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Abstract. We consider the fractional critical heat equation{
ut + (−∆)su = u

n+2s
n−2s , in Rn × (0, T ),

u(x, 0) = u0(x), in Rn,

where 4s < n < 6s, 0 < s < 1. For sufficiently small T > 0 and given k distinct points q1, · · · , qk,

we show that there exists an initial condition u0 such that the solution u(x, t) blows up at these k
distinct points as t → T . More precisely, the blow-up profile around each concentration point takes

the form of sharply scaled bubble and

‖u(·, t)‖L∞(Rn) ∼ (T − t)
−n−2s

6s−n

as t→ T .

1. Introduction

Semilinear heat equation of form{
ut = ∆u+ up, in Rn × (0,+∞),

u(·, 0) = u0, in Rn,
(1.1)

with p > 1 has attracted much attention since Fujita’s celebrated work [26]. Many works have been
devoted to studying this problem about the blow-up rates, sets and profiles. See, for example, [28],
[27], [30], [35], [45], [36], [37], [5] and references therein. The finite time blow-up is said to be of type
I if

lim sup
t→T

(T − t)
1
p−1 ‖u(·, t)‖∞ < +∞

and of type II if

lim sup
t→T

(T − t)
1
p−1 ‖u(·, t)‖∞ = +∞.

Type I blow-up is like that of the ODE ut = up and type II blow-up is much harder to detect. Many
studies have predicted that blow-up phenomena in problem (1.1) are very sensitive to the values of the
exponent p. It was first proved by Giga and Kohn [28] that for 1 < p < n+2

n−2 , only type I blow-up can

occur for the case of convex domain. This result was generalized to general domain by Poon in [41]. For
the critical case p = n+2

n−2 , this is also the case for radial solutions [24] or the domain is star-shaped [3].

The critical case p = n+2
n−2 is special in many ways. For the subcritical case p < n+2

n−2 , in [39] Merle
and Zaag found multiple-point, finite time type I blow-up solution and studied its stability. For the
supercritical case p > n+2

n−2 , Matano and Merle classified the radial blow-up solutions in [37] and they

found that for n+2
n−2 < p < pJL(n) with the Joseph-Lundgren exponent defined as

pJL(n) :=

{
∞ if 3 ≤ n ≤ 10

1 + 4
n−4−2

√
n−1

if n ≥ 11

no type II blow-up can occur in radially symmetric class. In [19], del Pino, Musso and Wei constructed
non-radial type II blow-up solution in the Matano-Merle rage n+2

n−2 < p < pJL(n), where p = n+1
n−3 is the

second critical exponent and the solution blows up along a certain curve with axial symmetry in the
1
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sense that the energy density approaches to the Dirac measure along the curve. For the critical case
p = n+2

n−2 , Collot, Merle and Raphaël classified the dynamics near the ground state of the energy critical

heat equation in Rn with n ≥ 7 in [4]. In [42], by using the energy method, Schweyer constructed the
radial, type II finite time blow-up solution to the energy critical heat equation in R4. In [21], del Pino,
Musso and Wei found the existence of finite time type II blow-up solution for the energy critical heat
equation in R5. Concerning the infinite time blow-up, in a very interesting paper [23] Fila and King
studied problem (1.1) with p = n+2

n−2 and provided insight on the question of infinite time blow-up in the
case of a radially symmetric, positive initial condition with an exact power decay rate. Using formal
matching asymptotic analysis, they demonstrated that the power decay determines the blow-up rate
in a precise manner. Intriguingly enough, their analysis leads them to conjecture that infinite time
blow-up should only happen in low dimensions 3 and 4, see Conjecture 1.1 in [23]. Recently, this is
confirmed and rigorously proved in [20] for dimension 3. Bubbling phenomena triggered by criticality
are present in many other contexts, for example, Keller-Segel chemotaxis system, harmonic map heat
flow, Schrödinger map and geodesic flows. We refer the readers for instance to [7,9,12,13,29,32,33,38]
and the references therein.

In [6], Cortázar, del Pino and Musso investigated the following critical heat equation in bounded
domain Ω ⊂ Rn (n ≥ 5) 

ut = ∆u+ u
n+2
n−2 in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω,

and they showed the existence of infinite time blow-up whose blow-up profile takes the form of sharply
scaled bubble, and the blow-up points are determined by the Green’s function and its regular part in
Ω. In [40], the existence of infinite time blow-up has been proved for the fractional case

ut = −(−∆)su+ u
n+2s
n−2s , in Ω× (0,∞),

u = 0, on (Rn \ Ω)× (0,∞),

u(·, 0) = u0, in Rn

with 0 < s < 1 and n > 4s. Here, for any point x ∈ Rn, the fractional Laplacian (−∆)su(x) is defined
as

(−∆)su(x) := cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

with a suitable positive normalizing constant cn,s =
22ssΓ(n+2s

2 )

Γ(1−s)π
n
2

. We refer to [22] for an introduction

to the fractional Laplacian and to the appendix of [8] for a heuristic physical motivation in nonlocal
quantum mechanics of the fractional operator considered here.

In this paper, we consider the fractional heat equation with the critical exponent{
ut + (−∆)su = u

n+2s
n−2s , in Rn × (0, T ),

u(x, 0) = u0(x), in Rn.
(1.2)

Throughout the paper, we assume that 4s < n < 6s, 0 < s < 1 and a function Z∗0 ∈ C∞0 (Rn) is chosen
such that

Z∗0 (qj) < 0,

where qj (j = 1, · · · , k) are distinct k points. It is well known that

U(y) = αn,s

(
1

1 + |y|2

)n−2s
2

is the bubble solving the fractional Yamabe problem

(−∆)sU = U
n+2s
n−2s in Rn,
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where αn,s is a constant depending only on n and s. See, for instance [2] and [34]. The scaled bubble
is defined as

Uλ,ξ := λ−
n−2s

2 (t)U

(
x− ξ(t)
λ(t)

)
. (1.3)

We show the existence of finite time blow-up for the fractional critical heat equation (1.2) and the
main Theorem is stated as follows.

Theorem 1.1. Assume that 4s < n < 6s, 0 < s < 1 and Z∗0 (qj) < 0 for k distinct points qj
(j = 1, · · · , k). For T sufficiently small, there exists an initial condition u0 such that the solution
u(x, t) to problem (1.2) blows up at q1, · · · , qk at finite time T . Furthermore, the solution takes the
form

u(x, t) =

k∑
j=1

Uλj(t),ξj(t)(x) + Z∗0 (x) + Θ(x, t),

where Uλj(t),ξj(t)(x) is the scaled bubble defined in (1.3),

λj(t)→ 0, ξj(t)→ qj as t→ T,

‖Θ‖L∞ ≤ T c for some constant c > 0. More precisely,

λj(t) = κj(T − t)
2

6s−n (1 + o(1))

for some positive constants κj > 0, j = 1, · · · , k.

Remark 1.1. Theorem 1.1 implies that

• For n = 4, finite time blow-up takes place for s ∈ (2/3, 1)
• For n = 5, finite time blow-up takes place for s ∈ (5/6, 1)

which is a continuation of the local cases n = 4, s = 1 in [42] and n = 5, s = 1 in [21]. Also, our
construction suggests that no finite time blow-up of this type should exist in higher dimension case
n ≥ 6, s ∈ (0, 1).

