos(λIT ) = FRµ(λI) ,

(1 + β)

2
sin(λIT ) = FIµ(λI) , (5.13)

where Fµ(iλI) = FRµ(λI) + iFIµ(λI). This system is solved as β is varied by using Newton iterations. As a starting

point, we let β ≫ 1 and choose the minimum value T 1
H of the delay for which Lµ has a pure imaginary eigenvalue iλIH .

We then numerically path-follow this HB point as β is decreased. With this numerical approach, the HB threshold value

of TH and frequency λIH as a function of β are shown in the left and right panels of Fig. 5.2. From this figure, we observe

that a HB occurs only when β > 1, and that λIH → 0+ and TH → +∞ as β → 1+. For β < 1 the NLEP (2.7) for the

asynchronous mode does not have a HB for any T ≥ 0. Although there is a HB value of T when β > 1, the entire region

β > 1 is linearly unstable for any T ≥ 0, as the NLEP always has a positive real eigenvalue. In contrast, when β < 1, we

conclude that Re(λ) ≤ 0 for any T ≥ 0.
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Fig. 5.2: HB threshold for the asynchronous mode computed from (5.13). Left panel: The minimum value TH of T versus β where
a HB occurs. Right panel: The HB frequency λIH versus β. We observe that a HB occurs only on β > 1 with λIH → 0+

and TH → +∞ as β → 1+. For β > 1 the NLEP (2.7) for the asynchronous mode also has a positive real eigenvalue for
any T ≥ 0. When β < 1, we predict that the mutli-spot pattern is linearly stable for any T ≥ 0.

Finally, we compare our HB threshold for the asynchronous mode with only activator delay with corresponding

thresholds for the case of both activator and inhibitor delay, and with only inhibitor delay. In the former case v2T /u in

(1.1) is replaced with v2T /uT , whereas when there is only inhibitor delay v2T /u and ε−Nv2T in (1.1) are replaced with v2/uT

and ε−Nv2. When there is both activator and inhibitor delay, χµ in (2.7) is replaced with χµ2, and a HB of the NLEP

must be a root λI = λIH and T = TH of the coupled system

(1 + β)

2
cos(2λIT ) = FRµ(λI) ,

(1 + β)

2
sin(2λIT ) = FIµ(λI) , (5.14)

In contrast, when there is only inhibitor delay, Lµ in (2.7) is replaced by its undelayed counterpart L1Φ ≡ ∆ρΦ−Φ+2wΦ,
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and a HB of the NLEP must be a root of

(1 + β)

2
cos(λIT ) = FR1(λI) ,

(1 + β)

2
sin(λIT ) = FI1(λI) , (5.15)

where F1(iλI) = FR1(λI)+iFI1(λI) now depends only on λI and not T . As a result, in this latter case, we can conveniently

parameterize the HB in the T versus β plane in terms of λI as

β = 2
√

|F1(iλI)|2 − 1 , TH =
1

λI
tan−1

( F1I(λI)

F1R(λI)

)

. (5.16)
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Fig. 5.3: Left panel: The minimum value TH of T versus β where a HB occurs when the time delay occurs for both the activator
and inhibitor kinetics, as computed numerically from (5.14). The HB threshold occurs for any β > 0. Right panel:
The corresponding HB threshold when the time-delay occurs only for the inhibitor, as computed numerically from the
parameterization (5.16). The HB threshold only occurs on 0 < β < 1, and TH → 1/2 with λIH → 0+ as β → 1−.

By solving (5.14) using Newton’s method, and by using the parameterization (5.16), in the left and right panels of

Fig. 5.3 we plot the minimum value TH of the delay for which a HB occurs. In comparison with the left panel of Fig. 5.2

for the case of only activator delay, we observe from the left panel of Fig. 5.3 that when there is both activator and

inhibitor delay there is a HB for the entire range β > 0. For the range β > 1, the HB value of T with both activator and

inhibitor delay is smaller than that with only activator delay. Moreover, when there is only inhibitor delay, as shown in

the right panel of Fig. 5.3 we observe that there is a HB only on the range 0 < β < 1, and on this range the HB threshold

in T is smaller than with both activator and inhibitor delay. This HB branch terminates as β → 1−, owing to the fact

that λIH → 0+ as β → 1−. Since F1I(λI) ∼ λI/2 as λI → 0+ and FR1(0) = 1 (see [22]), we readily calculate from (5.16)

that TH → 1/2 as β → 1−. This confirms the limiting value shown in the right panel of Fig. 5.3.

