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Abstract. We consider a standard reaction-diffusion system (the Schnakenberg model) that generates localized
spike patterns. Our goal is to characterize the distribution of spikes in space and their heights for any spatially-
dependent feed rate A(x). In the limit of many spikes, this leads to a fully coupled nonlocal problem for spike
locations and their heights. A key feature of the resulting problem is that it is necessary to estimate the difference
between its continuum limit and the discrete algebraic system to derive the effective spike density. For a sufficiently
large feed rate, we find that the effective spike density scales like A2/3(x) whereas the spike weights scale like A1/3(x).
We derive asymptotic bounds for existence of N spikes. As the feed rate is increased, new spikes are created through
self-replication whereas the spikes are destroyed as the feed rate is decreased. The thresholds for both spike creation
and spike death are computed asymptotically. We also demonstrate the existnence of complex dynamics when the
feed rate is sufficiently variable in space. For a certain parameter range which we characterize asymptotically, new
spikes are continously created in the regions of high feed rate, travel towards regions of lower feed rate and are
destroyed there. Such “creation-destruction loop” is only possible in the presence of the heterogenuity.

1. INTRODUCTION

Reaction-diffusion PDE’s are ubiquitous as models of pattern formation in a variety of biological and social systems.
Some prominent examples include: animal skin patterns [1–3]; vortex lattices in Bose-Einstein condensates [4, 5];
patterns in chemical reactions [6–8]; crime hot-spots in a model of residential burglaries [9–12]; and vegetation patches
in arid environments [13–16] A common feature of many of these systems is the presence of localized patterns such
as spots, stripes etc. There is a very large literature about the formation and stability of these patterns, especially
within homogeneous environments. We refer the reader to books [17–21] and references therein.

While initial pattern formation and various instabilities are by now well studied, much less is known about dis-
tribution of resulting patterns, especially – as is often the case in nature – if there are spatial inhomogenuities. For
example, vortex crystals in Bose Einstein condensates form in the presence of a rotating confining trap, which is
modelled by Gross-Pitaevskii equation with a space-dependent potential [22]. The condensates are not uniformly
distributed, but have a higher density near the center of the trap [23–25]. Animal skin patterns are also highly
dependent on the location within the animal, since the thickness, curvature and growth of the skin is nonuniform
and has a large effect on the resulting patterns [26–31]. Similarly, the distribution of the vegetation patches is highly
dependent on the amount of precipitation and slope gradients which vary in space and time [16, 32, 33].

In this paper we study the spot distribution and stability for a one-dimensional reaction-diffusion model with a
space-dependent feed rate. For concreteness, we concentrate on the well-studied Schnakenberg model [34–36] but
we anticipate these techniques can be extended to other settings. We consider the following limiting scaling of the
Schnakenberg model,


ε2ut = ε2uxx − u+ u2v, x ∈ (−L,L)

0 = vxx + a0A(x)− u2v

ε
, x ∈ (−L,L)

ux = 0 = vx at x = ±L
. (1.1)

These equations model the following process: a fast-diffusing substrate v is consumed by a slowly diffusing activator
u, which decays with time. The substrate is being pumped into the system at some space-dependent feed rate a0A(x).
The constant a0 represents the overall feed strength and we will use it as the control parameter. The reaction kinetics
for u and v occur at different scales: u reacts much slower than v, so that v is effectively slave to u. This model
is also a limiting case of the Klausmeyer model of vegetation (where u represents plant density, v represents water
concentration in soil, a0A(x) is the precipitation rate, and vxx is replaced by vxx+cvx−dv) as well as the Gray-Scott
model (where vxx is replaced by vxx − dv). As such, the Schnakenberg model is among the simplest prototypical
reaction-diffusion models.

In the limit ε→ 0, the system (1.1) is well known to to generate patterns consisting of spots (or spikes) [28, 35, 36].
In the case of a constant feed rate A(x) = 1, the equlibrium consists of a sequence of equally-spaced spikes as
illustrated in Figure 3. On the other hand, when A(x) is spatially dependent, the spike spacing is non-uniform, as
shown in Figure 1(a). The goal of this paper is to describe the density distribution of spikes and their stability in
this situation.
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FIG. 1. (a) Stable equilibrium configuration having 22 spikes. Red dots and dashed line are the theoretical prediction for
the density and spike heights as given in Main Result 2.2. Here, A(x) = 1 + 0.5 cos(x), L = π, ε = 0.007 with a0 as shown.
Note that the steady state is non-uniform, unlike the case of constant a (see figure 3). (b) Illustration of spike creation. Full
numerical simulation of (1.1) where a0 is gradually increased according to the formula a0 = 1 + 0.08t; other parameters are
as in (a). New spikes are created through self-replication near the origin where a(x) has its maximum. (c) The number of
spots as a function of a0. Solid stair line corresponds to the observed number of spots from the numerical simulation in (a).
Dashed line is the theoretical prediction a0 = a0,split given in (3.27). (d) Illustration of spike destruction. As in (b) except
that a0 is very gradually decreasing according to the formula a0 = 120− 0.08t. Note that spikes are destroyed near x ∼ ±π.
(e) The number of spots as a function of a0. Solid stair curve corresponds to the observed number of spots from the numerical
simulation in (a). Dashed line is the theoretical prediction a0 = a0,coarse given in (3.27). (f) Creation-destruction loop with
A(x) = 1 + 0.5 cos(x), a0 = 20, ε = 0.05. New spikes are created near the center and are destroyed near the edges.

