
STABLE SPIKE CLUSTERS ON A COMPACT TWO-DIMENSIONAL RIEMANNIAN
MANIFOLD

WEIWEI AO, JUNCHENG WEI, AND MATTHIAS WINTER

ABSTRACT. We consider the Gierer-Meinhardt system with small inhibitor diffusivity and very small
activator diffusivity on a compact two-dimensional Riemannian manifold without boundary. We
study steady state solutions which are far from spatial homogeneity. We construct two different spike
clusters, each consisting of 2 spikes which both approach the same nondegenerate local maximum
point of the Gaussian curvature. We show that one of these spike clusters is stable, the other one is
unstable.

1. INTRODUCTION

1.1. The problem. Since the pioneering work of Turing in 1952 [42], many different reaction-
diffusion system in biological modelling have been proposed and the occurrence of pattern for-
mation has been investigated by studying what is now called Turing instability. One of the most
popular models in biological pattern formation is the Gierer-Meinhardt system [16], see also [29].
In this paper, we consider the following Gierer-Meinhardt system on a compact two-dimensional
Riemannian manifold (M, g) without boundary:

{

ε2∆g A − A + A2

H = 0
D∆gH − H + A2 = 0.

in M (1.1)

Throughout the paper, we assume that

0 < ε << 1, 0 < D << 1.

We prove the existence and study the stability of a cluster of 2 spikes near a non-degenerate local
maximum point p0 of the Gaussian curvature of the manifold M.

1.2. The geometric setting. Before stating the results, we first introduce the geometric setting
of the problem. Let TpM be the tangent place to M at p, and given an orthonormal basis
{e1(p), e2(p)} of TpM, we can obtain via the exponential map expp : TpM → M, a natural

correspondence Ep(x) = x1e1(p) + x2e2(p) → q = expp(x1e1(p) + x2e2(p)). Since M is a com-

pact manifold, one knows that there exists a constant ig > 0 such that

Xp := E−1
p ◦ exp−1

p : Bg(p, ig) → B(0, ig)

is a diffeomorphism for every p ∈ M. The values of this natural chart Xp are called normal
coordinates about p.

We now define function spaces. Set

L2(Mε) =

{

u measurable function defined on Mε,

ˆ

Mε

u2(q)dvgε < ∞

}

,

where dvgε denotes the Riemannian measure with respect to the metric gε. We further set

H1(Mε) = {u ∈ L2(Mε),∇gε u ∈ L2(Mε)}.
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We will construct cluster solutions near a non-degenerate local maximum point of the Gaussian
curvature function K(p). In the rest of the paper, we assume that there is a local maximum of K(p)
is at p0 = 0, i.e. we have

∇K(0) = 0, ∇2K(0) =

(

K11 0
0 K22

)

where K11, K22 < 0.

Let the local normal coordinates around p be x = (x1, x2). Then we set χ = 1 for |x| ≤ ig

4 and

χ = 0 for |x| ≥ ig

2 , and introduce χε = χ( x
ε ).

1.3. The main results. Let w be the unique solution of the problem

∆w − w + w2 = 0, w > 0 in R
2, w(0) = max

y∈R2
w(y), w(y) → 0 as |y| → ∞. (1.2)

In this paper, we shall prove results on the existence and stability of a spike cluster of (1.1)
located around p0 = 0 with 2 spikes. Our first result is on the existence:

Theorem 1.1. Let p0 be a non-degenerate local maximum point of the Gaussian curvature K(p) of M.
Assume that

0 < ε <<
√

D << 1, 0 <
√

D log
1

ε2D log
√

D
ε

<< 1, (1.3)

and
K22

K11
6= 1. (1.4)

Then the Gierer-Meinhardt system (1.1) has at least two different 2-spike cluster solutions (Ai, Hi) for
i = 1, 2, which both concentrate near p0. In particular, each of these solutions satisfies

A ∼ Dξε

ε2

(

w(
x

ε
+ qi) + w(

x

ε
− qi)

)

, H(±qi) ∼
Dξε

ε2
,

where εqi → 0 as ε → 0 and ξε ∼ 1

log
√

D
ε

for i = 1, 2.

Remark 1.2. The limit ε√
D

→ 0 means that the diffusivity of the activator u is asymptotically smaller

than the diffusivity of the inhibitor v. If this is not assumed, then the pattern will no longer have a spike

profile. The second limit
√

D log 1

ε2D log
√

D
ε

→ 0 is the condition which guarantees that the spikes form a

cluster, i.e εqi → 0 as ε → 0.

Remark 1.3. As one will see from the proof, we will construct an approximate solution which concentrates
on a regular k-polygon shrinking to the point 0 for general k ≥ 2. But when solving the reduced problem
we can only handle the case k = 2. The condition (1.4) is imposed to make sure that the reduced problem is
solvable.

Next we study the stability of the 2-spike cluster constructed in Theorem 1.1. Our second result
on the stability is the following:

Theorem 1.4. Let p0 be a non-degenerate local maximum point of the Gaussian curvature K(p). Assume
(1.3), (1.4) and let (Ai, Hi) for i = 1, 2 be the solutions constructed in Theorem 1.1. Then one of the
solutions is stable and the other one is unstable.

Using the transformation

x = εy, u =
ε2

D
A, v =

ε2

D
H,
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equation (1.1) becomes






∆gε u − u + u2

v = 0

∆gε v − σ2v + u2 = 0
in Mε (1.5)

where σ = ε√
D

. In the rest of this paper, we will work with (1.5).

1.4. Related work and motivation. We now comment on some related work. Generally speak-
ing, the Gierer-Meinhardt system is difficult to solve since it does neither have a variational
structure nor a priori estimates. One way to study it is to examine the so-called shadow sys-
tem. Namely, we let D → +∞ first. It is known (see [23, 31, 38]) that the study of the shadow
system amounts to the study of the following single equation for p = 2:

{

ε2∆u − u + up = 0, u > 0 in Ω,
∂u
∂ν = 0 on ∂Ω.

(1.6)

Equation (1.6) has a variational structure and has been studied by numerous authors. It is
known that equation (1.6) has both boundary spike solutions and interior spike solutions. For
existence of boundary spike solutions, see [18, 32, 33, 34, 49, 50] and the references therein. For
existence of interior spike solutions, see [19, 36] and the references therein. For stability of spike
solutions see [35, 47, 48].

Next we review some results for bumps, spikes and related patterns in the Gierer-Meinhardt
system. Ground states on the real line are studied in [9, 11, 12, 61] and for the whole R

2 in [10].
Spikes for an interval are studied in [20, 21, 27, 40, 46] and for bounded two-dimensional domains
in [25, 26, 34, 51, 52, 53, 54, 55]. Hopf bifurcation of spikes is investigated in [7, 44, 45]. For
dynamics we refer to [5, 6, 13, 22, 39]. Steady states with spherical layers have been constructed
in [27, 37]. Stripes have been studied in [24]. Nonlocal eigenvalue problems related to the one in
this paper have been studied in [47, 48, 56].

The existence of spikes for single semilinear elliptic PDEs on manifolds has been investigated
in [4, 8, 30]. Existence and stability of a single spike solution for the Gierer-Meinhardt system on
a Riemannian manifold has been shown in [41].

In [55] the existence and stability of N−peaked steady states for the Gierer-Meinhardt system
with precursor inhomogeneity has been explored. The spikes in the patterns can vary in am-
plitude. In particular, the results imply that a precursor inhomogeneity can induce instability.
Single-spike solutions for the Gierer-Meinhardt system with precursor including spike dynamics
have been studied in [43].

For more background, modelling, analysis and computation on the Gierer-Meinhardt system,
we refer to [58] and the references therein.

Previous results on stable spike clusters include a stable spike cluster for a consumer chain
model [57]. For the Gierer-Meinhardt system spike clusters have been established in the follow-
ing situations: stable interior spike clusters for the one-dimensional Gierer-Meinhardt system
with precursor inhomogeneity [59], stable interior spike clusters for the two-dimensional Gierer-
Meinhardt system with precursor inhomogeneity [60] and stable boundary spike clusters for the
two-dimensional Gierer-Meinhardt system [2]. In the last paper the boundary curvature plays the
role of the precursor in the previous papers. In the current paper we will see that the Gaussian
curvature takes over that role for the Gierer-Meinhardt system on a compact two-dimensional
Riemannian manifold without boundary. We would like to summarize this role as follows: the
spikes in the cluster are mutually repelling and also each spike is attracted to a local maximum
point of the Gaussian curvature (or to a local minimum of the precursor gradient or local max-
imum of the boundary curvature, respectively). This balance between attracting and repelling
interactions can lead to a stable spike cluster.
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This paper is organized as follows. In Section 2, we give some preliminaries and describe the
construction of the approximate cluster solution. In Section 3, we use the Liapunov-Schmidt
method to reduce the existence problem to finite dimensions. In Section 4 we solve this reduced
problem. In Sections 5-6, we study the stability of the spike cluster steady states. In Section 5 we
consider large eigenvalues. In Section 6 we study small eigenvalues. In Section 7 we discuss the
results of the paper. In the appendix we give some identities needed in the main part of the paper
and we calculate the eigenvalues of the reduced matrix in main order for a general number of
spikes.

1.5. Acknowledgements. W. Ao was supported by NSFC (No. 11801421 and No. 11631011). J.
Wei is partially supported by NSERC of Canada. M. Winter thanks the Department of Math-
ematics at Wuhan University and the Institut für Analysis, Dynamik und Modellierung at the
Universität Stuttgart for their kind hospitality.