In summary, we conclude that when there is only delayed activator kinetics the multi-spot pattern is linearly stable

to asynchronous perturbations in the amplitudes of the spots for any delay T ≥ 0 when β ≡ 2πMD0/|Ω| < 1. If there is

any inhibitor delay, then there is a HB stability threshold in T on the range 0 < β < 1. In this sense, delayed activator

kinetics leads to better stability properties than when inhibitor delay is included.

6. Discussion. We have studied the onset of an oscillatory instability in the amplitude of a localized spike solution

for various limiting forms of the GM activator-inhibitor RD model in the case where the nonlinear activator kinetics has

a fixed time-delay. Such an instability arises from a Hopf bifurcation associated with a new class of nonlocal eigenvalue

problem (NLEP). The motivation for the study of this problem is the previous computational studies (cf. [7], [15], [16],

[18]) of pattern formation in RD systems with a fixed time-delay in the reaction kinetics, which models time lags needed

for the expression of genes. In contrast to the conclusion of our recent analysis of [6], where a time-delay was assumed in
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both the activator and inhibitor kinetics, we showed herein that a time-delay in only the activator kinetics has a stabilizing

effect, in the sense that there is a larger region in parameter space where a spike solution is linearly stable than when

there is no delayed reaction kinetics. Phase diagrams exhibiting these larger parameter regions where the spike is linearly

stable under the effect of delayed activator kinetics were generated from a numerical study of the NLEP, together with

analytical scaling laws for the Hopf bifurcation thresholds in the limit of large delay.

We now briefly discuss a few possible additional directions that warrant further study. Firstly, from a modeling

viewpoint, although we have considered only the effect of delayed activator kinetics on the GM model, the present study

suggests more generally that, when there is a time-delay in only the autocatalytic term in the reaction kinetics, localized

RD patterns will have similar enhanced stability properties. It would be interesting to study this conjecture for other

choices of the reaction kinetics and, more importantly, to try to develop realistic biological modeling scenarios for which

it is only the autocatalytic component of the nonlinearity that undergoes a fixed time-delay.

From a mathematical viewpoint, our analysis has only considered the linear stability of spike solutions on an O(1)

time-scale, as characterized by the spectrum of an NLEP. For the 1-D finite-domain problem, it would be interesting to

extend our analysis to study the effect of a time-delay in the activator kinetics on the small eigenvalue of order O(ǫ2)

(cf. [11]) in the linearization of a one-spike steady-state pattern. A Hopf bifurcation for this small eigenvalue as the

activator delay increases would lead to a small-amplitude oscillatory motion in the spatial location of the spike. To study

large-scale motion in the location of a spike, one would have to derive and then analyze a delay differential ordinary

differential equation for the location of a spike. With no delayed reaction kinetics, such an analysis was given in [12].

Finally, we remark on a possible interesting effect of delayed activator kinetics on the linear stability of homoclinic

stripe patterns in bounded 2-D domains. For the GM model, such homoclinic stripe solutions, formed from the localization

of a spike on a one-dimensional curve in a 2-D domain, are known to be unconditionally unstable to breakup into localized

spots unless one includes a strong saturation mechanism for the autocatalysis term (cf. [14], [19]). As the saturation

parameter increases towards a critical value associated with a homoclinic bifurcation point, it has been shown that the

principal eigenvalue of the local part of the linearized operator decreases to zero. This mechanism has been shown for

straight stripes in [14], and more generally in [19], to eliminate the band of unstable breakup modes associated with the

underlying NLEP, leading to a stabilization of the homoclinic stripe. Since the effect of increasing the time-delay in the

activator kinetics also decreases the principal eigenvalue of the local part of the linearized operator to zero (see the left

panel of Fig. 3.1), we anticipate that a homoclinic stripe solution will be linearly stable to breakup instabilities whenever

the time-delay is large enough. It would be interesting to examine in detail this new conjectured mechanism to stabilize

homoclinic stripes in 2-D domains.
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Appendix A. The Delayed Local Operator in 1-D: An Explicit Formula.