We now illustrate our main results, refer to Figure 1. There, we take A(x) = 1 + 0.5 cos(x) with L = π and either
decrease or increase a0 very slowly. For a fixed a0 and fixed number of spikes N as illustrated in Figure 1(a), our
theory (see Main Result 2.2 below) yields both the effective spike density as well as the envelope for spike heights.
Note that the spike density is not uniform – it is higher at the center than boundaries – and the asymptotics recover
the effective spike density very well. As a0 is increased, new spikes are created through self-replication near the
center (where A(x) is at a maximum) – see Figure 1(b,c). On the other hand as a0 is decreased, spikes are destroyed
near the boundary (where A(x) is at a minimum) as a result of competition or coarsening instability as shown in
Figure 1(d,e). In Main Result 3.4 we show that N spikes are stable if and only if the feed strength a0 lies within the
following range,

αN3/2 < a0 < βNε−1/2, α = 0.504, β = 0.38097. (1.2)



3

Moreover, spike destruction occurs when a0 is decreased below the curve a0 = αN3/2 (dashed curve in Figure 1(e)
and spike creation occurs when a0 is increased above the line a0 = βNε−1/2 (dashed line in Figure 1(c)).

The two boundaries a0 = αN3/2 and a0 = βNε−1/2 in (1.2) intersect when a0 = a0,max ≡ β3/α2ε−3/2, and there
is no stable spiky steady state that exists for a0 > a0,max. However for value of a0 just above a0,max, very complex
dynamics are observed as shown in Figure 1(f): new spikes are continually being created near the center, then move
towards the boundaries and are destroyed there, resulting an infinite “creation-destruction loop”. In Figure 1(f) we
took ε = 0.05 so that a0,max = 19.469, whereas a0 = 20 is taken just above a0,max (numerical simulations confirm
that no such dynamics occur if a0 = 19). Such a complex dynamical loop is only possible for an inhomogeneous feed
rate, since the place of destruction must differ from the place of creation. We remark that this phenomenon was also
previously reported in [28], and seems to be commonplace in reaction-diffusion systems with varying parameters.

The summary of the paper is as follows. The equilibrium spike density is derived in §2. Stability is derived in §3.
We conclude with some discussions and open problems in §4.

2. SPIKE DENSITY

The starting point for computing spike density and stability is to derive the reduced dynamics for spike centers.
By now, this is a relatively standard asymptotic computation, see for example [37]. For completeness, we include a
self-contained derivation of spike dynamics in Appendix A. We summarize it as follows.

Proposition 2.1. Consider the Schankenberg system (1.1). Assume that A(x) is even on interval [−L,L]. Define
P (x) and b by

P ′′(x) = A(x) with P ′(0) = 0; b ≡ 6N3/a20. (2.3)

Assume εN � 1. The dynamics of N spikes are asymptotically described by ODE system

dxk
dt

Sk
18N

=
1

N

∑
j=1...N
j 6=k

Sj
2

xk − xj
|xk − xj |

− P ′(xk) (2.4a)

subject to N + 1 algebraic constraints

b

N2

1

Sk
=

1

N

N∑
j=1

Sj
|xk − xj |

2
− P (xk) + c, k = 1 . . . N ; (2.4b)

1

N

N∑
j=1

Sj =

L∫
−L

A(x)dx. (2.4c)

Near xk, the quasi-steady state is approximated by

u(x) ∼ sech2

(
x− xk

2ε

)
Sk
4N

, v(x) ∼ 6N

Sk
, |x− xk| � 1. (2.5)

The next step is to construct a continuum-limit approximation for spike density. Setting dxk

dt to zero in (2.4a) we
obtain the steady state equations

0 =
1

N

∑
j 6=k

Sj
2

xk − xj
|xk − xj |

− P ′(xk), (2.6a)

b

Sk

1

N2
=

1

N

∑
j

Sj
|xk − xj |

2
− P (xk) + C,

1

N

∑
Sj = 2P ′(L). (2.6b)

A posteriori analysis shows that N spikes are unstable if b� 1 (in the limit of large N), so that the relevant regime
to consider is when b = O(1).

