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Abstract. For a diblock copolymer with total chain length γ > 0 and mass ratio m ∈
(−1, 1), we consider the problem of minimizing the doubly nonlocal free energy

Eε(u) = H(u) +
1

ε2s

∫
Ω

W (u) dx+
1

2

∫
Ω

∣∣∣(−γ2∆)−
1
2 (u−m)

∣∣∣2 dx
in a domain Ω, where H(u) is a fractional Hs-norm with s ∈ (0, 1

2 ), and W is a double-

well potential. This arises in the study of micro-phase separation phenomena for diblock

copolymers with nonlocal diffusions.

On the unit interval, we identify the Γ-limit as ε→ 0+, and also find explicit isolated local

minimizers associated the lamellar morphology phase in the case m = 0, provided that the

chain is sufficiently short or the nonlocal interaction is sufficiently strong (i.e. as s → 0+).

We stress that such extra condition is new for the nonlocal case and is not present in the

classical model. The proof, while elementary, requires a careful analysis of the nonlocal

integrals.

1. Introduction

1.1. Diblock copolymers. In this article, we study the microphase separation phenomenon

of diblock copolymers under the effect of nonlocal diffusions. Originally, the model, with

ordinary diffusion, was introduced in Bahiana and Oono [4] and Ohta and Kawasaki [32].

For a domain Ω ⊂ R and u ∈ L2(Ω), consider the following free energy

(1) Eε(u) =

H(u) +
1

ε2s
W(u) +K(u) if u ∈ X ∩Hs(Ω),

+∞ if u ∈ X \Hs(Ω),

where

(2) H(u) =
1

4

∫
Ω

∫
Ω

(u(x)− u(y))2KΩ(x− y) dxdy,

(3) W(u) =

∫
Ω

W (u(x)) dx

(4) K(u) =
1

2

∫
Ω

∣∣∣(−γ2∆)−
1
2 (u−m)(x)

∣∣∣2 dx
and KΩ is a fractional kernel of order 2s such that H(u) is comparable to the Hs-norm. Here

m =
∫ 1

0
u is the mass ratio. The admissible class X of functions that takes values between

[−1, 1] with a fixed mass ratio m is introduced precisely in (7) later in the Introduction.
1
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In a diblock copolymer, a linear-chain molecule consists of two sub-chains covalently

grafted to each other. The sub-chains consist two monomer units which can be represented

by u = −1 and u = +1, the global minima of the double-well potential W . On the one

hand, the potential energy W takes into account the repulsion of the two monomers. On

the other hand, there are the long-range chemical bonding of the two monomer units. This

part of the free energy is inversely proportional to the square root of the total chain length

γ, as seen in the K term. As a result, such segregation only leads to phase separation in

the microscopic scale. Here ε is proportional to the thickness of interfaces. The interfacial

energy is represented by H; it prevents the unnecessary forming of interfaces.

As we minimize the free energy Eε, let us first observe that the double-well potential W

prefers segregated monomers to a mixture. With a fixed mass ratio m of the two monomers,

we see two competing tendencies — H likes large blocks of monomers1 while K favors rapid

oscillations. The process of reaching a stable configuration is termed micro-separation, and

the patterns formed in micro-domains are known as morphology phases.

The classical model has instead the energies

ε

2

∫
Ω

|∇u|2 dx+
1

ε
W(u)

in place of H(u) + ε−2sW(u) in the free energy (1). This modification is made as we take

into consideration the longer-range interactions around the interfaces, modeled by a nonlocal

diffusion term. For the derivation of a similar model with nonlocal diffusion, the readers are

referred to the appendix. Later in the introduction we will discuss the roles of the thickness

parameter ε in the article in the context of Γ-convergence.

There is a great amount of literature concerning the classical model. With different ranges

of the parameters ε and γ, various morphology phases of diblock copolymers are possible

and they have been studied mathematically: the lamellar phase by Ren–Wei [35–39], Fife–

Hilhorst [23], Choksi [10], Choksi–Ren [15], Chen–Oshita [9], Choksi–Sternberg [16], the

cylindrical phase by Ren–Wei [34, 40], the spherical phase by Glasner–Choksi [24], Choksi–

Peletier [11, 12] and the gyroid and orthorhomic phases by Teramoto–Nishiura [45, 46]. A

detailed analysis of the phase diagram is given by Choksi–Peletier–Williams [13]. For more

details of this model and the associated parabolic problem, the readers may consult [4,14,22,

27, 30, 31, 41]. As with the nonlocal diffusion, Dipierro–Novaga–Valdinoci [21] considered a

nonlocal energy involving the fractional perimeter functional and established a rigidity result

for critical points (not just minimizers) provided the volume is small in a certain sense.

1Indeed, from the formula, if x and y are points which are close to each other and lie on two sides of an

interface, then u(x)− u(y) is O(1) while the singular fractional kernel at x− y is very large.
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1.2. The two nonlocal terms. In the recent decades there has been an explosive amount of

literature concerning the fractional Sobolev space W s,p and the associated fractional Lapla-

cian operator (−∆)s. They are useful in describing long-range interactions in physical sys-

tems including, for example, the Ising model in statistical mechanics, the Peierls–Nabarro

model in dislocations in crystals, and the Benjamin–Ono equation in hydrodynamics. Recent

progress and references can be found in [6].

From a physical point of view, −∆u describes the ‘usual’ diffusion of certain particles with

density u due to random movements as it measures the deviation from the mean value in

an infinitesimal neighborhood. In contrast, fractional order operators like (−∆)su, or more

generally

Lu(x) =

∫
Ω

(u(x)− u(y))KΩ(x− y) dy,

calculates the KΩ-weighted average in the whole domain. In such setting, particles do not

only interact with its immediate neighbours, but are also allowed to influence others which

are far apart.

To avoid complications, although the model can be easily generalized to a domain in Rd,

we impose periodic boundary conditions and work in one dimension only. When Ω = (0, 1),

(5) KΩ(x− y) = K(x− y) = C1,s

∑
n∈Z

1

|x− y − n|1+2s
.