We determine the spectrum of the delayed local operator (3.3) in 1-D, written for Φ = Φ(y) as

Φ′′ − Φ+ 2µwΦ = λΦ , Φ ∈ H1(R1) , where µ = e−λT , w(y) =
3

2
sech2 (y/2) . (A.1)

To determine the spectrum, we first convert this problem into a standard problem for hypergeometric functions by

following a similar approach done in [4]. As in [4], we introduce the new variables γ and φ(y) by

γ ≡
√
1 + λ , Φ = wγφ , (A.2)

and specify the principal branch of
√
1 + λ so that Re(γ) > 0. Then, upon using w′′ = w − w2 and (w′)2 = w2 − 2w3/3,

20



a simple calculation shows that

φ′′ + 2γ
w′

w
φ′ +

(

2µ− γ − 2

3
γ(γ − 1)

)

wφ = 0 . (A.3)

Next we introduce the new independent variable z, defined by

z =
1

2

(

1− w′

w

)

. (A.4)

Upon using w ∼ e−|y| as y → ±∞ and the monotonicity of w′/w, (A.4) provides a one-to-one map of −∞ < y < ∞ to

0 < z < 1. We calculate that

dz

dy
= −1

2

(

w′′

w
− (w′)2

w2

)

= −1

2

(

w − w2

w
− (w2 − 2w3/3)

w2

)

=
w

6
.

We have z′′ = w′/6 so that w′/w = z′′/z′. Using w′/w = 1 − 2z from (A.4), we obtain that z′′ = z′ − 2zz′. Upon

integrating this expression once we get that

dz

dy
= z(1− z) , w = 6z(1− z) . (A.5)

As such, if we define Y(z) = φ[y(z)], we readily calculate from (A.3) and (A.5) that Y(z) satisfies the hypergeometric

differential equation

z(1− z)Y ′′ + (c− (a+ b+ 1)z)Y ′ − abY = 0 , (A.6a)

where the coefficients a, b, c are

a+ b+ 1 = 4γ + 2 , ab = 4γ(γ − 1) + 6γ − 12µ , c = 1 + 2γ , where γ =
√
1 + λ . (A.6b)

The general solution to (A.6a), in terms of arbitrary constants d1 and d2, can be written in terms of standard

hypergeometric functions as (cf. [20])

Y(z) = d1F (a, b; c; z) + d2z
1−cF (a− c+ 1, b− c+ 1; 2− c; z) . (A.7)

As z → 0, corresponding to y → −∞, we have upon using (A.6b) that Y(z) = O(z−2γ) → +∞ unless d2 = 0. Then, since

w = O(z) as z → 0 from (A.5), we use (A.2) to get Φ = O(w−γ) as y → −∞ unless d2 = 0. Therefore, since Reγ > 0, a

necessary condition for Φ ∈ H1(R1) is that d2 = 0 in (A.7).

Next, using (A.6b) we calculate Re(a+ b− c) = 2Reγ > 0 by our choice of branch cut. Therefore, from [20] we have

that F (a, b; c; z) has the following singular behavior as z → 1 in terms of the Gamma function Γ(x):

F (a, b; c; z) ∼ Γ(c)Γ(a+ b− c)

zc−a−bΓ(a)Γ(b)
, as z → 1 , (A.8)

so that Φ(y) = wγY(z(y)) = O(w−γ) as y → ∞. To eliminate this possible singular behavior as y → +∞, we must choose

a, b and c to eliminate the coefficient of the singularity in (A.8). Since Re(c) > 0 and Re(a+ b− c) > 0, we conclude that

Φ is regular as y → +∞ iff Γ(x) has a pole at a or b. In other words iff a, b = 0,−1,−2, .... With this criterion, and using