To study the large-N limit, we define the spike density ρ(x) to be a density distribution function for spikes, that
is, for any a, b ∈ [−L,L] we define ρ(x) to be

b∫
a

ρ(x)dx ∼ # of spikes in the interval [a, b]

N
. (2.7)
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An alternative definition is to define

ρ(x) =
1

N

∑
δ (x− xj) .

In the large-N limit, we consider the spike locations xj to be a continuous function xj = x(j) from [0, N ] to [−L,L] .
In terms of x(j), the density may also be expressed as:

ρ(x(j)) =
1

Nx′(j)
, (2.8a)

which which also gives a way to compute the effective density given a sequence of spike positions. We also define the
strength function S(x) to be such that

Sj = S(x(j)). (2.8b)

With these definitions, we estimate the summation terms in (2.6) using integrals. For example we have∑
j Sj

|xk−xj |
2 ≈

∫
S(y) |xk−y|

2 dy and so on. To leading order, the continuum limit of equations (2.6) then become

L∫
−L

S(y)ρ(y)
1

2

x− y
|x− y|

dy ∼ P ′(x), (2.9a)

L∫
−L

S(y)ρ(y)
1

2
|x− y| dy ∼ P (x) + C. (2.9b)

The first thing to note is that the control parameter b is not present in the leading order computation in (2.9).
What’s worse, equation (2.9a) is a direct consequence of differentiating (2.9b); thus at the leading order, there is
only one equation, whereas there are two unknown functions: S(x) and ρ(x). Nonetheless, differentiating (2.9a) and
using the fact that (

1

2

x− y
|x− y|

)
x

=

(
1

2
|x− y|

)
xx

= δ(x− y),

this leading-order computation yields the following relationship between S(x) and ρ(x) :

S(x)ρ(x) = P ′′(x) = A(x).

To make further progress in determining S(x) and ρ(x) requires a careful estimate for the difference between the
discrete sums in (2.6) and their integral approximations. This estimate is supplied by the Euler-Maclaurin formula
which we recall here. Assume that f(n) is sufficiently smooth function from [1, N ] to R. Then

N∑
j=1

f(j) =

N∫
1

f(j)dj +
1

2
(f(1) + f(N)) +

K∑
j=1

cj

(
f (j)(N)− f (j)(1)

)
+RK (2.10)

where cj are coefficients that are related to Bernoulli numbers and the remainder RK depends only on higher-order
derivatives of f . Here, we only need the first two coefficients:

c1 =
1

12
, c2 = 0.

(in fact all even coefficients are zero). We now apply the Euler-Maclaurin formula to estimate the sums in (2.6). We
start by estimating

1

N

∑
j 6=k

Sj
2

xk − xj
|xk − xj |

=
1

N

k∑
j=1

S(x(j))− 1

N

N∑
j=k

S(x(j)).

By changing variables x (j) = y, dj = dy
x′(j) = Nρ(y)dy, we obtain

1

N

k∑
j=1

S(x(j)) =

xk∫
x1

S (y) ρ(y)dy +
1

2N
(S(x1) + S(xk)) +

1

12N2

(
S′(xk)

ρ (xk)
− S′(x1)

ρ(x1)

)
+O

(
1

N4

)
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1

N

N∑
j=k

S(x(j)) =

xN∫
xk

S (y) ρ(y)dy +
1

2N
(S(xk) + S(xN )) +

1

12N2

(
S′(xN )

ρ (xN )
− S′(xk)

ρ(xk)

)
+O

(
1

N4

)

so that

1

N

∑
j 6=k

Sj
xk − xj
|xk − xj |

=

xN∫
x1

S (y) ρ(y)
xk − y
|xk − y|

dy +
1

2N
(S(x1)− S(xN )) +

1

12N2

(
2S′(xk)

ρ (xk)
− S′(x1)

ρ(x1)
− S′(xN )

ρ (xN )

)

Assume S(x) is even and that x1 = −xN . Then S(x1) = S(xN ), S′(x1)
ρ(x1)

= −S
′(xN )
ρ(xN ) and

xN∫
x1

S (y) ρ(y)
xk − y
|xk − y|

dy =

L∫
−L

S (y) ρ(y)
xk − y
|xk − y|

dy +

x1∫
−L

S (y) ρ(y)dy −
L∫

xN

S (y) ρ(y)dy

=

L∫
−L

S (y) ρ(y)
xk − y
|xk − y|

dy

so that we finally obtain

1

N

∑
j 6=k

Sj
1

2

xk − xj
|xk − xj |

=

L∫
−L

S (y) ρ(y)
1

2

xk − y
|xk − y|

dy +
1

N2

(
1

12

S′(xk)

ρ (xk)

)
+O(N−4).