2. PRELIMINARIES AND CONSTRUCTION OF THE APPROXIMATE SOLUTION

2.1. Expansion of the Laplacian. Let the local normal coordinates around point p be x. For a
function u in the rescaled coordinates y = x

ε , one has the following expansion of the Laplace-
Beltrami operator (see appendix A of [41] and also [1]):

∆gε u(y) = ∆yu(y)

+
[1

3
K(p)ε2 +

1

6
(∇K(p) · y)ε3 +

1

20
(y∇2K(p)yt)ε4

]

(Q[u] − 2P[u])

+
1

45
K2(p)|y|2ε4(3Q[u]− 4P[u])

+
1

6
ε3R1[u] +

1

10
ε4R2[u] + O(ε5) (2.1)

where

Q[u] = y2
2

∂2u

∂y2
1

− 2y1y2
∂2u

∂y1∂y2
+ y2

1
∂2u

∂y2
2

,

P[u] = y1
∂u

∂y1
+ y2

∂u

∂y2
,

R1[u] =
y2

2 − y2
1

2
[

∂K

∂x1
(p)

∂u

∂y1
− ∂K

∂x2
(p)

∂u

∂y2
]

−y1y2[
∂K

∂x2
(p)

∂u

∂y1
+

∂K

∂x1
(p)

∂u

∂y2
],

R2[u] = [
y2

2 − y2
1

2

∂u

∂y1
− y1y2

∂u

∂y2
][y1

∂2K

∂x2
1

(p) + y2
∂2K

∂x1∂x2
(p)]

−[
y2

2 − y2
1

2

∂u

∂y2
+ y1y2

∂u

∂y1
][y2

∂2K

∂x2
2

(p) + y1
∂2K

∂x1∂x2
(p)].

Note that ∇K(p) = ( ∂K
∂x1

, ∂K
∂x2

)(p), and ∇2K(p) =

(

∂2K
∂x1∂x1

∂2K
∂x1∂x2

∂2K
∂x1∂x2

∂2K
∂x2∂x2

)

(p) are not rescaled.
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2.2. The Green’s function. Now we introduce a Green’s function Gσ which is needed for our
analysis. Let Gσ be the Green’s function given by

∆gε Gσ(p, q)− σ2Gσ(p, q) + δq = 0 in Mε. (2.2)

For properties of this Green’s function please see [3]. From (2.2), one has
ˆ

Mε

Gσdvgε(p) =
1

σ2
,

Setting Gσ(p, q) = 1
σ2|Mε| + Ḡσ(p, q), then Ḡσ satisfies

{

∆gε Ḡσ − σ2Ḡσ − 1
|Mε| + δq = 0 in Mε

´

Mε
Ḡσdvgε = 0.

(2.3)

Let G̃σ be defined by

∆G̃σ − σ2G̃σ + δ0 = 0 in R
2.

By the expansion of the Laplace Beltrami operator, one has

Ḡσ(q, r) = G̃(y, z) + ε2G1(y, z) + O(ε3) (2.4)

where y = Xp(q), z = Xp(r) and G1(y, z) is even function in |y − z|.
For G̃σ(y, z) := G̃1(σy, σz), one has

Lemma 2.1. If |y − z| << 1,

G̃1(y, z) =
1

2π
log

1

|y − z| + H̃1(y, z)

where H̃1 is the regular part of the Green’s function and ∇yH̃1(y, z)|y=z = 0.
If |y − z| >> 1,

G̃1(y, z) = c|y − z|− 1
2 e−|y−z|(1 + o(1)), |∇yG̃1(y, z)| = G̃1(y, z)(1 + o(1))

for some constant c > 0.

2.3. The construction of the approximate solutions. In this subsection, we describe the approx-
imate solution we will use. Given k ≥ 2, define

q0
j = (R cos θj, R sin θj) for j = 1, · · · , k

where θj = α + 2π
k (j − 1) in geodesic normal coordinates. Here α is the parameter for the angle

representing the degeneracy due to rotations. The constant R for the radius will be determined
later in the leading order of the reduced problem. Since our manifold is not rotationally symmetric
α will be derived below in a higher order of the reduced problem.

Next we introduce suitable coordinates in a neighbourhood of q0 = (q0
1, · · · , q0

k). Let f̃i, g̃i ∈
R, i = 1, · · · , k, we define

qi = q0
i + f̃i~ni + g̃i~ti (2.5)

where
~ti = (− sin θi, cos θi), ~ni = (cos θi, sin θi).

So f̃i, g̃i measure the displacements in the normal and tangential directions, respectively. Denote

Qε = {qi, i = 1, · · · , k, σ| f̃i|+ σ|g̃i| ≤ C}. (2.6)

Now we introduce wj to be the unique radially symmetric solution of the equation

∆ywj − wj −
1

3
K(εqj)ε

2rw′
j(r) + w2

j (r) = 0 in R
2 (2.7)
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where K(q) is the Gaussian curvature at q ∈ M.
Existence and uniqueness of wj can be derived using the implicit function theorem and the

non-degeneracy of the positive solution w to the equation ∆w − w + w2 = 0. Moreover, one has
‖wj − w‖H2(R2) = O(ε2) if |εqj| is bounded. The readers are referred to [41] for more details.

Then we set our approximate solution to be

U =
k

∑
i=1

ξε,qi
wi(y − qi)χε(y − qi) (2.8)

where χ = 1 for |x| ≤ ig

4 and χ = 0 for |x| ≥ ig

2 and χε = χ( x
ε ), the height ξε,qj

is to be determined

in the following subsection.

2.4. Calculating the height of the peaks. In this subsection, we formally calculate the height of
the peaks. It turns out that the height of the peaks does not depend on the spike location in
leading order but only in higher order.

For a function u ∈ H2(Mε), let T[u] be the unique solution to the equation

∆gε T[u]− σ2T[u] + u = 0.

Then from the equation satisfied by v, one can choose the approximate solution as

u = U, v = T(U2) = V. (2.9)

Next we calculate the height of the peaks

ξε,qj
= V(qj)

=

ˆ

Mε

Gσ(qj, q)U2(q)dvgε (q)

= ξ2
ε,qj

ˆ

Mε

Gσ(qj, y)wj(y − qj)
2χε,jdvgε

+∑
i 6=j

ξ2
ε,qi

ˆ

Mε

Gσ(qj, y)wi(y − qi)
2χε,idvgε

+∑
i

O(ξ2
ε,qi

e−2R sin π
k )

= ξ2
ε,qj

1

2π
log

1

σ

ˆ

R2
w2

j dy + O(∑
i

ξ2
ε,qi

)

one has

1

ξε,qj

=
1

2π
log

1

σ

(
ˆ

R2
w2

j dy + O

(

1

log σ

))

. (2.10)

Denote

ξε =

(

1

2π
log

1

σ

ˆ

R2
w2dy

)−1

.

Then one has ξε,qj
= ξε(1 + O( 1

log σ)).
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3. EXISTENCE: REDUCTION TO FINITE DIMENSION

3.1. Error of the approximate solution. Let us start to prove Theorem 1.1. The first step is choos-
ing a good approximate solution which was done in the last section. The second step is to use
the Liapunov-Schmidt reduction to reduce the problem to a finite dimension problem which we
do in this section. First we need to calculate the error of the approximate solution (U, V) given in
(2.9).

S1(U, V) = ∆gεU − U +
U2

V

=
U2

V
−

k

∑
i=1

ξε,qi
w2

i (y − qi)χε,i

+
k

∑
i=1

ε3
[1

6
∇K(εqi) · (y − qi)(Q[wi ]− 2P[wi]) +

1

6
R1[wi]

]

+
k

∑
i=1

ε4
[ 1

20
(y − qi)∇2K(εqi)(y − qi)

t(Q[wi]− 2P[wi])

+
1

45
K2(εqi)|y − qi|2(3Q[wi]− 4P[wi]) +

1

10
R2[wi]

]

+ O(ε5).

Next we calculate for j = 1, · · · , k, and y = qj + z with |εz| ≤ ig

2 ,

V(qj + z)− V(qj)

=

ˆ

Mε

[Gσ(qj + z, p)− Gσ(qj, p)]U2(p)dvgε

= ξ2
ε,qj

ˆ

Mε

[Gσ(qj + z, p)− Gσ(qj, p)]wj(y − qj)
2χ2

j dvgε

+∑
l 6=j

ξ2
ε,ql

ˆ

Mε

[Gσ(qj + z, p)− Gσ(qj, p)]wl(y − ql)
2χ2

l dvgε + O(ξ2
ε e−2R sin π

k )

= ξ2
ε,qj

[

ˆ

Mε

(G̃σ(qj + z, p)− G̃σ(qj, p))wj(y − qj)
2χ2

j dvgε ]

+∑
l 6=j

ξ2
ε,ql

ˆ

Mε

∇qj
G̃σ(qj, ql) · zwl(y − ql)

2χ2
l dvgε

+∑
l 6=j

ξ2
ε,ql

1

2

ˆ

Mε

z∇2
qj

G̃σ(qj, ql)z
twl(y − ql)

2χ2
l dvgε

+O(ξ2
ε R− 1

2 e−2R sin π
k + ξ2

ε ε2R
− 1

2
σ e−Rσ |z|2 + ξ2

ε σ3 ∑
j 6=l

G̃σ(qj, ql)|z|3)

= ξ2
ε

[

ˆ

R2
log

|y|
|y − z|w

2
j (y)dy +∇qj

F(q) · z

ˆ

R2
w2

j dy +
1

2
z∇2

qj
F(q)zt

ˆ

R2
w2

j dy
]

+O(ξ2
ε [σ

3|z|3 + ε2|z|2]R− 1
2

σ e−Rσ)

where

F(q) =
k

∑
i=1

H̃σ(qi, qi) + ∑
i 6=j

G̃1(σqi, σqj), Rσ = 2Rσ sin
π

k
. (3.1)
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Using this estimate and the expansion (2.1), we have the following estimate for the error:

S1(U, V)(z)

= −ξ2
ε w2

j (z)
[

ˆ

R2
log

|y|
|y − z|w

2
j (y)dy +∇qj

F(q) · z

ˆ

R2
w2dy +

1

2
z∇2

qj
F(q)zt

ˆ

R2
w2dy

]

+
k

∑
i=1

ξεε
4
[1

6
qj∇2K(0)zt(Q[w]− 2P[w]) +

1

6
R̃1[w]

]

+
k

∑
i=1

ξεε
4
[ 1

20
z∇2K(εqi)z

t(Q[w]− 2P[w]) +
1

45
K2(εqi)|z|2(3Q[w]− 4P[w]) +

1

10
R2[w]

]

+O
(

ξ2
ε ([σ

3|z|3 + ε2|z|2]R− 1
2

σ e−Rσ) + ξεε
5
)

where

R̃1[u] =
z2

2 − z2
1

2
(

∂

∂x1
∇K(0) · qj

∂u

∂z1
− ∂

∂x2
∇K(0) · qj

∂u

∂z2
)

+z1z2(
∂

∂x2
∇K(0) · qj

∂u

∂z1
− ∂

∂x1
∇K(0) · qj

∂u

∂z2
).

