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Abstract. We consider the problem

ε2s(−∂xx)
sũ(x̃)− V (x̃)ũ(x̃)(1− ũ2(x̃)) = 0 in R,

where (−∂xx)
s denotes the usual fractional Laplace operator, ε > 0

is a small parameter and the smooth bounded function V satisfies
inf x̃∈R V (x̃) > 0. For s ∈ ( 12 , 1), we prove the existence of separate
multi-layered solutions for any small ε, where the layers are located
near any non-degenerate local maximal points and non-degenerate
local minimal points of function V . We also prove the existence
of clustering-layered solutions, and these clustering layers appear
within a very small neighborhood of a local maximum point of V .

Contents

1. Introduction 2
2. Preliminaries 4
3. Formulation of the problem: the ansatz 5
4. Linear theory 7
5. Solving the nonlinear intermediate problem 13
6. The variational reduced problem 16
7. The proof of Theorem 1.1 23
8. The proof of Theorem 1.2 24
9. Open Questions 26
Acknowledgements 27
References 27

Mathematics Subject Classification(2010): 35J61, 35B45.
Key words fractional Allen-Cahn equation, multi-layered solutions,

existence, Lyapunov-Schmidt reduction
1



2 Z. DU, C. GUI, Y. SIRE, AND J. WEI

1. Introduction

We consider the following fractional inhomogeneous Allen-Cahn equa-
tion

ε2s(−∂xx)sũ− V (x̃)ũ(1− ũ2) = 0 x̃ ∈ R, (1)

where (−∂xx)s, s ∈ (0, 1), denotes the usual fractional Laplace oper-
ator, a Fourier multiplier of symbol |ξ|2s. Here ε > 0 is a small pa-
rameter and the bounded smooth function V satisfies inf x̃∈R V (x̃) > 0.
We investigate the existence of layer solutions to (1) by applying a
Lyapunov Schmidt reduction method. We call layer solution an hete-
roclinic connection for equation (1). This method has been applied in
[6] to construct concentrating standing waves for the fractional nonlin-
ear Schrödinger equation.

For the case s = 1, it is shown in [14] that the corresponding problem
in a bounded interval of (1)

ε2u′′ + V (x)u(1− u2) = 0 x ∈ (0, 1), u′(0) = u′(1) = 0,

has interior layer solutions, and any layer solution can have its layers
(namely its zeros) only near two endpoints of the interval, the local
minimum points and local maximum points of V (x). Furthermore,
there appears at most one zero near each local minimum point of V .
Subsequently, in [9], the authors extended this result to the two space
dimension case considering

ε2∆u+ V (x)u(1− u2) = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω, (2)

and introduced a weighted arclength
∫
Γ
V

1
2ds. The authors proved

that (2) has an interior layer solution and this layer appears near a
non-degenerate closed geodesic curve relative to the weighted arclength∫
Γ
V

1
2ds. Existence of layer solutions and clustering layer solution of

(2) in general dimension Euclidean spaces and Riemannian manifolds
were also obtained in [15], [16], [10], [11]. The case V ≡ 1 of the
equation in (2) corresponds to the standard Allen-Cahn equation(see
[1])

ε2∆u+ u(1− u2) = 0 in Ω.

We now come back to our problem (1) scaling the variables as x̃ =
εx, ũ(x̃) = ũ(εx) := u(x). Therefore, equation (1) writes

(−∂xx)su(x)− V (εx)F (u(x)) = 0 x ∈ R, (3)

where

F (u) := u(1− u2).
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Note that F is an odd function. We will find a solution to (1) if we
may construct a solution to (3).

Denote w the unique solution of

(−∂xx)sw − F (w(x)) = 0, w(0) = 0, w(±∞) = ±1. (4)

The previous heteroclinic connection w has been proved to exist and
to be unique in [2]. We now describe our main results.

Theorem 1.1. Let s ∈ (1
2
, 1) and let Λi ⊂ R, i = 1, . . . ,m, m ≥ 1, be

disjoint bounded open interval. Set Λ = Λ1 × · · · × Λm. Assume that
the function

Υ(ξ1, . . . , ξm) =
m∑
i=1

V θ(ξi), θ = 1− 1

2s
> 0

has a stable critical point situation in Λ in the following sense: there
exists δ0 > 0 such that for any g ∈ C1(Λ̄) with ∥g∥L∞(Λ)+∥∇g∥L∞(Λ) <
δ0, there is a ξg ∈ Λ such that ∇Υ(ξg) +∇g(ξg) = 0.

Then for all sufficiently small ε, (1) has a solution of the form

ũ(x̃) =
m∑
i=1

(−1)i−1w

(
V (ξεi )

1
2s
x̃− ξεi
ε

)
+

(−1)m−1 − 1

2
+ o(1), (5)

where ξε = (ξε1, . . . , ξ
ε
m) ∈ Λ and ∇Υ(ξε) → 0 as ε→ 0.

Corollary 1.1. Let s ∈ (1
2
, 1) and let ξ01 , . . . , ξ

0
m be m non-degenerate

critical points of V , namely

V ′(ξ0i ) = 0, V ′′(ξ0i ) ̸= 0, ∀ i = 1, . . . ,m.

Then (1) possesses a layer solution of the form (5) with ξεi → ξ0i .

In Corollary 1.1 multi-layered solutions are constructed in ”sepa-
rate” non-degenerate local maximum or local minimum points of the
potential V . These layers(zero points of solutions) are well separated.
We will also obtain so-called clustering-layered solutions in the next
theorem, and these layers appear within a very small neighborhood of
a local maximum point of V .

Theorem 1.2. Let s ∈ (1
2
, 1) and τ be a positive constant satisfying

τ < 2(2s−1)
2s+1

. Let ξ̄ be a local maximum point of V , namely there exists
a bounded open interval I such that

x̄ ∈ I, V (x̄) = max
x∈I

V (x) > V (z), ∀z ∈ I\{x̄}.

Then for any m ≥ 1, there exists ε0 > 0 such that for any ε < ε0, (1)
has a solution of the form (5), where these layers satisfy ξεi → x̄ as
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ε→ 0. Moreover

min
1≤i≤m−1

∣∣∣∣ξεi − ξεi+1

ε

∣∣∣∣ > Cε−
τ

2s−1 → ∞, as ε→ 0. (6)

Furthermore, if x̄ is non-degenerate, namely V ′′(x̄) < 0, then

|ξεi − x̄| ≤ Cε
τ
2 , i = 1, . . . ,m. (7)

Note that the condition τ < 2(2s−1)
2s+1

in Theorem 1.2 yields

τ

2
< 1− τ

2s− 1
,

which is a necessary condition to make that both (6) and (7) hold true.
In other words, if τ

2
≥ 1 − τ

2s−1
, it is impossible that (1) possesses a

solution of the form (5) satisfying (6) and (7).
For convenience, we shall assume that the non-degenerate local max-

imum point x̄ of V is the origin.

2. Preliminaries

We first introduce the fractional Sobolev space Hs(Rn) as the space
of functions ϕ ∈ L2(Rn) such that∫

Rn

(1 + |λ|2s)|ϕ̂(λ)|2dλ < +∞,

whereˆdenotes the usual Fourier transform. The fractional Laplacian
(in Rn) (−∆)sϕ of a function ϕ ∈ Hs(Rn) is defined in terms of its
Fourier transform (in the space of tempered distributions) by the rela-
tion

̂(−∆)sϕ(λ) = |λ|2sϕ̂(λ).
The fractional Laplace operator (−∆)s can also be defined as a Dirichlet-
to-Neumann map for a so-called s-harmonic extension problem (see [5]).