The proof of Theorem 1.1 is mainly based on inner-outer gluing method, which is well developed, for
the higher dimensional concentration in elliptic settings, in [15], [16], [18], [17] for example. Recently,
the parabolic gluing method is developed and has been successfully applied to the construction of
solutions to various parabolic problems, such as the singular formation for the harmonic map flow from
R2 to S2 [12], the infinite time blow-up in energy critical heat equation [6], [20], type II finite time blow-
up along a circle for supercritical heat equation [19], type II ancient solution for the Yamabe flow [7],
infinite time blow-up for the half-harmonic map flow [44], the vortex dynamics in Euler flows [9],
blow-up for the 3-dimensional harmonic map flow along a curve with axial symmetry [10] and type II
finite time blow-up for the energy critical heat equation in R5 [21]. We refer the readers to the survey
by del Pino [14] for more results in parabolic settings.

The proof of Theorem 1.1 is close in spirit to [21]. However, in a central step that the linear theory
for the associated linear problem of the inner problem is required, the ODE techniques are no longer
applicable in the fractional setting. Instead, we shall develop a fractional linear theory by using a
blow-up argument inspired by [12, Lemma 4.5]. See Section 5 for full details.

By our construction, finite time blow-up also exists on the bounded domain Ω ⊂ Rn. Suppose a
smooth function Z∗0 ∈ L∞(Ω) satisfies

Z∗0 (qj) < 0

for given k distinct points q1, · · · , qk. For the fractional critical heat equation on bounded domain
Ω ⊂ Rn 

ut + (−∆)su = u
n+2s
n−2s , in Ω× (0,∞),

u = 0, on (Rn \ Ω)× (0,∞),

u(·, 0) = u0, in Rn
(1.4)

with u0(x) = 0 in Rn\Ω, 0 < s < 1, 4s < n < 6s, finite time blow-up exists and we have the following
Theorem.
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Theorem 1.2. Assume that 4s < n < 6s, 0 < s < 1 and Z∗0 (qj) < 0 for k distinct points qj
(j = 1, · · · , k). For T sufficiently small, there exists an initial condition u0 such that the solution
u(x, t) to problem (1.4) blows up at q1, · · · , qk at finite time T . Moreover, at main order, the solution
takes the form

u(x, t) =

k∑
j=1

Uλj(t),ξj(t)(x) + Z∗0 (x) + Υ(x, t),

where Uλj(t),ξj(t)(x) is the scaled bubble defined in (1.3),

λj(t)→ 0, ξj(t)→ qj as t→ T,

‖Υ‖L∞ ≤ T c for some constant c > 0. More precisely,

λj(t) = υj(T − t)
2

6s−n (1 + o(1))

for some positive constants υj > 0, j = 1, · · · , k.

The proof of Theorem 1.2 can be carried out similarly as that of Theorem 1.1. So we shall only
prove Theorem 1.1 in this paper.

The paper is organized as follows. In Section 2, we construct an approximate solution and compute
its error. In Section 3, the main parts of the parameters λ and ξ are given. In Section 4, we develop
a linear theory for the outer problem. In Section 5, we develop a new fractional linear theory for the
inner problem. Finally, we shall prove Theorem 1.1 in Section 6.

Notation. In the sequel, we shall use the symbol “ . ” to denote “ ≤ C ” for a positive constant
C independent of t and T , and C may change from line to line.

2. Approximate solution and error estimate

In this section, we shall choose the approximate solution and compute its error. For simplicity, we
consider one bubble case. The multiple-bubble case is similar up to some minor modifications which
we will point out if necessary.

Our first approximate solution is
w = Uλ,ξ + Z∗,

where

Uλ,ξ = λ−
n−2s

2 (t)U

(
x− ξ(t)
λ(t)

)
,

and Z∗ is the solution to the fractional heat equation{
Z∗t + (−∆)sZ∗ = 0, in Rn × (0, T ),

Z∗(x, 0) = Z∗0 (x), in Rn.

Here,
λ(t) = λ0(t) + λ1(t), ξ(t) = ξ0(t) + ξ1(t), (2.1)

where λ0(t) and ξ0(t) are the main order terms of λ(t) and ξ(t) respectively, and λ1(t) and ξ1(t) are
the reminder terms which are comparatively smaller than λ0(t) and ξ0(t) respectively. Define the error

S(u) = −ut − (−∆)su+ up,

where p := n+2s
n−2s . Direct computations imply that

S(w) =− (Uλ,ξ)t + (Uλ,ξ + Z∗)p − Upλ,ξ
= λ−

n−2s
2 −1λ̇Zn+1(y) + λ−

n−2s
2 −1ξ̇ · ∇U(y) + (Uλ,ξ + Z∗)p − Upλ,ξ,

where y = x−ξ
λ , Zn+1 = n−2s

2 U(y) + y · ∇U(y).
We look for a solution of the following form

u = Uλ,ξ + Z∗ + ϕ.
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Then S(u) = 0 yields that

S(u) = −ϕt − (−∆)sϕ+ pUp−1
λ,ξ (y)(ϕ+ Z∗) + λ−

n+2s
2 E +N(ϕ+ Z∗) = 0, (2.2)

where

E(y, t) = λ2s−1λ̇Zn+1(y) + λ2s−1ξ̇ · ∇U (2.3)

and

N(ϕ+ Z∗) = (Uλ,ξ + ϕ+ Z∗)p − Upλ,ξ − pU
p−1
λ,ξ (ϕ+ Z∗). (2.4)

We look for perturbation consisting of inner and outer parts

ϕ(x, t) = λ−
n−2s

2 (t)ηR(y)φ(y, t) + ψ(x, t), (2.5)

where R > 0, η is a smooth cut-off function such that

η(s) =

{
1, s < 1,

0, s > 2,

and ηR = η(|y|/R). Then we can express (2.2) in terms of φ and ψ

− ψt − (−∆)sxψ + pλ−2(1− ηR)Up−1(y)(ψ + Z∗) + C(φ) +R(φ) + λ−
n+2s

2 E(1− ηR) +N(ϕ+ Z∗)

+ ηRλ
−n+2s

2

(
−λ2sφt − (−∆)syφ+ pUp−1(y)(φ+ λ

n−2s
2 (ψ + Z∗)) + E

)
= 0,

where

C(φ) := λ−
n−2s

2

[
(−(−∆)sx − ∂t)ηR(y)φ+ [−(−∆)s/2x ηR(y),−(−∆)s/2x φ(y)]

]
(2.6)

and

R(φ) := λ−
n−2s

2 −1

[
ηRλ̇

(
n− 2s

2
φ+ y · ∇yφ

)
+ ηRξ̇ · ∇yφ+ φ

(
λ̇y · ∇yηR + ξ̇ · ∇yηR

)]
. (2.7)

Here

[−(−∆)s/2x f(x),−(−∆)s/2x g(x)] := cn,sP.V.

∫
Rn

[f(y)− f(x)][g(x)− g(y)]

|x− y|n+2s
dy (2.8)

with cn,s =
22ssΓ(n+2s

2 )

Γ(1−s)π
n
2

. Therefore, u = Uλ,ξ + Z∗ + λ−
n−2s

2 (t)ηR(y)φ(y, t) + ψ(x, t) solves (1.2) if

(φ(y, t), ψ(x, t)) solves the so-called inner-outer gluing system

λ2sφt = −(−∆)syφ+ pUp−1(y)φ+H(φ, ψ, λ, ξ) in B2R(0)× (0, T ) (2.9)

{
ψt = −(−∆)sxψ + G(φ, ψ, λ, ξ), in Rn × (0, T )

ψ(x, 0) = 0, in Rn
(2.10)

where

H(φ, ψ, λ, ξ) := λ
n−2s

2 pUp−1(y)(ψ(λy + ξ, t) + Z∗(λy + ξ, t)) + E(y, t) (2.11)

and

G(φ, ψ, λ, ξ) := pλ−2s(1− ηR)Up−1(y)(ψ+Z∗) +C(φ) +R(φ) +λ−
n+2s

2 E(1− ηR) +N(ϕ+Z∗). (2.12)
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3. Choices of λ0(t) and ξ0(t)

We shall choose λ0(t) and ξ0(t) defined in (2.1) in this section. Basically, the inner problem (2.9) will
determine the parameter functions λ and ξ at main order. By the fractional linear theory developed
in Section 5, the inner problem (2.9) will be solved under the orthogonality conditions∫

B2R

H(φ, ψ, λ, ξ)Zj(y)dy = 0, for all t ∈ (0, T ), j = 1, · · · , n+ 1,

where R is fixed sufficiently large and

Zj(y) = ∂yjU(y), j = 1, · · · , n, Zn+1(y) =
n− 2

2
U(y) + y · ∇U(y). (3.1)

The leading term of H is

h[λ0, ξ0] = λ2s−1
0 λ̇0Zn+1(y) + λ2s−1

0 ξ̇0 · ∇U + λ
n−2s

2
0 pUp−1(y)Z∗0 (q)

+ λ
n−2s

2 +1
0 pUp−1(y)∇Z∗0 (q) · y.