It is easy to see from the above estimate that for y = qj + z, and |εz| ≤ ig

2 ,

Lemma 3.1.

S1(U, V)(z) = S11 + S12

where S11 is an even function in z given by

S11 = ξ2
ε w2

j (z)R1(z) + ξεε
4R2(z)wj(z)

and R1(z) = O(log(1 + |z|)), R2(z) = O(|z|2), while

S12 = −ξ2
ε w2

j (z)
[

∇qj
F(q) · z

ˆ

R2
w2dy +

1

2
z∇2

qj
F(q)zt

ˆ

R2
w2dy

]

+
k

∑
i=1

ξεε4
[1

6
qj∇2K(0)zt(Q[w]− 2P[w]) +

1

6
R̃1[w]

]

+O
(

ξ2
ε ([σ

3|z|3 + ε2|z|2]R− 1
2

σ e−Rσ) + ξεε
5
)

.

Furthermore, S1(U, V) = O(ξεe−
δ
σ ) for |z| > δ

σ .

3.2. Linear Theory. In this section,we study the linearized operator Lε,q : H2(Mε)× H2(Mε) →
L2(Mε)× L2(Mε) defined by

Lε,q = DS1

(

U
V

)

.

To denote the dependence on ε and q we will also use the notation S1 = Sε,q.
First define

Zi,j(y) =
∂wi

∂yj
(y − qi)χε(y − qi)

where the coordinates are the geodesic normal coordinates.
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Set

Kε,q = {Zi,j, i = 1, · · · , k, j = 1, 2} ⊂ H2(Mε),

Cε,q = {Zi,j, i = 1, · · · , k, j = 1, 2} ⊂ L2(Mε).

We define our approximate kernels and cokernels as

Kε,q := Kε,q × {0} ⊂ H2(Mε)× H2(Mε),

Cε,q := Cε,q × {0} ⊂ L2(Mε)× L2(Mε).

Then we let K⊥
ε,q and C⊥

ε,q denote the orthogonal complement with respect to the scalar product

L2(Mε) in H2(Mε) and L2(Mε), respectively.
Define

K⊥
ε,q := K⊥

ε,q × {0} ⊂ H2(Mε)× H2(Mε),

C⊥
ε,q := C⊥

ε,q × {0} ⊂ L2(Mε)× L2(Mε).

Let πε,q denote the projection in L2(Mε) onto C⊥
ε,q. We are going to show that the equation

πε,q ◦ Sε,q

(

U + φ
V + ψ

)

= 0 (3.2)

has a unique solution Σ =

(

φ
ψ

)

∈ K⊥
ε,q.

Set

Lε,q = πε,q ◦ Lε,q : K⊥
ε,q → C⊥

ε,q. (3.3)

The following proposition shows the invertibility of Lε,q. The proofs are quite standard now
and so we omit the details here. We refer to [2] for details.

Proposition 3.2. Let Lε,q be defined in (3.3). Then there exists a positive constant δ0 such that for ε√
D
<

δ0, there is a constant C > 0 such that

‖Lε,qΣ‖L2(Mε) ≥ C‖Σ‖H2(Mε), (3.4)

for any q ∈ Qε, Σ ∈ K⊥
ε,q. Moreover, the map Lε,q is surjective.

3.3. Solving the nonlinear problem module the cokernel. From the above proposition, we know
that Lε,q is invertible (denote the inverse by L−1

ε,q). Then we can rewrite the equation (3.2) as

Σ = −(L−1
ε,q ◦ πε,q)

(

Sε,q

(

U
V

)

)

− (L−1
ε,q ◦ πε,q)Nε,q(Σ) := Mε,q(Σ)

where

Σ =

(

φ
ψ

)

, Nε,q = Sε,q

(

U + φ
V + ψ

)

− Sε,q

(

U
V

)

− S′
ε,q

(

U
V

)

Σ.

We are going to show that Mε,q(Σ) is a contraction mapping on

Bε,η = {Σ ∈ H2(Mε)× H2(Mε)|‖Σ‖H2(Mε) ≤ η}.

We have by Lemma 3.1 and Proposition 3.2 that

‖Mε,q(Σ)‖H2(Mε) ≤ C
(

‖πε,q ◦ Nε,q(Σ)‖L2(Mε) + ‖πε,q ◦ Sε,q

(

U
V

)

‖L2(Mε)

)

≤ C(c(η)η + cε,D)
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where C > 0 is independent of η, c(η) → 0 as η → 0 and cε,D → 0 as max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} →
0. Moreover, we have

‖Mε,q(Σ)− Mε,q(Σ
′)‖H2(Mε) ≤ Cc(η)‖Σ − Σ′‖H2(Mε).

We choose η such that Cc(η) < 1
3 and Ccε,D ≤ 1

3η. Such a choice of η is possible if we have taken

max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} small enough. Then Mε,q is a contraction mapping in Bε,η. By the

contraction mapping principle, there exists a solution to (3.2). Thus we have

Proposition 3.3. There exists δ0 > 0 such that for max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} ∈ (0, δ0), and q ∈ Qε,

we can find a unique solution (φ, ψ) ∈ K⊥
ε,q satisfying

Sε,q

(

U + φ
V + ψ

)

∈ Cε,q

and

‖(φ, ψ)‖H2(Mε) ≤ C(ξ2
ε + ξεε

4R + ξ2
ε σR

− 1
2

σ e−Rσ).

For our purpose, we need more refined estimates on φ. Recall that S1 can be decomposed as
S11 + S12, where S11 in leading order is an even function in z while S12 in leading order is an odd
function in z. So we can decompose φ = φε,q as in the following lemma.

Lemma 3.4. Let φ = φ = ε, q be defined in Proposition 3.3. Then for y = pj + z, |σz| ≤ δ0, we have

φ = φ1 + φ2

where φ1 is radially symmetric in z and

‖φ2‖H2(Mε) ≤ Cξε

(

ξεσR
− 1

2
σ e−Rσ + ε4R

)

.

Proof. Let S[u] = S1(u, T(u2)), we first solve

S[U + φ1]− S[U] +
k

∑
j=1

S11(y − qj) ∈ Cε,q,

for φ1 ∈ K⊥
ε,q. Then we solve

S[U + φ1 + φ2]− S[U + φ1] +
k

∑
j=1

S12(y − qj) ∈ Cε,q,

for φ2 ∈ K⊥
ε,q. Using the same proof as in Lemma 3.3, both the above two equations a have

unique solution for max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} small enough. This implies the uniqueness of

φ = φ1 + φ2. Moreover, it is easy to see from the estimate of S12 that

‖S12‖L2(Mε) = ξε

(

ξεσR
− 1

2
σ e−Rσ + ε4R

)

and S11 ∈ C⊥
ε,q since S11 is an even function. Then we conclude that φ1, φ2 have the required

properties.
�
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4. THE REDUCED PROBLEM

4.1. Deriving the reduced problem. By Proposition 3.3, for each q ∈ Qε, there exists (u, v) =
(U + φ, V + ψ) such that

Sε,q

(

u
v

)

∈ Cε,q.

Now, to solve the equation exactly, we have to further choose q such that

Sε,q

(

u
v

)

∈ C⊥
ε,q.

Lemma 4.1. Under the assumption of Proposition 3.3, the following expansion holds:

ˆ

Mε

S1(U + φ, V + ψ)Zi,jdvgε = −c2ξ2
ε σ
[ c1ε4

c2ξεσ
∇∂K(0)

∂xj
· qi − ∑

l=i+1,i−1

G̃′
1(σ|qi − ql |)

( qi − ql

|qi − ql|
)

j

]

+O(Eε)

where c1, c2 are given in (4.1) and (4.2), O(Eε) = O
[

ξ2
ε ε4R + ξ3

ε σ ∑i 6=j G̃σ(qi, qj)
]

.

Proof. We compute
ˆ

Mε

S1(U + φε,q, V + ψε,q)Zi,jdvgε

=

ˆ

Mε

[

∆gε(U + φε,q)− (U + φε,q) +
(U + φε,q)2

V + ψε,q

]

Zi,jdvgε

=

ˆ

Mε

[

∆gε(U + φε,q)− (U + φε,q) +
(U + φε,q)2

V

]

Zi,jdvgε

+

ˆ

Mε

[ (U + φε,q)2

V + ψε,q
− (U + φε,q)2

V

]

Zi,jdvgε

:= I1 + I2.

We decompose

I1 =

ˆ

Mε

[∆gε(ξε,qi
wi + φε,q)− (ξε,qi

wi + φε,q) +
(ξε,qi

wi + φε,q)2

V(qi)
]Zi,jdvgε

−
ˆ

Mε

(ξε,qi
wi + φε,q)2

V(qi)2
[V(qi + z)− V(qi)]Zi,jdvgε + O(ξεR− 1

2 e−2R sin π
k )

= I11 + I12.