Given a function ϕ, the solution ϕ̃ of the following problem{
div(y1−2s∇ϕ̃) = 0 in Rn+1

+ = {(x, y) : x ∈ Rn, y > 0},
ϕ̃(x, 0) = ϕ(x) on Rn

is called the s-harmonic extension of ϕ. One has

ϕ̃(x, y) =

∫
Rn

ps(x− z, y)ϕ(z)dz,

where ps(x, y) is the s-Poisson kernel

ps(x, y) = Cn,s
y2s

(|x|2 + |y|2)n+2s
2

,
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and Cn,s is the constant makes
∫
Rn ps(x, y)dx = 1. Under suitable

regularity, the authors in [5] proved that

(−∆)sϕ(x) = − lim
y→0+

y2s∂yϕ̃(x, y).

For the linear problem

(−∆)sφ+D(x)φ = g in Rn, (8)

where D is a bounded potential, we need to use the following results
in [6].

Proposition 2.1. ([6]) Let D be a continuous function, such that for
m points ξi, i = 1, . . . ,m and B = ∪m

i=1BR(ξi) we have

inf
x∈Rn\B

D(x) > 0.

Then, given any number n
2
< µ < n+ 2s, there exists C = C(µ,m,R)

such that for any φ ∈ Hs ∩ L∞(Rn) and g with ∥ρ−1g∥L∞(Rn) < +∞
that satisfy (8), one has the following estimate

∥ρ−1φ∥L∞(Rn) ≤ C[∥φ∥L∞(B) + ∥ρ−1g∥L∞(Rn)].

Here

ρ(x) =
m∑
i=1

1

(1 + |x− ξi
ε
|)µ
.

Furthermore, if infx∈Rn D(x) > 0 holds true, then

∥ρ−1φ∥L∞(Rn) ≤ C∥ρ−1g∥L∞(Rn).

Particularly, if D(x) ≡ d > 0 holds true, then (6) has a unique
solution φ = Td[g] and it satisfies the Hölder estimate

sup
x ̸=y

|φ(x)− φ(y)|
|x− y|α

≤ C∥g∥L∞(Rn)

where α = min{1, 2s}.

Note that the results in Proposition 2.1 hold true for all s ∈ (0, 1)
and general dimensions n. In what follows, we let s ∈ (1

2
, 1) and n = 1.

3. Formulation of the problem: the ansatz

The existence of the solution w to (4) has been proven in [2] and
additionally one has the following asymptotics (see also [2]): there
exist constants 0 < C1 < C2 such that the solution w(x) of (4) satisfies

C1

|x|2s
≤ |1− w2(x)| ≤ C2

|x|2s
, |x| > 1 (9)



6 Z. DU, C. GUI, Y. SIRE, AND J. WEI

C1

|x|1+2s
≤ w′(x) ≤ C2

|x|1+2s
, |x| > 1. (10)

Note that for fixed constant λ > 0, wλ(x) := w(λ
1
2sx) satisfies

(−∂xx)swλ(x)− λF (wλ(x)) = 0 x ∈ R.

For points ξi ∈ R(i = 1, . . . ,m), we let

wi(x) := (−1)i−1wV (ξi)

(
x− ξi

ε

)
.

Then wi(x) satisfies

(−∂xx)swi(x)− V (ξi)F (wi(x)) = 0 x ∈ R. (11)

Given numbers M > 0 large and δ > 0, we define the configuration
space U as

U =

{
ξ = (ξ1, . . . , ξm) : min

1≤i≤m−1

∣∣∣∣ξi − ξi+1

ε

∣∣∣∣ ≥M, max
1≤i≤m

|ξi| ≤ δ

}
.

(12)
We construct the approximate solution

Wξ(x) :=
m∑
i=1

wi(x) +
(−1)m−1 − 1

2
.

With this definition we have that Wξ(x) ≈ wi(x) for values of x close

to ξi
ε
.

We construct a solution u of (3) of the form

u(x) = Wξ(x) + ϕ(x),

where ϕ ∈ Hs(R) is a small function. Now (3) can be expanded as

(−∂xx)sϕ(x)− V (εx)(1− 3W 2
ξ (x))ϕ(x) = E +N(ϕ) x ∈ R, (13)

where

E = V (εx)F (Wξ)−
m∑
i=1

V (ξi)F (wi), (14)

N(ϕ) = −V (εx)[3Wξ(x)ϕ
2 + ϕ3]. (15)

We would like to invert the operator (−∂xx)s − V (εx)(1 − 3W 2
ξ ) in

equation (13) to obtain a fixed point equation for ϕ. However, the
operator

Lξϕ := (−∂xx)s − V (εx)(1− 3W 2
ξ (x))

may have a kernel, near the kernel

Span{w′
1(x), w

′
2(x), . . . , w

′
m(x)}.
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Hence, rather than solving problem (13) directly, we shall first solve
the following projected problem

Lξϕ = E +N(ϕ) +
m∑
i=1

ciw
′
i x ∈ R, (16)

∫
R
ϕw′

i(x)dx = 0, i = 1, . . . ,m. (17)

4. Linear theory

In this section we consider the corresponding linear problem

Lξϕ = h(x) +
m∑
i=1

ciw
′
i(x) x ∈ R, (18)

∫
R
ϕw′

i(x)dx = 0, i = 1, . . . ,m. (19)

Note that the coefficients ci are uniquely determined in terms of ϕ and
h when ε is sufficiently small. Indeed, we have

m∑
i=1

ci

∫
R
w′

iw
′
jdx =

∫
R
w′

j[(−∂xx)sϕ− V (εx)(1− 3W 2
ξ (x))ϕ− h]dx.

Since∫
R
w′

j(−∂xx)sϕdx =

∫
R
ϕ(−∂xx)sw′

jdx =

∫
R
ϕV (ξj)[1−3w2

j ]w
′
jdx, (20)

we have
m∑
i=1

ci

∫
R
w′

iw
′
jdx

=

∫
R
w′

j{[V (ξj)(1− 3w2
j )− V (εx)(1− 3W 2

ξ )]ϕ− h}dx (21)

=

∫
R
w′

j{[(V (ξj)− V (εx))(1− 3w2
j )− 3V (εx)(W 2

ξ − w2
j )]ϕ− h}dx.

It is easy to see that∫
R
w′

iw
′
jdx = βjδij +O(M−1−2s)

where the numbers βj > 0 are independent of ε and M is large. Hence
the matrix of linear system (21) for ci(i = 1, . . . ,m) is diagonally dom-
inant for small ε, hence system (21) is uniquely solvable.
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For the right hand side terms of (21) we have∣∣∣∣∫
R
w′

j[(V (ξj)− V (εx))(1− 3w2
j )− 3V (εx)(W 2

ξ − w2
j )]ϕdx

∣∣∣∣
≤ C[ε+M−2s]∥ϕ∥L2(R).

Hence we obtain the following lemma.

Lemma 4.1. The numbers ci in (18) satisfy

ci =
−1

βi

∫
R
w′

ihdx+ θi,

where

|θi| ≤ C[ε+M−2s]∥ϕ∥L2(R).