(A.6b), we compute that a = 2γ − α and b = 2γ + 1 + α, where α is one of the two roots of the quadratic

α2 + α− 12µ = 0 . (A.9)
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Since the two roots satisfy α++α− = 1, where Re(α+) > 0 and Re(α−) < 0, then Γ(x) has a pole at a or b iff 2γ−α+ = −l
with l = 0, 1, 2, . . .. With α+ being the root of (A.9) for which Re(α+) > 0, we conclude that Φ ∈ H1(R) iff

2γ − α+ = −l , l = 0, 1, 2, . . . . (A.10)

By solving for α+ and letting µ = e−λT , (A.10) yields a family of transcendental equations parametrized by l, as written

in (3.4) of §3.1. Real-valued roots of (A.10), corresponding to real eigenvalues of Lµ, are analyzed in §3.1.
Next, we examine whether (A.10) admits a pure imaginary eigenvalue λ = iλI , where without loss of generality we

take λI > 0. Our goal is to derive the explicit characterization (3.7)–(3.9) given in §3.1. We first write α+ = αR + iαI ,

and obtain from (A.10) that

2Reγ − αR = −l , 2Imγ − αI = 0 . (A.11)

Since γ =
√
1 + iλI , this yields

(αR − l)
2 − α2

I = 4
[

(Reγ)2 − (Imγ)2
]

= 1 , (A.12)

which implies that αR ≥ l + 2. Next, we separate (A.9) into real and imaginary parts, using µ = µR + iµI , which yields

α2
R + αR − α2

I = 12µR , αI (2αR + 1) = 12µI ; µR = cos(λIT ) , µI = − sin(λIT ) . (A.13)

We combine (A.12) with the first of (A.13), and solve the resulting expression for αR to get

αR =
l2 − 4 + 12µR

1 + 2l
. (A.14)

Since αR ≥ l+2, (A.14) implies that l must satisfy (l+1)(l+5) ≤ 12µR. Since −1 < µR < 1, we obtain the key conclusion

that l = 0 and l = 1 are the only possible choices in (A.10) that admit a pure complex eigenvalue λ = iλI . Since l = 1

corresponds trivially to λI = 0 for all T ≥ 0, l = 0 is the only choice leading to λI > 0.

With l = 0, we get αR from (A.14) and αI from the second equation of (A.13). This yields that

αR = −4 + 12µR , αI =
12µI

1 + 2αR
, αR + iαI = 2Re(

√

1 + iλI) + 2i Im(
√

1 + iλI) . (A.15)

These expressions, which relate λI to µ, show that we must have µR = cos(λIT ) > 1/2 and µI = − sin(λIT ) > 0 when

λI > 0. Finally, we substitute (A.15) into the first equation of (A.13) to obtain, after some algebra, that

(24µR − 7)
2 (

12µ2
R − 8µR + 1

)

− 12µ2
I = 0 . (A.16)

Upon labeling θ ≡ λIT , we conclude that θ must be a root of H(θ) = 0, where

H(θ) ≡ (24 cos θ − 7)
2 (

12 cos2 θ − 8 cos θ + 1
)

− 12 sin2 θ , (A.17)

for which cos θ > 1/2 and sin θ < 0. We use H(θ) = H(−θ), H(0) > 0, H(π/3) < 0, and H(θ) is monotonically increasing

on 0 < θ < π/3 to obtain the sequence of values θn = θ0 + 2πn with n = 1, 2, 3, . . . where a pure complex eigenvalue

occurs. Here θ0 < 0 is the unique root to H(θ) = 0 in −π/3 < θ < 0. This yields (3.7) and (3.9) as written in §3.1.
Finally, to obtain λI , as written in (3.8), we set θ = λIT , we use 4

√
1 + iλI + 1 =

√

1 + 48(cos θn − i sin θn), where

θn = −θ0 + 2πn. Upon squaring both sides and taking the imaginary parts of the resulting expression we obtain (3.8)

for λI , which is independent of n. This completes the derivation of (3.7)–(3.9), which determines all values of the delay

T for which Lµ has purely imaginary eigevalues in one space dimension.
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