Note that φε,q = φ1 + φ2 which implies that
ˆ

Mε

[∆gε φε,q − φε,q + 2wiφε,q]Zi,jdvgε

=

ˆ

Mε

(φ1 + φ2)∂yj
[∆gε wi − wi + w2

i ]dvgε

= O
((

ξεR
− 1

2
σ σe−Rσ + ε4R

)

ε2ξε

)

,
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and
ˆ

Mε

φ2
ε,q

ξε,qi

Zi,jdvgε

=

ˆ

Mε

2φ1φ2 + φ2
2

ξε,qi

Zi,jdvgε

= O
(

ξ2
ε

(

ξεR
− 1

2
σ σe−Rσ + ε4R

))

since φ1 is an even function. From the expression for R̃1 and using Lemma B.2 in [41], one has
ˆ

Mε

ξε,qi
[∆gε wi − wi + w2

i ]Zi,jdvgε

= ξε,qi
ε4
ˆ

R2

1

6

[

qi∇2K(0)yt(Q[w]− 2P[w]) + R̃1[w]
] ∂w

∂yj
dy + O(ξεε5)

= (−π

4

ˆ ∞

0
(w′)2r3dr)ξε,qi

ε4∇∂K(0)

∂xj
· qi + O(ξεε5)

= −c1ξε,qi
ε4∇∂K(0)

∂xj
· qi + O(ξεε

5)

where

c1 =
π

4

ˆ ∞

0
(w′)2r3dr > 0. (4.1)

Combining the above estimates, one has

I11 = −c1ξε,qi
ε4∇∂K(0)

∂xj
· qi

+O
(

ξ2
ε

(

ξεR
− 1

2
σ σe−Rσ + ε4R

))

.

Next for I12, one has

I12 = −
ˆ

Mε

(ξε,qi
wi + φε,q)2

V(qi)2
[V(qi + z)− V(qi)]Zi,jdvgε

= −
[

ˆ

Mε

w2
i (V(qi + z)− V(qi))Zi,jdvgε

+

ˆ

Mε

2φwi

ξε,qi

(V(qi + z)− V(qi))Zi,jdvgε

+

ˆ

Mε

φ2

ξ2
ε,qi

(V(qi + z)− V(qi))Zi,jdvgε

]

= −ξ2
ε,qi

∂qi,j
F(q)

ˆ

R2
w2dy

ˆ

R2
w2 ∂w

∂yj
yjdy + O

(

ξ2
ε

(

ξεR
− 1

2
σ σe−Rσ + ξεε

2σ2 + ε4R
))

= c2ξ2
ε,qi

∂qi,j
F(q) + O

(

ξ2
ε

(

ξεR
− 1

2
σ σe−Rσ + ε4R

))

,

where

c2 = −
ˆ

R2
w2dy

ˆ

R2
w2 ∂w

∂yj
yjdy > 0. (4.2)
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In conclusion, one has

I1 = −ξε,qi

[

c1ε4∇∂K(0)

∂xj
· qi − c2ξε,qi

∂qi,j
F(q)

]

+ O(Eε).

For I2, recall that ψε,q satisfies

∆gε ψε,q − σ2ψε,q + 2Uφε,q + φ2
ε,q = 0.

We can make the following decomposition

∆gε ψε,q,1 − σ2ψε,q,1 + 2Uφε,q,1 + φ2
ε,q,1 = 0

and
∆gε ψε,q,2 − σ2ψε,q,2 + 2Uφε,q,2 + φ2

ε,q,2 + 2φε,q,1φε,q,2 = 0.

Then one can see that ψε,q,1 is radially symmetric with respect to z, and

‖ψε,q,2‖H2(Mε) = O
(

ξε

(

ξεR
− 1

2
σ σe−Rσ + ε4R

))

.

Moreover, from the Green’s representation formula,

ψε,q(qi + z)− ψε,q(qi) =

ˆ

Mε

[

Gσ(qi + z, p)− Gσ(qi, p)
]

(2Uφε,q + φ2
ε,q)dvgε(p)

= O(ξ3
ε )∇qi

F(q)|z| + Re(z)

where Re(z) is even function in z. This implies

I2 =

ˆ

Mε

[ (U + φε,q)
2

V + ψε,q
− (U + φε,q)

2

V

]

Zi,jdvgε

= −
ˆ

Mε

(U + φε,q)2

V2
ψε,qZi,jdvgε + O(Eε)

= −
ˆ

R2

1

3

∂w3
i

∂yj
(ψε,q − ψε,q(qi))dy + O(Eε)

= O(Eε).

Thus one has
ˆ

Mε

S1(U + φ, V + ψ)Zi,jdvgε = −ξε

[

c1ε4∇∂K(0)

∂xj
· qi − c2ξε,qi

∂qi,j
F(q)

]

+ O(Eε).

Recall the definition of F(q) from (3.1):

F(q) :=
k

∑
i=1

H̃1(σqi, σqi) + ∑
i 6=j

G̃1(σqi, σqj)

and ∇yH̃(y, z)|y=z = 0.
Using the asymptotic behaviour of

G̃1(x, y) = c|x − y|− 1
2 e−|x−y|(1 + o(1)), (4.3)

one has
ˆ

Mε

S1(U + φ, V + ψ)Zi,jdvgε

= −c2ξ2
ε σ
[ c1ε4

c2ξεσ
∇∂K(0)

∂xj
· qi − ∑

l=i+1,i−1

G̃′(σ|qi − ql |)
( qi − ql

|qi − ql |
)

j

]

+ O(Eε).
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�

Define
∂U

∂q
= (Zq1

·~n1, · · · , Zqk
·~nk, Zq1

·~t1, · · · , Zqk
·~tk)

t

and
Qi = σqi = Q0

i + σ f̃i~ni + σg̃i~ti.

In the following, we denote

q̃ = σ( f̃1, · · · , f̃k, g̃1, · · · , g̃k)
t = ( f1, · · · , fk, g1, · · · , gk)

t.

and
R0 = |Q0

i | = σR.

4.2. The reduced problem for general k = 3, 4, . . .. Next we analyze
´

Mε
S1(U +φ, V +ψ) ∂U

∂q dvgε .

We have the following:

Lemma 4.2.
´

Mε
S1(U + φ, V + ψ) ∂U

∂q dvgε = 0 is equivalent to the following system for the perturbation

q̃:
( d̂

d
M1 +

1

d
M2 +

C1

d
M3

)

q̃ = C2b0 + O(E)
where d = 2R0 sin π

k , and d̂ is defined in (4.5),

E =

(

E1

E2

)

and Ei are k-dimensional vectors of the form

E1 = O

(

[

ξε +
1

R2
0

+ |q̃|2
]

~1

)

, E2 = O

(

[ ξε

R0
+

1

R2
0

+
|q̃|2
R0

]

~1

)

.

Further, C1 = 4 sin2 π
k

K22−K11
K11

, C2 = −2 sin π
k

K22−K11
K11

are two constants and the matrices M1, M2, M3

and the vector b0 are given as follows:

M1 =

(

(A1 + 4I) sin2 π
k A2 sin π

k cos π
k

−A2 sin π
k cos π

k −A1 cos2 π
k

)

, M2 =

(

A1 cos2 π
k + 4 sin2 π

k I −A2 sin π
k cos π

k
A2 sin π

k cos π
k −A1 sin2 π

k

)

,

M3 =

(

B1 B2

B2 B3

)

, b0 =

(

B1 0
0 B2

)

~1

where

A1 =









−2 1 0 · · · 0 1
1 −2 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 −2









,

A2 =









0 1 0 · · · 0 −1
−1 0 1 · · · 0 0

...
...

...
. . .

...
...

1 0 0 · · · −1 0









,

B1 = diag{sin2 θ1, · · · , sin2 θk},

B2 = diag{sin θ1 cos θ1, · · · , sin θk cos θk},

B3 = diag{cos2 θ1, · · · , cos2 θk}.
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Proof. Wlog, assume that

∇2K(0) =

(

K11 0
0 K22

)

where K11, K22 < 0.
By direct calculation, one has

∇2K(0) · Qi = ∇2K(0) · (Q0
i + fi~ni + gi~ti)

= K11(Q
0
i + fi~ni + gi~ti)

+(K22 − K11)
[

(R0 + fi)(sin2 θi~ni + sin θi cos θi~ti) + gi(sin θi cos θi~ni + cos2 θi~ti)
]

= K11R0~ni

+R0(K22 − K11)(sin2 θi~ni + sin θi cos θi~ti)

+~ni

[

K11 fi + (K22 − K11)(sin2 θi fi + sin θi cos θigi)
]

+~ti

[

K11gi + (K22 − K11)(sin θi cos θi fi + cos2 θigi

]

. (4.4)

Next using the facts that

~ni+1 = cos
2π

k
~ni + sin

2π

k
~ti, ~ti+1 = − sin

2π

k
~ni + cos

2π

k
~ti,

~ni−1 = cos
2π

k
~ni − sin

2π

k
~ti, ~ti−1 = sin

2π

k
~ni + cos

2π

k
~ti,

and for |a| >> |b|
a + b

|a + b| =
a

|a| +
b

|a| −
a · b

|a|2
a

|a| + O(
|b|
|a|2 ),

one has

Qi+1 − Qi

|Qi+1 − Qi|

=
Q0

i+1 − Q0
i + fi+1~ni+1 + gi+1~ti+1 − fi~ni − gi~ti

|Q0
i+1 − Q0

i + fi+1~ni+1 + gi+1~ti+1 − fi~ni − gi~ti|

= − sin
π

k
~ni + cos

π

k
~ti

+
1

2R0 sin π
k

[

~ni( fi+1 cos
2π

k
− gi+1 sin

2π

k
− fi) +~ti( fi+1 sin

2π

k
+ gi+1 cos

2π

k
− gi)

]

− 1

2R0 sin π
k

[

− ( fi+1 cos
2π

k
− gi+1 sin

2π

k
− fi) sin

π

k
+ ( fi+1 sin

2π

k
+ gi+1 cos

2π

k
− gi) cos

π

k

]

× (−~ni sin
π

k
+~ti cos

π

k
) + O(

|q|
R2

0

),

and



16 W. AO, J.C. WEI, AND M. WINTER

Qi−1 − Qi

|Qi−1 − Qi|

=
Q0

i−1 − Q0
i + fi−1~ni−1 + gi−1~ti−1 − fi~ni − gi~ti

|Q0
i−1 − Q0

i + fi−1~ni−1 + gi−1~ti−1 − fi~ni − gi~ti|

= − sin
π

k
~ni − cos

π

k
~ti

+
1

2R0 sin π
k

[

~ni( fi−1 cos
2π

k
+ gi−1 sin

2π

k
− fi) +~ti(− fi−1 sin

2π

k
+ gi−1 cos

2π

k
− gi)

]

− 1

2R0 sin π
k

[

( fi−1 cos
2π

k
+ gi−1 sin

2π

k
− fi) sin

π

k
+ (− fi−1 sin

2π

k
+ gi−1 cos

2π

k
− gi) cos

π

k

]

× (~ni sin
π

k
+~ti cos

π

k
) + O(

|q|
R2

0

).