A similar computation yields

1

N

∑
j 6=k

Sj
|xk − xj |

2
=

L∫
−L

S (y) ρ(y)
|xk − y|

2
dy +

1

N2

(
− 1

12

S(xk)

ρ (xk)
+ C0

)
+O(N−4).

where C0 is (an irrelevant) constant that depends on S(±L), S′(±L), ρ(±L) and ρ′(±L).
We now expand

S(x) = S0(x) +
1

N2
S1(x) + . . . .

to obtain ∫
S0(y)ρ(y)

1

2

x− y
|x− y|

dy = P ′(x),

∫
S0(y)ρ(y)

1

2
|x− y| dy = P (x) + C;

∫
S1(y)ρ(y)

1

2

x− y
|x− y|

dy = −
∫
S0(y)ρ(y)

1

2

x− y
|x− y|

dy +
1

12

S′0(x)

ρ (x)
; (2.11)∫

S1(y)ρ(y)
1

2
|x− y| dy = −

∫
S0(y)ρ(y)

1

2
|x− y| dy − 1

12

S0(x)

ρ (x)
+

b

S0(x)
+ C0. (2.12)

Upon differentiating (2.12) and substituting into (2.11) we finally obtain the following ODE that relates S0(x) and
ρ(x) :

1

12

S′0(x)

ρ (x)
=

d

dx

(
− 1

12

S0(x)

ρ (x)
+

b

S0(x)

)
. (2.13)

Furthermore we have

S0(x)ρ(x) = A(x);

L∫
−L

ρ(x)dx = 1. (2.14)

Together, the relationships (2.13) and (2.14) fully determine S0(x) and ρ(x) in terms of A(x).
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Solving for ρ′(x) from (2.13) yields a Bernoulli ODE,

ρ′ =
2S′0
S0

ρ− 12b
S′0
S3
0

ρ2 (2.15)

whose solution is readily obtained as

S2

ρ
− 12b log(S) = C. (2.16)

Substituting S = A/ρ we find that the steady state satisfies, at leading order,

A2

ρ3
+ 12b log (ρ/A) = C subject to

L∫
−L

ρ(x)dx = 1; Sρ = A. (2.17)

We summarize as follows.

Main Result 2.2. Let xj and Sj be the equilibria locations of the reduced system (2.4) with ∂xj/∂t = 0. The
spike density ρ(x) as defined by (2.7) is asymptotically approximated by (2.17). The spike strengths are given by
Sj = S(xj).

An important special case of the formula (2.17) is when b → 0 or equivalently, a0 � O(N3/2). Then A2

ρ3 = C

and together with ρS = A, we find ρ = C0A
2/3, S = C−10 A1/3, where the normalization constant C0 is determined

through
∫
ρ = 1 :

S(x) ∼

 L∫
−L

A2/3(y)dy

A1/3(x), ρ(x) ∼ A2/3(x)∫ L
−LA

2/3(y)dy
. (2.18)

Figure 1(a) shows the direct comparison between the Main Result 2.2 and the full numerical simulations of (1.1);
see also Figure 4(c). In fact, the agreement is very good even with a relatively small N (e.g. N = 4; not shown).
There are two sources of error when comparing the asymptotics to full numerics. The first source of error is when
approximating the PDE dynamics using the reduced system (2.4), which removes the ε from the PDE. This error there
scales like O(ε). The second source of error is made when approximating the reduced system (2.4) by its continuum
limit (2.18). This error comes from to the truncation of the Euler-Maclaurin series and scales like O(1/N2). In other
words, the effects of nonzero ε are captured going from the PDE (1.1) to the reduced system of Proposition 2.1 while
the effects due to finite N are captured in going from the reduced system of Proposition 2.1 to the Main Result 2.2.

The equilibrium state with N spikes as given by Main Result 2.2 only exists for a restricted parameter values. This
is illustrated in Figure 1. As a0 is increased, the steady state eventually breaks because of spike replication. This
is related to the effect of ε. As a0 is decreased, the steady state eventually breaks because of overcrowding effects
leading to spike destruction. This is related to the effect of N . The study of this breakdown is the topic of the next
section.

3. SELF REPLICATION AND COARSENING

We begin with an examination of self-replication. Numerical simulations (c.f. Figure 1) show that self-replication
is triggered if a0 is sufficiently increased. This is a well-known phenomenon that was first identified in one dimension
in [38] and was further studied in [39–43]. As explained in Appendix A, it is related to the dissapearence of the
the steady state for the so-called core problem as a result of a fold point bifurcation. In Appendix A we show that
self-replication of j-th spot is triggered when Sj is increased past 2.70ε−1/2 Na0 . (see (4.44)). Moreover, suppose that

a0 � O(N3/2). Then from (2.18) the maximum value of Sj is given by max
x∈[−L,L]

A1/3(x)
(∫ L
−LA

2/3(x)dx
)
. Replacing

Sj by this maximum value and replacing the inequality in (4.44) by equality yields the the following threshold.