The main task of this section is to establish the following proposition.

Proposition 4.1. Given m ≥ 1, 1
2
< µ < 1 + 2s, there exist positive

numbers M0, ε0, δ0 such that for any points ξ1, . . . , ξm and any ε with

min
1≤i≤m−1

∣∣∣∣ξi − ξi+1

ε

∣∣∣∣ ≥M0, 0 < ε < ε0, max
i

|ξi| ≤ δ0

there exists a unique solution ϕ = T [h] of (18)-(19) that defines a linear
operator of h, provided that

∥ρ−1h∥L∞(R) < +∞, ρ(x) =
m∑
i=1

1

(1 + |x− ξi
ε
|)µ
.

Moreover

∥ρ−1ϕ∥L∞(R) ≤ C∥ρ−1h∥L∞(R).

To prove this result we need to establish the following several lemmas.
We have the following nondegeneracy lemma.

Lemma 4.2. The only bounded solution to

(−∂xx)sϕ− λ̂[1− 3w2
λ̂
]ϕ = 0, |ϕ| ≤ 1

is cw
′

λ̂
.

Proof. For s = 1
2
, this has been proved in [7]. It is easy to see that the

same proof works exactly in the case of s > 1
2
. In fact for s > 1

2
, w

′

λ̂

works as a super-solution and hence one can prove that |ϕ| ≤ 1
|x|1+2s for

|x| > 1. Then we let ϕ = w
′

λ̂
ψ. Integrating by parts we then obtain

that ψ ≡ Constant. We omit the details.
�
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Lemma 4.3. Under the conditions of Proposition 4.1, there exists C >
0 such that for any solutions of (18)-(19) with ∥ρ−1ϕ∥L∞(R) < ∞ we
have the apriori estimate

∥ρ−1ϕ∥L∞(R) ≤ C∥ρ−1h∥L∞(R).

Proof. We argue by contradiction: namely there exist sequences εn →
0, ξin, i = 1, . . . ,m, with

min
1≤i≤m−1

∣∣∣∣ξin − ξi+1,n

εn

∣∣∣∣ → ∞

and ϕn, hn satisfying (18)-(19) such that

∥ρ−1
n ϕn∥L∞(R) = 1, ∥ρ−1

n hn∥L∞(R) → 0, (22)

where

ρn(x) =
m∑
i=1

1

(1 + |x− ξin
εn
|)µ

We claim that for any fixed R > 0 we have that
m∑
i=1

∥ϕn∥L∞(BR(ξin/εn)) → 0. (23)

Indeed, assume that for a fixed j we have that ∥ϕn∥L∞(BR(ξjn/εn)) ≥ γ >

0. We set ϕ̂n(x) = ϕn(x +
ξjn
εn
). We also assume that λjn = V (ξjn) →

λ̂ > 0. One has

(−∂xx)sϕ̂n(x)−V (ξjn+εnx){1−3[(−1)j−1wλjn
(x)+θn(x)]

2}ϕ̂n(x) = ĥn(x),

where

ĥn(x) = hn(x+
ξjn
εn

) +
m∑
i=1

cin(−1)i−1w′
λin

(
ξjn − ξin

εn
+ x).

We observe that ĥn(x) → 0 uniformly on bounded closed intervals.
From the uniform Hölder estimates in Proposition 2.1, we also obtain
equicontinuity of the sequence ϕ̂n. Thus, passing to a subsequence, we
may assume that ϕ̂n converges, uniformly on bounded closed intervals,
to a bounded function ϕ̂ which satisfies ∥ϕ̂∥L∞(BR(0)) ≥ γ and

(−∂xx)sϕ̂− λ̂[1− 3w2
λ̂
]ϕ̂ = 0, (24)∫

R
ϕ̂w′

λ̂
dx = 0. (25)

Combining (24), (25) and the nondegeneracy of the solution w to (4)

obtained in Lemma 4.2 we know that ϕ̂ = 0, which contradicts with
the fact ∥ϕ̂∥L∞(BR(0)) ≥ γ. Formula (23) and the apriori estimate in



10 Z. DU, C. GUI, Y. SIRE, AND J. WEI

Proposition 2.1 give that ∥ρ−1
n ϕn∥L∞(R) → 0, which contradicts with

(22). �

In order to construct a solution to problem (18)-(19), we first estab-
lish a solution to a simpler problem

(−∂xx)sϕ(x) + 2V (εx)ϕ = h(x) +
m∑
i=1

ciw
′
i(x), (26)

∫
R
ϕw′

i(x)dx = 0, i = 1, . . . ,m. (27)

Lemma 4.4. For any h with ∥ρ−1h∥L∞(R) < ∞, there exists a unique
solution of (26)-(27), ϕ = Q[h] ∈ Hs(R). Moreover

∥ρ−1Q[h]∥L∞(R) ≤ C∥ρ−1h∥L∞(R). (28)

Proof. Let H be the closure of the set of all functions in C∞
c (R2

+) under
the norm

∥ϕ̃∥2H :=

∫
R2
+

|∇ϕ̃|2y1−2sdxdy +

∫
R
2V (εx)ϕ2dx < +∞,

where ϕ̃ is the s-harmonic extension of ϕ. Furthermore we define a
closed subspace X of H as

X =

{
ϕ̃ ∈ H :

∫
R
ϕw′

idx = 0,∀i = 1, . . . ,m

}
.

Then, given h ∈ L2, we consider the problem of finding a ϕ̃ ∈ X such
that

⟨ϕ̃, ψ̃⟩ :=
∫
R2
+

∇ϕ̃·∇ψ̃y1−2sdxdy+

∫
R
2V (εx)ϕψdx =

∫
R
hψdx, ∀ψ̃ ∈ X.

(29)
We observe that ⟨·, ·⟩ defines an inner product in X. Then Riesz’s the-
orem yields existence and uniqueness of a solution to (26)-(27). More-
over we have

∥ϕ∥L2(R) ≤ C∥h∥L2(R).

Next we check that this produces a solution in strong sense. Let
W be the space spanned by the functions w′

i. We denote by P [h] the
L2(R) orthogonal projection of h onto W and by P̃ [h] its s-harmonic

extension. Then for each η̃ ∈ H, we know that ψ̃ := η̃ − P̃ [η] ∈ X.
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Substituting this ψ̃ into (29) we obtain∫
R2
+

∇ϕ̃ · ∇η̃y1−2sdxdy +

∫
R
2V ϕηdx

=

∫
R
hηdx+

∫
R
(2V ϕ− h)P [η]dx+

∫
R
ϕ(−∂xx)sP [η]dx,

where we used the relation∫
R2
+

∇ϕ̃ · ∇P̃ [η]y1−2sdxdy =

∫
R
ϕ(−∂xx)sP [η]dx.

For η ∈ L2(R) we consider the functional

zϕ(η) :=

∫
R
ϕ(−∂xx)sP [η]dx.

We have

|zϕ(η)| =

∣∣∣∣∫
R
ηP [(−∂xx)sϕ]dx

∣∣∣∣ ≤ C∥η∥2∥P [(−∂xx)sϕ]∥2

≤ C∥η∥2
m∑
i=1

∣∣∣∣∫
R
w′

i(−∂xx)sϕdx
∣∣∣∣ ≤ C∥ϕ∥2∥η∥2,

where in the last inequality we have used (29). Hence there exists an
e(ϕ) ∈ L2(R) such that

zϕ(η) =

∫
R
e(ϕ)ηdx.