For its derivation, we refer to Roncal and Stinga [42]; see also [3, 19]. Here C1,s =
22sΓ( 1+2s

2
)

|Γ(−s)|π1/2

is the normalization constant which also appears in the singular integral definition for the

fractional Laplacian

(−∆)su(x) = C1,s

∫
R

u(x)− u(y)

|x− y|1+2s
dy.

Indeed, for a Schwartz function, ̂(−∆)su(ξ) = |ξ|2sû(ξ). (For a proof, see, for example, [20].)

Since the Laplacian

− γ2∆ :

{
v ∈ H2([0, 1]) :

∫
Ω

v = 0 and v is 1-perioidic

}
→
{
u ∈ L2([0, 1]) :

∫
Ω

u = 0 and u is 1-periodic

}
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is an isomorphism, we may write (−γ2∆)−
1
2 as the square root of the inverse of the Laplacian

under the periodic boundary and zero average conditions, i.e. v = (−γ2∆)−1f if and only if

−γ2v′′ = f on (0, 1),

v(0) = v(1),

v′(0) = v′(1),∫ 1

0

v = 0.

It is important to note that the presence of the nonlocal term K actually gives us the

local minima with a large number of transitional layers which is in sharp contrast to local

problems. In its absence, Eε is reduced to the fractional Allen–Cahn energy whose unique

(up to translation and reflection) global minimizer has a single layer [7, 33]; see also [26].

Such energy is closely related to fractional minimal surfaces, first introduced by Caffarelli,

Roquejoffre and Savin [8]. Since then, the regularity, rigidity and qualitative behaviors of

such surfaces have been widely studied. The interested readers are referred to the survey [47].

If W ∈ C1(R), then a critical point u of Eε together with a v and a λ, solves the Euler–

Lagrange equation 

(−∆)su+
1

ε2s
W ′(u) + v = λ on (0, 1),

−γ2v′′ = u−m on (0, 1),

u(0) = u(1), v(0) = v(1),

u′(0) = u′(1), v′(0) = v′(1),∫ 1

0

u = 0,

∫ 1

0

v = 0.

1.3. Γ-convergence. In this paper we show that as ε tends to 0, Eε converges to E , defined

by

(6) E(u) =

H(u) +K(u) if u ∈ BV([0, 1], {−1, 1}),
+∞ if u ∈ L2([0, 1]) \ BV([0, 1], {−1, 1}).

Here BV([0, 1], {−1, 1}) is the space of functions with bounded variations taking only the

values −1 and +1. The convergence falls in the general theory of Γ-limit, on which there has

been a considerable amount of literature. In [18], De Giorgi and Franzoni introduced the

Γ-convergence as ‘a notion of convergence for functionals, which tends to be as compatible

as possible with the minimizing features of the energy, and whose limit is capable to capture

essential features of the problem.’ A notably important and relevant example was given by
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Modica and Mortola [29], who showed that the sequence of rescaled Allen–Cahn functionals

Fε(u) =


∫

Ω

(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx if u ∈ H1(Ω),

+∞ if u ∈ L1(Ω) \H1(Ω),

Γ-converges as ε→ 0+ to

F(u) =

c(W )‖Du‖(Ω) if u ∈ BV(Ω; {−1, 1})
+∞ if u ∈ L1(Ω) \ BV(Ω; {−1, 1}),

where Ω ⊂ Rd, ‖Du‖ is the absolute value of the distributional derivative Du as a finite

measure, and

c(W ) =
1

2

∫ 1

−1

√
2W (s) ds.

Some results regarding nonlocal energies are [2,25,43]. In particular, Savin and Valdinoci [43]

proved that the fractional energy H(u) + ε−2sW(u) Γ-converges to the fractional perimeter

functional2 if s ∈ (0, 1
2
), while for s ∈ [1

2
, 1), a multiple of it Γ-converges to the classical

perimeter. More precisely, we have
H(u) + ε−2sW(u)

Γ−→ H(u) for s ∈ (0, 1
2
),

1
| log ε|H(u) + 1

ε| log ε|W(u)
Γ−→ c 1

2
(W ) ‖Du‖ (Ω) for s = 1

2
,

ε2s−1H(u) + ε−1W(u)
Γ−→ cs(W ) ‖Du‖ (Ω) for s ∈ (1

2
, 1),

if u ∈ BV(Ω; {−1, 1}), where cs is an constant depending on a one-dimensional profile. If

u ∈ BV(Ω; {−1, 1}), then the limit if +∞. Other classical examples of Γ-convergence are

contained in [5, 17,28,44] and the references therein.

With the K term, Ren and Wei [35] found the Γ-limit of Fε(u) +K(u) as F(u) +K(u) in

the ambient function space L2([0, 1]) with a fixed mass ratio, namely∫ 1

0

u = m.

Note that their choice of L2 as opposed to the classical L1 is more natural in the presence

of the H−1 energy K. The local minima of the limiting problem are proved to be steps

functions with evenly spaced jumps across −1 and +1, hence, in their neighborhood, the

existence local minima of Fε(u) +K(u) are also established for small ε.

2For s ∈ (0, 1
2 ), the fractional perimeter of a measurable set E ⊂ Rn in an open set Ω ⊂ Rn is defined as the

functional

Ps(E,Ω) :=

∫
E∩Ω

∫
Rn\E

dxdy

|x− y|n+2s
+

∫
E\Ω

∫
Ω\E

dxdy

|x− y|n+2s
,

whenever the right hand side is finite.
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1.4. Main results. The aim of this paper is two-fold. First we identify the Γ-limit E of the

functional Eε. Then we find explicit local minimizers of E (in fact also of Eε) that correspond

to the lamellar morphology phase of a diblock copolymer.

While the general idea goes in parallel with [43] and [35], some comments are in order.

Because of [43, Theorems 1.2–1.3] , the regime s ∈ [1
2
, 1) is similar to the classical case s = 1

and hence we will not study it here. Owing to the nonlocal terms, the problem makes sense

only in the periodic boundary condition with the functions defined in the whole real line, as

opposed to the Neumann boundary condition employed in [35].