Proposition 3.1. (Self-replication) Let

β ≡ 2.70

max
x∈[−L,L]

A1/3(x)
(∫ L
−LA

2/3(x)dx
) . (3.19)
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FIG. 2. Left: the graph of C from (2.17) as a function of total mass in the case where A(x) = A is constant, for three different
values of b. The threshold occurs for the value of b such that the vertical line (corresponding to total mass 1) intersects the
curve precisely at the fold point. Right: The graph of C for non-constant feed rate, here A(x) = 1 + 0.5 cos(x). The red dont
corresponds to Cmin. The threshold occurs when the red dot intersects the vertical line corresponding to a unit total mass.

and suppose that Nε� O(1). Then N spikes undergo self-replication if a0 is increased past

a0,split ≡ βNε−1/2. (3.20)

The spike that replicates is the one closest to the maximum of A(x).

The condition Nε� O(1) is equivalent to a0 � O(N3/2) when a0 = O(a0s). Since the spike width is of O(ε), this
condition also means that the spikes are well-separated from each-other.

Figure 1(c,d) shows that the formula (3.20) is in excellent agreement with full numerical simulations.
Next we address the coarsening thresholds resulting in spike death that occur as a0 is decreased. Consider the

case of constant A first. Then (2.17) implies that ρ is also constant, so that 2Lρ = 1. For a fixed A and b, the first
equation in (2.17) defines a curve C vs. ρ as shown in Figure 2(left). The intersection of that curve with the vertical
line 2Lρ = 1 then determines the density ρ as a function of A. Note that C(ρ) has a unique minimum which occurs
at

b =
A2

4ρ3
(3.21)

with C = Cmin ≡ 4b (1− log (4bA)). This fold point corresponds to a zero-eigenvalue crossing. The solution branch
to the left of this minimum is stable, whereas the branch to its right is unstable. The stability threshold occurs
precisely when the intersection of the vertical line 2Lρ = 1 and the curve C(ρ) happens at this minimum (refer to
Figure 2). It corresponds to setting ρ = 1/(2L), C = Cmin in (2.17), which yields b = 2A2L3 or a0 = 31/2(N/L)3/2,
with spike death occuring when a0 is decreased below 31/2(N/L)3/2. Combining it with Proposition 3.1, we obtain
the following result.

Proposition 3.2. In the case of a constant feed rate A(x) = 1, of the Schankenberg model (1.1), N spikes are stable
provided that

31/2(N/L)3/2 ≤ a0 ≤ 1.35(N/L)ε−1/2. (3.22)

Remark. In the derivation above, we have assumed that N is large. However for a constant feed rate A(x) = 1,
this threshold is also valid for any N (without assuming that N is large). It corresponds to a zero-crossing of small
eigenvalues [35], or equivalently, a bifurcation point for asymmetric spike solutions [36] of the system (1.1). Let
us briefly summarize the latter computation here. Consider a steady state consisting of N equal interior spikes
of (1.1). Such a steady state can be obtained using even reflections of a single interior spike on a domain [−l, l],



8

a 0

x

u(x,t)

−3 −2 −1 0 1 2 3

5

10

15

20

25

30

35

40

45

50
01020304050

0

5

10

15

20

25

a
0

N

 

 

PDE numerics
Large−N asymptotics

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

u,
v

a0=50, N=22

 

 
u (numerics)
v (numerics)
u(x

k
) (asymptotics)

x
k
 (uniform)

FIG. 3. Left: spike coarsening process with A(x) = 1. Other parameters are ε = 0.007 and a0 = 50 − 0.08t. Middle: The
number of spikes as a function of a0. Solid stair curve corresponds to the observed number of spots from the numerical
simulation. Dashed line is the theoretical prediction given by Main Result 2.2. Right: steady state consisting of 22 spikes.
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FIG. 4. Same as Figure 3 except that A(x) =
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0.5, x ∈ (−π, 0)
1.5, x ∈ (0, π)

.

where l = L/N. As in Appendix A, the asymptotic construction yields the outer solution of the form v(x) ∼
−a0 x

2

2 + la0 |x|+ 3
a0l
, u(x) ∼ a0l

3 w(x/ε). Now define the function f(l) = v(x)|x=l = a0l
2

2 + 3
a0l
. This function has a

minimum at l3 = 3/a20. Substituting l = L/N and solving for a0 yields precisely the left hand side of (3.22).
Figure 3 provides an illustration and a numerical verification of the lower bound of Proposition 3.2 (see caption).