If ϕ was a priori known to be in Hs(R) we would have precise formula
of e(ϕ)

e(ϕ) = P [(−∂xx)sϕ].
Since P is a self-adjoint operator in L2(R) we then have that∫

R2
+

∇ϕ̃ · ∇η̃y1−2sdxdy +

∫
R
2V ϕηdx =

∫
R
h̄ηdx,

where

h̄ = h+ P [2V ϕ− h] + P [(−∂xx)sϕ].
Since h̄ ∈ L2(R), it follows that ϕ ∈ Hs(R) and it satisfies

(−∂xx)sϕ(x) + 2V (εx)ϕ− h(x) = P [(−∂xx)sϕ+ 2V ϕ− h] ∈ W,

hence equations (26)-(27) are satisfied.
Now we prove (28). We have

∥ρ−1P [(−∂xx)sϕ+2V ϕ−h]∥∞ ≤ C[∥ϕ∥2+∥h∥2] ≤ C∥h∥2 ≤ C∥ρ−1h∥∞,
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where we used the condition 1
2
< µ < 1+ 2s. This and Proposition 2.1

show the desired estimate. �

Proof of Proposition 4.1. Let B be the Banach space

B := {ϕ ∈ C(R) : ∥ϕ∥B := ∥ρ−1ϕ∥L∞(R) <∞}. (30)

Problem (18)-(19) can be written as the fixed point problem

ϕ−Q[3V (εx)(1−W 2
ξ (x))ϕ] = Q[h], ϕ ∈ B. (31)

We claim that

A[ϕ] := Q[V (εx)(1−W 2
ξ (x))ϕ]

defines a compact operator in B. Indeed, assume that {ϕn} is a bounded
sequence in B. It is easy to see that for some α > 0 the estimate holds
true

|V (εx)(1−W 2
ξ (x))ϕn| ≤ C∥ϕn∥Bρ1+α,

namely

ρ−(1+α)|V (εx)(1−W 2
ξ (x))ϕn| ≤ C∥ϕn∥B.

It follows that gn := A[ϕn] satisfies

|ρ−1gn| = |ρ−1Q[V (εx)(1−W 2
ξ (x))ϕ]|

≤ C∥ρ−1V (εx)(1−W 2
ξ (x))ϕ∥∞

= Cραρ−α∥ρ−1V (εx)(1−W 2
ξ (x))ϕ∥∞

≤ Cρα∥ρ−(1+α)V (εx)(1−W 2
ξ (x))ϕ∥∞ ≤ Cρα.

Besides since gn = Td[(d−V )gn+hn], we use Hölder estimate in Propo-
sition 2.1 to get that for some β > 0

sup
x ̸=y

|gn(x)− gn(y)|
|x− y|β

≤ C.

Arzela’s theorem gives the existence of a subsequence of gn which we
label the same way, that converges uniformly to a continuous function
g with

|ρ−1g| ≤ Cρα.

Let R > 0 be a large number. Then we have

∥ρ−1(gn − g)∥L∞(R) ≤ ∥ρ−1(gn − g)∥L∞(BR(0)) + C max
|x|>R

ρα(x).

Since

max
|x|>R

ρα(x) → 0 as R → ∞,

we deduce that ∥gn − g∥B → 0, and the claim is proved.
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Now, the apriori estimate Lemma 4.3 tell us that for h = 0, (31)
has only the trivial solution. Fredholm’s alternative gives the desired
result in this proposition. �

Let us write the solution ϕ = Tξ[h] to emphasize the dependence
of the operator T on ξ. In the rest of this section, we obtain the
differentiability of ϕ = Tξ[h] with respect to ξ.

Lemma 4.5. The map ξ 7→ Tξ is continuously differentiable, and for
some C > 0, one has

∥∂ξiTξ[h]∥B ≤ C

ε
∥h∥B, ∀ i = 1, . . . ,m,

for all ξ satisfying constraints (12).

The argument of this lemma is rather similar to that of Lemma 4.4
in [6], we omit it.

5. Solving the nonlinear intermediate problem

In this section we will apply contraction mapping principle to solve
nonlinear problem (16)-(17).

We first make an estimate of the error E in the norm ∥ · ∥B. Recall
that

E = V (εx)F (Wξ)−
m∑
i=1

V (ξi)F (wi).

We rewrite it as

E = V (εx)

[
F (Wξ)−

m∑
i=1

F (wi)

]
+

m∑
i=1

[V (εx)− V (ξi)]F (wi).

Here we need to take µ ∈ (1
2
, s). Let

M := min
1≤i≤m−1

∣∣∣∣ξi − ξi+1

ε

∣∣∣∣ ≫ 1.

The second term in E can be easily estimated as∣∣∣∣∣ρ−1(x)
m∑
i=1

[V (εx)− V (ξi)]F (wi)

∣∣∣∣∣ ≤ Cεs.

To estimate the interaction term (the first term) in E, we divide the R
into the m sub-intervals

Ij := {x ∈ R : |wj(x)| ≤ |wi(x)|, ∀ i ̸= j, 1 ≤ i ≤ m}.
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For x ∈ Ij, we have∣∣∣∣∣V (εx)

[
F (Wξ)−

m∑
i=1

F (wi)

]∣∣∣∣∣
≤ C

∑
i ̸=j

1

|x− ξi
ε
|2s

≤ C
∑
i ̸=j

1

| ξi−ξj
ε

|2s

≤ C
1

1 + |x− ξj
ε
|µ

∑
i̸=j

1

| ξi−ξj
ε

|2s−µ

≤ Cρ(x)Mµ−2s ≤ Cρ(x)M−s.

Therefore we obtain that

∥E∥B ≤ C[εs +M−s]. (32)

Similarly, we can obtain

∥∂ξE∥B ≤ C

ε
[εs +M−s]. (33)

We denote
κ := C[εs +M−s].

We have the following result.

Lemma 5.1. Assume that ∥E∥B is sufficiently small, then (16)-(17)
possesses a unique small solution ϕ = Φ(ξ) with

∥Φ(ξ)∥B ≤ C∥E∥B.
Moreover the map ξ 7→ Φ(ξ) is of class C1, and for some C > 0

∥∂ξΦ(ξ)∥B ≤ C

[
1

ε
∥E∥B + ∥∂ξE∥B

]
(34)

for all ξ satisfying constraints (12).

Proof. Problem (16)-(17) can be written as the fixed point problem

ϕ = Tξ(E +N(ϕ)) =: Kξ(ϕ), ϕ ∈ B. (35)

Let
Z = {ϕ ∈ B : ∥ϕ(ξ)∥B ≤ σ}.

If ϕ ∈ Z, then it is easy to see that

∥N(ϕ)∥B ≤ C∥ϕ∥2B.
Hence

∥Kξ(ϕ)∥B ≤ C0[∥E∥B + σ2].

Choosing
σ = 2C0∥E∥B,
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we have
∥Kξ(ϕ)∥B ≤ C0[

σ

2C0

+ σ2] ≤ σ,

which means that Kξ(Z) ⊂ Z.
We observe that

|N(ϕ1)−N(ϕ2)| ≤ C[|ϕ1|+ |ϕ2|]|ϕ1 − ϕ2|,
which yields that

∥N(ϕ1)−N(ϕ2)∥B ≤ Cσ∥ϕ1 − ϕ2∥B.
Hence

∥Kξ(ϕ1)−Kξ(ϕ2)∥B ≤ Cσ∥ϕ1 − ϕ2∥B.
Reducing σ if necessary, we obtain that Kξ is a contraction mapping
and hence has a unique solution of problem (35) in Z. We denote it as
ϕ = Φ(ξ).