The difficulty lies exactly in the fractional norm H. In contrast to the local problem, the

relevant system of equations is nonlocal and cannot be solved in the usual way. The novelty

is therefore to find the candidate of the minimizer and to prove it with appropriate integral

computations.

In order to state our first result, let us consider the function space

(7) X =

{
u ∈ L∞([0, 1]) : u is 1-periodic, ‖u‖L∞([0,1]) ≤ 1, and

∫ 1

0

u dx = m

}
,

endowed with the topology of L2([0, 1]), i.e. we say that

uε
X−→ u

if ∫ 1

0

|uε − u|2 dx→ 0 as ε→ 0+.

Theorem 1.1. Let s ∈ (0, 1
2
) and Ω = (0, 1). For Eε and E defined in (1)–(5) and (6)

respectively, Eε Γ-converges to E as ε→ 0, i.e. for any u ∈ X,

(1) for any sequence uε
X−→ u, the liminf inequality holds, i.e.

E(u) ≤ lim inf
ε→0+

Eε(uε);

(2) there exists a recovery sequence uε
X−→ u such that the limsup inequality holds, i.e.

lim sup
ε→0+

Eε(uε) ≤ E(u).

Our second result concerns the explicit local minimizers of E . From now on we focus on

the case m = 0 where certain computations can be done explicitly. (We do not need this in

Section 4, though.) For an even integer N ≥ 2, let AN be the set of step functions of the

form

u(x) =
N∑
k=0

(−1)kχ[xk,xk+1](x), x ∈ (0, 1),

with 0 = x0 < x1 < x2 < · · · < xN < xN+1 = 1, such that

(8)

∫ 1

0

u = 0, i.e. 2x1 − 2x2 + · · · − 2xN + 1 = 0.
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An alternative and more useful expression in terms of the Heaviside step function H is

(9) u(x) = 1 + 2
N∑
k=1

(−1)kH(x− xk).

Throughout the paper we write UN as the step function in AN such that the configuration

points (x1, . . . , xN) are equi-distributed, meaning that

xk =
2k − 1

2N
, k = 1, . . . , N.

We have the following

Theorem 1.2. Suppose m = 0. For any even integer N ≥ 2, there exists an explicit

γ0(N, s) > 0 such that for any 0 < γ < γ0(N, s), UN is a local minimizer of E in AN , in the

sense that

D2
(x1,...,xN )E(UN) ≥ 0,

as a positive semi-definite matrix in the orthogonal complement

E⊥N
2

= 〈(1,−1, 1,−1, . . . , 1,−1)〉⊥.

Moreover, the eigenvalues of the Hessian are given by

λ0 = 0,

λ` =
1

γ2N
tan2

(
π`

N

)
(1 +O(γ2)), as γ → 0+, for ` ∈ {1, . . . , N} \

{
N

2

}
,

λN
2

= − 4

3γ2N
(1 +O(γ2)) as γ → 0+.

Remark 1.3. From equation (15) in the proof, one may in fact take

γ0(N, s) =
1

100
√
sN1+s

tan

(
π`

N

)
.

Remark 1.4. We emphasize that UN is indeed a local minimizer, not just a saddle point.

This is because any non-trivial variation in the direction (1,−1, . . . ) would violate the con-

straint (8).

Remark 1.5. Since W ≥ 0 and W(u) = 0 for any u ∈ AN , we see that UN are also local

minimizers of Eε.

Remark 1.6. In the more general case m 6= 0, xk depends on m as in [35] and one cannot

expect a clean formula for the eigenvalues in the main order term like above. Nonetheless,

we still expect the same result to be true, at least for m close to 0, via perturbative methods.

In fact, we also see that UN are isolated local minimizers. This simply follows from [35,

Proposition 2.3] (now with the compact Sobolev embedding Hs(Ω) ↪→ L2(Ω)).

Finally, we compute the energy of the local minimizer UN .
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Theorem 1.7. Let m = 0. There exists a constant C > 0 such that for any N ≥ 1,

C−1

(
N2s +

1

γ2N2

)
≤ E(UN) ≤ C

(
N2s +

1

γ2N2

)
.

The paper is organized as follows. In Section 2 we show the Γ-convergence of the free

energy and prove Theorem 1.1. In Sections 3 and 4 we compute the derivatives of each term.

Then in Section 5 we prove Theorem 1.2 by finding the explicit local minimizer. Next, in

Section 6, we obtain and explicit formula for v that is useful for computing K explicitly.

Finally, an energy estimate concerning the growth of the fractional norm is contained in

Section 7.

In the appendix we derive a diblock copolymer model that involves a fractional gradient.

Note, however, that for the simplicity of the mathematical treatment, we decided to use the

H−1-norm which behaves similarly to the derived H−s norm and is anyway nonlocal.

2. Γ-convergence and Existence of global minimizers

Intuitively speaking, since for s ∈ (0, 1
2
), functions with jumps are allowed in Hs, we expect

the Γ-limit

(10) E(u) = H(u) +K(u)

for u = χE − χEc ∈ AN , and E(u) = +∞ otherwise. Since such convergence result is

crucial for our purpose and the proof is short, for the sake of completeness, in this section

we establish the Γ-convergence rigorously, following closely the argument in [43].

Proof of Theorem 1.1. First we observe that if u = χE − χEc , then

(11) Eε(u) = E(u) = H(u) +K(u).

To prove part (1), let uε
X−→ u. This would be obvious if

lim inf
ε→0+

Eε(uε) = +∞.

Therefore, we suppose that

lim inf
ε→0+

Eε(uε) = ` < +∞,

and that for a subsequence εk the above limit is actually attained. By passing to a further

subsequence uεkj , we may also assume that uεkj → u almost everywhere. Now

` = lim
k→+∞

Eεk(uεk) = lim
j→+∞

Eεkj (uεkj ) ≥ lim
j→+∞

1

ε2s
kj

∫ 1

0

W (uεkj (x)) dx,

which implies that ∫ 1

0

W (u(x)) dx = lim
j→+∞

∫ 1

0

W (uεkj (x)) dx = 0.