It is reasonable to choose λ0(t), ξ0(t) such that∫
Rn
h[λ0, ξ0]Zj(y)dy = 0 for all t ∈ (0, T ), j = 1, · · · , n+ 1

are satisfied. For j = n+ 1, we have∫
Rn
h[λ0, ξ0]Zn+1(y)dy = λ2s−1

0 λ̇0

∫
Rn
Z2
n+1(y)dy + λ

n−2s
2

0 pZ∗0 (q)

∫
Rn
Up−1(y)Zn+1(y)dy

and thus

c0λ̇0 + c1Z
∗
0 (q)λ

n−6s+2
2

0 = 0,

where

c0 =

∫
Rn
Z2
n+1(y)dy, c1 = p

∫
Rn
Up−1(y)Zn+1(y)dy.

Observer that c0 is well-defined thanks to the assumption n > 4s and c2 < 0. Therefore, in order that
λ(t)→ 0 as t→ T , we suppose

Z∗0 (q) < 0

and then we obtain the main order

λ0(t) = a(T − t)
2

6s−n (3.2)

with

a =

(
2c0

c1Z∗0 (q)(6s− n)

) 2
n−6s

.

Similarly, we consider the case j = 1, · · · , n and get∫
Rn
h[λ0, ξ0]Zj(y)dy = λ2s−1

0

∫
Rn
ξ̇0 · ∇U(y)Zj(y)dy + λ

n−2s
2 +1

0 p

∫
Rn
Up−1(y)Zj(y)∇Z∗0 (q) · ydy.

So we can write ξ̇0(t) = λ
n−6s

2 +2
0 ~v for some vector ~v. Hence, by (3.2), we obtain

ξ0(t) = q +O(T − t)
4

6s−n~v

for some vector ~v. The remainders λ1(t) and ξ1(t) defined in (2.1) will be chosen when we finally solve
the inner-outer gluing system in Section 6.
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4. The outer problem

In this section, we shall get proper a priori estimates of the associated linear problem of the outer
problem (2.10). We consider the linear problem{

∂tψ(x, t) = −(−∆)sxψ(x, t) + f(x, t), in Rn × (0, T )

ψ(x, 0) = 0, in Rn.
(4.1)

A solution to the Cauchy problem (4.1) is guaranteed. Recall that the heat kernel to the fractional
heat operator ∂t + (−∆)s is given by

Ks(x, t) �
t

(t
1
s + |x|2)

n+2s
2

. (4.2)

Then by Duhamel’s formula

ψ(x, t) =

∫ t

0

∫
Rn
Ks(x− z, t− r)f(z, r)dzdr

is the solution to (4.1).
Define the norms

‖ψ‖∗ := sup
(x,t)∈Rn×(0,T )

|ψ(x, t)|
ρ∗

, (4.3)

‖f‖∗∗ := sup
(x,t)∈Rn×(0,T )

|f(x, t)|
ρ∗∗

, (4.4)

where

ρ∗ := 1 +
1

1 +
∣∣∣ x−qλ0(t)

∣∣∣n−4s and ρ∗∗ := 1 +
λ−2s

0 (t)

1 +
∣∣∣ x−qλ0(t)

∣∣∣n−2s .

We have the following lemma.

Lemma 4.1. Assume that ‖f‖∗∗ < +∞. For sufficiently small T > 0, the solution ψ to problem (4.1)
satisfies

‖ψ‖∗ . ‖f‖∗∗.

Proof. First, we compute the asymptotic behavior of ψ(x, t) as |x| → +∞ provided ‖f‖∗∗ < +∞.

|ψ(x, t)| .
∣∣∣∣∫ t

0

∫
Rn
Ks(x− z, t− r)f(z, r)dzdr

∣∣∣∣
.‖f‖∗∗

∫ t

0

∫
Rn

t− r
((t− r)1/s + |x− z|2)

n+2s
2

1 +
λ−2s

0 (r)

1 +
∣∣∣ z−qλ0(r)

∣∣∣n−2s

 dzdr

=‖f‖∗∗
∫ t

0

∫
Rn

1

(1 + |X|2)
n+2s

2

1 +
λ−2s

0 (r)

1 +

∣∣∣∣x−(t−r)
1
2sX−q

λ0(r)

∣∣∣∣n−2s

 dXdr,

(4.5)

where we have performed the change of variable

X =
x− z

(t− r) 1
2s

.

For the first integral in (4.5), we have

‖f‖∗∗
∫ t

0

∫
Rn

1

(1 + |X|2)
n+2s

2

dXdr . t‖f‖∗∗. (4.6)
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We decompose the second integral in (4.5) as follows∫ t

0

∫
Rn

1

(1 + |X|2)
n+2s

2

λ−2s
0 (r)

1 +

∣∣∣∣x−(t−r)
1
2sX−q

λ0(r)

∣∣∣∣n−2s dXdr

=

∫ t

0

(∫
D1

+

∫
D2

+

∫
D3

)
1

(1 + |X|2)
n+2s

2

λ−2s
0 (r)

1 +

∣∣∣∣x−(t−r)
1
2sX−q

λ0(r)

∣∣∣∣n−2s dXdr

:=J1 + J2 + J3,

where

D1 :=
{
X ∈ Rn :

∣∣x− (t− r) 1
2sX − q

∣∣ ≥ 2|x− q|
}
,

D2 :=

{
X ∈ Rn : 2|x− q| ≥

∣∣x− (t− r) 1
2sX − q

∣∣ ≥ |x− q|
2

}
and

D3 :=

{
X ∈ Rn :

|x− q|
2

≥
∣∣∣x− (t− r) 1

2sX − q
∣∣∣} .

Then we estimate term by term by recalling that λ0(t) ∼ (T − t)
2

6s−n in (3.2)

J1 .
∫ t

0

∫ +∞

|x−q|(t−r)−
1
2s

|X|n−1

1 + |X|n+2s

λ−2s
0 (r)

1 +
∣∣∣ x−qλ0(r)

∣∣∣n−2s d|X|dr

.
∫ t

0

t− r
|x− q|2s

λ−2s
0 (r)

1 +
∣∣∣ x−qλ0(r)

∣∣∣n−2s dr .
1

|x− q|n

∫ t

0

(T − r)1+
2(n−4s)
6s−n dr

.
1

|x− q|n
T

4s
6s−n ,

(4.7)

J2 .
∫ t

0

∫ 3
2 |x−q|(t−r)

− 1
2s

0

|X|n−1

1 + |X|n+2s

λ−2s
0 (r)

1 +
∣∣∣ x−qλ0(r)

∣∣∣n−2s d|X|dr

.
∫ t

0

λ−2s
0 (r)

1 +
∣∣∣ x−qλ0(r)

∣∣∣n−2s dr .
1

|x− q|n−2s
T
n−2s
6s−n ,

(4.8)

and

J3 .
∫ t

0

∫ 3
2 |x−q|(t−r)

− 1
2s

1
2 |x−q|(t−r)

− 1
2s

|X|n−1

1 + |X|n+2s

λn−4s
0 (r)

|(t− r) 1
2sX|n−2s

d|X|dr

.
1

|x− q|n

∫ t

0

λn−4s
0 (r)(t− r) n2s

(t− r)n−2s
2s

dr

.
1

|x− q|n
T

4s
6s−n .