Next we prove that Φ is C1 with respect to ξ. Denote

G(ϕ, ξ) := ϕ− Tξ(E +N(ϕ)).

Let ϕ0 = Φ(ξ0), then G(ϕ0, ξ0) = 0. We have

∂ϕG(ϕ, ξ)[ψ] = ψ − Tξ(N
′(ϕ)ψ),

where N ′(ϕ) = −V (εx)[6Wξ(x)ϕ+ 3ϕ2]. Hence

∥N ′(ϕ)ψ∥B ≤ Cσ∥ψ∥B.
Then, if σ is sufficiently small, we have that ∂ϕG(ϕ0, ξ0) is an invertible
operator with uniformly bounded inverse. Besides

∂ξG(ϕ, ξ) = (∂ξTξ)(E +N(ϕ)) + Tξ(∂ξE + ∂ξN(ϕ)).

Both partial derivatives are continuous in their arguments. The implicit
function theorem applies in a small neighborhood of (ϕ0, ξ0) to give
existence and uniqueness of a function ϕ = ϕ(ξ) with ϕ0 = ϕ(ξ0) defined
near ξ0. Besides ϕ(ξ) is of class C

1. However, by uniqueness, we must
have ϕ(ξ) = Φ(ξ).

Finally we note that

∂ξN(ϕ) = −3V (εx)∂ξWξ(x)ϕ
2,

so

∥∂ξN(Φ(ξ))∥B ≤ C

ε
∥Φ(ξ)∥2B ≤ C

ε
∥E∥2B. (36)

Since

∂ξΦ(ξ) = − 1

∂ϕG(Φ(ξ), ξ)
[(∂ξTξ)(E+N(Φ(ξ)))+Tξ(∂ξE+∂ξN(Φ(ξ)))],

from this, (36) and Lemma 4.5, we obtain (34).
�
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6. The variational reduced problem

Recalling that we have obtained the existence of a unique solution
u = Wξ(x) + Φ(ξ) of the problem (16)-(17). Namely, if we denote this
solution as u = uξ, we have

(−∂xx)suξ − V (εx)(uξ − u3ξ) =
m∑
i=1

ciw
′
i. (37)

Then, in order to prove Theorem 1.1, we need to verify that the coef-
ficients ci(i = 1, . . . ,m) are equal to zero, by choosing an appropriate
point ξ = (ξ1, . . . , ξm).

Problem (3) corresponds to an energy functional

Jε(u) =
1

2

∫
R
u(x)(−∂xx)su(x)dx+

1

4

∫
R
V (εx)(1− u2(x))2dx.

Note that Jε(u) is well-defined, since s >
1
2
. We denote

J (ξ) := Jε(uε) = Jε(Wξ(x) + Φ(ξ)).

We will first establish expansions of the energy J (ξ).

Lemma 6.1. Assume that the number M−1 in the definition of U in
(12) is taken so small that

∥E∥B + ε∥∂ξE∥B ≤ κ≪ 1.

Then
J (ξ) = Jε(Wξ(x)) +O(κ2) (38)

and

∂ξJ (ξ) = ∂ξJε(Wξ(x)) +O(
κ2

ε
) (39)

uniformly on points ξ in U .

Proof. Since

J (ξ) =
1

2

∫
R
uξ(x)(−∂xx)suξ(x)dx+

1

4

∫
R
V (εx)(1− u2ξ(x))

2dx,

we can expand

J (ξ) = Jε(Wξ) +
1

2

∫
R
Φ(−∂xx)sΦdx (40)

+

∫
R
Φ[(−∂xx)sWξ − V (εx)Wξ(1−W 2

ξ (x))]dx

+
1

4

∫
R
V (εx){[u4ξ −W 4

ξ − 4W 3
ξ Φ]− 2[u2ξ −W 2

ξ − 2WξΦ]}dx.
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In view of ∥E∥B ≤ κ then ∥Φ∥B ≤ Cκ, and from equation (16) we also
have ∥(−∂xx)sΦ∥B ≤ Cκ. Hence∫

R
Φ(−∂xx)sΦdx ≤ Cκ2

∫
R
ρ2dx ≤ Cκ2 (41)

and∫
R
V (εx){[u4ξ −W 4

ξ − 4W 3
ξ Φ]− 2[u2ξ −W 2

ξ − 2WξΦ]}dx (42)

=

∫
R
V {[(Wξ + Φ)4 −W 4

ξ − 4W 3
ξ Φ]− 2[(Wξ + Φ)2 −W 2

ξ − 2WξΦ]}

≤ Cκ2
∫
R
ρ2dx ≤ Cκ2,

where we have used the definition of ρ(x) =
∑m

i=1
1

(1+|x− ξi
ε
|)µ

and the

fact that µ > 1
2
.

Note that (−∂xx)sWξ − V (εx)Wξ(1−W 2
ξ (x)) = E, so∫

R
Φ[(−∂xx)sWξ − V (εx)Wξ(1−W 2

ξ (x))]dx ≤ Cκ2
∫
R
ρ2dx ≤ Cκ2.

(43)
From (40)-(43), we obtain (38).

Differentiating (40) with respect to ξj, we have

∂ξjJ (ξ) = ∂ξjJε(Wξ) +

∫
R
[∂ξjΦ(−∂xx)sΦdx+

∫
R
[E∂ξjΦ + Φ∂ξjE]dx

+

∫
R
V (εx){[(Wξ + Φ)3 −W 3

ξ − 3W 3
ξ Φ]∂ξjWξ (44)

+[(Wξ + Φ)3 −W 3
ξ ]∂ξjΦ + Φ∂ξjΦ}dx.

We have that∫
R
V (εx)[(Wξ + Φ)3 −W 3

ξ − 3W 3
ξ Φ]∂ξjWξdx ≤ C

ε
κ2.

From this, (44), (34) and the condition ∥E∥B + ε∥∂ξE∥B ≤ κ, we can
obtain (39). �

Next we estimate Jε(Wξ) and ∂ξJε(Wξ). We begin with the simpler
case m = 1. Note that the condition ∥E∥B + ε∥∂ξE∥B ≤ κ is always
true. Now

Wξ(x) = wλ(x−
ξ

ε
), λ = V (ξ).

It is easy to see that

Jε(Wξ) = Jλ(wλ) +
1

4

∫
R
[V (ξ + εx)− V (ξ)](1− w2

λ(x))
2dx, (45)
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where

Jλ(v) =
1

2

∫
R
v(−∂xx)svdx+

λ

4

∫
R
(1− v2)2dx.

Note that
Jλ(wλ) = λ1−

1
2sJ1(w). (46)

Indeed, recalling that wλ(x) = w(λ
1
2sx) satisfies the equation

(−∂xx)swλ − λ(wλ − w3
λ) = 0 in R,

where w = w1 is the unique solution of

(−∂xx)sw − (w − w3) = 0, w(0) = 0, w(±∞) = ±1.