Moreover, we define

d̂ = − G̃′′
1 (d)

G̃′
1(d)

d = d + O(1). (4.5)

We expand

G̃′
1(|Qi+1 − Qi|) = G̃′

1(|Q0
i+1 − Q0

i |) + G̃′′
1 (|Q0

i+1 − Q0
i |)

×
[

− ( fi+1 cos
2π

k
− gi+1 sin

2π

k
− fi) sin

π

k
+ ( fi+1 sin

2π

k
+ gi+1 cos

2π

k
− gi) cos

π

k

]

and

G̃′
1(|Qi−1 − Qi|) = G̃′

1(|Q0
i−1 − Q0

i |) + G̃′′
1 (|Qi−1 − Qi|)

×
[

− ( fi−1 cos
2π

k
+ gi−1 sin

2π

k
− fi) sin

π

k
− (− fi−1 sin

2π

k
+ gi−1 cos

2π

k
− gi) cos

π

k

]

.

Combining all the above expansions, one has

i+1

∑
j=i−1

G̃′
1(|Qi − Qj|)

Qj − Qi

|Qj − Qi|

= G̃′
1(d)

{

− 2 sin
π

k
~ni

− d̂

d

[

−
(

fi+1 + fi−1 + 2 fi + (gi+1 − gi−1) cot
π

k

)

sin2 π

k
~ni

+
(

( fi+1 − fi−1) tan
π

k
+ gi+1 + gi−1 − 2gi

)

cos2 π

k
~ti

]

+
1

d

[(

fi+1 + fi−1 − 2 fi − (gi+1 − gi−1) tan
π

k

)

cos2 π

k
~ni

+
(

( fi+1 − fi−1) cot
π

k
− (gi+1 + gi−1 + 2gi)

)

sin2 π

k
~ti

]}

+O

(

G̃′
1(d)

[

|q̃|2~ni +
|q̃|2

d
~ti +

|q|
R2

0

])

.
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Now let us define R0 such that

−2 sin
π

k
G̃′

1

(

2R0 sin
π

k

)

+
c1ε4K11

c2ξεσ2
R0 = 0

which is possible since G̃′
1 < 0 and K11 < 0.

Then
ˆ

Mε

S1
∂U

∂q
dvgε = 0

is reduced to the following linear system for the perturbation q̃ = ( f1, · · · , fk, g1, · · · , gk)
t

( d̂

d
M1 +

1

d
M2 +

C1

d
M3

)

q̃ = C2b0 + O(E) (4.6)

where

E =

(

E1

E2

)

and Ei are k-dimensional vectors of the form

E1 = O

([

ξε +
|q|
R2

0

+ |q̃|2
]

~1

)

, E2 = O

([

ξε

R0
+

|q|
R2

0

+
|q̃|2
R0

]

~1

)

.

Further, we have C1 = 4 sin2 π
k

K22−K11
K11

, C2 = −2 sin π
k

K22−K11
K11

,

M1 =

(

(A1 + 4I) sin2 π
k A2 sin π

k cos π
k

−A2 sin π
k cos π

k −A1 cos2 π
k

)

, M2 =

(

A1 cos2 π
k + 4 sin2 π

k I −A2 sin π
k cos π

k
A2 sin π

k cos π
k −A1 sin2 π

k

)

,

M3 =

(

B1 B2

B2 B3

)

, b0 =

(

B1 0
0 B2

)

~1

where

A1 =









−2 1 0 · · · 0 1
1 −2 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 −2









,

A2 =









0 1 0 · · · 0 −1
−1 0 1 · · · 0 0

...
...

...
. . .

...
...

1 0 0 · · · −1 0









,

B1 = diag{sin2 θ1, · · · , sin2 θk},

B2 = diag{sin θ1 cos θ1, · · · , sin θk cos θk},

B3 = diag{cos2 θ1, · · · , cos2 θk}.

�

Remark 4.3. Since for general k ≥ 2, the linear system (4.6) is not easy to solve, we now compute
q̃ for k = 2. In this case, only two spikes interact with each other, and one has | sin θ1| = | sin θ2|,
| cos θ1| = | cos θ2|. This will simplify our computations a lot.



18 W. AO, J.C. WEI, AND M. WINTER

4.3. The reduced problem for k = 2. The reduced problem for k = 2 is given by the following
result:

Lemma 4.4. When k = 2,
´

Mε
S1(U + φ, V + ψ) ∂U

∂q dvgε = 0 is equivalent to the following system for

the perturbation q̃:

Mq̃ :=
( d̂

d
M1 +

1

R0
M2 +

1

R0
M3

)

q̃ = b0 + O





[

ξε +
|q|
R2

0
+ |q̃|2

]

(1, 1)t

[ ξε
R0

+ |q|
R2

0
+ |q̃|2

R0

]

(1, 1)t



 (4.7)

where

M1 =

(

β1 A0 0
0 0

)

, M2 =

(

β1 I β3 A1

β3A1 β2 I

)

,

M3 =

(

0 0

0 − 1
2 β1A0

)

, b0 = −β3

(

0 0
0 A1

)

~1,

A0 =

(

1 1
1 1

)

, A1 =

(

1 0
0 −1

)

and

β1 = K11 + (K22 − K11) sin2 θ1, β2 = K11 + (K22 − K11) cos2 θ1, β3 = (K22 − K11) sin θ1 cos θ1.

Proof. The proof is similar to Lemma 4.2.
First we get

G̃′
1(|Q1 − Q2|)

Q2 − Q1

|Q2 − Q1|

= G̃′
1(d)

(

1 − d̂

d
( f1 + f2)

)(

−~n1 −
1

2R0
(g1 + g2)~t1

)

+O

(

G̃′
1(d)

[

|q̃|2~ni +
|q̃|2

d
~ti

])

where d = 2R0.
Combining with (4.4), we have

ˆ

Mε

S1(U + φ, V + ψ)∇wdvgε

=
c1ε4

c2ξεσ2
R0

×
(

(K11 + (K22 − K11) sin2 θ1)~n1 + (K22 − K11) sin θ1 cos θ1~t1)

+
1

R0
(K11 f1 + (K22 − K11)(sin2 θ1 f1 + sin θ1 cos θ1g1))~n1

+
1

R0
(K11g1 + (K22 − K11)(sin θ1 cos θ1 f1 + cos2 θ1g1))~t1

)

−G̃′
1(d)

(

1 − d̂

d
( f1 + f2)

)

(

~n1 +
1

d
(g1 + g2)~t1

)

+O

(

G̃′
1(d)

[

|q̃|2~ni +
|q̃|2

d
~ti +

|q|
R2

0

])

+ O(E).
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Here by carefully checking the error estimates and using the facts that for k = 2, if |q̃| << 1,

Q1 − Q2

|Q1 − Q2|
= (1 + o(1))~n1 + O

(

1

d

)

~t1,

∂q1,j
F(q̃) · z = O(σG̃′

1(d)z ·~ni)~ni + O

(

σG̃′
1(d)

d
z ·~ti

)

~ti,

and

Q1∇2K(0)z(Q[w] − 2P[w]) +
1

6
R̃1[w] = O(R0)~n1 + O(1)~t1,

one can have a more accurate estimate for the error term E, i.e.

E =

(

E1

E2

)

= O





[

ξ2
ε ε4R + ξ3

ε σ ∑i 6=j G̃sσ(qi, qj)
]

(1, 1)t

1
R0

[

ξ2
ε ε4R + ξ3

ε σ ∑i 6=j G̃σ(qi, qj)
]

(1, 1)t



 .

We have a similar expansion for the projection on Z2. Define R0 as

c1ε4

c2ξεσ2
R0

(

K11 + (K22 − K11) sin2 θ1

)

= G̃′
1(2R0).

Considering the leading order matrix M1, the kernel in leading order is spanned by the vectors

α(1,−1, 0, 0)t, β(0, 0, 1, 0)t, γ(0, 0, 0, 1)t.

Since the righthand side in leading order is b0 = −β3(0, 0, 1,−1)t we get the solvability condition
β3 = 0. Therefore we have to choose θ1 = 0 or π

2 . By Taylor expansion,

R0 =
1

2
log

1

ε2D
− 3

4
log(log

1

ε2D
)− 1

2
log

c3

ξε
+ O

( log(log 1
ε2D

)

log 1
ε2D

)

(4.8)

where

c3 = − c1β1

2cc2
> 0

since β1 < 0.
So the reduced system becomes

Mq̃ :=
( d̂

d
M1 +

1

R0
M2 +

1

R0
M3

)

q̃ = b0 + O





[

ξε +
|q|
R2

0
+ |q̃|2

]

(1, 1)t

[ ξε
R0

+ |q|
R2

0
+ |q̃|2

R0

]

(1, 1)t





given in (4.7), where

M1 =

(

β1 A0 0
0 0

)

, M2 =

(

β1 I β3 A1

β3A1 β2 I

)

,

M3 =

(

0 0

0 − 1
2 β1A0

)

, b0 = −β3

(

0 0
0 A1

)

~1,

A0 =

(

1 1
1 1

)

, A1 =

(

1 0
0 −1

)

and

β1 = K11 + (K22 − K11) sin2 θ1,

β2 = K11 + (K22 − K11) cos2 θ1,

β3 = (K22 − K11) sin θ1 cos θ1.
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This finishes the proof.
�

Remark 4.5. From the definition of R0, one can check that

ε|q1| ∼
εR0

σ
∼

√
D log

1

ε2D log
√

D
ε

.