(4.9)

Therefore, we conclude from (4.6)–(4.9) that |ψ(x, t)| is bounded as |x| → +∞.
Now we build a supersolution to problem (4.1) with ‖f‖∗∗ < +∞. Let p(y) be the solution to

(−∆)syp(y) =
1

1 + |y|n−2s
,

where y = x−q
λ0(t) . By the Riesz potential, it is direct to see that

p(y) ∼ 1

1 + |y|n−4s
as |y| → ∞.
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We let ψ1(x, t) = 2‖f‖∗∗p(y) and compute

∂tψ1 + (−∆)sψ1 = −2‖f‖∗∗λ̇0λ
−1
0 y · ∇p(y) +

2‖f‖∗∗λ−2s
0

1 + |y|n−2s

≥ |f |+ ‖f‖∗∗λ
−2s
0

1 + |y|n−2s
− 2‖f‖∗∗λ̇0λ

−1
0 y · ∇p(y)− ‖f‖∗∗.

(4.10)

Observe that for some constants γ, c > 0 independent of T and t

2‖f‖∗∗λ̇0λ
−1
0 y · ∇p(y)− ‖f‖∗∗λ

−2s
0

1 + |y|n−2s
≤

{
0, for |x− q| ≤ c(T − t) 1

2s

γ(T − t)β−1, for |x− q| ≥ c(T − t) 1
2s

(4.11)

where β = (n−2s)(n−4s)
2s(6s−n) . We take

ψ2 = C‖f‖∗∗t+ γβ−1[T β − (T − t)β ], ψ̄ = ψ1 + ψ2, (4.12)

where C is a sufficiently large constant. Combining (4.10)-(4.12), we conclude that ψ̄ is a supersolution
to problem (4.1) and the estimate

‖ψ‖∗ . ‖f‖∗∗
follows immediately from the definititions of the norms (4.3) and (4.4). �

Remark 4.1. For arbitrary T ′ < T , we have

‖f‖∞ . λ−2s
0 (T ′)‖f‖∗∗.

Then fractional parabolic estimates (see [31] and the references therein) imply the following Hölder
estimate

[ψ]α,T ′ . λ
−2s
0 (T ′)‖f‖∗∗ (4.13)

for some 0 < α < 1. Here the space-time Hölder semi-norm is defined as

[ψ]α,T ′ := sup
x1,x2∈Rn
tq,t2∈[0,T ′]

|ψ(x1, t1)− ψ(x2, t2)|
|x1 − x2|α + |t1 − t2|α/2

.

5. The linear theory

In this section, we shall develop a fractional linear theory motivated by [12, Lemma 4.5] for the
inner problem (2.9). Since the ODE techniques are no longer applicable in the fractional setting, we
shall use the blow-up argument instead.

In order to solve the inner problem (2.9), we consider the associated linear problem

λ2sφt = −(−∆)syφ+ pUp−1(y)φ+ h(y, t) in B2R(0)× (0, T ). (5.1)

Recall that the linearized operator

L0 := −(−∆)s + pUp−1

has a only positive eigenvalue µ0 such that

L0(Z0) = µ0Z0, Z0 ∈ L∞(Rn),

where the corresponding eigenfunction Z0 is radially symmetric with the asymptotic behavior

Z0(y) ∼ |y|−n−2s as |y| → +∞, (5.2)

see [25] for instance. Multiplying equation (5.1) by Z0 and integrating over Rn, we obtain that

λ2(t)ṗ(t)− µ0p(t) = q(t),

where

p(t) =

∫
Rn
φ(y, t)Z0(y)dy and q(t) =

∫
Rn
h(y, t)Z0(y)dy.
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Then we have

p(t) = e
∫ t
0
µ0λ
−2s(r)dr

(
p(0) +

∫ t

0

q(η)λ−2s(η)e−
∫ η
0
µ0λ
−2s(r)drdη

)
.

In order to get a decaying solution, the initial condition

p(0) = −
∫ T

0

q(η)λ−2s(η)e−
∫ η
0
µ0λ
−2s(r)drdη

is required. The above formal argument suggests that a linear constraint should be imposed on the
initial value φ(y, 0). Therefore, we consider the associated linear Cauchy problem of the inner problem
(2.9) {

φτ = −(−∆)syφ+ pUp−1(y)φ+ h(y, τ), in B2R(0)× (τ0,∞)

φ(y, τ0) = e0Z0(y), in B2R(0)
(5.3)

where R > 0 is fixed sufficiently large, and we have performed the following change of variables

dτ

dt
= λ−2s(t).

Let ν > 0, a > 0 such that

τ−ν ∼ λ
n−2s

2 .

Define

‖h‖a,ν,η := sup
y∈B2R
τ>τ0

τν(1 + |y|a) (|h(y, τ)|+ (1 + |y|η)χB2R
[h(·, τ)]η,B2R

) , (5.4)

where the Hölder semi-norm is defined by

[h(·, τ)]η,B2R
:= sup

x,y∈B2R

|h(x, τ)− h(y, τ)|
|x− y|η

for 0 < η < 1. In the sequel, we consider h = h(y, τ) as a function in the whole space Rn with zero
extension outside of B2R for all τ > τ0. The main result of this section is stated as follows.

Proposition 5.1. Assume 2s < a < n− 2s, ν > 0, ‖h‖2s+a,ν,η < +∞ and∫
B2R

h(y, τ)Zj(y)dy = 0, ∀τ ∈ (τ0, ∞), j = 1, · · · , n+ 1.

For sufficiently large R, there exist φ = φ[h](y, τ) and e0 = e0[h](τ) solving (5.3) with

(1 + |y|s)
(∫

Rn

[φ(y, τ)− φ(x, τ)]2

|y − x|n+2s
dx

) 1
2

+ |φ(y, τ)| . τ−ν(1 + |y|)−a‖h‖2s+a,ν,η (5.5)

and

|e0[h]| . ‖h‖2s+a,ν,η, (5.6)

for (y, τ) ∈ Rn × (τ0,∞).

To prove Proposition 5.1, we consider the following problem
φτ = −(−∆)sφ+ pUp−1(y)φ+ h(y, τ)− c(τ)Z0(y), in Rn × (τ0,∞),

φ(y, τ0) = 0, in Rn,∫
Rn φ(y, τ)Z0(y)dy = 0, for all τ ∈ (τ0,+∞).

(5.7)

Note that the orthogonality condition
∫
Rn φ(y, τ)Z0(y)dy = 0 is well-defined because Z0 is of sufficiently

fast decay. For problem (5.7), we have the following lemma.
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Lemma 5.1. Assume 2s < a < n− 2s, ν > 0, ‖h‖2s+a,ν,η < +∞ and∫
B2R

h(y, τ)Zj(y)dy = 0, ∀τ ∈ (τ0, ∞), j = 1, · · · , n+ 1.

Then for sufficiently large τ1 > 0, there exists solution (φ(y, τ), c(τ)) to problem (5.7) satisfying

‖φ‖a,τ1 . ‖h‖2s+a,τ1 (5.8)

and

|c(τ)| . τ−νRa‖h‖2s+a,τ1 , ∀τ ∈ (τ0, τ1). (5.9)

Here the norm ‖ · ‖b,τ1 is defined by

‖h‖b,τ1 := sup
τ∈(τ0,τ1)

τν‖(1 + |y|b)h‖L∞(Rn).