Then, after a change of variables we obtain (46).
We claim that∫

R
[V (ξ + εx)− V (ξ)](1− w2

λ(x))
2dx = O(ε2s). (47)

Indeed, for any large number ζ with ζ < ε−1, we have∫
R

[V (ξ + εx)− V (ξ)](1− w2
λ(x))

2dx

=

∫
R
[V (εx+ ξ)− V (ξ)](1− w2(V (ξ)

1
2sx))2dx

=

∫
|x|>ε−1

[V (εx+ ξ)− V (ξ)](1− w2(V (ξ)
1
2sx))2dx

+

∫
|x|<ζ

[V (εx+ ξ)− V (ξ)− εV ′(ξ)x](1− w2(V (ξ)
1
2sx))2dx

+

∫
ζ<|x|<ε−1

[V (εx+ ξ)− V (ξ)− εV ′(ξ)x](1− w2(V (ξ)
1
2sx))2dx

≤ C[ε4s−1 + max
x∈(−ζ,ζ)

|V (εx+ ξ)− V (ξ)− εV ′(ξ)x|]

+C

∫ ε−1

ζ

ε2x2x−4sdx.

In view of

ε2
∫ ε−1

ζ

x2−4sdx ≤

 Cε2, s > 3
4
,

Cε2 ln 1
ε
, s = 3

4
,

Cε4s−1, 1
2
< s < 3

4
,

we have∣∣∣∣∫
R
[V (ξ + εx)− V (ξ)](1− w2

λ)
2dx

∣∣∣∣ ≤ C[ε4s−1 + ε2ζ2 + ε2 ln
1

ε
].

Choosing ζ = εs−1, we obtain (47), where we used the fact 1
2
< s < 1.
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We claim

∂ξ

∫
R
[V (ξ + εx)− V (ξ)](1− w2

λ(x))
2dx = O(ε2s−1). (48)

Indeed

∂ξ

∫
R
[V (ξ + εx)− V (ξ)](1− w2

λ(x))
2dx

=

∫
R
[∂ξV (ξ + εx)− ∂ξV (ξ)](1− w2

λ(x))
2dx

−2

s
V

1
2s

−1(ξ)V ′(ξ)

∫
R
[V (ξ + εx)− V (ξ)]x(1− w2

λ(x))w
′(V

1
2sx)dx.

From the proof of (47), we know that∫
R
[∂ξV (ξ + εx)− ∂ξV (ξ)](1− w2

λ(x))
2dx = O(ε2s).

For the other term, we have∫
R
[V (ξ + εx)− V (ξ)]x(1− w2

λ(x))w
′(V

1
2sx)dx

=

{∫
|x|>ε−1

+

∫
|x|<ζ

+

∫
ζ<|x|<ε−1

}
[V (ξ + εx)− V (ξ)]x(1− w2

λ(x))w
′(V

1
2sx)

≤ C[ε4s−1 + max
x∈(−ζ,ζ)

|V (εx+ ξ)− V (ξ)|] + C

∫ ε−1

ζ

εx2x−4s−1dx

≤ C[ε4s−1 + εζ + ε],

where in the last inequality we have used the fact s > 1
2
. Choosing

ζ = ε2s−2 and noting that 1
2
< s < 1, we obtain (48).

Hence, from Lemma 6.1, the definition of κ and (45)-(48), we obtain
the following lemma.

Lemma 6.2. Let c∗ = J1(w) and m = 1. Then the following expan-
sions hold true

J (ξ) = c∗V (ξ)1−
1
2s +O(ε2s +M−2s),

∂ξJ (ξ) = c∗∂ξ[V (ξ)1−
1
2s ] +

1

ε
O(ε2s +M−2s).

For the general casem > 1, without loss of generality, we may assume

that ξ1 ≤ ξ2 ≤ · · · ≤ ξm. Taking min1≤i≤m−1

∣∣∣ ξi−ξi+1

ε

∣∣∣ ≥ M ≫ 1, we

know that ∥E∥B ≤ Cκ also holds true. Hence from Lemma 6.1, we
have also

J (ξ) = Jε(Wξ(x)) + O(κ2), ∂ξJ (ξ) = ∂ξJε(Wξ(x)) + O(
κ2

ε
). (49)
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For each i(i = 1, . . . ,m−1), we denote the unique number in ( ξi
ε
, ξi+1

ε
)

as ζi such that |wi(ζi)| = |wi+1(ζi)|. From the properties of the potential
function V , we know that there exists σi ∈ (0, 1), independent of ε, such
that

ζi =
ξi
ε
+ σi

ξi+1 − ξi
ε

, i = 1, . . . ,m− 1.

We have the following lemma.

Lemma 6.3. The following expansions hold true

J (ξ) = c∗

m∑
i=1

V (ξi)
1− 1

2s −
m−1∑
i=1

c̃i + o(1)

| ξi+1−ξi
ε

|2s−1
+O(ε2s +M−2s), (50)

∂ξJ (ξ) = c∗∂ξ

[
m∑
i=1

V (ξi)
1− 1

2s

]
−

m−1∑
i=1

c̃i + o(1)

| ξi+1−ξi
ε

|2s−1
+

1

ε
O(ε2s +M−2s).

(51)
Here

c̃i =
ciσ

1−2s
i + ci+1(1− σi)

1−2s + o(1)

2s− 1
, i = 1, . . . ,m− 1,

where ci > 0 is a constant between C1 and C2, which are given in
(9)-(10).
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Proof. It suffices to expand Jε(Wξ(x)). We have

Jε(Wξ(x)) (52)

=
1

2

∫
R
Wξ(−∂xx)sWξdx+

1

4

∫
R
V (εx)(1−W 2

ξ )
2dx

=
1

2

m∑
j=1

∫
Ij

[∑
i<j

(wi(x)− (−1)i−1) + wj(x) +
∑
i>j

(wi(x) + (−1)i−1)

]

×(−∂xx)s
[∑

i<j

(wi(x)− (−1)i−1) + wj(x) +
∑
i>j

(wi(x) + (−1)i−1)

]
dx

+
m∑
j=1

∫
Ij

V (εx)

4

1−

[∑
i<j

(wi − (−1)i−1) + wj +
∑
i>j

(wi + (−1)i−1)

]2


2

dx

=
m∑
j=1

∫
Ij

1

2
wj(−∂xx)swj +

V (εx)

4
(1− w2

j )
2dx

+
m∑
j=1

∫
Ij

[∑
i<j

(wi(x)− (−1)i−1) +
∑
i>j

(wi(x) + (−1)i−1)

]
(−∂xx)swj(x)

+
1

2

m∑
j=1

∫
Ij

(Wξ − wj)(−∂xx)s(Wξ − wj)dx

+
m∑
j=1

∫
Ij

V (εx)

4
{[1−W 2

ξ ]
2 − [1− w2

j ]
2}dx+O(M−2s)

=
m∑
j=1

∫
Ij

1

2
wj(−∂xx)swj +

V (εx)

4
(1− w2

j )
2dx+O(M−2s).

Note that
m∑
j=1

∫
Ij

V (εx)

4
(1−w2

j )
2dx =

m∑
j=1

∫
R

V (εx)

4
(1−w2

j )
2dx+O(M1−4s). (53)

Besides
m∑
j=1

∫
Ij

1

2
wj(−∂xx)swj =

m∑
j=1

∫
R

1

2
wj(−∂xx)swj−

m∑
j=1

∫
R\Ij

1

2
wj(−∂xx)swj.