So under assumption (1.3), one can easily see that ε|q1| → 0 as ε → 0.

Finally, for k = 2 we solve the reduced problem and complete the proof Theorem 1.1.

Proof of Theorem 1.1. First since β3 = 0, we have to choose θ1 = 0 or π
2 . In this case, the reduced

system becomes

Mq̃ =

(

( d̂
d A0 +

1
R0

I)β1 0

0 1
R0
(β2 I − 1

2 β1 A0)

)

q̃ = O





[

ξε +
|q|
R2

0
+ |q̃|2

]

(1, 1)t

[ ξε
R0

+ |q|
R2

0
+ |q̃|2

R0

]

(1, 1)t



 . (4.9)

If β2 − β1 6= 0, the matrix is invertible, and one can check that ‖M−1‖ ≤ CR0.

Our idea is to first improve the top line of the right hand side of (4.9) to O( ξε

R2
0
) from O(ξε).

This is done in the following way. Since when θ1 = 0 or π
2 , this approximate solution has some

symmetry around each spike in main order, by carefully checking the calculation in Section 3 and

4, one can decompose Eε in Lemma 4.1 as [δ1ξε + δ2
ξε
R0

+ O( ξε

R2
0
)]ξεε4R for some δ1, δ2 which is

tedious but standard. So one can decompose fi = f 0 + f 1 + f̂i, where f 0, f 1 are chosen to match

the O(ξε) and O( ξε
R0
) term on the right hand side of the reduced problem . First f 0 is chosen such

that G̃′
1(2R0 + 2 f 0) = G̃′

1(2R0)(1 + δ1ξε), which implies that | f 0| = O(ξε). Then we choose f 1

such that G̃′
1(2R0 + 2 f 0 + 2 f 1)− G̃′

1(2R0 + 2 f 0) = G̃′
1(2R0)δ2

ξε
R0

and | f 1| = O( ξε
R0
). In this way we

can get the reduced problem for { f̂i, gi} (we still denote its solution by q̃) as follows:

Mq̃ =

(

( d̂
d A0 +

1
R0

I)β1 0

0 1
R0
(β2 I − 1

2 β1A0)

)

q̃ = O





[ ξε

R2
0
+ |q|

R2
0
+ |q̃|2

]

(1, 1)t

[ ξε
R0

+ |q|
R2

0
+ |q̃|2

R0

]

(1, 1)t



 .

Since ‖M−1‖ ≤ CR0, one can find a solution q̃ to by contraction mapping such that

|q̃| ≤ Cξε.

In conclusion, we find a solution such that maxi(| f̂i|+ |gi|) = O(ξε).
It is easy to check that when θ1 = 0, then β2 − β1 = K22 − K11; while when θ1 = π

2 , β2 − β1 =

K11 − K22. So if K22
K11

6= 1, one can solve the equation and get two solutions which correspond to

θ1 = 0 and θ1 = π
2 , respectively.

�

5. STABILITY STUDY I: STUDY OF THE LARGE EIGENVALUES

We consider the stability of the steady-state (uε, vε) constructed in Theorem 1.1.
In this section, we first study the large eigenvalues which satisfy λε → λ0 6= 0 in the limit as

max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} → 0.
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Linearizing the system around the equilibrium states (uε, vε) obtained in Theorem 1.1, we ob-
tain the following eigenvalue problem:

{

∆gε φ − φ + 2uε
vε

φ − u2
ε

v2
ε
ψ = λφ,

∆gε ψ − σ2ψ + 2uεφ = τλσ2ψ,
(5.1)

for (φ, ψ) ∈ H2(Mε)× H2(Mε).
In this section, since we study the large eigenvalues, we may assume that |λε| ≥ c > 0

for max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} small enough. If Re(λε) ≤ −c < 0, then λε is a stable large

eigenvalue, we are done. Therefore, we may assume that Re(λε) ≥ −c and for a subsequence

max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} → 0, λε → λ0 6= 0. We shall derive the limiting eigenvalue problem

which is given by a coupled system of NLEPs.
The second equation of (5.1) is equivalent to

∆gε ψ − σ2(1 + τλε)ψ + 2uεφ = 0 on Mε. (5.2)

We introduce the following notation:

σλ = σ
√

1 + τλε,

where in
√

1 + τλε, we take the principal part of the square root.
Let us assume that

‖φ‖H2(Mε) = 1.

We cut off φ = φε as follows:

φε,j = φεχε(z − qj), j = 1, · · · , k, (5.3)

where the cutoff function χε has been defined in (2.8).
From (5.1) and the exponential decay of w, it follows that

φε =
k

∑
j=1

φε,j(1 + o(1)) in H2(Mε). (5.4)

Then by a standard procedure (see [15], Section 7.12), we extend φε,j to a function defined on

R
2 such that

‖φε,j‖H2(R2) ≤ C‖φε,j‖H2(Mε), j = 1, · · · , k.

Since ‖φε‖H2(Mε) = 1, ‖φε,j‖H2(R2) ≤ C . By taking a subsequence, we may assume that φε,j →
φj as max{ ε√

D
,
√

D log 1

ε2D log
√

D
ε

} → 0 in H1(R2) for some φj ∈ H1(R2) for j = 1, · · · , k.

By (5.1), we have

ψε(qj) =

ˆ

Mε

Gσλ
(qj, y)2uεφε(y) dy

=

ˆ

Mε

Gσλ
(qj, y)2(

k

∑
i=1

ξε,qi
wj(y − qi)φε,i + O(ξ2

ε )) dy

=
1

2π
log

1

σλ

ˆ

R2
2ξε,jwjφε,j(1 + o(1)) dx.

Substituting the above equation into the first equation of (5.1) and using the expansion of ξε,j, in

the limit max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} → 0 we arrive at the following nonlocal eigenvalue problem
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(NLEP):

∆φj − φj + 2wφj −
2

1 + τλ0

´

R
2
+

wφj dx
´

R
2
+

w2 dx
w2 = λ0φj, j = 1, · · · , k. (5.5)

By Theorem 3.5 in [58], (5.5) has only stable eigenvalues if τ is small enough.
In conclusion, we have shown that the large eigenvalues of the solutions given in Theorem 1.1

are all stable if τ is small enough.

6. STABILITY STUDY II: STUDY OF THE SMALL EIGENVALUES

Now we study the eigenvalue problem (5.1) with respect to small eigenvalues. Namely, we

assume that λε → 0 as max{ ε√
D

,
√

D log 1

ε2D log
√

D
ε

} → 0.

Our main result in the section says that if λε → 0, then

λε ∼ ε4Rσ0(M)

where σ0(M) is an eigenvalue of M defined in (4.9). So the stability of the solutions depends on

the eigenvalues of M. It turns out that it is related to the ratio K22
K11

.

6.1. Eigenfunctions and error estimates. Let (uε, vε) be the equilibrium state constructed for
equation (1.5), and define

uε,j = ξε,qj
uε(y), j = 1, · · · , k,

where ξε,qj
is defined in (2.8) and calculated in (2.10). It is easy to see that

uε =
k

∑
j=1

uε,j(1 + o(1)) in H2(Mε).

Now let us set λ0 = 0 in (5.5), we have

∆φj − φj + 2wφj − 2w2

´

R2 wφjdy
´

R2 w2dy
= 0, (6.1)

which is equivalent to

L0

(

φj − 2

´

R2 wφjdy
´

R2 w2dy
w
)

= 0, j = 1, · · · , k,

where L0 = ∆ − 1 + 2w. We have

φj − 2

´

R2 wφjdy
´

R2 w2dy
w ∈ span

{

∂w

∂yi
, i = 1, 2

}

, j = 1, · · · , k.

This implies that
´

R2 wφjdy = 0, and we can decompose φε as

φε =
k

∑
j=1

2

∑
i=1

aε
j,i

ξε

∂uε,j

∂yi
+ φ⊥

ε

where

φ⊥
ε ⊥ K̃ε,q := span

{

∂uε,j

∂yi
, j = 1, · · · , k, i = 1, 2

}

.

The decomposition of φε implies that

ψε =
k

∑
j=1

2

∑
i=1

aε
j,iψε,j,i + ψ⊥

ε
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where ψε,j,i is the unique solution of

∆gε ψε,j,i − σ2
λψε,j,i + 2ξ−1

ε uε
∂uε,j

∂yi
= 0,

and

∆gε ψ
⊥
ε − σ2

λψ⊥
ε + 2ξ−1

ε uεφ
⊥
ε = 0.

Supposing ‖φε‖H2(Mε) = 1, then we have aε
j,i = O(1). Substituting the decomposition of φε and

ψε into (5.1), using the fact that

∆gε uε,j − uε,j +
u2

ε,j

vε
= h.o.t,

we have

k

∑
j=1

2

∑
i=1

aε
j,i

u2
ε

v2
ε
(

∂yi
vε

ξε
− ψε,j,i) +

k

∑
j=1

2

∑
i=1

aε
j,i

ξε
[∆gε

∂uε,j

∂yi
− ∂

∂yi
∆gε uε,j]

+ ∆gε φ
⊥
ε − φ⊥

ε +
2uε

vε
φ⊥

ε − u2
ε

v2
ε

ψ⊥
ε − λφ⊥

ε + h.o.t = λ
k

∑
j=1

2

∑
i=1

aε
j,i

ξε

∂uε,j

∂yi
.

(6.2)

We set

I1 =
k

∑
j=1

2

∑
i=1

aε
j,i

u2
ε

v2
ε
(

∂yi
vε

ξε
− ψε,j,i) +

k

∑
j=1

2

∑
i=1

aε
j,i

ξε
[∆gε

∂uε,j

∂yi
− ∂

∂yi
∆gε uε,j]

:= I11 + I12,

I2 = ∆gε φ
⊥
ε − φ⊥

ε +
2uε

vε
φ⊥

ε − u2
ε

v2
ε

ψ⊥
ε − λφ⊥

ε .