This forces u(x) ∈ {−1,+1} for almost every x ∈ (0, 1), meaning that u = χE − χEc ∈ AN
for a suitable set E. Since the energies H and K are lower semicontinuous, from (11) we
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have

E(u) = H(u) +K(u)

≤ lim inf
ε→0+

(H(uε) +K(uε))

= lim inf
ε→0+

Eε(uε).

This proves (1).

Now we turn to the proof of (2). We may assume that u = χE − χEc ∈ AN , for otherwise

the statement is vacuously true. In such case, we simply take uε = u and use (11) to conclude

that

E(u) = Eε(uε) ≥ lim sup
ε→0+

Eε(uε),

as desired. �

We recall the following adaptation [33] of the classical Riesz–Fréchet–Kolmogorov theorem

on the compactness of a subset of L2([0, 1]) uniformly bounded in an Hs norm.

Lemma 2.1. Let T ⊂ L2([0, 1]) be bounded such that

sup
u∈T

∫ 1

0

∫ 1

0

(u(x)− u(y))2K(x− y) dxdy < +∞,

with K(x− y) defined in (5). Then T is relatively compact in L2([0, 1]).

Indeed, one may follow the same proof with |x− y|−1−2s replaced by K(x− y).

We therefore deduce the convergence of minimizers.

Corollary 2.2. Suppose Eε(uε) is uniformly bounded for a sequence of ε→ 0+. Then there

exists a convergent subsequence

uε → u0 := χE − χEc in L2([0, 1]),

for some suitable set E.

Moreover, if uε minimizes Eε, then u0 minimizes E.

Remark 2.3. When s ∈
[

1
2
, 1
)
, as in [43], up to some multipliers, the energy functional H

convergences to
∫ 1

0
|Du| for all u ∈ X. In this case the minimizers coincide with the case of

s = 1 [35].

3. Computations for the fractional norm H

In this section, we compute the derivatives of the Hs norm. The following computations

actually hold for kernels more general than the one given in (5), as long as

(12) K(x) = K(−x) = K(1− x)



10 H. CHAN, M. JAMSHID NEJAD AND J. WEI

Proposition 3.1. Let N ≥ 2 be even and 1 ≤ i, j ≤ N with i 6= j. Suppose that the kernel

K satisfies (12). Then

∂xixjH(UN) = 4(−1)i+j−1K(xi − xj)

and

∂xixiH(UN) = 4
N−1∑
k=1

(−1)kK

(
k

N

)
.

In particular, the Hessian D2H(UN) with respect to (x1, . . . , xN) is a circulant matrix.

Proof. We consider the truncation of the kernel

KM(x− y) = max {K(x− y),M} ,

which is needed for the cancellations of singular terms. Clearly,

lim
M→∞

KM(x− y) = K(x− y)

for a.e. x, y ∈ (0, 1). By Lebesgue Dominated Convergence Theorem (justified by the order

1 + 2s < 2),

H(u) = lim
M→∞

HM(u) := lim
M→∞

1

4

∫ 1

0

∫ 1

0

(u(x)− u(y))2KM(x− y) dxdy.

Thus it suffices to establish the assertion with the truncated kernel KM .

Since u2 = 1 a.e., one readily expands

1

4
|u(x)− u(y)|2

=
1− u(x)u(y)

2

= −
N∑
k=1

(−1)kH(x− xk)−
N∑
`=1

(−1)`H(y − x`)− 2
N∑

k,`=1

(−1)k+`H(x− xk)H(y − x`).

As distributions,

∂xi

(
1

2
|u(x)− u(y)|2

)
= (−1)iδ(x− xi) + (−1)iδ(y − xk)

+ 2
∑
k 6=i

(−1)k+iH(x− xk)δ(y − xi) + 2
∑
`6=i

(−1)i+`δ(x− xi)H(y − x`)

+ 2H(x− xi)δ(y − xi) + 2δ(x− xi)H(y − xi).

Hence, we have

HM(u) = −2
N∑
k=1

(−1)k
∫ 1

0

∫ 1

xk

KM(x− y) dxdy −
N∑

k,`=1

(−1)k+`

∫ 1

xk

∫ 1

x`

KM(x− y) dxdy,
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as well as the derivatives

∂xiHM(u) = 2(−1)i
∫ 1

0

KM(x− xi) dx+ 4
N∑
k=1

(−1)k+i

∫ 1

xk

KM(x− xi) dx,

∂xixjHM(u) = 4(−1)i+j−1KM(xi − xj),

∂xixiHM(u) = 2(−1)i+1

∫ 1

0

K ′M(x− xi) dx+ 4
N∑
k=1

(−1)k+i+1

∫ 1

xk

K ′M(x− xi) dx− 4KM(0)

= 2(−1)i+1 (KM(1− xi)−KM(−xi))

+ 4
N∑
k=1

(−1)k+i+1 (KM(1− xi)−KM(xk − xi))− 4KM(0)

= (−1)i

(
2(1− (−1)N)KM(xi) + 4

∑
k 6=i

(−1)kKM(xk − xi)

)
= 4

∑
k∈{1,...,N}\{i}

(−1)k+iKM(xk − xi).

It suffices to prove that, for the equi-distributed UN , the last expression is independent of i.

Indeed,

∂x2x2HM(UN) = 4
∑

k∈{1,...,N}\{2}

(−1)k+2KM(xk − x2)

= −4KM

(
1

N

)
+ 4

N∑
k=3

(−1)k+2KM(xk − x2)

= 4
N−2∑
k=1

(−1)kKM(xk+2 − x2)− 4KM

(
N − 1

N

)

= 4
N−2∑
k=1

(−1)kKM(xk+1 − x1) + (−1)N−14KM(xN − x1)

= 4
N−1∑
k=1

(−1)kKM(xk+1 − x1)

= 4
N−1∑
k=1

(−1)kKM

(
k

N

)
,

by using the properties of K (shared by KM) and the fact that xk = 2k−1
2N

. Clearly, one

may repeat this argument, shifting more terms to the end, to see that the other diagonal

entries ∂xixiHM(UN) is a constant regardless of the value of i. The proof is then completed

by taking M →∞. �
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4. Computations related to K

4.1. The Green function. In this section, we may take any m ∈ (−1, 1). Let N ≥ 2 be

even. For u ∈ AN , we also need to compute the derivatives of K(u). Write v = (−γ2∆)−
1
2 (u−

m), the solution of

(13)



−γ2v = u−m in (0, 1),

v(0) = v(1),

v′(0) = v′(1),∫ 1

0

v = 0.