We claim that
m∑
j=1

∫
R\Ij

1

2
wj(−∂xx)swjdx =

m−1∑
j=1

c̃j + o(1)

| ξj+1−ξj
ε

|2s−1
. (54)
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Indeed, one has∫
R\Ij

1

2
wj(−∂xx)swjdx =

∫
R\Ij

V (ξj)

2
w2

j (1− w2
j )dx (55)

=

∫
R\Ij

V (ξj)

2
w2

(
V

1
2s (ξj)

(
x− ξj

ε

))[
1− w2

(
V

1
2s (ξj)

(
x− ξj

ε

))]
dx.

For x ∈ R\Ij, we have

w2(V
1
2s (ξj)(x−

ξj
ε
)) ∼ 1,

C1

V (ξj)|x− ξj
ε
|2s

≤ 1− w2(V
1
2s (ξj)(x−

ξj
ε
)) ≤ C2

V (ξj)|x− ξj
ε
|2s
. (56)

Recall that

ζj =
ξj
ε
+ σj

ξj+1 − ξj
ε

, j = 1, . . . ,m− 1.

Hence for 2 ≤ j ≤ m− 1, we have∫
R\Ij

V (ξj)

2
w2(V

1
2s (ξj)(x−

ξj
ε
))[1− w2(V

1
2s (ξj)(x−

ξj
ε
))]dx

=

∫ ζj−1

−∞

V (ξj)

2
w2(V

1
2s (ξj)(x−

ξj
ε
))[1− w2(V

1
2s (ξj)(x−

ξj
ε
))]dx (57)

+

∫ +∞

ζj

V (ξj)

2
w2(V

1
2s (ξj)(x−

ξj
ε
))[1− w2(V

1
2s (ξj)(x−

ξj
ε
))]dx

=
cj + o(1)

2s− 1

[
(1− σj−1)

1−2s

∣∣∣∣ξj − ξj−1

ε

∣∣∣∣1−2s

+ σ1−2s
j

∣∣∣∣ξj+1 − ξj
ε

∣∣∣∣1−2s
]
,

where cj > 0 is a constant between C1 and C2, which are given in (56).
Formula (57) also holds true for j = 1 and j = m, the only difference
is that the right hand side term is respectively replaced by

c1 + o(1)

2s− 1
(1− σ1)

1−2s

∣∣∣∣ξ2 − ξ1
ε

∣∣∣∣1−2s

,
cm + o(1)

2s− 1
σ1−2s
m−1

∣∣∣∣ξm − ξm−1

ε

∣∣∣∣1−2s

.

(58)
From (55), (57)-(58), we obtain (54).

Then, from (52)-(54) we have

Jε(Wξ(x)) =
m∑
j=1

∫
R

1

2
wj(−∂xx)swj +

V (εx)

4
(1− w2

j )
2dx

−
m−1∑
j=1

c̃j + o(1)

| ξj+1−ξj
ε

|2s−1
+O(M−2s).
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By the same argument for the case of m = 1, we know∫
R

1

2
wj(−∂xx)swj +

V (εx)

4
(1− w2

j )
2dx = c∗V (ξj)

1− 1
2s +O(ε2s).

Hence

Jε(Wξ(x)) = c∗

m∑
j=1

V (ξj)
1− 1

2s −
m−1∑
j=1

c̃j + o(1)

| ξj+1−ξj
ε

|2s−1
+O(M−2s + ε2s).

This and (49) yield (50).
Similarly, we can obtain (51). We omit the precise argument.

�
In the rest of this section, we establish the following variational re-

sult.

Lemma 6.4. c := (c1, . . . , cm) = 0 if and only if ∂ξJ (ξ) = 0.

Proof. We have

∂ξjJ (ξ) =

∫
R2
+

∇ũξ · ∇(∂ξj ũξ)y
1−2sdxdy −

∫
R
V (εx)uξ(1− u2ξ)∂ξjuξdx

=

∫
R
[(−∂xx)suξ − V (εx)uξ(x)(1− u2ξ(x))]∂ξjuξ(x)dx (59)

=
m∑
i=1

ciw
′
i∂ξjuξ(x),

where ũξ is the s-harmonic extension of uξ =Wξ(x) + Φ(ξ). Note that

∂ξjuξ(x) = −1

ε
w′

j +O(1) + ∂ξjΦ(ξ),

and, from Lemma 5.1, we have

∥∂ξjΦ(ξ)∥B ≤ C[
1

ε
∥E∥B + ∥∂ξE∥B].

From
∫
Rw

′
iw

′
jdx = βjδij + O(M−1−2s) and (32)-(33), we know that,

for small ε and M ≫ 1, the matrix of linear system (59) for ci is
diagonally dominant. This shows that (c1, . . . , cm) = 0 if and only if
∂ξJ (ξ) = 0. �

7. The proof of Theorem 1.1

In this section, we will complete the proof of Theorem 1.1.
Proof of Theorem 1.1. By the definition of configuration space U

(12), we can chooseM ∼ ε−1 and achieve that Λ ⊂ U . Then we obtain

∥E∥B + ε∥∂ξE∥B ≤ Cεs.
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By Lemma 6.3 we have

J (ξ)− c∗Υ(ξ) = o(1), ∇J (ξ)− c∗∇Υ(ξ) = o(1)

uniformly in ξ ∈ Λ as ε → 0, where the function Υ is defined in
Theorem 1.1. We choose J (ξ)− c∗Υ(ξ) as the function g in Theorem
1.1. Then, by the assumption on Υ, we know that for all sufficiently
small ε there exists a ξε ∈ Λ such that ∇J (ξε) = 0. Now applying
Lemma 6.4, we obtain the result of this theorem.

�

8. The proof of Theorem 1.2

Let I be as in Theorem 1.2 and c̄ > 0 be a small number. Set

Λε =

{
ξ = (ξ1, . . . , ξm) ∈ I × · · · × I :

m−1∑
i=1

∣∣∣∣ξi − ξi+1

ε

∣∣∣∣1−2s

< c̄ετ

}
,

where 0 < τ < 2(2s−1)
2s+1

. Note that 2(2s−1)
2s+1

< 2s− 1 < 2s, since s > 1
2
.

Similarly we construct a solution with the form

u(x) = Wξ(x) + ϕ(x).

Repeating the argument of Theorem 1.1, we can prove that the corre-
sponding projected problem possess a unique solution ϕ = Φ(ξ) with

∥Φ(ξ)∥B ≤ C∥E∥B ≤ C[εs +M−s].

Note that now M = min1≤i≤m−1

∣∣∣ ξi−ξi+1

ε

∣∣∣ ≥ Cε−
τ

2s−1 , instead of M ∼
ε−1 as in the proof of Theorem 1.1. We also can obtain variational
Lemma 6.4, and the same energy expansion as (50) for sufficiently
small ε as follows

J (ξ) = c∗

m∑
i=1

V (ξi)
1− 1

2s −
m−1∑
i=1

c̃i + o(1)

| ξi+1−ξi
ε

|2s−1
+O(ε2s +M−2s), (60)

where c̃i > 0.
To prove Theorem 1.2, applying Lemma 6.4, we know that the only

task rest is to obtain the following result.