Proof. It is direct to see that problem (5.7) is equivalent to{
φτ = −(−∆)sφ+ pUp−1(y)φ+ h(y, τ)− c(τ)Z0(y), in Rn × (τ0,∞),

φ(y, τ0) = 0, in Rn,
(5.10)

for

c(τ) =

∫
Rn h(y, τ)Z0(y)dy∫

Rn |Z0(y)|2dy
. (5.11)

Some direct computations yield that

|c(τ)| . τ−νRa‖h‖2s+a,τ1 , ∀τ ∈ (τ0, τ1).

Next, we prove (5.8) by using the blow-up argument inspired by [12, Lemma 4.5].
We claim that given τ1 > τ0, we have

‖φ‖a,τ1 < +∞.

Indeed, by the fractional parabolic theory (see e.g. [31]), given R0 > 0, there is a K = K(R0, τ1) such
that

|φ(y, τ)| ≤ K in BR0
× (τ0, τ1].

For fixed R0, choosing K1 sufficiently large, we get that K1ρ
−a is a supersolution to (5.10) for ρ > R0.

Then we get that

|φ| . K1ρ
−a and thus ‖φ‖a,τ1 < +∞.

By the definition (5.11), one has∫
Rn
φ(y, τ)Z0(y)dy = 0, ∀τ ∈ (τ0, τ1),

and we claim that ∫
Rn
φ(y, τ)Zj(y)dy = 0, ∀τ ∈ (τ0, τ1), j = 1, · · · , n+ 1. (5.12)

Indeed, we test problem (5.10) against η(|y|/R1)Zj(y), where R1 is positive and the smooth cut-off
function is defined by

η(r) =

{
1 for r < 1

0 for r > 2

It then follows that∫
Rn
φ(y, τ)η(|y|/R1)Zj(y)dy =

∫ τ

0

dr

∫
Rn
φ(y, r) (L0(ηZj) + hηZj − c(r)Z0ηZj) dy



12 G. CHEN, J. WEI, AND Y. ZHOU

and ∫
Rn
φ (L0(ηZj) + hZjη − c(r)Z0Zjη) =

∫
Rn
φ ·
(
Zj(−(−∆)s)η +

[
− (−∆)

s
2 η,−(−∆)

s
2Zj

])
− h · Zj(1− η) + c(r)Z0Zj(1− η)

= O(R−ε1 )

for some small positive number ε uniformly on τ ∈ (τ0, τ1). Then (5.12) holds by letting R1 → +∞.
We prove (5.8) by contradiction. Suppose that there exists a sequence τk1 → +∞ and φk, hk, ck

satisfying {
∂τφk = −(−∆)sφk + pUp−1(y)φk + hk(y, τ)− ck(τ)Z0(y), in Rn × (τ0,∞),

φk(y, τ0) = 0, in Rn,

with

‖φk‖a,τk1 = 1, ‖hk‖2s+a,τk1 → 0. (5.13)

From (5.13) and (5.9), it holds that for any fixed R > 0,

sup
τ∈(τ0,τk1 )

τνck(τ)→ 0. (5.14)

We first prove that

sup
τ0<τ<τk1

τν |φk(y, τ)| → 0 (5.15)

uniformly on any compact subset of Rn. We prove (5.15) by contradiction.

Case 1. Suppose there exist some |yk| ≤ R and τ0 < τk2 < τk1 , such that

(τk2 )ν |φk(yk, τ
k
2 )| ≥ 1

2
.

By (5.13), we then have τk2 → +∞. Define

φ̄k(y, τ) = (τk2 )νφk(y, τk2 + τ), h̄k(y, τ) = (τk2 )νhk(y, τk2 + τ), c̄k(τ) = (τk2 )νck(τk2 + τ).

Then

∂τ φ̄k = L0[φ̄k] + h̄k − c̄k(τ)Z0(y) in (τ0 − τk2 , 0].

Here h̄k → 0 uniformly in any compact subset of Rn × (−∞, 0] and c̄k → 0 uniformly in any compact
subset of (−∞, 0]. Furthermore, it holds that

|φ̄k(y, τ)| ≤ 1

1 + |y|a
in Rn × (τ0 − τk2 , 0].

Thus by fractional parabolic regularity theory, we find that, up to a subsequence, φ̄k → φ̄ uniformly
in any compact subset of Rn × (−∞, 0] with φ̄ 6= 0 and φ̄ satisfies

∂τ φ̄ = −(−∆)sφ̄+ pUp−1φ̄ in Rn × (−∞, 0],∫
Rn φ̄(y, τ)Zj(y)dy = 0 for all τ ∈ (−∞, 0], j = 0, 1, · · · , n+ 1,

|φ̄(y, τ)| ≤ 1
1+|y|a in Rn × (−∞, 0],

φ̄(y,−∞) = 0, in Rn.

(5.16)

We now prove that φ̄ = 0 which yields a contradiction. In fact, fractional parabolic regularity yields
that φ̄ is smooth and a scaling argument shows that

(1 + |y|s)|(−∆)
s
2 φ̄|+ |φ̄τ |+ |(−∆)sφ̄| . (1 + |y|)−2s−a. (5.17)

Differentiating (5.16), we get ∂τ φ̄τ = −(−∆)sφ̄τ + pUp−1(y)φ̄τ and

(1 + |y|s)|(−∆)
s
2 φ̄τ |+ |φ̄ττ |+ |(−∆)sφ̄τ | . (1 + |y|)−4s−a. (5.18)
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Define

Q(ξ, ξ) = −
∫
Rn
L0(ξ)ξ.

Here ξ satisfies certain asymptotic conditions at infinity. In particular, from (5.17), (5.18) and the
fractional parabolic regularity theory ( [31]), it holds that

|Q(φ̄, φ̄)| < +∞, |Q(φ̄τ , φ̄τ )| < +∞.

It then follows that

1

2
∂τ

∫
Rn
|φ̄τ |2 +Q(φ̄τ , φ̄τ ) = 0. (5.19)

Recall that
∫
Rn φ̄(y, τ)Zj(y)dy = 0 for τ ∈ (−∞, 0], j = 0, 1, · · · , n+ 1. Hence, we get∫

Rn
φ̄τ (y, τ)Zj(y)dy = 0

and

Q(φ̄τ , φ̄τ ) ≥ 0.

So from (5.19) we have

1

2
∂τ

∫
Rn
|φ̄τ |2 ≤ 0.

On the other hand, multiplying (5.16) by φ̄τ and integrating over Rn, we obtain∫
Rn
|φ̄τ |2 = −1

2
∂τQ(φ̄, φ̄).

Therefore, we find that

∂τ

∫
Rn
|φ̄τ |2 ≤ 0,

∫ 0

−∞
dτ

∫
Rn
|φ̄τ |2 < +∞.

Hence, one has

φ̄τ = 0,

namely that φ̄ is independent of τ and L0[φ̄] = 0. Since φ̄ is bounded, by the nondegeneracy of the
linearized operator L0 (see [11]), φ̄ is a linear combination of Zj , j = 0, 1, · · · , n + 1. Then by the
orthogonality condition ∫

Rn
φ̄Zj = 0,

we conclude that φ̄ = 0, a contradiction. Hence (5.15) is proved.

Case 2. Suppose there exists a sequence of yk with |yk| → +∞ such that

(τk2 )ν(1 + |yk|)a|φk(yk, τ
k
2 )| ≥ 1

2
.