Let G(x− y) be the Green function for the above equation.

Lemma 4.1. We have G(x− y) = 1
2γ2
B2(|x− y|), the second Bernoulli polynomial extended

periodically hence evenly. More explicitly,

G(x− y) =
1

2γ2

(
(x− y)2 − |x− y|+ 1

6

)
.

Proof. Recall the Fourier series expansion for a function

v(x) =
v0

2
+
∞∑
k=1

(vk cos(2πkx) + ṽk sin(2πkx)),

where, for k = 1, 2, . . . ,

v0 = 2

∫ 1

0

v(x) dx,

vk = 2

∫ 1

0

v(x) cos(2πkx) dx,

ṽk = 2

∫ 1

0

v(x) sin(2πkx) dx.

By comparing the Fourier coefficients of v and f = u−m, we have

f0 = 0,

fk = (2πγk)2vk,

f̃k = (2πγk)2ṽk.
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The first equation is satisfied as m =
∫ 1

0
u. Hence, for v satisfying

∫ 1

0
v = 0, the unique

solution is given by

v(x) =
∞∑
k=1

(
fk

(2πγk)2
cos(2πkx) +

f̃k
(2πγk)2

sin(2πkx)

)

=
∞∑
k=1

2

(2πγk)2

(∫ 1

0

f(y) cos(2πky) dy · cos(2πkx) +

∫ 1

0

f(y) sin(2πky) dy · sin(2πkx)

)

=

∫ 1

0

f(y)

(
∞∑
k=1

2 cos(2πk(x− y))

(2πγk)2

)
dy.

Therefore, according to [1], the Green function is

G(x− y) =
∞∑
k=1

2 cos(2πk(x− y))

(2πγk)2

=
1

4π2γ2

∑
k∈Z\{0}

e2πik(x−y)

k2

=
1

2γ2
B2(|x− y|)

=
1

2γ2

(
(x− y)2 − |x− y|+ 1

6

)
.

�

Corollary 4.2. For u ∈ AN where N ≥ 1, one can write

K(u) =
1

2

∫ 1

0

∫ 1

0

G(x− y)(u(x)−m)(u(y)−m) dxdy.

Moreover, we have

K(u) = −1

2

∫ 1

0

∫ 1

0

(u(x)− u(y))2G(x− y) dxdy.

Proof. Indeed,

K(u) =
1

2

∫ 1

0

∣∣∣(−γ2∆)−
1
2 (u−m)(x)

∣∣∣2 dx
=

1

2

∫ 1

0

(u(x)−m)(−γ2∆)−1(u−m)(x) dx

=
1

2

∫ 1

0

(u(x)−m)

(∫ 1

0

G(x− y)(u(y)−m) dy

)
dx

=
1

2

∫ 1

0

∫ 1

0

G(x− y)(u(x)−m)(u(y)−m) dxdy.
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On the other hand, we have

(u(x)−m)(u(y)−m)

= u(x)u(y)−mu(x)−mu(y) +m2

= −(u(x)− u(y))2

2
+ 1−m(u(x)−m+m)−m(u(y)−m+m) +m2

= −(u(x)− u(y))2

2
+ 1−m2 +m(u(x)−m)−m(u(y)−m)

so that the second assertion follows from the facts that∫ 1

0

∫ 1

0

G(x− y)(u(x)−m) dxdy =

∫ 1

0

v(y) dy = 0

and ∫ 1

0

∫ 1

0

G(x− y) dxdy =

∫ 1

0

(−γ2∆)−1(1) dy = 0.

�

4.2. The Hessian. Following the arguments in [35] with G = B2, we see that for u ∈ AN ,

∂xiK(u) = (−1)i−12v(xi).

Proposition 4.3. The Hessian for K(u) with respect to (x1, . . . , xN) is given by

∂xixjK(u) = (−1)i−12∂xjv(xi),

with

∂xjv(xi) = (−1)j−12G(xi − xj) + δij

(
(1− (−1)N)G(xi) + 2

N∑
k=1

(−1)kG(xi − xk)

)
.

Proof. Using the integral representation, we have

∂xjv(xi) = ∂xj

∫ 1

0

(u(y)−m)G(xi − y) dy

= ∂xj

N∑
k=0

∫ xk+1

xk

((−1)k −m)G(xk − y) dy

= (−1)j−12G(xi − xj) + δij

∫ 1

0

(u(y)−m)G′(xi − y) dy

= (−1)j−12G(xi − xj) + δij

N∑
k=0

∫ xk+1

xk

((−1)k −m)G′(xi − y) dy

= (−1)j−12G(xi − xj) + δij

N∑
k=0

((−1)k −m)(G(xi − xk)−G(xi − xk+1))

= (−1)j−12G(xi − xj) + δij

(
(1− (−1)N)G(xi) + 2

N∑
k=1

(−1)kG(xi − xk)

)
.
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�

Remark 4.4. In view of Corollary 4.2, one may also obtain the Hessian of K(u) following

the proof of Proposition 3.1 with K = G (without the need of a truncation).

5. Local minimizers of E

We aim to prove that for any even N ≥ 2, the equi-distributed UN is a local minimizer

of E considered as a functional of (x1, . . . , xN), i.e. DE(UN) = 0, and D2E(UN) ≥ 0 in the

sense of positive semi-definiteness.

Lemma 5.1. Let m = 0. For any even N ≥ 2, UN is a critical point of E, i.e.

D(x1,...,xN )E(UN) = 0.