Excellent agreement is observed.
We now concentrate on the inhomogeneous case. As seen in the analysis of constant A, for a given constant C,

and a given number A, there exists two solutions ρ of (2.17), as long as C > 4b (1− log (4bA)) ; solution does not
exist if inequality is reversed. But since A = A(x) varies with x, we define

Cmin ≡ 4b

(
1− log

(
4b min

x∈[−L,L]
A(x)

))
. (3.23a)

Also, define M ≡
∫ L
−L ρ. Then (3.23a) defines a curve C(M) as a function of M. For C > Cmin, there are two

admissable values of M. Unlike the case of constant A (where M = 2Lρ), not all positive values of M are admissable;
a gap opens up – see Figure 2(right). The solution to (2.17), when exists, is the point along the curve C(M) for
which M = 1. As illustrated in Figure 2, there are two branches of the curve C(M). The left branch is stable whereas
the right branch is unstable. The disappearence of the steady state occurs when the C = Cmin. In other words, it is
the solution to

A2(x)

ρ3(x)
+ 12b log (ρ(x)/A(x)) = Cmin (3.23b)
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FIG. 5. The plot of (3.26).

where ρ(x) is the smaller of the two admissable solutions, subject to the constraint

L∫
−L

ρ(x)dx = 1. (3.23c)

We summarize this stability result as follows.

Proposition 3.3. Let b be the solution to (3.23) and let α = (6/b)
1/2

. The N spike equilibrium becomes unstable
resulting in spike death as a0 is decreased below N3/2α.

Interestingly, the competition thresholds for any N depends only on a single universal number α which must be
computed from A(x).

To illustrate Proposition 3.3, in Figure 1(d,e) we took A(x) = 1 + 0.5 cos(x) with L = π. Numerical solution to
(3.23) returns α = 0.504 (compare this with A(x) = 1, L = π, α = 0.311). Starting initially with N = 22 spikes and
a0 = 65, and very gradually decreasing a0 as indicated in the Figure, As a0 is decreased below αN3/2, the spikes
start to dissapear one-by-one near the boundaries where A(x) is at a minimum. This is in contrast to the case of
constant A(x) = 1, for which about half of spikes are destroyed everytime the threshold is breached (see Figure 3).
Figure 1(e) shows the curve a0 = αN3/2 in excellent agreement with full numerics.

An important special case is when A(x) is piecewise constant [29, 44]. Suppose that

A(x) =

{
A1, x ∈ I1
A2, x ∈ I2

with A1 < A2;

where the the domain [−L,L] is a disjoint union of I1, I2 whose respective size is l1, l2 (so that 2L = l1 + l2). A
straightforward algebra yields the following solution to the system (3.23):

r3

s3
= exp

(
r2

s3
− 1

)
where r =

A2

A1
; s =

ρ2
ρ1

; (3.24)

b =
A2

1

4ρ31
; ρ1l1 + ρ2l2 = 1. (3.25)

The relationship (3.24) can be written in parametric form as

s =
exp

(
2
3 (τ − 1)

)
τ

, r =
exp (τ − 1)

τ
(3.26)

and is plotted in Figure 5. Note that there are two branches that connect to r = 1, s = 1. The stable branch is
indicated by a solid line.

For a concrete example, take A1 = 0.5, A2 = 1.5, l1 = l2 = π, so that r = 3 and from the graph in Figure
5, s = 1.4 = ρ2/ρ1. In particular, near the instability threshold, there are 1.4 as many spikes in the region where
A = 0.5 than there are in the region where A = 1.5. From (3.25) we further obtain b = 26.744, α = 0.474. Figure 4
shows excellent agreement with full numerics in this case.

Surprisingly, as seen in Figure 5, there is a narrow regime where the density of the spikes is higher in the areas of
smaller feed. This occurs when r = A2/A1 ∈ [1, 1.5] .

Combining propositions 3.3 and 3.1 we now summarize our main finding as follows.



10

Main Result 3.4. Suppose that Nε� 1. Then N spikes are stable when

a0,coarse < a0 < a0,split (3.27)

where

a0,coarse ≡ αN3/2; a0,split ≡ βNε−1/2. (3.28)

The constants α, β are given in Propositions 3.3 and 3.1, respectively. Coarsening (spike death) occurs when a0 is
decreased below a0,coarse. Spike splitting occurs when a0 is increased above a0,split.

Equivalently, N spikes are stable provided that

Nmin < N < Nmax (3.29a)

where

Nmin ≡ a0
ε1/2

β
; Nmax ≡

(a0
α

)2/3
(3.29b)

See Figure 1 and the introduction for illustration of this result and comparison with full numerics.