Define

φ̃k(z, τ) := (τk2 )ν |yk|aφk(yk + |yk|z, |yk|2sτ + τk2 ).

Direct computations yield that

∂τ φ̃k = −(−∆)sφ̃k + akφ̃k + h̃k,

where

ak = pUp−1(yk + |yk|z)

and

h̃k(z, τ) = (τk2 )ν |yk|2s+ahk(yk + |yk|z, |yk|2sτ + τk2 )− (τk2 )ν |yk|2s+ac(|yk|2sτ + τk2 )Z0(yk + |yk|z).
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By (5.13), (5.14) and (5.2), we obtain that

|h̃k(z, τ)| . o(1)|ŷk + z|−2s−a((τk2 )−1|yk|2sτ + 1)−ν

where

ŷk =
yk
|yk|
→ −ê.

Hence h̃k → 0 uniformly in any compact subset of Rn \ {ê} × (−∞, 0] and ak → 0 uniformly in any

compact subset of Rn. Note that φ̃k(0, 0) ≥ 1
2 and

|φ̃k(z, τ)| . |ŷk + z|−a((τk2 )−1|yk|2sτ + 1)−ν .

Then, up to a subsequence, φ̃k → φ̃ 6= 0 uniformly in any subset of Rn \ {ê} × (−∞, 0]. Moreover,

φ̃τ = −(−∆)sφ̃ in Rn \ {ê} × (−∞, 0], (5.20)

with

|φ̃| ≤ |z − ê|−a in Rn \ {ê} × (−∞, 0]. (5.21)

For problem (5.20)–(5.21), we now claim a Liouville type result φ̃ ≡ 0.
Indeed, without loss of generality, we consider{

φ̃τ = −(−∆)sφ̃ in (Rn \ {0})× (−∞, 0],

|φ̃| ≤ |z|−a in (Rn \ {0})× (−∞, 0].
(5.22)

Inspired by [1], we shall construct a supersolution to problem (5.22). Let δ > 0 be an arbitrary fixed
constant and

u0(x) :=

{
|x|−a, |x| ≥ ε,
ε−a, |x| ≤ ε.

Here ε > 0 is small enough such that δ > εn−2s−a. Define

ū(x, t) :=

∫
Rn
Ks(x− y, t)u0(y)dy +

δ

|x|n−2s
,

where Ks(x, t) is the heat kernel given in (4.2). It is clear that

ū(r2, 0) ≥ r−a.
Then for all M > 0, ū(r2, τ +M) is a supersolution to{

φ̃τ = −(−∆)sφ̃ in Rn \ {0} × [−M, 0],

|φ̃| ≤ |z|−a in Rn \ {0} × [−M, 0].

Now for t > 0 large, we estimate

|ū(x, t)| .
∫
Rn
Ks(x− y, t)u0(y)dy +

δ

|x|n−2s
.

Direct computations yield that for any fixed x 6= 0,∣∣∣∣∫
Rn
Ks(x− y, t)u0(y)dy

∣∣∣∣ ≤ ∫
Rn

t

(t
1
s + |x− y|2)

n+2s
2

1

|y|a
dy

≤

(∫
B2|x|

+

∫
Rn\B2|x|

)
t

(t
1
s + |x− y|2)

n+2s
2

1

|y|a
dy

. t−
n
2s |x|n−a + t−

a
2s .

For any fixed (x, τ) ∈ Rn × (−∞, 0], we have that

|φ̃(x, τ)| . (τ +M)−
n
2s |x|n−a + (τ +M)−

a
2s +

δ

|x|n−2s
, ∀M > 0.
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Letting M → +∞, we obtain that

|φ̃(x, τ)| . δ

|x|n−2s
.

Since δ > 0 is arbitrary, it holds that

φ̃(x, τ) = 0.

The proof is complete. �

Proof of Proposition 5.1. First, we consider the problem{
∂τφ = −(−∆)sφ+ pUp−1(y)φ+ h(y, τ)− c(τ)Z0, in Rn × (τ0,+∞)

φ(y, τ0) = 0, in Rn.

Let (φ(y, τ), c(τ)) be the solution of the initial value problem (5.7). From Lemma 5.1, for any τ1 > τ0,
we have

|φ(y, τ)| . τ−ν(1 + |y|)−a‖h‖2s+a,τ1 for all τ ∈ (τ0, τ1), y ∈ Rn

and

|c(τ)| ≤ τ−νRa‖h‖2s+a,τ1 for all τ ∈ (τ0, τ1).

By assumption, ‖h‖2s+a,ν,η < +∞ and ‖h‖2s+a,τ1 ≤ ‖h‖2s+a,ν,η for an arbitrary τ1. It follows that

|φ(y, τ)| . τ−ν(1 + |y|)−a‖h‖2s+a,ν,η for all τ ∈ (τ0, τ1), y ∈ Rn

and

|c(τ)| ≤ τ−νRa‖h‖2s+a,ν,η for all τ ∈ (τ0, τ1).

By the arbitrariness of τ1, we have

|φ(y, τ)| . τ−ν(1 + |y|)−a‖h‖2s+a,ν,η for all τ ∈ (τ0,+∞), y ∈ Rn

and

|c(τ)| ≤ τ−νRa‖h‖2s+a,ν,η for all τ ∈ (τ0,+∞).

By the regularity theory of [43] and a scaling argument, we get the validity of (5.5) and (5.6). �

Remark 5.1. In the inner problem (2.9), H behaves like

H . λ
n−2s

2

(
1

1 + |y|n−2s
+

1

1 + |y|4s

)
.

Recall that 4s < n < 6s. For a > 2s, we get

H . λ
n−2s

2

1 + |y|a+2s

(
Ra+4s−n +Ra−2s

)
.

λ
n−2s

2

1 + |y|a+2s
Ra+4s−n.

Define the ‖ · ‖B norm as

‖φ‖B := sup
t∈(0,T )
y∈B2R

λ−
n−2s

2 (t)(1 + |y|a)

Ra+4s−n

[
|φ(y, t)|+ (1 + |y|s)

(∫
Rn

[φ(y, t)− φ(x, t)]2

|y − x|n+2s
dx

) 1
2

]
. (5.23)

Then by Proposition 5.1, we obtain

‖φ‖B . ‖H‖n−2s,ν,η.
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6. Solving the inner-outer gluing system

In this section, we shall solve the inner-outer gluing system

λ2sφt = −(−∆)syφ+ pUp−1(y)φ+H(φ, ψ, λ, ξ) in B2R(0)× (0, T ){
ψt = −(−∆)sxψ + G(φ, ψ, λ, ξ), in Rn × (0, T )

ψ(x, 0) = 0, in Rn

where H and G are defined in (2.11) and (2.12) respectively. We shall solve the inner-outer gluing
system as a fixed piont problem for ~p = (φ, ψ, λ, ξ) in a proper Banach space.

We define

cj [H(φ, ψ, λ, ξ)] :=

∫
B2R
H(φ, ψ, λ, ξ)Zj(y)dy∫
B2R
|Zj(y)|2dy

and

H̄(φ, ψ, λ, ξ) := H(φ, ψ, λ, ξ)−
n+1∑
j=1

cj [H(φ, ψ, λ, ξ)]Zj .