Proof. By the method of Lagrange multiplier, it suffices to verify

(14) ∂xiH(UN) + ∂xiK(UN) + λ∂xi

∫ 1

0

UN = 0, i = 1, . . . , N,

for u = UN , v = (−γ2∆)−1UN and some Lagrange multiplier λ ∈ R. Indeed, we have

∂xi

∫ 1

0

UN = ∂xi

∫ 1

0

N∑
k=0

(−1)k(H(x− xk)−H(x− xk+1)) dx = 2(−1)i−1

and, since

∂xi
(u(x)− u(y))2

4
= ∂xi

1− u(x)u(y)

2

= −u(x)∂xiu(y) + u(y)∂xiu(x)

2

= (−1)i (u(x)δ(y − xi) + u(y)δ(x− xi)) ,

we obtain (using the expression in Corollary 4.2)

∂xi(H(UN) +K(UN))

=

∫ 1

0

∫ 1

0

(−1)i (UN(x)δ(y − xi) + UN(y)δ(x− xi)) (K(x− y)− 2G(x− y)) dxdy

= 2(−1)i
∫ 1

0

(K − 2G)(x− xi)UN(x) dx.
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For i = 1, . . . , N − 1,∫ 1

0

(K − 2G)(x− xi)UN(x) dx

=

∫ 1+ i
N

i
N

(K − 2G)

(
x− xi −

i

N

)
UN(x) dx

=

∫ 1

i
N

(K − 2G)

(
x− xi −

i

N

)
UN(x) dx+

∫ 1+ i
N

1

(K − 2G)

(
x− xi −

i

N

)
UN(x) dx

=

∫ 1

i
N

(K − 2G)(x− xi+1)UN(x) dx+

∫ i
N

0

(K − 2G)(x− xi+1 + 1)UN(x+ 1) dx

=

∫ 1

0

(K − 2G)(x− xi+1)UN(x) dx.

Therefore, (14) is verified with

λ =

∫ 1

0

(K − 2G)(x− x1)UN(x) dx.

This completes the proof. �

We now prove Theorem 1.2.

Proof of Theorem 1.2. Since N is even, we observe that the Hessian D2E(UN) is circulant

and symmetric. Moreover,

D2E(UN) =



a0 a1 a2 · · · aN−2 aN−1

aN−1 a0 a1 a2 · · · aN−2

aN−2 aN−1 a0 a1 a2 · · ·
...

...
...

...
...

...

a2 · · · aN−2 aN−1 a0 a1

a1 a2 · · · aN−2 aN−1 a0


,

where

a0 = 4
N−1∑
k=1

(−1)k(K − 2G)

(
k

N

)
,

ak = aN−k = 4(−1)k−1(K − 2G)

(
k

N

)
, k = 1, . . . , N − 1.

The eigenvalues are given by

λ` =
N−1∑
k=0

ake
i 2πk`
N , ` = 0, 1, . . . , N − 1,
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with corresponding normalized eigenvectors

E` =
1√
N


1

ei
2π`
N

ei
2π`·2
N

...

ei
2π`·(N−1)

N

 .

In particular, when ` = 0, we have

λ0 =
N−1∑
k=0

ak = 0

since a0 = −
∑N−1

k=1 ak. For ` = 1, . . . , N − 1, the eigenvalues are given by

λ` = a0 +
N−1∑
k=1

ake
i 2πk`
N

= −
N−1∑
k=1

ak +
1

2

N−1∑
k=1

ak

(
ei

2πk`
N + e−i

2πk`
N

)
= −

N−1∑
k=1

ak

(
1− cos

(
2πk`

N

))

= 8
N−1∑
k=1

(−1)k(K − 2G)

(
k

N

)
sin2

(
πk`

N

)
.

For any ` = 1, . . . , N − 1, the contribution from K is bounded in absolute value by∣∣∣∣∣8
N−1∑
k=1

(−1)kK

(
k

N

)
sin2

(
πk`

N

)∣∣∣∣∣
≤ C(s)

N−1∑
k=1

(
1 +

∣∣∣∣ kN
∣∣∣∣−1−2s

+

∣∣∣∣1− k

N

∣∣∣∣−1−2s
)

sin2

(
πk`

N

)
≤ C(s)N1+2s.

When ` = N
2

, the term with sin2 is 1 when k is odd and 0 otherwise. Hence

16
N−1∑
k=1

(−1)k−1G

(
k

N

)
sin2

(
πk`

N

)
=

8

γ2

N
2∑
j=1

(
(2j − 1)2

N2
− 2j − 1

N
+

1

6

)

=
8

γ2

(
N2 − 1

6N
− N

4
+
N

12

)
= − 4

3γ2N
,
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which implies

λN
2
≤ − 4

3γ2N
+ C(s)N1+2s < 0

provided that

γ <
2√

3C(s)N1+s
.

When 1 ≤ ` ≤ N − 1 and ` 6= N
2

, using arithmetico-geometric series (treating trigonomet-

ric functions as exponentials) or symbolic computations 3, we see that

16
N−1∑
k=1

(−1)k−1G

(
k

N

)
sin2

(
πk`

N

)
=

1

γ2N
tan2

(
π`

N

)
> 0.

Hence,

λ` ≥
1

γ2N
tan2

(
π`

N

)
− C(s)N1+2s > 0,

whenever

(15) γ <
1√

C(s)N1+s
tan

(
π`

N

)
=: γ0(N, s).

In fact, here C(s) can be taken as 100C1,s. It stays bounded for s ∈ (0, 1
2
) and tends to

zero as s→ 0+.

This completes the proof of Theorem 1.2. �

6. An explicit solution

Proposition 6.1. Suppose v satisfies (13) with u = UN , m = 0 and N is even. Then for

any x ∈ [0, 1],

v′(x) = − 1

γ2

(
x+ 2

N∑
k=1

(−1)k(x− xk)H(x− xk)

)
and

v(x) = − 1

γ2

(
− 1

8N2
+

1

2
x2 +

N∑
k=1

(−1)k(x− xk)2H(x− xk)

)
.

In particular, v′(0) = 0.

Proof. Without loss of generality, we may assume that γ = 1. Recall the representation (9),

i.e.