First we shall derive the estimate for φ⊥
ε . Since φ⊥

ε ⊥ K̃ε,q, we have

‖φ⊥
ε ‖H2 ≤ C‖I1‖L2 .

By the expansion of ∆gε in (2.1), one knows that

‖I12‖ ≤ Cε2
k

∑
j=1

2

∑
i=1

|aε
j,i|. (6.3)

For I11, using the equation satisfied by ψε,j,i, we get

ψε,j,i(y) =

ˆ

Mε

G̃σλ
(y, z)[2ξ−1

ε uε
∂uε,j

∂zi
]dz + h.o.t

= ξε

ˆ

Mε

G̃σλ
(y, z)

∂w(z − qj)
2

∂zi
dz + h.o.t.,

(6.4)

and using the equation satisfied by vε, we have

∂vε

∂yi
=

ˆ

Mε

∂G̃σ

∂yi
(y, z)u2

ε (z)dz

= ξ2
ε

ˆ

Mε

∂G̃σ

∂yi
(y, z)(

k

∑
l=1

w(z − ql)
2)dz + h.o.t.

(6.5)
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Combining (6.4) and (6.5), one has

1

ξε

∂vε

∂yi
(y)− ψε,j,i(y) = ξε

[

ˆ

Mε

∂G̃σ

∂yi
(y, z)(

k

∑
l=1

w(z − ql)
2)dz −

ˆ

Mε

G̃σλ
(y, z)

∂w(z − qj)
2

∂zi
dz + h.o.t

]

(6.6)

= ξε

[ 1

2π

ˆ

Mε

∂

∂yi
ln

1

|y − z|w
2(z − qj)− ln

1

|y − z|
∂w2(z − qj)

∂zi
dz (6.7)

+

ˆ

Mε

∂H̃σ

∂yi
(y, z)w2(y − qj)− H̃σ(y, z)

∂w2(z − qj)

∂zi
dz (6.8)

+∑
l 6=j

ˆ

Mε

∂G̃σ

∂yi
(y, z)w2(z − ql)dz + h.o.t.

]

. (6.9)

Using the fact that ( ∂
∂y +

∂
∂z) log |y − z| = 0 for y 6= z, we have

1

ξε

∂vε

∂yi
(y)− ψε,j,i(y) = ξε

∂Fj(y)

∂yi
(

ˆ

R2
w2dz + O(σ))

where

Fj(y) = H̃σ(y, qj) + ∑
ℓ 6=j

G̃σ(y, qℓ).

From this estimate, using the fact that
∂Fj(qj)

∂yi
= 1

2
∂F(q)
∂qj,i

, we have

I11 =
k

∑
j=1

2

∑
i=1

aε
j,i

ξε

u2
ε

v2
ε
[
∂vε

∂yi
− ξεψε,j,i]

=
k

∑
j=1

2

∑
i=1

aε
j,iξε

∂Fj(qj)

∂yi
(

ˆ

R2
w2dz)(1 + O(σ|y − qj|))

u2
ε

v2
ε

= O

(

ξε
∂F(q)

∂qj,i

)

k

∑
j=1

2

∑
i=1

|aε
j,i|

= O

(

ε4Rσ

σ

)

.

(6.10)

Combining (6.3) and (6.10), one has ‖I1‖L2(Mε) ≤ Cε2. So

‖φ⊥
ε ‖H2(Mε) ≤ Cε2

k

∑
j=1

2

∑
i=1

|aε
j,i|. (6.11)

Using the equation satisfied by ψ⊥
ε ,

‖ψ⊥
ε ‖H2(Mε) ≤ Cε2

k

∑
j=1

2

∑
i=1

|aε
j,i|. (6.12)
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6.2. Derivation of the finite-dimensional eigenvalue problem. Multiplying (6.2) by 1
ξε

∂uε,m

∂yℓ
and

integrating over Mε, one has

r.h.s = λ
k

∑
j=1

2

∑
i=1

aε
j,i

ξ2
ε

ˆ

Mε

∂uε,j

∂yi

∂uε,m

∂yℓ
dy

= λ
k

∑
j=1

2

∑
i=1

aε
j,iδj,mδi,ℓ

ˆ

R2

( ∂w

∂y1

)2
dy + o(1)

= λaε
m,ℓ

ˆ

R2

( ∂w

∂y1

)2
dy + o(1).

(6.13)

For the l.h.s, we get
ˆ

Mε

I2ξ−1
ε

∂uε,m

∂yℓ
dy

=

ˆ

Mε

ξ−1
ε [∆φ⊥

ε − φ⊥
ε +

2uε

vε
φ⊥

ε − λφ⊥
ε − u2

ε

v2
ε

ψ⊥
ε ]

∂uε,m

∂yℓ
dy

= −λ

ˆ

Mε

ξ−1
ε φ⊥

ε
∂uε,m

∂yℓ
dy

+

ˆ

Mε

u2
ε,m

v2
ε

ξ−1
ε

(∂vε

∂yℓ
φ⊥

ε − ∂uε,m

∂yℓ
ψ⊥

ε

)

dy + O(
ε6Rσ

σ
)

= −λ

ˆ

Mε

ξ−1
ε φ⊥

ε
∂uε,m

∂yℓ
dy

+

ˆ

Mε

u2
ε,m

v2
ε

ξ−1
ε φ⊥

ε (
∂vε

∂yℓ
(qm + y)− ∂vε

∂yℓ
(qm))dy

+

ˆ

Mε

u2
ε,m

v2
ε

ξ−1
ε φ⊥

ε
∂vε

∂yℓ
(qm)dy

−
ˆ

Mε

u2
ε,m

v2
ε

ξ−1
ε

∂uε,m

∂yl
(ψ⊥

ε (qm + y)− ψ⊥
ε (qm))dy

−
ˆ

Mε

u2
ε,m

v2
ε

ξ−1
ε

∂uε,m

∂yℓ
ψ⊥

ε (qm)dy + o(ε4)

= J1 + J2 + J3 + J4 + J5 + o(ε4). (6.14)

Using the equation for ψ⊥
ε , one has

ψ⊥
ε (qm) =

ˆ

Mε

Gσλ
(y, z)(2ξ−1

ε uεφ
⊥
ε )(z)dz = O(‖φ⊥

ε ‖H2) = O(ε2),

ψ⊥
ε (qm + y)− ψ⊥

ε (qm) =

ˆ

Mε

[G̃σλ
(y + qm, z)− G̃σλ

(qm, z)]2ξ−1
ε uεφ

⊥
ε (z)dz

= 2

ˆ

Mε

∇qmG̃σλ
(qm, z) · yξ−1

ε uεφ
⊥
ε dz

= O(ε2 ε4Rσ

σξε
|y|) = o(ε4|y|).

(6.15)
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Similarly, using the equation satisfied by vε, one has

∂vε

∂yℓ
(qm) = O

(

ξ2
ε

∂F(q)

∂qm,ℓ

)

,

∂vε

∂yℓ
(qm + y)− ∂vε

∂yℓ
(qm) = O

(

ξ2
ε

∂2F(q)

∂qm,ℓ∂qj,i
|y|
)

.

(6.16)

So using the definition of φ⊥
ε , one has J1 = 0. Using (6.16),

J2 + J3 = O

(

ε2 ε4Rσ

σ

)

= o(ε4),

while using (6.15), one has

J4 + J5 = o(ε4).

Combining all the above estimates, one has

ˆ

Mε

I2ξ−1
ε

∂uε,m

∂yell
dy = o(ε4). (6.17)

Next recall the estimate for 1
ξε

∂vε
∂yi

(y)− ψε,j,i in (6.9), we have

ˆ

Mε

I11ξ−1
ε

∂uε,m

∂yℓ
dy =

k

∑
j=1

2

∑
i=1

aε
j,iξε

(
ˆ

Mε

∂Fj(y)

∂yi

u2
ε

v2
ε

∂wj(y − qm)

∂yℓ
dy + h.o.t

)
ˆ

R2
w2dy

=
k

∑
j=1

2

∑
i=1

aε
j,iξε

∂F(q)

∂qj,i∂qm,ℓ
δi,ℓ

(
ˆ

R2
w2(y)yi

∂w

∂yi
dy + o(1)

)(
ˆ

R2
w2dy + o(1)

)

= −c2

k

∑
j=1

2

∑
i=1

aε
j,iξε

∂2F(q)

∂qj,i∂qm,ℓ
(δi,ℓ + o(1))

(6.18)

where c2 is defined in (4.2).
For I12, we get

ˆ

Mε

I12ξ−1
ε

∂uε,m

∂yℓ
dy

=
k

∑
j=1

2

∑
i=1

aε
j,i

ˆ

Mε

[∆gε

∂w

∂yi
(y − qj)−

∂

∂yi
∆gε w(y − qj)]

∂w(y − qm)

∂yℓ
dyδm,jδi,ℓ + o(1).

(6.19)
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Consider the expansion of ∆gε around each point qj, i.e. replacing 0 by εqj in (2.1), we have

∂

∂yi
∆gε w − ∆gε

∂w

∂yi
=

1

3
K(εqj)ε

2
[ ∂

∂yi
(Q[w]− 2P[w])− (Q[∂iw]− 2P[∂iw])

]

+
1

6
(∇K(εqj) · y)ε3

[ ∂

∂yi
(Q[w]− 2P[w])− (Q[∂iw]− 2P[∂iw])

]

+
1

6

∂

∂yi
(∇K(εqj) · y)ε3(Q[w]− 2P[w])

+
1

20
(y∇2K(εqj)y

t)ε4
[ ∂

∂yi
(Q[w]− 2P[w])− (Q[∂iw]− 2P[∂iw])

]

+
1

20

∂

∂yi
(y∇2K(εqj)y

t)ε4(Q[w]− 2P[w])

+
1

45
K2(εqj)|y|2ε4

[ ∂

∂yi
(3Q[w]− 4P[w])− (3Q[∂iw]− 4P[∂iw])

]

+
2

45
K2(εqj)yiε

4(3Q[w]− 4P[w])

+
1

6
ε3
[ ∂

∂yi
R1[w]− R1[∂iw]

]

+
1

10
ε4[

∂

∂yi
R2[w]− R2[∂iw]] + o(ε4).