4. DISCUSSION

We used the Schnakenberg model with a space-dependent feed rate to illustrate how the dynamics of N interacting
spots can be analysed by considering the large-N “mean-field” limit. For any fixed and finite N, the spot dynamics
are controlled by a highly nonlinear, fully coupled differential-algebraic particle system for spot positions and their
weights (2.4); this system is too complex to be tractable analytically (except in the case of constant feed rate, see
[37, 45]). On the other hand, in the large-N limit we were able to fully characterize the resulting steady state as well
as its stability. In this limit, the particle system is delicately balanced between the continuum and discrete worlds.
This required a careful use of Euler-Maclaurin summation formula to estimate asymptotically the difference between
various sums appearing in the particle system and their continuum (integral) approximations. Although we assumed
that N is large in our derivation, the final results work very well even for relatively small N (e.g. N = 4), both for
predicting the correct steady state as well as stability thresholds.

Using mean-limit approximations we found the upper and lower bounds for the number of stable spikes – see
(3.29). The two bounds coincide when a0 exceeds a0,max ≡ β3/α2ε−3/2. For values of a0 slightly above a0,max,
complex creation-destruction loops can occur, provided that the feed rate A(x) is “sufficiently inhomogeneous” (see
Figure 1(f)). However when A(x) is constant, no such loops occurs when a0 > a0,max. Instead, the solution simply
converges to a homogeneous state. Presumably, the destruction and creation of spikes must occur in different region,
in order to produce complex creation-destruction loops, and this is not the case for a constant feed rate. Further
investigation is needed to determine how “inhomogeneous” the feed rate A(x) should be for such loops to exist. In
any case, this provides for a nice demonstration that introducing space-dependence can lead to completely novel and
complex dynamical phenomena that do not occur otherwise [28].

Until now, there are very few analytical results about large N limit in the literature. In two dimensions, a
prominent example is the Gross-Pitaevskii Equation used to model Bose-Einstein condensates and whose solutions
consist of vortex-like structures [4, 5]. For a two-dimensional trap, an asymptotic reduction for motion of vortex
centers yields an interacting particle system [46–48], which in turn can be reformulated as a nonlocal PDE in the
continuum limit of many vortices [23, 25]. While the analysis is quite different than the present paper, the end result
is similar: one obtains instability thresholds which yields the maximum number of allowable vortices as a function of
trap rotation rate and its chemical potential.

Numerous other PDE models have solutions that consist of N localized structures that interact in a nonlocal way,
and we expect our techniques (with some modifications) to be applicable more widely to other reaction-diffusion
systems such as Gray-Scott and Gierer-Meinhardt [28, 31], and more generally to other physical systems. The key
takeaway message is that when the number of localized structures becomes large, a mean-field approach can yield
important insights that cannot easily be obtained from looking at the finite N situation. We hope that the reader
can attempt such approach on their own systems.

APPENDIX A: ODE’S FOR SPIKE CENTERS AND THE CORE PROBLEM

Here derive the reduced system for the motion of spike centers of the system (2.4), i.e. Proposition 2.1. The
procedure is relatively standard. It consists of computing outer and inner solutions, using a solvability condition,
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and matching. In the derivation below, we assume for simplicity that A(x) is even although it generalizes easily to
arbitrary A(x).
Inner solution. Near k-th spike we expand:

u(x) = U(y), v(x) = V (y), y =
x− xk(t)

ε
; s = t

so that

−εUyx′k = Uyy − U + U2V, 0 = Vyy + ε2a0A(x)− εU2V.

Next expand

U = U0 + εU1 + . . . , V = V0 + εV1 + . . .

At the leading order we obtain

0 = U0yy − U0 + U2
0V0, 0 = V0yy

It follows that

V0(y) ∼ V0; U0(y) = w(y)/V0

where V0 ∼ v(xk) will be obtained through inner-outer matching and w(y) is the ground state satisfying

wyy − w + w2 = 0, w′(0) = 0, w(y)→ 0 as y → ±∞. (4.30)

It is well known that the solution to (4.30) is given by by

w(y) =
3

2
sech2 (y/2) . (4.31)

The next order equations are

−x′(t)U0y = U1yy − U1 + 2wU1 + U2
0V1 (4.32)

V1yy = U2
0V0. (4.33)

Multiply (4.32) by U0y and integrate to obtain

−x′(t)
∫
U2
0y =

∫
U2
0U0yV1 = −

∫
U3
0

3
V1y (4.34)

Now

V1y =

y∫
0

U2
0V0dy + C

so that (4.34) becomes

x′(t) = C

∫
U3
0

3
∫
U2
0y

= CV0

∫
w3

3
∫
w2
y

(4.35)

The constant C is determined as follows:

V1y(+∞) =

∞∫
0

U2
0V0dy + C; V1y(−∞) = −

∞∫
0

U2
0V0dy + C;

C =
V1y(+∞) + V1y(−∞)

2
. (4.36)

Outer expansion. Away from spike centers, u(x) is assumed to be exponentially small so that vxx + a0A(x) = 0

for x 6= xk. Near xk, the term u2v
ε in (1.1) acts like a delta function so that we write

vxx + a0A(x) ∼
N∑
j=1

sjδ (x− xj) . (4.37)
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Here, the weights sj are defined by

sk ≡

x+
k∫

x−k

u2v

ε
∼
∞∫
−∞

U2
0V0dy ∼

1

vk

∞∫
−∞

w2(y)dy ∼ 6

vk

where we defined

vk ≡ v (xk) .