Then the linear theory is automatically applicable to the following problem{
λ2φt = −(−∆)syφ+ pUp−1(y)φ+ H̄(φ, ψ, λ, ξ), in B2R × (0, T )

φ(x, 0) = eZ0(x), in B2R

(6.1)

Problem (6.1) can be formulated as the following fixed point problem

φ = T inλ [H̄(φ, ψ, λ, ξ)] := F1(φ, ψ, λ, ξ). (6.2)

If in addition we have
cj [H(φ, ψ, λ, ξ)] = 0 for all j = 1, · · · , n+ 1, (6.3)

we get a true solution to the real inner problem. Similarly, for the outer problem, we look for a fixed
point of

ψ = T out[G(φ, ψ, λ, ξ)] := F2(φ, ψ, λ, ξ) (6.4)

Therefore, the inner-outer gluing system is now reduced to the system (6.2)–(6.4). We shall solve the
system by Leray-Schauder degree theory. For θ ∈ [0, 1], we define the homotopy class

Hθ(ψ, λ, ξ)(y, t) = λ2s−1λ̇Zn+1(y) + λ2s−1
n∑
j=1

ξ̇jZj(y)

+ λ
n−2s

2 pUp−1(y)Z∗0 (q) + λ
n−2s

2 +1pUp−1(y)∇Z∗0 (q) · y

+ θλ
n−2s

2 pUp−1(y)[Z∗(λy + ξ, t)− Z∗0 (q)− λy · ∇Z∗0 (q) + ψ(λy + ξ, t)].

Consider the following system
φ = T inλ

[
Hθ(φ, ψ, λ, ξ)−

∑n+1
j=1 cj [Hθ(φ, ψ, λ, ξ)]Zj

]
cj [Hθ(φ, ψ, λ, ξ)] = 0, for all j = 1, · · · , n+ 1

ψ = T out[θG(φ, ψ, λ, ξ)]

(6.5)

The case θ = 1 corresponds to the original system that we need to solve.
We write

λ(t) = λ0(t) + λ1(t), ξ(t) = q + ξ1(t), t ∈ [0, T ],

where λ0(t) is defined in (3.2) and λ1(T ) = 0, ξ1(T ) = 0.
Suppose that we have a solution (φ, ψ, λ1, ξ1) to system (6.5) satisfying the constraints

|λ̇1(t)|+ |ξ̇1(t)| ≤ δ0, ‖φ‖B + ‖ψ‖∞ ≤ δ1, (6.6)

where δ0 and δ1 are small positive constants to be determined later and the norm ‖ · ‖B is defined in
(5.23). We also assume that ‖Z∗‖∞ � 1 independent of T .
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From section 3, the function λ0(t) solves the equation

λ̇0(t)

∫
Rn
Z2
n+1dy + λ0(t)

n−6s+2
2 Z∗0 (q)

∫
Rn
pUp−1Zn+1dy = 0. (6.7)

The equation

cn+1(Hθ(ψ, λ0 + λ1, ξ))(t) = 0 t ∈ [0, T ) (6.8)

which corresponds to

0 = λ̇(t)
( ∫

B2R

Z2
n+1dy

)
+ λ(t)

n−6s
2 +1Z∗0 (q)

∫
B2R

pUp−1Zn+1dy

+ θλ(t)
n−6s

2 +1

∫
B2R

pU(y)p−1(Z∗(ξ + λy, t)− Z∗0 (q)− λy · ∇Z∗0 (q) + ψ(ξ + λy, t))Zn+1(y)dy

can be written as

λ̇(t) + βλ(t)
n−6s

2 +1 = λ(t)
n−6s

2 +1(δR + θπ(ψ, ξ, λ1)) (6.9)

for a suitable number β > 0, δR = O(R−2s) and the operator π satisfies, for some absolute constant
C,

|π(ψ, ξ, λ1)| . T + ‖ψ‖∞.
By (6.7), for a suitable γ > 0, equation (6.9) can be written in the linearized form

λ̇1 +
γ

T − t
λ1 = (T − t)

2
6s−n−1g0(ψ, λ1, ξ, θ)

with

|g0(ψ, λ1, ξ, θ)(t)| . ‖ψ‖∞ + T +R−2s.

The linear problem

λ̇1 +
γ

T − t
λ1 = (T − t)

2
6s−n−1g0(t), λ1(T ) = 0

can be uniquely solved by the operator in g0,

λ1(t) = T (0)[g0](t) := −(T − t)γ
∫ T

t

(T − s)
2

6s−n−1−γg0(s)ds.

It defines a linear operator on g0 with estimates

‖(T − t)
2

n−6s+1λ̇1‖∞ + ‖(T − t)
2

n−6sλ1‖∞ . ‖g0‖∞.

Equation (6.8) then becomes

λ1(t) = T (0)[g0(ψ, λ1, ξ, θ)](t) for all t ∈ [0, T )

and we get

‖(T − t)
2

n−6s+1λ̇1‖∞ + ‖(T − t)
2

n−6sλ1‖∞ . ‖ψ‖∞ + T +R−2s (6.10)

Similarly, equations

cj [Hθ(ψ, λ, ξ)] = 0 for all j = 1, . . . , n,

can be written in vector form as

ξ1(t) = T (1)[g1(ψ, λ1, ξ1, θ)](t) for all t ∈ [0, T ). (6.11)

where

T (1)[g1] :=

∫ T

t

(T − s)
2

6s−n−1g1(s)ds

and

|g1(ψ, λ1, ξ1, θ)(t)| . ‖ψ‖∞ + T.

From equation (6.11), we have

‖(T − t)
2

n−6s+1ξ̇1‖∞ + ‖(T − t)
2

n−6s ξ1‖∞ . ‖ψ‖∞ + T (6.12)
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On the other hand, we have

|H(φ, ψ, λ, ξ)(y, t)| . λ(t)
n−2s

2

1 + |y|4s
(‖ψ‖∞ + ‖Z∗‖∞) +

λ2s−1λ̇

1 + |y|n−2s
+

λ2s−1|ξ̇|
1 + |y|n−2s+1

hence for a > 2s, we have

|H(φ, ψ, λ, ξ)(y, t)| . λ0(t)
n−2s

2

1 + |y|2s+a
Ra+4s−n(‖ψ‖∞ + ‖Z∗‖∞

)
.

and from (6.5) and Proposition 5.1 we obtain that

‖φ‖B . ‖ψ‖∞ + ‖Z∗‖∞, (6.13)

where the norm ‖ · ‖B is defined in (5.23). Next we consider the outer problem in (6.5). We recall that
the outer problem is {

ψt = −(−∆)sxψ + G(φ, ψ, λ, ξ), in Rn × (0, T )

ψ(x, 0) = 0, in Rn

where

G(φ, ψ, λ, ξ) := pλ−2s(1− ηR)Up−1(y)(ψ + Z∗) + λ−
n+2s

2 E(1− ηR) + C(φ) +R(φ) +N(ϕ+ Z∗)

E(y, t) = λ2s−1λ̇Zn+1(y) + λ2s−1ξ̇ · ∇U

C(φ) := λ−
n−2s

2

[
(−(−∆)sx − ∂t)ηR(y)φ+ [−(−∆)s/2x ηR(y),−(−∆)s/2x φ(y)]

]
R(φ) := λ−

n−2s
2 −1

[
ηRλ̇

(
n− 2s

2
φ+ y · ∇yφ

)
+ ηRξ̇ · ∇yφ+ φ

(
λ̇y · ∇yηR + ξ̇ · ∇yηR

)]
.

Here

[−(−∆)s/2x f(x),−(−∆)s/2x g(x)] := cn,sP.V.

∫
Rn

[f(y)− f(x)][g(x)− g(y)]

|x− y|n+2s
dy

with cn,s =
22ssΓ(n+2s

2 )

Γ(1−s)π
n
2

.

We estimate term by term. It is direct to see that

|pλ−2s(1− ηR)Up−1(y)(ψ + Z∗)| . λ−2s

R2s−σ
1

1 + |y|2s+σ
(‖Z∗‖∞ + ‖ψ‖∞) (6.14)

and

|λ−
n+2s

2 E(1− ηR)| . 1

λ2s

[
1

1 + |y|n−2s
λ−

n−2s
2 (|λ2s−1λ̇|+ |λ2s−1ξ̇|)

] ∣∣∣∣∣
|y|>2R

.
λ−2s

Rn−4s−σ
1

1 + |y|2s+σ
.