Using Lemma 8.1, one has

ˆ

R2
[

∂

∂yi
∆gε w − ∆gε

∂w

∂yi
]
∂w

∂yi
dy = −1

4

∂2K

∂x2
i

(εqj)

ˆ

R2
(w′)2y2

i dy

= − ε4

4

∂2K

∂x2
i

(0)

ˆ

R2
(w′)2y2

i dy(1 + o(1))

= −c1ε4 ∂2K

∂x2
i

(0)(1 + o(1)).

(6.20)

Combining (6.18) and (6.20),

ˆ

Mε

I1ξ−1
ε

∂uε,m

∂yℓ
dy =

k

∑
j=1

2

∑
i=1

aε
j,i[−c2ξε

∂2F(q)

∂qj,i∂qm,ℓ
+ c1ε4 ∂2K

∂x2
i

(0)δj,m](δi,ℓ + o(1)). (6.21)

So one has

l.h.s =
k

∑
j=1

2

∑
i=1

aε
j,i[−c2ξε

∂F(q)

∂qj,i∂qm,ℓ
δi,ℓ + c1ε4 ∂2K

∂x2
i

(0)δi,ℓδj,m + o(1)]. (6.22)

Combining the l.h.s and r.h.s,

k

∑
j=1

2

∑
i=1

aε
j,i[−c2ξε

∂2F(q)

∂qj,i∂qm,ℓ
δi,ℓ + c1ε4 ∂2K

∂x2
i

(0)δj,mδi,ℓ] + o(ε4) = λaε
m,ℓ(

ˆ

R2

( ∂w

∂y1

)2
dy + o(1)) (6.23)

Finally, for k = 2 we solve the finite-dimensional eigenvalue problem and complete the proof
of Theorem 1.4.
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Proof of Theorem 1.4. Equation (6.23) shows that the small eigenvalues λε of (5.1) are given by

λε ∼ σ0

(

− c2ξε
∂2F(q)

∂qj,i∂qm,ℓ
δi,ℓ + c1ε4 ∂2K

∂x2
i

(0)δj,mδi,ℓ

)

j,m=1,··· ,k,i,ℓ=1,2
∼ c1ε4Rσ0(M) (6.24)

where M is given in (4.7). From the expression of M, we know that if θ1 = 0, the eigenvalues are

given by λ1 ∼ K11
R0

, λ2 ∼ (2d̂
d + 1

R0
)K11, λ3 ∼ K22

R0
, λ4 ∼ 1

R0
(K22 − K11); while when θ1 = π

2 , the

eigenvalues are given by λ1 ∼ K22
R0

, λ2 ∼ (2d̂
d + 1

R0
)K22, λ3 ∼ K11

R0
, λ4 ∼ 1

R0
(K11 − K22). So since

K11 6= K22, it follows that one of the solutions is stable and the other one is unstable.
�

7. DISCUSSION

In this section we discuss the main results given in Theorems 1.1 and 1.2. We consider specific
two-dimensional Riemannian manifolds without boundary. In particular let us choose the surface
of a three-dimensional ellipsoid.

First we study the surface of a tri-axial ellipsoid with semi-axes a1 < a2 < a3. There are two
maximum points of the Gaussian curvature near each of which two different two-spike cluster so-
lutions exist. The orientation of the stable cluster is towards the smaller principal curvature and
the orientation of the unstable cluster is towards the larger principal curvature. There are also two
saddle points of the Gaussian curvature for which a single two-spike cluster exists whose spikes
are orientated in the direction in which the saddle point is a local maximum of the Gaussian cur-
vature. These spike clusters are unstable. Finally, there are two minimum points of the Gaussian
curvature near which no two-spike cluster exists.

Second we consider an American football for which the semi-axes are a1 = a2 < a3. This
surface has two maximum points of the Gaussian curvature. Near each of them multiple two-
spike clusters exist. Since the manifold is invariant under rotation around the maximum points
any orientation is possible. All of these two-spike clusters are stable. This result is not proved in
the current paper but it will follow by adapting our analysis to the case of rotationally symmetric
manifolds (which is simpler than the more general non-rotationally symmetric setting considered
here), then the finite-dimensional problems for existence and stability can be handled as in [60].
Further, for the American football case there is also a minimum point of the Gaussian curvature
near which no spike cluster exists.

The degenerate case of a point for which the two principal curvatures are the same but the
manifold is not rotationally symmetric is more difficult to handle. Further expansions are required
which will determine the existence and stability of two-spike cluster solutions near this point.

Spike clusters of more than two spikes have not been considered in this paper since higher-
order expansions of the contributions from the local geometry of the manifold are required to
determine the orientation of the cluster. We are currently investigating this problem.

8. APPENDIX

In this appendix, we will give some useful identities and we will compute the eigenvalues of
the matrix M.

8.1. Some identities. By direct calculation (following Appendix B of [41]), one has the following
lemma:
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Lemma 8.1. If w is a radial function, then the following identities hold:

ˆ

R2
(Q[w]− 2P[w])yj

∂w

∂yj
dy = −

ˆ

R2
(w′)2y2

i dy = −π

ˆ ∞

0
(w′)2r3dr,

ˆ

R2
(3Q[w]− 4P[w])yi

∂w

∂yi
dy = −

ˆ

R2
(w′(r))2y2

i dy,

ˆ

R2
[

∂

∂yi
R1[w]− R1[∂iw]]

∂w

∂yj
dy = 0,

ˆ

R2
[

∂

∂yi
R2[w]− R2[∂iw]]

∂w

∂yi
dy = −3

2

∂2K

∂x2
i

(εqj)

ˆ

R2
(w′)2y2

i dy,

∂

∂yi
(Q[w]− 2P[w])− (Q[∂iw]− 2P[∂iw]) = 0.

8.2. Eigenvalues of the matrix M. Next we will compute the eigenvalues of the matrix M =
M1 +

1
d̂
(M2 + C1M3) given in Lemma 4.2. By direct calculation, the eigenvalues of A1 are given

by

λ1,l = −2 + εl−1 + ε(k−1)(l−1) = −4 sin2 (l − 1)π

k

and the eigenvalues of A2 by

λ2,l = εl−1 − ε(k−1)(l−1) = 2i sin
2(l − 1)π

k

for l = 1, · · · , k. Denote the diagonal matrices of A1 and A2 by

D1 = diag(λ1,1, · · · , λ1,k) and D2 = diag(λ2,1, · · · , λ2,k), respectively.

Using the matrix Pk of eigenvectors for a k × k circulant matrix, we have

P−1

(

M1 +
1

d̂
(M2 + C1M3)

)

P =

(

P−1
k 0

0 P−1
k

)(

M1 +
1

d̂
(M2 + C1M3)

)(

Pk 0
0 Pk

)

=

(

(D1 + 4I) sin2 π
k + 1

d̂
(D1 cos2 π

k + 4 sin2 π
k I + C1B1) D2 sin π

k cos π
k (1 − 1

d̂
) + 1

d̂
C1B2

−D2 sin π
k cos π

k (1 − 1
d̂
) + 1

d̂
C1B2 −D1(cos2 π

k + 1
d̂

sin2 π
k ) +

1
d̂
C1B3

)

.

Since the matrix M1 +
1
d̂
(M2 + C1M3) is symmetric and its entries are all real numbers, its

eigenvalues are also real and satisfy the equations

Λ2
l + blΛl + cl = 0,

where

bl = λ1,l cos
2π

k

(

1 − 1

d̂

)

− 4 sin2 π

k

(

1 +
1

d̂

)

− 1

d̂
C1

= −4

(

sin2 (l − 1)π

k
cos

2π

k
+ sin2 π

k

)

+
4

d̂

(

sin2 (l − 1)π

k
cos

2π

k
− sin2 π

k
− C1

4

)



30 W. AO, J.C. WEI, AND M. WINTER

and

cl = λ2
2,l

(

1 − 1

d̂

)2

sin2 π

k
cos2 π

k

−λ2
1,l

(

cos2 π

k
+

1

d̂
sin2 π

k

)(

sin2 π

k
+

1

d̂
cos2 π

k

)

−4λ1,l

(

1 +
1

d̂

)

sin2 π

k

(

cos2 π

k
+

1

d̂
sin2 π

k

)

+
4

d̂
C1 sin2 π

k
cos2 (l − 1)π

k
+

4

d̂2
C1

[

− sin2 (l − 1)π

k
+ sin2 π

k

(

1 + sin2 (l − 1)π

k

)]

=
16

d̂
sin2 (l − 1)π

k

[

sin2 π

k

(

1 + cos2 π

k

)

− sin2 (l − 1)π

k

]

+
4

d̂
C1 sin2 π

k
cos2 (l − 1)π

k

−16

d̂2
sin2 (l − 1)π

k
sin2 π

k
cos

2π

k
+

4

d̂2
C1

[

− sin2 (l − 1)π

k
+ sin2 π

k

(

1 + sin2 (l − 1)π

k

)]

.

For k ≥ 3, we get bl ≤ − 8
d̂
< 0. Denote the solutions by

Λ1,l = −bl

2

(

1 −
√

1 − 4cl

b2
l

)

and Λ2,l = −bl

2

(

1 +

√

1 − 4cl

b2
l

)

, respectively.

For k = 3, 5, 6, 7, . . ., we have

Λ1,1 = 0, Λ2,1 = 4

(

1 +
1

d̂

)

sin2 π

k
> 0

and for l = 2, . . . , k, i = 1, 2 it follows that

|Λl,i| >
c4

d̂2

for some c4 > 0.
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