UN(x) = 1 + 2
N∑
k=1

(−1)kH(x− xk) on (0, 1),

3It can be checked, for instance, with the Mathematica code:

FullSimplify[2Sum[(-1)^(k-1)(k^2/(4n^2) - k/(2n) + 1/6)Sin[k \[Pi] l / (2n)]^2,

{k,1,2n-1}],Assumptions->{n\[Element]Integers,l\[Element]Integers}]//TraditionalForm
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with xk = 2k−1
2N

. Since the Heaviside step function has the integral∫ x

−∞
H(t) dt =

x, for x ≥ 0

0, for x ≤ 0

= xH(x),

we have,

−v′(x) = −v′(0) + x+ 2
N∑
k=1

(−1)k(x− xk)H(x− xk) on (0, 1).

Similarly, integrating once again from 0 to x,

(16) − v(x) = −v(0)− v′(0)x+
1

2
x2 +

N∑
k=1

(−1)k(x− xk)2H(x− xk) on (0, 1).

Putting x = 1 and using the condition v(0) = v(1), we find

v′(0) =
1

2
+

N∑
k=1

(−1)k(1− xk)2.

As

N∑
k=1

(−1)k(1− xk)2 = −1

2
,

we have v′(0) = 0. In order to find v(0), we integrate (16) on [0, 1] to obtain

v(0) =
1

6
+

N∑
k=1

(−1)k
(1− xk)3

3
=

1

8N2
.

This completes the proof. �

7. An energy growth estimate

In this section we prove the following energy estimate for the local minimizer UN . Theorem

1.7 is a direct consequence of the following two lemmata. Below we write f ∼ g if there

exists a constant C > 0 such that 0 < C−1f ≤ g ≤ Cf .

Lemma 7.1. We have

K(UN) =
1

24γ2N2
.

Proof. By Proposition 6.1, v satisfies the Neumann boundary condition. Hence, the calcu-

lations in [35] give the desired formula. �

Lemma 7.2. There exists a constant C > 0 such that

H(UN) ∼ N2s.
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Proof. For the integral

H(UN) =

∫ 1

0

∫ 1

0

|u(x)− u(y)|2K(x− y) dxdy,

we first observe that the non-zero contributions come from the region

R =
{

(x, y) ∈ [0, 1]2 : u(x)u(y) = −1
}
.

It suffices to consider only the case u(x) = 1 and u(y) = −1, each number of intervals

is N
2

. Thus R can be decomposed to a union of
(
N
2

)2
rectangles, the product of intervals

(xj, xj+1)× (xk, xk+1) where j and k have opposite parity.

By the periodicity of UN and noting that the far away interactions are comparable to their

adjacent ones, all these interactions in R can be grouped together and computed by

H(UN) ∼ N

∫ x1

0

∫ xN
2

x1

(
1

(x− y)1+2s
+Os(1)

)
dxdy

∼ N

∫ x1

0

(
1

(x3 − y)2s
+Os(1)

)
dy

∼ N2s.

�

Appendix A. A brief derivation of the free energy

As a physical motivation, here we include a brief derivation for the free energy with non-

local diffusion using the density functional theory of Ohta–Kawasaki [32], following closely

Choksi–Ren [14]. We will use the notations as in [14] and point out the notable differences.

Suppose a diblock copolymer consists of chains of monomers A and B, and the melt lives

on Ω ⊂ R3. Write N to be the index of polymerization. The intervals occupied by the A-

and B-monomers are denoted IA = [0, NA] and IB = [NA, N ]. Write NB = N − NA. We

assume the Kuhn statistical lengths for the A and B monomers are the same and equal 1.

For each i = 1, . . . , n, a copolymer chain ri : [0, N ]→ R3 is a continuous function for each i.

The phase space is then

Γ =
{
r = (r1, . . . , rn) : ri ∈ C([0, N ],R3)

}
,

equipped with the measure

dµ = (dx× dP0)× · · · × (dx× dP0)︸ ︷︷ ︸
n

,

where dP0 is, instead of the classical Wiener measure of the Brownian motion, one driven

by the isotropic 2s-stable Lévy process starting at the origin. As in [14], the Hamiltonian
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can be written as

H(r) =
∑

k,m∈{A,B}

∫
Ω

V km

2ρ0

ρk(x, r)ρm(x, r) dx

where V km > 0 denote the monomer interaction parameters, ρ0 = nN/|Ω| denote the average

monomer number density, and ρk(x, r) =
∑n

i=1

∫
Ik
δ(x−ri(τ)) dτ are the microscopic density

fields. In this way, the Gibbs canonical distribution is

D(r) =
1

Z
e−βH(r)

and the free energy of the system is

−β−1 logZ,

where

Z =

∫
Γ

e−βH(r) dµ,

and β is the reciprocal of the absolute temperature (measured in the energy unit so the

Boltzmann constant equals 1).

In the self-consistent mean field theory we choose the class of distributions generated by

an external fields pair U = (UA, UB), acting on monomers A and B respectively and there

is no interaction between them. By adding a suitable constant we assume that∑
k∈{A,B}

Nk

N

∫
Ω

Uk(x) dx = 0.

It induces

• the Hamiltonian on Γ,

HU(r) =
n∑
i=1

∑
k∈A,B

∫
Ik
Uk(ri(τ)) dτ ;

• a Gibbs canonical distribution and the corresponding partition function,

DU(r) =
1

ZU
e−βHU (r), ZU =

∫
Γ

e−βHU (r) dµ;

• the expectations of the microscopic density fields,

〈ρk(x)〉U =

∫
Γ

ρk(x, r)DU(r) dµ;

• the average internal energy under DU ,

〈H〉U :=

∫
Γ

H(r)DU(r) dµ =

∫
Ω

V km

2ρ0

〈ρk(x)〉U 〈ρm(x)〉U dx.
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• the approximate free energy as a functional of U (via the variational principle of D),

F (U) = 〈H〉U − β
−1S(DU)

=

∫
Ω

 ∑
k,m∈{A,B}

V km

2ρ0

〈ρk(x)〉U 〈ρm(x)〉U −
∑
k∈A,B

Uk(x) 〈ρk(x)〉U

 dx− β−1 logZU ,

where S(DU) = −
∫
DU logDU dµ is the entropy of DU .