Lemma 8.1. For ε sufficiently small, the following maximizing prob-
lem

max{J (ξ) : ξ ∈ Λε}
has a solution ξε ∈ Λε.
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Proof. We will borrow the idea in Proposition 4.2 [13] to prove this
lemma.

Since J (ξ) is continuous in ξ, the maximizing problem has a solution.
Let ξε ∈ Λε be a maximum point of J (ξ).

We claim that ξε ∈ Λε. We prove this by energy comparison.

We first establish a lower bound for J (ξε). Recall that τ < 2(2s−1)
2s+1

,

which guarantees that τ
2s−1

< 2−τ
2
. Hence we may choose σ ∈ ( τ

2s−1
, 2−τ

2
),

which implies

σ(2s− 1) > τ, 2(1− σ) > τ. (61)

The condition τ > 0 makes that 2−τ
2

< 1, and so σ < 1. Set ξ0i =

ε1−σ(i− m+1
2

). Clearly ξ0i ∈ I. Moreover∣∣∣∣ξ0i+1 − ξ0i
ε

∣∣∣∣1−2s

≤ Cεσ(2s−1) < c̄ετ .

So ξ0 = (ξ01 , . . . , ξ
0
m) ∈ Λε.

Since V ′(0) = 0, we have the Taylor’s expansion

V (ξ0i ) = V (0) + O(ε2(1−σ)).

Hence from (60) we obtain

J (ξε) = max
ξ∈Λε

J (ξ) ≥ J (ξ0)

≥ mc∗V (0)1−
1
2s − C(εσ(2s−1) + ε2(1−σ) + ε2s +M−2s)

≥ mc∗V (0)1−
1
2s − C(εσ(2s−1) + ε2(1−σ) + ε2s + ε

2s
2s−1

τ ),

where in the last inequality we used M ≥ Cε−
τ

2s−1 . Hence

c∗

m∑
i=1

V (ξεi )
1− 1

2s −
m−1∑
i=1

c̃i + o(1)

| ξ
ε
i+1−ξεi

ε
|2s−1

(62)

≥ mc∗V (0)1−
1
2s − C(εσ(2s−1) + ε2(1−σ) + ε2s + ε

2s
2s−1

τ ).

From the previous analysis in this section, we know that four exponen-
tials of the corresponding powers of ε in the right hand side of (62) all
larger than τ . From (62) we can deduce that ξε ∈ Λε. Indeed, sup-
pose not, then by the definition of Λε there are two possible case. The
first case is that one of the ξεi is an endpoint of I. Then by condition
V (0) = maxx∈I V (x) > V (z), ∀z ∈ I\{0}, we know that there exists
β1 > 0 such that V (ξεi ) < V (0)− β1, so

c∗

m∑
i=1

V (ξεi )
1− 1

2s ≤ mc∗V (0)1−
1
2s − β2
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for some β2 > 0. This contradicts with (62). The other case is that∑m−1
i=1

∣∣∣ ξεi−ξεi+1

ε

∣∣∣1−2s

= c̄ετ . Then

c∗

m∑
i=1

V (ξεi )
1− 1

2s−
m−1∑
i=1

c̃i + o(1)

| ξ
ε
i+1−ξεi

ε
|2s−1

≤ mc∗V (0)1−
1
2s−c̄[ min

1≤i≤m−1
c̃i+o(1)]ετ ,

which contradicts with (62) again.
Hence ξε ∈ Λε. �
Proof of Theorem 1.2. Combining Lemmas 6.4 and 8.1, we see that

(1) possesses a solution of the form (5). From the argument of Lemma
8.1, we know that

m−1∑
i=1

∣∣∣∣ξεi − ξεi+1

ε

∣∣∣∣1−2s

= o(ετ ),

which gives (6). We also know that V (ξεi ) − maxx∈I V (x) = V (ξεi ) −
V (0) = o(1), i = 1, . . . ,m.

Next we prove (7). Suppose not, then by the Taylor’s expansion, due
to V ′′(0) < 0, there exists some i such that

V (ξεi ) < V (0)− Cετ ,

where C > 0 is a constant. Hence applying Taylor’s expansion again,
we have

V (ξεi )
1− 1

2s < V (0)1−
1
2s − Cετ ,

which yields

c∗

m∑
i=1

V (ξεi )
1− 1

2s −
m−1∑
i=1

c̃i + o(1)

| ξ
ε
i+1−ξεi

ε
|2s−1

< c∗

m∑
i=1

V (ξεi )
1− 1

2s

< mc∗V (0)1−
1
2s − Cετ .

This contradicts with (62), and so (7) holds true.
The proof of Theorem 1.2 is complete.

�

9. Open Questions

This paper initiates the study of effect of inhomogeneity in fractional
Allen-Can equations. We pose several challenging questions in line with
the standard s = 1 case.

• Are results stated in this paper true even when s = 1
2
? In view

of the results of [3]-[4], we turn to believe so. s = 1
2
is the

borderline case.
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• What happens when 0 < s < 1
2
? It is expected that nonlocal

interactions and nonlocal mean curvature will come into effect.
• What about higher dimensional concentrations (on geodesics,
minimal surfaces)? Again there should be a dramatic difference
between s ≥ 1

2
and s < 1

2
.
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[4] X. Cabré and E. Cinti, Energy estimates and 1-D symmetry for nonlinear
equations involving the half-Laplacian. Discrete Contin. Dyn. Syst. 28 (2010),
no. 3, 1179-1206.

[5] L. Caffarelli and L. Silvestre, An extension problem related to the fractional
Laplacian, Comm. Partial Differential Equations, 32(2007), 1245-1260.

[6] J. Dávila, M. Del Pino and J. Wei, Concentrating standing waves for the
fractional nonlinear Schrödinger equation, J. Diff. Eqns. 256(2014), 858-892.

[7] J. Dávila, M. del Pino and M. Musso,Bistable boundary reactions in two di-
mensions, Arch. Ration. Mech. Anal. 200 (2011), no. 1, 89-140.

[8] M. del Pino, M. Kowalczyk, J. Wei and J. Yang, Interface foliation near
minimal submanifolds in Riemannian manifolds with positive Ricci curvature,
Geom. Funct. Anal., 20(2010), no. 4, 918-957.

[9] Z. Du and C. Gui, Interior layers for an inhomogeneous Allen-Cahn equation,
J. Diff. Eqns. 249(2010), 215-239.

[10] Z. Du and B. Lai, Transition layers for an inhomogeneous Allen-Cahn equa-
tion in Riemannian manifolds, Discrete Contin. Dynam. Systems, A 33(2013),
no. 4, 1407-1429.

[11] Z. Du and L. Wang, Interface foliation for an inhomogeneous Allen-Cahn
equation in Riemannian manifolds, Calc. Var. Partial Differential Equations
47(2013), no. 1, 343-381.

[12] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic
Schrödinger equation with a bounded potential, J. Funct. Anal. 5(2000), 397-
408.



28 Z. DU, C. GUI, Y. SIRE, AND J. WEI

[13] X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear
Schrödinger equations, Adv. Differential Equations, 69(1986), no. 7-9, 899-
928.

[14] K. Nakashima, Multi-layered stationary solutions for a spatially inhomoge-
neous Allen-Cahn equation, J. Diff. Eqns. 191(2003), 234-276.

[15] K. Nakashima, and K. Tanaka, Clustering layers and boundary layers in spa-
tially inhomogenerous phase transition problems, Ann. Inst. H. Poincaré Anal.
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