The solution to (4.37) is then given by

v(x) =

N∑
j=1

sj
|x− xj |

2
− a0P (x) +mx+ c

where m, c are constants to be determined and P (x) is defined via

P ′′(x) = A(x); P ′(0) = 0.

For simplicity, we assume that A(x) is even. In this case the constant m is zero as can be seen as follows. Compute
v′(±L) and set it to zero:

0 = v′(L) =
∑ sj

2
− a0P ′(L) +m,

0 = v′(−L) = −
∑ sj

2
− a0P ′(−L) +m.

Since P is even, −P ′(−L) = P ′(L) so that m = 0. The expression for c is obtained by integrating (4.37) which yields

L∫
−L

a(x) =
∑

sj .

Finally, we also have v(xk) = vk = 6/sk. We therefore obtain the following algebraic system for sk, k = 1 . . . N and
b :

6

sk
=
∑

sj
|x− xj |

2
− a0P (x) + c, k = 1 . . . N ; (4.38a)

∑
sj = a0

L∫
−L

A(x) = 2a0P
′(L). (4.38b)

To compute V1y (±∞) , we match the inner and outer region. We have

V (y) ∼ V0 + εV1(y) ∼ v(xk + εy) ∼ v(xk) + εyv′(x±k )

so that

V1y(±∞) = vx(x±k ).

We further compute,

v(x+k ) =
sk
2

+
∑
j 6=k

sj
2

xk − xj
|x− xj |

− a0P ′(xk)

v(x+k ) = −sk
2

+
∑
j 6=k

sj
2

xk − xj
|x− xj |

− a0P ′(xk)

so that the constant C in (4.36) evaluates to

C =
∑
j 6=k

sj
2

xk − xj
|x− xj |

− a0P ′(xk). (4.39)
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Finally, we have

∞∫
−∞

w2dy = 6,

∞∫
−∞

w3dy =
36

5
,

∞∫
−∞

w2
ydy =

6

5
,

so that (4.35) becomes

x′k(t) =
18

sk

∑
j 6=k

sj
2

xk − xj
|x− xj |

− a0P ′(xk)

 (4.40)

subject to N + 1 algebraic constraints (4.38). Near xk, the quasi-steady state is approximated by

u ∼ w (y) /vk, v(xk) ∼ vk, vk =
6

sk
, y = (x− xk)/ε.

Equations (4.38a), (4.38b), and (4.40) are precisely the equations (2.4) in Proposition 2.1 after rescaling the spike
weights and a0 using the critical scaling

a0 = (b/6)
−1/2

N3/2, sj = (b/6)
−1/2

N1/2Sj . (4.41)

Self-replication. Next we derive the self-replication thresholds. When sk is too large, the inner problem becomes
fully coupled. The relevant scaling for the inner problem in such a case is

u = ε−1/2U, v = ε1/2V, x = xj + εy.

The leading-order inner problem for the steady state becomes

Uyy − U + U2V = 0, Vyy − U2V = 0. (4.42a)

We seek an even solution to (4.42a) subject to boundary conditions

U (y)→ 0 as y →∞; Vy(∞) = B as y →∞, U ′(0) = V ′(0) = 0; (4.42b)

where the constant B is related to the spike weight sj as follows. Integrate the second equation in (4.42a) to obtain

2B =

∫
U2V dy = ε1/2sj . (4.43)

The system (4.42) is referred to as the “core problem” and is used to explain the self-replication phenomenon such
as shown in Figure 1(b). It was first identified in [38] in the context of the Gray-Scott model and was further studied
in [39–43].

Numerical computations of the core problem (see for example [38, 39]) show that the solution to (4.42) exists only
for

0 < B < Bc ≈ 1.35.

As B is increased past Bc, the solution to the core problem dissapears as a result of a fold-point bifurcation. This
dissapearence is responsible for the self-replication [39–42]. Substituting B = Bc into (4.43), we see that the solution
exists only if sj < 2.70ε−1/2. In terms of the rescaled weights Sj (4.41), this yields

Sj ≤ 2.70ε−1/2
N

a0
. (4.44)
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