Our goal is to express F (U) = 〈H〉U − β−1S(DU) in terms of 〈ρk(x)〉U . As in the classical

model, one has
δ(−S(DU))

δ(〈ρ〉U)
= −βU,

meaning that for the second entropy term it suffices to express βU in terms of 〈ρ〉U and

integrate with respect to 〈ρ〉U .

The computation of F (U) is done by the Feynman–Kac integration theory. In terms of the

solutions qU and q∗U of the backward and forward parabolic equations, one obtains formulae

for ZU and 〈ρk(x)〉U . More precisely, let QU(y, τ, z, t) be the fundamental solution of the

backward equation

(QU)τ − (−∆y)
sQU − βUQU = 0, QU(y, t, z, t) = δ(y − z),

where U(y, τ) = Uk(y) if τ ∈ Ik, k ∈ {A,B}. Then qU(y, τ) =
∫

Ω
QU(y, τ, z,N) dz solves

the backward equation

(qU)τ − (−∆)sqU − βUqU = 0, qU(y,N) = 1, (y, τ) ∈ Ω× (0, N)

and q∗U(y, τ) =
∫

Ω
QU(z, 0, y, τ) dz solves the forward equation

(q∗U)τ + (−∆)sq∗U + βUq∗U = 0 q∗U(y, 0) = 1, (y, τ) ∈ Ω× (0, N).

Here we impose the Dirichlet boundary conditions that qU and q∗U vanish outside Ω. A

probabilistic calculation reveals that

ZU =

(∫
Ω

qU(y, 0) dy

)n
=

(∫
Ω

q∗U(y,N) dy

)n
and

〈ρk(x)〉U =
n

Z
1
n
U

∫
Ik
qU(x, τ)q∗U(x, τ) dτ.

Let us apply the first approximation, namely linearizing the dependence of U around 0,

〈ρk(x)〉U

≈ 〈ρk(x)〉0 +
d

dε

∣∣∣∣
ε=0

〈ρk(x)〉0+εU

= 〈ρk(x)〉0 +
〈ρk(x)〉0

n

∫
Ω

∑
m∈{A,B}

〈ρm(y)〉0 βU
m(y) dy +

n

Z
1
n
0

∫
Ik

(pq∗0 + p∗q0)(x, τ) dτ,
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using the same calculations (except changing the fundamental solution to the fractional one)

of [14], where p and p∗ solve respectively

pτ − (−∆)sp− βUq0 = 0, p(x,N) = 0,

p∗τ + (−∆)sp∗ + βUq0 = 0, p∗(x, 0) = 0,

and can be expressed as

p(x, τ) = −β
∫ N

τ

∫
Ω

Q0(x, τ, y, t)q0(y, t)U(y, t) dydt,

p∗(x, τ) = −β
∫ τ

0

∫
Ω

Q0(y, t, x, τ)q∗0(y, t)U(y, t) dydt.

In the second approximation one takes the thermodynamic limit, letting Ω→ R3, n→∞,

while keeping n
|Ω| = ρ0

N
unchanged. Then

Q0(y, τ, z,N)→ Ks(y − z, τ − t),

the fractional heat kernel in R3, whose Fourier transform in R3 equals

K̂s(ξ) = e−t(2π|ξ|)
2s

.

We also have

q0 → 1, q∗0 → 1,
n

Z
1
n
0

→ ρ

N
, 〈ρk(x)〉0 →

Nk

N
ρ0 =: ρ̄k,

∑
m∈{A,B}

〈ρk(x)〉0
n

∫
Ω

〈ρm(y)〉0 βU
m(y) dy → 0,

p(x, τ)→ −
∫ N

τ

(Ks(·, τ − t) ∗ βU(·, t)) (x) dt,

p∗(x, τ)→ −
∫ τ

0

(Ks(·, τ − t) ∗ βU(·, t)) (x) dt,

and, more importantly,

〈ρk〉U ≈ ρ̄k −
ρ0

N

∑
m∈A,B

Rkm ∗ (βUm),

where

Rkm(z) :=

∫
Ik

∫
Im
Ks(z, τ − t) dtdτ.

whose Fourier transform is

R̂km(ξ) =

2(2π|ξ|)−4sh ((2π|ξ|)2sNk) , if k = m,

(2π|ξ|)−4sg ((2π|ξ|)2sNk, (2π|ξ|)2sNm) if k 6= m.

Here h(s1) = e−s1 + s1 − 1 and g(s1, s2) = (1− e−s1)(1− e−s2).
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From this point, one may apply the third approximation, namely the long and short wave

expansions, to obtain that

h(s1) ≈ s1, g(s1, s1) ≈ 1 if s1, s2 � 1,

h(s1) ≈ s2
1

2
− s3

1

6
, g(s1, s2) ≈ (s1 −

s2
1

2
)(s2 −

s2
2

2
) if s1, s2 � 1.

Thus

T̂ (ξ) := (R̂)−1(ξ) ≈ (2π|ξ|)2s

N
K +

1

(2π|ξ|)2sN3
L,

where

K =
1

2

(
a−1 0

0 b−1

)
, L =

3

2

(
a−2 −(ab)−1

−(ab)−1 b−2

)
, a =

NA

N
, b =

NB

N
.

By taking the inverse Fourier transform,

T =
1

N
(−∆)sK +

1

N3
(−∆)−sL.

Since

βUk(x) ≈ −N
ρ0

∑
m∈{A,B}

T km (〈ρm〉U − ρ̄m) (x),

integrating it yields

− S(DU) + S(D0) ≈ 1

2ρ0

∫
R3

( ∑
k∈{A,B}

Kkk 〈ρk〉U (−∆)s 〈ρk〉U

+
∑

k,m∈{A,B}

Lkm

N2
(〈ρk〉U − ρ̄k) (−∆)−s (〈ρm〉U − ρ̄m)

)
.

The constant S(D0) can be dropped. This finally gives rise to the Ohta–Kawasaki free energy

with the fractional gradient, upon using the incompressibility constraint.

We remark that the H−s-norm behaves in a similar way as the H−1-norm which has

been used classically, which we have decided to use for the simplicity of the mathematical

treatment.
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