(6.15)
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Let us now estimate the term C(φ). Let us choose 0 < σ < n− 4s. Then we have

λ−
n−2s

2

∣∣∣∣ ([− (−∆)s/2ηR,−(−∆)s/2φ
])

(x, t)

∣∣∣∣
. λ−

n−2s
2

[∫
Rn

(
ηR(x)− ηR(y)

|x− y|n2 +s

)2

dy

] 1
2
[∫

Rn

(
φ(x)− φ(y)

|x− y|n2 +s

)2

dy

] 1
2

. λ−
n−2s

2
1

Rsλs

∫
Rn

(
η(|x−ξRλ |)− η(|y−ξRλ |)

|x−yRλ |
n
2 +s

)2

d

(
y − ξ
Rλ

) 1
2

× 1

λs

∫
Rn

(
φ(x−ξλ , t)− φ(y−ξλ , t)

|x−yλ |
n
2 +s

)2

d

(
y − ξ
λ

) 1
2

.
1

Rsλ2s

∫
Rn

(
η(|x−ξRλ |)− η(|y−ξRλ |)

|x−yRλ |
n
2 +s

)2

d

(
y − ξ
Rλ

) 1
2

Ra+4s−n

(1 + |y|s+a)
‖φ‖B

. λ−2s Rσ+4s−n

1 + |y|2s+σ
‖φ‖B .

Similar computations yield that∣∣C(φ)
∣∣ . λ−2s 1

R2s

Ra+4s−n

1 + |y|a
λ−

n−2s
2 ‖φ‖B

. λ−2s Rσ+4s−n

1 + |y|2s+σ
‖φ‖B .

(6.16)

Also, we have ∣∣R(φ)
∣∣ . λ−2sλ

n−2s
2 Rσ+6s−n

1 + |y|2s+σ
‖φ‖B . (6.17)

Now for some σ ∈ (0, n− 4s), we have∣∣N(Z∗ + λ−
n−2s

2 ηRφ+ ψ)
∣∣ . (

λ−
n−2s

2 ηRφ
)p

+ (Z∗ + ψ)p

. λ−2sλ
2sR(4s−n)p+2s+σ

1 + |y|2s+σ
‖φ‖pB + (‖Z∗‖∞ + ‖ψ‖∞)p.

(6.18)

Collecting the above estimates (6.14)–(6.18), we get by using Lemma 4.1 that

‖ψ‖∞ . Tσ
′
‖Z∗‖∞ +R−σ

′
‖φ‖B (6.19)

for some positive constant σ′. By (6.10)–(6.13) and (6.19), we obtain
‖ψ‖∞ . Tσ

′‖Z∗‖∞
‖φ‖B . ‖Z∗‖∞
‖(T − t)

2
n−6s+1λ̇1‖∞ + ‖(T − t)

2
n−6sλ1‖∞ . Tσ

′
(‖Z∗‖∞ + 1)

‖(T − t)
2

n−6s+1ξ̇1‖∞ + ‖(T − t)
2

n−6s ξ1‖∞ . Tσ
′
(‖Z∗‖∞ + 1) +R−2s

(6.20)

Then the inner-outer gluing system (6.5) can be written in the form
φ = T inλ [ H̄θ(T out[θG(φ, ψ, λ, ξ)], λ, ξ)]

ψ = T out[ θG(φ, ψ, λ, ξ)]

λ1 = T (0)[ g̃0(ψ, λ1, ξ1, θ)]

ξ1 = T (1)[g̃1(ψ, λ1, ξ1, θ)]
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where g̃0 and g̃1 can be expressed as

g̃0(ψ, λ1, ξ1, θ) =c1R

∫
B2R

Hθ(T out[ θG(φ, ψ, λ, ξ)], λ, ξ)Zn+1(y)dy

g̃1(ψ, λ1, ξ1, θ) =c2R

∫
B2R

Hθ(T out[ θG(φ, ψ, λ, ξ)], λ, ξ)∇U(y)dy

for suitable positive constants c0R and c1R. For ε > 0 fixed sufficiently small, we consider the following
problem defined only up to time t = T − ε

φ = T inλ [ H̄θ(T out[θG(φ, ψ, λ, ξ)], λ, ξ)], (y, t) ∈ B̄2R × [0, T − ε]
ψ = T out[θG(φ, ψ, λ, ξ) ], (x, t) ∈ Rn × [0, T − ε]
λ1 = T (0)

ε [ g̃0(ψ, λ1, ξ1, θ) ], t ∈ [0, T − ε]
ξ1 = T (1)

ε [ g̃1(ψ, λ1, ξ1, θ) ], t ∈ [0, T − ε]

(6.21)

where

T (0)
ε [g](t) := −(T − t)γ

∫ T−ε

t

(T − s)
2

6s−n−γ−1g(s) ds, T (1)
ε [g] :=

∫ T−ε

t

(T − s)
2

6s−n−1g(s) ds.

We consider problem (6.21) in the space of functions

(φ, ψ, λ1, ξ1) ∈ X1 ×X2 ×X3 ×X4

where X` (` = 1, · · · , 4) and corresponding norms are defined as

X1 ={φ : φ ∈ C(B̄2R × [0, T − ε]), ∇syφ ∈ C(B̄2R × [0, T − ε])}, ‖φ‖X1 = ‖φ‖∞ + ‖∇syφ‖∞
X2 ={ψ : φ ∈ C(Rn × [0, T − ε])}, ‖ψ‖X2

= ‖ψ‖∞
X3 ={λ1 : λ1 ∈ C1[0, T − ε]}, ‖λ1‖X3 = ‖λ1‖∞ + ‖λ̇1‖∞
X4 ={ξ1 : ξ1 ∈ C1[0, T − ε]}, ‖ξ1‖X4

= ‖ξ1‖∞ + ‖ξ̇1‖∞
where

∇syφ :=

(∫
Rn

[φ(y, t)− φ(x, t)]2

|y − x|n+2s
dx

)1/2

.

As a direct consequence of Arzelà–Ascoli’s theorem, compactness on bounded sets of all the operators
involved in the above expression (6.21) follows from the Hölder estimate (4.13) for the operator T out.
On the other hand, the a priori estimates we obtained for ε = 0 holds equally well, uniformly for
arbitrary small ε > 0, and for a solution of (6.21).

We now apply Leray–Schauder degree theory in a suitable ball B containing the origin which is
slightly larger than the one defined by relations (6.20), which amounts to a choice of the parameters
δ0 and δ1 in (6.6). The homotopy connects with the identity at θ = 0, and hence the total degree in
the region defined by relations (6.20) is equal to 1. Hence we have the existence of a solution to the
approximate problem satisfying bounds (6.20). Finally, by a standard diagonal argument, we find a
solution to the original problem for k = 1 with the desired size.

The multiple-bubble case of k distinct points q1, . . . , qk is actually identical. In this case, we have k
inner problems and one outer problem with similar properties. We want to find a solution of the form

u(x, t) =

k∑
j=1

Uλj ,ξj (x) + Z∗(x, t) + λ
−n−2

2
j φ(yj , t)ηR(yj) + ψ(x, t), yj =

x− ξj
λj

(6.22)

where Z∗ solves heat equation with initial condition Z∗0 which is chosen such that Z∗0 (qj) < 0, and
ξj(T ) = qj , λj(T ) = 0 for j = 1, · · · , k. Then by solving a series of fixed point problems similar as the
one bubble case, we obtain a solution of form (6.22). Hence we omit the details here. �
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